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1 General introduction

The study of complex biological matrices is a remarkable hot topic in
biology. Soil, water, gut content are some of these matrices character-
ized by a prominent number of organisms living in tight connection.
Hundreds or thousands of species and/or strains could be present in
the same sample coming from different habitats (e.g. soil ecosystem)
and showing inter-relationships, mainly energetic, to guarantee their
ecosystem health functioning (Gaston and Spicer, 2009; Brussaard, 1997;
Wagner et al., 2011; Tylianakis et al., 2008).

The discrimination and/or identification of the different biological
entities, at least for the eukaryotic components, using traditional mor-
phological approaches is relatively complicated, requiring a special-
ist in each taxonomic groups and generally an appropriate long time
to achieve a correct identification and classification (Mace, 2004; Ha-
jibabaei et al., 2011). On the other side, the identification of Archaeal
and Bacterial domains has been shown to be impossible using these
approaches (Hedrick, 2011).

To overcome these limitations, molecular approaches have demon-
strated to be valid alternatives where PCRs, cloning, DNA sequenc-
ing and bioinformatics analysis of sequence differences were used as
the standard protocol (Janda and Abbott, 2007; Huang et al., 2009).
Nowadays, the genomic massive sequencing revolution, generated by
the heterogeneous techniques collectively known as Next Generation
Sequencing (NGS), has become the new gold standard (Deutschbauer
et al., 2006; Bik et al., 2012; Shokralla et al., 2012). These new platforms
can provide billions of sequence reads in a single experiment, which
corresponds to an improvement of at least five orders of magnitude
when compared to traditional Sanger sequencing using capillary elec-
trophoresis (Taberlet et al., 2012).
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NGS techniques can be used to investigate the biodiversity in com-
plex matrices using two different approaches: (i) a metagenomic ap-
proach (Riesenfeld et al., 2004; Xie et al., 2010; Wooley and Ye, 2009) or
(ii) a massive sequencing of few selected molecular markers.

The first approach implements a suite of genomic technologies and
bioinformatics tools to directly access the genetic content of entire com-
munities of organisms. It does not take into account taxonomical in-
formation of organisms, selecting only random pieces of the genomes
present in the matrix independently from their origin. The second ap-
proach was also defined metabarcoding (Buee et al., 2009; Creer et al.,
2010; Fonseca et al., 2010; Hajibabaei et al., 2011; Yu et al., 2012) and
show a more limited and specific goal than metagenomic.The basis of
this method is to use the target marker/s to achieve the taxonomic dis-
crimination of the living organisms present in complex matrices, hope-
fully at the species rank, in a fast, reliable and reproducible way. Cur-
rently, in metabarcoding many molecular markers are used, exploit-
ing NGS technologies, to investigate both prokaryotic (mainly) and
eukaryotic biodiversity in a given environment. The 165 rRNA gene
information has been and is being widely employed in many prokary-
otic biodiversity studies of human gut (Sogin et al., 2006; Dethlefsen
et al., 2008) microbial communities in the deep seas (Mason et al., 2012)
and food microbiome (Humblot and Guyot, 2009). Similarly, coxI (the
mitochondrial cytochrome ¢ oxidase subunit-one) barcode region and
18S nuclear small subunit (185 rDNA or nSSU) has been used to get
biodiversity profiling through NGS technologies mainly in metazoans
biomonitoring programs (Fonseca et al., 2010; Hajibabaei et al., 2011).

With the exception of few DNA barcoding studies, where the en-
tire coxI barcode (Yu et al., 2012) or a fragment of it (mini-barcode)
(Hajibabaei et al., 2011) were sequenced on NGS platform, the vast ma-
jority of DNA barcoding studies, aiming at eukaryotic species identifi-
cation, are still conducted with the traditional sequencing technology
(i.e. Sanger method). The present thesis consists of four sections which
overpass detailed aspects of the analysis of biodiversity and the issues
associated and elaborate both promises and pitfalls of coupling DNA
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barcode approach with high-throughput pyrosequencing in two differ-
ent cases of biodiversity assessment. In the following a brief description
of each section is provided:

Section 1: Introduction to the biodiversity analysis problem

In this section an analysis of the main methods used to investigate the
biodiversity and their related problems has been addressed. Emphasis
has been put on the integrated approach between the classic DNA bar-
coding approach and the advantages of high processivity guaranteed
by next generation sequencing technologies. Furthermore, the state of
art regarding bioinformatics methods for species assignment and bio-
diversity patterns elaboration including phylogenetic diversity analysis
are described.

Section 2: Targeted Sequencing on Metazoan Communities

In this section, the precision and the accuracy of denoising procedure
and the candidate parameters able to reduce sequence error rate are
investigated. This work also proposed an innovative taxon assignment
pipeline. In addition, a novel library preparation method allowing the
sequencing of the entire coxI barcode region (approximately 700 bp)
on 454 pyrosequencing platform (Roche Life Science) is proposed. To
address the objectives, metazoan communities coming from complex
environmental matrix (soil) were considered.

Section 3: Microbiota invasion mediated by Varroa destructor to
Apis mellifera
The starting hypothesis of this section is that varroa mites play a fun-
damental role in the alteration of bacterial composition of honey bee
larvae, acting not only as a vector, but also as a sort of an open “door”
through which exogenous bacteria alter the mechanisms of primary
succession in the “simple” honey bee larval microbiome. To explore
these dynamics a classical microbial communities analysis approach
and a new approach considering the phylogenetic entropy as a mea-
sure of biodiversity were tested. The varroa and honey bee bacterial
communities were studied through barcoded amplicon pyrosequencing
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method , taking advantage of the NGS methods (Blow, 2008; Metzker,
2010) and the opportunity to detect uncultured and uncultivable bacte-
ria allowed by such techniques.

Section 4: general conclusions and perspectives
General conclusions and future promises highlighted by the above men-
tioned experiments are illustrated in this section.

Notes for the reader.

The case studies presented in this Thesis are investigated with a multi-
disciplinary approach that required the team-work contribution of peo-
ple with different expertises. In particular I collaborated with Saverio
Vicario and Bachir Balech (ITB Bari, Italy) for the bioinformatics part of
analysis. For both case studies, I actively contributed to the definition
of the scientific aims and scopes of the research and to the planning
of the experimental design while I indirectly followed the laboratory
analysis which were conducted by other colleagues. Then, I leaded the
bioinformatic and ecological analysis of the data, focusing my attention
to the problematic of this step. Finally I contributed to the discussion
and interpretation of the biological problems.
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Introduction to the biodiversity analysis
problem

2.0.1 Definition of Biodiversity

The Millennium Ecosystem Assessment (MA) defines biodiversity as:
“...the diversity among living organisms in terrestrial, marine, and other
aquatic ecosystems and the ecological complexes of which they are part.
It includes diversity within and between species and the diversity of
ecosystems”. Additionally, biodiversity encompasses all forms, levels
and combinations of natural variation and thus serves as a broad uni-
fying concept (Gaston and Spicer, 2009).

Concerning estimates of biodiversity, is still debated what exactly
should be counted and how can be accomplished such a count. This
uncertainty stems mainly from the fact that biodiversity is a multi-
levels concept whose basic building blocks are still the subject of debate
(Faith, 2002). These blocks can be divided into three groups: (i) genetic
diversity, (ii) organismal or phenotypic diversity, and (iii) ecological or
relational diversity. Genetic diversity encompasses genetic structures
(nucleotides, genes, chromosomes) and variation in the genetic make-
up between individuals within a population and between populations.

Organismal diversity includes taxonomic hierarchy and its compo-
nents, from individuals upwards to species, genera and beyond. Eco-
logical diversity embraces the scales of ecological differences from pop-
ulations, across niches and habitats, up to biomes. Although presented
separately, these groups are closely related, and in some cases share ele-
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ments in common (e.g. populations concept appear in all three) (Gaston
and Spicer, 2009).

The most important target of the biodiversity monitoring is the species
identification and count. Species richness is directly correlated to the
role that one species or its population exhibit in a given ecosystem
(Matthews et al., 2011). For example, the ecosystem productivity, can
be influenced by the number of species (Loreau, 2010), the phylogenetic
diversity of species (Cadotte et al., 2008) and the evolutionary history
of species (Gravel et al.,, 2010). On the whole, the different ways in
which species interact (e.g. through foraging, defense, territoriality and
so on) could drive changes in community dynamics that, in turn, affect
ecosystem functions (Loreau, 2010).

Moreover, the complexity of ecosystems comprises various compo-
nents including both biotic (plants, vertebrates and invertebrates) and
local abiotic factors (soil and water conditions, humidity, temperature,
etc.). These components show inter-dependencies emphasizing many
potential direct and indirect interactions that may occur among them
and their environment. For this purpose, in order to understand the
relationships between species in an ecosystem is essential to identify
correctly as many species as possible.

Traditionally, species identification and classification have been the
domain of specialists in taxonomy, providing a nomenclature and a
several key prerequisites for numerous biological studies but this tra-
ditional method is a bottleneck. Indeed, it has been estimated that the
total number of eukaryotic species on the earth to approximately 8.7
million.

Despite the big efforts on taxonomic classification of new species,
around 86% of existing species on earth and 91% of species in the ocean
still wait description (Mora et al., 2011). This means that given to the
average productivity of a standard taxonomist and the time needed
to properly describe a species, up to 100,000 taxonomists should be re-
quired simply to sustain the ability to recognize them the still unknown
biodiversity.
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2.0.2 Molecular biodiversity

The DNA barcoding idea

The use of molecular data to discriminate living beings is quite old,
and has one of the founders in Carl Woese and his work in identifying
prokaryotic species back in the '70s (Woese and Fox, 1977). In recent
years, molecular approaches such as DNA barcoding have become very
popular as a valid support for species identification. This approach was
formally introduced in 2003 by Hebert et al. (2003) and is based on the
idea that through the analysis of the molecular variability of standard
DNA region(s) it is possible to discriminate all the biological entities. A
single gene approach is consistent with the fact that DNA barcoding is
a generalist identification meant to be used on a vast range of unknown
samples, and species identification is not necessarily the unique result
of such an identification system (see below).

An international network, the Consortium for the Barcode of Life
(CBOL!), was soon established with the aim of coordinating the ef-
forts of laboratories throughout the world, towards the definition of
a database of documented and vouchered reference sequences. The
actual evolution of CBOL is the International Barcode of Life?. The
database will be the universal reference library for comparisons of any
unidentified taxa (Ratnasingham and Hebert, 2007). Several local and
international projects were launched (see a full list of these projects at
CBOL). Nowadays, the DNA barcoding approach is applied with suc-
cess in prokariots® (Zhou et al., 2008), in several groups of metazoans
(Hebert et al., 2004; Smith et al., 2005) and fungi (Seifert et al., 2007), and
in recent years it has been rapidly extended to plants (Hollingsworth
et al., 2009) and algae (Saunders, 2005).

The success of DNA barcoding resides in the conjugation of three

1http: / /www.barcoding.si.edu

2iBOL, http:/ /www.ibol.org

31s correct to point that in the bacterial sphere the term DNA barcoding is not used. But
the identification of bacterial entity is largely based on the same principle of the DNA
barcoding in use for eukaryotes (the use of a single marker for identifying).
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innovations: the molecularization of taxonomy, the computerization
of data by using informatics supports and standardization by using
a common DNA region for species. The main goal of Hebert et al.
(2003) was to provide a fast and standardized method to perform re-
liable species identification, even in the absence of expert taxonomists.
Some of the initial claims are nowadays interpreted in a different way.
For instance, it seems clear that it is almost impossible to separate the
molecular identification system from morphological characterization.
For these reasons, in database construction the association between dif-
ferent data sources (morphological, chemical and molecular) should be
carefully established and this is still a limit when considering the data
from the prokaryotic world.

DNA barcoding became a successful tool for biodiversity investiga-
tion because of its simplicity. But this simplicity can also be a limit,
because it is easy to confuse simplicity with inaccuracy. Indeed, there
is sometimes the feeling that DNA barcoding is an inaccurate tool be-
cause at the present state of the art, in several cases, identification is
impossible or largely approximate (i.e. identification of high rank taxa
or association with phylogenetically distant taxa) (Taylor and Harris,
2012). The problem is real, but is mainly due to the fact that reference
databases are still scarcely populated for many parts of the Tree of Life.

Species identification and the role of reference
databases

Being a multidisciplinary approach, DNA barcoding has been recently
displayed as an integrated taxonomy toolkit. DNA barcoding needs to
firmly associate a molecular variability to some kind of morphological
variability. In this way it is possibile to identify unknown organisms
by comparing them with known oness’. To perform all these tasks the
method need to integrate ecological, genetic, and morphological data
that guarantee robustness and precision in species assignment analysis
(Miller, 2007; Smith and Fisher, 2009; Ferri et al., 2009; Padial et al.,
2010).
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It is well known that no identification method (morphological, bio-
chemical, genetic or what so ever based) can truly identify species, be-
cause species are entities in continuous evolution and it is theoretically
impossible to define statically such dynamic matter (Casiraghi et al.,
2010). Since the advent of molecular-based taxonomy, many studies
contributed to define a plethora of new taxonomic entities. These en-
tities identified by molecular approaches have been named in several
ways: “Genospecies”; “Phylospecies”, sensu (Eldredge and Cracraft,
1980); “Recognizable Taxonomic Units”, RTUs, sensu (Oliver and Beat-
tie, 1993); “Phylotypes” sensu (Moreira and Lopez-Garcia, 2002); “Molec-
ular Operational Taxonomic Units”, “MOTUs”, sensu (Floyd et al., 2002).
In molecular approaches, one of the most relevant entities is the Oper-
ational Taxonomic Unit (OTU) (Sokal and Rohlf, 1962) that was firstly
defined in a non- molecular context. In its original use, the OTU is
defined using as much characters as possible, even without knowing
the “real” taxonomic value of each character. In such a context, DNA
sequences are the typical data that can be used to define OTUs, be-
cause each sequence can be considered as a group of characters, not a
priori weighted (Galimberti et al., 2012). Being therefore the sequence
the subject at the basis of the identification, it is obvious the role of
the genes reference database. Most of the incorrect assignments reside
more in the completeness of data sets rather than in the data analysis
system (Puillandre et al., 2009; Bruni et al., 2010; Burgess et al., 2011;
Virgilio et al., 2012).

Nowadays, GenBank* is still the largest repository of sequences for
all markers used DNA barcoding (Federhen, 2012). GenBank compar-
isons through the algorithm of the Basic Local Alignment Search Tool,
or BLAST (Altschul et al., 1990), have been the primary fellow of ge-
neticists and molecular biologists for many years. However, GenBank
can only be a good tool for the first screening on newly generated se-
quences, but in the present form it is not the appropriate tool for species
identification. Indeed, the reference sequences stored in this database
show a high level of incorrect taxa assignment (Bidartondo et al., 2008).

There are many reasons to explain this situation, among which, a

4http: / /www.ncbi.nlm.nih.gov/genbank/
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role of primary importance is played by the degree of inaccuracy of re-
searchers, because several taxonomic details available in GenBank are
incorrect or out of dated (McDonald et al., 2012). A second important
reason is that in GenBank many sequences represent the only existing
entry for certain species. In such a situation, it is easy to assume as
real the monophyly of a species, but this can lead to an underestima-
tion of phenomena like introgression and incomplete lineage sorting
following recent speciation, the major causes of species level polyphyly
(Rosenberg, 2003; Elias et al., 2007; Austerlitz et al., 2009).

On the other hand, with the present state of the art, the most rele-
vant DNA barcoding database for metazoa is the Barcode of Life Data
Systems (BOLD?®). BOLD is still in constant evolution and updating,
but it has already reached a good level of standardization and accu-
racy among metazoans (Ratnasingham and Hebert, 2007). In recent
years, the bacterial sequences produced by large-scale environmen-
tal surveys have invaded NCBI increasing dramatically the rate of se-
quences with uncertain phylogenetic affiliation. This shortcoming has
been addressed by several dedicated 16S databases, including the Ribo-
somal Database Project (Cole et al., 2009), Greengenes (DeSantis et al.,
2006) and SILVA (Pruesse et al., 2007), that classify a higher proportion
of environmental sequences. However, improvements are still needed
because many sequences remain unclassified and numerous classifica-
tion conflicts exist between the different 165 rDNA databases (DeSantis
et al., 2006). It is indeed clear that the creation of a correct database
for query comparison is a necessary step before performing any kind
of analysis. An essential prerequisite for the proper construction of a
reference DNA barcoding library is an adequate sampling coverage to
fully evaluate both the intraspecific and interspecific variations (Moritz
and Cicero, 2004; Meier et al., 2006; Casiraghi et al., 2010; Bergsten et al.,
2012). The sampling has to be performed from distant sites to max-
imize the chance to observe intraspecific geographic variation among
conspecifics. In such a condition, it is possible to test the hypothesis
of species-level monophyly. Besides sampling coverage, taxon coverage
has also to be taken into account in database construction. Unbalanced

Shttp:// www.boldsystem.org

10
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representation of certain species within a given group is likely to greatly
affect the analysis (Meyer and Paulay, 2005; Bergsten et al., 2012).

2.0.3 Contribution of the Next generation sequencing
to the study of biodiversity

For the past 30 years, the Sanger method has been the dominant ap-
proach and gold standard for DNA sequencing. The commercial launch
of the first massively parallel pyrosequencing platform (Roche 454) in
2005 ushered in the new era of genomic analysis now referred to as
next-generation sequencing (NGS) (Voelkerding et al., 2009) or high-
throughput DNA sequencing.

All commercially available NGS technologies differ from automated
Sanger sequencing in that they do not require cloning of template DNA
into bacterial vectors avoiding cloning difficulties and biases (Nowrou-
sian, 2010). Moreover, these sequencing technologies provide an op-
portunity to generate very large amounts of sequence data in a very
short time and at low cost. One of the most important applications of
this technology is the ability to identify large numbers of species from
complex communities (Leininger et al., 2006; Sogin et al., 2006; Mocali
and Benedetti, 2010).

The increasing availability of different NGS platforms has allowed
in recent years to overcome the limitations given by the classical DNA
barcoding approach on identifying species within bulk environmental
samles. The ability to automate a biodiversity survey of, for example,
bulk macroinvertebrate samples can revolutionize large-scale biomon-
itoring programs that are costly, labour-intensive and time-consuming
to implement across large geographic regions (Hajibabaei et al., 2011).

At the moment, sequencing platforms can produce up to 6 billions
of sequence reads of 100 bp per run, with the possibility to implement
paired-end experiments (http:/ /www.molecularecologist.com/next-gen-
fieldguide-2013/). Thus, it is not any more a problem to obtain sev-
eral thousands of sequence reads per amplicon, and the length of the
sequence reads is already fully compatible with the short fragment

11
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lengths required for eDNA (environmental DNA) metabarcoding. There
is no doubt that the technology will improve still further. As a conse-
quence, NGS has the potential to provide an enormous amount of in-
formation per experiment from in-depth sequencing of uniquely tagged
amplicons (Binladen et al., 2007; Valentini et al., 2009).

Metabarcoding - single locus sequencing

As described before the main goal of DNA metabarcoding is to iden-
tify taxa and it should be clearly differentiated from metagenomics that
“describes the functional and sequence- based analysis of the collective
microbial genomes contained in an environmental sample” (Riesenfeld
et al.,, 2004). Today, metabarcoding is considered as the next genera-
tion single locus sequencing approach more prevalent among the large-
scale molecular biodiversity studies. In fact, numerous studies use sin-
gle locus 454 pyrosequencing approach to describe a given environ-
ment. The most informative loci published to date are: coxI in animals
(Rougerie et al., 2009), 165 rDNA in prokariots (Singh et al., 2012), ITS
in fungi (Seifert et al., 2007), rbcL and matK in plants (Chase et al., 2007;
Hollingsworth et al., 2009), and 185 rDNA in protist, nematodes and
algae (Powers et al., 2009; Hajibabaei et al., 2011).

Since long sequences means better taxonomic resolution, the 454 py-
rosequencing platform has been up to last years the most preferable
sequencing technology in molecular biodiversity studies (Hajibabaei
et al., 2011) but in the very recent months other platforms are available
(i.e. MySeq Illumina). 454 platform offers the longest sequence reads
over the other available platforms (Margulies et al., 2005; Metzker, 2010;
Nowrousian, 2010) as it is capable of providing 400-800 base long se-
quence reads. In the case of barcoding biodiversity, this sequence length
can potentially cover the entire coxI sequence.

