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Introduction

Epidemiology typically deals with causality, namely learning what statistical

relations imply, or do not imply, about cause-effect relations; causal claims

like “smoking causes cancer” or “human papilloma virus causes cervical can-

cer” have long been a standard part of the epidemiology literature, bringing

out concepts such as “exposure”, “outcome”, “confounder” etc.

Most of research purposes in health, social and behavioural sciences have,

likewise, causal nature. Consider, for example, questions as: what is the ef-

ficacy of a treatment for a given illness? does a reduction of taxation lead to

an increase in consumption? what are the main factors causing alcoholism?

These are all causal matters, since they require some knowledge of the data-

generating process and they cannot be computed from the data alone, nor

from the distributions originating data.

This thesis aims to bring together causality and gender studies. With a

particular focus on assessing gender gap, we would aim at developing sound

causal-statistics tools able to answer to causal questions such as: does gen-

der affect wages? can data prove an employer guilty of labour recruiting

gendered discrimination?

Our purpose is on learning this kind of cause-effect relationships from obser-

vational data, and in addition compiling them into a consistent mesh that

may be used to describe the mechanism originating gender gap, or at least

an appropriate abstraction of it. We shall call such meshes or networks of

cause-effect relationships causal models.

Anyway, in order to build up a bridge between causality and gender gap

analysis, we need to formulate two translation devices : the first from the

language of causality to standard statistical language of probability distribu-
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tions, while the second from statistical to the sociological language of “gender

studies”.

Chapter 1 deals with the translation from causality to statistics; an-

swering causal questions, indeed, systematically requires extensions in the

standard mathematical language of statistics. In particular, recent develop-

ments in graphical models allowed understanding of the relationships between

graphs and probabilities on one hand, and graphs and causal inference on the

other, allowing to bring causality back into statistical modelling and analysis

(Pearl, 1998).

Such tools, which we refer to as causal graphs, are a class of models that

provide:

• a notational system for concepts and relationships that do not easily

find an equivalent expression in the standard mathematical language

of algebraic equations and probability calculus;

• a simple, flexible device to clearly display the causal structure relating

variables even in case of complex systems of variables as well as big-

data;

• an intuitive visual tool capable of representing direct cause-effect rela-

tionships as well as indirect causation by means of a graph;

• a powerful symbolic machinery for deriving the consequence of causal

assumptions when such assumptions are combined with statistical data.

Such approach, thus, combines features of structural equation models (SEMs)

used in economics and social science (Goldberger, 1973; Duncan, 1975),

potential-outcome framework of Neyman (1923) and Rubin (1974), as well

as graphical models developed for probabilistic reasoning and causal analysis

(Pearl, 1988; Lauritzen, 1996; Spirtes et al., 2000; Pearl, 2000a).

The second translation occurring from statistics to gender issue, is deepen

in Chapter 2 .

2



Introduction

The main contribution of statistics in exploring gender gaps has been, tradi-

tionally, in terms of “measurements”, meant as indexes, rankings, ratios and

the like. In this thesis, conversely, we move the statistical perspective from

the static “measuring” to the dynamic “understanding” of cause-effect rela-

tionships; an index, for instance, catches a certain phenomenon and measures

its changing over time, but it is not able to explain how such phenomenon

has been originated and how it is changing after intervention.

It should be noticed that, gender -as a social structure- is not a cause itself of

gender disparities, nor is it the cause of differences in access to resources; gen-

der is, rather, an individual characteristic having physical and socio-cultural

attributes. It is neither a manipulative variable, in the following sense. In epi-

demiological studies, if we were interested, for example, in whether smoking

affects cancer in a population, we could perform a randomized experiment

where every member of the population is randomly assigned either to the

group subject to manipulation, namely to “smoking treatment”, or to the

control group where no manipulation is performed. We could, then, observe

the consequences, in terms of effects on cancer. Conversely, direct manipu-

lation is not possible for gender, since a random assignment of the “gender

treatment” can not be implemented.

The causal approach to gender issues requires thus, first, a re-definition

in a gender perspective in order to include gendered-concepts such as “gen-

der equality”, “gender inequality” and “gender gap”. Then, we explore the

potential of graphical models as a language able to untangle the complex

relationship among variables selected for statistically assessing gender dis-

parities. We focus on causal graphs as tools for both representing the causal

mechanism as well as estimating gender gap. More in detail, extending the

use of Pearl’s intervention calculus (Pearl, 2000), we proposed a new measure

of gender gap, in terms of the causal effect of gender on a target outcome

selected for assessing a certain field of interest.

Empirical evidence of the usefulness and effectiveness of causal graph ap-

proach in gender studies is then given, in Chapter 3 , by an application to

real data; the application focuses in exploring the existence of a potential

3



gender gap in child nutrition and health in China, with particular attention

to children and adolescents among 0-17 years.

Conclusions and future methodological developments, finally, close this the-

sis.

4



Chapter 1

Causal Graphs: the Theoretical

Framework

Causal relationships represent the fundamental building blocks of our phys-

ical reality and of human understanding about such reality. Every day we

deal with causes-effect considerations, whether we are deciding to go to work

by car or by bus, or evaluating the effects of taking an aspirin for a headache

or predicting who will win the elections.

The need of exploring cause-effect relationships among variables or events is

common to many sciences as physical, behavioural, social as well as biologi-

cal and the appropriate methodology for unrevealing such relationships from

data has been object of several debates.

In the last decades, thanks to advances in computer science and develop-

ments in graphical models, causality has been transformed from a concept

mainly belonging to philosophy into a mathematical object with well-defined

language and logic. Causality has been “mathematized” (Pearl, 2000).

Answering “causal questions” requires extensions in the standard mathe-

matical language of statistics. Indeed the aim of standard statistical analysis,

typified by regression, estimation, and hypothesis testing techniques, is to as-

sess parameters of a distribution from samples drawn of that distribution.

Causal analysis goes one step further, inferring not only beliefs or probabili-

ties under static conditions, but also their dynamics, in terms of cause-effect.

5



CHAPTER 1. CAUSAL GRAPHS: THE THEORETICAL FRAMEWORK

For instance, changes induced by treatments or external interventions.

1.1 Translating causality logic to statistical

language

As a student of statistics, many times I met up the statement “Correlation

do not imply Causation”; anyway I had never fully understood and deepened

its meaning and the arising implications before writing this thesis.

Shipley (2002) effectively exemplifies the concept of such statement de-

scribing causal processes as hidden three-dimensional objects whose all it is

possible to see are shadows, just two-dimensional projections of their actual

aspect.

Statisticians often deal with shadows, as they cannot directly observe the

actual causal mechanism and all they can peek are the consequences of these

processes in the form of complicated patterns of associations and indepen-

dence in the data. But as with shadows, these relationships are incomplete

and potentially ambiguous as they represents only projections of the original

causal processes.

Our aim is thus to find a mathematical tool able, from “correlation shadows”,

to uncover and effectively represent the data generating process as well to

deduce the dynamics of the events in terms of causes and effects.

In order to study causal processes using statistics, it is first necessary to

translate from the language of causality to the base of statistical language:

the probability theory.

Such a rigorous translation device did not exist until recently. The earliest

attempt to formulate causal relationship mathematically was made by Sewall

Wright in the early 20th century (Wright, 1934) with the “method of path

coefficients”, but only in the last decades with the larger attention in statis-

tics (Lauritzen, 1996; Whittaker, 2009) and computer science (Pearl, 1988;

Kalisch et al., 2012) such translation has been completely developed.

When translating between Italian and English, something may be lost:

a slight change in inflection or context of a word can change the meaning

6



1.1. TRANSLATING CAUSALITY LOGIC TO STATISTICAL LANGUAGE

!

!
!

                                      (a) 

 

!
!

!
!

! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(b) 
!

Rain Mud Irrigation 

Rain Mud Irrigation 

Figure 1.1: (a) Causal relationship between rain, mud and irrigation; (b)
Observational relationship between rain, mud and irrigation.

in a disastrous way. For example the italian words “strani rumori” (strange

noises) sound close to the english expression “strange rumors”; but if an ital-

ian boy said to an english friend: “I have heard strange rumors..” (meaning

noises), the poor english guy would think about some strange gossip, with

misunderstanding consequences! The same mistakes may occur in translat-

ing the language of causality into the language of probability distributions:

there is a deep distinction between a causal model, an observational model

and a statistical model; such differences will be now illustrated with a simple

example.

The statement “rain causes mud” implies an asymmetric relationship that

can be represented by the “→” symbol to refer to a causal relationship with

the convention that, unless a causal relationship is explicitly indicated, it

does not exist. Indeed in Figure 1.1(a) the missing arrow between “rain”

and “irrigation” means that they have no causal relationship since the two

are causally independent.

The observational model in Figure 1.1(b), related to the causal one in frame

(a), represents the statement that “having observed rain will give us infor-

mation about what we might observe concerning mud”. It deals with infor-

mation, not causes and is not asymmetric, hence the linking symbol “—” is

7



CHAPTER 1. CAUSAL GRAPHS: THE THEORETICAL FRAMEWORK

used.

Although rain and irrigation are causally independent, they are not observa-

tionally independent given the state of mud.

The statistical model differs from the observational one only in degree, not

in kind. The statistical model could be expressed for instance by the math-

ematical relationship:

Mud(cm) = 0,1 ∗Rain(cm) + 0,2 ∗ Irrigation(cm) (1.1)

meaning that, to equal irrigated water, an increase in the quantity of fallen

rain will result in an increase in cm of mud as there is a positive relation

between them.

According to Pearl (1997) a great part of the actual confusion between cor-

relation and causation is due to a mistranslation of the word “cause”, a word

having a connotation of asymmetry that cannot find a correct expression in

the symbol “=”; indeed the symbols “→” and “=” do not have an equivalent

meaning as well as saying “mud does not cause rain” and “mud is independent

of rain” . Equation 1.1 can correctly be rearranged to predict the amount of

rain from the amount of mud recognising this as causally nonsensical:

Rain(cm) = 10 ∗Mud(cm) − 20 ∗ Irrigation(cm) (1.2)

In summary, the reasons for choosing tools as diagrams, able to encode causal

relationships and represent the causal models, are that:

1. they are able of displaying relationships in an elementary and intuitively

way;

2. they are “directional”, thus being capable of representing cause-effect

relationships;

3. they embed the theory of probability in order to handle with uncer-

tainty;

4. they are visual tools for representing both direct and indirect causation.

8



1.2. THE MATHEMATICAL LANGUAGE OF GRAPHS

1.2 The Mathematical Language of Graphs

In order to develop a translation device to move between causal models and

observational (statistical) models, it is required the necessary and sufficient

conditions needed to specify a joint probability distribution that must exist

given a causal process. It is required the necessary and sufficient conditions

to specify the “correlational shadow” that will be cast by a causal process.

A feasible translation strategy would involve three points:

1. as the algebra cannot express causal relationships, we need a “new”

mathematical language allowing it;

2. we need a tool that unambiguously will convert the statement expressed

through directed graphs into statements involving conditional indepen-

dences of random variables. This translation device will be called “d-

separation”, 1.2.2;

3. we need to define the assumptions and conditions connecting probabil-

ities with causal graphs.

1.2.1 Notation and Terminology

Graphical models can be thought of as road maps: in order to use them one

needs the physical map with symbol such as dots and lines (Kalisch et al.,

2012); secondly it is necessary a rule for interpreting the symbols. In causal

graphs, the map consists of vertices and edges and the interpretation rule

is called “d-separation”. In this subsection we introduce some notational

terminology of this causal map. In the next subsection we will deep the

interpretation rules.

A graph G = (V,E) consists of a set V = {1, ..., d} of vertices (or nodes)

and a set E of edges (or arcs) connecting some vertices pairwise (Lauritzen,

1996).

Graphical models have a “natural” causal semantics; they represent statisti-

cal models where vertices will correspond to random variables X = (Xi∣i ∈ V )
and edges will denote the “relationship” between them. If two variables are

9



CHAPTER 1. CAUSAL GRAPHS: THE THEORETICAL FRAMEWORK

Figure 1.2: (a) A graph containing both directed and bidirected edges; (b)
A directed acyclic graph (DAG) with the same skeleton of (a).

connected by an edge, are called adjacent. The adjacency set of a vertex Xi,

is defined as the collection of all vertices that are adjacent to Xi in G and it

is denoted by adji(G). A subgraph of a graph G is a graph whose vertex set

is a subset of that of G, and whose adjacency relation is a subset of that of

G restricted to this subset.

In literature different classes of graphs can be distinguished for using

different kinds of edges: directed, as marked by a single arrowhead on the

edge, and undirected if unmarked links. In some applications we will also

use bidirected edges, as marked with two arrowheads (see Figure 1.2 (a)) to

denote the existence of unobserved common causes not showed in the graph,

sometimes called confounders.

When all arcs are directed as in Figure 1.2 (b), we will have a directed

graph; they may include directed cycles, (e.g. X → Y , Y → X) representing

mutual causation or feedback processes, but not self-loops (e.g. X → X).

Conversely a graph not containing cycles is said acyclic.

Three basic classes of graphs can be found in the literature:

1. undirected graphs (UGs),

2. directed acyclic graphs (DAGs) or even Causal Bayesian Networks, a

term coined by Pearl in 1985 to emphasize the subjective nature of the

input information and the information’ updating based on the reliance

on Bayes’s conditioning (Consonni and Leucari, 2001),

10



1.2. THE MATHEMATICAL LANGUAGE OF GRAPHS

Figure 1.3: (a) X is a direct cause of Y; (b) X is an indirected cause of Y.

3. and chain graphs (Marchetti and Lupparelli, 2011) which are a gener-

alization of the first two.

Our discussion mainly will involve DAGs also representing causal structure

even called Causal Graphs.

We call a DAG a causal graph if, given a set of random variables V , for every

pair X,Y ∈ V , we draw an edge from X to Y if and only if X is a direct

cause of Y relative to V.

The notation X → Y means that X is a direct cause of Y , denoting that a

causal relationship between the two vertices exists independently of any other

vertex in the causal explanation, as depicted in figure 1.3(a); conversely an

indirected cause is a causal relationship between two vertices that is condi-

tional on the behaviour of other vertices, that is, if there is a sequence of

directed arrows that can be followed from X to Y via one or more interme-

diate variables, as in figure 1.3(b).

A skeleton of a graph G is the resultant undirected graph obtained strip-

ping away all arrowheads from the edges in G while a path is an unbroken

sequence of edges, which may go either along - directed path - or against

the arrows - undirected path -. For instance, in figure 1.2(a) the sequence

(X,Z), (Z,Y ), (Y,X), moreover (X,Z), (Z,W ) defines a directed path. If

no such directed path exists, then the two vertices are causally independent.

A non-endpoint vertex Xi in a path, as Z in Figure 1.2(a), is a collider if

the path contains a pattern such as → Xi ←. Three vertices ⟨Xi,Xj,Xk⟩
are called unshield triple if the couples of vertices (Xi,Xj) and (Xj,Xk) are

adjacent but (Xi,Xk) are not adjacent. An unshield triple ⟨Xi,Xj,Xk⟩ is

called a v-structure if Xj is a collider on the path ⟨Xi,Xj,Xk⟩, as for exam-

11
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Figure 1.4: (a) A graph connected with 4 vertices and 4 edges; (b) A graph
with 4 vertices and 4 edges complete.

ple the set (X,Z,Y ) in figure 1.2(a).

Furthermore, a graph is connected if there is an undirected path between any

two vertices as in 1.4(a) while it is said complete if every pair of its vertices

are adjacent as in figure 1.4(b).

The relationships depicted in a graph make use of kinship terminology:

as parents, children, descendants, ancestors, spouses etc. For example in

Figure 1.2(a), both X and Y are parents of Z whilst Z is a descendant of X

and Y . W has three ancestors, namely X, Z and Y as there are three paths

respectively from X, Z and Y to W . X is a spouse of Y while, if they were

connected by an undirected edge, X would be neighbour of Y . A family is a

set of nodes, containing a node and all its parents. For instance, figure 1.2(a)

for families are showed: {X}, {X,Z,Y }, {Y } and {Z,W}).

Each child-parent family in a DAG represents a deterministic function:

xi = fi(pai, ui) i = 1, ..., n. (1.3)

where pai denote the parents directly determining the value of the vertex Xi

in G; ui with (1 ≤ i ≤ n) represents unobserved variables (including the errors

εi) into a set U of background variables with distribution function P (u). For

12
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Figure 1.5: Path diagram corresponding to equations 1.4

example the set of equations:

x = fi(u, ε1),
z = f2(x, ε2),
y = f3(z, u, ε3),

(1.4)

finds its graphical representation in figure 1.5, where X,Y,Z represent ob-

served variables, f1, f2, f3 are unknown arbitrary functions, and U, ε1, ε2, ε3

are unobservables that we can regard either as latent variables or as distur-

bances.

Notice that equation 1.3 is a non-linear, non-parametric generalization of

the standard linear structural equation models (SEMs) (Goldberger, 1972;

Wright, 1921)

xi = ∑
k≠i

αikxk + εi i = 1, ..., n

with the only exception that the functional form of the equations, as well as

the distribution of the disturbance terms, will remain unspecified.

1.2.2 Causal Markov Condition and d-separation

A causal model is defined Markovian if, when represented in a graph, it

contains no directed cycles and if its εi’s are mutually independent (no bi-

directed arcs), while a model is said Semi-Markovian if its graph is acyclic

and if it contains dependent errors (Lauritzen, 1996; Pearl, 2000).

Markovian models are equivalent to the SEM’s literature recursive models

13
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(Bollen, 1989). Indeed we can look at causal models in non-linear structural

equation models as the equivalent of paths in linear ones: they differ from

the latter in that their parents pai are defined, as shown in equation 1.3,

as non-trivial argument of the function fi, rather than variables obtaining

non-zero coefficients. Moreover, bidirected arcs mean two-sided dependency

instead of correlation (Pearl, 2000).

DAGs are a purely mathematical objects that may be interpreted both

causally and probabilistically. Following the causal interpretation, a DAG

G represents a causal structure such that the directed edge from X to Y

means that X is a direct cause of Y ; under the probability interpretation, a

DAG G also referred to as a Bayesian Network (BN), represents a probability

distribution P that satisfy the Markov Property, namely that each variable is

independent of its non-descendant in the graph given the state of its parents.

The intuitions, connecting causal graphs with the probability distributions

generated, are generalized in two fundamental assumptions: Causal Markov

Condition and Causal Faithfulness Condition. The latter will be described

in the subsection 1.2.3. For what concern the first assumption, instead, let

consider the following Theorem, known as:

Theorem 1.2.1 (Causal Markov Condition (CMC)). Any distribution

generated by a Markovian model can be factorized as:

P (xi, x2, ..., xn) =∏
i

P (xi∣pai) (1.5)

where X1,X2, ...,Xn are the endogenous variable in the model, and pai are

the parents of Xi in the associated causal model.

Thus, given a set of variables whose causal structure can be represented by

a DAG, the CMC, also known as Parental Screening (Pearl, 1988; Whittaker,

2009), represents one of the bridge principles linking the causal interpretation

of a DAG to its probabilistic interpretation. Reformulating the CMC in terms

of the causal DAG, it affirms that given a set of variables whose relationships

structure can be represented by a DAG, every variable is probabilistically

independent of its non-descendants conditional on its parents.

14
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4 IDA algorithm

parents is denoted by pai. If we remove all arrowheads in a graph G the resulting graph
is called the skeleton of G. A graph that contains no directed cycles is called acyclic. A
graph that is both directed and acyclic is called a directed acyclic graph (DAG), and such
graphs will occupy much of our discussion of causality. DAGs that are interpreted causally
are called causal graphs.

2.3 Markov condition and d-separation

Prior to any interpretation, DAGs are a purely mathematical objects that may be used to
model several different kinds of structures. They can e.g. represent probability distribu-
tions, i.e. a set of random variables X1, .., Xn and their conditional dependencies. They
do this through the Markov condition or Markov compatibility.

Definition 2. (Markov condition) If a probability distribution P satisfies the factorization

P (x1, ..., xn) =
�

i

P (xi|pai)

relative to a DAG G, we say that G represents P, G and P are compatible, or that P is
Markov relative to G.

This definition reflects a simple conditional independence statement. Namely that each
variable is independent of its nondescendant in the graph given the state of its parents.
For determining the probability of a variable it is therefore sufficient to know the values
of it’s parents. These kind of DAGs are also known as Bayesian networks.

Let us consider an example of a simple Bayesian network from [14]. It describes relation-
ships among the season of the year (X1), whether rain falls (X2), whether a sprinkler is
turned on (X3), whether the pavement is wet (X4) and whether it is slippery (X5). The
DAG can be seen in figure 2.1.

Figure 2.1: A Bayesian network representing dependencies among five variables

If we would e.g. want to compute the probability of a slippery pavement we would only
need to know whether it is wet or not. It does not matter whether it rains or not if we

Figure 1.6: Graph illustrating causal relations among five variables.

For example, the figure 1.6 describes relationships among the seasons of

the year (X1), whether rain falls (X2), whether a sprinkler is turned on (X3),

whether the pavement is wet (X4) and whether it is slippery (X5).

Thanks to the decomposition:

P (x1, x2, x3, x4, x5) = P (x1)P (x2∣x1)P (x3∣x1)P (x4∣x2, x3)P (x5∣x4)

if we would want, for instance, to compute the probability of a slippery

pavement we would only need to know whether it is wet or not. In other

words, it does not matter whether it rains or not if we already know that it

is wet. Note that we have not yet assigned any causal meaning to the graph.

This theorem supports the intuition that once that direct causes of Xi are

known and controlled, the probability on Xi is in fact determined.

The conditional independences pattern for a given graph G hold by CMC,

may not be obvious to identify. They can be read off using a purely graphical

criterion proposed by Pearl (1988) that represents the translation device be-

tween the language of causality and the language of probability distributions:

the d-separation criterion, where the d denotes directional.

D-separation gives the necessary and sufficient conditions for two vertices in

a causal DAG to be observationally, probabilistically, independent upon con-

ditioning on any other set of vertices. In other words, d-separation captures

the conditional independence constraints entailed by the Markov property in
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a DAG. For instance, in three disjoint sets of variables X,Y,Z, in order to

verify if X is independent by Y given Z, we need to test if the nodes in Z

“block” all paths from nodes in X to nodes in Y , in the sense that Z’s nodes

stop the flow of information from X to Y . To do this, we must check the

direction of the arrowheads.

More formally:

Definition 1.2.1 (The d-Separation Criterion). A path p is said to be

d-separated (or blocked) by a set of nodes Z if and only if:

1. p contains a chain i → m → j or a fork i ← m → j, such that the

middle node m is in Z, or;

2. p contains a collider i → m ← j, such that the middle node m is NOT

included in Z and, at the same time, no descendant of m is included in

Z.

The Causal Markov Condition (CMC) can therefore be rephrased as to

saying that for any three disjoint subsets of variables A, B and C, if A and

B are d-separated by C in the causal DAG, then A and B are independent

conditional on C.

In the example illustrated by figure 1.6, we can see that the set {X2,X1,X3}
represents a fork such that X2 and X3 are marginally dependent; however

they become independent (blocked) once we condition on the middle variable

X1. Notice that, X2 and X3 are not d-separated by Z = {X4,X5} meaning

that learning whether it is slippery outside somehow makes X2 and X3 depen-

dent. Intuitively if we know that it is slippery outside and it is not raining,

then the sprinkler must be turned on, which seems reasonable.

