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Chapter 1

Introduction

The aim of this thesis consists in providing new results for parabolic Cauchy problems
with possible unbounded coefficients, and in solving stochastic problems throughout
analytic techniques.

The Chapters 2 and 3 are brief overviews of the main recent results on the theory
of partial differential equations and systems, and on the theory of stochastic optimal
control problems.

Our investigation begins from Chapter 4. Here, we consider the stochastic control
problem

4. X2 = B(XW)dr + G(XY)r (XY, uy)dr + G(XY)dW,, 7€ [t,T),
(1.1)

Xt =z RN,

where B, G are possibly unbounded measurable functions, G is a uniformly positive
definite d x d—matrix, r is a measurable bounded function and W is an R%—valued
Brownian motion defined on a probability space (€2, F,P). The random process  is called
control, and for any fixed u, X" denotes the solution to (1.1) under the control u. For
this class of problems we look for a control u such that the cost functional

T
J(x,u) = E/O (XY, u)dt + Ep(X7), (1.2)

where [ and ¢ are measurable bounded functions, attains its lower value. The control
u which realizes this minimizing condition is called optimal control. We consider the
weak formulation of the problem, which means that the solution consists not only of the
process u, but also of the probability space (2, F,P), of the Brownian motion which is
defined in such space, and of the process X"“.

We deal with the special case where the diffusion term G does not depend on the
control u, and the drift term has the form B(x) + G(z)r(z,u). Following the approach
of [41], we are able to link the stochastic control problem with the semilinear Cauchy



problem

Dy(t,x) + Av(t,x) = ¥(z,G(z)Vo(t,x)), t€0,T), xecRVN,
(BPDE)
u(T,z) = ¢(), zeRV.

which is known as the Hamilton-Jacobi-Bellman equation.

Here, A is the uniformly elliptic operator defined on smooth functions f by

Af () = STHG()G () D2 () + (B(a), V().

where the coefficients may be unbounded and ) is a continuous function which satisfies

[Y(x1, x2) — (Y1, 92)| < Lyloa — ya| + Lylzr — y1| (1 + |z2] + |y2])

(1.3)
(2, 0) < Ly,
for some positive constant L,,. The Cauchy problem
Dyw(t,z) = Aw(t,z) + C(z)w(t,z), t€ (0,+00), =RV,
(PDE)

w(O,IE) = 90(1‘)7 S RN,

with possible unbounded coefficients, has been widely studied in recent years. In the paper
[79], the authors provide sufficient conditions in order to get existence and uniqueness
of a classical solution w to (PDE), for any ¢ € C,(RY). Moreover, throughout w it
is possible to introduce a semigroup of bounded linear operators {S(t)}+>0 on Cp(R9)
setting S(¢,)f = w(t, ).

Our aim consists in writing an optimal control for (1.1) in terms of the mild solution
of (BPDE), which is defined by means of the variation of constants formula

T
u(t,z) = S(T = t)p(r) - /t (S(r =)0 (-, QY2 () Vau(r, ) (@)dr. (1.4)

Moreover, the smoothness of v allows us to identify the optimal feedback law for the
problem (1.1).

Hence, at first we ask if it is possible to apply S(r—t) to the function (-, Q/2(-)Vu(s, -))
which, in general, is unbounded. The answer is positive, and it is a byproduct of the
weighted gradient estimate

t21QVAV(S(1)¢)lloo < Crllplloes t € (0,T), (1.5)

which holds for any ¢ € C,(RY), where Cr is a positive constant, under the following
assumptions:

(i) the coeflicients Q);; belong to Cﬁ;o‘(Rd) for some a € (0,1) and any i,j =1,...,d;
(ii) the coefficients of the vector B belong to CiLt*(R%); further, (B(z),x) < Bo(z)|z|

for any = € R? and some negative function Bo;

ii



iii) there exist a positive constant KO and positive functions G - Rd — R, 1= ]., 2, such
.
that

(Q(z),2)| < Ko(1 + [z)v(z),  x€eRY,
IV.Q2(2)Q7 ()| < (), Q(z)] < o(x), xeR%

(iv) the functions 77 and ~9 satisfy the following conditions:

@) (@) (0(a))?
|| =00 w(z)

=0,

where the function w : R — R is a negative function which bounds from above the
quadratic form associated with the matrix

d d
M := Ql/Q(JxB)TQ_1/2 - ZB](Dle/Q)Q_l/Q - Z Qz](D23Q1/2>Q_1/2

j=1 i,j=1

Moreover,

lim inf FEAWAZ))”
\;fg}i-noo Bo(l‘

(v) there exist A > 0 and a function f € C%(R?) such that

lim f(z) =00, sup(Af(z)—Af(x)) < occ. (1.6)

|z| =400 z€R4

The proof of these estimates is based on an application of the Bernstein method and
the maximum principle for parabolic differential equation with bounded coefficients.

The existence and uniqueness of a function v in Ky which satisfies (1.4) follows from
the Banach’s fixed point theorem, where

heCy([T—6,T) xRN)nC ([T —6,T) x RN) :

=9 swp (T =0)Y2G(2) VAL, )| < oo )
tE[Tff\,fT)
zER

endowed with the norm
Allacs = llPlloo + [Placss (1.7)
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[Blac; := sup (T = 1)/*|GVA(t,-)||oos
te[T—6,T)

and ¢ is a suitable positive constant which belongs to (0, 7.

Finally, since v is uniformly Lipschitz continuous, we can deduce that the mild
solution v is defined in the whole [0, T}, for any ¢ € Cy(R%).

The technical tool to connect (1.1) and (BPDE) is a Forward Backward Stochastic
Differential Equation (FBSDE), which plays the role of It6 formula when one deals with
classical solutions of (BPDE) (see [101, Chp. 4,5]). Indeed, if we consider the system

dYT = w(Xn ZT)dT + ZTdWT’ TE [t’ T]’

dX, = B(X,)dr + G(X,)dW,, T ¢ [t,T],
(FBSDE)
Yr = SO(XT)a

X, =z, z e RN,

where 1 is the same function as in (BPDE), then it is possible to prove that the
identification formulae

Y(s, t,x) :=v(s, X (s,t,2)), Z(s,t,x):=G(X(s,t,z))Vov(s, X(s,t,z)) (1.8)

hold true. Formulae (1.8) have been proved for coefficients which satisfy some growth
and smoothness conditions (see [41], [89]). We show that (1.8) hold under our weaker
assumptions.

It remains to prove that the cost functional J and an optimal control u for (1.1) are
related to the random processes Y and Z. We write the process

T T T
XU—g +/ B(XY)do +/ GXO)r(XY, uy)do +/ GXU)W,, e [tT],
t t t
with respect to another process W, ie.,
T T __
XV = x+/ B(X}E)dwr/ G(XDdw,, Telt,T],
t t

defined by

tAT
W, =W, +/ (XY, u,)do.
t

The Girsanov theorem guarantees that there exists a probability measure P on Q
such that W is a Brownian motion with respect to P. The reason why we consider the
problem in weak formulation is clarified by the change of probability, which makes no
sense if we consider fixed the probability setting we deal with. In the next step we write

the (FBSDE)
Y, + / ZydW, = o(XY) / V(X
t

iv



where v := inf, {l(u,z) + zr(u,x)}, which is the Hamiltonian function of the system.
Easy computations yield to the inequality

v(t,z) < J(t,x,u),

for any control u, and we show that there exists a control @ which realizes the equality.
Hence, @ is an optimal control. Finally, the identification of the feddback law for (1.1)
by means of the gradient of v follows from the assumption that the set

F:i={uelU:¢(x2z2) =I1l(uzx)+z2r(uz)}

is not empty.
In the second part of this thesis we deal with systems of parabolic differential equations

Duu(t,z) = (A(t)u)(t,z), t>s, xR (1.9)

where A(t) is the elliptic operator defined on smooth vector-valued functions v

i,7=1

d
Z qij(t,2)D}v(z) + Y Bj(t,x)Dv(z) + C(t, z)v (), (1.10)
7j=1

for any (¢,z) € I x R?, with possible unbounded coefficients. Here, I is a right halfline,
possibly I = R. Note that the equations are coupled both at zero and first order.

We start from the results of [31], where the terms are coupled only at order zero,
to prove the uniqueness and existence of a classical solution u € Cy([s, 00) x R4 R™) N

01+a/272+a((5’ o0) x R% R™) to the Cauchy problem

loc

{ Diu(t,z) = (A(w)(t,z), t>s, z€RY, (1.11)

u(s,z) = f(x), r € R4,
which is bounded in all the strips [s, 7] x R?, for any f € Cy(R?%; R™). However, here we
use different techniques from [31], since we have not pointwise estimates of the classical
solution to (1.11) in terms of a suitable scalar evolution operator (see [31, Prop 2.4]).

The uniqueness follows from an extension of the methods in [55], related to the case

of smooth coefficients in bounded domains, combined with a Lyapunov condition. In
particular, we require that

(i) there exist € > 0 and a function & : I x R — R, bounded from above by a constant
Ko, such that K.(¢,z,m) > 0 for any (t,7) € I x R? and any n € dB(1), where

d
(t,z,m) Z i(t,2)n,m)(B;(t, )n,m) — (Bi(t, x)*n, B;(t, x)"n)]
=1
—4HC(t,x)n,n) + 4dex(t, z), (1.12)

and Q(t,x) " = [ay(t, x)];



(74) for any bounded interval J C I there exist a constant A; and a positive function
@0y € C*(RY), blowing up as |z| — +oo, such that

sup sup (A, (t)es)(x) — Aps(z)) < 400, (1.13)
n€dB(1) (t,z)eJxR4

where A, = Tr(QD?) + Z;.lzl by ;D;j + 2ex and by ; = (Bjn,n).

In [55], a condition similar to (i) appears; in particular, it is shown that a maximum
modulus principle holds if the function Ko (¢, z,n) is nonnegative. Here, we provide some
examples of the function K. in special cases. Let us assume that, in (1.10), B; = b;I,
for some scalar functions b;, j = 1,...,d; this is the situation in [31]. Condition (4)
reduces to (Cn,n) < ek|nf?, for any n € R™, while in (i) we have b, ; = b;, for any
j=1,...,d. Tt easy to check that (i) and (i7) coincide with Hypotheses 2.1(iii) — (iv) in
[31].

Moreover, if m = 1, i.e., in the scalar case where the elliptic operator in (1.10) is
A =Tr(QD?) + (bV) + ¢, then (i) is satisfied with the choices ¢ = 1 and k = c. Further,
in the scalar case, the uniqueness of a classical solution to (1.11) follows from the fact that
c is bounded from above, and that there exist A € R and a positive function ¢ € C%(R?),
blowing up as |z| — +o00, such that Ap — Ap < 0. When this is the case, with the
previous choice of € and &, also condition (i7) is satisfied.

The classical solution u is defined as the limit of solutions {u, },en of the Dirichlet-
Cauchy problem in B(n)

Diu,(t,x) = (Auy,)(t,x), te€ (s,+o0), =€ B(n),
u,(t,z) =0 t e (s,+0), x€ 0dB(n),
u(s,z) =f(x), x € B(n).

The results in [63] and interior estimates for systems of equations allow us to prove
that u has the required smoothness, and that it solves Dyu(t,z) = (A(t)u)(t,x), for
any t > s and € R% The continuity up to s is proved using a localization argument
and the variation-of-constants formula for solutions to Dirichlet Cauchy problems in
bounded and smooth domains. Indeed, fix M € N and let ¥ be any smooth function
such that xpr—1) < ¥ < xp)- For any ng > M the function vy, := Juy,, belongs to
C([s,T) x B(M); R™)NCY2((s,T] x B(M); R™) and solves the Dirichlet-Cauchy problem

Divi(t,z) = (Avg)(t,x) + gr(t,x), te(s,T], =€ B(M),
vi(t,z) =0 te(s,T], xe€0B(M),

vi(s,x) = (9f) (), x € B(M),

where g = —Tr(QD?*9)u,, — 2(Jouy,, )QVY — Z?Zl(Bjunk)Dﬂ?, for any ny > M. We
thus represent

i(t:2) = (Garls D)) + [ (Gaaltr)gatr, e

vi



where G (s, t) is the evolution family associated to the realization of A(-) in Cy(B(M); R™)
with homogeneous Dirichlet boundary conditions. From a priori estimates, and letting
k — +o0, we get

[u(t, z) — £(2)| <I|Gar(s, £)(IE) — VE| o (a1 1)

t
K lfls / (1+ (¢ —r) Y2)r,

which shows that u is continuous at ¢ = s for any x € B(M — 1), From the arbitrariness
of M, we conclude that u € C([s,T] x R*; R™) and u(s, ) = f.

At this stage we introduce the evolution operator {G(t,s)};>se;r on Cy(R%ER™),
defined by G(t,s)f = u(t,-), for any f € Cy(R% R™), where u is the unique classical
solution to (1.11). {G(¢,s)}+>ser satisfies remarkable continuity properties and an
integral representation holds, i.e., there exists a family of finite Borel signed measures
{pij(t,s,x,dy) : t >se€l, x € R? i,j=1,...,m} such that

(D@ =3 [ pilts..dn) o) (1.14)

where f; denotes the j—th component of f. Moreover, any signed measure p;;(t, s, z, dy),
with t > s, 2 € R and i,j = 1,...,m, is absolutely continuous with respect to the
Lebesgue measure. As a byproduct, we deduce that {G(t, s) }+>ser is strong Feller, i.e.,
it transforms bounded Borel functions in continuous functions, and that it is possible to
extend the continuity properties mentioned above and the representation formula (1.14),
to any f € By(R% R™).