Recent study involving pyrosequencing of the standard metazoans
barcode region coxI has accessed accurately the biodiversity content of
freshwater benthic macroinvertebrate taxa in both natural sample and
pooled one with known species (Hajibabaei et al., 2011). In addition,

12
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pyrosequencing of the nuclear 185 small subunit (nSSU) highlighted
the diversity of meiofaunal biosphere in marine and rainforest habi-
tats (Creer et al., 2010) and marine metazoan biodiversity in Scottish
temperate benthic ecosystem (Fonseca et al., 2010). Furthermore, a sur-
vey conducted on forest soil fungi based on ITS-1 has revealed un-
expected biodiversity in Ascomycota and Basidiomycota fungi phyla,
validating the effectiveness of high-throughput 454 sequencing technol-
ogy in studying fungal communities in forest ecosystems (Buee et al.,
2009). Also the studies of complex microbial communities have ad-
vanced considerably in recent years due to the use of high-throughput
DNA sequencing technologies that yield detailed information on the
composition of microbial communities (Sogin et al., 2006).

2.0.4 Bioinformatics approach to taxonomy assignment

Summarizing the previous section, the main steps in the analysis of
biodiversity are: (i) the identification of the entities present in the envi-
ronment under examination; (ii) the estimation of their abundances and
(iii) consequently the distribution of variability. The puzzle is to have a
system that can discriminate among closely related species, for which it
can be expected that the distribution of variability in the chosen mark-
ers will be not clearly evident. Several publications in recent years have
tried to perform a detailed comparison of the different method perfor-
mances (Little and Stevenson, 2007; Ross et al., 2008; Ferri et al., 2009;
van Velzen et al., 2012). The main result is that the discriminating per-
formance of identification methods at the rank of genus or family, these
performances are rather similar.

Differences among the approaches became clear when the identifica-
tion of the species rank is reached. In DNA barcoding studies species
are identified accordingly to the genetic information present in the stan-
dard DNA barcode region. Several methods, ranging from genetic dis-
tance, phylogeny and species delimitation are widely used in species
assignment. Furthermore, based on identified species richness and
abundance, diversity measures and/or phylogenetic diversity indices
are calculated to accurately interpret and illustrate biodiversity of one

13
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or more environment. On the whole, the methods used to identify tax-
onomic entities can be divided into three big categories: (i) similarity
methods/pairwise distance; (ii) hierarchical clustering methods/tree-
based; (iii) character-based and diagnostic methods. (Table 2.1 summa-
rizes these methods, giving details and references).

Table 2.1: Details of the main DNA barcoding tools available at the present state of the

art.
Class Methods Software URL Reference
Symilarity Similarity BLAST ftp:/ /ftp.ncbinlm.nih.gov/blast/executables/  (Altschul et al., 1990)
Pairwise Distance Taxon DNA hitp://taxondna.sf.net/ (Meier et al., 2006)
Pairwise Distance ~ JMOTU http:/ /www.nematodes.org/bioinformatics/  (Jones et al., 2011)
iMOTU/index.shtml
Hierarchical ~Neighbour Joining ie. R package http://crans- (Paradis et al., 2004)
clustering APE project.org/web/packages/ape/index.html
Parsimony ie. Phylip http:/ /evolution.genetics.washington.edu/ (Felsenstein, 1985)
phylip.html
Bayesian inference  SAP http:/ /fisherberkeley.edu/cteg/software/ (Munch et al., 2008)
munch
Bayesian inference  RDP http:/ /rdp.cme.msu.edu/ (Wang et al., 2007)
Character Diagnostic CAOS http:/ /boli.uvm.edu/caosworkbench/caos_  (Sarkar et al., 2008)
based barcoder.php
Diagnostic BLOG http:/ /www.ibarcode.org (Bertolazzi et al., 2009)
Other Portal of Data anal- Web browser http:/ /www.ibarcode.org (Singer  and Ha-
ysis jibabaei, 2009)

Complete package

QIIME

http:/ /greengenesIbl.gov /cgi-bin/nph-
index.cgi

http://www.arb-silva.de/
http:/ /qgiime.org/

(DeSantis et al., 2006)

(Pruesse et al., 2007)
(Caporaso et al., 2010)

analysis

SPIDER http:/ /spider.r-forge.r- (Brown et al., 2012)

project.org/SpiderWebSite/spider.html

Even if tools can perform more than one analysis, they are assigned to a category based
on their most frequent use found in literature.

Similarity methods/pairwise distance

These methods are based on the analysis of similarity among query se-
quences compared to a reference data set. They discriminate entities ex-
ceeding a certain level of variability called “threshold value”. Threshold
approaches rely on the assumption that intraspecific sequences varia-
tion does not exceed a certain distance value; otherwise they are consid-
ered as different species (Casiraghi et al., 2010). As a general comment,
these methods assume that conspecific samples will be more similar to
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each other than to samples of any other species. However, this is an
arbitrary assumption, which considers only the superficial population
structure or phylogenetic relationships. Indeed, while gene variation
represents a product of evolution, an arbitrary cut-off value does not
reflect what is known about the evolutionary process responsible for
this variation (Little, 2011). The best known program based on similar-
ity methods/pairwise distance is BLAST (Altschul et al., 1990). BLAST
uses a heuristic method locating short matches between two sequences.
BLAST algorithm allows making fast searches at the expense of a higher
accuracy. Indeed, the algorithm can produce ambiguous identification
when a query sequence equally matches more than one sequence in
the reference database (Little, 2011; van Velzen et al., 2012). A web and
local version of BLAST are available, but the second is commonly used
with large data sets (i.e. like those one deriving from environmental
massive sequencing).

The similarity methods/pairwise distances have two clear advan-
tages: they are fast and do not require huge calculation power. Con-
sequently, they are the best choice as the first level analysis, in par-
ticular in the case of investigation on large data sets. However, they
can have some shortcomings when a high level of accuracy is needed
(i.e. discrimination of closely related species). The greater criticism is
that similarity methods imply a loss of information due to the fact that
the sequences are compared as whole units in the generated distance
matrix, rather than by using each character separately (Ferguson, 2002;
DeSalle et al., 2005; Desalle, 2006; Rach et al., 2008).

Hierarchical clustering methods/tree-based

These methods are the first answer to overcome the limits of simi-
larity methods (i.e. the use of a threshold, the missing phylogenetic
and population details). Tree-based approaches are hierarchical clus-
tering methods that identify the groups through the analysis of a re-
constructed relationships tree. On the other side, these methods are
subjected to a certain level of criticisms among some DNA barcoding
users.
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Indeed, DNA barcoding is not strictly considered a phylogenetic
method, but on the contrary, it is a simple identification method. Being
precise, to identify is not to reconstruct the life history, even if the dis-
tinction is subtle (Casiraghi et al., 2010). Tree-based methods deeply
rely on a multiple alignment, and the topology of the tree created,
which identify the biological entities belonging hopefully to the rank
of species, is used as a guide to identify the query sequence: the iden-
tification is reached when the query sequence falls within the unique
specific cluster of the biological entities on the tree. The principal meth-
ods using tree-based approaches are Neighbor Joining (NJ) (Saitou and
Nei, 1987; Howe et al., 2002; Munch et al., 2008) maximum parsimony
(PAR) (Cavalli-Sforza and Edwards, 1967), and Bayesian Inference (BI)
(Huelsenbeck et al., 2001). NJ followed by Kimura 2 parameters (K2P)
correction is the most widely used method in DNA barcoding analysis
in the published literature and is now included in the standard anal-
ysis package of the BOLD system (Ratnasingham and Hebert, 2007).
The main reason for this success is the high speed of the analysis on
large data sets, and the very limited investment in understanding the
parameters of the analysis. NJ is a bottom-up clustering method based
on the minimum evolution criterion (i.e. the shortest total length of
the tree branches are considered the best). When queries are assigned
to cluster with conspecific DNA barcodes, the identification is consid-
ered successful (Will and Rubinoff, 2004). NJ method has been tested
in many works (Little and Stevenson, 2007; Ross et al., 2008; Austerlitz
et al., 2009; Little, 2011; van Velzen et al., 2012), obtaining a similar, and
not astonishing, performance. The almost universal NJ-K2P adoption
in DNA barcoding works raised many criticisms (Will and Rubinoff,
2004; Meier et al., 2008): the principal is that distance matrix is an
oversimplified representation of the reality that can lead to an incor-
rect visualization of the relationships between species (Ferguson, 2002;
DeSalle et al., 2005; Desalle, 2006).

PAR methods do not employ distance matrices, and are considered
character-state methods. Making assumption on each character, PAR
methods use algorithms to calculate the most parsimonious tree. These
methods are classically used to reconstruct phylogeny, but when used

16



2 Section 1

for species identification they can be problematic. The reason relies on
the fact that often, several trees are equally parsimonious or differences
among different trees are really minimal. On the other hand, when we
are analyzing many sequences, we are, in some way, forced to employ
heuristic approaches, to keep the calculation time low. Heuristic ap-
proaches have typically a problem with reproducibility of the analyses
(Will and Rubinoff, 2004; Meier et al., 2008). In spite of these problem:s,
the performance of PAR methods is superior to NJ, in particular when
unambiguous alignment (such as the case of rbcL in plants) is used
(Little, 2011).

BI methods are other widely used tools for phylogenetic reconstruc-
tions, but in the field of taxonomy assignment is mostly common in
bacteria analysis. RDP Classifier (Wang et al., 2007) is the most exten-
sively used bioinformatics programs for 165 rRNA classification. Its
success is probably due to its speed, to the fact that does not require
sequence alignment, and works well with partial sequences. Moreover
it is capable of classifying to the genus level near-full-length and 400-
base segments with an overall accuracy above 88.7%. All these features
made it a competitive tool for the analysis of big data.

This software is a na’tve Bayesian classifier that provides taxonomic
classification from domain to genus. The classifier is trained on the
known type strain 165 sequences. The frequencies of all sixty-four thou-
sand possible eight-base subsequences (words) are calculated for the
training set sequences in each of the approximately 880 genera (with a
range of probability values of assignment between 0% or 100%). Also
Munch et al. (Munch et al., 2008) proposed a system for sequence as-
signment using Bl for metazoan. The idea is quite innovative, because
it introduces a statistical measure of confidence, but not widespread.

Character-based and diagnostic methods
These methods are a different answer to the problems raised by sim-

ilarity methods. Character-based and diagnostic methods focus their
discrimination power on the presence/absence of discrete characters or
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combinations of these. They are based on phylogeny in which classifi-
cation algorithms consider just diagnostically informative states along
phylogenetic tree nodes. The four main tools developed are: CAOS
(Sarkar et al., 2008) , BRONX (Little, 2011), DNA-BAR (DasGupta and
Konwar, 2005) and BLOG (Bertolazzi et al., 2009).

2.0.5 Distribution analysis of of diversity

The taxonomic assignment is the first step of the work, but understand-
ing differences in the composition of organismal communities is of ma-
jor importance in molecular ecology. Biological and ecological systems
are the result of a number of deterministic and stochastic processes
as well as historical constraints. The most relevant historical coercion
is that species are not independent entities, but their functional and
ecological similarities are rather shaped by patterns of common an-
cestry. In the field of community ecology, only recently researchers
have incorporated historical constraints represented as phylogenies in
their analyses motivated by the fact that species interact within the
community based on their traits, and traits have an evolutionary his-
tory (Webb et al., 2002; Faith, 2002). Phylogenetic comparative meth-
ods pioneered by the method of phylogenetic independent contrast
(PIC) meant the first substantial effort to address the statistical non-
independence among species due to common ancestry (Felsenstein,
1985; Ackerly, 2009). Phylogenetic distance (PD) measures take into
consideration all components of biodiversity: species richness, species
abundance and phylogenetic distances among species (Chao et al., 2010;
Faith, 2002; Ricotta, 2007; Cardoso et al., 2009), so can provide far more
power compared to more traditional ecology measure (i.e Sorenson and
Jaccard indices of group overlap (Magurran, 2004)) because they exploit
the degree of divergence between different sequences (Lozupone et al.,
2007). Indeed, PD is more inclusive that a simple count of species rich-
ness because, considering the sum of the branch lengths from the mem-
bers within a community, it quantifies the evolutionary history, and is
also believed to correspond to the number of evolutionary derived traits
within a biological community. Hence, PD will be higher when there
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are more distantly related species in an assemblage.

Phylogenetic diversity measures

Diversity measures predicted from biodiversity patterns serve as gen-
eralization comparison at both spatial and geographical levels (Gaston
and Spicer, 2009). The studies on the structure of communities focus on
the total numbers of taxa or unique lineages found in individual sam-
ples (that is, & diversity), the relative abundances of individual taxa or
lineages and the extent of phylogenetic or taxonomic overlap between
communities or community categories (that is, § diversity). a diversity
measures (for example, richness and coverage estimators, rarefaction
curves) yield estimates of biodiversity and its limits in different envi-
ronments (Hughes et al., 2001; Curtis et al., 2002; Sogin et al., 2006).
Likewise, multivariate statistical techniques such as clustering and or-
dination, allowed ecologists to describe B diversity patterns, revealing
how biotic and abiotic variables control the community composition.
For example, analyses of § diversity patterns have revealed how micro-
bial communities are structured across a wide range of natural habitats
(Lozupone et al., 2007; Auguet et al., 2012; Barberan et al., 2012), the
spatial and temporal variability of microbial communities on and in the
human body (Fierer et al., 2008; Costello et al., 2009), and the factors
structuring soil bacterial communities (Lauber et al., 2009).

Alpha, beta and gamma diversities can be obtained from their en-
tropies calculation: Hy, Hﬁ, H.,, where: H, + Hﬁ = H,. Entropies are
reasonable indices of diversity giving the uncertainty in a sampling
process outcome. The most common diversity measure is the Shannon-
Wiener index or Shannon entropy, The Shannon entropy can be calcu-
lated according to the equation 2.1:

H=-

S
‘ pilog, pi (2.1)

i=1

where S is the number of species in a sample, p; is the relative abun-
dance of the ith species and b is the logarithm base. It is important
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to note that the entropy gives the uncertainty in species identity of a
sample, not the number of species in the community. For this reason, it
is important to distinguish between entropy (H) and true diversity (D).
Entropies, not diversities, and their mathematical behavior usually do
not correspond to biologists theoretical or intuitive concept of diversity
(Jost, 2006). An enormous difference in diversity can be sometimes ex-
pressed by two very close entropy values which mask the real statistical
significance of diversity. However, entropy value can be transformed
into true diversity value by applying an exponential transformation.
The seminal paper of Hill (1973) already showed the relationship be-
tween diversity and entropies parameterized by a factor g 2.2:

5 1
Hy=) p]  Dy=(Hy)T7 2.2)

where g is the order of diversity. The order of diversity indicates its
sensitivity to common and rare species. The diversity of order zero
(9 = 0) is completely insensitive to species frequencies and is known
as species richness. All values of g less than unity give diversities that
disproportionately favor rare species, while all values of g greater than
unity disproportionately favor the most common species. The critical
point that weights all species by their frequency, without favoring ei-
ther common or rare species, occurs when g = 1. Atg =1 2.2 is the
exponential of Shannon entropy (2.3):

S
D; =exp (— Z pilnpi> =exp(H) (2.3)
i=1

Using 2.3, the relation between alpha, beta, and gamma diversity is
obtained by 2.4
exp(Hy + Hg) = exp(Hy) (2.4)

Despite the widespread use of Shannon entropy in ecological stud-
ies, an additional similarity measure (called Kullback-Leibler diver-
gence), has been proposed by Ludovisi and Taticchi (Ludovisi and
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Taticchi, 2006) regarding beta diversity as a dissimilarity estimator be-
tween two or more communities. Kullback- Leibler divergence between
two communities composed of the same species is given by 2.5, where
P=m,m,...,mgand Q = 61,02,...,0s are the probability distribu-
tion of communities P and Q

S

J(P:Q) =Y (mi—6;)ln

i=1

T
5 (2.5)

The same equation can be written in another form and gives 2.6

S S S
](P : Q) = Z milnm; + Z 0;In6; — Z(T[ilﬂei + 61[1’17‘[,‘) (2.6)
i=1 i=1 i=1

= —Hp—HQ+HpQ

The same authors illustrated Kullback-Leiber divergence between two
communities having different number of species. They took into ac-
count both the proportion of singletons and the probability of unob-
served species within each community according to Chao and Shen
(Chao and Shen, 2003) correction. Therefore, the probability of ob-
served species is calculated according to the following equation 2.7,

p;P:Nt’P_(1_f“’) fori=1,2,...,kp 2.7)

where fip is the number of species present with a singleton, N;p the
number of individuals of the ith species, N the total number of counts
in the sample of the community P and k, is the number of species
detected in the community P Consequently, the divergence between
community pairs can be calculated as 2.8:

/
(vie - Fio) an,A’ = Hp—Hy+Hpy, (29

S
=1 iQ

J(P:Q)=n},

1
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—

The terms I/J\}), ﬁg, H};Q represent modified estimators Hp, Hg
and Hpg respectively.

Allen et al. (Allen et al., 2009) generalized the Shannon entropy to
take into account phylogenetic differences. For a rooted tree, their phy-
logenetic entropy H) is 2.9:

Hp = — Z Lia;loga; (2.9)

where the summation is over all branches, is the length of branch i, and
denotes the abundance descending from branch i. The index proposed
by Allen was Hill-behaved, but Chao et al. (2010) (Chao et al., 2010)
proposed a new correction which framed the index within a general-
ization phylogenetic aware of the Hill numbers. 2.10:

PD,(T) = { Y L (‘i]i)q }” (2.10)

iGBT

where T is mean evolutionary change and B are tree branches. Fi-
nally, once phylogenetic diversity indices are obtained, diversity in lin-
eage per base change per site between and across samples can be de-
tected.
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Targeted Sequencing on Metazoan
Communities: A Seedbed For Further
Laboratory and Computational Investigations

3.1 Introduction

In this section the success of sequencing the entire coxI barcode on 454
(Roche Life Science) platform was addressed. The main limitation af-
fecting the reliability of biodiversity profiles in NGS reads assignment,
is the intrinsic error level introduced by the platform used (Hoff, 2009)
(Balzer et al.,, 2011). The pre-sequencing steps of library preparation
(Bik et al., 2012; Schloss et al., 2011), resulting in a cascade-effect of
misinterpretations during down-stream analyses is another source of
errors. Thus, sequence reads denoising (e.g. AmpliconNoise, (Quince
et al.,, 2011)) and chimera or sequence artifacts removal (e.g. Uchime,
(Edgar et al., 2011)) are fundamental in environmental single locus se-
quencing frameworks. Moreover the produced sequences are not likely
to be assembled and therefore any sequencing error will result in se-
quences seemingly coming from different organisms (Schloss et al.,
2011). Following error detection and removal, taxonomic profiles can
be produced through “Taxon Assignment” step in order to assess taxo-
nomic diversity of organisms within the samples under study. Different
approaches can be adopted for “Taxon Assignment” such as: (i) na'ive
Bayesian classification (e.g. RDP classifier, (Wang et al., 2007)), (ii) clas-
sification based on diagnostically informative sites along a phylogenetic
tree (Sarkar et al., 2008), (iii) monophyly based on a phylogenetic infer-
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ence including reference sequences (Munch et al., 2008), (iv) species de-
limitation using an intraspecific distance threshold (Blaxter et al., 2005;
Jones et al., 2011), (v) combination of molecular and morphological
characters (Rach et al., 2008), and (vi) genealogical methods based on
the coalescent theory using demographic explicit genetic models with
maximum likelihood/bayesian algorithms (Abdo and Golding, 2007;
Nielsen et al., 2009).

In this study, the precision and accuracy of denoising procedure and
the candidate parameters able to reduce sequence error rate were in-
vestigated, as well as an innovative taxon assignment pipeline. In ad-
dition, a novel library preparation method allowing the sequencing of
the entire cox] barcoding region (approximately 700 bp) on 454 pyrose-
quencing platform (Roche Life Science) was proposed. To address these
objectives, metazoan communities coming from complex environmen-
tal matrix of the chestnut soil sampled from different areas in Italy was
considered.

The adopted bioinformatics methods were assessed by a comparative
approach between two identical control samples, differing by biomass
equilibration, and comprising taxonomically classified organisms at or-
der or class taxonomic ranks and at species level for individuals of
Carabidae (Coleoptera) family.

3.2 Material and Methods

3.2.1 Samples description

A total of eight samples were collected from three Italian chestnut soil
forests situated in northern (province of Milan), central (province of
Rome), and southern (province of Catania) parts of the peninsula (Table
3.1).