The d-rules fit with the intuition that two variables will be correlated if one

causes the other or if there is an uncontrolled common prior cause of both

variables. The rules also reflect the non-intuitive fact that a statistical asso-

ciation between two variables can be induced by conditioning on a common

effect of both variables (Greenland et al., 1999; Hernán et al., 2004). Indeed

if a collider on a path is in the covariate set, this collider does not block the

path.
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Figure 1.7: (a) A graph containing a bidirected edge; (b) Bidirected arc has
been interpreted as a latent cause L affecting both X and Y.

The d -separation criterion is valid even in semi-Markovian models, when

bidirected arcs are interpreted as emanating from latent common parents.

In figure 1.7, for example, the bidirected arc (a) has been replaced in (b) with

a fork such that the middle variable L is a latent common cause affecting

both X and Y . This is also possible in linear semi-Markovian models where

each latent variable is restricted to influence at most two observed variables

(Spirtes, 1996).

Coming back on the analogy of a “correlational shadows” of the underly-

ing causal process, the d-separation is the method by which one can predict

these shadows. Although causal models and observational models are not the

same thing, there is indeed a one to one correspondence between the set of

conditional independences implied by the recursive decomposition 1.5, and

the set of triples (X,Z,Y ) that satisfy the d-separation criterion in the graph.

Such connection is illustrated in the following Theorem (Geiger, Verma and

Pearl 1990):

Theorem 1.2.2 (Probabilistic Implications of d-Separation). If the

sets X and Y are d-separated by Z in a DAG G, then X is independent of Y

conditional on Z in every probability distribution such DAG G can represent.

Conversely, if X and Y are not graphically d-separated by Z, then X and Y

are dependent conditional on Z in at least one distribution compatible with

G.
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Figure 1.8: From d-separation relationships in a DAG to statistical indepen-
dence relationships in the data.

In practice, as showed in figure 1.8, it means that once we have specified

the acyclic causal graph, if it actually represents the unknown causal process,

then every d-separation relationship existing in our graph should be mirrored

in an equivalent statistical independence in the observational data. The

converse part of the theorem says that the absence of d-separation, implies

that there exists some distribution factorizing over the graph in which X and

Y are dependent given Z.

Notice that the previous statement is very general as it does not depend on

any distribution assumptions of the random variables or on the functional

form of causal relationships.

1.2.3 Causal Faithfulness Condition

In this section we illustrate the second fundamental axiom that connects

probability with causal graphs as anticipated in the previous subsection

(Spirtes et al., 2000).

Given a causal graph G and the Causal Markov assumption, we assume

that any distribution compatible with G has the independence relations ob-

tained by applying d-separation to it. However, this does not imply that

the distribution has exactly these and no additional independences. Con-

sider the following example (Scheines, 1997) and suppose that figure 1.9 is

a graph describing the actual causal relationships between smoking, exercise

and health. The + and - signs denote positive or negative effects. Applying

d-separation to the graph, it would show no independences. However it might

occur that in some probability distributions that this graph produces, smok-

ing is independent of health “by chance”.
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Figure 1.9: The “true ”graph describing the causal relationships between
smoking, exercise and health where + and - signs denote positive or negative
effects.

In figure 1.9, smoking has a negative direct effect on health but also a pos-

itive indirect effect on it, even though it might be absurd that smoking has

positive effect on exercise. It could happen that we might have no association

at all between smoking and health if the two effects would occur to cancel

each other out. In this case we would say that the probability distribution

is unfaithful to the causal graph that generated it, as there are any indepen-

dence relations in the population that are not a consequence of the Causal

Markov Condition (or d-separation).

In order to guarantee that such positive and negative effects never perfectly

balance and thus cancel one another, we assume faithfulness, namely that

whatever independences occurring in a population arise not from incredible

coincidence but rather from structure.

Definition 1.2.2 (Causal Faithfulness Condition (CFC)). A probability

distribution P is said to be faithful with respect to a graph G if conditional

independences of the distribution are exactly the same as those encoded by G

via d-separation, or equivalently, by the CMC.

More precisely: consider a random vector X with probability distribution

P (as denoted by ∼ P ); the CFC of P with respect to G means that for any i,

j ∈ V with i ≠ j and any set s ⊆ V, Xi and Xj are conditionally independent

given { Xr; r ∈ s} ⇐⇒ node i and node j are d-separated by the set s (Kalisch

and Bühlmann, 2008).
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The CMC and CFC together set up a perfect correspondence between condi-

tional independence constraints and d-separation features of the causal DAG.

In other words, we can say that an oracle of conditional independence con-

straints over the given set of observed variables, translates into an oracle of

d-separation features in the causal DAG (Zhang, 2006).

1.2.4 Markov Equivalence

After proposing a causal model and finding that the observational data do not

contradict any of the d-separation statement of our causal model, it is possible

to determine more causal models consistent with the same data. Indeed,

under the shadow metaphor, it could happen that more than one three-

dimensional object has the same contours behind a shadow, and consequently,

we cannot detect the “true” object.

It is still true under the CMC and CFC assumptions that correlation does not

imply causation. In general, the “true” causal graph is under-determined by

a pattern of correlations, while, there must be multiple causal graphs that,

given a pattern of conditional independence constraints, satisfy the CMC

and CFC. In this case the two DAGs are said observationally equivalent

or Markov equivalent (Andersson et al., 1997). The possibility to have a

whole class of equivalent models logically arises by the assumption that causal

relations cannot be inferred by statistical data only and their distribution as

Wright (1921) stated: “prior knowledge of the causal relations is assumed as

prerequisite”.

A criterion to determine when if observational equivalence occurs, follows

directly from the d-separation criterion:

Theorem 1.2.3 (Observational Equivalence). Two DAGs are observa-

tionally equivalent if and only if they have the same skeleton and the same

sets of v-structures, that is, two converging arrows whose tails are not con-

nected by an arrow (Verma and Pearl, 1990).

For example in Figure 1.7 (b) if we reversed the arrow’s direction from

L to Y , we would obtain the same skeleton and v-structure, by gaining
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an equivalent DAG. Thus the directionality of the link L → Y cannot be

determined on the basis of probabilistic information only. Conversely, the

arrows Y → Z and Z → W , if reversed, would create different v-structures

and therefore not an equivalent DAG.

Notice that in standard SEM, models are observationally indistinguish-

able if they are covariance equivalent, that is, if every covariance matrix

generated by one model can be generated also by another model (Bollen,

1989). It can be verified that Teorema 1.2.3 extends to covariance equiva-

lence (Pearl and Verma, 1995).

Also notice the methodological importance of Theorem 1.2.3: it asserts that

we are never testing a model, instead a whole class of observationally equiv-

alent models are tested, providing a clear representation of competing al-

ternatives for considerations. As a consequence, the space of DAGs can be

partitioned into equivalent classes, where all members of an equivalent class

encode the same conditional independence information.

A common tool for visualizing equivalence classes of DAGs is a representa-

tion through a complete partially directed acyclic graph (CPDAG) (Chick-

ering, 2002). This is a graph with the same skeleton as the graphs in the

equivalence class in which:

• the directed edges represent arrows that are common to all DAGs in

the equivalence class, and;

• the undirected edges correspond to edges that are directed one way

in some DAGs and the other way in another DAGs included in the

equivalence class, as exemplified in Figure 1.10.

By using CPDAG the problems of having multiple representations of the

same equivalent class is eliminated.

In semi-Markovian models the rules for generating equivalent models are

more complicated. The basic principle is that if we interpret any bidirected

arc X < −− > Y as representing a common latent cause L, affecting both X

and Y , that is X ← L → Y , then the “if ” part of Theorem 1.2.3 holds valid,

allowing for any edge-replacement which do not either destroy or create new

v-structures.

21



CHAPTER 1. CAUSAL GRAPHS: THE THEORETICAL FRAMEWORK

!
" # 

$ 

% 

& 

" # 

$ 

% 

& 

'() '*) 

Figure 1.10: (a) a DAG G and (b) the CPDAG representation for Class(G)
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Figure 1.11: (a) Model with X Ð→ Y ; (b) Model replaced with X < −− > Y

Generalizing, an edge X → Y can be replaced by either a bidirected arc

X < −− > Y or a directed arc X ← Y , according to the following rules:

Rule 1: An arrow X → Y can be replaced by X < −− > Y only if every

neighbour or parent of X cannot be d-separated from Y ;

Rule 2: An arrow X → Y can be reversed in X ← Y if, before reversal:

(i) every neighbour or parent of Y (excluding X) is inseparable from

X and;

(ii) every neighbour or parent of X is inseparable from Y .

where for neighbour we mean a node connected through a bidirected arc. In

the example depicted in Figure 1.11, we can reply X → Y with X < −− > Y :

indeed Z, the X’s parent, is inseparable from Y because even if we block the

path through X, the path through W cannot be blocked.
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1.3 Causal Structure Learning

Causal structure learning represents the first of the two main functions of

causal graphs.

We need a proper inference procedure for inferring features of the unknown

causal structure from probabilistic independence and dependence relation-

ships encoded in observational data. In literature, there are sound and com-

plete algorithms for extracting causal information out of an oracle of prob-

abilistic independence, With “sound”, it means that anytime the algorithm

returns an answer, that answer is correct;“complete” is intended in the sense

that any feature of the causal structure left undecided by the inference pro-

cedure is indeed under-determined by facts of probabilistic independence and

dependence. The output of such algorithms is a graphical object representing

an equivalence class of causal structures, displaying all and only those com-

mon features shared by all causal structures that satisfy the Causal Markov

Condition (CMC) and Causal Faithfulness Condition (CFC) with the oracle.

There are, in general, three different methods used in learning the struc-

ture of a causal graph from data: 1) via constraint-based, 2) score-based and

3) hybrid algorithms.

The constrain-based refers to conditional independence statements in the

data and uses these conditional independences to reconstruct the structure

(Spirtes et al., 2000). The score-based method defines a search on the space

of all causal graphs by using a goodness-of-fit score defined by the imple-

menter, which says how good a graph is compared to the others. Hybrid

algorithms combine aspects of both constraint-based and score-based algo-

rithm methods, as they use conditional independence tests usually to reduce

the search space, and at the same time goodness of fit scores to find the

optimal graph in the reduced space. The methods will be detailed in the

following subsections.
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1.3.1 Constraint-based Methods: the PC and FCI al-

gorithms

Constrain-based algorithms are all based on the inductive causation (IC) al-

gorithm by Verma and Pearl (1990). They perform conditional independence

statistical tests on the data set since conditional independence statements

can reduce the variables under consideration and greatly aid in the task of

untangling and understanding the interactions among the selected variables

(Zhang, 2006).

Several conditional independence tests from information theory and tradi-

tional statistics are available for use in constraint-based learning algorithms.

After selection of the conditional independence test to apply on the data set,

some assumptions are required, such as Causal Markov, Faithfulness defined,

respectively, in sections 1.2.2 and 1.2.3. In addition, we assume Causal Suf-

ficiency, namely given a set of variables V, V is said “causal sufficient” if

for every pair of variables Vi,Vj ∈ V, every common direct cause of Vi and

Vj relative to V is also a member of V. This means that there are both no

unmeasured common causes and no unmeasured selection variables.

Several constrain-based algorithms have been proposed, among the most

known, we cite the Spirtes, Glymour and Scheines’s algorithm (SGS) (Spirtes

1993/2000), the Inferred Causation (IC) (Pearl and Verma, 1993), the Grow

Shrink (GS) (Margaritis, 2003), Incremental Association (IAMB) (Tsamardi-

nos et al, 2003).

Since DAGs encode conditional independences, information on the latter

helps to infer aspects of the former. This concept is the basis of the PC algo-

rithm, the most straightforward algorithm - where PC stands for the initials

of its inventors Peter Scheines and Clark Glymour (Spirtes et al., 2000). PC

algorithm is able to reconstruct the (unknown) causal structure of the under-

lying DAG model given a conditional independence oracle up to its Markov

equivalence class (Kalisch et al., 2012).

According to the constraint-based approach, the PC algorithm is clearly di-

vided into two parts, namely statistical inference from data and causal in-

ference from probability. As outlined in table 1.1, it starts from a complete,
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Outline of the PC-Algorithm 
Input: Vertex set V, conditional independences information, significance level ! 
Output: Estimated CPDAG !, separation set " 
              Edge types:                 ,      
 
(P1) Form the complete undirected graph on the vertex set V 
(P2) Test conditional independences given subset of adjacency set at a given 
significance level ! and delete edges if conditional independent 
(P3) Orient v-structures 
(P4) Orient remaining edges 
!

Table 1.1: Main steps of the PC Algorithm

undirected graph and recursively deletes edges according to a conditional

independence rule. As mentioned before, the same list of conditional in-

dependences can be modelled by different DAGs; it has been shown that

two DAGs represent the same conditional independences statements if and

only if they have the same skeleton and the same v-structures, that is, they

are Markov equivalent (Verma and Pearl, 1990). On the contrary, given a

conditional independence oracle, one can only determine a DAG up to its

equivalent class. Therefore the PC algorithm cannot uniquely determine the

DAG so that the output of the algorithm will actually be the equivalent

class (CPDAG) that describes the conditional independence information in

the data.

The PC algorithm is sound and complete (i.e. maximally informative)

under the assumptions of causal sufficiency and faithfulness (Spirtes et al.,

2000; Zhang, 2006). Moreover it is computationally feasible and consistent,

even with high-dimensional sparse DAGs (Kalisch and Bühlmann, 2007) and

it is efficiently implemented in the R-package pcalg (Kalisch et al., 2012).

The main steps of PC Algorithm are summarized in Table 1.1; we now

describe it in more detail since it will be mentioned in the application in

Chapter 3.

The PC Algorithm starts with a complete undirected graph, G0 (step P1 in

table 1.1.

Subsequently in stage (P2) a series of conditional independences tests is per-
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formed and edges are deleted following a two-phases rule:

1) all pairs of nodes are tested for marginal independences; if two nodes, say

i and j, are tested marginally independent at level α, the edge between them

is deleted and the empty set is saved as separation sets Ŝ[i, j] and Ŝ[j, i], as

defined in 1.2.1. After all pairs have been tested for marginal independence

and some edges might have been removed, phase 1) ends producing a graph

results, denoted G1.

2) all pairs of still adjacent nodes (i, j) in G1 are tested for conditional inde-

pendence given any single node in adj(G1, i) ∖ {j} or adj(G1, j) ∖ {i}, where

adj(G, i) denotes the set of nodes in graph G adjacent to node i. If there

is any node k such that Vi and Vj are conditionally independent given Vk,

the edge between i and j is removed and node k is saved as separation sets

Ŝ[i, j] and Ŝ[j, i]. When all adjacent pairs have been tested given one adja-

cent node, a new graph G2 results.

The PC algorithm proceeds increasing step by step the size of the condition-

ing set until all adjacency sets in the current graph are smaller then the the

size of the conditioning set (Kalisch et al., 2012). The resulting graph is a

skeleton in which every edge is still undirected.

In step (P3) each triple of vertices (i, j, k) are considered, where the pairs

(i, k) and (j, k) are each adjacent in the skeleton but (i, j) not. Each triple is

oriented according to information saved in the conditioning sets Ŝ[i, j] and

Ŝ[j, i] (Spirtes et al., 2000); for instance, the triple i− j −k is oriented as i →
k ← j if k is not included in Ŝ[i, j] nor in Ŝ[j, i].

Finally in (P4) some of the remaining edges are tried to be oriented following

two basic principles: not to create cycles and not to create new v-structures.

The resulting output is the equivalence class (CPDAG) that describes the

conditional independence information in the data, in which every edge is

either undirected or directed. Notice that in order to improve the visual rep-

resentation of the output, undirected edges are depicted as bidirected edges

as long as at least one directed edge is present. Every DAG in this equiva-

lence class can represent the true causal structure.

A typical output of the PC algorithm is shown in Figure 1.12: it is a graph

containing relationships pattern both directed edges and undirected edges.
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connection between this rule and Lemma 2.2.2 should be obvious. S4 consists of

orientation propagation rules based on information about non-colliders obtained in

S3 and the assumption of acyclicity. These rules are shown to be both sound and

complete in Meek (1995). In plain terms, they pick out all remaining orientations that

are shared by all DAGs Markov equivalent to the true causal DAG. The major task

in Chapters 3 and 4 is to prove the analogous completeness theorem for an algorithm

that infers causal MAGs.

Figure 2.1: A sample output from the PC algorithm.

A typical output of the PC algorithm is shown in Figure 2.1. It is a graphical object

containing both directed edges and undirected edges. Although the true causal graph

is not fully known, this output reveals quite some causal information, for example,

that X2, X3, X4 are direct causes of X5. For people who have resources to perform

controlled experiments, the output suggests what experiments are needed in order to

fully discover the true causal graph (Murphy 2001, Frederick et al. 2005).
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Figure 1.12: An example of PC algorithm output

Although the “true” causal graph is not fully known, this output summarizes

valuable causal information, for example, that X2,X3,X4 are drawn as direct

causes of X5 (Zhang, 2006).

It is important to notice that the assumption of causal sufficiency may

not be satisfied.

It represents an open problem that has been discussed for over ten years

(Spirtes et al. 1993/2000). Indeed in practice, it can happen that variables

of interest suffer from confounding due to latent common causes or even

that a unit is sampled in virtue of the value of certain variable(s), called

selection variable(s), that are causally influenced by some other variables in

the system. The point is that in these situations any probabilistic relationship

inferrable from data is conditional upon (certain values of) the latent or the

selection variable(s). In such cases, the set of observed variables may be

causally insufficient so that DAGs do not provide a feasible representation.

This is because CMC typically fails in the sense of not entailing the actual

conditional independence constraints and hence not being causally accurate.

The main problems concerning latent and selection variables are: 1) causal

inference based on the PC algorithm may be incorrect; 2) the space of DAGs

is not closed under marginalization and conditioning (Richardson and Spirtes,

2002). To illustrate problem 1) consider Figure 1.13(a) representing a DAG

with observed variables X={X1,X2,X3} and latent variables L={L1, L2}
(Colombo et al., 2012). In the system of the observed variables, the only

conditional independence is the one between X1 and X, even X1 ⊥ X3. The

only DAG on X implying this single conditional independence relationship is

X1 →X2 ←X3, and this will therefore be the output of the PC algorithm as
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Figure 1.13: (a) DAG with latent variables; (b) CPDAG

showed in Figure 1.13(b). Anyway such output would lead us to incorrectly

believe that both X1 and X3 are causes of X2, while the underlying DAG

including latent variables, shows neither a directed edge X1 → X2 nor one

X2 ←X3.

Regarding problem 2), consider, for example, the DAG X1 → X2 ← L1 →
X3 ← X4. This DAG implies the following set of conditional independences

among the observed variables:

X = {X1, ...,X4} ∶
X1 ⊥X3,X1 ⊥X4,X2 ⊥X4,X1 ⊥X3∣X4,X1 ⊥X4∣X2,X1 ⊥X4∣X3

and X2 ⊥X4∣X1

and others implied by these. No DAG on X would entail exactly this very

set of conditional independences via d-separation. This means that in the

related models, when some variables are ignored via marginalization or when

other variables are fixed by selecting and fixing their value via condition-

ing, there is no graph of the same class capturing the modified independence

statements. In this sense the space of DAGs is not closed under marginaliza-

tion and conditioning, since the distribution obtained by either marginalizing

or conditioning on some of the variables may not be faithful to any DAG on

the observed variables.

We would need an alternative representation to depict the presence of latent

common causes and selection variables in the causal process that generates

the data. We also would need a proper generalization of DAGs called maxi-
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Figure 1.14: (a) Mixed graphs that are not ancestral; (b) Ancestral mixed
graphs.

mal ancestral graphs (MAGs) (Richardson and Spirtes, 2002).

A MAG is a mixed graph in which every missing edge corresponds to a

conditional independence relationship. Besides directed edges (→), it may

also contain bi-directed edges (↔), associated with the presence of latent

common causes, and undirected edges (-), associated with the presence of

selection variables. In short, arrowheads in a MAG are interpreted as “non-

cause”, and tails are interpreted as “cause”, of either an observed variable or

a selection variable. A MAG is ancestral as it does not contain any directed

or almost directed cycle and there is no edge into any vertex in the undirected

component of an ancestral graph; examples of ancestral and non ancestral

graphs are shown in figure 1.14. It is even maximal as every missing edge

corresponds to at least one independence in the corresponding independence

model (Richardson and Spirtes, 2002). Notice that maximality corresponds

also to the property known as the pairwise Markov property.

Furthermore, syntactically, DAGs and UGs are special cases of MAG. In

fact, every DAG with latent and selection variables can be transformed into

a unique MAG over the observed variables. Several DAGs can indeed lead

to the same MAG, whilst a MAG describes infinitely many DAGs since no

restrictions are made on the number of latent and selection variables.

A distinctive property of MAGs is that they can represent such in-principle-

testable constraints without explicitly introducing latent and selection vari-

ables. Given any DAG G over V=O∪L∪S, where O denotes a set of observed

variables, L denotes a set of latent or unobserved variables, and S denotes

a set of unobserved selection variables to be conditioned upon, then there
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Figure 1.15: An ancestral graph and m-separation

exists a MAG over O alone.

According to Spirtes and Richardson (2002), MAGs encode conditional in-

dependence relationships among the observed variables via m-separation, an

extension of the original definition of d-separation for DAGs, and defined as:

Definition 1.3.1 (m-separation). In an ancestral graph G, a path π be-

tween vertices X and Y is said m-connecting given a set Z (possible empty)

not included in X,Y , if:

• every non-collider on π is not a member of Z, or

• every collider on π is an ancestor of some member of Z

For example, in the ancestral graph in figure 1.15, X and Y are m-

separated given Z.

Definition 1.3.1 is thus, for MAGs, the equivalent of d-separation for DAGs

in that the notions of “collider” and “non-collider” now allow for bi-directed

and undirected edges. Furthermore, m-separation allows to detect the maxi-

mality in an alternative way: an ancestral graph is indeed said to be maximal

if for any two non-adjacent vertices, there is a set of vertices that m-separates

them.

Recalling that finding a unique DAG from an independence oracle is in

general impossible, we can only detect the equivalence class of DAGs in which

the true DAG must lie and visualize the equivalence class using a CPDAG.

The same is true for MAGs: finding a unique MAG from an independence

oracle is mostly not practicable. One may only report on the equivalence

class in which the true MAG lies and represent it by a partial ancestral

graph (PAG) (Zhang, 2008b). A PAG is an ancestral graph containing the

following types of edges: ○-○, ○-, ○ →, →, ↔, -, and edges with the following

interpretation:
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Figure 1.16: DAG with a latent variable XL
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Figure 1.17: Two Markov equivalent MAGs

1. there is an edge between X and Y if and only if VX and VY are con-

ditionally dependent given VS for all sets VS consisting of all selection

variables and subsets of the observed variables;

2. a tail on an edge implies that this tail is present in all MAGs in the

equivalence class;

3. an arrowhead on an edge means that this arrowhead is present in all

MAGs in the equivalence class;

4. a o- edgemark means that there is at least one MAG in the equivalence

class where the edgemark is a tail, and at least one where the edgemark

is an arrowhead.

Note that in the case where no selection effect is present (i.e., S = ∅), the

causal MAG will not contain any undirected edges.

For example, suppose that Figure 1.16 shows the true, usually unknown,

31



CHAPTER 1. CAUSAL GRAPHS: THE THEORETICAL FRAMEWORK

!