The absolute continuity of the signed measures has been obtained in a completely
different way with respect to the scalar case, where the kernel theory and monotone
arguments are used (see e.g. [3, Prop. 3.1]). Here, the key tool is the construction of the
set of Borel functions By(R?) by means of transfinite induction, starting from continuous
functions. We briefly present this construction (refer to [61] and [99] for further details).
We define

B :={f: f(x) = lim fu(2), {fulnen C C(RY)},

i.e., B! is the set of functions which are pointwise limit of continuous functions. B! is
not closed under pointwise convergence: for instance, the characteristic function of Q%
can not be obtained as pointwise limit of continuous functions. Hence it is possible to
introduce B? in an analogous way:

B*:={f: f(x) = lim fu(@), {fu}nen C B'}.

Iterating this argument, we obtain B™, for any n € N, and put

B*:=|J B,

neN
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where w is the first transfinite ordinal number. Again, B“ is not closed under pointwise
convergence, and therefore we define B“t! setting

B = {f ¢ f(x) = lim folx). {folnen C B},

The above reasoning can be repeated, and finally we get B(R?) = B“!, where w; is
the first non countable transfinite ordinal number.

We further study the compactness properties of G(t, s)i>scs, J € I, and we relate
them to the compactness of the scalar evolution operator {G(¢, s)}+>ses associated to
a suitable elliptic operator A, following the idea in [31]. In particular, we provide
sufficient conditions such that the compactness of G(¢, s)¢>scs implies the compactness
of {G(t, s) }+>ses, and viceversa.

As first step, we obtain pointwise estimates which relate the vector-valued evolution
operator to the scalar one. In such a way we deduce that the compactness of {G(t, s) }t>ses
implies the compactness of {G(t, s) }i>se-

Proving that the compactness of the vector-valued evolution operator implies the
compactness of the vector-valued one is much more complicated, and we obtain it under
some additional conditions related to the growth of the coefficients of operator A. The
critical point consists in proving that it is possible to write

(G(t5))y(0) = (Ge9) ) + [ (G(t, ) S (B Di(GI(r. s>f>>) (x)dr

—i—/ (G(t,m)(Cj., G(r, s)f))(x)dr, (1.15)

for some j € {1,...,m}. Then, we conclude adapting the procedure in [31, Thm. 3.6] to
our situation.

We observe that, if the vector Cj. = (Cj1,...,Cjy) is bounded, for some j, then the
last integral makes sense. The first one is more difficult to treat, since, in general, the
function under the integral sign is not bounded.

To overcome this problem we prove the following weighted gradient estimates

(t—9) > _1QV(t,)Va(G(t, 5)f);lI2 < CIIf|%,
j=1

for G(t, s)f, which are obtained with techniques similar to those used to prove (1.5).
Hence, from an approximation argument we get (1.15).
The third and last part of the thesis is devoted to study the controlled equation

dx\ = p(xM)dr + GXM (X Jun) + QXY aw ™| T e [, T,
(1.16)
Xt(u) = SU, €T E Rd,

b:R* —RY G:R?— R,

viil



are Borel measurable functions, and r : R x U — R? is a measurable and bounded

function. We consider m players, and u = (u', ..., u™) is an R™—valued random process,
where any component u* represents the strategy of the player ¢, for any i = 1,...,m. To
any player i, ¢ = 1,...,m, we associate a cost functional
T
Ji(u) = E™ [/ R Xy, us)ds + ¢'(X7)| | (1.17)
0

and we notice that the value of the cost functional for any player ¢ depends on the
strategy of all the other ones.

We look for a Nash equilibrium, i.e., a strategy u = (ﬂl, . ,&m), such that, for any
i=1,...,m, any u' € U, we have

Jia) < J'(at . el ath oo™ (1.18)

The above definition of Nash equilibrium implies that, for any ¢ = 1,...,m, if any

player j, with j # i, chooses the strategy @, then the best strategy for i is @'.

As in the first part, the solvability of a particular Forward Backward Stochastic
Differential System gives information about the existence of a Nash equilibrium for the
above game (see [39]). We want to prove that, if (X,Y,Z) is a solution to

dY, = H(X,,Z,)dr + Z.dW,, 7€ [t,T],
dX, = b(X,)dr + G(X,)dW,, 7€t T],

(1.19)
Yr =g(X7),

X =z, x € RY,
then Y and Z can be represented throughout the identification formulae

Y (s, t,z) :=v(s, X(s,t,2)), Z(s,t,x):=G(X(s,t,2))Vv(s, X(s,t,2)). (1.20)
Here, v is a mild solution to

Dyv(t,z) + Av(t,z) = (x, Q2 (2)Vv(t,z)), t€[0,T), xcR%
(1.21)
v(T,z) = f(x), r € RY,

where A is the elliptic operator defined on R™—valued smooth functions ¢ by
(Ag)j(z) =Tr[Q(z) D2¢J Z x),Vor), j=1,...,m,

and 1) is involved in the definition of H. Problem (1.21) is similar to problem (BPDE),
but now, in view of applications, it does not make sense to assume the function 1 to be
Lipschitz; hence, we assume the following weaker hypotheses on 1:

(@, 21) — ¥(,22)| < C(L+ |21| V [22]) |21 — 22|,

W (x, 2)] < C(1+ |z]), (1.22)

ix



for any z € R? and z, 21, 20 € R*™, some positive constant C' and a € (0, 1).

Since 1 is not Lipschitz continuous, we can not directly use the Banach fixed point
theorem; however, throughout an approximation argument we obtain the desired result.
At first, we consider the semilinear Cauchy problem when the function ¢ is uniformly
Lipschitz continuous with respect the second variable, and follow the same procedure as
in Chapter 4, i.e., we prove that there exists a function v € K¢ which satisfies

T
v(t,z) = T(T — t)f(z) — /t (T(s —t)F(s,v))(x)ds,

for any t € [0,7] and = € R? where F(s,w)(z) = (s, Q'/?(x)V,w(z)) for any
(s,w) € [0,T) x Kr, and

K= {heC, ([O,T] x Rd;Rm) n ot ([O,T) x Rd;Rm> : |k, < oo},

iy = [hloc + [y bk, = sup (7= [QY2()Vahy(t, )lloc-

te[0,T) j=1

The first step consists in proving that the integral term in the above formula makes
sense. This result is a byproduct of the weighted estimates in Proposition 5.21, where we
have proved that

ty 1102 V.(u(t, )13 < ClEl%,
j=1

and u is the unique classical solution to

Dyu(t,r) = Au(t,z), t€(0,T], x¢cR?

u(0,z) = f(z), r € RY

Then, the Banach fixed point Theorem and the linear growth of 1 allow us to conclude.

The main effort now consists in proving that a suitable sequence of mild solutions
with Lipschitz data converges, up to a subsequence, to a function which satisfies our
requires.

We build the sequence of mild solutions as follows. At first, we approximate ¢ by
Un = Op(pn *» ¥), which, for any n € N, are defined by the convolution only with
respect the variable z with a standard sequence of mollifiers {py }nen in R™%4 and
U € CP(R™*9) are cut-off functions which satisfy XB(n) < Un < XB(nt1)-

Since we have already proved the existence and uniqueness of mild solution with
Lipschitz data, we consider the sequence {vy, },ecn, where

vp(t,z) = T(T — t)f(x) — /T(T(s —t)Fy (s, vn))(x)ds, (1.23)
t
and Fy,(s,w)(x) := (s, Q2 (2)V,w(x)). If we prove that, as n — +o0, v, converges

to a function v in a suitable way, we conclude taking the limit in the left-hand side and
in the right-hand side of (1.23).



The proof of the convergence of the sequence {v, },en relies on two results: the first
one is the uniform boundedness of {v;, },en in K7, i.e., there exists a positive constant K
such that sup,, | vn|lk,; < K. Further, we introduce and the family of operators on K

T
B () (1) = (DT~ D))~ [ (s~ ) Fi(s,w)()ds,
t+1/n
for any k,n € N and (¢,z) € [0,7) x R, where 7 := [1/T] + n.

The second step consists in showing that ®7 is compact from Ky is C%1([0,T —
1/1] x B(I); R™) by means of Ascoli-Arzela theorem, and the proof is a byproduct of the
interior estimates for systems of equations in Subsection 5.2.1.

To conclude, we argue as follows: we show that there exists a subsequence {w,} C
{vy,} such that {®"(w,,) }nen converges to a function v in C%1([0, T —1/I] x B(I); R™), for
any | € N. Then, we prove that also {wy, }nen converges to v in C%1([0, 7—1/I]x B(I); R™),
as n — +o00. Finally, since

T
wy(t,x) = T(T — t)f(z) — /t (T(s = t)Flpn), (5, Wn)) (z)ds,

where {(n,n),}neny C N is a suitable sequence, we get that v satisfies

T
v(t,z) = T(T — t)f(z) — /t (T(s —t)F(s,v))(x)ds,

for any t € [0,T) and = € R?, and it belongs to K.

Then, we show how to obtain a solution of the (S-FBSDE) throughout v. We
approximate H by H,,, defined similarly to v, even if in this case the convolution also
involves the spacial variable. From [41], for any n € N we have

Y"(s,t,x) :=vp(s, X(s,t,2)), Z"(s,t,x):=G(X(s,t,x))Vyvp(s, X(s,t,2)),

where (X;Y",Z") is the unique predictable solution to the approximate System of
Forward Backward Stochastic Differential Equations

dY" = H,(X,,Z")dr + Z"dW,, T € [t,T),
dX, = b(X,)dr + G(X)dW,, 7€ lt,T],

Y7 = g(Xr),

\ Xi ==z, r € RY,

Both v,, and Q'/2V v, converge to v and QY/2V v, respectively, and we prove these
convergences following the procedure of Subsection 6.2.2. Moreover, we prove that also

X1



Y,, and Z,, converge to random variables Y and Z, and we can conclude that (X,Y,Z)

is a solution to
dY, =H(X;,Z;)dr + Z.dW., 1¢€ltT],

dX, = b(X,)dr + G(X.)dW,, 7€t T,

YT = g(XT)a

| X: ==z, r € RY,

with

Y (s,t,z) :=v(s, X(s,t,x)), Z(s,t,x):=G(X(s,t,2))Vyv(s, X(s,t,x)).

xii



Chapter 2

Parabolic Cauchy Problems

The starting point of our analysis is the parabolic Cauchy problem

Dyu(t,x) = Au(t,z), z € R4 >0,

(PCP)
u(0,-) = f, z € RY,
A is the elliptic operator defined on the smooth functions g by
d
Aglw) = D aij(w)5—— ax o Z bi( + c(x)g(x), (21)
ij=1 J i—1

where the coefficients of operator A are possibly unbounded, and f € Cy,(R?).

In recent years much attention has been paid to the uniformly elliptic operator A,
with unbounded coefficients in R, since they naturally appear in the theory of Markov
processes (for a systematic treatment of this argument see [15]). Moreover, the interest
has also been extended to elliptic nonautonomous second order differential operators ([3],
[65], [67]).

If its coefficients are bounded and smooth enough, A is a sectorial operator which
generates an analytic semigroup (see [70]). Hence, it is possible to study (PCP) using the
classical theory of analytic semigroups in order to get existence, uniqueness and smooth
properties of the solution w.

The situation is completely different if we consider elliptic operators with unbounded
coefficients. Indeed, let us consider the Ornstein-Uhlenbeck operator, defined on the
smooth functions g by

Ag Z Qij a4 axlax] Z bl]x] a (22)

3,j=1 3,j=1

where [g;;] is a constant, symmetric and positive definite matrix, and [b;;] is a constant
matrix, whose eigenvalues have non-positive real part. This is the most famous example
of second-order elliptic operator with unbounded coefficients, and the semigroup defined
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by the solution to (PCP) is neither strongly continuous nor analytic in Cy(RY) (see [25]).
Moreover, the spectrum of the Ornstein-Uhlenbeck operator A in LP(RY) and Cy(R?)
contains suitable unbounded subgroups of vertical lines (see [77]). The lack of analyticity
has been also shown in [28] and [81] for more general operators of the form A + (F, V),
with suitable choices of F'. This means that we can not use classical techniques to study
operators with unbounded coefficients and their associated Cauchy problem in Cy(R%)
and LP(RY). However, in recent years important developments has been done in the study
of such operators, starting from the problem of existence and uniqueness of the solution
to the parabolic Cauchy problem (PCP), solved in the 60's ([52], [56], [57], [58], [59]).
Remarkable properties of the semigroups associated with operators with unbounded
coefficients, such as compactness, estimates of the spacial derivatives of the function
T(t)f, t > 0, and the study of invariant measures in LP(R?) (see the monograph [15] and
the paper [79]), have been established in the last years.