The samples consisted of one final soil sample per locality (coming
from different pooled samples of the same site) and two pitfall traps
ones taken from central Italy. Soil samples were taken from the first 30
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Table 3.1: Samples provenience, the methods used to collect the organisms and categorize

them.
Locality North Center South
Collection Method BMF BRF BMF BRF PFT PFT BMF BRF
Type Hydrophilic ~Aerophilic Hydrophilic ~Aerophilic = Soil Litter ~ Soil Litter = Hydrophilic = Aerophilic
Sample ID NH NA CH CA MPE4 MPE5 SH SA

BMEF: Baerman funnel, BRF: Berlese funnel, PFT: Pitfall traps.

cm of soil surface by a soil sampler probe. From each sample, approx-
imately 500 g of soil were pulled out and conserved in sterile plastic
bags at room temperature to be used for hydrophilic and aerophylic
biota extraction procedures. Aerophylic biota corresponds to the organ-
isms living in aerobic spaces in the soil, while hydrophilic organisms
occupy wet space between soil particles. Following the extraction of hy-
drophilic biota using Baerman funnel and aerophylic biota by Berlese
funnel, each locality was represented by two samples one hydrophylic
(NH = northern hydrophilic, CH = central hydrophilic, SH = southern
hydrophilic) and another aerophylic (NA = northern aerophylic, CA
= central aerophylic, SA = southern aerophylic). Furthermore, pitfall
traps (PFT) were used to collect soil litter’s macrofauna in sampling
area of central Italy, where five traps were positioned at a distance of 10
m from each other and placed at soil surface to deliver the first control
sample called MPE5. The organisms collected in this sample were clas-
sified, based on their morphology at species levels for the family Cara-
bidae (Coleoptera) and biomass weighed. Regarding the other organ-
isms present in MPES5 it was possible to classify them only at order or at
class taxonomy ranks (Table 3.2). In addition, Carabidae and Isopoda
organisms were sequenced for the cox! barcode region by Sanger se-
quencing to form our local control database (LocalDB). The second PFT
sample, called MPE4, was derived from MPE5 and consisted on equal
biomass content of all the classified organisms (see Table 3.2 for organ-
ismal content of MPE4 and MPES5 and their corresponding biomass).
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Table 3.2: Taxonomically identified organisms in Pitfall traps samples and their corre-
sponding biomass.

Taxonomic Group Total Biomass (g) Species Name Biomass (g)

Coleoptera 22.89 Carabus (Tomocarabus) convexus dilatatus 12.94

Carabus (Chaetocarabus) lefeburei bayardi 4.85

Calathus fracasii 0.58

Abax parallelepipedus 0.29

Laemostenus latialis 0.23

Pterostichus micans 0.18

Calathus montivagus 0.07
Diptera 412
Orthoptera 244
Blattodea 1.02
Myriapoda 0.82
Isopoda 0.7
Arachnida 0.64
Scorpiones 0.63
Hymenoptera 0.21
Lepidoptera 0.1
Collembola 0.02

*Class taxonomy rank; Organisms classified at species level belong only to the family
Carabidae (Coleoptera).

3.2.2 DNA extraction and amplification of cox/ barcode

Total genomic DNA was extracted from the eight collected samples by
using different commercial kits according to manufacturers’ instruc-
tions. The entire cox] DNA barcode was amplified from DNA ex-
tracts using the universal primer pair: forward-LCO1490 (5’- GGTCAA-
CAAATCATAAA

GATATTGG-3’), and reverse-HCO2198 (5-TAAACTTCAGGGTGACCAA
AAAATCA-3’) (Folmer et al., 1994). PCR reactions were carried out
in 50ul reaction volumes containing: 1.5mM MgCly, 250nM of each
primer, 200uM of each dNTP, 1x of Phusion HF Buffer, 1U of Phusion
DNA polymerase (M0530S, NEB) and 2u! of DNA extracts, using a ther-
mocycling profile of one cycle of 60 s at 94°C, five cycles of 60 s at 94°C,
90 s at 45°C, and 90 s at 72°C, followed by 35 cycles of 60 s at 94°C,
90 s at 50°C, and 60 s at 72°C, with a final step of 5 min at 72°C. PCR
products along with 100 bp DNA Ladder (Fermentas, Life Sciences)
were visualized on a 1% agarose gel stained with 0.005% of ethidium
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bromide. Although with some unspecific products and impurities, the
expected amplicons of approximately 700bp were successfully ampli-
fied in NH, CH, SH and MPES5, while for NA, CA, SA and MPE4 the
amplification did not succeed probably due to some inhibitors activity
(e.g. soil’'s humic acid and insects’ intestine content). For this reason,
PCR reactions with different DNA dilutions (1/10, 1/20, 1/50) were
tested in order to promote the amplification and in the same time to
eliminate unspecific products amplification. Since unspecific products
and impurities were evident even with dilution assays, dilutions that
gave the highest amplicons yield were used in subsequent PCR reac-
tions. Consequently, dilutions of 1/10 were used for CA and SA, 1/50
for NA and MPE4 while the raw DNA extract was used for the re-
maining samples. PCR products were gel purified using QIAquick Gel
Extraction Kit (Qiagen) and their corresponding concentrations pre and
post-purification were measured by densitometry.

3.2.3 Sequencing libraries preparation and 454
pyrosequencing

Given that standard protocols suitable to sequence long amplicons on
next generation sequencing platforms are still missing, sequencing the
entire cox] DNA barcode region ( 700bp) was considerably challenging.
For this reason, a pre-requisite procedure enclosing amplicons ligation
was necessary in order to build up shotgun libraries compatible with
the following sequencing steps. This protocol was adapted on ampli-
cons products since it was assembled and its conditions were optimized
in our laboratories for cDNA molecules (Patent: RM2010A000293-PCT/
1B2011/052369). Hence, 100ng of purified amplicons were ligated, us-
ing DNA Ligase (Roche), to obtain compatible fragments for ¢29 poly-
merase amplification. Therefore, the concatenated amplicons were then
amplified by ¢29 polymerase using random primer pairs. The use of
$29 polymerase guaranteed strand displacement activity, proof- read-
ing high-fidelity activity, high processitivity giving ideal product for
nebulization and high yields of amplified products promoting the se-
lection of rare molecules. The amplified concatenated amplicons were
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checked on 0.8% agarose gel and quantified by densitometry. Rapid
sequencing libraries were prepared using the amplified concatenated
products and consisted of two main steps: (i) nebulization of the am-
plified ligated amplicons, (ii) fragment end repair followed by adaptor
ligation to the nebulized fragments. 500 ng of the amplified ligated
amplicons were submitted to nebulization using liquid nitrogen for 70
sec at 30 psi (2.1 bar). The fragment end repair process of nebulized
products, conducted following the Rapid library preparation standard
protocol, allowed the successful ligation of 454 Adaptors on both 3" and
5" ends. Libraries quality was assessed on an Agilent Bioanalyzer 2100
High Sensitivity DNA chip, where all profiles showed fragment pop-
ulations between 300 and 1000bp, while libraries quantification was
carried out by fluorospectrometer (Nanodrop 3300, Thermo Scientific).
Following adaptors ligation, the DNA was enriched in emulsion PCR to
be deposited on an 8-lane PicoTiterPlate (PTP) wells (Roche/454) and
sequenced on GS FLX Titanium pyrosequencing platform.

3.2.4 Bioinformatics pipeline for sequence analysis

The bioinformatics pipeline for sequence reads analysis, illustrated in
Figure 3.1, is divided into four main steps: (i) 454 standard filtering
process, (ii) pattern search, (iii) denoising and (iv) taxon assignment.

454 filtering

The first analysis step, performed on the obtained sequence reads, was
a standard filtering process suggested by the 454 platform manufac-
turer by means of stringent filtering algorithms to capture and discard
poor quality reads. This filtering practice, comprising read rejecting
and read trimming filters, was computed using GS Run Processor V2.4
(Roche 454 Life Sciences software package).
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Read rejecting

Read trimming

(454 software
package)

a- Pairwise Alignment:
Pattern Vs All reads
(Needleman-Wunsch)

b- Choose best alignment score

c- Control test:

o AmpliconNoise Pipeline
Karlin Altschoul statistic

PyroNoise: pyrosequencing
error correction

SeqNoise: PCR polymerase
error removal

d- Identify empirical threshold:
- good match: E<1e-07

- bad match: 1e-07<E<le-05

- no match: E>1e-05

e- Trimming lists

f- Match validation: Blastn ————
- COlI profile —_— BOLD

Uchime
Denoised

- Strand sens

Choice of the best 10 hits
Extract annotation from
EMBL-CDS

Reference Seq divided
by Order taxonomy rank

Protein Multiple
alignment/Order
(Muscle)

Back translate in DNA
(Python2.7 script)

< @—P Forward (rc*)-Forward
N - hmmbuild: Ref DNA multiple
R »» Forward (rc*)-Reverse *rc = reverse complement alignment/Order
4—00—> Reverse (rc*)-Forward - hmmscan: Denoised Seq

€—00—) Reverse (rc*)-Reverse against Ref HMM profiles

Bayes Factor to
identify good matches &

assign sequence reads to a
taxonomy Order rank

Figure 3.1: Bioinformatics sequence analysis pipeline illustration.
The pattern search consisted on finding the four possible combinations of PCR primers
within sequencing reads.
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Pattern search

Due to amplicons ligation and subsequent nebulization steps carried
out for sequencing library preparation, different combinations of PCR
primers were expected to be found within sequence reads. For that,
it was necessary to conduct a pattern search analysis of four possible
primer combinations: (a) primer reverse (reverse complement) + primer
forward, (b) primer forward (reverse complement) + primer reverse,
(c) primer reverse (reverse complement) + primer reverse, (d) primer
forward (reverse complement) + primer forward (Figure 3.1). These
analyses were computed by means of Python2.7 script to execute: (i)
pairwise global alignment of the four patterns against all sequences
using Needleman— Wunsch algorithm (from emboss package), (ii) com-
parison between the four alignment scores that considers the highest
one as best match, (iii) computation of a modified Karlin-Altschul statis-
tic( E = mne~*S ; where mn is the size of the search space, A=0.27, S
is the alignment score) that classifies the best scores in three categories:
a) good match for E < 1e — 07, b) bad match for 1e — 07 < E < 1le — 05,
¢) no match for E > le — 05. The two thresholds were chosen looking
at the calculated statistic frequency distribution on which the region
between the two modes was considered as an ambiguous match. In the
case of no match category, sequences were considered ready for down-
stream analysis without the need of pattern removal, while bad match
was discarded from further analyses. Sequences belonging to good
match category were spliced up- and down-stream of pattern position.
A further match validation using blastn, with E — value < 10e — 03 on
good match and no match categories, was conducted against the public
BOLD (Ratnasingham and Hebert, 2007)) coxI database and checked for
correct sequences content (match with coxI profile and strand sense).
Once this last validation terminates, the script outputs four trimming
lists indicating pattern position when present. Sequence reads trim-
ming has generated for each sample two separate data sets at 5" and 3’
coxI barcode.
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Denoising

On the above mentioned data sets, denoising protocol using “Ampli-
conNoise” pipeline (Quince et al., 2011) able to correct both pyrose-
quencing errors invoking PyroNoise algorithm and PCR single base
substitution ones raised to SeqNoise, was conducted separately in or-
der to avoid clustering biases of the 3" and 5’ regions. Both Pyro- and
Segq-Noise use a clustering distance parameter value (0) used by ex-
pectation maximization algorithm to eliminate unreal sequences and
construct the real ones. In addition, it was investigated both the preci-
sion and accuracy of Pyro- and Seq-Noise over four (60, 50, 40, 30) and
three o values (25, 10, 5) respectively and consequently o = 60 was set
up for PyroNoise while o = 25 for SeqNoise (see results). The optimal
o values were chosen according to the results obtained on the control
sample (MPES5) where organismal content was taxonomically classified
prior to DNA extraction. Finally, denoising pipeline has resulted in
sequence clusters represented by unique sequences, which were sub-
mitted to chimera detection and removal routine of Uchime software
using the recommended parameters of denoised data available in its
manual (Edgar et al., 2011).

Taxon assignment: Hidden Markov Model (HMM)

To address the comparative analysis of species composition of chestnut
soil across the three geographical areas under study, all data sets of the
same category (aerophylic, hydrophylic, PFT) were merged and sepa-
rated data sets that map both ends of cox] DNA barcode region were
excluded. In addition, each sequence ID was tagged according to its
geographical provenance to keep track sequence origin information. In
summary, the following six data sets were generated: 1) aerophylic-5’,
2) aerophylic-3’, 3) hydrophylic-5’, 4) hydrophylic-3’, 5) PFT-5" and 6)
PFT-3’. These data sets were used in taxon assignment workflow which
encompassed three main steps: a) choice of reference sequences, b) ref-
erence HMM profiles building and c) taxon assignment.

In order to choise of reference sequences to achieve higher assign-
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ment accuracy and sensibility, several sources of cox! reference sequences
were taken into account in species assignment workflow execution.
First of all, the LocalDB (see samples description), corresponding to 154
isopods and carabids individuals, was generated by sequencing the coxI
DNA barcode of all morphologically identified specimens recovered
from the collected samples. Additionally, public coxI sequences were re-
trieved from BOLD and the non-redundant database (NR-NCBI). Given
that querying large databases is computationally expensive, the above
mentioned databases were sampled by Blastx (Altschul et al., 1990) for
the closest 10 matches using our sequence reads as queries. Blastx was
run using the mitochondrial invertebrate genetic code (NCBI genetic
code number: 5) for the reason that the majority of the expected or-
ganisms belong to metazoans. Blastx outputs were parsed using Biopy-
thon1.57 and the first 10 best matches ID were retrieved and tagged
at taxonomical Order rank delivered by NCBI taxonomy. All matched
references where inserted in a structured local database using Struc-
tured Query Language (SQL) that readily allowed further filtering and
querying procedures. The later filtering was executed using MySQL
and consisted of sampling all reference sequences having the same tax-
onomical order rank of the best match and discard all the others. Fi-
nally, to get nucleotide and protein sequences of the filtered references,
EMBL-CDS was interrogated by means of web service fetch tool (EMBL
fetch tools: wsdbfetch.py) using the chosen reference sequence IDs as
queries. In the case of BOLD and LocalDB entries, nucleotide sequences
were translated into their corresponding protein ones by means of a
Python2.7 script. Note that, all reference sequences of each sample cat-
egory were joined to custom a final reference data set tagged by its
corresponding taxonomical order rank.

Reference HMM profiles building Protein reference sequences belong-
ing to each taxonomical Order rank were multiple aligned using Mus-
cle3.8.31 (Edgar, 2004) and then back-translated into their equivalent
nucleotide ones using a Python2.7 script. Hidden Markov Model (HMM)
nucleotide alignments profiles were built using hmmbuild (HMMer3.0)
with its default parameters (Finn et al., 2011).
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Taxon assignment Sequence clusters of the above described six data
sets were assigned to one of the nucleotide HMM profiles using the al-
gorithm hmmscan (HMMer3.0) with its default E-value threshold set to
10.0 over which the target profile is considered as a false positive assign-
ment. The six hmmscan outputs were then parsed using a Python2.7
script which classifies the assigned sequence clusters in four categories:

e Unclassified assignment: sequence-profile match output an E-
value higher than hmmscan threshold.

e Bad assignment: one sequence-profile hit found. In this case it
is assumed that the sequence does not match a coxI profile and
consequently it is a false positive match.

e Good assignment: the best match bit score passes the threshold of
Bayes Factor (BF) set to 3.0. BF 3.1 was computed by subtracting
the best bit score from the natural logarithm of the sum of all
remaining exponential bit scores.

In(BF) =S;—1 —In <i exp (Si)> 3.1)

i=2

where S is the score of the ith element and #n is the number of
scores

e Ambiguous assignment: sequence-profile hit does not pass BF
test.

Except for the good assigned sequence clusters, all the other cate-
gories were joined and labeled as unclassified sequences. Good as-
signed sequence clusters were aligned against their corresponding HMM
profile using hmmalign (HMMer3.0). Nucleotide multiple alignments
were checked manually for the presence of poorly aligned sites and
long insertions/deletions. Subsequently, by means of a Python2.7 script,
sequences having long inserts longer than two nucleotides and not ho-
mopolymeric were eliminated completely while sites in sequence clus-
ters not present in reference and that introduce one gap in the align-
ment were just removed to avoid frame shift error.
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Denoising precision screening

The final yield of denoising pipeline over the 12 ¢ parameter values
combination was considered for further precision screening in order to
determine the best o value suitable for taxon assignment at order and
species taxonomic categories. This was possible by observing species
loss rate, and the linearity between biomass weight and sequence counts
per detected order and species. The a priori identified carabid species
were used and the organisms classified at order and/or class ranks
present in MPES5, their corresponding biomass and sequence reads num-
ber that matched them with the taxon assignment procedure described
above.

3.3 Result

3.3.1 Sampling unit and sequencing yield

The coxI barcode from eight environmental soil samples 3.1, collected
from three Italian chestnut forests (north, center, south), was sequenced
on 454 GS FLX Titanium pyrosequencing platform (Roche Life Science).
This platform was chosen because it provides the longest read length
among the other available NGS platforms to the time when the experi-
mental design has been decided.

The sampling unit comprised two identical control samples in terms
of taxonomic complexity but different by organismal biomass equili-
bration (MPE4: equilibrated, MPES: original collection of pitfall traps).
The organisms in the control samples were taxonomically classified
at the possibly identifiable rank. In addition, the cox] DNA barcode
was sequenced by Sanger for the organisms of Isopoda and Coleoptera
(Carabidae) to create a local database (LocalDB) used in bioinformatic
pipeline optimization. The sequencing run produced a total of 1,303,314
reads, of which 613650 passed filter reads were considered eligible for
downstream analysis. Moreover, signal intensity quality score was as-
signed to each obtained base in order to facilitate the selection of high
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quality bases during sequence analysis. Quality scores, ranging from
zero to 40, were mainly distributed between 11 and 40 where 27.10% of
bases obtained the maximum score, 2.13% a score of 11 and a negligi-
ble number of bases had a quality score less than 11. Passed filter reads
represented read lengths extending from 40 to 637 with an average of
346.15 bases.

3.3.2 Bioinformatics analysis pipeline results

In order to execute denoising process and successively downstream
analyses, four possible patterns, expected to be found within sequence
reads, were searched and consequently reads were trimmed at both
start and end patterns position. These patterns were formed due to
amplicon ligation following the amplification of the cox] DNA barcode
region (for details see materials and methods). The four patterns were:
a) RrcF, b) FrcR, c) RrcR and d) FrcF (Figure 3.1), where “F” and “R”
are forward and reverse primers respectively used in PCR amplifica-
tion, while “Frc¢” and “Rrc” are their corresponding reverse comple-
ments. Pattern search filtering produced a noticeable reduction to al-
most the half of sequencing reads number for all samples, 152,531 at
5 and 174,600 at 3" cox] DNA barcode out of 613,650 original reads
number. Furthermore, these results showed a significant dominance of
FrcR and RrcR patterns in all samples over the remaining two patterns
which were absent or present at very low occurrence (Figure 3.2).

3.3.3 Denoising and chimera removal output

Denoising protocol using “AmpliconNoise” pipeline (Quince et al., 2011)
was executed for all samples in order to correct both pyrosequencing
(PyroNoise) and PCR polymerase (SeqNoise) errors. This procedure
was conducted on homologous sequences, therefore for 3" and 5 re-
gions separately. Both Pyro- and Seq-Noise use a main clustering dis-
tance parameter value (o) resulting in the construction of final sequence
clusters represented by unique sequences. Previously to Amplicon-
Noise execution on all samples, the precision and accuracy of Pyro- and
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Figure 3.2: Pattern search results distribution over the eight samples following reads
trimming at pattern position.

Frc-R: Forward reverse complement-Reverse, Rrc-R: Reverse reverse complement-

Reverse, Rrc-F: Reverse reverse complement-Forward, Frc-F: Forward reverse

complement- Forward.

Seg-Noise over all combinations of four (60, 50, 40, 30) and three (25, 10,
5) o values respectively were investigated. The optimal ¢ values were
chosen according to the results obtained on the control sample (MPE5),
where organismal content was taxonomically classified (Table 3.2) prior
to DNA extraction, and consequently o = 60 was set up for PyroNoise
while o = 25 for SeqNoise. Finally, denoised sequences were submitted
to chimera detection and removal method of Uchime software (Edgar
et al., 2011).

3.3.4 Sigma (o) screening and identification of its best
value

In order to determine the best value of ¢ for Pyro- and Seg-Noise, the
taxon assignment step on the 12 resulting data sets was performed (Fig-
ure 3.1). The metadata provided by MPE5, namely individuals biomass
of morphologically identified species and that of organisms belonging
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to the same taxonomic order or class were used (see samples descrip-
tion). Figure 3.3 illustrates a qualitative overview of the relationship
between ¢ parameter and specific species detection, reads abundance
assigned to them and their biomass. Evidently, the parameter ¢ of
SeqNoise has further contribution in species recognition as it masked
Carabus (Chaetocarabus) lefeburei bayardi at o = 5 (s5). In addition, the
heterogeneous distribution of read abundance in relation with species
biomass failed to explain the linearity of coxI copies increase in supe-
rior biomass individuals. This fact is evident for both 5" and 3’ data
sets where Carabus (Tomocarabus) convexus dilatatus having the highest
biomass falls under the remaining species for many o values. A simi-
lar behavior can be noticed for Carabus (Chaetocarabus) lefeburei bayardi
embracing in almost all cases considerably less assigned reads than Ca-
lathus fracasii.