!

!

!

!
!

"#!

"$! "%!

"&!

"'!

"(!

"#!

"$! "%!

"&!

"'!

"#!

"$! "%!

"&!

"'!

)*+! ),+!

"#!

"$! "%!

"&!

"'!

Figure 1.18: The PAG in our example

causal structure among variables, whereXL represents a latent common cause

between X2 and X3. The causal MAGs corresponding to the causal DAG are

depicted in Figure 1.17(a). This MAG might represent some other DAGs as

well, for example, can also represent the DAG with an extra latent common

cause of X1 and X3. The two MAGs would be Markov equivalent.

This motivates the representation of equivalence classes of MAGs through a

PAG. For instance, the PAG for our example is drawn in Figure 1.18, which

displays all the commonalities among MAGs that are Markov equivalent to

the MAGs in Figure 1.17, both panels (a) and (b).

Given the exact correspondence between d-separation relations among

the observed variables in the causal DAG and m-separation relations in the

causal MAG, the causal Markov condition (CMC) 1.2.2, and its converse,

the causal Faithfulness condition (CFC) 1.2.3, imply that conditional inde-

pendence among the observed variables, correspond to m-separation in the

causal MAG, which forms the basis of constraint-based learning algorithms

(Zhang, 2008a).

A representative constraint-based causal discovery algorithm for causally

insufficient systems is known as the fast causal inference (FCI) algorithm

(Spirtes et al., 2000, 1995) and its output can be interpreted as a PAG (Zhang,

2008a). The orientation rules of this algorithm were extended and proven

to be complete in Zhang (2008b). The basic idea of the FCI algorithm is

similar to the PC algorithm described in the previous subsession with the

two stages, the adjacency stage and the orientation stage. However, it makes

additional conditional independence tests and uses more orientation rules.

32



1.3. CAUSAL STRUCTURE LEARNING

It represents a generalization of the PC algorithm allowing arbitrarily many

latent and selection variables.

The rule to determine the adjacencies in a PAG within the FCI algorithm

is: ifXi is not an ancestor ofXj, andXi andXj are conditionally independent

given some set Y∪S where Y ⊆ X∖{Xi,Xj}, thenXi andXj are conditionally

independent given Y∪S for some subset Y of a given set D-SEP(Xi,Xj) or of

D-SEP(Xj,Xi) (see Spirtes et al. (2000) pag.134 for a definition). Therefore,

in order to determine whether there is an edge between Xi and Xj in an

FCI-PAG, it is necessary to test whether Xi ⊥ Xj ∣ (Y ∪ S) restricted for

all possible subsets Y ⊆ D-SEP(Xi,Xj) and Y ⊆ D-SEP(Xj,Xi). Anyway

the sets D-SEP(Xi,Xj) cannot be inferred from the observed conditional

independences, so Spirtes et al. defined a sort of superset, called Possible

D-SEP, as follow:

Definition 1.3.2 (Possible D-SEP). Let C be a graph with any of the

following edge types: ○-○, ○ →, ↔. Possible D-SEP(Xi,Xj) in C, denoted in

shorthand by pds(C,Xi,Xj), is defined as follows: Xk ∈ pds(C,Xi,Xj) if and

only if there is a path π between Xi and Xk in C such that for every subpath

⟨Xm,Xl,Xh⟩ of π, Xl is a collider on the subpath in C or ⟨Xm,Xl,Xh⟩ is a

triangle in C.

The definition of Possible D-SEP requires some information about both

the skeleton and orientation of edges; therefore, Step 1 of the FCI algorithm

finds an initial skeleton, C1, as in the PC-algorithm, by starting from a com-

plete graph with edges ○-○ and performing conditional independence tests

given subsets of increasing size of the adjacency sets of the vertices. An edge

between Xi and Xj is deleted if a conditional independence is found, and the

set responsible for this conditional independence is saved in the separation

set, sepset(Xi,Xj) and sepset(Xj,Xi) . After completing Step 1, the skele-

ton is a superset of the final skeleton (Colombo et al., 2012).

In Step 2 of the FCI algorithm, unshielded triples Xi ∗-○ Xj ○-∗ Xk are

orientated as v-structures Xi ∗ → Xj ← ∗ Xk if and only if Xj is not in

sepset(Xi,Xk) and sepset(Xk,Xi).
The graph C2 resulting from Step 2, contains sufficient knowledge to com-
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pute the Possible D-SEP sets. Thus, in Step 3, the FCI algorithm computes

pds(C2,Xi, ) for every Xi ∈X. Then for every element Xj in adj(C2,Xi),the

algorithm tests whether Xi ⊥Xj ∣ (Y ∪S) for every subset Y of pds(C2,Xi, )
∖ {Xi,Xj} and of pds(C2,Xj, ) ∖ {Xj,Xi}. The tests are arranged in a hier-

archically beginning with conditioning sets of small size. The edge between

Xi and Xj is removed if there exists a set Y making Xi and Xj conditionally

independent given Y ∪ S, and the set Y is saved as the separation set in

sepset(Xi,Xj) and sepset(Xj,Xi) (Colombo et al., 2012).

In Step 4, the v-structures are thus oriented again based on the updated

skeleton and the updated information in sepset. Finally, in Step 5 the algo-

rithm replaces as many ○-edges as possible by arrowheads and tails by using

the orientation rules described by Zhang (2008b).

1.3.2 Score-based Method: the hill-climbing algorithm

Score-based algorithms assign a score to each candidate graph trying to maxi-

mize it with some heuristic search algorithm such as hill-climbing, tabu search,

simulated annealing, Tree Augmented Naive Bayes as well as other genetic

algorithms. According to this approach, learning a causal structure is con-

sidered an optimization problem where a quality measure (the score) of a

causal structure, given the training data, needs to be maximized. In partic-

ular, assuming a causal structure G and a data set D, the score is given by

the posterior probability of G given data:

Score(G,D) = Pr(G∣D) = Pr(D∣G)Pr(G)
Pr(D) (1.6)

A score-based algorithm attempts to maximize this score returning the

structure G that maximizes it. It constitutes a computational problem the

fact that the space of all possible structures is at least exponential in the

number of variables p; indeed, there are p(p− 1)/2 possible undirected edges

and 2(p−1)/2 possible structures for every subset of these edges, not mentioning

that there may be more than one orientation of the edges for each choice.

Thus heuristic search algorithms, which suggest some approximation, are
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employed to solve the optimization problem. The quality measure, i.e. the

score, can be based on several criteria; for instance, on a Bayesian approach,

minimum description length and information criteria. Most of scoring criteria

derived in the literature are decomposable. It means that those metrics have

the practical property that the score of the whole graph can be decomposed

as either sum or products of the score of individual nodes. This allows for

local scoring and thus local searching methods. Popular score functions are:

• The likelihood and the log-likelihood scores;

• The Akaike (AIC) and Bayesian (BIC) information criterion scores, as

defined as:

AIC = LogL(X1, ...,Xv)−d BIC = LogL(X1, ...,Xv)−
d

2
log(n) (1.7)

Note that BIC is equivalent to the minimum description length (MDL)

described by Rissanen (1978) and used as a Bayesian network score in

Lam and Bacchus (1994).

• The logarithm of the Bayesian Dirichlet equivalent score, a score equiv-

alent Dirichlet posterior density (Heckerman et al. 1995);

• The logarithm of the K2 score, which is in fact another Dirichlet pos-

terior density (Cooper and Herskovits 1992) defined as:

K2(Xi) =
Li

∏
j=1

(Ri − 1)!
(∑Ri

k=1 nijk +Ri − 1)!

Ri

∏
k=1

nijk! (1.8)

where Ri denotes the number of states of Xi, while Li the number of

possible configurations of the parent set PaG(Xi) of Xi .

• The score equivalent Gaussian posterior density for continuous vari-

ables, which follows a Wishart distribution (Geiger and Heckerman

1994).

A popular score-based algorithm for causal structure learning is the hill-

climbing greedy search. It is based on the principle of taking the (local) best
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Procedure B BIChillclimb D

1. E !"
2. T ProbabilityTables E D
3. B U E T
4. score
5. do:

(a) maxscore score
(b) for each attribute pair X Y do
(c) for each E E X Y

E X Y
E X Y Y X

(d) T ProbabilityTables E D
(e) B U E T
(f) newscore BICscore B D
(g) if newscore score then

B B
score newscore

6. while score maxscore
7. Return B

Figure 2.4: Pseudocode for the algorithm that constructs a BN from a data set D using hill-climbing search.

possible structures for every subset of these edges. Moreover, there may be more than one orientation of
the edges for each such choice. Therefore a brute force approach that computes the score of every BN
structure is out of the question in all but the most trivial domains, and instead heuristic search algorithms
are employed in practice. One popular choice is hill-climbing, shown graphically in an example in Fig. 2.3
and in pseudocode in Fig. 2.4. The search is started from either an empty, full, or possibly random network,
although if there exists background knowledge it can be used to seed the initial candidate network. The
procedure ProbabilityTables estimates the parameters of the local pdfs given a BN structure. Typically
this is a maximum-likelihood estimation of the probability entries from the data set, which for multinomial
local pdfs consists of counting the number of tuples that fall into each table entry of each multinomial
probability table in the BN. The algorithm’s main loop consists of attempting every possible single-edge
addition, removal, or reversal, making the network that increases the score the most the current candidate,
and iterating. The process stops when there is no single-edge change that increases the score. There is
no guarantee that this algorithm will settle at a global maximum so a simple perturbation can be used to
increase the chances of reaching a global maximum, multiple restarts from random points (initial networks)
in the space, or simulated annealing can be used.

Figure 1.19: Pseudo-code for the hill-climbing search algorithm for construct-
ing a graph from a given data set D.

choice at each stage of the algorithm in order to find the global optimum

(top of the hill) of specified objective function by essentially looking at the

local gradient and following the curve in the direction of the steepest ascent.

Hence, it consistently replaces the current solution with the best of its neigh-

bours, as long as it scores better than the current. The search starts from

either an empty, full, or possibly random graph.

The procedure ProbabilityTables() reported in figure 1.19, produces es-

timates of the parameters of the local joint probability distributions (com-

pactly, pdfs), given a causal structure, typically through a maximum-likelihood

estimation of the probability entries from the data set D. For multinomial

local pdfs, it consists on counting the number of cases that fall into each table

entry of each multinomial probability table in the graph. In fact, the main

loop algorithm attempts every possible single-edge addition, removal, or re-

versal, updating the current graph with the one which increases the score.
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This is iterated until no single-edge change increasing the score, is reachable

(Margaritis, 2003).

Multiple restarts from random points (initial graphs) in the space allow for

increasing the chances to reach a global maximum.

The hill-climbing algorithm is efficiently implemented in R-packages: bnlearn

(Scutari, 2010) for categorical or continuous data and deal (Boettcher and

Dethlefsen 2003), which implements a hill-climbing search for mixed data.

As for constrain-based methods, literature offers many other heuristic search

algorithms. See, for instance, genetic algorithms (Larranaga et al., 1996) and

Greedy Equivalent Search (GES) (Meek, 1997).

1.3.3 Pros and Cons of Constrain-based and Score-

based Methods

As a causal graph is a structure encoding the joint distribution of the at-

tributes, it may suggest that the method to be preferred is the one that bet-

ter fits the data, leading to the scoring-based learning algorithms. Anyway,

according to d-separation criterion, causal graphs also encode conditional in-

dependence relationships. As a consequence, using feasible statistical tests

(such as Chi-squared test and mutual information test), we can find the

conditional independence structure among the attributes and use these rela-

tionships as constraints to construct the causal graph’s structure.

It is clear that a “best practice” does not exist as some pros and cons arise

to both methods.

In this section we are going to explore differences and similarities of such

methods, with the purpose of understanding, whatever method may be cho-

sen, what is lost and what is gained in terms of causal structure learning.

In literature there are conflicting opinions: for example Heckerman et al.

(1997) show how the score-based methods often have advantages over constrain-

based ones, for allowing finer distinctions among model structures as well as

better inference for combining information from different models. Conversely

Friedman et al. (1997) prove that the general scoring-based methods may re-

sult in poor classifiers; score-based algorithms would, indeed, tend to favour
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complete graph structures in which every variable is connected to every other

variable, leading to overfitting.

Both constrain-based and score-based approaches involve choices which

could lead to different outputs: the conditional independence test as well as

the alpha level in the first, and the score function to maximize in the second.

In Zhang (2006) it is underlined how, from a practical point of view, the

score-based approach is in general more stable with small to moderate sam-

ple sizes than the constraint-based approach. It also always returns a unique

object unlike, for example, the PC algorithm that often gives as output a

class of objects (the class of equivalent DAGs) visualized in a unique com-

plete partially directed acyclic graph (CPDAG) with bidirected edges.

1.4 Estimating the Causal Effect from Obser-

vational Data: Pearl’s do-calculus

Given a DAG, one could be also interested to estimate the size of the exist-

ing causal effects between pairs of variables or to predict effects of actions

and interventions. For example, we may want to explore the probability

distribution of some variables Y , possibly conditional on some other vari-

ables Z, as a variable X were manipulated to take some value in some way

and whether there is a link between the pre-intervention probability and the

post-intervention probability. Notice that this represents the primitive ob-

ject of analysis in the potential-outcome framework or counterfactual analysis

(Neyman-Rubin-Holland Model, 1986).

The Pearl’s do-calculus, also called intervention calculus (Pearl, 2000), pro-

vides a useful language to specify how the pre-intervention distribution would

change in response to external interventions, indicated by the operator do.

1.4.1 The intervention calculus’s framework

When we talk about “intervention”, we deal with a certain kind of interven-

tions: first of all, for intervention on a variable X, we are meaning that the
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direct target of the intervention is X. Then, intervention must be local, that

is, it should affect only the target variable while local mechanism for other

variables should remain unaffected by the intervention.

Manipulation (or intervention) can be thought as a local surgery with respect

to causal mechanisms, as remote changes occurring to other variables after

the intervention are due to propagation via the original causal mechanisms

unaffected by the intervention (Zhang, 2006).

In order to represent the effect of an intervention on a set of variables

we need a new notation. Assume, for instance, that we have variables

X1,X2, ...,Xn ⊆ V and we want to interpret the counterfactual phrase “had

Xi taken the value x′i” in terms of a hypothetical modification in the model.

Such kind of sentences appears to be counterfactual, because they deal with

unobserved quantities that differ from those actually observed (Pear, 2000).

Formally, interventions and counterfactuals are defined by means of the math-

ematical operator called do(Xi = x′i) or do(x′i) for short, while an equivalent

notation, using set(x) instead of do(x), was used in Pearl (1995). It simu-

lates physical intervention by removing certain functions from the model and

replaces them with the constant Xi = xi, while keeping any other variable

unchanged. The new model thus created, when solved for the distribution of

Xi, provides the “causal” effect defined as:

Definition 1.4.1 (Causal Effect). Given two disjoint sets of variables, Xi

and Y , the causal effect of Xi on Y is denoted as P (y∣do(Xi = x′i)) and gives

the distribution of Y that would occur if treatment condition Xi = xi was

enforced uniformly over the population via some intervention.

The modification of an existing model entails the transformation between

the pre-intervention and post-intervention distributions which can be ex-

pressed in the truncated factorization following directly by equation 1.5:

P (x1, ..., xn∣do(Xi = x′i) =
⎧⎪⎪⎨⎪⎪⎩

∏n
j=1,j≠iP (xj ∣paj)∣xi=x′i if xi = x′i

0 if xi ≠ x′i
(1.9)

where paj denote the parents of variable Xj. This formula uses the DAG

structure to write the post-intervention distribution, in the left-hand side, in
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4 IDA algorithm

parents is denoted by pai. If we remove all arrowheads in a graph G the resulting graph
is called the skeleton of G. A graph that contains no directed cycles is called acyclic. A
graph that is both directed and acyclic is called a directed acyclic graph (DAG), and such
graphs will occupy much of our discussion of causality. DAGs that are interpreted causally
are called causal graphs.

2.3 Markov condition and d-separation

Prior to any interpretation, DAGs are a purely mathematical objects that may be used to
model several different kinds of structures. They can e.g. represent probability distribu-
tions, i.e. a set of random variables X1, .., Xn and their conditional dependencies. They
do this through the Markov condition or Markov compatibility.

Definition 2. (Markov condition) If a probability distribution P satisfies the factorization

P (x1, ..., xn) =
�

i

P (xi|pai)

relative to a DAG G, we say that G represents P, G and P are compatible, or that P is
Markov relative to G.

This definition reflects a simple conditional independence statement. Namely that each
variable is independent of its nondescendant in the graph given the state of its parents.
For determining the probability of a variable it is therefore sufficient to know the values
of it’s parents. These kind of DAGs are also known as Bayesian networks.

Let us consider an example of a simple Bayesian network from [14]. It describes relation-
ships among the season of the year (X1), whether rain falls (X2), whether a sprinkler is
turned on (X3), whether the pavement is wet (X4) and whether it is slippery (X5). The
DAG can be seen in figure 2.1.

Figure 2.1: A Bayesian network representing dependencies among five variables

If we would e.g. want to compute the probability of a slippery pavement we would only
need to know whether it is wet or not. It does not matter whether it rains or not if we

8 IDA algorithm

The distribution of the changed model which we denote by f(x1, .., xp+1|do(x�
i)) represents

the post-intervention distribution of variables X1, .., Xp+1 [15].

The post-intervention model is also Markovian so it must generate a distribution that
factorizes the same way as the pre-intervention except we should remove the term f(xi|pai)
since pai no longer influences Xi. If we wish e.g. to calculate the causal effect of turning
the sprinkler on in the above sample we remove the edge from X1 to X3 and assign X3

the value on. The resulting graph can be seen in figure 2.4. Deleting this edge represents
the understanding that when we physically turn the sprinkler on season has no longer any
say about the state of the sprinkler.

Figure 2.4: Network representing the intervention of ”turning the sprinkler on”.

It is very important to distinguish between the action do(X3 = On) and the observation
X3 = on. The latter is obtained by ordinary conditioning, P (x1, x2, x4, x5|X3 = On). In
the former we condition on a different graph, where the edge from X1 to X3 has been
removed.

This means that for any Markovian model, the distribution generated by an interven-
tion do(Xi = x�

i) on a set of variables X1, .., Xp+1 is given by the following truncated
factorization [15]:

f(x1, ..., xp+1|do(Xi = x�
i)) =

� �p+1
j=1,j �=i f(xj |paj)|xi=x�

i
if xi = x�

i

0 otherwise

This formula uses the DAG structure to write the post-intervention distribution in terms
of the pre-intervention distribution.

If we are interested in the effect of one variable Xi on another variable Y = Xp+1 we have
to compute

f(Y = y|do(x�
i)) =

�

z

f(x1, .., xp, y|do(x�
i))dz

where z = {x1, .., xi−1, xi+1, .., xp}. This means integrating over many variables and we
want to be able to select only few covariates which are sufficient for computing the effect.
Such a set is called a sufficient set or a set appropriate for adjustment. Pearls back door
criterion [14] is a graphical method for selecting such a set.

Figure 1.20: DAG representing the intervention of “turning the sprinkler on”

terms of the pre-intervention distribution P (xj ∣paj). Equation 1.9 reflects the

removal of P (xi∣pai)’s term from the product; since the intervention “forces”

Xi to be equal to x′i, then pai no longer influences Xi.

Graphically, this is equivalent to removing all the links between PAi and Xi

while keeping intact the rest of the network.

For example, let consider again the rain’s DAG shown in figure 1.6 and sup-

pose we observe a particular spot on the street during some hour; moreover,

let remind that the random variable X3 denotes whether the sprinkler was

on during that hour (X3 = 1 if on, X3 = 0 if off). If we wanted to represent

the causal effect of turning the sprinkler on, we should remove the edge from

X1 to X3 and assign the value X3 = 1, even X3 = On. The resulting graph

can be seen in figure 1.20 : deleting the edge represents the understanding

that, when we physically turn the sprinkler on, season has no longer any

effect about the state of the sprinkler. The resulting joint distribution on the

remaining variables will be:

PX3=on(x1, x2, x4, x5) = P (x1)P (x2∣x1)P (x4∣x2,X3 = On)P (x5∣x4)

. Notice, furthermore, the difference between the “intervention” do(X = x′)
and the “observation” X = x′. We recall that the random variable X4 denotes

whether the street was wet at the end of that hour (X4 = 1 if wet, X4 = 0
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otherwise). Assuming that P (X3 = 1) = 0.1, P (X4 = 1∣X3 = 1) = 0.99 (the

street is almost always still wet at the end of the hour when the sprinkler is

on that hour) and P (X4 = 1∣X3 = 0) = 0.02 (if the sprinkler is off, the street is

rarely wet on that hour). From the “observation” of X4 = 1, we can calculate,

with Bayesian conditioning, the probability P (X3 = 1∣X4 = 1) = 0.85, namely,

by observing the street to be wet, the probability that there was the sprinkler

on in the last hour is 0.85. However, if we take a tank of water and force the

street to be wet at a randomly chosen hour, we “intervene” as do(X4 = 1),
then P (X3 = 1∣do(X4 = 1)) = P (X3 = 1) = 0.1. Thus, the distribution of

the random variable describing sprinkler is quite different when making an

observation versus when making an intervention.

If we are interested in the effect of one variable Xi ⊆ V on another variable

Y = Xn+1, we have to compute the distribution of Y after an intervention

do(Xi = xi). Integrating out w = {x1, ..., xn} in equation 1.9, it simplifies as:

P (Y = y∣do(Xi = x′i) =
⎧⎪⎪⎨⎪⎪⎩

P (xi), if Y ∈ pai
∫w P (y∣x′i, pai)P (pai)∂pai, if Y ∉ pai

(1.10)

where P (.) and P (.∣x′i, pai) are pre-intervention distributions.

According to Pearl (2000), it is equivalent to summarize the distribution

generated by an intervention via expectation, thus equation 1.10 becomes:

E(Y ∣do(Xi = x′i)) =
⎧⎪⎪⎨⎪⎪⎩

E(Y ), if Y ∈ pai
∫wE(Y ∣x′i, pai)P (pai)∂pai, if Y ∉ pai

(1.11)

and the causal effect of do(Xi = x′i) on Y is formulated as:

∂

∂x
E(Y ∣do(Xi = x))∣x=x′i (1.12)

Following Rubin’s definition of causal effect as E(Yx′)−E(Yx′′), where x′ and

x′′ are two levels of a treatment variable Xi, equation 1.12 may, equivalently,

be rewritten in terms of the difference:

E[Y ∣do(Xi = x′)] −E[Y ∣do(Xi = x′′)] (1.13)
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Another measure of causal effect is then given by the ratio:

E[Y ∣do(Xi = x′)]/E[Y ∣do(Xi = x′′] (1.14)

The causal effect we have analysed so far, P (y∣do(x′)), measures the to-

tal effect of a variable (or a set of variables) Xi on a response variable Y .

In many cases, anyway, the target of investigation and attention is focused

instead on the direct effect of Xi on Y . The term “direct effect” is meant to

quantify an effect that is not mediated by other variables in the model or,

more accurately, the sensitivity of Y to changes in Xi while all other factors

in the analysis are held fixed.