Also nonautonomous operators are of interest for us, and the first works in this
direction deal with the particular case of the Ornstein-Uhlenbeck operator (see [24], [43],
[44]). The pioneer paper which set the basis for a general theory of nonautonomous
operators is [60], in which the authors consider the parabolic Cauchy problem

Duu(t,z) = A(t)u(t,z), t>s, =cR?

(2.3)
u(s, ) = f(x), z € R%
The operator A(t) is defined on the smooth functions ¢ by
d 82@ d 0
(AOE) = 3 a9(t0) )+ 3 il a) ) o1

= Tr(Q(t,z)D*¢(z)) + (B(t, z), Vi(z)),

where x € R? and t € I, which is either R or a right half-line. The Cauchy problem (2.3)
is strictly linked to the stochastic differential problem

dX; = ,u(t, Xt)dt + U(t, Xt)DWt, t>s,
(2.5)
X, =z € RY,

where W, is a standard d—dimensional Brownian motion and p and ¢ are respectively
regular R? and R? x R?— valued functions. If problem (2.5) has a solution X; = X (¢, s, ),
then It6 formula implies that, for any f € C’g(Rd) and t > s € I, the function

u(t, s, z) .= E[f(X(t,s,2))] (2.6)
solves the differential equation

Dyu(s,x) = ATe(o(s,x)o0* (s,2)D?u(s, z)) + (b(s, ), Vu(s,z)), s<t, z€RY

u(t,z) = f(z), z € RY
(2.7)
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This is a backward Cauchy problem, but reverting time the solutions to (2.7) are
transformed into solutions to (2.3).

However, in the paper mentioned above, the Cauchy problem (2.3) is studied in a purely
analytic way. Authors find sufficient conditions such that for any f € Cy,(R?) the Cauchy
problem is solvable by a unique classical solution u € C([s,00) x RY) N C12((s,00) x RY).
Then they define a family of evolution operators {G(t, s)}+>scr setting G(t, s) f(x) =
u(t, x), and establish several important properties of these operators. These properties
concern with the continuity and the smoothing effects of {G(¢, s) }+>s, and the key tool to
show them is an integral representation of G(¢,s). This means that there exists a family
of finite Borel measures on R? {p; s(z,dy) : € R?}, ¢t > s € I, such that

:/ f(y)pt,s(x7 dy)v (28)
Rd

for any f € Cy(R?),z € R and t > s € I. Moreover, several estimates on the spacial
derivatives of G(t, s)f are proved, with f € Cy(R%).

These estimates have been used both to study the asymptotic behavior of G(t, s) and
to prove optimal Schauder estimates for non-homogenous Cauchy problems.

Finally, the existence of a system of invariant measures {y }+cs is proved, i.e. a family
of finite Borel measures p; such that

Gt f@d(a) = [ f@)dn(o (29)
R
for any t > s € I and f € Cy(R?).

Nonautonomous elliptic operators with unbounded coeflicients with a potential term
has been studied in [3]. More precisely, in [3] the operator

( Z Qz] 3 amj + Zb (2.10)

,j=1 =1
— ¢t )p(x)

has been considered. The proof of the existence and uniqueness of a solution to

Duu(t,r) = A(t)u(t,z), t>s, x€R%
U(S,.’E) :f('r)a xERdv

follows the ideas in [60], as the definition of G(¢,s). The rest of the paper is devoted
to prove compactness properties of {G(t,5)}i>ses in Cy(R?), for any bounded interval
J C I, and the invariance of LP(R%) and Cy(R?) under its action. As in the autonomous
case, the compactness of {G(t, s)}t>ses is equivalent to the tightness of the family of
transition measures {p; s(z,dy) : € R?}, and sufficient conditions for this family to be
tight are provided.



Chapter 2. Parabolic Cauchy Problems 4

However, under these conditions G(t, s) is compact but it does not preserve Co(R%);
hence finding assumptions which guarantee that Co(R?) is invariant under the action
of G(t,s) is not trivial, and under these assumptions the authors of [3] show that
{G(t, 8) }1>se1, restricted to Co(R?), is a strongly continuous family of evolution operators.

As noticed, elliptic operators with unbounded coefficients have been deeply inves-
tigated in these last years. Different is the case of systems of elliptic operators with
unbounded coefficients. The extension of the classical theory of elliptic systems has been
mainly devoted to the case of bounded but not smooth coefficients (see [1], [32], [49],
[85], [86], [87], [95], [98]), while the direction of unbounded coefficients has been little
beaten. In the papers [50] and [94], a class of weakly coupled systems is considered in
the LP—setting, and the paper [31] keeps on the analysis both in vector values spaces
LP(RN;R™) and Cy(RY;R™). Here, some results of previous papers are extended to
more general situations, and the operator A is studied in the space C’b(Rd; RM) of all
bounded and continuous vector-valued functions. The operator A is defined on smooth

vector-valued functions ¢ = (p1,...,¢n) by
d
lc - Z ql] z]gpk ) Zbl( zSDk + Zvlch
,j=1 i=1

forz € R?and k =1,..., M. As a first step the authors of [31] proved that it is possible
to associate a semigroup of bounded linear operators on C,(R%; RM) to A under minimal
assumptions on the coefficients, which are comparable with those of the case of single
equation. As usual, the semigroup is defined by means of the unique classical solution u
to the parabolic Cauchy problem

Diu(t,r) = Au(t,z), = €RY >0,
u(0,-) =f, r € RY,

For any f € Cy(R% RM) we set T(t)f(x) := u(t,z). Though the semigroup may fail to
be strongly continuous or analytic in Cy(R?;RM), a “weak” generator can be associated
with in, as in the scalar case. The authors of [31] have also provided sufficient conditions
in order to get compactness of T(t) on Cy(R?; RM) and estimates of spatial derivatives
of the function T'(t)f, with f € Cy(R% RM). These estimates have been used to prove
the optimal Holder regularity of solutions to non-homogenous parabolic and elliptic
Cauchy problem. Moreover, generation of strongly continuous and analytic semigroups
{T,(t) }i>0 in LP(R%RM) has been investigated, and conditions which imply that T, ()
maps LP(R%RM) into LI(RY; RM) for any 1 < p < ¢ < 0o are provided.
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2.1 Autonomous Cauchy Problems

2.1.1 The Parabolic Equation and the Semigroup

Let A be the differential operator defined on smooth functions g by

d 9 d
Agla) = Y ay(@) 50 (@) + Y @) 1) +ew)gle). (211)
ij=1 s i=1 !

We assume the following hypotheses on the coefficients of the operator A.

Hypotheses 2.1. (i) Q = [gi;] is a symmetric matriz, i.e. q; = qj for any i,j =

1,...,d, and there exist a positive function v and a constant vg > 0 such that
v(x) > vy for any x € R? and
(Q@)&, &) > v(@)Ef’, &z eRY (2.12)

(i) gij, bi and c belong to C2_(RY), for any i,j =1,...,d, and some o € (0,1);

loc
(iii) ¢ < ko, for some ko € R;

(iv) there exist a positive function ¢ € C%*(R?) and a constant X > 0 such that
lim, o p(z) = +00 and

Ap(z) — dp(z) <0, = eRY (2.13)

Remark 2.2. The function ¢ which appears in Hypothesis 2.1(iv) is called a Lyapunov
function associated to the operator A.

Under these assumptions, the following theorem holds.

Theorem 2.3. If Hypotheses 2.1 are satisfied then, for any f € Cy(R?), there exists a
unique classical solution to the Cauchy problem

Dyu(t,r) — Au(t,z) =0, t>0, z€R%
(2.14)
U(O, .%') = f(x)v T € Rda

i.e., there exists a unique function u € C([0,00) x RY) N CY2((0,00) x RY) which satisfies
(2.14). Moreover. u € Cl+a/2’2+a((0, o0) x RY).

loc

The uniqueness is a byproduct of Hypothesis 2.1(iv), while the existence is based
on an approximation argument and Schauder interior estimates. Let us explain this
arguments. For any n € N we consider the Dirichlet-Cauchy problem

Diun(t,z) = Auy(t,z), =€ B(n), t>0,
up(t,z) =0, x € 0B(n), t>0, (PDCP)

un(0,-) = f, x € B(n).
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By classical results for parabolic Cauchy problem in bounded domains (see [63])
we know that there exists a unique solution u, € C([0,00) x B(n) \ ({0} x 9B(n)) N

C’l+a/2’2+a((0, o0) X B(n)) to (PDCP). Using classical Schauder estimates and Ascoli-

loc
Arzela Theorem it is possible to show that {u, },en converges to a function u € C((0, 00) X

R?) ﬂ01+a/2’2+a((0, o0) x R%) in Cl+5/2’2+6((0, o0) x R%), for any 3 € (0, ) and for any

loc loc

compact set K C (0,00) x R?. Finally, one proves that u can be extended by continuity up
to 0 where it equals f. This is obtained using a localization argument: we set v, := Juy,,
where 6 is a smooth function which is equal to 1 in B(M — 1), and equal to 0 in B(M)°.
Hence v, satisfies the non-homogenous Cauchy problem

Dy (t, x) = Avn(t,r) + gn(t7x)v T € B(M)a t>0,
up(t,x) =0, x € IdB(M), t>0,
Un((),):ﬂf, l‘EB(M)v

where g, = —Tr(QD?9)v, — 2 Z?{jﬂ qi; DivDjun — Z?Zl(ijn)Djﬁ.
By means of the variation of constants formula we get

onlt, 2) = Tar (00 () + /0 Tar(t — )ga(s, ) (2)ds,

and

/ Tar(t — 5)gn(s,-) (x)ds] |

0

un(t,z) — f(z)| < [T ()0 f(x) — )] +

for any x € B(M — 1). Letting n to 400 and later ¢ to 0" we get that u(0,z) = f(z),
for any x € B(M — 1). Since M is arbitrary, we can conclude that u(0,-) = f in R%
Further, u satisfies

|u(t, z)| < exp(kot) || f oo, (2.15)
for any t > 0 and = € R?, where kg is given by Hypothesis 2.1(444).

Remark 2.4. If f > 0 the classical maximum principle implies that u, is positive and
increasing, and therefore u is positive.

Remark 2.5. If Hypothesis 2.1(iv) fails to hold, the approzimation argument explained
above still works and shows that problem (2.14) admits a classical solution u with the
smoothing properties in Theorem 2.3. In general, as we will see in Example 2.6, this
solution is not unique. Anyway, using the classical mazimum principle, we can show that,
for any f >0, u is the minimal solution to (2.14), i.e. if v is another classical solution
to (2.14) then u < v in [0,00) x R%,

Example 2.6. Let d =1 and consider the operators

Arg(z) = ¢"(z) — 2%/ (2) (2.16)
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and
Azg(x) = ¢"(x) + 2%/ (). (2.17)

Then, for any f € Cy(R) the Cauchy problem associated to A1 admits a unique
classical solution. On the other hand, the Cauchy problem associated to As admits more
than a classical solution.

Remark 2.7. Ezample above shows that the existence of a Lyapunov function is not
only connected to the growth of the coefficients, as it could appear. Indeed the drift terms
of Ay and Ay differ only in the sign, but their behavior is quite different.

We recall that, for any n € N, u,, denotes the unique classical solution to the parabolic
Dirichlet-Cauchy problem in B(n) with initial datum f, then

'LLn<t, .Z') = R Gn(ta Z, y)f(y)dy7 (218)

where G, € C((0,00) x B(n) x B(n)) is the fundamental solution to (PDCP). By the
classical maximum principle one can easily show that {G), },en is increasing, and so we
can define
G(t,z,y) == lim G,(t,z,y), t>0, z,y€RL (2.19)
n—oo

Function G is positive and almost everywhere finite, since if f = 1 we have

Gn(t,z,y)dy < exp(kot), t>0, =zecR% (2.20)
Rd

Now we can get an integral representation of T'(¢); indeed, defining
p(t,z,dy) == G(t,z,y)dy, t>0, zeR? (2.21)

by the monotone convergence we have
7)) = [ plt.o.dn) ), (2.22)

for any nonnegative f € Cy(R?). Splitting f into positive and negative part, we can
extend (2.22) to any f € Cy(R9).

As it has been stressed, in general the convergence is not uniform in R%. This is the
case if f vanishes at infinity, as the next Proposition shows.

Proposition 2.8. If f € Co(R?) then T(t)f converges to f uniformly in Cy(R?).

Remark 2.9. One can ask if, as a byproduct of Proposition 2.8, {T'(t)}+>0 is strongly
continuous on Co(RY). The answer is negative in general since it is not guaranteed that
the semigroup preserves Co(Rd), as we will see below.

Some important properties of {7'(t)}+>0, among which the strong Feller property, are
consequences of the integral representation (2.22).
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Proposition 2.10. If the sequence { fn }nen C Cy(R?) is uniformly bounded and converges
pointwise to f € Cy(R?) asn — oo, then T(t) f, converges to T(t)f on K, for any compact
set K C (0,00) x RL. Moreover, if { f,}nen converges to f locally uniformly in R, then
T(t)f, converges locally uniformly in [0,00) x R as n — oo.

Remark 2.11. As a byproduct of Proposition 2.10 we can extend T(t) to the set By(R?)
of all the Borel measurable functions on RY.

Finally, we recall the following definitions.

Definition 2.12. A semigroup {S(t)};>0 on By(R?) is said to be irreducible if, for any
nonempty open set B € R?, it holds that S(t)xs > 0.
{S(t)}e>0 has the strong Feller property if S(t)f € Cy(R?), for any f € By(RY).