At the contrary, Figure 3.4(A) displays clearly a homogeneous distri-
bution of reads abundance and orders biomass for all tested ¢ values in
both 5 and 3’ cox! data sets. It is important to note that, at o =5 (“s5”)
of SeqNoise the orders Myriapoda, Isopoda and Lepidoptera were not
detected in the 5" data set while for a value of o = 25 (“s25”) all the
orders were found and a higher quality biomass-reads count correla-
tion was observed. Regarding 3’ coxI data set, a relative reduction of
the biomass-reads count correlation for SeqNoise parameter o = 5 (Fig-
ure 3.4(B)). Moreover, many species were uncommonly found, namely,
individuals belonging to Blattodea, Hymenoptera, Isopoda and Myri-
apoda. Based on these results shown above, the values of 60 and 25
(‘s60_s25") were chosen for o parameter of Pyro- and Seq-Noise respec-
tively.

Towards a quantitative validation, reads count was plotted against or-
ganisms’ biomass. As expected for the higher taxonomy ranks (order,
class), a positive increase between the two variables was evident and the
number of assigned reads for the detected taxonomical groups are ad-
jacent comparing 3’ and 5" coxI barcode except for Diptera (Figure 3.5).
On the contrary, at species level, reads count and species biomass are
quite distant (Figure 3.6) pointing 3" and 5" cox] DNA barcode region
giving a potential inconsistency and low sensitivity of reads assignment
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Figure 3.3: Influence of ¢ on assigned reads number at species level in MPE5 control
sample.

Qualitative plot of the 12 ¢ values combinations of Pyro and Seq-Noise against the as-
signed reads abundance to known organisms at species level and their corresponding
biomass. A) 5 coxI barcode and B) 3’ coxI] barcode. The bullets dimension are pro-
portional to the biomass of each taxonomical group name (see Table 3.2). s=¢: cluster-
ing distance parameter value used by expectation maximization algorithm of Pyro- and
Seq-Noise. CF Calathus fracasii; CL: Carabus (Chaetocarabus) lefebvrei bayardi; CC Carabus
(Tomocarabus) convexus dilatatus; LL: Laemostenus latialis.

at low taxonomical category. Consequently, following the above men-
tioned assessment conducted on the control sample (MPE5), Ampli-
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Figure 3.4: Influence of ¢ on assigned reads number at order level in MPE5 control

sample.

Qualitative plot of the 12 ¢ values combinations of Pyro and Seq-Noise against the as-
signed reads abundance to known organisms at high taxonomical category (Order, Class)
and their corresponding biomass. A) 5" coxI barcode and B) 3’ coxI barcode. The bul-
lets dimension are proportional to the biomass of each taxonomical group name (see
Table 3.2). s=0: clustering distance parameter value used by expectation maximization
algorithm of Pyro- and Seq-Noise.

39



3 Section 2

F
B Blattodea R{R
= B Coleoptera
S | B Diptera
- B Hymenoptera
O Isopoda
2 o B Lepidoptera
S 8 - O Myriapoda
o - F
(5}
°
©
Q
o o
T S 1
e -
=] R
‘a R
12
<
o _|
=4
F
- F
T T T T T T T T
0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0
Biomass

Figure 3.5: Quantitative plot of organisms’ biomass and their assigned reads number at
Order and Class levels.

Taxon assignment was conducted on AmpliconNoise output using s=0 parameters of 60

and 25 for Pyro and Seq-Noise respectively. The 'F’ represent the reads mapping at 5

coxI barcode while the 'R” denote those mapping at 3

conNoise workflow was executed for all eight samples at ‘s60_s25" and
the assigned sequence read clusters was annotated by Hidden Markov
Model (HMM) classifier at order taxonomy rank.

3.3.5 Error rate evaluation

To compare base call errors of sequence reads with and without denois-
ing a naive clustering of un-denoised sequences was performed and
compared with denoised ones obtained from AmpliconNoise pipeline.
The naive clustering consisted on collapsing all identical sequences of
the same length and composition to unique representative ones. The
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Figure 3.6: Quantative plot of organisms biomass and their corresponding assigned reads
number at species level.

Taxon assignment was conducted on AmpliconNoise output using s=¢ parameters of

60 and 25 for Pyro and Seg-Noise respectively. The 'F’ represent the reads mapping

at 5’ coxI barcode while the 'R’ denoten those mapping at 3’. CF Calathus fracasii; CL:

Carabus (Chaetocarabus) lefeburei bayardi; CC Carabus (Tomocarabus) convexus dilatatus; LL

Laemostenus latialis.

error rate of both pyrosequencing and PCR polymerase was evaluated
using Shannon entropy (H) (Shannon and Weaver, 1963) information
calculated on naive, Pyro- and Seq-Noise sequence clusters. A com-
parison of entropy information between sequence clusters produced by
Pyro- and Seq-Noise showed that error rate was heterogeneously orig-
inated from both pyrosequencing and PCR polymerase. A predomi-
nance of PCR errors over pyrosequencing ones was evident in NH-5,
CA-5,SH-5, SA-5" and MPE4-5" samples while the opposite was found
in the remaining samples (Figure 3.7). This can provide a serious idea
about error rate within sequence reads that can negatively interfere
with a precise species assignment. Sequence number, entropy values
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Figure 3.7: Percentage of lost entropy within read clusters following Pyro- and Seq-Noise
computation.
The percentages were calculated taking naive clusters as reference.

and their corresponding percentages over all denoising pipeline from
pattern-based trimming to the final denoising step are in Table 3.4.

Comparing Figures 3.7 and 3.8, it is possible to observe that 3" sam-
ples have bigger variation left after denoising than 5 ones. This dif-
ference seems to be caused by a greater amount of variation removed
by denoising in 5" samples. The hypothesis is that the origin of this
difference in the intensity of denoising procedure could be connected
to the effect of GC content on the ability of sequencing reaction to
work correctly. To test this hypothesis, the contribution of expected
biological variation and the GC content on denoised read variation was
tried to parse, taking into consideration the PFT sequences assigned to
Coleoptera (the taxonomic group with more reads and a best set of ref-
erence sequences). In this perspective, ANOVA was computed using (i)
the values of the mean exponential entropy value (Jost, 2006) calculated
for each site of reference Coleoptera multiple alignment, (ii) the mean
percentage of GC content obtained from the GC percentages at a sliding
window of 100 nucleotides and (iii) the mean exponential entropy value
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Figure 3.8: Clusters number at 5" and 3’ coxI barcode for all ¢ combination of MPE5
sample.

Sequence clusters were obtained subsequently to denoising process where each cluster is

represented by a unique sequence representing one (singleton) or more sequences.

calculated for each site of the multiple alignment of sequence clusters
assigned to Coleoptera and belonging to MPE5 sample. The latter was
calculated separately for the 5 cox] DNA barcode, taking just the first
400bp of the multiple alignment, and the 3’ one starting from the 200th
site until the end.

As expected, ANOVA results (Table 3.3) showed that the diversity in-
dex (expressed in exponential entropy value) of the assigned sequence
clusters is linearly explained by that of reference sequences. In addition,
the variability of entropy value in sequence clusters was statistically sig-
nificant given GC content at both 5" and 3’ cox] DNA barcode; but, the
sum of squares values indicated that this significant variability due to
GC content is larger at 3’ coxI barcode (38 corresponding to 17% of total
read variance) than that at 5" (4.5 equivalent to 2.4%). These results in-
dicate some shortcomings of AmpliconNoise given by its incapacity to
remove the excess of errors due to GC. In fact, if this was false, a minor
difference in variation between the two groups would be expected at the
end of denoising process. Chimeric sequences, detected by Uchime al-
gorithm, were distributed homogeneously at both 5" and 3’ ends of coxI
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Figure 3.9: Chimeric sequences percentages per sample.

Table 3.3: ANOVA results.

5’ coxI barcode analyzed sites: 1:400 3’ coxI barcode analyzed sites: 200-end
GCmean exp(RefEnt) Residuals GCmean  exp(RefEnt) Residuals
Degree of freedom 1 1 562 1 1 562
Sum of squares 4518 58.766 123.808 37.999 50.025 135.407
Mean square 20.507 266.754 0.220 37.999 50.025 0.241
F-value 20.507 266.754 - 157.71 207.63 -
Pr(>F) 7.257e-06 *** < 2.2e-16 *** - < 2.2e-16 *** < 2.2e-16 *** -

ANOVA of conservation pattern expressed in mean exponential entropy of assigned
sequence clusters to Coleoptera order against average GC content and conservation
pattern of Coleoptera reference sequences.

Significance codes: 0 "*** 0.001 *** 0.01 * 0.05 "." exp=exponential; RefEnt=reference
entropy.

DNA barcode region. Chimerism results show that the most abundant
chimeras were singletons obtained after denoising process. This fact
can justify the identity of some singletons as amplification artifacts and
not as true organisms’ sequence. However, the percentage of chimeric
sequences was relatively low and ranged from 0.8 to 2.5% (Figure 3.9)
which can be attributed to the optimized conditions used in sequencing
libraries preparation.
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Table 3.4: Sequence reads number along denoising process.
Sample Reads RFrag Lenght Filtered RFrag Naive Clusters PyroNoise Cluster ~Ampliconoise Clusters Chimera Free Clusters

NH_F 54591 7763 7276 5476 2541 883 740
NH_R 11479 10642 9410 4676 3042 2895
NA_F 84402 29919 27761 20673 5895 1049 787
NA_R 29601 27767 19788 6518 3172 3009
CH_F 92598 1301 1253 1226 553 275 257
CH_R 4109 6436 3888 2741 2011 1949
CA_F 78938 20497 18909 15655 5090 887 695
CA_R 24634 23042 19197 7544 3192 3027
SH_F 56019 5461 5212 5226 2537 731 605
SH_R 8677 7906 7789 4218 2676 2565
SA_F 86936 29118 27187 21078 6163 919 660
SA_R 31919 29659 23056 7813 3771 3573
MPE4_F 67672 23449 21837 19856 7656 1675 1271
MPE4_R 22942 20396 19339 8126 4357 4097
MPE5_F 92494 35023 32479 24736 5116 844 650
MPE5_R 38534 34036 26100 5009 2060 1945

F = forward (5’ coxI barcode).

R = forward (3’ coxI barcode).

Read = Reads obtained from 454 (Roche life science) Sequencing machine.

Rfrag = Read Fragments obtained from trimming based on the found pattern.

Length Filtered Rfrag = Amplicon Noise filtering during Flowgram clustering and
filtered at Flowgrams length longer than 100. Naive Clusters = unique sequences in
lenght and composition (zero indels).

PyroNoise clusters = Clusters obtained after executing PyroNoise (the first step of
AmpliconNoise pipeline). AmpliconNoise Cluster = Clusters obtained after executing
AmpliconNoise pipeline. By substracting the number of AmpliconNoise Clusters from
PyroNoise ones, we obtain the number of SeqNoise clusters.

Chimera Free Clusters = Clusters remained after Chimera removal with Uchime.

3.3.6 Taxon assignment
Hydrophilic samples

Following read clusters assignment to taxonomical orders by HMM
classifier (HMMer3.0), all sequences that passed the threshold of Bayes
Factor (BF) were considered potentially assigned to a taxonomical or-
der name while the remaining ones were categorized as unclassified.
This assignment revealed that CH (central hydrophilic) embraced the
highest taxonomical diversity pattern as its representative sequences
belong to 55 taxonomical orders. The less taxonomical diversity was
encountered in NH (northern hydrophilic) to which 37 taxonomical or-
ders were attributed while SH (southern hydrophilic) presented an in-
termediate diversity pattern of 44 orders when compared to the other
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samples. Comparing abundance distributions across reads with taxo-
nomical assignment, it is evident that samples having more singletons
(CH followed by SH and NH) represented a higher taxonomical diver-
sity. These singletons might probably represent rare species not yet
discovered or catalogued in the taxonomy. To represent clearly taxo-
nomic profiles for each analyzed data set, taxonomical assignments at
both 3" and 5" ends were summarized together in a unique assignment
pattern. 74.5% of hydrophilic sequence clusters were assigned to a total
of 66 orders while the remaining 25.5% were unclassified. The most
abundant taxonomical orders rank, having more than 50 assigned read
clusters, are listed as follows in decreasing order of abundance: Hap-
lotaxida, Rhabditida, Amphipoda, Hemiptera, Ascaridida, Tylenchida,
Pyrenomonadales, Pantopoda, Philodinida, Rhodobacterales, Isoptera,
Coleoptera, Siphonophora, Rhodospirillales, Mesostigmata, Rickettsiales,
Orthoptera, Acoela, Ploimida. An important taxonomic assignment
aspect can be observed in hydrophilic samples where 25 orders were
shared between the three geographical areas while 21 between two,
and 20 were unique for one of the three areas.

Aerophilic samples

As in the case of hydrophilic samples, read clusters that passed the
threshold of Bayes factor were assigned to the corresponding order on
which they matched. Sequences belonging to SA (southern aerophilic)
showed the occurrence of 33 orders while 29 and 24 orders were checked
in NA (northern aerophilic) and CA (central aerophilic) respectively.
Samples with abundant singletons, NA at 5" and SA at 3’, depicted a
higher taxonomical diversity than CA whereas the latter represented
the highest number of clusters assigned to the same order. Taxonomic
identity of 57.7% sequence clusters in aerophilic samples were classified
in 48 orders while 42.3% were Unclassified. Orders sorted in decreasing
abundance and having more than 50 assigned sequence clusters were:
Coleoptera, Oribatida, Hemiptera, Mesostigmata, Trichoptera, Diptera,
Amphipoda, Araneae, Orthoptera, Decapoda, Collembola, Neuroptera,
Astigmata. In addition, 13 orders were shared between the three geo-
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graphical sites while 14 between two and 21 unique for one of the three
sites. Note that, the shared orders have different abundance across sites
and sometimes their occurrence within a site is represented by just few
individuals or singleton sequence as in the case of Haplotaxida and
Strepsiptera.

Pitfall traps samples

The assigned sequence clusters to a known taxonomical order con-
firmed a higher taxonomic complexity in MPE4 harboring 34 taxo-
nomical orders than that of MPE5 embracing only 22. In addition,
cluster counts across the same orders were in most cases more abun-
dant in MPE4 when compared to those of MPE5. As expected, or-
ganisms belonging to the order Coleoptera were found at high but
different abundance in both MPE4 and MPE5 (Table 3.5). Carabids
species morphologically identified were not all found in PFT samples,
where three species were missed: Abax parallelepipedus,Pterostichus mi-
cans and Calathus montivagus. This fact can be related to a certain am-
plification bias of universal primers within a bulk DNA sample is still
under examination and needs further consideration. Eighteen shared
orders were found in both samples with Coleoptera the most abun-
dant one. As expected, the majority of taxonomic orders found in
MPES5 were present in MPE4 being the same sample as the previous
but equilibrated for organisms biomass. However, MPE5 ascertained
three unique orders represented by singletons (Lithobiomorpha, Euni-
cida, Hemiptera) while MPE4 13 with low to intermediate abundance
(Table 3.5). A higher amount of unclassified sequences were established
in MPE4 (32.92%) compared to MPE5 (23.31%). In summary, the most
represented eukaryotic taxonomy orders sorted by their abundance in
PFT samples, with more than 50 assigned sequence clusters, are dis-
tributed as follows: in MPE4: Coleoptera, Hymenoptera, Diptera, Ar-
chaeognatha, Trichoptera, Isopoda, Heteronemertea, while in MPE5:
Coleoptera, Diptera, Trichoptera.
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3.4 Discussion

Taxonomic profiling based on high-throughput sequencing of species
discriminant locus has been and still being used in numerous microbial
biodiversity studies where it showed its feasibility in monitoring mi-
crobial species of clinical or ecological relevance (Fonseca et al., 2010;
Buee et al.,, 2009; Brulc et al., 2009; Bittner et al., 2010; Singh et al.,
2009). However, apart from few studies regarding meiofaunal biodi-
versity assessment through ultrasequencing of 185 rDNA (Creer et al.,
2010), there is a single study that used the cox! pyrosequencing tech-
nology in biomonitoring few macroinvertebrates taxa of river benthos
(Hajibabaei et al., 2011). In our study, a large-scale biodiversity assess-
ment of metazoan taxa in chestnut soil ecosystem is addressed for the
first time. The effectiveness of coupling cox]I DNA barcoding with 454
(Roche Life Science) pyrosequencing technology is demonstrated. In
addition, the importance of biomass equilibration to unveil the true di-
versity picture of chestnut soil environment is evaluated. Moreover,
the relevance of parameter setting in sequence reads denoising and the
need of an internal control sample to model errors distribution is con-
firmed. Several promises and considerations have emerged throughout
the present study especially regarding sequencing libraries preparation
and sequence reads filtering, sampling and organisms extraction pro-
cedures related to taxonomic profiling and taxon assignment method.

Sequence reads denoising and GC content

Sequence reads denoising showed its effectiveness in correcting base
errors coming from pyrosequencing and/or PCR polymerase during
DNA enrichment. This fact was evident where na’tve sequence clusters
entropy was higher for all samples than that of AmpliconNoise clusters
obtained from the combined effect of Pyro- and Seq-Noise. In addition,
de novo chimera removal algorithm of Uchime showed its high perfor-
mance, in terms of computation cost and precision, in detecting and re-
moving sequencing and amplification artifacts. Sigma () screening, the
magnitude clustering parameter of Pyro- and Seq-Noise, has revealed
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several important facts concerning sequencing and PCR polymerase er-
rors. In relation to the results obtained by Hoff (Hoff, 2009), our inves-
tigations on the effect of GC content on sequence diversity was evident
from ANOVA outcomes (Table 3.3) where GC content has contributed
to the increase of unreal sequences especially at 3" end cox] DNA bar-
code. These results highlighted the reliable sensitivity of Amplicon-
Noise pipeline in 454 sequence reads correction. The accuracy and pre-
cision of AmpliconNoise over the 12 ¢ values combinations showed a
scarce performance following taxon assignment at species level while
an acceptable protocol pointing taxonomy order rank. Moreover, qual-
itative plots as well as quantitative ones approved a straight correlation
between reads number with their corresponding organisms’ biomass
just at taxonomy Order rank but never at species one (Figures 3.3 3.6).
Nevertheless, the impossible detection of some organisms belonging to
a pre-identified higher taxonomical group (order and/or class, Table
3.2) at the best ¢ parameter values could suggest the use of an inter-
nal error distribution by sample. This distribution can be generated by
the control DNA usually sequenced together with the sample itself and
setup it for PyroNoise; while PCR polymerase error distribution can
arise from the construction of an artificial library of a taxonomic com-
plexity similar to that of the empirical sample with known sequence
coming from sequenced clone products of the genomic region of inter-
est.

Sequencing libraries preparation

In this study, the final yield of sequence reads suitable for taxonomic
profiling analyses was affected by several pre-processing procedures
starting from pattern-based trimming to chimera removal. Pattern-
based trimming which was a necessary operation for shotgun sequenc-
ing libraries seriously reduced the final number and the overall se-
quence reads length. A considerable importance of the sequencing li-
braries preparation used is that it promoted the harvest of whole coxI
barcode region which is currently rare to get by the NGS platforms.
A plausible alternative library preparation method recommends the
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preparation of amplicon libraries sequencing (Buee et al., 2009; Yu et al.,
2012; Zhou et al., 2011; Lee et al., 2011) to reduce read loss and keep
read length intact. For this purpose, sequencing platforms might reach
the capacity to sequence long amplicons to prevent reads loss and in-
crease sequencing coverage fundamental for more reliable results in
downstream analyses.

Taxonomic profiling

Taxonomic profiles corresponded mainly to metazoan organisms and
encompassed 66, 48 and 34 taxonomical orders rank for hydrophilic,
aerophilic and pitfall traps respectively. These results approved the ca-
pacity of Folmer primer set in amplifying the cox] DNA barcode of a
large spectrum of metazoan species (Rougerie et al., 2009; Folmer et al.,
1994; Zhou et al., 2011; Raupach et al., 2010). An additional feasibility
feature of these primers is the amplification of bacterial (Richestsiales,
Rhodospirillales and Legionellales), fungal (Saprolegniales) and algal
(Cryptomonadales) individuals. These analyses highlighted also a con-
sistent group of unclassified sequences that can be justified by the low
number of described Eukaryotic species estimated to just 14% on the
Earth (Mora et al., 2011). An important aspect that characterized all
analyzed data sets is the higher variability of cox] DNA barcode at its
3’ end. This fact was explained by GC content and suggests a GC con-
tent normalization of denoising protocols based on a reference train-
ing data set having similar characteristics as the sample under study.
The unusual presence of marine organisms (e.g. Pantopoda, Decapoda,
Siphonophora), even at low abundance could be introduced either by
a shortcoming in denoising normalization that introduced a systematic
error along the taxon assignment step or by a low discriminative ca-
pacity of cox] DNA barcode for these organisms. Moreover it is also
proper to think of a possible airborne contamination. We still know too
little about the dynamics of small organism and DNA dispersions on
the environment in order to exclude this hypothesis.