When we want hence to evaluate the direct effect of a variable Xi on a

variable Y , it may be necessary to adjust our measurements for possible

covariates Z or “confounders”. The word confounding refers in literature

many different concepts (Greenland et al., 1999): in the oldest usage, pre-

dominating in sociology and epidemiology is a bias described as a mixing

of effects of extraneous factors, called confounders; in a more recent usage,

it is synonym for non-collapsibility, namely that any statistical relationship

between two variables may be reversed by including additional factors in the

analysis. The idea behind adjustment consists in partitioning the population

in groups homogeneous relative to Z, assessing the effect of Xi on Y in each

homogeneous group and then averaging the result.

In Pearl (1993), the author shows two simple graphical (and hence visual)

algorithms for checking whether a set of variables Z ⊆ V would be sufficient

for identifying P (y∣do(x′i). The first is:

Definition 1.4.2 (The Back-Door Criterion). Given a DAG and a set

Z of variables in the graph, it can be shown that Z is a sufficient set of

covariates for “adjustment” for Xi, Y if, upon adjustment for Z:

1. No nodes in Z are descendant of Xi, and;

2. Z blocks every path between Xi and Y that contains an arrow in Xi

(namely all paths that end with an arrow pointing to Xi).
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When the back-door criterion is fulfilled by a set of measured covariates,

it is possible to estimate the total average causal effect of Xi on Y , as follow:

Theorem 1.4.1 (Back-Door Adjustment). If a set of variables Z satisfies

the back-door criterion relative to (Xi, Y ), then the causal effect -as defined

by 1.4.1- of Xi on Y is identifiable and is given by the formula:

P (y∣do(Xi = x′)) = ∫
z
(y∣x, z)P (z) (1.15)

Note that the expression in 1.10 for Y ∉ pai is a special case of back-door

adjustment where Z = pai since pai satisfies the back-door criterion relative

to (Xi, Y ) if Y ∉ pai.
The condition 1) of definition 1.4.2 reflects the prevailing practice that

“the concomitant observations should be quite unaffected by the treatment”

(Cox 1958, p.48). Anyway, confounders that are affected by the treatment

can be used to facilitate causal inference as well. Indeed, the Pearl’s front-

door criterion (Pearl and Robins, 1995) constitutes the second building block

to identifying causal effects in presence of confounders.

Definition 1.4.3 (The Front-Door Criterion). A set Z of variables is

said to satisfy the front-door criterion relative to an ordered pair of variables

(Xi, Y ) if:

1. Z intercepts all directed path from Xi to Y ;

2. there is back-door path from Xi to Z;

3. all back-door paths from Z to Y are blocked by Xi.

Theorem 1.4.2 (Front-Door Adjustment). If Z satisfies the front-door

criterion relative to (Xi, Y ), then the causal effect of Xi on Y is identifiable

and is given by the formula:

P (y∣do(Xi = x′)) = ∫
z
(z∣x)∫

x′
(y∣x′, z)P (z) (1.16)
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Because, by clause 1) of 1.4.3, Z blocks all directed paths from Xi to Y ,

any causal dependence of Y on Xi must be mediated by a dependence of Y

on Z:

P (y∣do(X = x′)) = ∫
z
P (y∣do(Z = z))P (Z = z∣do(X = x′))

Clause (2) says that we can estimate the effect of Xi on Z directly,

P (Z = z∣do(X = x′)) = P (Z = z∣X = x′)

Clause (3) say that Xi satisfies the back-door criterion for estimating the

effect of Z on Y , so really we are using the back-door criterion.

Hence, both back-door and front-door criteria are sufficient for estimating

causal effects from probabilistic distributions in presence of confounders. The

criteria enable the analyst to search for an optimal set of covariates, namely

a set Z that minimizes measurement cost or sampling variability (Tian et al.,

1998). Applications to epidemiological research are given in Greenland et al.

(1999) and in Rothman et al. (2008), where the set Z is called “sufficient

set”; admissible or decounfounding set are alternative terms (Pearl, 2000).

Both criteria described above lead to the definition of controlled direct effect

(CDE), where the term “controlled” just stays to indicate the fact that total

effect is adjusted for the set of confounders Z. Focusing on differences of

expectations, CDE is formulated as:

CDE ≜ E[Y ∣do(Xi = x′), do(z)] −E[Y ∣do(Xi = x′′), do(z)] (1.17)

where Z is any set of mediating variables that intercept all indirect paths

between Xi and Y . Graphical identification conditions for expressions of the

type E(Y ∣do(x), do(z1), do(z2), ..., do(zk)) were derived by Pearl and Robins

(1995) (see Pearl, 2000a, Chapter 4) using sequential application of the back-

door condition 1.4.2.
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Figure 1.21: Graphical representation of the example

1.4.2 Intervention calculus vs regression: an example

Before proceeding in the intervention calculus’s theory, a simple example can

illustrate the difference between computing the causal effect and a multiple

regression; indeed the first can be rather seen as a regression with selection of

right covariates (Maathuis et al., 2009). Now we call back the rain’s DAG to

illustrate such difference with a simple example; let us consider the following

model (see also figure 1.21) where:

X1 = ε3
X2 = 0.8X1 + ε2
X3 = 0.8X1 + ε3
X4 = −X3 + 2X1 −X2 + ε4

where ε1 ∼ N(0,1), ε2 ∼ N(0,0.36), ε3 ∼ N(0,0.36) and ε4 ∼ N(0,1). Note

that X1, X2 and X3 all have variance 1, so that we are able to compare their

regression coefficients or “causal effects”.

By applying a multiple linear regression X4 = α+β1X1+β2X2+β3X3+ε4,
we compute coefficients β1 = 2, β2 = β3 = −1 thus X1 would appear as the

“most important” variable in the model.

Now let us apply intervention calculus. The parental sets are: pa1 = ∅,
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pa2 = X1 and pa3 = X1; θi with i = 1,2,3, represents the causal effect of X1,

X2 and X3 on X4.

We now compute θ1 = β1∣∅ = 0.4, θ2 = β2∣X1
= −1 and θ3 = β3∣X1

= −1. Compar-

ing the causal effect with the regression coefficients, we see that θ2 = β2 = −1

as well as θ3 = β3 = −1 but θ1 ≠ β1, in particular to note that in the interven-

tion calculus X1 appears the least important variable.

This example shows how computing regression and causal effects leads to

different results as the set of controlled variables is different; thus a variable

may show a strong association with a target variable while having a small

causal effect.

Since X4 is not a parent of any of the other variables considered, the dis-

tinction between intervention calculus and multiple regression can be inter-

preted as causal effect θi measures the total effect of explicative variables

Xi, i = 1,2,3 on the response variable X4, namely the sensitivity of X4 to

interventional changes. On the other hand, the regression parameter βi mea-

sures the direct effect of Xi on X4 in terms of sensitivity of the target output

to interventional changes in Xi with i = 1,2,3 when all other variables in the

model are held fixed (Maathuis et al., 2009).

1.4.3 Some issues and the IDA algorithm

Although every term in the factorization 1.9 is assumed to be known as the

pre-intervention probabilities can be consistently estimated from observa-

tional data, some complications may arise.

First, as discussed in the previous section, the set of observed variables

may be causally insufficient (section 1.3.1), namely variables of interest may

suffer from confounding due to latent common causes, or even that a unit

is sampled in virtue of the value of selection variables. Furthermore, the

observed variable may be unobservable. Even assuming a fully knowledge

of the causal DAG with latent variables, the prediction of certain interven-

tion effects may not be possible as our knowledge about the pre-intervention

probability concerns merely the marginal probability of the observed vari-

ables instead of the joint probability of all variables in the DAG (Pearl in
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1995, 1998, 2000, and more recently Tian and Pearl in 2004 dealt with this

situation).

Secondly, at the beginning of this section, explaining calculus intervention’s

framework, we assumed to fully know the “true” DAG. This is seldom the

case as mostly we try to infer the causal structure from observational data,

and at most we can discover some features concerning the “true” causal

graph. Thus obstacles in predicting certain intervention effects could arise

by causal insufficiency due to the presence of latent variables as well as in-

sufficiency of the causal information inferred from data or even, in the worst

case, by a combination of both the two. (Zhang, 2006).

As the assumption for determining causal effects of knowing the true

DAG is, in most of cases, unrealistic, Maathuis et al. (2009) has proposed a

new methodology for determining causal effects in unknown DAG. The idea

is to estimate the equivalence class of the true underlying DAG and then to

apply the do-calculus on each DAG in the equivalence class. This procedure

results in a multiset - namely a sort of set where the multiplicity of elements

matters- of possible causal effects including the “true” causal effect. In this

way a lower bound of the true causal effect can be computed.

These ideas are incorporated in the IDA algorithm (Intervention calculus

when the DAG is Absent) implemented in the r package’s pcalg (Kalisch

et al., 2012).

To estimate the bounds on causal effect, denoted as θi, of Xi on the

response variable Y , IDA algorithm requires two main assumptions:

1. The distribution of (X1, ...Xi, ...,Xp, Y ) is multivariate normal; further-

more, it is Markovian and faithful to the true (unknown) causal DAG.;

2. X1, ...,Xp have equal variance.

Assumption 2) is made for convenience, in order to easily compare the causal

effects of different variables, while assumption 1) implies that the causal effect

E(Y ∣x′i, pai), defined in equation 1.12, is linear in x′i, pai and can be easily

computed as:

θi = E(Y ∣xi, pai) = β0 + βix′i + βTpaipai (1.18)
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for some values β0, βi ∈ R and βpai ∈ R∣pai∣, where ∣pai∣ is the cardinality of

the set pai. Furthermore:

θi = ∫ E(Y ∣x′i, pai)P (pai)∂pai = βix′i + ∫ βTpaipaiP (pai)∂pai (1.19)

According to Maathuis et al. (2009), the causal effect of Xi on Y when Y ∉ pai
can now be computed by means of equation 1.12 yielding βi which coincides

with the regression coefficient of Xi in regressing Y on Xi and pai. Thus the

causal effect of Xi on Y is given by:

θi =
⎧⎪⎪⎨⎪⎪⎩

0, if Y ∈ pai
βi∣pai , if Y ∉ pai

(1.20)

Note that the causal effect is zero when Y ∈ pai, since Y is then a direct

cause of Xi.

Since, under assumption 2), the causal effect does not depend on the value

xi, it can be interpreted, for any xi, as:

θi = E[Y ∣do(Xi = xi + 1)] −E[Y ∣do(Xi = xi)] (1.21)

There are two versions of IDA algorithm. A population version assumes

that all conditional independences are known exactly and gives the correct

complete partially directed acyclic graph (CPDAG) G. In the sample ver-

sion, the conditional independences, estimated by data, are used as input to

produce an estimated CPDAG Ĝ.

This second version of IDA appears as more useful when dealing with real

data as in most cases we do not know the “true” causal graph. Let assume

that we have a sample of n iid observations of (X1, ...,Xp, Y ) = (X1, ...,Xp+1);
first it is necessary to estimate the partial correlations ρ̂nij∣S between Xi and

Xj given a set of other variables S, then we need to apply the PC algorithm

to estimate the corresponding CPDAG G (Kalisch and Bühlmann, 2007).

This requires multiple testing for Z-transformed partial correlations as given

by:

Ẑnij∣S =
1

2
ln

1 + ρnij∣S
1 − ρnij∣S

(1.22)
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Figure 1.22: Global version of IDA algorithm

Under assumption 1) and for ρij∣S = 0, Ẑnij∣S ∼ N(0, (n − ∣S∣ − 3) − 1) then

ρij∣S ≠ 0 occurs if:

∣Ẑnij∣S ∣
√
n − ∣S∣ − 3 > Φ−1(1 − α

2
) (1.23)

where Φ is the standard normal distribution function and 0 < α < 1 is a pa-

rameter representing the significance level of a single partial correlation test.

The choice of an appropriate value for α is not straightforward at all. For

instance, it can be chosen via a Bayesian Information Criterion (BIC) (see

Maathuis et al. (2009) p.13).

Through the estimated CPDAG Ĝ(α) is then possible to estimate the mul-

tisets Θ̂ni(α) = {β̂i∣pai(G1), β̂i∣pai(G2), ..., β̂i∣pai(Gm)} of possible causal effects for

every Gj, j = 1, ...,m DAG in the equivalent class, using the sample versions

of equation 1.20.

Both a global and a local algorithm are implemented in pcalg r’s package.

In global one, according to the pseudocode described in figure 1.22, the set of

possible causal effects for all DAGs in the equivalence class of the estimated

CPDAG are computed. This method is suitable for small graphs (Maathius

indicates up to 10 nodes) while as the number of covariates increases, it

quickly becomes infeasible. Thus a faster “localized” algorithm has been

developed. The local version of the sample algorithm is based on the following

idea. Let assume for the computation of the causal effects Θ̂n1 of X1 on Y ,

that the key elements are the X1’s parents in the different DAGs in all the

equivalence class. All possible parental sets of X1 have to be determined by

considering the CPDAG G, namely all sets pa1(G) ∪ S where S ⊆ sib1(G)
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Figure 1.23: Local version of IDA algorithm

and sib1 stays for X1’s siblings, the vertices linked with X1 by an undirected

edge. The sets S determine the direction of the edges between X1 and the

nodes in sib1(G). Particularly, all edges between X1 and nodes in S must be

directed towards X1 and all edges between X1 and nodes in sib1(G)∖S must

be directed away from X1. According to such a rule, GS→1 denotes the graph

obtained by changing all undirected edges Xj−X1 where Xj ∈ S into directed

edges Xj →X1, and all undirected edges Xj −X1 where Xj ∈ sib1(G)∖S into

directed edges Xj ←X1 (Maathuis et al., 2009).

GS→1 is said locally valid if, compared with G, it does not contain any

other v-structure with X1 as a collider; therefore we can check if GS→1 is

locally valid for each subset S. By excluding all locally valid sets, we gain

all feasible parental sets of X1. A new multiset Θ̂L
n1 is then formed by taking

all elements β1∣pa1∪S for which GS→1 is locally valid. This procedure is sum-

marized in figure 1.23. In Maathuis et al. (2009) it is shown that the global

and the local algorithms drive to the same sets of distinct values, namely

Θ̂L
n1 = Θ̂n1, except for multiplicities.

It follows that the multisets of total causal effects of X1 on Y from the global

and the local method have the same unique values. Thus for computing the

lower bound of the causal effects it does not matter which algorithm is used.

Anyway, with the local algorithm we loose information about multiplicities

of such values and therefore, for instance, their probability to occur.
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Chapter 2

Causality and Gender Gap

The aim of this Chapter is to “drop” the causal approach of Chapter 1 in

a gendered perspective, in particular for assessing potential gaps occurring

among women and men.

After defining, briefly, the general framework and the terminology of gen-

der studies, we develop a translation device that, from the language of causal-

ity, would allow to express gender inequality/equality occurrence in a statis-

tical as well as graphical way.

On the basis of the Pearl’s do-calculus, then, we propose a “causal” defini-

tion of Gender Gap, in terms of causal effect of variable “Gender” on a target

outcome concerning a certain field of interest. It allows to give a synthetic

measure of how the target outcome would change in response to external

intervention (manipulation) on variable “Gender”.

2.1 Gender Framework

In order to show the effectiveness of causal graphs in assessing gender gap, we

need to introduce few key-concepts for framing the gender issues landscape

and for contextualizing the research goals.

“Gender” is certainly a word in common use; anyway, a more formal and

accurate definition is required. The importance that gender plays within the

equalities recognised at international level, moreover, it is relatively recent.
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For this reason, the demand of “ad hoc” statistical tools for assessing gender

gap is pressing and represents an open field of research.

In this section we discuss more in details such topics.

2.1.1 Gender, Gender Gap and Development

With the term Gender, we refer to differences between men and women not

determined biologically as a result of sexual characteristics but as cultural

expectations and socially determined roles, behaviours, activities, and at-

tributes that a given society considers appropriate for men and women (APA,

2012) and (WHO, 2013). It is a central organizing principle of societies, and

often governs the processes of production and reproduction, consumption

and distribution (FAO, 1997).

Globally, communities interpret biological differences between men and women

to create “gender-normative” behaviours and to determine women’s and

men’s different access to rights, resources, education, power in society and

even health behaviours. Although the nature and degree of these differences

vary from society to society, they typically favour men, creating an imbalance

in power and gender inequalities in all countries.

Gender equality “between women and men exists when both genders are

able to share equally in the distribution of power and knowledge and have

equal opportunities, rights and obligations” (UNESCO, 2011).

However the definition of gender equality depends on the understanding of

gender differences. Are all differences also inequalities? Or are some differ-

ences valued not a sign of inequality? Does reaching gender equality merely

mean changing the position of women, or does it mean a much deeper trans-

formation that includes changing the lives of men as well? (UNECE, Devel-

oping Gender Statistics, 2010).

According to a first interpretation, equality recalls a single standard of evalu-

ation with the implication that unless there is sameness there is not equality

as it happens in the cases of equal pay for work of equal value.

In a second approach, there is equal valuation of different contributions, thus

there is not a simple single standard against which men’s and women’s posi-
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tions are assessed. This is, for instance, what concerns the unpaid care work

and whether and if so, how can be treated as equivalent to paid work.

In a third perspective, equality between the genders will be only achieved

through the transformation of practices and standards of both men and

women, for example as reconciling work and family life by making the work-

place compatible with family care for both parents. This approach demands

major structural changes throughout society, since it involves a transforma-

tion of the whole social environment.

As stated before, the concept of gender equality is strictly linked to the un-

derstanding of gender differences. Systematic differences in men and women’

outcomes are called gender gaps. Well known examples are: the ratio be-

tween women’s and men’s earnings for the same amount of work is 0.77,

according to the most recent statistics from the U.S. Census (source: Na-

tional Committee on Pay Equity, 2012); in 2008, U.N. Secretary-General

Ban Ki-moon reported that one in every three women is likely “to be beaten,

coerced into sex or otherwise abused in her lifetime” (source: OneWorld);

since 1980 “women live longer then men all over the world” (Kalben, 2000).

In recent times, a focus on gender-equality has been widely recognised

as vital to international development, involving politicians, economists and

human rights activists.

“To ensure equal opportunities between different groups of the

population is one of the issues underlying the economic devel-

opment and one of the main tools for reducing poverty” (World

Bank, 2005).

At an international level, the intrinsic and instrumental value of gender equal-

ity has been widely recognised in several intergovernmental resolutions as the

Millennium Declaration (UN, 2000), adopted by all Member States of the

United Nations in 2000. It provides the framework for measuring progress

towards the eight Millennium Development Goals (MDGs) 1 to be achieve

by 2015. Gender equality and women’s empowerment are development ob-

jectives in their own right (MDG 3 and 5), as well as critical channels for

1http://www.beta.undp.org/undp/en/home/mdgoverview.html
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Figure 2.1: The eight UN Millenium Development Goals

achieving the other MDGs: they help to promote universal primary educa-

tion (MDG 2), to reduce under-five mortality (MDG 4),to improve maternal

health (MDG 5) and to reduce the risk of contracting HIV/AIDS (MDG 6).

According to 2013 World Development Report, the actions efforts should

focus on four priority areas: 1) reducing excess female mortality and closing

education gaps where they remain; 2) improving access to economic oppor-

tunities for women; 3) increasing women’s voice and agency in the household

and in society; and finally 4) limiting the reproduction of gender inequality

across generations. Nevertheless, there is one cross-cutting priority: support-

ing evidence-based public action through improved quality of data, better

knowledge generation and sharing, and better learning. In this, statistics

may offer its contribution.

2.1.2 Gender Statistics: what, why, how

The expression gender statistics calls for a double interpretation (Mecatti

et al., 2012) as in the most widespread expression refers to the popular mix-

up of statistical methodological tools and its typical products such as indexes,

tables and graphs; whereas in a broader sense, it implies a forward-looking

perspective which is inspired by the increasing demand of gender sensitive

statistical information coming from society, official agencies, economy.
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Gender statistics represents a proper independent field of statistics that cuts

across traditional applications in social, economical, human and life science

with the aims of:

• surfacing and quantitatively assessing gaps and issues based on either

gender−as a social structure−or sex−as a biological factor−;

• providing information for formulating and monitoring data-driven poli-

cies;

• disseminating statistics and informing society.

Gender statistics is crucial for decision-making, “since without an un-

derstanding of the differences in the operation and effects of the policy on

different population groups, such as on women and men, the full implications

of the policy may not be understood and its objectives may not be fulfilled”

(UNECE, 2010) 2.

Sex-disaggregated data are the foundation needed to show the existing gendered-

based differences. However, this alone is, in general, not sufficient for pro-

ducing sound results and reaching the objectives above mentioned.

The process of identifying gender relevance requires the identification of the

areas that might contain significantly gendered dimensions, of current policy

issues as well as a deep comprehension of the conceptual frameworks and

methods used in official statistics. Indeed, several important frameworks

and methods traditionally used in official statistics are biased against either

women or men. It is a popular example the statistical concept of “econ-

omy”, which traditionally focuses on the monetized meaning represented in

measures such as the Gross Domestic Product that omits unpaid household

work.

Gender statistics may improve national statistical systems, through an un-

biased review of definitions and concepts, an improvement of data collection

detecting the development of new methods able to reflect diversities and

inequalities between women and men in the entire society.

2 http ∶ //live.unece.org/fileadmin/DAM/stats/publications/DevelopingGenderStatistics.pdf
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Figure 2.2: Main gender composite indicators released by International Agen-
cies.

Several gender statistical measures have been released by international

and supranational agencies since 1995, with the purpose to compare and

possibly rank countries with respect to chosen gender-related macro-themes,

such as economics, politics, education, health. Most of such measurements

are composite indicators. A composite indicator is a number, usually in [0,

1] or [0, 100], provided by the aggregation of a set of simple indicators, each

singled out to measure one particular component or aspect of the underlying

latent dimension, this being the way to grasp the multi-dimensionality of

the macro-subject under study (Mecatti et al., 2012). These indicators are

calculated as female/male ratio such that a value equal to 1 or 100 represents

perfect equality while, when equal to 0, maximum inequality is shown. The

main gender composite indicators are depicted in Figure 2.2. However, it is

widely recognised that any composite indicator is limited by the subjectivity

with which it is built up (OECD, 2008): it is enough to think to the many

choices available in relation to weighting/aggregating system, standardiza-

tion, to the variables/dimensions to be considered and excluded, to the link

functions etc.
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The arbitrariness in the many choices involved in the process risks to make

opaque the index’s construction with the consequence to produce unreliable

indicators and objectionable rankings.

Another crucial aspect is the skepticism regarding whether a single in-

dicator was able to grasp different gender related problems concerning both

developed and in transition countries (Barnes and Bouchama 2011). In fact,

once established that gender inequalities exist in most parts of the world,

from Japan to Morocco, from Uzbekistan to the United States, yet the very

definition of gender gaps varies, since inequalities between women and men

are not the same everywhere and can take many different forms. Gender

inequality is not a homogeneous phenomenon; it is, in fact, a collection of

disparate and inter-linked issues such as natality and mortality inequality,

basic human rights inequalities, special-opportunities inequality, professional

inequalities, ownership inequality, household inequality and the like (Cali-

garis et al., 2013). For instance, in developing-countries, gender disparities

still affect human rights. Conversely, in OECD countries, equal access to

education, health, survival ect., are values enshrined and guaranteed by na-

tional Constitutions and gender gap occur under different shapes, such as

work-life balance, or political participation.

Gender statistics, thus requires the development of ad hoc methods and stud-

ies able to drop gender gaps in a well defined political, economic and social

cultural framework.