Proposition 2.13. {T'(t)}+>0 is irreducible and has the strong Feller property.

The last concept that we introduce in this section is the weak generator of the
semigroup {7T'(t)}+>0. Even if in general {T'(t)}+>0 in neither strongly continuous nor
analytic, and hence it is not possible to define the infinitesimal generator in the usual
sense, however we can still associate a generator to {T'(t)}+>0, which has properties
similar to those of the infinitesimal generator.

We will provide two equivalent definitions of the weak generator.

For any f € Cy(R%) and any \ > kg the function t — e~ MT'(t) f(z) is continuous and
integrable in (0,400). Hence, the operators

RO\ f(x) := /0 h e MT(t) f(x)dt (2.23)

are bounded on Cj(R%), and straightforward computations show that the family {R()) :
A > ko} satisfies the resolvent identity. Moreover, R(\) is injective for any A > ko;
a result of functional analysis guarantees that there exists a unique closed operator
Ay : D(A7) C Cyp(RY) — Cy(RY) such that

R(A\) =R(\, A1), Im(R(N)=D(A1), X> ko. (2.24)
Definition 2.14 (see [19], [53]). A; is the Weak Generator of {T(t)}>0-

The second definition of the weak generator is based on bounded pointwise convergence:
a sequence {f,}lnen C Cy(R?) is said to be boundedly and pointwise convergent to
[ € Cy(R?) if there exists a positive constant C such that || f,]/ec < C, for any n € N,
and f,,(z) — f(x) as n — +oo, for any x € R%.

Definition 2.15 (see [91], [92]). We call weak generator of the semigroup {T'(t)}+>0 the
operator As defined as follows:

P ; < o0
D(A2) = f S Cb(Rd) : te(0,1)
E]g c Cb(Rd) : tliI(I)l+ T(t)f(xt) - f(.’L‘) _ g(;c% ve Rd

Aof(z) = g(x), f e D(Ay), xeRL
(2.25)
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Proposition 2.16. The operators (A1, D(A1)) and (Aa, D(A3)) coincide.
Definition 2.17. The operator (A, D(A)) := (A, D(A})) = (Ag, D(A3)) is called the
weak generator of {T(t)}i>0.

The weak generator fulfills the following properties.

Proposition 2.18. For any [ € D(/l) and any fived x € R?, the function T(-)f(z) is
continuously differentiable in [0,00) and
d

ST ] () = (T(OA])(2). (2.26)

For any sequence {fn}nen C D(/Al) such that f, and z{lfn converge boundedly in a
dominated way to f,g € Cy(R?), respectively, then f € D(A) and Af = g.

Proposition 2.19. We have

Dinaz(A) N Co(R?) € D(A) C Dyaa(A), (2.27)
where
Dinaz(A) 1= f € Co(RY) : (Y WEE(RY) : Af € Cy(RY) 5. (2.28)
p>1

Moreover, the following conditions are equivalent:

(1) A€ p(A), for some A > ko;
(ii) (ko,00) C p(A);
(lil) D(A) = Dmax(A)'

2.1.2 Compactness of {T(t)} in Cy(R?)

In this section we deal with some properties of the semigroup {T'(¢)}+>0 generated by
(PCP). In particular, we study the compactness of {T'(t)};~0 in Cy(R?) and the invariance
of Cp(R?) with respect to {T'(t)}i>0.

We say that {T'(t)}+>0 is conservative if T'(¢t)1 = 1 for any ¢ > 0; let us observe that
if {T'(t)}+>0 is conservative then necessarily ¢ = 0.

The compactness of {T'(t)}~¢ is strictly connected with the tightness of the family of
Borel measures {p(t,z,dy) : t > 0,z € R%}, where p(t, z,dy) has been defined in (2.21).
Here, we recall the definition of tightness fora family of bounded measures.

Definition 2.20. A family of Borel bounded measures {ji tacr is said to be tight if for
any € > 0 there exists a compact set K. C R? such that

pa(RINK) <e, acl. (2.29)
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Proposition 2.21. Suppose that {T'(t)}+0 is conservative. Then {T'(t)}t>0 is compact
in Cy(R?) if and only if the system of Borel measures {p(t,z,dy) : x € R} is tight, for
any t > 0.

A sufficient condition for the tightness of {p(t, z,dy) : € R4}, for any t > 0, is given
by the proposition below.

Proposition 2.22. Suppose that {T(t)}i>0 is conservative. If there exist a strictly
positive function ¢ € C?(RY) and a convex and positive function g such that

1
lim () = +oo, = is integrable at +00, Ap(z) < —gle(z)), xeRY  (2.30)
g

|z|—o00

then {p(t,z,dy) : x € R} is tight for any t > 0 and, consequently, T(t) is compact on
Cy(RY) for any t > 0.

Example 2.23. If we consider the operator A defined by
Af(z) = V() + (b(x), Df(2)),
x € R, on smooth functions f, with the drift b satisfying
(b(x), x) < C — Mz|***,
for some C, M, e > 0, then the associated semigroup {T'(t)}i>0 is compact. Indeed, if
plw) =la*,  g(s) = —(2N + C) + M5/,
for any x € R and s > 0, then we can apply Proposition 2.22.

Now we assume that {T(¢)}+>0 is not conservative, so in particular ¢ is not identically
zero in RY. In this case it is possible to relate the compactness of T'(¢) with the behavior
at infinity of T'(¢)1.

Theorem 2.24. Fizt > 0. Then T(t)1 € Co(RY) if and only if T(t) is compact and it
preserves Co(RY).

Hence it is sufficient to give some conditions such that T'(¢)1 belongs to Co(R?) for
any t > 0 in order to get the compactness of the semigroup. The proposition below gives
a sufficient condition, which guarantees that 7'(¢)1 vanishes at infinity, in terms of a
suitable Lyapunov function.

Proposition 2.25. Suppose that there exist Ao > ko, a compact set K C R* and a
function o € C?2(R4\ K) N Co(RY\ K) such that

ox) >0, zeRI\NK, inf Ap(z)— lp(x):=a>0. (2.31)
TERNK

Then T(t)1 € Co(RY) for any t > 0.
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2.1.3 Uniform Estimates and Consequences

In this section we state uniform estimates of the spacial derivatives of {T'(t)}+>0, and
some of their consequences. This problem has been widely studied in literature with both
analytic and probabilistic techniques. Here, we consider the conservative case.

Since in the case of unbounded coefficients the semigroup {7'(¢)}+>0 is not analytic,
it is not possible to use the well-known theory of analytic semigroups. However, with
additional hypotheses on the coefficients of A it is possible to prove optimal results on
the behavior of the semigroup and of its spacial derivatives near zero. The optimality
relays on the fact that, near 0, we obtain the same singularity which we get for elliptic
operators with bounded and smooth coefficients.

Here we only discuss uniform estimates, which have been studied in [11], [72] and [14],
even if pointwise estimates have also been established. These estimates show that that
for any w > 0 and any 0 < k <[ < 3 there exists a positive constant Cj, = C(l, k,w)
such that

IT(8) fll ey < Cat™ 02 fll gy, € CERD. (2.32)

Estimates (2.32) has been proved using the Bernstein method (see [10]). It consists
in introducing the function

vr(t,z) = ur(t,z)? + atvh|Dug(t, z)|* + a*t*9%| D*ur(t, z)|>
+ a3t | D3ur(t,z)?, t€[0,T), z¢€ B(R),

where, for any R > 0, up is the solution to the Dirichlet-Cauchy problem in B(R) with
initial datum (9f)2, and 9 is a suitable smooth function.

It is possible to apply the classical maximum principle to vg, i.e., there exists K > 0
such that |vg(t, x)| < K| f||co- Since K does not depend on R, letting R to +o00 we get
the thesis.

Finally by interpolation it is possible to extend (2.32) to k,l e Ry, 0 < k <[ < 3.

Below we give the additional hypotheses we need to get inequalities (2.32).

Hypotheses 2.26. Suppose that Hypothesis 2.1 holds. Moreover, assume the following
conditions:

(i) there exists a constant C > 0 such that

d
> aij(@)a;| < Cv()(1+[2]?), (2.33)
i,j=1
Tr(Q(z)) < Cv(z)(1 +|af?), (2.34)
d
D bi(a)a| < Cv(x)(1+ |2)?), (2.35)
=1

where v(x) has been defined in Hypothesis 2.1(7).

Moreover, in the next theorem we need one of the following conditions:
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(ii-1) ¢;j,b; € Cl+5(Rd) for some 6 € (0,1) and any i,j = 1,...,d. Further, there exist

loc
a positive constant C' and a function d : R — R with

d
Ly := sup d(@) < 00 (2.36)
z€R4 I/({L‘)

such that |Dyq;j(x)| < Cv(x) for any i,j,k=1,...,d, and

d
Y Dibj(2)6i&; < Cd(x),  x,& € R: (2.37)
7,7=1

(ii-2) qij, b € CEF(RY) for some § € (0,1) and anyi,j = 1,...,d, Hypothesis 2.26(ii—1)

loc
holds true and there exist a positive function r : R4 — R and three constants

K1 € R and Ly, Lg > 0 such that
|DPbi(x)| <r(z), xzeRY i=1,....d, 18] = 2,
d(z) + Lyr(z) < Lav(z), =€ RY,

. . (2.38)
Z thqij(:z:)mijmhk < Kll/(l’) Z m%k, x € Rd,
i,5,h,k=1 h,k=1

for any symmetric matric M = [mpg].

(ii-3) qij, b € C2FHO(RY) for some d € (0,1) and anyi,j = 1,...,d, Hypothesis 2.26(ii—2)

loc

holds true and there exists C' > 0 such that |DPb;(z)| < Cr(z) and |DPgq;j(z)| <
Cv(z) for any i,j =1,...,d, any |3| = 3| and any x € R%.

Now we can state the main theorem of this section.

Theorem 2.27. Let Hypotheses 2.1, 2.26(i) and 2.26(ii—[) hold true for somel € {1,2,3}.
Then for any w >0 and any k =0,1,...,1 there exist constants Cyj, = Cpj(w) > 0 such
that

IT(0)fllcp ey < Cl,kt_(l_k)/QemHf“Cl’f(Rd)v f e CERY). (2.39)

In particular, if k =1 we can take w = 0 in (2.39).

As we said, the proof is based on an approximating argument. At first, we consider
the case | = 3 and k = 0, since the others can be obtained in the analogous way. We
define a smooth function ¥, : R? — R by 9, (z) = 9(|z|/n), where ¥ € C(R) and

X(-1,1) <9 < X(—2,2)-
For any f € Cy(R?) let u, be the unique classical solution to

Diun(t,z) = Au,(t,z), =€ B(n), t>0,
up(t,z) =0, x € 0B(n), t>0,

un (0, ) = In f, x € B(n).
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From the interior Schauder estimates (see [63]) it follows that
un(t, ) —u(t,)llcsBm)) =0, n— oo, (2.40)

for any ¢ > 0. For any = € B(n) and t € [0, t], where ¢; will be chosen in a suitable way,
we set

V0,30 (t, ) = |un(t, JU)\2 + atﬂ%(m)\Dun(t, JL')\2 + aQtQﬁfL(xHDQun(t, x)]Q

(2.41)
+ a3t3098 ()| D3u, (t, ) |2
This function is smooth and satisfies the Dirichlet-Cauchy problem
Divosgn(t,x) = Avgsn(t,z) +g(t,xz), =€ B(n), te(0,to,
Uongn(t, ac) =0, WS 8B(n), t e (O,to], (2.42)

00,30 (0,) = Vnf, z € B(n).

Long computations show that, with a suitable choice of a and to, we get |g(t, z)| <
0 for any t € (0,%) and x € B(n). The classical maximum principle implies that
v0.3.n(t,7) < [9nf(x)|? and the uniform local convergence of u,, and ¥,, respectively to u
and 1 leads to the desired estimate.

We can now state the optimal regularity result for Cauchy problem

Dyu(t,z) = Au(t,x) + g(t,x), = cR4 te(0,T),
(2.43)
’LL(O,$) = f(LU), TE Rda

Theorem 2.28. Suppose that f € CEH(Rd) for some 0 € (0,1), and g € C([0,T] x R%)
satisfies g(t,-) € CY(RY) for all t € [0,T) and

gl := sup_lg(t,)lop ey < oo
te(0,T)

Then, problem (2.43) admits a unique bounded classical solution w, which is given by
the variation of constants formula

t
u(t.0) =TOf @) + [ (T )glsN)ds, te0.T, R (241

0
Moreover, there exists a positive constant C, independent of u and the data, such that

3t groqaa) < C (fllcgroes +lslo). (2.45)
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2.2 Nonautonomous Elliptic Operators

In this section we present the results [3]. The first paper which contains a systematic
treatment of nonautonomous operators with null potential term is [60], after that in
[25], [43] and [44] the nonautonomous Ornstein-Uhlenbeck operator has been studied.
[3] extends some results of [60] and [71] in the case of non-zero potential and provides
sufficient conditions for the compactness of the family of evolution operators associated
to A, adapting the technique of [80].