Conservation patterns or intersections of taxonomic orders across
sites and between hydrophilic and aerophilic sample categories put in
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evidence the interaction of these organisms with the microhabitat of
chestnut soil. The differences in individual abundances within the con-
served taxonomic orders across hydrophilic and aerophilic samples ex-
press so far the role these organisms exhibit in different habitats as well
as the influence of the global climate on them. For instance, species
belonging to Coleoptera order were the most abundant in aerophilic
samples because they are inhabitant of soil litter while Haplotaxida
were those most abundant in Hydrophilic samples due to their affinity
towards water films in the second 10cm of soil. Note that, Coleoptera
can be directly affected by soil and climate conditions as they are soil
dwelling crawlers and consequently indicating the forest ecology con-
ditions. This fact justify the differences in their abundance among the
three sampled geographical sites and consequently their use as environ-
mental indicators for forest ecology (Jeffery et al., 2010). The presence
of Haplitaxida species is an indicator of soil health given by their main
activity in soil aeration and organic matter release. These conservation
aspects reflect strongly the importance of organismal extraction meth-
ods in separating organisms belonging to different micro-habitats (soil
strata) and eventually are part of a specific micro-ecosystem.

Another example of forest conditions interaction with the soil organ-
isms content across sites is the presence of Rhabditida and Tylenchida
species, known to be phytoparasitic, plausibly correlated to the pres-
ence of different vegetation in the sampled chestnut soil forests highly
influenced by the regional climate. In aerophilic samples, the preva-
lence and the difference in abundance of Coleoptera, Collembola, Tri-
choptera and Neuroptera, members of the macrofauna, is reasonably
due to their direct relation with environmental conditions in terms
of weather and soil conditions. For instance, Collembola are feeder
of fungus and organic matter which can vary between two different
chestnut forests; while, members of Neuroptera are predators of some
Hemiptera species that live and eat on plant foliage. The compar-
ison between controls samples, the pitfall traps collected MPE5 and
the biomass- equilibrated (MPE4) derived from it, highlighted relevant
details for sampling and PCR amplification procedure optimization.
In details, equilibrating biomass and diluting DNA extract at 1/50 in
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MPE4 revealed higher number of taxonomic orders even at low or in-
termediate abundance potentially due to the reduction of inhibition
activity within diluted DNA sample; while the amplification success of
DNA extract without dilution in MPE5, where the highest biomass of
Carabids dominated, is actually correlated to the higher mitochondrial
presence and eventually coxI in greater biomass content. The detection
of 13 additional orders in biomass-equilibrated sample when compared
to its naturally occurring one provides insights about the importance of
biomass balance used in environmental samples suspected to sequenc-
ing. Therefore, biomass dominance within samples seemed to alter the
true taxonomic profile by masking significant organisms in a forest and
soil environment such as Oribatid mites and organisms belonging to
Orthoptera, Collembola and Archaeognatha. The actual significance be-
tween the number of detected orders and their corresponding sequence
reads abundance may be due to a random loss of rare species across
experimental manipulation, mainly the universal primer amplification
bias that potentially masked existing individuals. This aspect will be
explained and demonstrated in an on-going publication regarding the
same control samples. To conclude, discovering and monitoring soil
metazoan biodiversity has been a real scientific challenge mainly due
to the pronounced number of un-described species within soil environ-
ment. Coupling DNA barcoding approach with high-throughput 454
pyrosequencing showed to be a robust and fast method in accessing
information about chestnut soil metazoan biodiversity and can be sug-
gested for biodiversity studies to understand species population dy-
namics and their corresponding interactions within their ecosystem.
The practical value of this coupled approach allowed the maximiza-
tion of species recovery from samples and the construction of taxo-
nomic profiles both shared between samples as well as unique for each
site. The unique taxonomic orders found in all sample categories (hy-
drophilic, aerophilic and pitfall traps) might be due to a true diversi-
fication among geographical areas or to the shortcomings of denoising
procedure not considering GC content and therefore influence directly
taxon assignment methods. To address this challenge, is recommend
the consideration of introducing an additional parameter regarding GC
content in denoising pipeline, assessing a phylogenetic taxon assign-
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ment method and compare it with the present one to ensure its consis-
tency and reliability.
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Table 3.5: Taxonomic Orders rank in Pitfall traps
Shared Taxonomic Orders between MPE4 and MPE5

Order Name MPE4 MPE5
Coleoptera 1794 1493
Hymenoptera 370 3
Diptera 209 163
Trichoptera 146 79
Isopoda 141
Heteronemertea 51 1
Rickettsiales 38 14
Amphipoda 37 3
Mantodea 33 21
Neuroptera 22 6
Pyrenomonadales 18 9
Plecoptera 10 12
Lepidoptera 8 41
Primates 7 13
Blattodea 6 1
Glomerida 5 2
Decapoda 3 1
Sphacelariales 3 1
Unique Taxonomic Orders for MPE4
Legionellales 215 -
Archaeognatha 147 -
Alteromonadales 54 -
Orthoptera 35 -
Collembola 27 -
Oribatida 15 -
Tremellales 10 -
Dictyotales 4 -
Araneae 3 -
Ephemeroptera 3 -
Oceanospirillales 3 -
Capnodiales 3 -
Perciformes 2 -
Ascaridida 2 -
Haplotaxida 1 -
Mesostigmata 1 -
Onygenales 1 -
Unique Taxonomic Orders for MPE5
Eunicida - 1
Hemiptera - 1
Lithobiomorpha - 1

Taxonomic Orders rank in Pitfall traps (PFT) samples and their corresponding sequence
clusters abundance per sample type.
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Observing microbiota invasion mediated by
Varroa destructor to Apis mellifera

4.1 Introduction

The interpretation of host-parasite interactions is one of the most in-
triguing themes in biological studies. In a symbiotic relationship the
partners reciprocally influence their physiology and, in general, their
evolution. Nowadays, the characterization of the microbiome (intended
as the sum of microscopic living beings found in a symbiotic relation-
ship in different host body compounds, ranging from the gut to the
skin), is considered pivotal to undestand physiological changes in a
symbiotic relationship (Mazmanian et al., 2005). In recent years the
parasitism, a of symbiosis, has become one of the most studied, with
the publication of several papers describing the microbiome composi-
tion of different hosts (Sanchez et al., 2012; Meriweather et al., 2013;
Dimitriu et al., 2013). In spite of such interest, the understanding of
the mechanisms influencing microbial diversity and its distribution be-
tween the host and its symbiont is essential to describe the dynamics
occurring in a symbiosis.

To explore these dynamics a classical approach for the analysis of mi-
crobial communities was tested against a new approach considering the
phylogenetic entropy as a measure of diversity (Chao et al., 2010). The

55



4 Section 3

phylogenetic entropy is a generalization of Shannon entropy that takes
into account the fact that the different categories observed are not all
equally different from each other but have a similar structure that could
be modeled using a phylogenetic tree. The use of Shannon entropy is
quite new in community ecology studies. Indeed, researchers have just
started incorporating historical constraints represented as phylogenies
into their analyses. This innovation is motivated by the aim to bridge
the gap between evolutionary and ecological analyses (Lozupone et al.,
2011) Aware of the great potentials of this new vision, was decided to
test it on the biological model constituted by the honey bee (Apis mellif-
era) and its parasitic mite varroa (Varroa destructor). The rationale is that
the analysis of the microbiome of both varroa parasites and honey bee
larvae could open new perspectives concerning the role of varroa on
the health of honey bee colonies and the phylogenetic entropy approach
would became a new standard in the analyses of bacterial communities.

Varroa destructor (Arachnida: Varroidae) has been described as a ma-
jor cause affecting honey bee colonies. Many studies documented the
role played by V. destructor in increasing the incidence of deformed
wing virus (Mockel et al., 2011)and as a vector of bacterial pathogens,
such as those responsible for European foulbrood (e.g. Mellisococcus
plutonis) (Forsgren, 2010; Evans and Schwarz, 2011) V. destructor para-
sites mainly honey bee larvae in their brood cells, where female mites
feeds on honey bee hemolymph, and lays eggs. Hatched varroa males
and females mate, and when the honey bee emerge from the brood cell,
the fecundated females of the parasite start the phoretic phase on adult
bees, until they reach a new brood cell in the same nurse or disperse
in other hives using worker adults (Pernal et al., 2005). Mites have a
large dispersal capability and in absence of reiterate chemical and/or
antibiotic treatments, infested honey bee colonies typically collapse in
few years.

For these reasons, the occurrence of varroa has serious consequences
in the ecological, social and economic contexts (Rinderer et al., 2010;
Rosenkranz et al., 2010; Annoscia et al., 2012; Guzman-Novoa et al.,
2012). The characterization of microbial communities involved in A.
mellifera biology has proven to be a good indicator of its state of health
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(Martinson et al., 2012). Nevertheless, the ecological dynamics of the
honey bee varroa parasitic symbiosis are still largely unknown.

The studies conducted so far on adult honey bees showed a char-
acteristic microbiome whose structure has been confirmed in various
papers (Jeyaprakash et al., 2003; Dillon and Dillon, 2004, Mohr and
Tebbe, 2006; Martinson et al., 2011; Sabree et al., 2012). However,the
microbiome of the larval stages as well as that of the parasitic mite are
largely unknown (see for examples, (Martinson et al., 2012; Cornman
et al., 2010)). As a consequence, apart from few dedicated works on
the trasmission of specific pathogens (Mouches et al., 1984; Forsgren,
2010), it is still unclear if and how bacterial communities of honey bee
and varroa affect each other.

The subject of of work is highly up do date, indeed the general inter-
est in microbiomes is supported by several recent studies. For instance,
there are evidences that humans and mice subjected to different kind of
stress (such as diseases, parasites, ecological factors) are characterized
by intense modifications in their own microbiomes in terms of initial
colonization, final composition and overall stabilization (Candela et al.,
2012; Lozupone et al., 2012). Given these premises, it’s reasonable to
expect alterations of honey bee microbiome due to the symbiosis with
varroa.

Previously published data indicate a peculiar pattern of microbiome
dynamics over the life cycle of the insect. The pupa is almost sterile, as
a consequence of the physiologic characteristics of the gut tract and the
diet of mature larvae during the six days before capping (i.e. the closure
of the brood cell) (Martinson et al., 2012). The larva retains its faeces
from the early days of development, due to the temporary absence of
a connection between the large midgut and the hindgut. The mature
larva defecates just before spinning a cocoon, when the capping has
already happened. Since the cocooned pupa obviously does not eat, we
can assume that there is no further colonization by bacteria present in
the brood cell. Through these mechanisms the early microbiome char-
acterizing honey bee larvae is maintained constant in composition and
ubiquitous in space (Jeyaprakash et al., 2003; Mohr and Tebbe, 2006).
On the whole, it is reasonable to assume that the bacterial load within
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the brood cells partially reflects the total bacterial count of the hives
and that the microbial communities characterizing the hives are par-
tially present in the cells even after the capping (Martinson et al., 2012).
But what happens when varroa alter this equilibrium? The disturbance
of varroa in the developmental phase, and the consequent formation of
the nutrition hole caused by the parasite, could lead to the intrusion of
external bacterial into the larva, with a substantial modification of the
bacteria community.

The hypothesis is that varroa mites play a fundamental role in the
alteration of bacterial composition of honey bee larvae, acting not only
as a vector, but also as a sort of an open "door" through which ex-
ogenous bacteria alter the mechanisms of primary succession in the
“simple” honey bee larval microbiome. To validate this hypothesis,
varroa and honey bee bacterial communities were studied through bar-
coded amplicon pyrosequencing methods, taking advantage of the NGS
methods (Blow, 2008; Metzker, 2010) and the opportunity to detect un-
cultured and uncultivable bacteria allowed by such techniques. The
results showed a significant alteration of the microbiome of parasitized
honey bees and an advantage of this new method in terms of capability
to recognize the OTUs that can discriminate the categories examined.

4.2 Materials and Methods

A schematic vision of the experimental pipeline is shown in Figure 4.1

4.2.1 Sampling

Honey bees larvae and varroa mites were sampled directly from capped
brood cells in 8 apiaries in Northern Italy. A total of 43 samples were
used for the molecular analysis. 21 individuals of honeybee larvae from
7 different apiaries and, for each one, the varroa mites found in the
same brood cell; as a negative control, a pool of 5 healthy larvae from
a non infected site was analyzed. Opercula of cells were opened with
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Figure 4.1: A schematic vision of the experimental pipeline
In the figure is summarized all steps analysis used to explore diversity in the bacterial
communities. Different colours were used to describe the variability of the approach
involved in the analysis.

sterile instruments; honeybee larvae and varroa were immediately re-
moved and put in 2 ml tubes filled with absolute ethanol. The samples
were stored at —20°C until the DNA extraction.In the study area, V.
destructor is abundant and widespread; for this reason, a only one non-
infested apiary was found. This apiary was determined to be healthy
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after a careful inspection of all the hives.

4.2.2 DNA extraction

All the extraction steps were performed in a sterile biological hood.
After the removal of the head, only the first segments of A. mellifera
specimens were used for the extraction, while for V. destructor DNA
was extracted from the whole organism. The dissections were made
with a sterile scalpel in a Petri dish. Every sample was then rehydrated
for 4h in sterile water at room temperature, and mechanically grinded
with the scalpel. Total DNA was then extracted using a commercial
kit (DNeasy blood and tissue kit; Qiagen), and eluted in 50 y [ sterile
water. A pretreatment of Qiagen columns was performed to wash away
any trace of contaminating bacterial DNA (Evans et al., 2003; Moham-
madi et al., 2005). Following the DNA extraction from individual mites,
DNA extracts from mites coming from the same brood cell were pooled
together. Similarly, extracts from five larvae in the non-infested apiary
were pooled.

4.2.3 16S rRNA amplification and pyrosequencing

A 165 rRNA gene fragment corresponding to the V3 hypervariable
region was PCR-amplified with Roche 454 FLX (Titanium reagents)
using forward primer 341F (5-CCTACGGGAGGCAGCAG-3’) and re-
verse primer 518R (5-ATTACCGCGGCTGCTGG-3') (Watanabe et al.,
2001). A second PCR step using the products of the firsts as template
was then performed. The first reaction was performed in a 20 ul vol-
ume with the following reagents: Tag-buffer with MgCI2 1X dNTPs 2
mM, forward and reverse primers 1 pmol/ul each, Taq polimerase 0,5
U/ul, DNA 1 ul, milliQ water. The thermal cycle was: 94° for 90 s, 29
cycles at 94° for 20 s, 94° 30 s, 94° for 20 s and then 94° for 10 s and
60° for 5 min. The second PCR reaction step was performed with the
use of 52 bp primers, comprising pyrosequencing primers A or B, MID
identifiers and 518R or 341F primers. The reagent concentrations were
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the same except for the primers (0.5 pmol/ul). The thermal cycle was
94° for 90 s, 40 cycles at 94° for 20 s, 58° for 30 s, 72° for 20 s and then
72° for 10 s and 60° for 5 min. For every sample a unique combination
of MIDs on the primer forward and reverse was used. PCR products
were quantified using Bioanalyzer 2100 (Agilent) in order to put in the
pool to be sequenced the same number of DNA amplicons coming from
every sample. 454 pyrosequencing was performed by BMR Genomics
service at the Interdepartmental Biotechnology Centre of the University
of Padua (CRIBI).

4.2.4 Sequences analysis

Acacia software version 1.52 (Bragg et al., 2012) was used for pyrose-
quencing noise removal considering Balzer Error model and a Maxi-
mum k-mer distance between reads of 13 (default parameters for error
corrections). All reads were trimmed, filtered and assigned to the corre-
sponding sample according to their tag. Sequences shorter than 100 bp
with a quality value less than 30 or containing unresolved nucleotides
were removed from the dataset. The detection of chimera reads was
performed using a pipeline based on USEARCH (Edgar, 2010) and
UCHIME (Edgar et al., 2011) included in Quantitative Insights Into
Microbial Ecology (QIIME) pipeline software (version 1.6.0) (Caporaso
etal., 2010). UCLUST wrapper was used to cluster the sequences in Op-
erational Taxonomic Units (OTUs), based on 97% sequence similarity.
The cluster centroid for each OTU was chosen as the OTU representa-
tive sequence.

To estimate diversity and reduce noise in patterns of beta diversity,
singleton OTUs were removed before community analysis (Zhou et al.,
2011). Using a Python script the Greengenes 16S rRNA database pre-
filtered at 97% identity(McDonald et al., 2012) was merged with a bacte-
rial OTUs dataset constituted by pathogens or symbiont (i.e. pathogens,
mutualists and commensals) previously described in studies conducted
on Apis mellifera (Mohr and Tebbe, 2006; Martinson et al., 2011; Mattila
et al.,, 2012; Martinson et al., 2012; Moran et al., 2012; Sabree et al.,
2012). All sequences used to create the bacterial OTUs dataset were
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downloaded after querying GeneBank database for published Acces-
sion Number or Taxonomy and clustered at 97 % sequence similarity.

The taxonomic attribution of representative sequence was carried out
using RDP Bayesian Classifier (Wang et al., 2007) retrained on the new
merged dataset, using a 0.8 confidence level as suggested for default
parameters in QIIME. OTUs were assigned by the RDP classifier, con-
sidering the fifth and sixth taxonomic levels where possible, which, in
most cases, corresponded to family and genus ranks. If RDP assigned
the OTU with a probability between 0.8 and 0.9, the representative se-
quence was sought in NCBI nucleotide database. When a perfect match
with BLAST was found the NCBI taxonomy was used.

4.2.5 Microbial Community Analyses

The community abundance profile produced by UCLUST and labeled
by RDP Bayesian Classifier was split in two groups depending if their
global frequency was lower or higher than 1%. This produced three
data sets: All (where all OTUs found are considered, AS), Low (where
only the OTUs with frequency lower than 1% are considered; Low
Frequency Cluster, LFC) and High frequency clusters (where only the
OTUs with frequency Higher than 1% are considered; High Frequency
Cluster, HFC). This allowed to explore the effect of dominant and rare
organism in the differentiation among the two hosts (honey bee and
varroa). Changes in community diversity in relationship with environ-
mental parameters, and organism groups that contributed the most to
the differentiation were examined using two different approaches one
based on distance method and the other based on a measure of en-
tropy. Both approaches take into account the phylogenetic structure
of the data, albeit in very different manner. Linear Mixed model is a
well known statistical framework in microbial community analysis that
allows to compare the effect of different explanatory variable together,
but require rarefaction of the data because sensitive to unbalanced sam-
pling design.

To cope with these limits for the first time in Microbial Community

62



4 Section 3

Analyses was applied partitioning phylogenetic diversity (Chao et al.,
2010) approach. This method is being framed within Information The-
ory and can deal directly with discrete value, without producing dis-
tance matrix. It can also incorporate information deriving from unbal-
anced sampling, thus it does not need a step of data rarefaction.

4.2.6 Distance and Mixed Models approach

All the analyses were performed on the rarefied OTU tables to permit
comparisons of diversity patterns within and between communities.
The number of OTUs (based on 97% sequences similarity) was deter-
mined for each sample. Community analyses were performed with QI-
IME (Caporaso et al., 2010) and R environment for statistical computing
(R Development Core Team, 2011) . To explore different perspectives
on the main factors that have an impact on microbial community com-
position involved it was decided to use both a qualitative (Jaccard and
Unweighted unifrac (Lozupone et al., 2011)) and a quantitative (squared-
chord (Cavalli-Sforza and Edwards, 1967; Orléci L, 1967) and weighted
Unifrac (Lozupone et al., 2011)) analyisis approach. Jaccard and squared-
chord distances were chosen as a complementarity metrics to Unifrac
metrics to test how the signal changes with or without phylogenetic in-
formation. The squared-chord distance metric was chosed because was
identified in previous works as a metric that fit well at an exploratory
analysis of communities where sampling was conducted blindly (see
for example(Legendre and Gallagher, 2001)).

To interpret the distance matrix we used UPGMA hierarchical clus-
tering method and we tested the robustness of results with a Jackknif-
ing analysis (1000 permutations). Furthermore, we tested the possibil-
ity of a microbial flow between honeybee and its parasite varroa using
a Linear Mixed Models (LMMs). The model used was the following;:

Unifracyy ~ A(CL,H::CCW + B(hiH::hiV) + €ceyy; + €cey t €niyy + Eniy

with (un)weighted Unifrac distances rarefied as the response variable,
as fixed effect A, ——c,,) and B(y;, —_p;,), respectively the pair of hon-
eybees and parasite of the same cell and the pair of all honeybees and
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all the parasites belonging to the same hives. Single honeybees (ec.;,)
and parasites (€, ) were treated as random effects as the single hives
(€niy, and €y, ). Models were fitted with the Imer procedure in the Ime4
package in R 2.8.1 (Bates and Maechler, 2009).