2.2 Gender Gap Measurement: a Causal In-

ference Perspective

One of most quoted sentences of David Hume ties together causality and

counterfactual dependences:

we may define a cause to be an object followed by another.. or,

in other word, where, if the first object had not been, the second

never had existed.

(Hume, 1748)
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As discussed in the previous section, the term “gender gap” is usually

used to indicate a differential in attitudes, behaviours, abilities, opportuni-

ties, access to resources among individuals based on either gender or sex. An

action is said to be “discriminatory”, with respect to gender, if the treatment

of an individual would have been different had that person been of different

gender. The challenge is, hence, to determine if a gender gap actually occurs

but even to which extent a gender discrimination contributes to explain dis-

parate outcomes between women and men. This is certainly a counterfactual

matter, since, according to Hume’s idea, if gender inequality had not been,

differentials based on gender would have never existed.

In this section, we go back to causality, but in a new perspective: a gender

perspective. We, indeed, show the translating bridge from the causal ap-

proach to gender framework, with the purpose to build up a new set of tools

able to catch the “shady” causal mechanism originating gender gap.

2.2.1 Is Gender a Cause? A shift in emphasis

Due to its composite nature, as widely discussed in section 2.1.2, gender gaps

cannot be directly observed. In order to identify the presence or absence of a

gender discrimination, defined as a differential treatment of individuals based

on gender, researchers typically observe an individual’s gender (e.g., female)

and a particular outcome (e.g., wages) and try to determine whether that

outcome would have been different, had the individual been of a different

gender (e.g.,male).

However, gender -as a social structure- or sex -as a biological factor- are not

causes themselves of gender disparities in wages, nor are they the causes

of differences in access to education, family wealth, or health outcomes and

the like. Gender is an individual characteristic which may have physical

and socio-cultural attributes so that, in this sense, it is not a manipulative

variable.

In his article, Holland (1986) reported that he and Don Rubin had once

made up the motto, “no causation without manipulation”. Causal infer-

ence is indeed fundamentally related to experimentation, which is why the
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randomized controlled trial (RCT) is widely considered to be the “gold stan-

dard” for the establishment of causality (Kaufman, 2008).

The idea of analysing, in observational studies, the causal effect of “things”

that we, as human beings, could never influence, is incoherent because such

things could never be the subject of a randomized experiment. The Ru-

bin/Holland stance is clear: gender - as race - is an attribute that the person

possesses and thus “it cannot be a cause in an experiment, because the no-

tion of potentially exposability does not apply to it” (Holland, 1986); for the

authors it makes no sense to talk about the causal effect of gender because,

first, attributes are not subject to change by means of intervention, hence

not to manipulation (a sex-transformation surgery?) and secondly, some im-

mutable characteristics, such as gender, refer to both conception and identity

of the person.

Meanwhile, other scholars have explored an alternative way with the

idea that “perceptions” of immutable characteristics other than the “actual”

traits are manipulable. Because we typically cannot observe the mechanisms

through which the gender gap occurs, gender becomes a proxy for gender per-

ception. This is intended as the way which a person is viewed or view itself

as belonging to a gender. It is, thus, a social construct related to economi-

cal, educational, political, health or social decision, evaluation or procedure

(APA, 2012).

By considering gender as a purely social construct, we can manipulate in-

formation about it without randomization, rather making such information

unavailable; for example, Goldin and Rouse (1997) explore how information

about the gender of applicants to symphony orchestras was removed through

the creation of blind auditions. In such case we can assess the effect of a

shift from having the information available to not having it available. If X

is a binary variable representing the access to information on gender, the

two possible values are x′ =available and x′′ =not available. According to

intervention calculus notation, described in section 1.4.1 of Chapter 1, the

manipulation is thus denoted with do(X = x′′) and disparities based on gen-

der are not possible because the information is unavailable.

A shift in the emphasis on the gender perceptions requires some well-
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defined causal questions to be posed.

Indeed, when studying the causal effect of gender, we do not contemplate

an intervention in the form of manipulation of this attribute or even its

perceptions(Greiner and Rubin, 2011); rather, the purpose is to establish

whether a gender gap actually occurs and, if so, to grasp its nature, whether

discriminatory or not, and to devise reducing policies. In this thesis, our

aim is to draw inference on causal effects of gender perceptions in order not

to study what would happen if we did intervene to alter such perceptions,

rather to detect gender gap and decide whether to intervene in some remedial

way.

2.2.2 Re-declining causal vocabulary in a gender per-

spective

Before delving to how to measure gender gap in a causal approach, we need

to drop standard causal terminology in a gender perspective, allowing a new

gendered interpretation.

The unit i of analysis is a person in some defined role, such as an applicant

for a job, a student, a worker, a political candidate, a person in need of care

etc. The treatment Gi is the unit’s gender (gender perception), with Gi ∈
{0,1}. It is an immutable characteristic as perceived by the decider, namely

the employer, the professor, the society, the family, etc; the unit i is exposed

to treatment Gi when its gender is submitted to the decider’s perception,

for example, the employer seeing a particular gender listed on application;

thus it is subject to manipulations as unavailability of information. The

timing of treatment assignment is presumptively the moment the decider

first perceives the unit’s gender. Defining treatment as occurring at the

moment of first perception captures the fact that variables, whose values are

determined after that moment, may be affected by the perception itself. For

example, in an applicant’s job interview, an employer may evaluate a unit

perceived to be male more favourably than an otherwise functionally identical

unit perceived to be female (or vice versa), so the evaluation is considered as

an intermediate outcome (Greiner and Rubin, 2011).
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In this new gendered framework, we can define gender discrimination

as the effect of the perceived gender Gi on the target outcome, indicated

with Y (wage, job assumption, educational attainment, health status, etc.)

controlling all the other variables. Gender gap, denoted in the following

with Γ(G), can be conceived as a difference in outcome between women

and men; such gap however can arise either from gender discrimination (e.g.

employment decision) or from biological differences (e.g. hormones) or socio-

economical differences (e.g. educational achievement).

In observational studies, confounders are any measured or unmeasured

quantity (Z) that are associated with (but not affected by) gender (G),

causally preceding the target outcome (Y ), and acting to confound the

observed relationships. In figure 2.3, a straightforward example is given.

The variables “Education” and “Productivity” can be viewed as confounders

of the causal effect of “Gender” on “Wages”; they can considered as pre-

treatment variables since they took place before the decider perceived the

unit’s gender, therefore suggesting to condition on them.

Causal Graphs, discussed in Chapter 1, are useful tools able to describe

statistical models and to capture, by observational data, the causal relation-

ships in a set of variables.

By including the variable “Gender” in such set, Gender Equality can be in-

deed visualized with the aid of Directed Acyclic Graphs (DAGs). Denoted,

in the corresponding DAG, with G the node representing “Gender” and with

Y the node referred to the target outcome, gender equality on the target out-

come occurs in absence of a direct edge connecting G with Y . Statistically,

it corresponds to conditional independence of the two variables, given all of

the other variables in the graph (Pearl, 2000).

For example, in figure 2.3, if we consider the causal graph depicting the rela-

tionships among variables: Gender, Wage, Education and Productivity, the

lack of a direct edge between the variable “Gender” and the variable “Wage”

would mean that there is gender equality in wages, among people with same

education and productivity. This suggests that gender has no direct causal

effect on wages.

Conversely, the edge between the variable “Gender” and “Education” would
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Figure 2.3: Causal relationship among the variables Gender, Education,
Wages and Productivity

indicate a gender inequality in education, namely that gender affects educa-

tion. According to what mentioned in section 1.2, the notation “Gender”

→ “Education” means, in fact, that “Gender” is a direct cause of “Educa-

tion”. Statistically, it implies no conditional independence between gender

and education.

DAG allows even to represent graphically manipulation on variable gen-

der that modify a select set of functions in the underlying model.

In section 1.4.1, we described how the truncated factorization in equation

1.9, due to intervention, graphically translates into removing all the links be-

tween the manipulated variable and its parents in the graph. In the example

depicted in figure 2.4, the manipulation on gender implies inserting a new

random variable do(Gender = 1) to the graph that breaks the link between

the variable “Gender” and its parent “Gender stereotypes”, keeping intact

the rest of the network. Once set (Gender = 1), indeed, gender stereotypes

don’t affect gender any more.

2.2.3 Measuring Gender Gap: the causal effect

The underlying idea is that, if there were no gender gap, then we would

expect people homogeneous in certain characteristics to have equal outcome

(Fienberg and Haviland, 2003).

For instance, we are interested in causal relationships among variables: gen-

der, gender gap in labour market and wages. In absence of a gender gap,
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Figure 2.4: Causal relationships among the variables Gender stereotypes,
Gender, Education, Wages and Productivity (a) pre-manipulation and (b)
post-manipulation on Gender.
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male and female workers with the same education and productivity would

earn equal. The measurement of gender gap is thus clearly a counterfactual

matter: “How much would a woman have gained if she had been a man?”.

The answer to such kind of question is fundamental to infer whether a causal

relationship between gender, as a proxy of gender perception, and wages oc-

curs or does not occur, which, in turn, leads to determine whether a gender

gap in labour market exists.

According to Rubin’s experimental approach, the causal effect of gender

would consist of the difference between two outcomes: the outcome in the

case the individual were male and the outcome if the individual were female;

in this sense, it is a counterfactual question. Although each individual i has

an hypothetical potential outcome under either circumstances, only one of

these outcomes is observed or, better, realized. Under this respect, it is a

missing data problem as described by Rubin (1974).

Pearl (2009) suggests to use the notion of potential outcomes in the ab-

sence of a potential experiment, in order to attribute a cause to an effect. We

need first to re-formulate the approach of literature in gender gap measure-

ment context; the aim is therefore to understand how much of the observed

gender gap (for example in terms of wages) is due to discrimination based

on gender membership after adjusting for differences in the other observed

factors.

The question can be formalized as following.

Let us consider a population of N individuals (i = 1, ...,N) belonging to ei-

ther of two mutually exclusive gendered groups indexed by Gi ∈ {0,1} such

that the division of individuals into these two groups is based on whether an

individual i has been exposed to treatment Gi or not. We set Gi = 1 if i has

been treated, for instance, if female; otherwise, if male, we set Gi = 0, namely

non-treated. Moreover, ∑Ni=1Gi = N1 and N0 +N1 = N i.e. there are N1 (N0)

treated or female (non-treated or male) individuals in the population. For

each unit i, a vector of covariates, Zi, is also observed while the realized

(observable) target outcome is denoted by yi for each unit i.

However, as summarized in table 2.1, of the four potential outcomes, only

two could have been observed. For women, as Gi = 1, only the treated out-

64



2.2. GENDER GAP MEASUREMENT: A CAUSAL INFERENCE
PERSPECTIVE

Table 2.1: Table summarizing observable and non observable potential out-
comes for females and males.

come y1i is realized; conversely for men, for which Gi = 0, we can only observe

the outcome y0i. Consequently, for each individual i, we dispose of only one

observable outcome and the other becomes counterfactual.

The gender effect (treatment effect) at individual level i, results as τi =
y1i − y0i, namely the difference between the target outcome if the individual

i were treated as female and the outcome if it were treated as a male. The

causal effect at population level, even called average causal effect (ACE), is

instead given by τACE = E(y1i − y0i). However, as two potential outcome

y1i, y0i from distinct intervention Gi = 1 and Gi = 0 cannot be observed for

each unit i, potential outcome approach leads to what is said “black-box

observation”.

Our aim is now to illustrate the propose strategy for measuring gender

gap. It is innovative as, unlike the existing gender gap indexes which provide

a static snap of gender inequalities, it would give rather a dynamic sequence

of snaps, showing how gender would affect the target outcome. It allows to

catch the causal nature of gender gap in terms of causal effect of gender on

the target variable Y .

We need, thus, to express queries about causal effect of gender as queries

about the marginal distribution of the counterfactual variable of interest Y ,

written P [Y (Gi = 1) = y].
According to subsection 1.4.1, counterfactual matters find expression by

means of do operator. Indeed, the opaque English phrase “the value that

Y would obtain in unit i, had Gi been female” and the physical processes

that transfer changes in Gi into changes in Y , find their formal translation

in the expression E[Y ∣do(Gi = female)].
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Resorting to causal effect definition in equation 1.13, we develop a new defini-

tion of gender gap as gross gender gap, denoted with Γgross(G) and meant as

the causal effect of gender on outcome Y . It has been denoted with “gross”

to be distinguished by the “net” one, which will be described hereinafter.

The gross gender gap is defined by the difference in conditional expected

values:

Γgross(G) = E[y1∣do(Gi = 1)] −E[(y0∣do(Gi = 0)] (2.1)

where y1 and y0 are the observed outcome as though one is treated as a

member of the female or the male group; respectively, Gi = 1 indicates that

respondents are women, Gi = 0 indicates that respondents are male. If we

were interested, for example, in the wage gap, the notation yi would represent

the observed (log) wage and Γgross(G) the gap between the expected women’s

and men’s (log) wages.

Notice that the formulation in equation 2.1, although expressed by expected

values, does not impute to gender gap a compensative connotation. Indeed,

these expected values are conditioned on intervention on Gender variable,

allowing to keep distinct the outcome of female group from the outcome of

male one.

Following the alternative causal effect definition proposed in equation 1.14,

another measure of gross gender gap in given by the ratio:

Γgross(G) = E[y1∣do(Gi = 1)]/E[y0∣do(Gi = 0)] (2.2)

Notice that the gender gap in equations 2.1 or 2.2 is denoted as gross, in

the following sense. Besides the gender membership, other characteristics,

denoted with Zi, might affect gender gap and whose distributions could differ

between genders (for example the productivity and education in wage gap).

In such cases, the quantity Γgross(G) does not represent adequately the target

of investigation as unadjusted for such characteristics.

Conversely, we are interested in the net gender gap, as the quantification of

an effect adjusted by other variables in the model, i.e. the sensitivity of the

target outcome to changes in the variable gender while all other factors in the

analysis are held fixed. Therefore it is necessary to control such pre-treatment
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characteristics, defined in Chapter 1 as confounders, in the estimation process

with the purpose to isolate and identify the actual gender gap due only

to either gender discrimination or biological differences. The idea behind

adjustment consists in partitioning the population in groups homogeneous

relative to such confounding characteristics, assessing the effect of Gi on Y

in each homogeneous group and then averaging the result.

Let note that the distinction occurring between “gross” and “net” gender gap

finds its analogous in causal theory in Pearl’s “total” and “direct” causal

effect (Pearl, 2009), as illustrated in section 1.4.1. This represents a re-

definition, in a gender perspective.

Recalling the example of wages, we would like to decompose the gross

amount of wage gap in the amount due to differences in other character-

istics, e.g. education, productivity etc., and the remaining variables in set

considered. In order to gain this decomposition, we would need, ideally, full

information on each individual i, with his/her characteristics besides group

membership (Fienberg and Haviland, 2003); specifically we would want to

know wages for each male (female) as he (she) would be paid were he (she)

a member of female (male) group. Therefore, we need the estimation of such

missing counterfactual matter (Fienberg and Haviland, 2003) in order to de-

tect the “actual” gender gap, net of differences due to any other confounding

variables.

The gender gap conditional on confounding characteristics Zi = z, namely

the net gender gap, then becomes (S loczyński, 2013):

Γnet(G) = E[(y1∣do(Zi = z), do(Gi = 1)]−E[(y0∣do(Zi = z), do(Gi = 0)] (2.3)

or alternatively:

Γnet(G) = E[(y1∣do(Zi = z), do(Gi = 1)]
E[(y0∣do(Zi = z, do(Gi = 0)] (2.4)

In the wage example, the Γnet(G) allows for comparing men’s wages with

wages of women homogeneous for other characteristics Zi, and for estimating

the corresponding actual wage gender gap.

67



CHAPTER 2. CAUSALITY AND GENDER GAP

In equation 2.3, Zi represents a sufficient or, according to section 1.4.1,

“decounfounding” set of variables for estimating consistently these missing

counterfactuals. Potential outcome literature refers to this as the strong ig-

norability (Greiner and Rubin, 2011), meaning that Zi is an admissible set

of covariates, if, given Zi, the value that the outcome yi would result had Gi

been 1 (or 0) is independent of Gi, namely that (y0, y1) ⊥ Gi∣Zi.
Notice that, as mentioned in Chapter 1, ignorability fails to provide a work-

able criterion to guide the choice of such covariates (Pearl, 2000), since coun-

terfactuals are unobservable. Pearl and Robins (1995)’s back-door criterion

(1.4.2) and front-door criterion (1.4.3), as discussed in section 1.4.1, provide

simple graphical solutions to assess the adequacy of controlling for a partic-

ular covariate set Zi.

The net gender gap Γnet(G) in equation 2.3, thus, would be nothing that

the Pearl (2009)’s controlled direct effect (CDE), defined in Chapter 1 in

equation 1.17, of variable gender on the target outcome Y , defined as:

Γnet(G) = CDE ≜ E[Y ∣do(Gi = 1), do(z)] −E[Y ∣do(Gi = 0), do(z)] (2.5)

where Zi is a set of mediating variables satisfying the back-door or front-

door criterion, hence intercepting all indirect paths between G and Y in the

corresponding causal graph.

By assuming that Zi satisfies the back-door or front-door criteria rela-

tive to (Gi, yi), it follows that gender group membership is independent of

the outcome y0 (Heckman et al., 1998), then E[y0∣do(Gi = 1), do(Zi = z)] =
E[y0∣do(Gi = 0), do(Zi = z)]. This can be interpreted as: for equal character-

istics Zi, the classification of an individual in the male or female group would

not affect its expected wage. With these assumptions, we can now estimate

the decomposition of the gross gender gap into the portion associated with

confounders and another portion that is not, namely the controlled effect of

gender on the outcome.

Let the average outcome, respectively, in female group Gi = 1 be expressed

as:

E(y1∣Gi = 1) = ∑
Zi

pWzE(y1∣Gi = 1, Zi = z) (2.6)
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where E(y1∣Gi = 1, Zi = z) is the expected outcome in the women’ group with

the observed characteristic Zi = z, and pWz is the proportion of women with

characteristic Zi = z. Equation 2.6 provides an estimation of the “effect of

treatment on the treated”. In our interpretation this is the causal effect of

gender on women’s outcomes under the condition of gender discrimination.

Similarly for the men’s group Gi = 0 we set:

E(y0∣Gi = 0) = ∑
Zi

pMzE(y0∣Gi = 0, Zi = z) (2.7)

where, conversely, E(y0∣Gi = 0, Zi = z) would indicate the estimation of the

“effect of treatment on the untreated”. Substituting equations 2.6 and 2.7

in 2.1, we obtain the gross gender gap expressed as:

Γgross(G) =
E(y1∣Gi = 1) −E(y0∣Gi = 0)
= ∑
Zi

pWzE(y1∣Gi = 1, Zi = z) −∑
Zi

pMzE(y0∣Gi = 0, Zi = z)

= ∑
Zi

pWz[E(y1∣Gi = 1, Zi = z) −E(y0∣Gi = 0, Zi = z)]

−∑
Zi

[pMz − pWz]E(y0∣Gi = 0, Zi = z) (2.8)

The assumption that Zi were a deconfounding (or sufficient) set for estimat-

ing the controlled effect of gender on target outcome, allows to use equation

2.8, which may be observed, to estimate:

Γgross(G) =
E(y1∣Gi = 1) −E(y0∣Gi = 0)
= ∑
Zi

pWz[E(y1∣Gi = 1, Zi = z) −E(y0∣Gi = 1, Zi = z)] (2.9)

−∑
Zi

[pMz − pWz]E(y0∣Gi = 0, Zi = z) (2.10)

Notice that the sum in equation 2.9 measures the net gender gap, namely

the gross gap adjusted by other factors Zi. In the wage example, it would

express the actual wage gap as the difference between the expected female
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wages as members of female group and the expected earning of men with

similar characteristics but as they would be paid were they members of fe-

male group. Conversely, the sum in (2.10), would represents the remaining

portion of gross gender gap (Fienberg and Haviland, 2003). In the wage case,

it would represent the expected wage of men as belonging to male group. We

have thus broken the male expectation in two parts adjusted for confounders.

The first gives the expected outcome as they belonged to female group, while

the second the expected outcome as members of the actual male group.

Such operation allow, thus, to decompose the gross gender gap in two parts,

the first of which providing the net, actual gender gap as adjusted per coun-

founding characteristics.

In summary, in this chapter we have dealt with measuring gender gap

under a causal perspective.

The main question has been how to detect and represent gender discrimi-

nation and non-gender discrimination factors affecting the gender gap in a

causal graph. Pearl (2009) points out the difficulty arising from cases where

an actual experiment is not the case. Gender gap measurement represents

one of such cases as the observed variable, gender, is not manipulable, at

least in the strict meaning.

The first purpose of this chapter lied in providing an effective graphical lan-

guage for making concepts as “gender equality” and “gender gap” precise

and explicit.

Then, extending the use of the intervention calculus, we proposed a new

measure of gender gap under a causal approach. Gender gap, in equation

2.1, has been reinterpreted in terms of the causal effect of gender on a target

outcome selected for assessing a certain field of interest; this re-definition

allowed to grasp the causal side of the phenomenon.

Moreover, although the factors affecting gender gap and differing by gen-

der but not affected by gender discrimination are difficult to disclose, the

methodology proposed in this chapter, based on Pearl’s back-door and front-

door criteria, allows to define a sufficient set of covariates whose distributions

differ by gender but not depend on gender discrimination. It enabled to parti-
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tion any difference in outcome by gender. In this way, it has been possible to

define a net measure of gender gap, in equation 2.5, which allows to “clean”

the resulting gender gap from possible counfounders’ effects.

The method developed in this chapter facilitates the drawing of quanti-

tative causal inferences from a combination of qualitative assumptions en-

coded in the graph, and non-experimental observations. The performance of

such methodology has been tested on a real data set, with both respects of

practical applicability and interpretation capacity, as well as compared with

standard methods such as ordinal logistic regression. This is discussed in

Chapter 3.
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Chapter 3

Causality in Gender

Discrimination in China: an

application

The aim of this last chapter is to empirically explore both the applicability

and the informative potential of the method advanced in Chapter 2.

By means of an application to real data, we show how a causal graph-

based approach would represent an effective and innovative statistical tool

able to explore and catch gender gap. The application focuses in exploring

the existence of a gender discrimination risk in child nutrition and health in

China, with particular attention to children and adolescents of age 0-17.

First, we briefly describe the Chinese framework, paying the attention on

two “alarm bells” which make a deeper gendered analysis necessary:

1. an unbalanced sex ratio at birth; and

2. an excess of female child mortality.

Then, we go in details of the China Health and Nutrition Survey (CHNS)

(section 3.2.1), describing the data and illustrating the used method. In or-

der to show the advantages resulting by the causal network approach here

proposed and illustrated in the previous chapters, we also conduct a compar-

ison with standard statistical methods. Finally, we estimate the gender gap
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Figure 3.1: China Fertility rate from 1960 to 2012. Source: World Bank,
2012.

in child care in China by applying the methodology illustrated in Chapter 2

such as the measure proposed in section 2.2.3.

3.1 Why China

China’s fertility rate, calculated as average births per woman in her lifetime,

started its gradual decrease since end-1960s, falling, only over ten years be-

tween 1970s and 1980s, from 5 children from less than 3 births per woman.