2.2.1 Existence, Uniqueness and Main Properties of the Solution to
the Cauchy Problem

Let I = R or be a right half-line, Ay := {(¢t,s) € I xI : t > s}, and A(t) be the differential
operator defined on smooth functions ¢ by

d
(ADe) () = 3 aij(t.v) %ax] 0+ bt Dt (2.46)

ij=1 i=1
— c(t, z)p(x),
for any (¢,z) € I x R%, under the following hypotheses:

Hypotheses 2.29.
(i) ¢ij,bi and c belong to Clo;f’a(l x RY), for anyi,j=1,...,d;
(ii) Cy ‘— inf(t@,)e[XRd C(t,l') > —0Q;,

(iii) Q(t,r) = [qij(t,)] is a symmetric matriz for any (t,x) € I x RY; moreover there
exist a function n: I x R — R such that 0 < ng := inf(; yerxre N(t ) and

Qt,2)€,&) > nt,x)¢]?, tel, z,eRY (2.47)

(iv) there exist a positive function ¢ € C?(RY) and a constant X > 0 such that im0 =
+o00 and
At)p(z) — Mp(x) <0, (t,x) eI xR (2.48)

Remark 2.30. As in the autonomous case, @ is called Lyapunov function.

Hypothesis 2.29 guarantees that for any f € C,(RY) the nonautonomous parabolic
Cauchy problem
Du(t,r) = A(t)u(t,z), t>s, x€R%
(2.49)
u(s,x) = f(x), r € R4



2.2. Nonautonomous Elliptic Operators 15

Cl+a/2,2+a

loc ((5,00) x Rd) Moreover,

admits a unique classical solution u which belongs to
lu(t, )] < e || flloe, s<t, zeRL (2.50)

The proof is analogous to that in the autonomous case: the Lypaunov function is the
key tool to prove uniqueness, while the existence follows from an approximation argument
with solutions to Cauchy problems in bounded domains with Dirichlet or Neumann
boundary conditions.

By means of the solution to (2.49) it is possible to define a family of bounded linear
operators on Cy(RY), setting G(t,s) : Cp(R?) — Cy(RY), f > G(t,s)f := u(t,-). The
following proposition shows the main properties of these operators.

Proposition 2.31.

(i) The family of operators {G(t,s)}i>ser defines an evolution operator on Cy(RY), i.e.
G(t,s) is a bounded linear operator on Cy(RY), for anyt > s € I, G(s,s) = Ide, may
and G(t,r)G(r,s) = G(t,s) for anyt >r >sel;

(ii) the evolution operator G(t,s) can be represented in the form
G(t.5)f(@) = [ glts.o)fo)dy. s<t veRL (251)
Rd

for any f € Cy(R?), where g : A x RY x RT — R is a positive function. For any
s € I and almost any y € R? the function g(-,s,-,y) € Cllota/Q’Ha((s,oo) x R%)
and it solves the equation Dig — Ag = 0 in (s,00) x RL. Moreover,

lg(t, s, 2, )l prgay < e s <t, z e R (2.52)

g is called the Green function of Diu — Au =0 in (s,00) x RY;

(iii) G(t,s) can be extended to By(R?) by the formula (2.51). Each operator G(t,s) is
irreducible and has the strong Feller property.

The Green function g defined in (2.51) is the key tool to prove the compactness of
evolution operator in C,(R?). Indeed it is possible to introduce a family of Borel measures
which are equivalent to the Lebesgue measure, and, as in autonomous case, one can prove
that the tightness of this family is equivalent to the compactness of evolution operator.

At first, we define this family of Borel measures and present its basic properties which
immediately follow from Proposition 2.31.

Corollary 2.32. For any (t,s) € A; and any z € R? we define the measure g; (x, dy)
by setting gs s(x,dy) = 0, and

gis(x, A) = / g(t, s,z y)dy, (2.53)
A
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for any Borel set A C RY. Then each measure 9t.s(z, dy) is equivalent to the Lebesgue
measure and for any t >1r > s € I we have

o A) = [ sl A (o). A€ BERD. (254)

To prove the compactness of G(t, s) we need some stronger hypothesis on the Lyapunov
function.

Hypothesis 2.33. For any bounded interval J C I there exist a positive function
¢ =y € C*(R?) and a positive constant A = Aj such that lim;_,, ¢(x) = +o0 and

(A(t) + c(t,z))p(z) — Ap(z) <0, teJ zeR (2.55)

2.2.2 Compactness

The aim of this part consists in giving sufficient conditions which ensure that the operator
G(t,s) is compact. In the conservative case (¢ = 0) a sufficient condition for G(t, s) to
be compact in Cy(R%) has been established in [71].

For any J C I we set

Ay:={(t,s)eJxJ:t>s} (2.56)

_As in autonomous case, the tightness of the family of measures {gts(x,dy) : s,t €
Ay, s < t,z € RY} and the compactness of the evolution operator {G(t,s)}s<t, s,t € J,
are strictly connected.

Proposition 2.34. Let J C I be an interval. The following are equivalent:
(i) for any (t,s) € Ay, G(t,s) is compact on Cy(R?);
(ii) the family of measures {gs <(x,dy) : © € RY} is tight for any (t,s) € Aj.

Hence, to prove the compactness of evolution operator we need to study the tightness
of this family of measures.

To conclude, we present a sufficient condition ensuring the compactness of the
evolution operator.

Theorem 2.35. Assume that Hypothesis 2.33 is satisfied and there exist K > 0,dy,ds € I
with di < da, a positive function n € C*(RY) blowing up as |z| — oo, and a convex
function h : [0,00) — R such that 1/h € L*(a,00), for large a, and

((Als)n)(z) < =h(n(x)), s € [di,do], || > K. (2.57)

Moreover, assume that, for the interval J = [dy,ds] C Ithere exist u € R, R > 0 and a
positive and bounded function W € C?(R%\ B(0, R)) such that inf,cpa\ po,) Wiz) >0
and

AW (2) — pW(z) <0, (t,z) € J x R\ B(0, R). (2.58)

Then G(t,s) is compact in Cy(R?) for any (t,s) € Ar such that s < dy and t > dy,
and t # s.
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2.3 Weakly-Coupled Systems

While parabolic PDE’s with unbounded coefficients have been widely studied in the last
decades, the same has not been done for systems of parabolic PDE’s with unbounded
coefficients.

The first results have been obtained in LP spaces, assuming that the diffusion coeffi-
cients are bounded in R?. Here, we follow [31], and we consider the vector-valued elliptic
operator A defined on the smooth function ¢ by

d
e = Z 6ij (@) D¥on(z) + D bilx) Digy () + Z Vin(e (2.59)
i,j=1 i=1
for x € R% and k = 1,...,m. Let us notice that only the terms of order zero are coupled.

The aim is to define a semigroup {T(¢)}+>0 in terms of the solution to

Dju(t,z) = Au(t,z), z€R? t>0,
(2.60)
u(0,-) =f, r € R4,

with f € Cb(Rd; R™) and to analyze the main properties properties of this semigroup.

2.3.1 The Cauchy Problem and the Definition of the Semigroup

We assume the following hypotheses on the coefficients of operator A defined in (2.60).
Hypotheses 2.36. The coefficients of operator A satisfy the following conditions:

(i) aij,b; € CZ%C(Rd) foranyi,j=1,...,d;

(ii) there exists a continuous function v : R — (0,00) and a positive constant vy such
that v(zx) > vy, for any x € RY, and

Q@)&,€) = v(@)|¢]?, =& eRY, (2.61)

where Q(x) = [gij(x)] is a symmetric matriz;

(iii) Vip € C2(RY) for any h,k = 1,...,m and there exists a function k € C% (R?)
with ko 1= supyepa k() < +00 such that
(V(2)¢,6) < k(z)€f*, z.¢ eRY (2.62)

(iv) there exist a positive function ¢ € C?(RY) which blows up as |x| — +oo and a
constant Ag > 0 such that

d

)\090 Z QZ] USO ) sz(.%')Dl(p@?) - Qk(x)cp(x) > 0, (2'63)

4,j=1 i=1

for any x € R,
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To enlighten the notations, we set

d
Ask == qij(z)D +Zb )D; + 2k(z),

ij=1

and denote by {Sax(t)}+>0 the semigroup of bounded linear operators associated to the
classical solution to

Diu(t,z) = Agpu(t,z), z€RL t>0,

u(0,-) =f, r € RY,

with f € C,(R%; R™).

Fixed f € Cy(R%R™), we look for a classical solution u to (2.60), that is a function
u e C([0,00) x RLER™) N CH2((0, 00) x RY R™) which is bounded in the strip [0, 7] x RY,
for any T' > 0. Uniqueness follows from Hypotheses 2.36(iii) — (iv), while existence is
established by means of limit of solutions in bounded domains with Dirichlet boundary
conditions.

Proposition 2.37. Let f € C,(R%R™), and let u be a classical solution to (2.60), which
is bounded in [0,T] x R for any T > 0. Then,

[u(t, )? < Sa()(JE2), ¢ > 0. (2.64)

In particular,

lu(, oo < VM |fllo, t 20, (2.65)
where ko is the constant in Hypothesis 2.36(ii7).

Theorem 2.38. For any f € Cy(R%:R™) the Cauchy problem (2.60) admits a unique
classical solution w which is bounded in [0,T] x R?, for any T > 0. u belongs to

clrel? 2+a((0 o) x REGR™) and

loc
lu(t, Yoo < VM |f]lo, ¢ >0, (2.66)
where ko and a are defined in Hypotheses 2.36(3), (ii1).

By Proposition 2.37 and Theorem 2.38 the family of operators {T(t)}+>o defined
by T(¢)f := u(t,-), where u is the unique classical solution to (2.60) with initial datum
f € Cy(R%R™), is a semigroup of bounded linear operators which satisfies

IT ()| o (cy(macmmyy < VMM, t>0. (2.67)

According to Definitions 2.14 and 2.15, it is possible to define the weak generator of
{T(t)}+>0. Tt suffices to replace Cy(R?) with Cy(R% R™). We denote by A; the operator
defined as in Definition 2.14, and Ay the operator defined as in Definition 2.15 . As
in the scalar case, these operators coincide and we denote by A := Ay = A, the weak
generator of {T(t)};>0. The following proposition gives a useful characterization of the
weak generator A.
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Proposition 2.39. Let Dy0.(A) be the mazimal domain of the realization of A in
Cy(RELR™), d.e.

Dinaa(A) == {f € CL(RELR™) (| WP (R R™) : Af € Cp(R4R™)} (2.68)
p>1

Then Doz (A) = D(A) and Af = Af, for any £ € D(A), where Af is understood in

the sense of distributions.

The last result of this subsection is the next proposition, which shows that T(t) and
A commute on Diq.(A).

Proposition 2.40. For any £ € Dyar(A) and any t > 0 T(t)f € Dypar(A). Moreover,
AT (t)f = T(¢t)Af.

2.3.2 Compactness Properties of {T(t)}:>o

Compactness properties of {T(t)};>0 in Cy(R% R™) are linked to those of the scalar
semigroups {So(t) }+>0 and {Sak(t)}¢>0 in Cyp(R?). In particular, it has been proved that
the compactness of the scalar semigroup {Sa () }+>0, related to the elliptic operator Ag,
implies the compactness of the vector-valued semigroup, and vice versa.

Theorem 2.41. If {So,(t) }+=0 is compact in Cy(RY), then also {T(t)}i~o is compact in
Cyp(RER™).

This result is a consequence of an integral representation of Soy(¢) and estimate (2.64).
Hence, to prove the compactness of {T(¢)}~¢ it is sufficient to find conditions which
ensure the compactness of {Sax(t)}+>0. This is the content of the following corollary.

Corollary 2.42. Suppose that one of the following conditions holds:

(i) there exist a positive function ¢ € C*(R?) blowing up as |x| — 400 and a convex
function g € L(a,00) for large a such that Aqp(z) + g(p(x)) < 0 for any x € RY;

(ii) there exist \, R > 0,1 € R, a function ¢ € C*(R?\ B(R)) with positive infimum, two
positive functions g1, g2 € C2(RY) blowing up as |z| — 400 and a conver function
g as in (i) such that Aot — pup > 0 in R4\ B(R), Aop1 — A\g1 < 0 in R? and
Asi@a + g(¢2) < 0 in R

Then, the semigroup {T(t)}+>0 is compact in Cp(RY;R™).

Now we prove the other implication, i.e., we provide sufficient conditions which
guarantee that, if {T(¢)}+>0 is compact, then {Sax(t)}+>0 is compact as well. We need
to consider the operator Ag := Agr — 2k and the semigroup {So(t)}+>0 associated to it,
but before entering into details, we stress that under Hypotheses 2.36 it is possible that
Cauchy problem

Diu(t,r) = Agu(t,z), =€ R9 >0,
(2.69)
u(0,-) = f, r € RY,



2.3. Weakly-Coupled Systems 20

admits more then one classical solution. Nevertheless, we can associate a semigroup to
the operator Ag by setting u(t, x) := lim,, o un(t, ), where u,, is the unique classical
solution to the Dirichlet-Cauchy problem

Dyuy(t, z) = Agun(t,x), =€ B(n), t>0,
up(t,x) =0, x € dB(n), t>0,

un(0,-) = f, x € B(n),

and wu is the minimal solution to (2.69) (see Remark 2.5). If we define Sp(t) f(x) := u(t, z),
we get that {So(t)}¢>0 is a semigroup of bounded operators on Cy(R?).