The core OTUs found in the honey bee and in the mite was identi-
fied using compute_core_microbiome.py script from QIIME. OTUs were
grouped according to their presence in a specific percentage of the total
samples. The groping-steps were defined as elevens threshold between
0.5 and 1, corresponding to the 50% and 100% of the samples, respec-
tively. This allowed to define the core community of each host species.
Specifically, to recognize the OTUs that are present in the majority of
the samples of a given host. Some figures, showing the taxonomic as-
signment and the abundance distribution, were made with the aid of
ggplot2 package in R (Wickham, 2009).

4.2.7 Partitioning Phylogenetic Diversity

Following the framework proposed by (Jost, 2007) it is possible to parse
the total entropy of a data set, named v, in intra-groups, called «, and
inter-groups, called B components. Jost clearly distinguish between
entropy measures, that have as unit bits (or nats, or bans, depending
from the base of logarithm), and diversity measure that have as unit the
equivalent number of equally abundant categories.

Partitioning operation are performed using entropies while the final
result is transformed in diversity by elevating to the base of the used
logarithm. Assuming that cluster label of observation is collected in
vector X and that group label is collected in vector Y, this framework
allows to define H,, as entropy of X, H, as conditional entropy of X
conditional to Y, and Hg entropy as H, — Hy or also as the mutual
information between X and Y.

It is important to notice that the § diversity (D), the exponential of
Hg , has as unit the equivalent number of equally abundant and dif-
ferent sample (the categories of Y), while D, and D, are measured in
equivalent number of equally abundant cluster (the categories of X).
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Within microbial community analysis, the interest lays generally in es-
timating the Dy or some transformation of it as the species turnover or
the species overlap. To assess if this measure is significantly different
from 1 (the group are as different as if they were only one group) the
realized statistics were compared with a null distribution obtained by a
permutation of X values on to Y ones. This procedure keeps number of
observation per group constant, allowing to account potential different
sampling effort per group. As described here this procedure do not
take into account the phylogenetic structure that links the categories of
the vector X.

This is possible using the phylogenetic entropy. The phylogenetic
entropy is a generalization of Shannon entropy that takes into account
the fact that the different categories observed are not all equally differ-
ent from each other but have a similar structure that could be modeled
using a phylogenetic tree. Following Chao et al. (2010), and assum-
ing that variable of the categories, here the cluster defined by UCLUST,
were organized with a phylogenetic structure t. Entropy measure could
be defined as follows:

L;
Hy(X) = — Y- Hpilogp

1€B;

where B; is the set of branches of the tree t and p; is the frequency
of the descendant of branch i. Once this point set it is easy to gener-
alize the partitioning of diversity to include phylogenetic information.
Phylogenetic entropy <y (Hp,) is equal to H,(X), while phylogenetic
entropy « is equal to the weighted by observation mean of the phylo-
genetic entropy per group more formally expressed as follow:

Hpa = Z Py Z Hy(X]Y =y)
yeYy xeX

while phylogenetic entropy beta (H,g) remain defined as the Hy, —
Hpy. Tt is important to notice that although phylogenetic entropy is a
generalization of Shannon entropy and such do not guarantee to keep
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all its properties is possible to show (Appendix I) that H,g as defined
here could be obtained both using this formula or using a phylogenetic
generalization of the Kullback-Leiber distance. This matches the dif-
ferent way to estimate the classical mutual information. Given that the
H,pp s a difference of two summations in which each term is relative
to a branch in the tree is possible to reorder the term and obtain the
contribution of each branch to the final Hg.

The approach was applied using the tree obtained from FastTree and
the another tree with the same topology but internal branch with length
zero and terminal branch with length 1. This last setting allow to per-
form the analysis as it was Shannon entropy but it using same software
implementation. These two alternative set up allow to evaluate the
importance of the phylogeny in defining the results. The method is
implemented in a python script (PhyloH!) and wrapped in a Web Ser-
vice? that is used within a workflow? that parse UCLUST output in the
correct input for the script. The full service is available on a portal* as
web application (Figure 4.2).

4.3 Results

4.3.1 Sequences Analysis

After sorting sequence reads for quality scores, sequencing errors and
chimeras, our dataset consisted of 34,816 sequences. An average of 809
DNA sequences (range: 250-1650 length: > 100 bp) were then avail-
able for further analyses. UCLUST returned 295 OTUs (All Sequences,
AS), where 21 exceeded the threshold of 1% of minimum total observa-
tions count (Hight Frequency Cluster, HFC)(tot sequences: 24,005) and
274 (Low Frequency Cluster, LFC) were defined as a rare OTUs (tot
sequences: 10,811). The complete list of OTUs found is in the Table 4.2.

lhttps: / / github.com/svicario/phyloH

Zhttps:/ /www.biodiversitycatalogue.org/rest_s_do5(m)ethods/143
3http: / /www.myexperiment.org/workflows/3570.html

4https: / /portall.at.biovel.eu/workflows /81
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Figure 4.2: An example of PhyloH output.
The output of python script is an interactive .html. This file is impossible to visualize
in a standard page. It is possible to traverse and navigate the tree. At the base the
colors ranging from yellow to red, indicating the contribution of a particular lineage in
discriminating variable considered (where yellow zero contribution and red maximum
contribution). The bars on the terminal nodes of the tree correspond to the relative
abundance of corresponding OTU.The colors are representative of the groups examined.
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Table 4.1: Counts across 3 data sets
Cluster Reads
All (AS) 295 34090
High (HFC) 21 23922
Low (HFC) 274 10168

The first row show the count from the original output of UCLUST in term of number of
cluster and number of read. Following row show the data set composed of only high
frequency cluster and low frequency cluster using 1% as threshold.

4.3.2 Microbial community analysis
Distance and Mixed Models approach

There are three environmental variables considered: (i) “cell”: single
bee and the corresponding parasite (found in the same brood cell). (ii)
“localities”: all bees and relative parasites present in a hive. (iii) “sta-
tus”: the differences between the pools of healthy honey bees, para-
sitized honey bees and the mites. The UPGMA analysis considering
Jaccard distance shows a strong a unique cluster for all samples be-
longing to the parasitized honey bees and the mites, and a separate
cluster for the pool of healthy honey bees. However, with chord metric
, which considers the abundances information of the OTUs, the analy-
sis shows two different distribution between the parasitized honey bees
and the mites (figure tree). Using the same metrics it did not find any
distinctive traits in the microbial composition between cells or hives, in
relation to the sampling localities (Figures 4.3.

These findings agree with the results of the same test performed us-
ing unweighted and weighted Unifrac distances. Taking into account
only the 21 OTUs that exceeded the threshold of 1% of the total distri-
bution, they were found both in the parasitized honey bees and in the
varroa mites with different values of relative abundance (See Table 4.1
and Figure 4.4).

The coefficients of the LMMs model showed that the distance be-
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Figure 4.3: UPGMA trees of chord metric for localities.
Any colors indicates the menberships of a sample to one of the 8 locations considetate.
A) UPGMA tree of the AS B) UPGMA tree of the HFC ¢) UPGMA tree of the LFC

tween the honey bee and its varroa does not differ significantly from
the distance between a honey bee and a varroa taken at random from
another cell . The coefficients of the same model also indicate that
the distance between the honey bees of a locality and the mites of the
same locality does not differ significantly from the distance between
the honey bees from another locality and the mites of a locality taken
at random from the others (all coefficients are not significative (p >
0.05). Based on these results the microbiomes characterizing the healthy
honey bees, the parasitized honey bees and the mites were described.
For a complete description of the distribution of the OTUs found asso-
ciated with the three categories considered, refer to Figure 4.5.
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Figure 4.4: Jackknifing of PCoA analysis of host and parasite samples with weighted
UniFrac.

Shown is a plot of the first two principal coordinate axes (factors) for PCoA with the

resulting tree of FastTree tool. Point locations are the average location in the 100 jackknife

replicates.Color ellipses represent the IQR for the 100 jackknife replicates. A) PCoA

considering the 21 most represented OTU. B) PCoa considering 274 rare OTUs.

The core microbiome

Regarding the pool of healthy honey bees, only three OTUs were found
and one of them (Proteo-7 a member of the genus Serratia) represents
the 99% of presence in abundance. The remaining 1% is composed of
OTUs Proteo-2 and Firmi-7, respectively identified as Achromobacter
sp. and Lactobacillus sp. Analysing the curves (Figure 4.6 returned by
QIIME script it was decided to take a 0.8 threshold to define the core
microbiome of the host and the parassite, being the point from which
both curves tends to shift down faster. This means that a single OTU
must be present in the 80% of the samples of a species to be considered
“core” for that species.

The honey bee larvae found in association with varroa show a set of
bacteria more complex than the one found in the pool of healthy honey
bees. All samples of parasitized honey bee are dominated by the Firmi-
1 and Proteo-1 OTUs, respectively Streptococcus sp and Hydrogenophilus
sp. An OTU (Firmi-3) belonging to Clostridiaceae family previously
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Figure 4.5: Distribution of the 21 most represented OTUs founds in the parisitez honey

bee and in varroa mite.
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Figure 4.6: Core microbiomes inferred in parasitized A.mellifera and V. destructor
Core microbiomes were inferred using QIIME script at a range of cutoffs (x-axis).

found in other study on honey bee microbiome was detected (Moran
et al., 2008). This OTU with Firmi-5 and Actino-1 are evenly distributed
between all samples. We also found four poorly represented OTUs,
Proteo-6 of the Escherichia genus, Proteo-4 of the Pseudomonas genus,
Proteo-2 of the Acromobacter genus and Firmi-2 of the Bacillus genus.

Considering the bacterial communities associated with V. destructor,
it emerges that nine OTUs are present in at least 80% of the samples.
As in the case of A. mellifera the phylotype most represented (Firmi-
2) belong to the phylum of Firmicutes and in particular to the genus
Bacillus. Most in general, the distribution of singles OTUs among all
varroa samples is less homogeneous than in the honey bees (Figure
4.7).

A series of OTUs typical of different habitat such as soil or associated
to flowers (Bacte-1, Bacte-2-Firmi-6-Proteo-1) were identified. Proteo-2
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(genus Achromobacter) was the second OTU most represented but is
also the one highly shared with honey bee. As well as in the honey-
bee, an OTU belonging to the genera Pseudomonas (Proteo-4), Escherichia
(Proteo-6) and Streptococcus (Firmi-1) was found. The complete descrip-
tions of distribution of the OTUs belonging to the High frequency clus-
ter are provided in (Figure 4.5).

Partitioning phylogenetic diversity

All 18 tested partitioning produce a significant mutual information be-
tween the sequence and each of the 3 types of environmental variables
(host species, localities, cell in beehive) unresponsive of the type of data
(all or low or high frequency cluster) and of the use of the phylogeny.

It is possible to observe several qualitative difference across the 18
analyses transforming the mutual information in percentage of overlap
to allow a comparison across variables. As shown in Figure 4.8 the
localities and the cell bee hive variables behave similarly unresponsive
to the phylogenetic information: low frequency OTUs have similar low
overlap across states of the variables, while high frequency OTUs are
more similar across sample of the belonging to different groups.

It should also be noted that the fact that the percentage of overlap is
always higher for the phylogenetic estimation is caused by the similarly
acknowledged by the phylogeny of the different OTUs observed, while
the classic Shannon-based approach assume each OTU totally different
from each other. The variable host species produce a very different
pattern from previous variables. Taking in account phylogeny high fre-
quency OTUs differentiate across groups (overlap 87%), with the other
two data sets showing about 91% overlapping. On the contrary, if we
are not taking in account similarity across OTUs the pattern is similar to
the other 2 variables with most difference observable in low frequency
OTUs and the least difference observable in high frequency ones, al-
though this pattern is expressed in a smaller range of frequency with
all values around 60% of overlap. So the difference found in the high
frequency OTUs seem to entail a stronger phylogenetic signal than the
low frequency ones.
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Figure 4.8: Overlap distribution of OTUs versus phylogeny information.
see text for the details.

The contribution of the branch to the mutual information for the
HFC with the host specie variable show that the 21 strains are well
distributed on the tree, thus increasing their impact on the phyloge-
netic index, but it is possible to notice that Bacte-2, Bacte-3, and Bacte-1
are more typical of the varroa host and are all grouped in the same
lineages (L220), similarly Proteo-5, Proteo-6, and Proteo-4 OTUs all be-
long to lineage L107 and are preferentially present in varroa. On the
contrary Firmi-1 and Firmi-7, typical of honey bee are mixed with var-
roa’s OTUs Firmi-6 and Firmi-5 (both descending from lineage 1.292).
This lack of phylogenetic signal seems more caused by recent special-
ization given that Firmi-6 have a lower frequency sister taxa Firmi-43
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present mainly in Varroa and Firmi-6 is similarly paired with low fre-
quency OTU Firmi-14.

76



4 Section 3

161 WNLa1Dq12V0] D) [orade[esyaaMm] SI[RLID}ORQOART] RILID}ORAOAR] sojapIoIRdRg $-opoeg
152 WN14230090ashiai) [oradePsyaaMm] S9[RLID}ORAOART] RILID}ORQOART] sojapIOIRIORg €-apeg
296 9LIDRLID}OIROART] S9[eLIg}ORAOART] RILID)ORQOART] sajapIoIRlRg Z-91eg
6491 wn11230qoashii) [ELEMEIEENEEIVY| Sa[eLIa}ORqOART] RILID)OROART] sajapIoIaldeg T-o10eg
€ saejadAwoUndOY BLID)ORAOUTOY BLI2}ORQOULOY TH-oundy
o d sa[e3pdAWounOy BLIDJORQOULOY BLIDIORQOULIY 0p-ounoy
11 wintia100quuordos g seaderdpeqruordor g sa[ejAWOUnY eLIDIORQOUTIY BLIDIORQOUTDY 6E-oundY
6 eLIR)IRGOUNDY eLIRIORAOUTY gg-oundy
g 42300q04q 1y eadRIAORqOIqNY sofeIa}ORqOIqNY eLRRqOIqNY BLID}ORAOURDY LE-Ounpy

8 safejRdAWOUnOY RLID}ORQOUDY BLIS}ORAOUTOY 9g-ounoy

9 60N ELCRIERIATITIshAT safejadAwoUnOYy BLIS)ORAOUTY BLI9}ORAOUTY Ge-ounoy
[ safe3RdAWoUnOY BLID}ORAOUTOY BLID}ORQOULOY Fe-ounoy
9 Ake) SO[RIqOIWIPIY eIQODIUIPDY eLIBIORAOUIDY gg-ounpy

9 wn230qauRi0) deadeLdeqauLIo) safejPdfwounOy BLID)RQOUDY BLIDDRQOUTOY Zg-oundy

9 saofiwouryoy Jeavejedfwounoy safejRdAwounOY BLID}ORAOUNDY BLID}ORAOURDY Te-ounpdy

L safejRdAWwOUnOY RLID}ORQOUTDY BLID}ORAOUTOY 0g-ounoy

1 safejRdAWOUnOY BLID}ORAOUTDY BLIS}ORAOUTY 6¢-ounOYy

1L 9LADBLINILGOIIN saejadAwoundy BLID}ORAOUTDY BLIS}ORAOUTOY gg-ounoy
fas safe3pdAWounOy BLID)ORAOUTOY BLIDIORAOULOY [7-ounpy
I v]00LIOUIDIN 9BADEPIOIPILION sa[ejAwoUndY BLIDIORQOUTIY BLIDIORQOUTDY 9z-oundy

0L safejpdfwoundy BLID}ORAOURDY BLID}ORQOUDY Gg-oundy
VA safejRdAWwoUnOY RLID}ORQOUNDY BLID}ORAOUROY y-ounoy
St 185 SRIGODIWIPIY PIQODIUNPPY  RHARIOUNDY £z-oundy
9L wn1a3ovqauh100) JeadelIdRqRUAIO) safejRdAWOUnOY BLI9)ORAOUTY BLIS}ORAOUTOY gg-ounoy
k49 WNLLIIVQOINN 9LIDLLIDJORGOIIA safe3RdAWoUnOY BLID)ORAOUTDY BLID}ORAOULIY 1z-oupy
8T 9LDEPIOIPILION safe3pdAWounOY eLID)ORqOUDY BLIDIORQOULOY 0z-oundy
@ sa[ejAwoOUnY BLIDIORQOUTOY BLIDIORQOUTY 6I-oundYy
9T WNLa3ovqIealg QrIIRLIDRAIAAIG sarejPdAwounOY BLID}ORAOUNDY BLID}ORAOURDY gr-ounoy
[ord safejRdAwoUnOY RLID}ORAOUNDY BLID}ORAOUTOY AR L
i mzjag 29eaRIZIAI(] safejRdAWOUnOY RLID}ORAOUTY BLIS}ORAOUTY 91-ounoy
8¢ vijjoy 9L3DLIDOI0DIN safe3RAWOUnOY BLID}ORAOUTDY BLI9}ORAOUTOY gr-ounoy
¥C vijjoy 9LIDLIDOI0DIN safe3RdAWounOY BLID}ORAOUTOY BLID}ORAOULIY Fr-ounoy
9% sa[ejAWwoOUndY eLIDPRGOUIDY BLIDIORQOUTDY cr-oundy
9 safejpdAwounOy BLID}ORAOUNDY BLID}ORQOUTDY Z1-oundy
<9 DBIDRLINIRAOIIA safejPdAwounOY RLID}ORAOUNDY BLID}ORAOUDY T1-oundy
19 wn230qauRi0) JeadelRRqRUAIo) safejRdAWOUnOY BLID}ORAOUDY BLIS}ORAOUTOY o1-oundy
LI1 safejRdAWOUnOY BLI9)ORAOUTY BLIS}ORAOUTOY 6-ounoy
L1 saejadAwoUndOY BLID)ORQOUTDY BLID}ORQOULIY g-ounpPy
¥ wnt300qauA10D QeadeLIgeqaULIo) safe3RdAWoUnOY eLID)ORqOUDY BLID)ORQOUNOY -ournpy
911 sa[ejAWoOUnY BLIDIORQOUTOY BLIDIORQOUTIY 9-oundy
6T safejPdAwounOY BLID}ORAOURDY BLID}ORQOUDY c-oundy
LT SBIRLINIRGOIIA saejRdAwoUnOY RLID}ORQOUNDY BLID}ORAOUDY F-ounpy
19¢ 42j0vq0jaui1 ] 9B0RPIOTPILION safejRdAWOUnOY RLID}ORQOUTY BLIS}ORAOUTY c-ounpy
656 saejadAwoUnOYy BLID}ORAOUTY BLI9)ORAOUTOY Z-ounpy
8GIT winta3o0quuordo. aeadeLdydeqruordor | safe3RdAWoUnOY BLID}ORAOUTOY BLID)ORQOUTOY 1-oundy
9 SZ09uIA 1Pay [era3peqOpIRION D] ©LI}ORqOPLY z-oppy
11 snppipur) ELGRIACIRIETe 1 (o1 S9[RIgORAI[0S S9I1930RqI[0S BLIDORAOPDY 1-0pY
Sjuno) snuan) A[rure 1DpIO sse[) [ unio