It dropped below replacement level, i.e. 2 births per woman, in the early

1990s and has continued its downward trend ever since, as showed in fig-

ure 3.1, recording 2013’s total fertility estimate at 1.55 children per woman

(Cai, 2008; Guo, 2009). Many factors contributed to such fertility transition,

common to many other countries in the world, including Italy; among them:

transforming economy, rising education, dropping mortality, changing gender

roles including female participation in the labor force etc. But some other

argued that China’s family planning policies, aiming at controlling the size

of population and carried out since 1970s, had played a major role (Wang,

2012).

Such intricate policies can be summarized as a combination of:
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• propaganda, attempting to persuade people of the essentiality of family

planning to both their own benefits and the national development;

• family planning services, covering free contraceptives and low-cost med-

ical examinations or surgeries;

• birth quota, settings a ceiling on the number of children per married

couple (Wang, 2012).

The one-child policy was launched by the Chinese Government in 1979-1980

and decreased the total population by 400 million people compared to the

population that the country was predicted to reach without the policy (Na-

tional Population and Family Planning Commission of China 2008); further-

more, local officers were eager to achieve specific goals in the short term and

would even adopt some forceful measures directly acted on the women phys-

ically (Short et al., 2000; White 2006).

The dichotomic fertility policy is characterized by an urban-rural duality

system, according to which the overwhelming majority of urban residents is

subject to strict one-child policy and most people in rural areas is subject to

one-and-half policy (Guo, 2002) admitting to have another child if the first

is a daughter. In last years, softening of policy and relaxing of requirements

for second birth has occurred, although details of regulations varied from

province to province.

Anyway it is not possible to attribute China’s fertility drop only to the

one-child policy (Morgan et al., 2009); indeed throughout the 1980s, when

the birth control policy was most enforced, the fertility rate in China was

above the replacement level reflecting the difficulties in its implementation,

while only from 1990s the rate fell under the replacement level, where still

now it is.

Beyond the suspicious of under-reported births, several studies (Chen et al.

2009, Poston 2000, Gu et al. 2007) have showed that fertility variation in

China is closely linked to variations in economic and social development: with

the rapid modernization and urbanization, the fertility desires are changing

(Ma, 2007, 2008; Zheng, 2010). During the past two decades, indeed, the
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ideal children number of both rural and urban residents has decreased in

China; at confirmation of such phenomenon, a recent meta-review of survey

of mean ideal family size (MIFS) in China, conducted by Basten (2013),

found a MIFS range in urban areas of 1.0-1.5 children per woman, and 1.2

to 1.8 in rural areas.

However, notice that fertility drop is a phenomenon affecting half of the

world’s population. What is recalling the attention on China are, in fact, two

indicators, sentinels of both pre-natal and post-natal gender discrimination

against girls: sex ratio at birth and infant mortality.

A skewed sex ratios at birth (SRB), above the “natural”, worldwide empir-

ically observed SRB of 103 to 107 male births for 100 females, have been

a feature of numerous Asian countries in recent years including Korea, Tai-

wan, Hong Kong, India and Vietnam (Guilmoto, 2009). However, in the past

decades, China has consistently shown the most skewed SRB in the world

(Poston and Zhang, 2009), as showed in figure 3.2, reaching the maximum

level of 120 male births per 100 female births in 2009. Then, each year since

2009, it has fallen, mainly because of measures adopted by the Chinese gov-

ernment, including the Care for Girls campaign, reaching 118.06 in 2010,

117.78 in 2011 and 117.70 in 2012. Anyway, wide regional differences still

occur: from the lowest SRB values equal to 106 - and hence in the normal

range - recorded in Tibet and Xinjiang, to the most extreme values of Jiangxi

(123) and Anhui (129).

Such skewed SRB may have global consequences in terms of female deficit if

we consider that China’s population is 22 per cent of the planet total; further-

more it inevitably leads to a generation of exceeding males with unavoidable

consequences in terms of lower fertility, more rapid ageing, difficulties in part-

nership formation and a squeeze on the marriage market (Guilmoto, 2009;

Jiang et al., 2013).

Such abnormal SRB in China is possibly due to a complex and intercon-

nected set of drivers (Yi et al., 1993).

Firstly, the patriarchal culture, according to which men take more responsi-

bilities than women, as they have to afford economic and endowment support,

carry on the family line, bring honour and authority, care parents in old age
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Figure 3.2: Sex Ratio at Birth trends in Asian countries. Source: UNDP,
2012.

and so on (Gupta et al., 2004; Attane, 2005). In this context, the strong

traditional ideology of son preference is still prevalent in China and widely

recognised in literature (Poston and Zhang, 2009); Yuan and Shi (2005) have,

among others, pointed out how in Asian countries, no matter what the level

of economic and social development is, the preference for boys over girls is

widely accepted.

Even the rapid fertility decline is strictly linked to high SRB; in a low fertil-

ity context and in an ideal of small family sizes (≤ 2 children), some couples

seek assistance from sex-selection technology to meet their target with fewer

births. One-child policy and son preference as well, interfere in such rela-

tionship occurring between lower fertility and sex-selection use: indeed the

son preference thought “if the child has to be one, at least that is son” leads

families to resort to sex-selection to guarantee that this only child is male.

Another crucial elements, understudied within the SRB literature, is the

influence of parity and sex composition of children already born (Poston

and Zhang, 2009; Jiang et al., 2013); the composition of children’s gender is

clearly linked to sex-selection technologies usage and, consequently, to SRB

(Gupta, 2005) in the following way. Table 3.1 shows how sex composition

of existing children would influence the gender of next birth: for example,

the sex ratio at parity two, ranges from 107.3 in cases where the first child

is a boy through to 190.0 when the first child is a girl, demonstrating that
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Table 3.1: Sex ratios at birth by sex composition of existing children. Source:
1990 census data from Zeng et al. (1993), 2000 census data from Sun (2005).

in two-child ideal, if the first child is female, there is a strong incentive to

ensure that the second child is male.

Recent studies (Guo, 2007; Yang, 2012) have confirmed how macro-level

elements, such as accessibility of prenatal sex determination, sex-selection

technology and economic development as well as individual children compo-

sition have an impact on the gender of next birth.

The second “alarm bell”, involving, conversely, post-natal discrimination

in China, is an observed excess of female infant (child) mortality, EFIM

(EFCM) defined as the higher than “normal” ratio of female/male infant

(child) mortality in a population (Li et al., 2004).

Infant and child mortality is usually determined by a complex interplay of

biomedical, socio-economic, demographic and environmental factors that im-

pact mortality at different stages in the life course (Mosley and Chen, 1984).

In absence of sex discrimination, biomedical factors are the major determi-

nants of gender differences, and both infant and child mortality is higher for

males than for females (Coale, 1991); such difference would compensate the

“natural” excess of males at birth and hence would ensure a ratio closer to

100 in the important years for reproduction (Banister, 2004).

Anyway in China, as showed in figure 3.3, a worrying observed excess of both

infant and child female mortality is a signal of a girl child survival problem,

reflection of an insufficient investment in girls and of unequal rights in the

early stage of human life.
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Figure 3.3: Infant, under-five mortality rate and EFIM in Asia. Source:
WHO, Statistical Information System, 2008

The main reasons for the excess of female mortality, among children and

infants, is in fact the inequality in health care between sons and daughters

(Li et al., 2013); indeed the rooted son preference in China translates in

discrimination against girls regarding nutrition, health care, and thus caus-

ing EFCM. Studies on child mortality (Li et al., 2004) have confirmed that

medical treatment for boys is significantly better than for girls , in addition

female infanticide still exists (Li et al., 2004).

These considerations, regarding differences in the scale of the skewed

SRB, together with an evident excess of female child mortality in China,

suggest that there is something special about China that requires to be high-

lighted and analysed in its own right.

As reported before, a number of studies have argued that this key differential

is due to the family planning policy which, in the end, limits the number of

children that couples are legally entitled to have. However, it is important

to notice that such policy interacts with a wide array of other factors which
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shapes childbearing and, ultimately, affects the SRB and EFCM: if cou-

ples have had sons, fertility policies might have little effect on their choices;

conversely, to those who only have daughters, fertility policies affect them

markedly.

We can say, hence, that in the context of low fertility levels and corresponding

fertility intention, as well as sex-selection availability, son preference mani-

fests itself more strongly.

It is, thus, necessary to develop feasible statistical methods as well as political

strategies able to detect and fight gender discrimination, a phenomenon that,

specially in China, is rooted and hidden in its history, culture and traditions.

3.2 Data and a Standard Statistical Approach

3.2.1 Description of the dataset

Data are collected in China Health and Nutrition Survey (CHNS) 2009 and

they are available at http ∶ //www.cpc.unc.edu/projects/china; the project

is the result of a collaborations between the Carolina Population Center at

the University of North Carolina at Chapel Hill and the National Institute of

Nutrition and Food Safety at the Chinese Center for Disease Control and Pre-

vention. It represents a multi-purpose longitudinal survey (rounds in 1989,

1991, 1993, 1997, 2000, 2004, 2006, 2009, 2011 and soon 2013) covering key

public health risk factors, health outcomes, as well as demographic, social

and economic factors in depth at the individual, household and community

levels. Its aim is to examine the effects of health, nutrition, and family

planning policies and to see how the social and economic transformation of

Chinese society is affecting the health and nutritional status of its popula-

tion.

The survey is conducted over a three-day period using a multi-stage, random

cluster process in order to draw a sample of about 4,400 households with a

total of 19,644 individuals covering 9 provinces with substantial variations in

geography, economic development, public resources, and health indicators.

In addition, detailed community data are collected in surveys of food mar-
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kets, health facilities, family planning officials, and other social services and

community leaders.

We focus on the 2009 household survey, the most recent available at the

beginning of this thesis. Our analysis’s unit is any child between 0-17 years

collected in the survey, while our purpose is to infer if a gender discrimination

in child health, nutrition and care occurs in China.

A preliminary stage of profound editing and cleaning of the data set was

necessary in order to create a tailored dataset for the specific purpose of

the present research. In particular, in order to collect in a single file all

information needed for the analysis, the first step consisted in jointing 17

different datasets concerning child’s demographic, social, economical, nutri-

tional and health data resulting by the child’s questionnaire (table 3.2). The

second operation aimed to match, for every unit of analysis, key information

about child’s mother and father, data extracted by other 20 datasets col-

lected through the adult’s survey (table 3.3). Referring to child’s household

and individual codes, it has been possible to combine all these data; such

procedures have been automatized with if and for loops in Matlab (Higham

and Higham, 2005), in order to ensure fast and accurate matches.

In the dataset we collected information of different nature: demographic

such as gender, age, residence province etc., have been included in the final

dataset as they are; economic, educational and social variables have been

aggregated in synthetic indicators while others have been built on purpose

to catch specific phenomena. A summary prospect of the considered variables

is showed in table 3.14.

In particular, the variables can be classified in the following macro-areas:

• Demographic: child’s age, child’s gender, urban/rural registration, par-

ents’ age etc.

• Time and Gender of Births related : child’s birth order, gender sequence

of births and birth spacing.

They represent crucial indicators to detect latent factors such as son

preference and sex-selection; indeed a child with certain sex-birth-order

characteristics will influence the next child’s gender in order to attain
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C H I L D Q U EST I O NN A IR E 

  DEMOGRAPHICS 
I  Background demographics (for all children) 

    WORK ACTIVITIES 
II  Work status (for children who are not in school) 

III  Primary occupation and wages (for children who work) 
IV  Secondary occupation and wages (for children who work) 
V  Home gardening (for children age 6 and older) 

VI  Collective and household farming (for children age 6 and older) 
VII  Raising livestock/poultry (for children age 6 and older) 

VIII  Collective and household fishing (for children age 6 and older) 
IX  Small handicraft and small commercial household business (for children age 6 and older) 
X  Other sources of income (for children who work)   

    HOUSEHOLD CHORES AND CHILD CARE 
XI  Time allocation for home activities (for children age 6 and older) 

XII  Care of other children age 6 and younger (for children age 6 and older) 
XIII  Child care outside the home (for children age 6 and younger) 

    TOBACCO, TEA, WATER, CAFFEE, ALCOHOL, AND SOFT DRINK CONSUMPTION 
XIV  Smoking (for children age 12 and older) 
XV  Water, tea, and coffee consumption (for children age 12 and older) 

XVI  Alcohol consumption (for children age 12 and older) 
XVII  Soft drink and sugared fruit drink consumption (for children age 6 and older  

XVIII  Other dietary habits (for children age 6 and  
    PHYSICAL ACTIVITIES 

XIX  Physical activities (for children under age 6) 
XX  Physical activities (for children age 6 and older who are in school) 

XXI  Physical activities (for children age 6 and older who are not in school) 
    BODY SHAPE AND MASS MEDIA 

XXII  Body shape and mass media (for children age 6 and older) 
    DIET AND ACTIVITY KNOWLEDGE 

XXIII  Diet and activity knowledge (for children age 12 and older) 
    USE OF HEALTH SERVICES 

XXIV  Medical insurance (for all children) 
XXV  Use of health care and medical services (for all children) 

    HEALTH STATUS 
XXVI  First menstruation (for girls age 9 and older) 

XXVII  Disease history (for children age 12 and older) 
XXVII  Eating Disorders (for girls age 12 and older) 

XXVIII  Physical measurements (for all children) 
 

  

Table 3.2: Table of contents of child questionnaire

A DU L T Q U EST I O NN A IR E 

 

  DEMOGRAPHICS 
I  Background demographics (for all adults) 

     WORK ACTIVITIES 
II  Work status (for all adults) 

III  Primary occupation and wages (for adults who work) 
IV  Secondary occupation and wages (for adults who work) 
V  Home gardening (for all adults) 

VI  Collective and household farming (for all adults) 
VII  Raising livestock/poultry (for all adults) 

VIII  Collective and household fishing (for all adults) 
IX  Small handicraft and small commercial household business (for all adults) 
X  Other sources of income (for all adults) 

     HOUSEHOLD CHORES AND CHILD CARE 
XI  Time allocation for home activities (for all adults) 

XII  Care of children age 6 and younger (for all adults) 
     TOBACCO, TEA, WATER, CAFFEE, ALCOHOL, AND SOFT DRINK 

CONSUMPTION 
XIII  Smoking (for all adults) 
XIV  Water, tea, and coffee consumption (for all adults) 
XV  Alcohol consumption (for all adults) 

XVI  Soft drink and sugared fruit drink consumption (for all adults) 
     OTHER DIETARY HABITS 

XVII  Other dietary habits (for all adults) 
     PHYSICAL ACTIVITIES 

XVIII  Physical activities (for all adults) 
     USE OF HEALTH SERVICES 

XIX  Medical insurance (for all adults) 
XX  Use of health care and medical services (for all adults) 

  HEALTH STATUS 
XXI  Disease history (for all adults) 

     DIET AND ACTIVITY KNOWLEDGE 
XXII  Diet and activity knowledge (for all adults) 

     EVER-MARRIED WOMEN UNDER AGE 52 
XXIII  Marriage history (for ever-married women under age 52) 
XXIV  Inter-generational linkages to parents (for ever-married women under age 52) 
XXV  Siblings/relatives (for ever married women under age 52) 

XXVI  Pregnancy history (for ever-married women under age 52) 
XXVII  Fertility preferences (for ever-married women under age 52) 

XXVIII  Birth history (for ever-married women under age 52 who have given birth to a child) 
XXIX  Mass media (for ever-married women under age 52 with children ages 6-18) 
XXX  Eating disorders (for women age 35 and younger) 

     PHYSICAL MEASUREMENTS 
XXXI  Physical measurements (for all adults) 

 
  

Table 3.3: Table of contents of adult questionnaire
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CHAPTER 3. CAUSALITY IN GENDER DISCRIMINATION IN CHINA: AN
APPLICATION

the desired sex composition. In general, more than one or two daugh-

ters are culturally not welcome, and girls who are born into a family

that already has daughters, are the most likely to be least valued and

thus discriminated by the household. A desire for sons, combined with

a growing desire for a small family thus suggests that selective discrim-

ination against higher-birth-order girls is likely to occur (Das Gupta

1989).

Even timing between children is an important signal: indeed each abor-

tion increases the spacing between births as the uterus needs at least

two menstrual cycles to recover before conception.

• Medical : if child and parents have any medical insurance, child’s and

parents’ Body Mass Index (or BMI, calculated as weight/height2) cut-

offs.

In particular, “child’s BMI” constitutes a key variable for our research,

representing the target outcome for measuring the effect of a poten-

tial gender gap on child’s nutrition. Indeed both weight and height

are sensitive measures of long-term health and nutrition in childhood,

reflecting the intra-household resource allocation, the exposure to infec-

tious diseases as well as the access to medical facilities. It is important

to underline that, for our research purposes, both undernourishment

than obesity constitute indicators of poor childcare and lack of atten-

tion to the child’s well-being.

According to WHO (2004) recommendations, it is necessary to con-

sider in the analysis BMI cut-off points targeted for Chinese popu-

lation, in order to avoid bias due to biological and anthropomorphic

differences. For this reason, we referred to appropriate cut-off points

proposed by the Working Group on Obesity in China (WGOC) (Zhou,

2002; Jiang et al., 2006) and widely recognized as standards for Chi-

nese BMI; anyway for children, since an international agreement has

not been reached yet, we resorted to BMI cut-off points, as used in

Jiang et al. (2006)’s and Shang et al. (2005)’s studies. In tables 3.5

the international, namely the WHO international standard, and chi-
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3.2. DATA AND A STANDARD STATISTICAL APPROACH

< 18.5 underweight <18.5 underweight

18.5-24.99 normal 18.5-23.9 normal

25-29.9 overweight 24-27.9 overweight

>30 obese >28 obese

international (WHO) Chinese (WGOC)

Table 3.5: International and Chinese BMI cut-offs for adults. Source: WHO,
2012 and WGOC, 2002.

nese adults’ cut-off points are compared. Child’s chinese cut-off points,

evaluated both per sex and age, are reported in table 3.6.

• Educational and Working : highest level of completed education and

highest job position between mother and father.

We are, indeed, interested in verifying if in more educated and well-off

families a more gender balanced child’s nutrition occurs or not.

• Child’s growing up environment : parents’ knowledge about good diet

behaviours, parents’ priorities and potential grandparents help in car-

ing child.

The variables concerning the parents’ diet knowledge are composite in-

dicators, resulting by the aggregation of several answers about healthy

and unhealthy eating behaviours as well as food preferences (questions

from U376 to U393 in the adult’s questionnaire). The indicators have

been built up by attributing a score to each question: +1 in case of

correct eating behaviours, 0 to neutral answers, and -1 for unhealthy

behaviours; then the resulting sum of each score has been rescaled in

the range from -2 to +2 giving the final indicator.

“Parents’ priorities” is as well as a synthetic indicator, given by the ag-

gregation of 5 questions regarding the importance attributed by child’s

parent respectively to good income and child’s wealth (questions U405-

U409). Such indicator is born with the aim of evaluating the collocation

of child’s wealth within the family values.
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age boys girls boys girls boys girls
0 12,5 12,3 14,9 14,7 16,2 16,3
1 14,1 13,8 20,2 19,5 21,9 19,6
2 14 13,7 18,3 17,7 19,8 19,1
3 13,8 13,4 17,6 17,3 18,9 18,8
4 13,4 13 16,7 17,2 18,1 18,9
5 13 12,7 16,8 17,4 18,6 19,4
6 12,6 12,6 17,2 17,8 19,4 20,3
7 12,5 12,7 17,8 18,3 20,3 21,2
8 12,6 12,8 18,4 18,9 21,3 22,2
9 12,8 13 19 19,5 22,2 23,2
10 13,2 13,3 19,7 20,3 23,1 24,2
11 13,5 13,6 20,3 21,1 23,9 25,2
12 13,9 14,1 20,9 21,8 24,7 26,1
13 14,2 14,8 21,5 22,5 25,4 26,8
14 14,7 15,3 22 23 26 27,4
15 15,2 15,8 22,5 23,4 26,5 27,7
16 15,6 16,3 23,1 23,7 27,1 27,9
17 15,9 16,6 23,5 23,9 27,6 28

normal overweight obese

Table 3.6: Children’ lower bound cut-offs. Source: WGOC, 2002 for over-
weight and obesity; Shang et al. (2005) for normal cut-off.

Finally, the “potential help” is a composite indicator involving the

inter-generational linkages to grandparents. It results from the com-

bination of two data about each grandparent: if he/she lives close or

far from the family and if he/she needs help in daily life. From such

information it is thus possible to deduce if they represent a potential

help in childcare; indeed in the Chinese labour market, characterized

by limited flexibility in work arrangements such as part-time, lack of

daycare facilities such as parental leaves etc. and high migration to the

workplace, the proximity and involvement of grandparents in child’s as-

sistance are essential factors for understanding child’s wealth and care

status (Chen et al., 2000).

• Parents’ primary socialization: father’ and mother’ siblings gender

composition. These two variables have the purpose to explore the ma-

ternal/paternal primary socialization respecting the gender discrimi-

nation; in fact if the father/mother has grown up in a son-preference

context, he/she would more probably tend to replicate or allow for
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3.2. DATA AND A STANDARD STATISTICAL APPROACH

gender discrimination. Conversely if parents are born in a free from

gender discrimination context, they would more likely avoid differences

between sons and daughters.

• Fertility intentions : number of eventual additional desired children.

Such variable allowed us to insert in the research the fertility prefer-

ences, which, as we have already illustrated in section 3.1, have a strong

impact on the risk of gender discrimination.

Some observations had to been deleted by the final file as the correspond-

ing child’s BMI was missing; it, indeed, embodies the essential information

for our purposes of analysis since it represents the target outcome to estab-

lish if a gender discrimination in child’s nutrition would exist. Hence the

resulting dataset contains 1313 children from 0 to 17 years for which we have

complete information about demographic, parents’ educational and job vari-

ables; for what concerns, instead, the other variables, some missing entries

may occur. The corresponding percentages of missing cases for each variable,

are showed in the last column of table 3.14.

3.2.2 Descriptive analysis

In this subsection, we present some descriptive statistics in order to summa-

rize the data.

Boys represent the 55% of the sample, while girls the 45%; 28% of chil-

dren live in urban areas, whilst the remaining 72% in rural ones.

Only child represent the 46% of population while in 48,4% of cases we are in

presence of families composed by 2 children and only in 5.6% by 3 or more,

showing the effects of one-child policy on fertility choices.

For what concern gender siblings composition, excluding the only child, first-

born girl and younger brother’s sequence represents the 24% of cases, twice

compared to the opposite sequence (first son and second girl); a data which

might hide the research of a son, after a daughter, even by sex-selection.

Exploring the BMIs, underweight children are the 4%, while the overweight

the 10.7% and the obese the 6.8%; for what concerns parents, the undernour-

ishment percentage is 3.8% for fathers and 6.2% for mothers while the firsts
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are overweight or obese in 31.6% of cases and the seconds in 27%.

In 83% of cases, child has a medical insurance, while father in 77% and

mother in 81%.

The 88% of parents have a primary or middle-school education and higher in

only 8%; half are working as independent operators, others 20% as employees

and 7% of them are unemployed.

Almost all parents have a good or very good knowledge of diet behaviours.

For both fathers and mothers their priority is good incomes in about 20% of

cases; conversely, child’s health has precedence for 12% among fathers and

15% among mothers.

The 80% of households can rely on a potential help of grandparents for child-

care.

Approximatively 50% of parents come from a family composed by both broth-

ers and sisters while in about 20% by male sibling only; a household domi-

nated by women has represented the growth environment for 20% of mothers

and 12% of fathers.