The first step is the proposition below, which links the scalar semigroup with the
vector one.

Proposition 2.43. Assume that Vg, is bounded in R? for any h =1,...,m and some
ke {l,...,m}. Then, for anyt >0, any x € R? and any f € C,(R%:R™) we have

(T®)f)z(2) = So(t)ff() +/O (So(t = s)(VT(s)f)5)(x)ds. (2.70)

Now we can state the following result.

Theorem 2.44. Suppose that {T(t)}>0 is compact in Cy(R%R™), and that there exists
ke {1,...,m} such that Vi, is bounded in R? for any h = 1,...,m. Then both {So(t)}+=0
and {Sor(t) }1=0 are compact in Cy(R?).

2.3.3 Uniform Estimates and Consequences

Here, we state estimates analogous to (2.39) for the vector-valued semigroup {T(¢)}s>o.
In particular, we show that

—(0-8)/2 d
IT(0)0 o agemy < Cost™ P20 [ oy, £ 0, € O (RER™)
(2.71)
for any 0 < 8 < 6 < 3 and some positive constants Cy g and wy 3. Besides Hypotheses
2.36 we also require the following conditions to be satisfy.

Hypotheses 2.45. (i) ¢;; and b; belong to C’lfga(Rd), foranyi,j=1,...,d;

(ii) the function v in (2.61) is bounded from below by a positive constant vy;

(iii) there exist a positive constant C > 0 such that

Q@)al + Tr(Q(x)) < C(1+ |2?) (v(2) Vr(@)k() ) , (2.72)
(b(a),w) < C(1+[af?) (v(2)y/w(@)k(@)) (2.73)

for any x € R%;
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(iv) there exist functions h,r : R — R and positive constants M,l,p,q such that
6l + (5p 4+ 6¢)d < 2, h+ Mr < Cv + 1|k| in R? and

|DYqij(z)] < Cv(z) + gjo)(2), (2.74)
(Db(x)€, &) < h(x)[¢]?, (2.75)
|DPb(z)| < (), (2.76)

foranyi,j=1,...,d, any x,& € R? and any multi-index o and B with || =1,2,3
and || = 2,3, where g1(x) = p\/v|k|, g2(x) = q|k|, g35(x) = C|k|;

(v) for any multi-index B with |B| = 1,2,3, it holds that

DAV (2)| < C (\/V(:C)|k:(:v)| +k(z)] + 1) , zeRY (2.77)

Theorem 2.46. Under Hypotheses 2.36 and 2.45 estimates (2.71) hold true.

As a consequence of Theorem (2.46), we get an optimal regularity result for Cauchy
problem
Dyu(t,z) = Au(t,z) + g(t,z), =€RL te(0,T],
(2.78)
u(0,z) = f(x), r € RY,

Theorem 2.47. Suppose that £ € Cf*e(Rd;Rm), for some 0 € (0,1), and g € C([0,T] x
R%R™) satisfies g(t,-) € C(REGR™) for all t € [0,T] and

[glo = sup |lg(t, ')||cg(Rd;Rm) < oo.
te(0,T)

Then problem (2.78) admits a unique bounded classical solution u, which is given by
the variation of constants formula

t
u(t,z) = T(t)f(z) —i—/ (T(t — s)g(s,-))(x)ds, te][0,T], z€R (2.79)
0
Moreover, there exists a positive constant C, independent of u and the data, such that

tes(%%) [u(t, ‘)Hcng"(Rd;Rm) <C (Hch§+9(Rd;Rm) + [g]9> : (2.80)



Chapter 3

Optimal Control Problems

The optimal control theory appeared for the first time only at the half of the past
century, even if its interest is related to problems whose nature has a long history. The
deterministic case consists in the treatment of a dynamical system

&(t) = b(t, z(t), u(t)),
(3.1)
z(0) = 29 € RY,

associated with a cost functional
T
Ty i= [ ftalt),ue)dt + ha (D), (3:2)
0

and the aim is to minimize (or maximize) J over all u belonging to a suitable space.
Randomness was considered in the early stages of the development of this theory, and
the first paper in which the expression ”stochastic control” appeared was that of Bellman
([9]). However, in that paper the Itd type differential equation was not involved. The
first connection between control theory and stochastic differential equations arose in [36],
where Bellman’s dynamic programming (see [8]) was used to derive a partial differential
equation associated with a continuous-time controlled Markov process. Given a complete
probability space (€2, F,P) in which a d—dimensional Brownian motion W (-) is defined,
the stochastic control problem has the following form. We deal with a state equation as

dz(t) = b(t, z(t), u(t))dt + o(t, z(t), u(t))dW (t),
(3.3)
7(0) = zg € RY,

where 8 and ¢ are Borel mesurable functions which take values in R?, R™*? respectively,
and a cost functional as

T
J(u) :—E[ /0 F(t,2(t), u(t))dt| + E[h(z(T))], (3.4)

22
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where x and wu are stochastic processes which have to satisfy some adaptability conditions,
and the goal is always to find the optimal value of J and some pair (Z,u) for which this
value is reached.

The main steps of the classical dynamic programming approach are the following.
At first, we let the initial time and state vary and define the value function V. Then,
we establish the Bellman’s Optimality Principle, together with some continuity and
local boundedness of the value function, and we prove that the value function is the
unique solution to a certain partial differential equation. Finally, under suitable regularity
assumptions, the application of some verification theorem concludes the procedure.

This means that, if T > 0 is fixed, for any (s,y) € [0,7) x R? we consider the state
equation (3.3) and the cost functional (3.4).

Hence, we define the value function

V(s,y) = infyeyups 1y J(s,9,u), (s,y) €[0,T) x RY,

V(T,y) = h(y), y € RY,

where

U*0,7) :=A{u:10,T] x Q@ — Ulu is {F; }1>0—adapted},

and U C R™.
if Ve CY2([0,T] x RY), then it satisfies the backward partial differential equation

—vt + SUPyecu G(t7 Z, U, Vg, _UCCCE) = 07 (t7 LE) € [07 T) X Rd)

v(T,x) = h(z), r € R4,
which is called the Hamilton-Jacobi-Bellman equation, HJB for short, where
G(t,z,u,p,q) := Tr(o(t,z,u)o*(t,z,u)'q) + (b(t,x,u),p) — f(t, z,u),

for any (¢t,z) € [0,T) x R%, v € U, p € R? and € R¥?. Here, U*[s,T] is the space of
adapted controls with respect a suitable filtration.

The tools to connect the value function, defined starting from the stochastic optimal
control problem, and the above PDE are the Bellman’s Optimality Principle and the Ito
formula. The first gives a representation formula of V(s,y) in terms of the functional
cost, while the second is the classical bridge between SDE’s and PDE’s. However a
problem arises, and it is linked with the regularity required to V' in order to apply the
1t6 formula; indeed in general the solution of the HJB equation is not smooth enough,
and so it is not possible to use these techniques.

Since, in general, the smoothness of the solution V to HJB equation fails, different
approaches to the stochastic control problem has been considered, which give rise to
different notions of solution.

A possible alternative is the notion of viscosity solutions. It was introduced in [22]
and [23] for first order Hamilton-Jacobi equations, which are related to deterministic
optimal control problems, and in [21] for second order partial differential equations,
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connected with stochastic optimal control problems. Based on the optimality principle,
it is possible to prove in a natural way that the value function is a viscosity solution to
the corresponding HJB equation. Finally, uniqueness of viscosity solutions was proved
with different methods (see [54] and [51]).

As mentioned above, we follow a different method. which has as starting point the
backward stochastic differential equations (BSDE for short), i.e., Itd6 equations with
final conditions. Firstly, Bismut (see [16], [17]) introduced a linear BSDE with adapted
solutions when he was studying adjoint equations of the stochastic optimal control
problem, but the first systematic treatment of the nonlinear BSDE

dY (t) = f(t,Y(t), Z(t))dt + Z(t)dW (t), t€[0,T],
Y(T)=¢,

is due to Pardoux and Peng ([89]).

Another interesting situation is when f and £ depend on a given process X, which
is aolution to a forward equation. In this case we talk about the forward-backward
stochastic differential equation (FBSDE for short)

dY (1) = (8, X (£), Y (£), Z())dt + Z(£)dW (1), t € [0,T],
(3.5)

initially studied in [5].
If X is the solution to a SDE of Itd type, then it is possible to connect FBSDE with
the semi-linear parabolic PDE

Dyu(t, z) + Au(t,x) = (¢, z,u(t,z), Vu(t,z)G(z)), =€ R te[0,T),
(3.6)
u(T,z) = p(x), z € R,

where A is an uniformly elliptic operator defined by means of the SDE (see [89]). In
these directions a lot of developments were done, see e.g. [33], [34], [75], [88], [90], [30].
Finally, following the approach of [41], which holds both in finite and infinite dimension,
we consider an application of FBSDE to a particular stochastic optimal control problem
in weak formulation. Indeed, the authors consider the problem (3.3) in the following
form,
dx(t) = b(x(t))dt + o(z(t))r(z(t), u(t))dt + o(x(t))dW (1),
(3.7)
2(0) = zg € RY,

where o(x) is a d—dimensional square matrix, and the cost functional is given by

T
J(u) = E [ /0 1a(t), u(t))dt} + Elp((T)). (3.9)
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Then, setting
Y(x, 2) = nfll(z, u) + 2r(z, u)],

they show that the existence of an optimal control u is related with the solvability (3.5).
We also consider the state equation (3.7) and the cost functional (3.8)
Our aim is to prove the existence of an optimal control for the above problem through
the existence and uniqueness of a mild solution to the semilinear Cauchy problem

Dyu(t,z) + Au(t, ) = Y(t,xz,u(t,x), Vu(t, z)o(z)), =€ R™ tel0,T),
u(T,z) = p(z), x e R",

where A is the uniformly elliptic operator defined on smooth function g by

]' *
Ag(w) = 5 Tr(o(2)o" (@)D (x)) + (b(x), Vg(x)),
for any x € R?. This approach is based on the study of a forward backward stochastic
differential system, following the idea of [41].

3.1 A formulation of Stochastic Control Problem

There are two possible formulations of a stochastic optimal control problem. Exactly as
for stochastic differential equations, the difference arises form the concept of solution;
indeed, if we consider the probability space (2, F,{F:}i>0,P) being fixed and we look
for a solution (u,x) of the stochastic controlled equation, we are speaking about strong
formulation. Otherwise, if also the probability space is part of the solution, the setting
is that of weak formulation. The formal differences of the two definitions are explained
below.

3.1.1 Strong Formulation

Fixed a filtered probability space (Q2,F, {F:}i>0, P} satisfying the usual conditions on
which an m—dimensional standard Brownian motion W is defined, consider the following
controlled stochastic differential equation

dx(t) = b(t,z(t), u(t))dt + o(t, x(t), u(t))dW (),
(3.9)
2(0) = zg € RY,

where b : [0, T|xRI¢xU — R% ¢ :b: [0, T| xRExU — R¥*™ with U being a separable
metric space, and T' € (0, 00) being fixed. The function w is called control and represents
the action or decision or policy of the decision-maker (controller). At time t € (0,T") the
controller is knowledgeable of some information about what happened till that moment,
but is not able to foretell what is going to happen. This non-anticipative restriction
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in mathematical terms can be represented by the condition that w is {F;}+>0—adapted.
Hence we define

U[0,T] :={u:[0,T] x Q@ — Ulu is {F:}+>0—adapted}, (3.10)
and we consider the cost functional (3.4).

Definition 3.1. Let (Q,F,{F:}i>0,P) be probability space satisfying the usual conditions
on which an m—dimensional standard Brownian Motion W is defined. A control u is

called an s—admissible control (s—a.c for short), and (u,x) an s—admissible pair (s—a.p.
for short) if

(1) we o, 7];
(ii) x is the unique strong solution to (3.9) (see Section A.3);

(i) f(r2(),u() € LE(0,T5R), h(@(T)) € LE, (%K) and o(-a(),u() € LL(0, T;R).

Here,

L5(0,T;R) := {f € L'(Q x (0,T);R) : f is F — measuable},
LY R) := {f € LY(Q;R) : f is T — measuable},
with i = 1,2.

The set of all the s—a.c. is denoted by U?,[0,T]. The stochastic optimal control
under strong formulation can be formulated as follows:

Problem 3.2. Minimize (?7) over UZ,[0,T].

Our goal is to find u € UZ,[0, T, if it exists, such that

Ju)= inf  J(u). 3.11
(= it ) (311)
Problem 3.2 is said to be s—finite if the right-hand side of (3.11) is finite, and is said
to be (unique) solvable if there exists a (unique) s—a.c. @ which satisfies (3.11). Such @
is called s—optimal control, and the corresponding state process & and the pair (u, Z)
are called s—optimal state process and s—optimal pair, respectively.

3.1.2 Weak Formulation

As we said above, in the weak context the probability space is not fixed, but it is contained
into the solution. Hence also the definition of admissible control changes, as it is shown
below.