77



4 Section 3

6
06
86
j41s
L1T
e
9S1
9t
91¢
L5T
9€S
€L9
048
8901

(4138
Eiz
§8¢C

doydn.usopnjjaorpr)
SN][19090§oU]
ESaNS

$11200003d2.475
snjj1ovqo3ovT
snjp1vqojovT
snjpovghxouy
snp1vq9oan

snpvg
$11200003da435

WN142300q1200]D)
4apovqopag

S2P1042100qAV]
wnLajovqoashig)

wnagovqoan]
423090pa ]
vSoydowrgiyd
wint30qoSuyds

vososds
wn1a100q00]
wn1a100q00]
wNn1423090ashiD)

wn30qoSuyds

4a10090pa
A2300q0uUdUAE]
WNLa100qoav]{
wWnLa100qoav]{
wWnLa100qoay]
1230024

deade[[eg

seaderoydnasoPEaTpeD
Jeade[[IRqoR]
9LAORIPLISO[D
Qeade[PWaD)
9L32LII0D0IY

9L3OLI0}SOU0INI ]
Jeaden00jdang
v20V]]19vqQ03oV T
Jeade[IeqoR]
Jeade[[eg
avaov|ovg

avaov|ovg
Jeaden00jdang

[oeadeasyaapm]
seaderayeqodurydg
9BADEIISIORQOARL]
9LADBIISIORQOARL]
[EEEMEIEREEIVY|
aeaoepeuowoifydioq
Jeaderdyoeqodurydg
[oeadeesyaaMm]
9BADELIDIORQOARL]
9LADEIISIORQOARL]
seaderaeqourydg
aeaoeSeydounny)
Jeaderioeqodurydg

seaveSeydoif)
9BADEIISIORQOARL]
9LADBIISIORQOARL]
[EEEMEIEREEIVY|
aeaoeSeydounny)
Jeaderdyoeqodurydg
9eADELIDIORQOARL]
[oeadeesyaapm]
seaderaeqodurydg
aeaoeSeydoyfy
QLADBLISIORGOAR]]
QLADRLIDIORGOAR]]
deAdELIDIORQOARL]
QLAD[[RIOAI]

safe[[eg
So[e[[PWD)
SO[LINORAOIIRULOULIAY |,
sae[[RqOIIR]
SI[EIPIASOD

sa[e[[awaD)
sae[[eqojde]

sa[e[[eqoPe]
safe[[eqoPe
sa[e[[eqoe]
sa[e[[eqoOe]
safe[[eg
safe[[eg
SI[RIPLISO[D
SO[RIPIISOLD
safeq[eg
sa[e[[eqoR
efydoydang
6¢Ed
saergieqoduryds
SO[BLID}ORQOARL]
sarerajoeqoSurydg
Sa[BLIS}ORQOARL]
SO[BLIS}ORQOARL]
Sa[RLISIORAOAR]
sa[eproIajeg
saferajoeqoSurydg
SO[BLIDIORQOARL]
SO[BLIR}ORQOARL]
Sa[BLIS}ORQOARL]
safeajoeqoSurydg
[soexdsoxdeg]
saferajeqoSurydg

sareSeydoify
SO[BLID}ORQOARL]
SO[BLIS}ORQOARL]
Sa[RLIS}ORQOAR]
[soeardsoxdeg]
saferajoeqoSurydg
SO[BLID}ORQOARL]
SO[BLID}ORQOARL]
saferajoeqoSurydg
sareSeydojfy
Sa[RLISIORAOAR]]
SO[RLIDIORAOAR]]
SO[BLID}ORQOARL]
sa[eproIajeg

roeg

oeg

RIPLISO[D

meeq

BIPLISO[D

oeg

oeg

oeg

eg

meeq

moeq

eg

oeg

1oeg

RIPLUSO[D
BIPLISO[D

meeq

moeg
yserdoroyD
9TASH
eruapeqoSurydg
BILIDNRJOART]
erayeqourydg
BILIDNORAOART]
BILID)ORAOART]
BILIDJORGOAR]]
eIprozaeg
erapeqofunydg
BILIDNRGOART]
BILIDNRAOART]
BILID)ORAOART]
eruapeqosurydg
[seardsoxdeg]
eruapeqodurydg

erdeydoify
BILIDNRAOART]
BILID)ORAOART]
BILIDJORGOAR]]
[seardsoxdeg]
erpydeqoSuryds
BILIDNRGOART]
BILIDNRAOART]
erajpeqodurydg
er8eydojdy
BILIDJORGOAR]]
RILID)ORQOAR]]
BILIDNRGOART]
eIproma)eg

SOINDIULIL]
SAINOTULIL]
SOINOTULIL]
SaMDOTWLIL]
SanOTWLIT]
ST
SajndTULIL]
SIINDTULIL]
SIINOTULIL]
SOMOTWLIT]
SaMDOTWLIT]
SanOTWLIT]
SsaynoTUIT]
SayndTIULIL]
SIINOTULIL]
SINOTULIL]
SOMDTWLIL]
SanOTWLIT]

eLLpeRqOURAD)

1qoIo1yd
saj9proIaldeg
saj9proIaleg
sajaproIaldRg
sajaproIalRg
sajaproIaldRg
sajaproIalRyg
sajapIoIaldRg
saj9proIaleg
saj9proIa ey
sajaproIalRg
sajaproIaleg
sajaproIaldRg
sajaproIalRg
saj9proIaldeg
saj9proIa ey
sajaproIaldRg
sajaproIalRg
sajaproIaldRg
sajaproIajdRg
sajaproIaldRyg
saj9proIaleg
saj9proIaleg
sajaproIaleg
sajaproIalRg
sajaproIaldRg
sajaproIalRyg
sajapIoIa}eyg
saj9proIaleg
sajaproIalRg

8-ty
L1-Twan
9T-ruIry
ST-TuIR]
P
gr-ury
cr-Tuag
T1-tung
(Uit ]

6Ly

8Ty

£

9-Turry

G-Tuy

F-TuLIn]

€-TuLILy

T

-y
1-oued>
1-0101yD
ge-aeg
g-apeg
Te-aegq
0g-o1eg
6¢-21eg
§z-opeg
Lz-opeg
9z-a1eg
§g-apeg
Fe-aegq
€g-opeg
Tg-opeg
Tz-apeg
0z-2190g
61-91eg
81-o10eg
L1-9peg
9I-opeg
SI-opeg
yl-o1eg
¢r-a1eg
1-opeg
T1-91eg
Or-o1eg

6-a100g

g-ap0eg

LRy

9-a0eg

g-a10eg

78



4 Section 3

(748

St
St
L1
61
0z

ST
9%
6C
L
61
T
<€
iy
€
€r
Eid
se
9
95
41
9L
L
€8

wna300gon8ixg

snpovg

snjpovg

snjpovqiealg
vjjapINUDLD)

V]I NUDID)
$11200003da435
$1][1909095)

WNLI2]IVAOLVUDOULIY |
xpfjoy04g

snjpovghixouy
snppovg
11900003007
$1192000400UY
$1920003da13s03da ]

s11100q0joni ]

snppovg
12100q1o1N ],
SnjjvqoIovT
vipjoSauiy
WNNQUUaCOULIAY
snj[19v9039)

WNLI2]IVAOLVUDOULIY |
vynvig
snj1ovqopuT

snjpovg
$119000042)U7

$11220003d2.415

[oeaderaioeqonSixy]

ELSRERTIENIGAIEY |
Jeade[[egq

9LIDLIO0D0IDY

Jeade[Ioeg

Qeade[[IeqIude |
deadeLIdORqOUIE))
QeadeLIdISI]

JeaderIRRqOUTR)
Jeaden00jdang
Jeade[[oeg
Jeade[[eg
QLAVRIPLISO[D
QeadRLIdISI]

JeadeRg
Jeade[Rg
deadendoojdang
[oeodeqaIatssi |
deadendodoydensojda

2LIDLIOISOUOINI T

Qeade[[oRyg
aeadeIdPRqDLIN],
Jeade[[eqOPe]
[oeaoeriatssiy |
S9[eI9}0RqOIdRUROULIdY ],
seade[oRg
aeadeLId}dRqOUIRD)
Qeade[[oeg

9LAJRIPLISO[D)
deadeardsouyoe
Qeade[[roRqOIe ]
eade[[IRqIUE ]
Qeade[[IoRg
9BaDEID0d0IUY
seade[[IeqoIE]
Jeadenodoydong
QBIRIPLYSO]D

safe[[eg
safeqeg
safeqioeg
SaTe[RQOIR]
saferReg
safeReg

sa[e[[eqode]
safeqeg
safeqeg
safeqeg

safe[eg
sae[[eqojde]
safeqroeg
Sa[eIPIISO))
SaTe[RQOIR
SaTe[[RQOIR]
safeReg
safeqeg
sa[eIpLIso)
safeqeg
safeqoeg
Eabiisl|
safereg
sae[[eqo3e]
sa[erpLIso)d
sa[eIpLIso)

SaTe[[RQOIRT
safe[[eg
safe[[eg

sa[erapeqRLINY,
Safe[[IeqOE]
Sa[eIpLISo))

Sa[eIajOoeqOIdRUROULIdY [,

safe[[eg
SaTe[[RqOIR]
safefReg

SI[RIPLISO[D
SO[RIPLISO[D
sa[e[[eqope
Safe[[eg
Sa[e[[eg
sa[e[[eqO}R]
sa[e[[LRqO}R]
sa[e[[eqopPe]
SO[RIPIISOLD

roeg
oeg
meg
Toeg
oeg
Toeg
BIpLYSOD
oeg
eg
g
Toeg
oeg
Toeg
1oeg
oeg
BIPIYSOD
Toeg
oeg
oeg
Toeg
eIpLYSOD
eg
noeg
Toeg
oeg
Toeg
eIPLUSOD
RIPLYSO[D
eg
Toeg
oeg
oeg
Toeg
roeg
BIPLOSO[D
BIPIYSOD
Toeg
oeg
Toeg
1oeg
RIPLSO[D
BIPLOSOD
noeg
Toeg
oeg
Toeg
roeg
oeg
BIPIYSOD

SOINDIULIL]
SOINDIULIL]
SOINDIULIL]
SOINOTULIL]
SOINDTULIT
SOINOTULIT
SPINDIULIT]
SINDIULIL]
SOINDIULIL]
SOINOTULIL]
SOINOTULIT]
SOINOTULIT
S2INDIULIT]
SOINDIULIL]
SOINDIULIL]
SOINDIULIL]
SOINDTULIL]
SOINOTULIT
SPINOTULIT
SOINDIULIT]
SINDIULIL]
SOINDIULIL]
SOINOIULIL]
SOINDTULIL
SOINOTULIT
SOINOTULIT]
SOINDIULIL]
SINDIULIL]
SOINOIULIL]
SOINOTULIL]
SOINDTULIT
SOINOTULIT
SOINDIULIT]
SNDIULIL]
SOINDIULIL]
SOINDIULIL]
SOINOTULIL]
SOINOTULIT
SOINOTULIT
SOINDIULIL]
SINDIULIL]
SOINDIULIL]
SOINOTULIL]
SOINOTULIT
SOINOTULIT
SOINDIULIT]
SOINDIULIL]
SOINOIULIL]
SOINDIULIL]

£9-Tuany
99-TwIL]
G9-TunILy
Po-TwIny
€9-TuIry
9wy
T9-Tuary
09-TwILy
6G-TWIL]
8G-TULIL]
£G-TWIL]
9G-TuIry
G-ty
ey
£6-TuIL]
G-Iy
Tg-ruag
0g-Twry
6F-TuIr]
8Ty
Lyt
9p-TuIL]
Sp-Tan
Py
Ep-TaIny
Cp-Taan
Tp-Tuiry
[Ugieti® ]
6E-TWIL]
8E-TuIL]
eI
9e-TuIry
Ge-Tuary
pe-ruiny
gLy
ce-uIny
Te-ruag
Og-TuIry
6¢-TuIL]
gty
gty
9g-TuILy
Fratesit]
ey
gy
gy
gty
Og-fwey
61-TWIL]

79



4 Section 3

kg
o4
9T
8€
Ly

65
8S

LS
(Vg
8S
T
w
91

<6
88
6€
ot
911
Per

0€T
1€t
1729
€81

S61
€T
8TC
6€C
9€T
1ce
€0€
L0¥
80S
€LS
089
8Tl
st
€181
6VET

wintiajovqounjjuy|
1a100q13n]
wniqosoruoydhpy

vfiaq
A2100q032UIdY
121009012110y
Wn1230qos8y

vjjouvMmaYs

S12000D40]
snjuydowavp]

vuapjoyyng

svuouioydojoud}s

snjuydowavpy

10120q0320VU0IN]D)
SUUOWOPNIS]

pYVLIIS

puPLIYIST
40100q0j1aULYy
SULOUIOPNAS]

12100q0U0.410Y
snjiydouaSosphpy

WNNQUUICOULIIY ],
snj1ovqosoU]
S120000400UY/

aeadepeuowoyjuey

9LadEIAPRGO[EX)
SeadEpRUOWOYIURY
aeaderqonrwoydAry
aLadRIPRAO[EX)
sradeuaSifed[y

deave(Ldsopoyy]
Jeadepeuowewo)
feadepruowewo)
aeadeIaRqo[nNe)
QLADB[[IXBIOIN
QLIDL[[IXLION
2eAORIqOZIY
QeadRIddRAO[RXO
QeadeIddRqO[eXO
aeaoe[[PUEMAYS
deadepeuouwrewo)
aeadeIajeqopoy
deadE[RINRISE]

QeadeLIIp[OPINg
aeadeIadRqO[eXO)
QeadepeUOWOoYIeY
aeadeLdp[oYPINg
aeadelapeqorex)
deadE[RINRISE]
deadepeuowodurydg
ELEERAEIRES[GER VA

aeLadELIPOLqOIR U
9LIIEPRUOWOPNIS]
9LadEIAPRAO[EX)
9LaDRIALIOIDY
aeadRIIRORqOIDIUY
2LadRLIPRAOIDIUY
QrAdR[PXRION
9LAIEPRUOWOPNIS]
2D29v4219vq010Y
seadeuaSiery
aradepAdopoy

Qeade[[IeqIude |
S9[LI}ORGOIILULOULIDY |,
deade[[IeqoIOe]

sa[epeuowoyjuey

saerApOYPINg
Sa[epeUOWOLuRY
SOTRIQOZIY
sa[eLapOYINg
sa[eLIdpOYINg

sareqqurdsopoyy
sa[eLIDpIOYINg
safeLIapIOYINg
safeIdpRqO[NE)
Sa[EPRUOWOPNAS |
S3[EPRUOWOPNIS |
saeIqOZIYy
saeLIdpOWINg
safeLIPpIOYINg
SI[EPRUOWOIANY
safeLIdpOYINg
$9[LI9}0eqOPOYY]
safe[[oInase ]
SIe[[2IN)SE |
safeLIdpOWINg
safeLIPpIOYINg
Sa[epeUOWOueY
sa[eLIDpOYINg
sa[eLIdpOYINg
safe[[oInase ]
saepeuowoSurydg
sareqquidsopowy
Sae[[RINa)Se |
Sa[eIqOZIYY
So[e[[aanajse
sa[eLIa)IRqOIAUY
SI[EPRUOWOPNIS |
safeLIdpOWINg
sareqquidsopowy
Sa[eLI2}ORqOISIUY
Sa[eLIdORqOISIUY
Sa[EPRUOWOPNAS |
SI[EPLRUOWOPNaS |
sapvjrdsopory
safeLIdpIOYINg
saepA>0poyy

safeqroeg
$3[LI9}ORGOIDEULOULIIY |,
Safe[[IRqOIE]
SIRIPIISOD

eLRjeqodjordewuen)
eupeqodjordewen)
erjoRqoajordeag
erR)Rqoaj0IdRUIITRD)
euayoeqodjordeydyy
euLiORqoaj0IdeIg
eupiORqoajoIdeag
eupeqoajordeydy
euRpeqoajordeydry
erjoRqoajordeag
erjoRqoajordeag
euaydeqodjordeydyy
eLR)Rqoj0IdRUIIIRD)
eppRqodjordewuen
eupeqoajordeydy
erReqoajordelag
erjoRqoajordeag
erR)RqoajoIdeUTRD)
eupiORqoaj0IdeIg
erdjeqoajordeydy
eppeqodjordewuren
erapdeqodjordeunueny
erjoRqoajordeag
erjoRqoajordeag
erR)Rqoaj0IdR IR
eupiORqoaj0IdeIg
eLapeqoajordejog
erppdeqodjordewuren
euajoeqodjordeydry
euapeqodjordeydry
erR)Rqoj0IdR IR
euapeqodjordeydyy
eLR)Rqodj0IdRIIIIRD)
eppdeqodjordewuren
eupeqodjordewen)
erjoRqoajordeag
euapeqodjordeydyy
erR)Rqoaj0IdeUIITRD)
erR)Rqoaj0IdRUIITRD)
eppRqodjordewuen
erppdeqodjordewuren
eudpeqoajordeydpy
erjoRqoajordeag
erjoRqoajordeag

ey
erprysor)
ey
eIpusor)

BLID}OLO}OI ]
BLID}OR]ODIOI]
RLID}ORQONOL]
RLI9}ORA0OL]
©LI9}0Lq0}0I]
BLI9}Lq0d}01 ]
BLID}OL]O}0I ]
BLIDIOR]ODIOI]
BLID}ORQOOL]
RLID}ORAONOL]
©LI9}ORA0}OI]
BLI9}Lq0}01]
BLI9}0q09}01 ]
BLID}OLO}OI ]
BLID}OR]ODIOI]
RLID}ORAONOL]
RLID}ORA0OL]
©LI9}OLq0}0I]
©LI9}0Lq09}01 ]
©LI2}OLG0}OL ]
BLIDIOLODIOI]
BLI2}ORQOOL]
RLID}ORAONOL]
©LI9}ORA0OI]
©LI9}Lq09}01]
BLI9}Lq0d}01 ]
BLID}OL]O}OI ]
BLID}OR]ODIOI]
RLID}ORAONOL]
RLID}ORAOOL]
©LI9}OLq0}0I]
©LI9}0Lq09}01 ]
BLI2}OLq0d}OL]
eLID}OLGONOL]
BLID}OROD}OI]
RLID}ORAONOL]
©LI9}ORA0OI]
©LI9}OLq0}01]
BLI9}0Lq09}01 ]
BLID}OL]O}0I ]
BLID}ORODIOIL]
RLID}ORAOOL]
RLID}ORA0OL]
©LI9}ORq0}0I]

SOINOTULIT

SOINDIULIT]

SOINDIULIL]

SIINOTULIL]

SOINDIULIL]

Fh-0aj014
£5-0901]
Th-0901]
1F-091018
0F-02101J
6€-091010
8¢-021014
£g-0d101
9g-0901]
Gg-09301]
yg-0a01g
£g-0a101g
zg-0a01g
1€-0901]
0g-0901]
6¢-0901]
§2-09301]
Lz-0m01]
9g-021014
Gz-0a014
$2-09101]
£¢-0901]
Te-0901]
Tg-0aj01g
0g-02101J
61-02101]
81-02101J
L1-09%01
91-09j01]
§1-09301]
$1-09301]
£1-09101J
z1-0a014
11-09301]
01-0901]

6-0301 ]

8-09301]

/-09)01]

9-09)01]

G-00101]

$-00101]

£-00301]

T-09301 ]

1-09301]

oL

-1ty

0Lt

69-TwuaL]

§9-TuIL]

80



4 Section 3

42191q12004SUDI

vaaudjolfgjaN

123004012112y
v]jaIsInquAL,
421009024y
ougaja)
wmquyan

wmgihan
vjpuopYeQ

snpydowavEy
VLIASSION

WqozIYI0SIN

spuouoSuyds

J4ajovqoappnuhjoq
4a10vqo4phyug

wniapvqounjuy|

v1IvqIOM
snjnydowavpy
vjauvMIYS

deadRLId}OIRQOIAIUT
9ea0RLID}OLAOIAUY
JeadLLID}OILQOIAUY

aeadeydorAypy
ELGREAGHRL (MRS

QLAdR[[PXRION

aeLadeLIPORqOIRIUY
aeadeajeqoidure)
9LIDEPLUOWOINY
SLIIEPRUOWOPNIS]
SeddEpEUOWEWO)
SeadEpEUOWEWO)
SeadEpeUOWoUEY

ELCREAGHRLL (MRS
Jeadepeuowrjueiny’
IeadeLIR}dRqOIUY
eadE[[aIMd)SE ]
EICRIREENCING
ELCRIREENCING
QeadeLId}OeqoIAYIdIA

Jraoera10eqo Ay
aeadeIaldRqO[eXO)
aeaoeLIddRqOIUY
Qeadepeuowoyjuey’
Jeadepeuowodurydg
Jeaoe[puorda]
eadEpRUOWOYURY

JeaoRIPEO[EXO
QeadR[[OXLION

QeadepeuoWOYuRY
deadepRUOWRWO)
JeaORINPRJO[EXO
Jeade[PUOISY]

ELSREGIENRIN
QeRdR[[PINDISE]
deade[PUEMAYS

SIEIqOZIYY
sa[eLv)ORqOIIUL

saTeLIR}ORqOIDIUT

So[eLoRqOIauUY

SI[RIqOZIY
sopepydo Ly
sareqqurdsopoyy

S9[EPRUOWOPNAS |

Sa[eLIpRqOIAUY
sajerapeqoddue)
SO[EPLUOWOIN[Y
SI[EPRUOWOPNaS
safeLpoWRNg
safeLIOpoYNg
safepeuowoyjuey
SO[CIqOZIY
SO[RIqOZIY
sareqqurdsopoyy
SO[RIqOZI
S9[RLI9}ORQOINUT
sae[[N)se ]
SI[LLIOSSION
SI[LLIISSION
SO[RIqOZIY