Even the 78% of mothers do not want another child, the 7% just one more

and only 2.5% more than one.

Exploring the distribution of child’s BMI within gender groups, it clearly

emerges how differences among girls and boys occur; indeed the number of

boys belonging to normal, overweight and either obese categories overcomes

the number of girls, as showed in picture 3.4, while within the category of

underweights, girls represent the majority.

Furthermore, analysing the child’s BMI in relation to the gender sequence

of the child’s siblings, such disparities result even more evident, as shown

by the comparison in figure 3.5. Excluding only child for which significant

gender differences do not occur, in general boys tend to be less underweight

than girls; moreover they are overweight or even obese more frequently when

they have an older sibling, regardless their gender.

Conversely, girls suffer of undernourishment specially when they have a

younger brother and they tend to be overweight, in most of cases, when

they are the oldest, independently by the gender of younger siblings. For
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Figure 3.4: Child’s BMI per gender.

what concerns, finally, girls’ obesity, it would not seem significantly varying

with siblings’ gender composition.

Moreover, from table 3.7, we calculated the relative female/male ratio for

each gender sibling composition, in order to evaluate the gap between boys

and girls. For what concerns the undernourishment F/M ratio, it is close to

1 for only child and MF gender composition (namely when there is at least

one boy before a girl), showing a gender balance. Conversely when a girl has

a younger brother, she risks 6.3 times more than brother to be underweight;

GENDER 

M F 
SEQUENCE SEQUENCE 

 

M MM MF FM F MF FM FF 

underweight 9 1 3 3 12 3 19 7 
normal 261 104 59 137 188 69 124 84 
overweight 53 14 8 15 30 0 10 11 

CHILD
BMI 

obese 33 8 1 12 18 6 6 5 
!

Table 3.7: Frequency of child’s BMI per gender sequence of siblings.
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Figure 3.5: Boys’ and girls’ BMI per gender composition of siblings
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GENDER 
M F 

BIRTH'S ORDER BIRTH'S ORDER 

 

0 1 2 3 + 0 1 2 3 + 
underweight 9 3 4 0 12 24 5 0 
normal 261 103 161 36 188 136 119 22 
overweight 53 10 21 6 30 9 9 3 

BMI 
CHILD 

obese 33 0 15 6 18 4 12 1 
!

Table 3.8: Frequency of child’s BMI per birth order.

the gap, then, arises in cases of same sex siblings, as the risk of being un-

derweight for daughters is 7 times more than for sons. Looking at obesity, it

affects, in general, more boys than girls, specially only boys and boys with

elder sister; anyway, the gap is reversed when the family is composed by a

son and a younger sister, as the girl has a risk of being obese 6 times more

than her brother.

In general, there are no significant gender gaps existing among only child;

things change when there are siblings. From these considerations, clearly

emerges how sibling’s gender is a crucial factor to understand nutrition pat-

tern; having a brother implies for a daughter twice the risk of being malnour-

ished, in sense of both lack than excess of nutrition, compared with sons.

Same considerations are valid for the interaction between child’s BMI

and birth order as reported in table 3.8; the risk of being undernourished,

being the first-born child, is 8 times higher for girls than for boys while it

decreases if the girl is a second or later child. Moreover, first-born girls

have even a higher risk of being obese, confirming the previous results about

gender sequence of siblings. For what concern the second order births, the

gender disparities weaken, even if a higher risk of being overweight persists

for second-born boys; also for higher birth’s orders a tendency through excess

of nutrition is addressed to sons.

In table 3.9 are reported some standard tests of association for categorical

data with α = 0.05; when at least one of two variables is nominal, we have
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calculated the Cramer’s V, defined as:

V =
√

χ2

N(k − 1)

where χ2 is derived by Pearson’s Chi-squared test, N is the number of ob-

servations and k the smallest number of rows or columns; it ranges between

0 and 1, where 0 represents no association while 1 complete association. For

ordinal characters, filled in orange in table 3.9, we calculated the Gamma

coefficient, which takes values in the range [−1;+1] and provides a measure

of both strength and direction of association. It finds its formulation as:

G = Nc −Nd

Nc +Nd

where Nc represents the number of concordant pairs, namely the number of

pairs of cases ranked in the same order on both variables, while Nd the num-

ber of discordant pairs or even number of pairs of cases ranked differently on

the variables.

In blue are highlighted the measures of associations between the pairs of

variables “Gender” and “Child’s BMI”, and “Gender Sequence of siblings”

and “Child’s BMI”; they show a relationship, although weak nevertheless

indicating, thus, that a gender discrimination risk occurs, since in presence

of gender equality the two variables should be independent. Moreover, from

such measures would result that child’s BMI would be positively related, at

an α level of 0.05, to parents’ BMIs, parents’ education and, to a lesser ex-

tent, to child’s gender and child’s medical insurance; conversely it would be

negatively affected by parents’ age.

Finally, notice that “Gender” is associated only with “Birth Order”, “Gender

Sequence” and “Child’s BMI”, confirming that understanding these factors’

interactions, represents the challenge but even the crucial point of the re-

search.
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Cramer's V/ Gamma coeff.URB/RUR GENDER BIRTH_ORD GENDER_SEQ AVER_TIME MED.INS.C BMI_C ADD_CHILD
URB/RUR - - - 0,18 0,2 0,07 - - -
GENDER - - - 0,8 - - 0,13 - -
AGE_F 0,15 - 0,16 0,32 0,33 0,2 -0,2 -0,1 -0,35
AGE_M 0,11 - 0,33 0,28 0,32 0,18 -0,18 - -0,44
BIRTH_ORDER 0,18 0,16 - - - - - -0,56
GENDER_SEQUENCE 0,19 0,8 - 0,15 - 0,1 0,16 - 0,25
AVER_TIME 0,2 - - - - - - - -
MED.INS.CHILD 0,07 - - 0,1 - - 0,11 - -
MED.INS_F 0,09 - 0,09 - - 0,3 - - -
MED.INS_M 0,09 - 0,1 0,12 - 0,27 - - -
BMI_C 0,13 0,13 - 0,16 - 0,11 - - -
BMI_F - - -0,09 0,18 0,26 - 0,35 0,24 -
BMI_M - - 0,19 0,2 0,24 - 0,27 -0,27 -0,2
EDU_P 0,19 - -0,36 0,3 0,3 0,09 0,26 - 0,28
JOB_POS_P 0,29 - -0,17 0,35 - 0,16 - - -
DIETBEHAV_F - - - - - - - - -
DIETBEHAV_M - - - 0,17 - - - - -
PRIOR_F - - - 0,18 - - - 0,2 -
PRIOR_M - - - 0,13 - - - - -
POT_HELP - - - 0,1 - - - 0,11 0,11
BS_F - - 0,13 0,25 - 0,14 0,09 - 0,12
BS_M 0,11 - 0,14 0,26 - 0,1 0,07 0,18 -
ADD_CHILD - - -0,56 0,25 - - - 0,28 -

EDU_P

Table 3.9: Measures of associations among variables.

3.2.3 A standard model: ordinal logistic regression

In this subsection we are going to show the results provided by a standard

statistical model: the ordinal regression, which is a generalized linear model

specially tailored for the case of predicting ordinal variables.

The model is based on the assumption that there is a latent continuous

outcome variable and that the observed ordinal outcome arises from discretiz-

ing the underlying continuum into j-ordered groups (Agresti, 2002).

We use the logit link function leading to the ordinal logistic regression; our

ordinal response variable Y is child’s BMI, having j=4 categories and hence

values 1,...,4 while independent variables are both ordinal and categorical.

Thus the resulting odds are defined as:

θ1 =
P (Y ≤ 1)

1 − P (Y ≤ 1) ; θ2 =
P (Y ≤ 2)

1 − P (Y ≤ 2) ; θ3 =
P (Y ≤ 3)

1 − P (Y ≤ 3)

The fourth category Y = 4 i.e. obese, has score 1 for being the reference

category, as usually assumed in literature.

The cumulative logistic model is given by:

logit(Y ≤ j) = ln(θj) = αj +βX j = 1,2,3 (3.1)
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Figure 3.6: Plot of observed cumulative percentages for variable “Gender”

where αj are the intercepts and β the vector of regression coefficients both

depending on the category j. As we have only one common parameter β for

each covariate, the cumulative odds result as:

θj = eαj+βX j = 1,2,3 (3.2)

meaning that the 3 odds for each cut-off category differ only with regard

to the intercept αj; that is why the model is called even odds proportional

(Agresti, 2002; O’Connell, 2006).

Both the stringent proportional odds assumption, that the no multicollinear-

ity assumption require to be tested.

In figure 3.6 we have examined the cumulative percentage plot of the

child’s BMI with separate curves for boys and girls. Consider category Y = 1,

i.e.“underweight”: a larger percentage of girls than boys belongs to this cat-

egory; as additional percentages are added (the cumulative percentage for

“normal” and “overweight”) the opposite occurs, and the cumulative per-

centages for boys become more and more large as BMI increases.

Then we have computed the same cumulative percentage plot even for

94



3.2. DATA AND A STANDARD STATISTICAL APPROACH

Figure 3.7: Plot of observed cumulative percentages for variable “Birth’s
Order”

birth’s order, figure 3.7, and gender sequence, figure 3.8. For what con-

cerns underweight children, no important differences exist depending on their

birth’s order or their gender’ siblings; anyway to the growth of child’s BMI,

differences appear, becoming larger and larger. In particular a significantly

greater percentage of only child than children with siblings are overweight or

obese; conversely the third-born or more children are the least frequent in

these categories.

From figure 3.8 appears as disparities depending on gender composition of

siblings occur: the cumulative percentage for only boys grows more and more

with the increase of BMI, followed by sequence FM (first female, second

male); conversely the lowest cumulative curve belongs to daughters.

A cumulative odds ordinal logistic regression with proportional odds was

run to determine the effect of our variables on the child’s BMI. We have com-

puted the ordinal logistic regression with SPSS PLUM procedure (O’Connell,

2006) reducing the number of predictors as we dealt with missing entries. In-

deed PLUM procedure considers only observations having complete data for
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Figure 3.8: Plot of observed cumulative percentages for variable “Gender
Sequence”

all variables; however, considering all independent variables, we would have

had only 288 complete cases and the results of regression would be poor.

For this reason, we have selected the predictors corresponding to factors con-

sidered in literature, as the most affecting gender gaps in China, such as

child’s gender, child’s birth order, urban/rural area, gender sequence, child’s

medical insurance, highest level of parents’ education, parents’ priorities,

grandparents’ help, parents’ siblings and additional child. In this way we

have included almost the 72% of cases.

The assumption of odds proportional has been tested by a full likelihood

ratio test, comparing the residual of the fitted location model to a model

with varying location parameters, χ2(86)=13.767, p=1.000 as showed in the

output in table 3.10.

To test the assumption of multicollinearity, before we had to create dummy

variables for our categorical variables. For example, for variable “Gender

Sequence”, we created 5 (j-1) dummy variables, where each of these dummy

variables will indicate the “membership” of a particular category j of the
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Table 3.10: Test of Parallel Lines

Table 3.11: Tests of collinearity for variables “Gender” and “Gender Se-
quence”

categorical variable; in such way the dummy “MF” would indicate if the

child belongs to the sequence “first male, second female” or not and so on for

the other categories. After transforming categorical variables in dummies,

we have tested the hypothesis; in table 3.11 we have reported a short frame

of the output, showing only the test of collinearity for variables “Gender”

and “Gender Sequence”. From our results we can be fairly confident that we

do not have a problem with collinearity in this particular data set, as all the

Tolerance values are greater than 0.1.

Table 3.12: Model fitting information and Goodness of fit
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SPSS generates two tests of the overall goodness-of-fit of the model, as

showed in the bottom part of tables 3.12; the deviance goodness-of-fit test in-

dicated that the model was a good fit to the observed data, χ2(644)=249.311

p=1.000, but most cells were sparse with zero frequencies in 71.8% of cells.

However, the final model significantly predicted the dependent variable over

and above the intercept-only model, χ2(25)=70.562, p<.001 as showed in the

Model Fitting Table 3.12.

The estimates of the parameters of the model are presented in table 3.13.

In our model, we have assumed the slope coefficients to be the same for

all j-1=3 equations so it is just the thresholds differing between the three

equations, as highlighted in the table. Below are reported the estimates of the

slope coefficients which can be used to write the cumulative logit equations.

This parameter estimate (slope coefficient) represents the change in the log

odds of being in that specific category rather than the reference category;

for example, let consider “UR-RU” variable, the reference category is UR-

RU=2, that is rural, thus, there is an increase in the log odds of .131 of scoring

higher on the dependent variable, namely having an higher BMI, for children

living in urban areas compared to children living in rural ones. Anyway, as

measuring changes in log odds does not have intuitive meaning, we wish to

report the change in terms of the odds that is, the ratio of the odds between

the two categories, which is called the odds ratio. For a specific comparison,

the odds ratio is the exponential of the log odds of the slope coefficient,

namely, the exponential of .131, which is e0.131 = 1.14 (95% CI, .81 to 1.604)

even reported in the “ExpB” column in table 3.13. It means that for a child

living in urban area, the odds of scoring a higher BMI is just over 1.14 times

that of a child living in rural one.

The values underlined in red, in table 3.13, represent the statistical significant

(p>.05) coefficients. For example, analysing birth order, only the estimate

relative to first-born is significant. It means that the odd of being first-born

and having an higher BMI was almost 4 times less than of being third-born or

more, Wald χ2(1)=11.327, p=.001. Conversely, “Gender” is not statistically

significant. It means that there is not sufficient evidence to say that child’s

gender has an effect on child’s BMI. The same occurs for “Gender Sequence”;
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since we found no statistically significant estimates, gender compositions of

siblings have no significant differences of BMI.

The odds of children having parents with primary education (95% IC 0.169 to

0.732) to be undernourished was about 3 times more than odds of children

having highly educated parents (odds of 1.000), a statistically significant

effect, Wald χ2(1)=7.8, p=.005. Finally, the only other two statistically

significant odds, concern fathers’ siblings: indeed both only child fathers,

than fathers having exclusively sisters, have children recording a higher BMI

2 times more, in the first case, and one and half more, in the latter case, than

children whose fathers have both female and male siblings, (95% CI 1.030

to 3.901, χ2(1)=4.195, p=.04 for the firsts and 1.043 to 2.289, χ2(1)=4.705,

p=.03 for the lasts).

3.3 The Causal Graphs-based approach

The proposal of this section is to evidence how an approach based on causal

graphs is able to reveal causal relationships that standard statistical tools, as

measures of associations and logistic ordinal regression, miss to uncover. In

the first part of the section, we focus on learning the causal structure from

the observational data. In particular, we resort to and discuss two different

R-packages, bnlearn (Scutari, 2010) and pcalg (Kalisch et al., 2012), support-

ing causal graphs and the algorithms described in Chapter 1. These packages

are available from CRAN; the other suggested package Rgraphviz can be in-

stalled from Bioconductor and is loaded along with bnlearn if present.

In the second part of the section, we then use the resulting networks, pro-

duced by the algorithms, in order to provide a synthetic measure of gender

gap, intended, according to Chapter 2, as the causal effect of child’s gender

on the child’s BMI.

3.3.1 The Learning Phase

In learning phase, the aim is to detect a proper causal structure from obser-

vational data, able to graphically represent the causal relationships among
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VARIABLE B LowBou UppBou StdErr Wald df Sig Exp_B LowB UppB
BMI_C = underweight -4,045 -5,529 -2,561 0,757 28,55 1 0 0,018 0,004 0,077
BMI_C = normal 0,802 -0,639 2,242 0,735 1,19 1 0,275 2,229 0,528 9,416
BMI_C = overweight 2,057 0,604 3,511 0,742 7,695 1 0,006 7,826 1,829 33,483
UR_RU=urban 0,131 -0,211 0,472 0,174 0,561 1 0,454 1,14 0,81 1,604
UR_RU=rural 0 0 1
GENDER=male 0,501 -0,056 1,058 0,284 3,103 1 0,078 1,65 0,945 2,882
GENDER=female 0 0 1
BIRTH_ORDER=only child -0,858 -1,843 0,127 0,503 2,913 1 0,088 0,424 0,158 1,136
BIRTH_ORDER=first-born child -1,377 -2,178 -0,575 0,409 11,33 1 0,001 0,252 0,113 0,563
BIRTH_ORDER=second-born child -0,376 -1,125 0,374 0,382 0,965 1 0,326 0,687 0,325 1,453
BIRTH_ORDER=third or more born child 0 0 1
SEQUENCE=M -0,119 -0,843 0,605 0,369 0,104 1 0,747 0,888 0,43 1,831
SEQUENCE=F 0 0 1
SEQUENCE=MM -0,154 -1,064 0,757 0,465 0,109 1 0,741 0,858 0,345 2,132
SEQUENCE=MF -0,466 -1,25 0,317 0,4 1,363 1 0,243 0,627 0,287 1,373
SEQUENCE=FM -0,627 -1,345 0,09 0,366 2,939 1 0,086 0,534 0,261 1,094
SEQUENCE=FF 0 0 1
EDU_P=no education -1,491 -6,816 3,834 2,717 0,301 1 0,583 0,225 0,001 46,241
EDU_P=primary school -1,046 -1,78 -0,312 0,374 7,8 1 0,005 0,351 0,169 0,732
EDU_P=middle school -0,429 -0,962 0,104 0,272 2,484 1 0,115 0,651 0,382 1,11
EDU_P=college/university 0 0 1
PRIOR_F=child's health 0,224 -0,366 0,814 0,301 0,553 1 0,457 1,251 0,693 2,257
PRIOR_F=same child as income 0,381 -0,112 0,875 0,252 2,291 1 0,13 1,464 0,894 2,399
[PRIOR_F=good income 0 0 1
PRIOR_M=child's health -0,11 -0,679 0,46 0,291 0,142 1 0,706 0,896 0,507 1,584
PRIOR_M=same child as income 0,055 -0,394 0,504 0,229 0,058 1 0,81 1,057 0,674 1,656
[PRIOR_M=good income 0 0 1
BS_M=only child -0,071 -0,885 0,743 0,415 0,029 1 0,865 0,932 0,413 2,102
BS_M=male culture -0,007 -0,395 0,381 0,198 0,001 1 0,972 0,993 0,674 1,464
BS_M=female culture -0,093 -0,57 0,384 0,244 0,146 1 0,702 0,911 0,565 1,469
BS_M=mix culture 0 0 1
BS_F=only child 0,696 0,03 1,361 0,34 4,195 1 0,041 2,005 1,03 3,901
BS_F=male culture 0,129 -0,295 0,553 0,216 0,354 1 0,552 1,137 0,744 1,738
BS_F=female culture 0,435 0,042 0,828 0,201 4,705 1 0,03 1,545 1,043 2,289
BS_F=mix culture 0 0 1
POT_HELP=no -0,203 -0,867 0,46 0,339 0,361 1 0,548 0,816 0,42 1,584
POT_HELP=yes 0 0 1
ADD_CHILD=no -0,091 -1,044 0,862 0,486 0,035 1 0,851 0,913 0,352 2,368
ADD_CHILD=yes, one 0,114 -0,938 1,167 0,537 0,045 1 0,832 1,121 0,391 3,212
ADD_CHILD=yes, more than one 0 0 1

Legenda:
B=parameter estimate of the slope coefficient
LowBou=lower bound of 95% CI for B
UppBou=upper bound of 95% CI for B
Exp_B= exponential of B, or odds ratio
LowB= lower bound of 95% CI for Exp_B
UppB= upper bound of 95% CI for Exp_B

Table 3.13: Estimates of parameters of the ordinal logistic regression.
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variables encoded in the data. As mentioned in section 1.3, two main ap-

proaches exist to learn the unknown causal structure: via constrain-based

or via score-based algorithms. The firsts are implemented in both pack-

ages, while the only available score-based algorithm, the Hill-Climbing, is

supported exclusively in bnlearn.

Irrespective of the approach used, the structure of a DAG can be recov-

ered from observational data, up to d-separation equivalence (Pearl, 2000),

only if the three assumptions described in section 1.2 are satisfied; such as-

sumptions are in general untestable from observational data and must come

from subject matter experts.

The Causal Markov Condition (CMC, section 1.2.2) asserts, briefly, that each

variable in the model is independent of its nondescendants given its imme-

diate causes, thus it requires to consider the factors affecting child’s gender.

Generally in statistics, gender is considered an independent variable which

cannot be controlled or influenced by any other cause. Anyway in China,

where son preference is still strong and sex-selective abortion is a widespread

practice, child’s gender might be the outcome of parents’ fertility preferences;

for these reasons, information regarding birth’s order and sex composition of

existing siblings must be considered as potential factors affecting the result-

ing child’s gender. The Markov assumption is, in the end, treated more as

a guiding principle (Karwa et al., 2011) ensuring that all relevant causes are

included in the analysis rather than an actual assumption.

The faithfulness assumption (CFC, section 1.2.3) ensures that the population

generating the causal model has exactly those independence relations speci-

fied by the DAG structure, and no additional ones. By assuming faithfulness,

we eliminate the cases where there are any independences in the population

that are not consequence of the CMC.

Finally, the last assumption requires that there are no latent variables in

the model violating the CMC; again, this assumption is strong, whose va-

lidity could be ensured by verification from experts opinion. For example,

in our analysis, the introduction of information regarding child’s birth order

and gender composition of siblings has been led by literature and previous

studies on factors affecting child’s nutrition in Asia (Prashant Kumar Singh,
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2013; Li et al., 2004).

After such necessary digression about model’s assumptions, the learning

phase can begin; it started applying the score-based algorithm Hill-Climbing

(hc) greedy search on the space of directed graphs 1.3.2 (for more details, see

1.3.2). The optimized implementation, used by default, uses score caching,

score decomposability and score equivalence to reduce the number of dupli-

cated tests; in particular, the learned procedure used 781 tests and resulted

in a completely direct DAG with 24 direct arcs. The score function we choose

to maximize is Bayesian Information Criteria (BIC) (Schwarz, 1978) rather

than Akaikes Information Criteria (AIC) as it is derived within a Bayesian

framework and reflects sample size. Furthermore, BIC generally penalizes

free parameters and therefore it would pick the more parsimonious model

than AIC might suggest. Anyway alternative scenario maximizing AIC led

to similar outputs.

Here we report the learnt model, expressed in terms of conditional indepen-

dences, in R code:

> bn.hc

Bayesian network learned via Score -based methods

model:

[MED.INS_M][BMI_M|MED.INS_M][ DIETBEHAV_M|MED.INS_M][BS_M|MED.INS_M][POT_

HELP|BS_M][BS_F|BS_M][ADD_CHILD|BS_M][AGE_FA|BS_F]

[EDU_P|POT_HELP][BIRTH_ORDER|EDU_P][AGE_MO|AGE_FA][ JOBPOS_P|EDU_P][UR_RU|

JOBPOS_P][ GENDER|BIRTH_ORDER ][AVER_TIME|BIRTH_ORDER]

[MED.INS_F|JOBPOS_P][ SEQUENCE|GENDER:BIRTH_ORDER][MED.INS_C|MED.INS_F][

BMI_C|GENDER ][BMI_F|MED.INS_F][ DIETBEHAV_F|MED.INS_F]

[PRIOR_F|MED.INS_F][ PRIOR_M|MED.INS_M:PRIOR_F]

nodes: 23

arcs: 24

undirected arcs: 0

directed arcs: 24

average markov blanket size: 2.17

average neighbourhood size: 2.09

average branching factor: 1.04

learning algorithm: Hill -Climbing

score: Bayesian Information Criterion

penalization coefficient: 3.590035

tests used in the learning procedure: 781

optimized: TRUE
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> score(bn.hc,dat ,type=‘‘bic")

[1] -25727.07

For a clearer visualization and, consequently, interpretation, in figure 3.9, we

report the output gained with Rgraphviz package. It represents the causal

graph regarding the variables of table 3.14, with the exception, however, of

“Child’s age” and “Time Distance”. The first has been eliminated as the

“child’s BMI” is computed already per child’s age, while the second as the

number of months occurring between births is already incorporated in the

synthetic variable “Average Time”. Thus they would be redundant variables.