Definition 3.3. We say that a 6—tuple 7 = (Q,F, {Fi }1>0, P, W, u) is a w—admissible
control (w—a.c. for short), and (u,z) a w—admissible pair (w—a.p. for short), if
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(1) (,F,{Ft}>0,P) is a filtered probability space which satisfies the usual conditions;
(ii) W is an m—dimensional standard Brownian motion on (0, F,{Ft}+>0,P);

(iii) w is an {Ft}i>0—adapted process on (U, F,P) taking values on U;

(iv) x is the unique solution of equation (3.9) on (2, F,{Ft}i>0,P);

(v) f(oa(),u() € Ly(0,T5R), h(z(T)) € Ly, (4 R) and o(-, (), u(-)) € Ly(0,T;R),
where LL(0,T;R), L2(0,T;R) and L;T(Q;R) are defined on the given filtered
probability space associated with the 6—tuple introduced above.

The set of all w—a.c. is denoted by UY,[0, T, and we write u instead of (Q, F, {F; }+>0, P, W, u)
when there is no possibility of confusion. The stochastic optimal control problem in the
setting of weak formulation is the following:

Problem 3.4. minimize (77) over UZ,[0,T7].

As for the strong formulation, we say that Problem 3.4 is w—finite if the right-hand
side of (3.11) is finite, and it is (unique) solvable if there exists a (unique) w—a.c. @
which satisfies (3.11). Such @ is called w—optimal control, and the corresponding state
process T and the pair (@, Z) are called w—optimal state process and w—optimal pair,
respectively.

3.2 Dynamic Programming and Hamilton-Jacobi-Bellman
Equation

3.2.1 Stochastic Dynamic Programming

As above, we have a filtered probability space (€2, F,P) satisfying the usual condition, on
which a m—dimensional standard Brownian motion W is defined. Moreover, we consider
the state equation (3.3) and the associated cost functional (3.4).

We now set up the framework. Let T > 0 fixed, and let U be a metric space. For any
(s,y) € [0,T) x R? we consider the state equation

dz(t) = b(t, z(t),u(t))dt + o(t, z(t),u(t))dW(t), te€[s,T]

(3.12)
z(s) =y e R,
along with the cost functional
T
J(s,yu) = E [ / £t 2(8), u(t))dt | + Eh(z(T))). (3.13)

Fixing s € [0,T) we denote by U"[s,T| the set of all 5—tuple which satisfy the
following conditions:
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(i) (92,3,P) is a complete probability space;

(ii) {W(t)}+>s is an m—dimensional standard Brownian motion on (2, F,P) over [s, T
(with W(s) = 0 almost surely) and {F}} := o{W (o) :s <o <t}

(iii) w: [s,T] x Q@ — U is an {F} }—adapted process on (2, F, P);

(iv) for any {F3}—adapted process on (2, F,P) u and any y € R?, the equation (3.12)
admits a unique solution = on (Q,F,{F;},P);

(v) fC,2(),u(-) € L0, T;R) and h(z(T)) € L}TT(Q;]R), where the spaces LL(0,T;R)
and L;T (©;R) are defined on the given filtered probability space associated with
the 5—tuple introduced above.

In general, in the weak formulation the filtration is also part of the solution, while
here we are considering the filtration {F;} generated by the Brownian motion. We can
formulate the following optimal control problem:

Problem 3.5 ((Ss)). For any (s,y) € [0,T) x R? we want to minimize (3.13) among
all w e U"[s, T7.

We need the following assumptions:

Hypotheses 3.6. (i) (U,d) is a polish space (i.e. U is a sparable completely metrizable
space) and T > 0;

(ii) functions b, o, f,h are uniformly continuous in their domains and there exists L > 0
such that, if p(t,x,u) denotes b(t,x,u),o(t,z,u), f(t,x,u), h(x), we have

lo(t,z,u) — @(t,2,u)| < Lz — |, t€0,T], =, € RY uel,
(3.14)
[p(t,0,u)] < L, (t,u) € [0,T] x U.

Note that under Hypotheses 3.6 problem (3.12) admits a unique solution z and the
cost functional is well defined. Hence, we can introduce the following function.
Definition 3.7. The function

V(s,y) = infyeyups 1 J(s,9,u), (s,y) €[0,T) x RY,
(3.15)
V(T,y) = hy), y € RY,

is called value function.

The value function has the following regularity properties.
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Proposition 3.8. Let Hypotheses 3.6 hold. Then the value function V satisfies the
following conditions:

V(s,y)l < K@ +1yl), (s,y)€[0,7] x RY, (3.16)
V(s,y) = VG0 < K(ly—al+ 1+ [yl v [alls — 311/2), (3.17)

5,5€[0,T], y,9 € R

3.2.2 Principle of Optimality and HJB Equation

Now we are ready to present a crucial result. It is the Bellman Principle of Optimality
in the stochastic version, which allows us of writing the value function in terms of the
function f of the cost functional J.

Theorem 3.9. Suppose that Hypotheses 3.6 hold. Then, for any (s,y) € [0,T) x R?

V(s,y)= inf E {/ F(t,z(t), u(t))dt + V (3, x(§))} : (3.18)

ueUW[s,T]
for any 0 < s <5 <T, where z(t) = x(t,s,y, u(t)).

Equation (3.18) is called dynamic programming equation. Its importance is the
following: if (Z,u) is optimal for the problem (S), then it has to satisfy a certain
relationship with the value function, as shown in the theorem below.

Theorem 3.10. If Hypotheses 3.6 hold and (Z,u) is optimal for (S), then

T
V(t,z(t) =E {/t f(ryz(r),a(r))dr + h(i’(T))]S"f} , P—astel[s,T]. (3.19)

The dynamic programming equation is complicated and difficult to solve directly;
hence it is useful to find other ways in order to use this result. This is the case when
the value function V is smooth enough: indeed in such a situation V satisfies a partial
differential equation which is derived from (3.18). This fact is clarified in the next
proposition.

Proposition 3.11. Suppose that Hypotheses 3.6 hold, and that V € CY2([0,T] x RY).
Then, V is a solution of the following terminal value problem of a (possible degenerate)
second order partial differential equation

—vg + supyep Gt T, U, Vg, —Vz) = 0, (t,z) € [0,T) x RY,
(3.20)
(T, z) = h(x), T € RY,
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where
G(t,z,u,p,q) := Tr(o(t,z,u)o*(t,x,u)q) + (b(t,z,u),p) — f(t,z,u), (3.21)
for any (t,z) € [0,T) xR, w € U, p € R? and € R¥*9,

Equation (3.20) is called Hamilton-Jacobi-Bellman equation. The function G is called
Hamiltonian, and if oo is uniformly positive definite it is an elliptic operator. Moreover,
if its coefficients satisfy suitable conditions, the HJB equation admits a solution in
C12([0,T] x R?) (see [35]).

3.2.3 Stochastic Verification Theorem and Optimal Feedback Control

Solving an optimal control problem means finding an optimal control and the correspond-
ing state function. The introduction of dynamic programming is motivated by the fact
that one might be able to construct an optimal feedback control via the value function.
The following result, called classical stochastic verification theorem, gives a way of testing
if a pair is optimal and suggests how to construct an optimal feedback control. We refer
to [101] for the following results.

Theorem 3.12. Let Hypotheses 3.6 hold, and let v € CY2([0,T] x R?) be a solution of
the HJB equation (3.20). Then

v(s,y) < J(s,y,u), weUs,T], (s,y) € [0,T) x RY. (3.22)
Moreover, an admissible pair (Z,u) is optimal for problem (Ssy) if and only if
ve(t, Z(t)) = max G(t, Z(t), u, —v, (¢, T(t)), —vzz (t, T(t)))
uelU (3.23)
= G(t, Z(t), u(t), —vy(t, T(t)), —ve(t, Z(t))),
a.e. t € [s,T], P—a.s.

Now we can show how to construct an optimal feedback control. At first, we need of
the following definition:

Definition 3.13. A measurable function u : [0,T] x R — U is called admissible
feedback control if for any (s,y) € [0,T) x R? there is a weak solution of equation

dx(t) = b(t, x(t), u(t,z(t)))dt + o(t, z(t), u(t, z(t)))dW(t), te[s,T]
(3.24)
z(s) = £ € R4

An admissible feedback control is said to be optimal if for any (s,y) € [0,T) x R the
pair (Z,4(-,x)) is optimal for the problem (Ssy), where T is the solution associated to . .

The following theorem gives a sufficient condition to obtain an optimal feedback
control.
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Theorem 3.14. Suppose that Hypotheses 3.6 hold, and let v € CY2([0,T] x R?) be a
solution to the HJB equation. If u is an admissible feedback control which satisfies

G(t,z,u(t,x), —vg(t, x), —vye(t,x)) = max G(t,z,u, —vg(t,x), —vg(t, T)), (3.25)
ue

for any (t,x) € [0,T] x R?, then u(t) := u(t,z(t)) is an optimal control, where T is the
solution to (3.24) related to u.

3.3 Backward Stochastic Differential Equations

3.3.1 Nonlinear Backward Stochastic Differential Equations

We consider a complete probability space 7 = (Q,F,P), an d—dimensional Brownian
motion on m W and {F:}+>0 the filtration generated by W, augmented by all the P—null
set of (2.

In the following we deal with the nonlinear BSDE

dY (t) = f(t, Y (t), Z(t))dt + Z(t)dW (t), t € [0,T),
(3.26)
Y(T)=¢,

where f: Q x R™ x R™*4 5 R™ and ¢ : O — R™ are given functions, and we look for
unknown adapted processes Y and Z. Let us observe that f could be stochastic, but we
obmits the possible dependence on w.

As in the linear case, we say that (Y, Z) is a solution to (3.26) if it is adapted, satisfies

T T
Y(t)=¢ - / F(s, Y (s), Z(s))ds — / Z()dW (s), (3.27)
t t
and (Y, Z) € M[0,T], where
M[0,T] := LF(Q; C([0, T); R™)) x L3(0,T; R™*%),
equipped with the norm
T 1/2
(Y, Z) lago.r = {E < sup \Y(t)ﬁ) +E / \Z<s>|2ds} . (3.28)
te[0,7) 0

Let us observe that equation (3.27) makes sense if f(-,Y(-), Z(-) € M.

loc [O’ T]
We assume the following hypotheses.

Hypotheses 3.15. (i) € € L%T(Q;]Rm);

(ii) f is {Ft}e>0—adapted and there exists K > 0 such that, for any t € [0,T], any
v,y € R™ and any 2,2 € R™*? we have

|f(t,y,z)—f(t,y',z')| S[{(|y_y,’—|_||Z_Z/H)7 ]P)—(I.S.; (329)
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Under the above conditions, the following theorem holds.

Theorem 3.16. Let Hypotheses 3.15 hold. Then for any given & € L%(O, T;R™) equation
(3.26) admits a unique solution in M0, T].

3.3.2 Forward-Backward Stochastic Differential Equations and Con-
nection with PDEs

In this subsection we consider a particular BSDE in which both ¢ and f depend on
another stochastic process X, that we assume given in advance, and the case m = 1.
Then, we will show the connection of BSDE with a (possible degenerate) quasi-linear
parabolic differential equation. Here we follow closely [89].
Suppose that X is a process with values in R and that it belongs to L%(Q; C([0, T]; R™)),
for any p € [1,00). This means that for any p € [1,00) we have Esup,cp ) | X ()P < oo.
We consider the BSDE

dY () = ¥(t, X (1), Y (£), Z(t))dt + Z()dW (t), t € [0,T],
(3.30)
Y(T) = o(X(T)),

where 1 : [0,7] x R” x R x (R?)* — R and ¢ : R — R are given Borel functions. As
before, we look for adapted processes Y and Z which satisfy (3.30).
Now, suitable assumptions on 1 and ¢ allow us of connecting with Hypotheses 3.15.

Hypotheses 3.17. For allt € [0,T], x € R", y,y/ € R, 2,2 € (RY)*, we have, for some
kK >0,

(1) [t z,y,2) — ot 2y, 2) < K(ly =y + [l = 2l));
(ii) |p(2)| + ¢t 2,0,0)] < K(1+ |2|F).

Setting & = (X (T)) and f(t,y,z) = ¥(t, X(t),y, z) we can easily check that £ and f
satisfy Hypotheses 3.15. Thus there exists a unique solution (Y, Z) € M[0, T].

Now we consider the special case when X is given as a solution of another standard

stochastic differential equation (forward). Moreover, we assume that d = 1. So, for any
interval [t,T] C [0,T] we are concerned with

dX (s) = F(X(s))dt + G(X(s))dW (s), s € [t,T],
(3.31)
X(t) =z € R",

where F: R® — R” and G : R® — R™ 4 are Borel functions and satisfy:
Hypothesis 3.18. For all z,2' € R% and for some constant K > 0 we have

|F(z) = F(2')| +[|G(z) - G| < K|z — 2|, (3.32)
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Under the above hypotheses, there exists a unique continuous and adapted process
{X(s) : s € [t,T]}, solution of (3.31), and for convenience we set X (r) = x, for any
r € [0,t]. We denote by {X(s,t,z) : s € [0,T]} the solution process, to stress the
dependence on the parameters ¢t and z. Then, for every p € [1,00) we have

[Xlp:=E sup [X(t)[F < (14 |zfP),
cl0.7] (3.33)
HX("t’ I’) - X('?t/7x,)HP < C|I’ - x‘p,

for some positive constant ¢ independent of .
By the previous results, choosing X = X (-, ¢, ) in (3.30), such a backward equation
admits a unique adapted solution, i.e., the system

dY (s) = ¥(s, X (s),Y(s),Z(s))ds + Z(s)dW (s), se€ [t,T],

dX (s) = B(X(s))ds + G(X(s))dW (s), s e t,T),
(3.34)

which we call forward-backward stochastic differential equations, admits a unique solution
(X,Y,Z) € LE(Q; C([0, T); R™)) xM[0, T]. Sometimes we will write {X (s,t,2),Y (s, t, ), Z(s,t, ) :
s € [t,T]} to point out the dependence on ¢ and x.