Sa[RIqOZIY
sa[eLIap[oyIMg
So[eLIOrqOIauY
Sa[epeuowoyueY
sa[epeuowodurydg
safe[puorda|
Sa[epeUOWOuRY

sa[eLIopoWINg
Sa[epeUOWOPNas |
SALIGOZIY
sa[epeuowoyjuey
safeLIOpoyINg
sa[eLIOpoWpINg
safe[puoISa]
saepeuowoSurydg
Sa[e1qozIyy
Sa[RISPAYIRY
safe[[oInaIse ]
S3[ePLUOWOIA) Y

euRjeqoajordeydy
eupeqodjordewen)
erR)Rqodjordeunuen)
erR)Rqoaj0IdR IR
erR)Rqoaj0IdR IR
erR)Rqoaj0IdR IR
euRjpeqoajordeydy
eueqoajordelag
eudpeqoajordeydyy
erR)Rqoajordeunuen)
erR)Rqoaj0IdR IR
euioRqoaj0Ideag
eLR)RqojoIdRUIIIRD)
ejeqoajorduorisdy
eLReqodjordewen)
erdpeqodjordeunuesy
erjoRqoajordeag
erjoRqoajoIdeag
erR)Rqoaj0IdR IR
eudjeqoajordeydpy
euRpeqoajordeydy
eupeqoajordeydry
erapeqodjordeydry
erR)Rqoaj0IdR IR
erR)Rqoaj0IdR IR
eupiORqoaj0IdeIg
eLapeqoajordejog
eupeqoajordeydy
erapdeqodjordeyp
euapeqodjordeydry
eujoRqoajordeag
eLR)Rqoaj0IdR IR
eLR)Rqoj0IdRUIIIRD)
eudpeqoajordeydy
euRpeqodjordewen)
erR)Rqoajordeunuen)
erR)Rqoaj0IdeUIIRD)
eujoRqoajoIdeag
erR)Rqoaj0IdRUIITRD)
euRjeqoajordeydy
eppdeqodjordewuren
eudeqoajordelag
erjoRqoajordeag
erR)Rqoaj0IdR IR
euapdeqodjordeydyy
edydeqodjordeydry
eujpeqoajordeydy
euRpeqodjordewuen)
erR)Rqodjordeunuen)

BLID}OLO}OI ]
BLID}ORODIOI]
RLID}ORQONOL]
RLI2}ORA0OL]
©LI9}0Lq0}0I]
©LI9}Lq09}01 ]
BLID}OL]O}0I ]
BLID}OR]OD}OI]
BLID}ORQOOL]
RLID}ORAOOL]
©LI9}ORA0}OI]
©LI9}Lq09}01]
©LI9}0q09}01 ]
BLID}OL]O}OI ]
BLID}OR]ODIOI]
RLID}ORAONOL]
RLI2}ORA0OL]
©LI9}OLq0}0I]
©LI9}0Lq09}01 ]
©LI9}Lq0d}0L ]
BLIDIOL]ODIOI]
©LI2}ORQOOL]
RLID}ORAONOL]
RLI9}ORA0OL]
©LI9}OLq09}01]
BLI9}Lq09}01 ]
BLID}OL]O}OI ]
BLID}OR]ODIOI]
RLID}ORQONOL]
RLID}ORAONOL]
©LI9}OLq0}0I]
©LI9}0Lq09}01 ]
©LI2}Oq0}0L ]
eLID}OLGONOL]
BLID}ORODIOI]
RLID}ORAONOL]
RLI9}ORA0}OI]
©LI9}OLq0}01]
BLI9}0Lq09}01 ]
BLID}OL]O}0I ]
BLID}OR]ODIOI]
RLID}ORAOOL]
RLID}ORA0OL]
©LI9}ORq0}0I]
BLI9}Lq09}01]
BLI9}Lq09}01 ]
BLID}OL]O}OI ]
BLID}OR]OD}OI]
RLID}ORAONOL]

£6-09101]
26-091011
16-09301]
06-09301]
68-09101]
88-09101]
£8-091014
98-09101]
68-09101]
8-09301]
£8-09301]
28-09301]
18-091011
08-09101]
6£-09101]
8£-0901]
££-0301]
9£-09101]
G£-09101]
$£-091010
€/-09101]
7L-0m01g
1£-093011
0£-09101]
69-09101]
§9-09101]
£9-091014
99-0101]
§9-09301]
$9-09301]
£9-09301]
29-09301]
19-093011
09-09101]
66-09101]
86-09301]
£6-03101]
96-09301]
Gg-03301]
$6-09101J
£6-0901]
76-0901]
16-00301]
06-09301]
67-09101]
§5-09101]
L1-09101d
9p-09101]
Gp-0901]

81



4 Section 3

v UL
vIUoSIIY
snjnydowavp]
D1IASSIIN
4aj00q0UBpOI]
121209019110y

SUUOWO]I]

6€0

12100q0U0.410Y
vjjaomby

Aapovqowionoy;

4ajovqopoipy

SUUOUOULIDI

vadsiondung

wniapvqounjuy|

JeadeIqo[eyoyNsa]

[eeadenewony)]
QeadRIddRAO[eXO
aeadeIaldRqO[eXO)

feadepeuouwrewo)
QLADE[[IXBIOIN
eddE[[INI)SE ]

9EAOLPRUOWOPNIS]
QLADRLIISSION
JeadepEUOWOURY
JeadEpRUOWRWO))
QeadR[[OXLION
deadepRUOWRWO)
deadEpRUOWRWO)
JeadRIPRJO[EXO
9LORLIDORALRIOI]
ELCRIEAEENCING
JeadeIaEqO[eX)
aeaoePAdopoyy

deadeuadijedyy
QEIDR[PIX0D)
deadepeuowrewo))
deadeuaSijed)y
9LIIRIIORAOPOLY]
aeade[puoIda]

aeade(Ldsouead)

JeadepRUOWRWO)
9LA0RLIDORALIOI]
JeadepRUOWRWO))

ELSREGIENRIN
deadEpRUOWRWO)
JeadRIPRJO[EXO

LNL

LNL

€0S

€0S

LNL

S3[RUOLIQIAOJNSIC] euajoRqoajordeyp
safef[eqodg eupeqoajordeypg
SI[EPRUOWOIN[Y er)Rqodjordeunuen)
sa[eLPPOYPING erjoRqoajordeag
sa[eLPPOYING erjoRqoajoIdeag
sa[eLIDPOYING euioRqoaj0Ideag
Sa[epRUOWOpPNaS eLR)RqojoIdRUIIIRD)
sa[e[INA)Se] eppRqodjordewuen
Sa[EPRUOWOPNaS erRRqodjordeunuen)
SI[RTIASSION erjoRqoajordeag
sa[epeUOWOWURY erR)RqoajoIdeUITRD)
sa[eLIDPOYNING euiORqoaj0IdeIg
Sa[epRUOWOPNaS | eLR)Rqoj0IdRIIIIRD)
sa[eLIPPOYINg eryoRqodjordeag
sa[eLIDPOYPING erpyoRqoajordeag
sa[erPpOYINg erjoRqoajordeag
SO[BLIa}ORARIOI] erjoRqoajordeag
SO[RLIASSION eujoRqoajoIdeag
sa[eLIDPOYNING eupiORqoaj0IdeIg
safepAoopoyy eLapeqoajordejog
sa[erPp[OYINg erjoRqoajordeag
[e[PuoISa] eLI2)IRC Tewwen)
eujoRqoajordeag

euaydeqodjordeydyy

sa[eLIPOYNING eupiORqoajordeag
so[eLPpOYNING eu)ORqodj01deag
erjoRqoajordeag

S3[BI2}ORGOPO] erapeqoajordeydry
euajoeqodjordeydyy

safe[[auoIda| erR)Rqoaj0IdRUIITRD)
sae[uidsourad) eppRqodjordewuen
eppdeqodjordewuren

sa[eLPPOYPING erpyoRqoajordeag
sa[eLPPOYING erjoRqoajordeag
SO[BLIS}ORQRIOI] erjoRqoajordeag
sa[eLIDPOYING euioRqoaj0Ideag
edydeqodjordeydry

SI[RISHANIRY eupydeqoajordeydyy
sa[eLIDPOYPING erpyORqoajordeag
sa[erDp[OYINg erjoRqoajordeag

LINL

LINL

LNL

LNL

LNL
BLID}ORGO)OL]
BLID}ORGONOL]
BLID}ORA0}0I ]
BLI9}0Rq0}0I ]
BLI9}0Rq0}0I ]
BLI2}0RQ0}0I ]
BLID}ORA0}OL]
BLIDIORGO)OL]
eLID}ORAO}OL]
BLI9}ORA0}0I ]
BLI9}0RA0}0I ]
BLI9}0Rq0}0I ]
BLI9}ORQ0}0I ]
BLID}ORA0}OL]
eLID}OLGONOL]
BLID}ORA0}OL ]
BLI9}ORA0}0I ]
BLI9}0Rq0}0I ]
BLI2}0RA0}0I ]
BLID}ORA0}OL]
BLID}ORGONOL]
eLID}ORQONOL]
BLI9}ORA0}0I ]
BLI9}0RA0}0I ]
BLI9}0Rq0}0I ]
BLI9}ORQ0}OI ]
BLID}ORQ0}OL]
eLID}OLGONOL]
PLID}ORQO}OL]
BLI9}ORA0}0I ]
BLI9}0Rq0}0I ]
BLI9}0RQ0}0I ]
BLID}ORA0}OI ]
BLID}ORGO)OL]
eLID}ORGO)OL]
BLID}ORA0}OL ]
BLI9}0RA0}0I ]
BLI9}0Rq0}0I ]
BLI9}0RA0}0I ]
BLID}ORA0}OL ]
BLID}OL]O}OI ]
eLID}ORQO}OL]
BLI9}ORA0}0I ]

1-mun
S-LINL
PLNL
€LNL
TLNL
T-LINL
9£1-09101]
GET-00101]
PE1-00301]
€ET-00301]
TET-09301]
1e1-03101d
0£1-091011
621-091011
§T1-09101]
£T1-0901]
921-09301]
GT1-09301]
$21-09101]
£21-091018
221-091018
171-0901]
0T1-09301]
611-09301]
$11-09301]
L11-090018
911-093011
GL1-00301]
PLT-00301]
£11-09301]
TI1-09301]
T11-03101d
011-093011
601-09901]
S0T-09301]
L0T-09301]
90T-09301]
GOT-09301]
FO1-091011
£01-09101]
201-093018
101-09301]
00T-09301]
66-09101
86-09101
16091014
96-091011
§6-09101]
76-0901]

82



4 Section 3

PIOq Ul pajedIpur are ypjews ISy g dYL ‘Pasn sem Awouoxe) [ON

Ay} punoy sem ISV g YIIM yojew 30ay1ad B USUAL "seqeiep apnospnu [N Ul JY3nos a1em () pue g0 usamiaq Ajqiqeqord e
1M paudisse J eyl SNIO SNLO Yoed 03 panqrije saduanbas jo raquumu ayj pajedIpul axe uumnod 3sey 3y} uf ‘s 10 Yoes 0}
paImqrie WwAUoIO. 3} 918 UWN{OD JSIL] "PaIapIsuod sadwres [[e ur punoy sn) 1O 10§ Juswudisse Aurouoxe) sy} Moys a[qe) ayL,

sardures [re ur punoy sn 1O Jo Juewudisse Awouoxe] 7y S[qeL

F-mun
€1 €-mun
€1 T-mun

83



4 Section 3
4.4 Discussions

Both approaches show that the differences observed in the bacterial
communities can not be explained grouping the samples according to
the brood cells or to the different sampling localities. According to this
result, other studies (Sabree et al., 2012) have shown that geographical
distance is not crucial in shaping the bacterial community in beehives.
It can be assumed that distance influences more likely the distribution
of rare OTUs. However, in this case it was not possible to identify
unambiguously the information resulting from the two sub-categories
of sampling.

If the species status is considered variable, the results change slightly.
Both distance matrix and entropy methods can discriminate the three
different categories, but in the case of QIIME'’s script all the informa-
tion carried by LEC disappears. This because the script considers only
the abundance distribution as a source of information. In addition, the
OTUs found in the categories parasitized honey bees and varroa para-
sites have a high rate of overlap, which makes difficult the interpreta-
tion of single OTU role in the discrimination of the categories. Consid-
ering the results obtained, the comments on the biology of the OTUs
are giving are broadly as possible, taking account of both approaches.

A. mellifera bacterial communities

When considering the microbiome of healthy larvae the results are in
agreement with previous studies on honey bee larval microbiome (Mar-
tinson et al., 2011).

The variability of bacteria communities is extremely poor and it is
completely different to that of a parasitized larvae. The most rep-
resentative phylotype found (Proteo-7), belongs to the genus Serratia.
This genus was isolated from the intestinal contents of healthy forag-
ing worker honeybees (Jeyaprakash et al., 2003)

and is found as a symbiont in other insect taxa (Dillon and Dillon,
2004). The scarcity of bacteria in the larvae could be attributed both to

84



4 Section 3

the particular morphology and physiology of honey bee larval gut and
to the type of nutrition (as noted by Martinson data Martinson et al.
(2012)). In addition, as suggested by the same author, the variation
in the bacterial community of honey bee strains may explain why the
presence of different bacteria in honey bee larvae is variable.

The different microbial communities characterizing the parasitized
honey bees and the mite are identical from a qualitative point of view,
but they differ when considering the abundances. This result, together
with the fact that in the healthy bee only a few bacterial OTU were
found, endorse the hypothesis that the attack on larva by the varroa
mitereates a gate for bacteria colonization. The homogenization at the
qualitative level in the HFC suggests an effect of dispersion by the most
representative species already present at the level of varroa and at the
hive. The differences in abundance, could be explained by a different
ability and attitude of the bacterial species to colonize different envi-
ronments (Hanson et al., 2012). The two most represented phyla in
parasitized honey bees are Proteobacteria and Firmicutes. Particularly,
among Firmicutes Streptococcus sp (Firmi-1) and two different OTUs
of Clostridiales (Firmi-3,-4) both classified as bacteria than could also
cause systemic infections were found.

A recent research by (Lozupone et al.,, 2012)showed the aptitude
of batcteria belonging to the class Clostridiales to act as pioneering
species, especially in cases of habitat in disequilibrium after traumatic
events (e.g. diseases). This may in part explain the significant differ-
ence in abundance of these species compared to the others. In partic-
ular, OTU Firmi-4 was also found to be one of most represented in a
recent research on the lepidoptera larvae (Tang et al., 2012) where the
subjects of the study were intoxicated. The authors also noticed that
when a disturb affects the microbiota of the lepidoptera larvae the rate
of diversity increases as showed in our case.

A OTUs of Lactobacillus (Firmi-7), a genus of potential probiotic bacte-
ria, was found as in many studies on microbiome of honey bees (Mohr
and Tebbe, 2006; Evans and Schwarz, 2011; Moran et al., 2012). This
Gram-positive organism has a primarily protective function (Mohr and
Tebbe, 2006; Moran et al., 2012). It is interesting to note how its pres-
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ence leads to a nearly total absence of the pathogenic genera (Figure
4.7).

Hydrogenophylus (Proteo-1), Geobacillus (Firmi-5), Anoxybacillus (Firmi-
6) and Propionibacterium (Actino-1) are bacteria found in a wide range
of environments. Firmi-5 in particular is a thermophilic bacterium that
has been found associated with plants and in in hot environments such
as thermal water (Dulger et al., 2004). Therefore, it is interesting to note
that the highest presence of this bacterium was found in honey bees
sampled in a period ranging from June to July. The phylotype Proteo-3
was previously found in studies on microbiome of insects (Prince et al.,
2009; Crotti et al., 2010) as typical of this class. None of the bacterial
species previously identified and held responsible for major diseases
described affecting honey bees has been identified.

V. destructor bacterial communities

In the literature there is only a brief description of the bacteria that colo-
nizing the varroa mite (Cornman et al., 2010). Unfortunately, it was not
possible to use the 16S rDNA sequences for a direct comparison with
the present data due to the fact that the sequences were not deposited
individually in Gene bank, as soon as they are part of a larger metage-
nomic project. Two OTUs (Firmi-3, -7) of the phylum Firmicutes appear
to have been found in previous studies on honey bee microbiome. The
hypothesis is that this fact is due to the external presence of this two
strains in the hive. As shown in Cornman (Cornman et al., 2010), the
Actomycetales order is well represented in varroa, but in our case this
OTU is not the most abundant. The role of Actinomycetales in this
parasite should be examined in more in-depth studies. Instead, there
is a significant presence of two OTUs belonging to the genus Chry-
seobacterium (Bacte-1,-3). Contrary to the majority of bacteria belonging
to Flavobateria, typically found in soil and water environment, these
two particular OTUs were found as pathogens of soft ticks (Buresova
et al., 2006). Given the phylogenetic closeness between mites and ticks,
it would be interesting to investigate the role of this bacterium in the
mites.
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Finally, a difference in percentage in the presence of Pseudomonas be-
tween honey bee and varroa was found. This is possible due to the
fact that the bacteria belonging to genus Pseudomonas colonize the cu-
ticle completely (Tang et al., 2012). Therefore it is possible to assume
that during the experimental stage, the removal of the cuticle was less
effective in the case of varroa, specially due to the small size of the
organisms.

In this case study the use of an approach based on phylogenetic anal-
ysis allowed to highlight which OTU are more discriminated within the
variable species. The definition of the core microbiome remains to this
day one of the steps of analysis lacking from statistical point of view,
based almost solely on subjective considerations. This new approach
has proved to be a valuable tool in this type of analysis.
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5 General discussion

The routinely use of new sequencing technologies reached in the recent
time has made essential to develop new methods of analysis to fully
exploit the data. This is related to nature itself of the new platforms
and to the advancement and improvement of old approaches to the
investigation of biodiversity.

The design and the development of pipeline (i.e. QIIME) that allows
a more standardized approach to data analysis perfectly matches to the
idea of standardization proposed by DNA barcoding. However, in the
case of studies of metabarcoding the difficulties are amplified. Avail-
able data is exponentially grown and the need to greater integration
between different scientific disciplines require a stronger experimental
structuring, in addition to a greater effort of calculation.

The main aim of my thesis was to analyze the problems and the tech-
niques already available and to seek new methods of analysis. In the
first of the cases analyzed, the core of the problem was the construc-
tion of a pipeline that could in some way to cope with problems that
may be encountered in large-scale studies of metazoans. Among the
problems encountered during the process of analysis it is clear that the
presence of a bias at the level of sampling could be reflected hamper all
the following steps.

In constructing taxonomic profiles through species assignment, de-
noising pipeline proved to be a promising method in estimating the
true sequence diversity produced by 454 pyrosequencing and discard-
ing unreal sequences. This method significantly eliminated pyrose-
quencing and PCR polymerase errors. However, in each sequencing
run it is strongly recommended the use of empirical internal control
sample with known sequences to construct error distributions and con-
sequently estimate error rate.
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Contrary to the metazoan, an approach on a large scale for the study
of bacteria is in use for the longest time (Caporaso et al., 2010). This
fact has led to a pipeline that today are widely recognized (QIIME).
This has allowed to obtain a fair degree of standardization as regards
the steps involved in the process of the taxonomy assignment. What
still remains a subject of debate is the analysis of the structure of these
communities. This is mainly due to the lack of knowledge of ecological
dynamics at the base of complex bacterial systems. I am convinced that
the time for a significant contribution of microbial ecology to general
ecology has arrived. However, it is becoming clear that microbial taxa
display non-random environmental and geographical distribution (see
recent reviews in Martiny et al. (2006); Ramette and Tiedje (2007); Fierer
et al. (2008); Hanson et al. (2012)). Most of the patterns that support this
evidence have been studied for decades in plant and animal commu-
nities but have largely been ignored by microbiologists. Over the past
decade, microbial ecologists generated abundant molecular data from
ribosomal surveys, and now is possible to combine bioinformatical and
statistical tools with critical testing of ecological theory in order to inte-
grate microorganisms into the broader field of ecology.

From these conditions came the need to explore as much as possi-
ble the means available from ecology and phylogenesis to investigate
possible patterns of communities” distribution. In the case of symbiosis
between A. mellifera and V. destructor (Section 3) shows how real is this
necessity and how there is still a wide margin of exploration in this di-
rection. The field of metabarcoding is still constantly changing. Being
associated with a new technology is constantly evolving and it directly
follows the trends. Since this project began to date, the chemical prod-
ucts of the machines currently available have changed, with significant
effects in some fields. As regards the approach to the analysis of meta-
zoans the reference technology remained the Roche 454 that with new
developments in chemical sequencing succeeded in raising the length
of the reads up to 800 base pairs. Unfortunately, the problems related
to the bias of PCR and to the rate of presence of homopolymers and
chimeras seems not to be significantly changed.

However, the proposal and the debate around new pipeline analysis
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like the one proposed in my thesis are contributing effectively to the im-
provement in the process of data analysis and to increase in capacity on
the detection errors of sequencing. As for the metabarcoding approach
in the study of microbial communities the situation has changed. Over
the past two years, the technology that is seen to establish for this type
of studies is the Illumina HiSeq 2000 that produces more than 300 mil-
lion reads. The length of the reads remains below that of Roche and
the error rate higher, but in front of a production rate of the order of
100 times greater. This fact in a survey of the community of millions
of individuals is proving to be the right compromise in order to obtain
valid data even for ecological studies.

In general, therefore it can be concluded that environmental DNA
metabarcoding has an enormous potential to boost data acquisition in
biodiversity research. At the moment, we are living at the beginning of
this approach that can to revolutionize the way to know and investigate
the biodiversity around us.
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