In red the two variables of interest are underlined: the input “Child’s Gen-

der” and the outcome “Child’s BMI”. As shown in the output, there is a

direct edge between them, that is a causal relationship; we can conclude,

thus, that a gender discrimination occurs as in absence of disparities the out-

come should be independent of child’s gender (no direct edge).

Notice that the causal graph detects a relationship occurring between gender

and child’s BMI that regression do not. But it gives even a further informa-

tion: the direction of such relationships. Indeed from output in figure 3.9,

we can conclude, not only that there is a relationship between the two target

variables, as applying measure of associations, but even that child’s gender

can be interpreted as a cause affecting child’s BMI, since the whole depen-

dence/independence structure of the variable set is depicted in the graph,

in a full multi-variate approach. Even the only direct cause. Notice that

unlike the regression, where the symbol “=”, linking the dependent and in-

dependent variables, allows the symmetry x = (y − ε)/β, in causal graph the

direction of the dependence, encoded in the arrow, cannot be in any way

reversed.

Both in ordinal regression than in causal graphs, the variables “Birth’s

Order” and “Parents’ Education” have a relationship with child’s BMI. Any-

way, in PLUM procedure, the relation is expressed in terms of change in the

log odds of being in that specific category rather than the reference category;

for example, considering parents’ education, the odds to be undernourished
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Hill-Climbing BIC
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Figure 3.9: Causal Graph learned by Hill-Climbing, BIC score.

105



CHAPTER 3. CAUSALITY IN GENDER DISCRIMINATION IN CHINA: AN
APPLICATION

of children having parents with primary education, is about 3 times more

than odds of children having highly educated parents. In causal graph we

have, again, one additional information: parents’ education has, of course,

an impact on child’s BMI but mediated (conditioned) by birth’s order and

gender’s effect.

Causal graphs, thus, allow for detecting the conditioned effects of variables,

or even called indirect causes, as once we intervene on birth’s order, parents’

education have no more effect on child’s BMI.

Subsequently, we have deepen the causal relationship between child’s gen-

der and child’s BMI conditioning on birth’s order; namely we were interested

in testing if gender differences in child nutrition and care occurred between

only child and children having siblings.

In figures 3.10 and 3.11, we have reported the two causal graphs showing,

respectively, the causal structure for only child and for children with sib-

lings. In case of only child, there is gender equality as no arrow connects

the variable “Gender” with “Child’s BMI”, thus they are independent. It

means that in only-child households, no matters if child is a boy or a girl

for nutritional and caring decisions. Conversely, in families with more than

one child, child’s gender influences the food’s and care’s allocation as child’s

gender has an indirect effect, mediated by birth’s order, on child’s BMI. The

graph 3.11 is besides interesting for another aspect, since we can detect two

clusters of variables independent each others: one involving child’s gender,

birth’s order, gender sequence of siblings and child’s BMI, and the other

containing all the other variables of the analysis. It means that, for children

having brothers or sisters, what it is crucial in determining their nutritional

outcomes, are not the socio-economical conditions where they grew up, but

instead their birth’s and gender’s placing in the household.

This highlights, even more, that a gender gap exists since the nutrition of a

son/a daughter would not be to depend on parental economical situation or

on if he/she lives in urban or rural areas as one might expect, but rather by

the fact that just that boy/girl may have a younger/older brother/sister.

According to Pearl’s d-separation criterion 1.2.1, the set {birth’s or-

der, gender sequence, average time, child’s BMI} in figure 3.11 represents
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HC method BIC
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Figure 3.10: Causal Graph learned by Hill-Climbing, BIC score, for only
child
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Hill-Climbing method BIC

UR_RU

GENDER

BIRTH_ORDER

SEQUENCE AVER_TIME

MED.INS_C

BMI_C

AGE_FA

AGE_MO

EDU_P

JOBPOS_P

MED.INS_F

MED.INS_M

BMI_F

BMI_M

DIETBEHAV_F

DIETBEHAV_M

PRIOR_F

PRIOR_M

POT_HELP

BS_M

BS_F ADD_CHILD

Figure 3.11: Causal Graph learned by Hill-Climbing, BIC score, for children
with siblings
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a fork, such that “gender sequence”, “average time” and “child’s BMI” are

marginally dependent but become independent (blocked) once we condition

on the middle variable birth’s order. Furthermore the set {gender, gender

sequence, birth’s order} contains both a fork and a collider, implying that

child’s gender acts on gender sequence both directly, and indirectly through

birth’s order. Such a structure is consistent with the theoretical framework;

indeed, in a country where sex-selective technology is available and where

son preference is predominant, it seems reasonable that the previous child’s

gender would influence the following child’s gender and hence the resulting

gender sequence of siblings.

For completeness of the analysis, we attempted to run even constrain-

based algorithms as GS, IAMB, and PC (see section 1.3.1), available on

the considered R-packages, with the aim of a comparison with hill-climbing.

They returned different outputs respect to the score-based one, thus a dis-

cussion is required. For example, the Incremental Association algorithm,

implemented in bnlearn, produced a completely undirected causal network,

as shown in the following R code:

> bn.iamb

Bayesian network learned via Constraint -based methods

model:

[undirected graph]

nodes: 23

arcs: 20

undirected arcs: 20

directed arcs: 0

average markov blanket size: 1.74

average neighbourhood size: 1.74

average branching factor: 0.00

learning algorithm: Incremental Association

conditional independence test: Mutual Information

alpha threshold: 0.05

tests used in the learning procedure: 644

optimized: TRUE

The corresponding output is shown in figure 3.12. Notice that gender results

independent by child’s BMI, anyway the algorithm detects a cluster of depen-
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Figure 3.12: Causal Graph learned by constrain-based method Incremental
Association (iamb).

dent variables: gender, birth’s order, gender sequence and average time, that

is similar to figure 3.11. Notice that likewise the measures of associations

provided in subsection 3.2.2, the IAMB algorithm was able to detect only

pairwise associations between couples of variables, represented by undirected

edges. This constitutes a significant weakness; indeed the main advancement

regarding causal graphs, with respects to standard statistical methods, is

that they are able to reveal the direction of causal-effect relationships, de-

picted as directed edges. The same limit occurred with GS algorithm.

Even considering a different R-package, pcalg, the results do not improve.

The output of PC algorithm, for instance, reported in figure 3.13, is even less
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Figure 3.13: Causal Graph learned by constrain-based PC algorithm.

informative, showing an evident failure of the procedure. Indeed it reported

an output in which all variables result independent (no edges connecting no

couples of vertices). This is clearly unlikely, given the previous results as

well as the a priori knowledge coming from reference literature existing on

the phenomenon under analysis.

The outputs resulting by constrain-based algorithm application, require,

thus, some considerations. The lack of effectiveness of the constrain-based

algorithms supported by different R-packages, suggests how the issue would

lie in the procedure rather than in their practical implementation in R soft-

ware. Certainly, the number of independence tests in case, like our, of high

dimensionality as well as high number of categories for each variable, in-

creases exponentially. In literature it is recognised that when sample size or

the conditional set is big, then the possibility of rejecting the null hypothesis

is lower and independence will be assumed. Lack of support translates, thus,

in independence. Notice that, in case of accepting independence, it does not

mean that data support independence, but that there is no evidence in the

data against it. In this sense the constrain-based algorithm are poorly infor-

mative, rather than wrong.

It is, otherwise true, that the complexity due to high dimensionality and

high number of categories is the same also for score-based algorithm, in our

particular case, for hill climbing. However, as we mentioned in section 1.3.2,

most of scoring criteria derived in the literature are “decomposable”, in the

sense that the score can be written as a sum of measures, each of which is

a function only of one node and its parents. It allows to such methods to

efficiently perform even when dealing with arising complexity.
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Hence, comparing different algorithms as well as different computational ap-

proaches, the hill-climbing results, for our specific dataset, to be the most

effective, since it provides additional causal information, such as directional-

ity, that, conversely, other procedures are not able to give.

What emerges from learning phase, is that child’s gender has a causal

effect on child’s BMI even if birth’s order has a crucial role in such relation-

ship, since differences among only child and children having siblings occur.

Furthermore, a pattern of key-variables including gender, birth’s order, sex

composition of siblings and timing among birth is evident; it finds consis-

tency in literature (Li et al., 2004) and shows how, more cultural and gen-

dered than economical factors have a causal effect in child’s nutrition and

health in China.

3.3.2 The Estimation Phase

In this second phase, our purpose is to provide conceivable estimates of the

causal effect existing between child’s gender and child’s BMI. As described in

section 1.4.3, some automatized solutions implemented in R software already

exist; among them, the IDA algorithm in pcalg package, which is able to

estimate bounds of causal effects when the DAG structure is unknown. Un-

luckily such procedure requires some strict assumptions that our data do not

meet, for instance, the normality for the distribution of variables representing

potential causes, as child’s gender.

In order to provide a synthetic measure of gender gap in child’s nutrition

in China, we propose another approach. Resorting to the causal structure

resulting from the learning phase, we apply the method illustrated in Chapter

2.

According to definition 1.4.1, the causal effect of gender on child’s BMI,

is denoted as P [BMI C ∣do(Gender = g)] where g ∈ {male, female} and it is

a function from “Child’s Gender” to the space of probability distribution on

“BMI C”. The atomic intervention of do-operator results in removing the

links between gender variable and its set of parents from the graph resulting

from learning phase and shown in 3.9, denoted as DAG D. It creates, thus,
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Hill-Climbing BIC
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(a) Pre-intervention (b) Post-intervention

Figure 3.14: A frame of the original DAG D (figure 3.9) and the post-
intervention DAG DGender. It results by forcing “gender” to take the par-
ticular value Gender=female and deleting the arcs between “gender” and its
parents.

a new DAG DGender, depicted in figure 3.14.

According to equation 2.2, the gender gap, denoted as Γ(G) is given by

the causal effect of changing the treatment variable from female to male on

the target level of outcome. The gender gap on undernourishment level, for

example, is given by:

Γ(G)underweight =
E[(BMI C = underweight)∣do(Gender = female)]
E[(BMI C = underweight)∣do(Gender = male)]

where E[BMI C = underweight∣do(Gender = female)] is the conditional

expectation for the child of being undernourished under the atomic interven-
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Table 3.15: Point estimates and Confidence Intervals at 95% of Gender Gaps
from Causal Model

tion Gender = female. Equivalently for overweight and obese BMI’s levels:

Γ(G)overweight =
E[(BMI C = overweight)∣do(Gender = female)]
E[(BMI C = overweight)∣do(Gender = male)]

and

Γ(G)obese =
E[(BMI C = obese)∣do(Gender = female)]
E[(BMI C = obese)∣do(Gender = male)]

Recalling the analogy between “net” and “direct” as well as “gross” and

“total” developed in Chapter 2, the gender gaps below are all net, since

child’s gender has a direct causal effect on outcome in graph D. According

to equation 1.14, the gender gaps have been formulated in terms of ratio

rather than difference of expected values as in Chapter 2. Anyway, the two

expression are equivalent but since in literature gender gaps are generally

expressed in terms of female/male ratios, we choose the first formulation to

be compliance.

Table 3.15 shows the causal effects of child’s gender on child’s BMI,

namely the gender gaps, derived by the causal graph in figure 3.9. On the

basis of the results, a girl would be undertaken to a risk of low BMI; in par-

ticular the expected undernourishment increases 3.18 times for girls when

compared with boys. Conversely boys record a potential gender gap in obe-

sity direction as the expected obesity decreases 1.27 times when switching

from female to male.

Figure 3.15 depicts the estimates of means and confidence intervals at 95%

of gender gaps, showing the overlap amongst the estimates of causal gender

effects. It can be seen that the causal effect of switching from female to

male is very marked for undernourishment level while it tends to decrease
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Figure 3.15: Overlap between the Confidence Intervals of Gender Gaps for
each BMI’s level.

for higher levels of BMI; in particular for obese and overweight levels, it falls

under the equality ratio of 1 meaning that the gender gap is reversed at boys

detriment.

Since our aim is to deep the gender gaps on child’s nutrition and care, it

is important to take into account the gaps in both extremes of BMI’s distri-

bution: undernourishment and obesity. Our results show that child’s gender

has an evident effect on child’s BMI; anyway, the phenomenon assumes dif-

ferent forms polarized for gender: for girls gender gap would translate in

undernourishment while for boys in overweight.

We already demonstrated the importance of birth’s order in assessing

gender gaps in China.

In figure 3.11, in particular, we learnt the causal structure relative to chil-

dren having brothers or sisters, underlining how the gender effect is, in such

case, indirect as mediated by birth’s order. The gender gap is in this case

“gross”, as it incorporates the birth’s order effect; hence, an adjustment for

such confounding characteristics is required, as indicated in equation 2.4.

The set Z = {birth’s order} represents a sufficient set of covariates for ad-

justment since it meets the conditions of Pearl’s Front-Door Criterion 1.4.3,
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X=gender Z=birthOrd P(x,z) P(x) P(BMI=1|x,z) P(BMI=2|x,z) P(BMI=3|x,z) P(BMI=4|x,z) P(z|x)
M 1 0,164 0,52 0,026 0,888 0,086 0,000 0,318
M 2 0,283 0,020 0,801 0,105 0,075 0,550
M 3 0,068 0,000 0,750 0,125 0,125 0,132
F 1 0,244 0,49 0,139 0,786 0,052 0,023 0,503
F 2 0,205 0,035 0,821 0,062 0,083 0,423
F 3 0,036 0,000 0,846 0,115 0,039 0,074

Table 3.16: Probabilities involved in front-door formula

in particular:

1. we assume, according to graph in figure 3.11, that child’s gender has

no effect on child’s BMI except as mediated by birth’s order effect;

2. we must even assume that, even if a latent factor is affecting the child’s

BMI, it nevertheless has no effect on the birth’s order except indirectly,

through child’s gender;

3. likewise, we assume that no other factor that affects birth’s order has

any influence on child’s gender.

Applying the front-door formula in equation 1.4.2, the post-intervention dis-

tribution under the intervention level Gender = female, is given by:

E[BMI C = bmi∣do(Gender = female)]
= ∑
birOrd

P (birOrd∣Gender = female) ∑
Gender

P (bmi∣Gender, birOrd)P (Gender)

(3.3)

while for Gender =male:

E[BMI C = bmi∣do(Gender = male)]
= ∑
birOrd

P (birOrd∣Gender =male) ∑
Gender

P (bmi∣Gender, birOrd)P (Gender)

(3.4)

In table 3.16, we report the values of conditional and marginal probabili-

ties involved in front-door adjustment for birth’s order. For instance, the

conditional expectation E(BMI C = undeweight∣Gender = female) results
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Table 3.17: Point estimates and Confidence Intervals at 95% of Gender Gap
for children with siblings, adjusted per birth’s order.

from:

E[(BMI C = underweight∣do(Gender = female)] =
0.503(0.139 ∗ 0.485 + 0.026 ∗ 0.515) + 0.423(0.034 ∗ 0.485 + 0.020 ∗ 0.515)+
+ 0.074(0 ∗ 0.485 + 0 ∗ 0.515) = 0.052

(3.5)

The gender gap for BMI’s level= bmi, net of birth’s order effect, is given by

the ratio between equation 3.3 and 3.4:

Γ(G)bmi =
∑birOrdP (birOrd∣Gender = female)∑Gender P (bmi∣Gender, birOrd)P (Gender)
∑birOrdP (birOrd∣Gender =male)∑Gender P (bmi∣Gender, birOrd)P (Gender)

(3.6)

Table 3.17 shows, thus, the resulting estimates and corresponding interval

levels at 95%, of gender gap for children with siblings, adjusted for the con-

founder birth’s order. Notice the most meaningful results: girls have an ex-

pectation 1.3 times more of being undernourished, conversely boys 1.3 times

more of being obese. The gender gap, thus as highlighted before, from girls’

detriment for low level of BMI, reverses to boys’ disadvantage for high BMI’s

levels; on the contrary, for normal BMI’s level, gender equality occurs.

In figure 3.16 are illustrated the corresponding estimates of means and

confidence intervals of table 3.17. From such representation it is even more
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Figure 3.16: Overlap between the Confidence Intervals of Gender Gaps for
each BMI’s level for children with siblings, adjusted per “birth’s order”.

evident the reversing gender gap trend at increasing BMI and, in particular,

the switching from female to male detriment between normal and overweight

levels.

A graphical comparison about the gender gaps trends for all children and

children with siblings results in figure 3.17, matching figures 3.15 and 3.16 in

the same y scale. The whole sample size of N = 1313 is halved to Nsibl = 709

once we consider solely children with siblings. Notice that gender gap to girls

detriment in underweight is dramatically more marked when we consider the

whole sample. It results since the girls’ expectation of being undernourished

is higher (.07) when we include all children than for girls having siblings

(.052); moreover, the whole sample male expectation of being underweight

is lower (.022) than for boys with siblings (.041). It means that undernour-

ishment consistently affects only girl as well.

Conversely the boys’ gender gap in overweight including all children, fades

once we focus on children with siblings reaching almost equality level. It

is due to an increase of 4 percentage points of male overweight expectation

once we consider only boys with siblings.

For normal and obese levels of BMI, no significant changes occur.
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Figure 3.17: Comparison between gender gaps trends for all children and
children with siblings

3.4 Discussion

The examination of causal graphs to child’s wealth in China reveals that there

is a considerable scope of their application to estimate nutritional gender gap

in childhood. The purpose of this chapter was to examine the applicability

and perform a comparison of different methods in the context of a relevant

gender gap issue. A comparison has been conducted between standard statis-

tical tools such as measure of associations and ordinal regression, and causal

diagrams framework.

From this exploratory analysis emerges that a relationship between child’s

gender and child’s BMI exists, as confirmed by measure of associations as

well as causal graphs, not from ordinal regression. Anyway the nature of this

relationships is different depending on the used method. Indeed Cramer’s V,

for instance, says us that there is a slight positive dependence between child’s

gender and its nutritional status, but we don’t know if such relationship is

due to an actual gender gap or to an effect of a common factor acting on both
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of them. Conversely causal graph approach, not only informs us that there

is a cause-effect relationship between gender and child’s nutrition outcome,

but even detects the structure of the whole causal mechanism, providing in-

formation about the action of confounders and the presence of colliders.

More in details, it is widely recognized in literature that in China birth’s

order is a crucial factor interacting with gender in the resources allocation

within households. Anyway, standard statistical methods are not able to

reveal the actual role of birth’s order in the child’s gender-nutrition relation-

ship; measures of associations, for instance, involve only pairs of variables at

a time, while ordinal regression provides the effect of each predictor, in terms

of log odds, solely on the dependent variable. On the contrary, causal graphs

are capable to detect and graphically represent how such factors, called con-

founders, act and interact with other variables in the causal process. This

clearly emerged in our application, deepening the differences existing among

only child and children with siblings. For the latter, indeed, we found that

birth’s order acts as a confounder in the nutritional effects of child’s gender

thus an adjustment on the estimate of gender gap has been required.

Causal graphs, in the specific context of gender issues, represent hence an

effective tool able, not only to detect gender gaps, but also to uncover the

latent causal process originating disparities among females and males.

Causal networks allowed even for providing a measure of the gender gap,

through the interventional calculus. Pearl’s do-operator does not find an

equivalent in standard statistics as it simulates physical interventions by

deleting certain functions from the model, replacing them with a constant.

Anyway, to obtain a better validation of the methods, future research should

aim at empirical evidence from simulation, allowing that the “true” causal

structure as well as the “true” causal effect would be known a priori, and the

quality and size of results controlled.
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Perspectives

In this thesis we focused on causal graph-based approach to solve two distinct

gendered issues under a “causal” perspective. We aimed:

1. to uncover the causal structure among variables selected for statistically

assessing gender disparities;

2. to provide a new measurement of gender gap, in terms of causal effect

of variable gender on a target outcome.

For what concerns the first aim, we developed a translation device be-

tween the language of gender studies and the language of causality. It con-

sisted, firstly, in dropping standard causal terminology, as the concepts of

“treatment”, “exposition”, “confounder” etc., under a gender perspective.

Then, it involved the development of ad hoc graphical tool able to catch

gender equality/inequality occurrences from observational data. These oc-

currences are detected in the causal graph as absence/presence of direct edges

connecting the nodes corresponding to variable gender and to target outcome,

given all of the other variables.

Compared to traditional statistical tools, such approach would allow to iden-

tify upstream, the causal relationships acting among variables, than, down-

stream, how such causal mechanisms would translate in gender gap. All

these complex cause-effect relationships are, in fact, synthesized in a graph,

depicting both direct than indirect relationships.

An avenue of further research in this direction, would certainly concern

the development of a graphical tool allowing for variables selection. Indeed,
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in case of numerous variables, the corresponding causal relationships depicted

in the graph may be very intricate and the identification of direct and in-

direct causes affecting the target outcome, could be difficult. An excess of

variables is exactly what might be behind the failure of the constrain-based

algorithms in our application, as discussed in subsection 3.3.1. A method

taking into account the variable’s count of descendants, as well as the num-

ber of direct edges between the variable and the target outcome, would thus

allow for selecting factors originating gender gap.

Regarding the second purpose, we presented a “causal” interpretation of

gender gap, in terms of average causal effect of changing (intervening on) the

gender variable from female to male level on the target outcome. In order to

specify how the resulting distribution of outcome would change in response

to intervention on gender, we appealed to Pearl’s do-calculus. Anyway, in

the applicative context, an automated procedure for computing the estimate

of the gender gap still does not exist; indeed the actual computation has been

carried on by calculating manually the conditional expectation of female to

male ratio.

Future research should involve the development of an algorithm for esti-

mating the causal effects when we deal with categorical variables. This would

be an important advancement, since it would allow the systematic estimate

of gender gap without the use of a strict distributional assumption, as in

IDA’s case (e.g. assuming all variables are Gaussian).

A further interesting direction of research regards counterfactual reason-

ings as heart of real-time policy analysis; indeed, discovering how the current

state of things deviates from the one expected i.e. gender equality, as well as

determining what went wrong in a certain planned activity and how could

be rectified, are exercises of counterfactual thinking.

In the gender issues’ perspective, the evaluation of gendered policies’ effect

as well as the formulation of future actions for reducing gender gap in eco-

nomics and society, represent thought of policy analysis to explore possible

scenarios. In fact, in order to highlight the impact of a gendered policy in-

volving decision variable X on outcome variable Y , namely the gender gap
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in a specific field, it is necessary to examine past data and estimate condi-

tional expectation E[Y ∣do(X = x)], where x is a particular instantiation of

X under the policy studied.

However, although gender policies are endogenous in the analysis phase of

past data, they become exogenous when we want to predict the potential

causal effect of a certain decision; the question about how to manage such

matters is still open and in need of future researches.
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