Lemma 3.19. Y (¢, t,x) is deterministic.

This result follows from the fact that Y (¢,¢, z) is measurable both with respect to
JFt and with respect to F; 7, where F; 7 denotes the o—field generated by the random
variables W, — Wy, 7 € [t,T], augmented with P—null sets.

Let us introduce the differential operator A, defined on smooth functions f by

1 n n
Af(2) =5 > ay@)Djf(x) + ) Fi(x)Dif (@), @ €R", (3.35)

i,j=1 i=1
where F;, for i = 1,...,n, are the components of F' and, denoting G;; the components of

G, we have
d
aij(x) =Y Gik(2)Gji(x). (3.36)
k=1

A is an elliptic second order differential operator, but in general not uniformly elliptic.
We consider the backward Cauchy problem associated to A:

Dyu(t, z) + Au(t, z) = Y (t, z,u(t, z), Vu(t,x)G(z)), zeR™ te[0,T),
(3.37)
u(T,z) = p(z), x € R™.
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This equation is not easy to treat by analytic methods, since the diffusion term a is
not, in general, uniformly elliptic. Hence the probabilistic approach, based on FBSDES,
is a useful tool to overcome this difficulty.

Indeed, a first result is due to a straightforward application of It6 formula.

Theorem 3.20. Assume that Hypotheses 3.17 and 3.18 hold true. If u € C+2([0, T] x R")
is a classical solution to (3.37), then u(t,x) = Y(t,t,x), where (X,Y,Z) denotes the
solution of the FBSDE (3.34).

The inverse result is harder to reach, and need of additional hypotheses. The following
conditions have been introduced by Pardoux and Peng in [89], and guarantee the existence
and uniqueness of a classical solution to (3.37).

Hypotheses 3.21. (i) F and G are of class C3, and their derivatives of order 1,2,3
are bounded;

(ii) ¢ is of class C3, and it has polynomial growth together with its derivatives of order
1,2,3;

(iii) (¢,-,-,-) is of class C3, for all t € [0,T];

(iv) ¥(t,-,y,2) has polynomial growth with its derivatives of order 1,2,3, for any t €
[0,T], y € R, z € (RY)*; moreover, |Vy1p(t,x,y,2)] < K (14 |2[)(1+ |z[ + [y[)* for
suitable constants K, u > 0;

(v) V2o and V¢ are bounded together with their derivatives of order 1,2 with respect
toy and z.

Under these assumptions, we obtain the following result.

Theorem 3.22. Let us assume that Hypotheses 3.21 hold. Then setting u(t,z) =
Y (t,t,z), we have that u € C12([0,T] x R"™) and it is the unique solution to (3.37).

Uniqueness is a byproduct of Theorem 3.20. The regularity of u and the fact that it
is a solution is a consequence of the following propositions.

Proposition 3.23. For every (t,x) € [0,T] x R", P—a.s. we have

Y(s,t,z) =u(s, X(s,t,x)), seltT] (3.38)

Proposition 3.24. For every (t,x) € [0,T] x R", P—a.s. we have

Z(s,t,x) = Vgau(s, X(s,t,2))G(X(s,t,x)), P—a.sseltT]. (3.39)
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However, sometimes in the applications to stochastic optimal control it is not necessary
having a classical solution to (3.37), but it is sufficient that the function v € C%'([0, T] x
R™).

To this aim we introduce the concept of mild solution. We define the transition
semigroup F; -, for any function ¢ with polynomial growth, by

Fi7[0)(x) := E®(X(7,t, x)),

forany z € R" and 0 <t <7 <T. P, is well defined, as estimate E sup, ¢ 77 |X-[P <
C(1+ |z|P) shows, and also P; ;[¢](x) has polynomial growth.

The operator A introduced in (3.35) is called the generator of P -, and it is well
defined on smooth functions. By means of variation of constants formula for the Cauchy
problem (3.37), we define the function

T
u(t, z) := Pyr[)(x) —/t B[y (- GOVulr, ))(@), (3.40)

for any € R™ and 0 <t < T. Moreover, the above formula is meaningful if ¢ and ¢
has polynomial growth.
Now we provide the definition of mild solution to the Cauchy problem (3.37).

Definition 3.25. We say that a function u is a mild solution to (3.37) if it satisfies the
following conditions:

(i) u e C%L([0,T] x R™);

(ii) there ewists a positive constant C such that |Vu(t,z)| < C(1 + |z|¥), for any
tel0,T];

(iii) equality (3.40) holds.

Under the following assumptions, we have the existence and uniqueness of a mild
solution to (3.37) (see [41]).

Hypotheses 3.26. (i) F and G are of class C' and their derivatives of order 1 are
bounded;

(ii) ¢ is of class C' and it has polynomial growth together with its derivatives of order 1;
(iii) (t,-,-,-) is of class C', for all t € [0,T];

(iv) |Vao(t,z,y, 2)| < K1+ |2))(1 + |z| + |y|)* for suitable constants K, > 0;

(v) V2o and V¢ are bounded with respect to y and z.

Theorem 3.27. If Hypotheses 3.26 hold true, then there exists a unique mild solution u
to (3.37). Moreover, u is given by the formula

u(t,z) =Y (t,t, x),
where (X,Y, Z) is the solution to (3.34).
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3.3.3 Applications to Optimal Control

In this subsection we consider the controlled stochastic differential equation
dX(s) = F(s,X(s))ds+ G(s,X(s))r(s,X(s),u(s))ds + G(s, X (s))dW(s),
s € [t,T] (3.41)
X(t) =x0 € R",

where v is an adapted stochastic process with values in some specified set U € R™ and
W is an d—dimensional standard Brownian motion. The particular equation that we
consider allows us to prove the existence of an optimal control to the stochastic control
problem, introducing a suitable FBSDE.

We work in weak formulation, hence our purpose is to minimize the cost functional

T
J(u):E[ /0 (s, X (), u(s))ds| + E[p(X (T))], (3.42)

over all w—admissible controls. We require the following hypotheses on the coefficients
of (3.41), which are comparable with Hypotheses 3.15 and 3.17.

Hypothesis 3.28. U is a Borel set of R™, the functions F,G,r,p,l are Borel measurable,
the function x +— F(t,x) is continuous on R™ for any t € [0,T] and there exists a constant
C > 0 such that

o(z) — ()| + |[F(t, 2) — F(t,2")| +|G(t,x — G(t,2)| < Clz — 2,
lr(t,z,u) —r(t, 2’ ') + 1t x,u) — 1(t, 2/, ') < C(|lz — 2'| + |u—]), (3.43)
|G(t,z)| + |F(t,0)| + |r(t,z,u)| + |I(t,0,u)| < C,
or any t € [0,T], z,2' € R", u,u € U.
for any t € |

As said above, we work under weak formulation, hence the solution we are looking
for is a 6—tuple U = (Q, F, {F; }+>0, P, W, u) and has to satisfies Definition 3.3. If for any
w—a.c. U we consider the process XU solution to the It6 stochastic equation

XY(s)=x+ /S F(o,XY(0))do + /S G(o, XY(0))r(o, XY(0),u(0))do
o ! (3.44)
+/ G(o, XY(0))aW (o), s € [t,T),

P—a.s. For any w—a.c. this equation has a continuous and {J;}:>o—adapted solution,
unique up to indistinguishability. In this setting the cost functional is

T
J(t,:c,IU):IE[ /t (s, XV(s), u(s))ds | + [p(XU(T)], (3.45)
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for any z € R", any t € [0,T], U w—a.c. Finally, we recall that the value function is
V :]0,T] x R" — R defined as

Vi(t, z) = i%f J(t,z,U), tel0,T], zeR" (3.46)

In this case, the hamiltonian function 1 : [0, T] x R™ x (R%)* — R is defined as

Y(t,x, z) = ina{l(t,x,u) + zr(t,z,u)}, t€[0,T], z € R", z € (RY*, (3.47)

ue

and we can introduce the following, possible empty, set:
I((t,z,z) i={ueU:Y(t,z,z) =1t z,u) + 2r(t,z,u)}, (3.48)

for any ¢ € [0,7], * € R" and z € (R%)*.
The hamiltonian enjoys the properties stated in the lemma below.

Lemma 3.29. Assume that Hypothesis 3.28 holds. Then there exists a constant ¢ > 0
such that

[W(t,0,0) <c, [tz 2) —@(t,a',2)] < clz = 2|+ cle —a|(L+[2] + [2']), (3.49)
for any t € [0,T], = € R", z € (R .

Let (€, F, P) be a complete probability space, on which is defined an d—dimensional
standard Brownian motion W' is defined. As usual, we consider the o—field F|; ;) generated

by W (s) — W (t), augmented by the P—null sets of F. For any fixed ¢ € [0, 7] we consider
the equation

X(s) ::c+/tsF(a,X(a))dU+/ G(o,X(0))dW (o), s€[t,T). (3.50)

The solution {X(s) : s € [t,T]} is adapted to the filtration {f;"[t,s]}se[tﬂ and the law
of (X, W) is uniquely determined by z, F, G. If we take the BSDE

~ T ~ ~ ~ T ~ ~
Y (1) +/ Z(s)dW (s) = o(X(T)) +/ ¥(s,X(8),Y(s),Z(s))ds, 7€t T], (3.51)

by Theorem 3.16 there exists a unique solution (Y, Z) on interval [t, T], and Lemma 3.19
implies that Y (t) is deterministic. Moreover, the law of ¥ depends only on (X, W) and
¥, . We set

J#(t,x) =Y (t,x), te[0,T], zcR (3.52)

The following result is obtained by means of equality

J#(t,x) = J(t,z,U)
T
+ /t (w(s,XU(s), ZY(s)) = 1(s, XV(s),u(s)) — ZY(s)r(s, XV (s), u(s))) ds,

which holds for any U.

(3.53)
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Proposition 3.30. Assume that Hypothesis 3.28 holds. Then for any t € [0,T], any
z € R? and any U w—a.c., we have that J#(t,z) < J(t,z,U).

Indeed, from (3.53) and from the definition of the hamiltonian 1 we easily deduce
that J#(t,z) < J(t,x,U), and the equality holds if and only if u(s) € I'(s, XY(s), ZY(s))
for a.e. s € [t,T]. Hence, the existence of an optimal control is strictly connected with the
achievement of the minimum in (3.47). We introduce the following additional hypothesis.

Hypothesis 3.31. The set I' is non-empty.

From Hypothesis 3.31 it follows that (see [6, Thm 8.2.10]) there exists a measurable
map 7 : [0, 7] x R® x (RY)* — U such that

V(t,x, z) =t x,v(t,x, 2)) + 2r(t,z,y(t, z, 2)), (3.54)
with (¢,z,2) € [0,T] x R" x (RY)*.

Proposition 3.32. Under Hypotheses 3.28 and 3.31 for everyt € [0,T] and x € R™ there
exists a w—a.c. U verifying J(t,z,U) = J#(t,x). Consequently, J¥#(t,z) = Vi (t, ).

Finally, we talk about the optimal feedback law. Suppose that both Hypotheses 3.28
and 3.31 hold, and we refer to {X(s,t,z),Y (s,t,x), Z(s,t,x) : s € [t,T],x € R"} as the
solution to (3.50) and (3.51) for given ¢ € [0,T] and = € R™.

Lemma 3.33. There erists a Borel measurable function ¢ : [0,T] x R® — (R%)* such
that, for any t € [0,T] and x € R™, P—a.s.

C(s,X (s, t,x)) = Z(s,t,x), a.esel[t,T). (3.55)
Moreover, { depends only on F,G,p,v and not on the probability space.
For the proof of Lemma 3.33 see [7].
Corollary 3.34. If {(X,Y,Z)} denotes the unique solution to

X(s):/:F(J,X(a))da—|—/tsG(U,X(a))r(a,X(a),fy(a,X(a),Z(a)))da

+ /ts G(o,X(0))dW (o),
(3.56)

T T
Y(s) + / 2(0)dW (o) = p(X(T)) + / (0, X(0),7(, 0, X (), Z(0)))do,

s € [t, T,

then P—a.s. ((s,X(s)) = Z(s), for a.e.s € [t,T].
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To prove Corollary 3.34, we set

W(t) = () - /0 r(0, X(0),7(0, X (o), Z(0)))ds,

and we recall that (X,Y, Z) solves (3.50) and (3.51), and (3.55) and (3.54) hold. Hence,

X(s) = /ts F(0,X(0))do + /ts G(o, X (0))r(o, X (0),7(0, X (0), Z(0)))do
+ /ts G(o, X (0))dW (o)

and

Through ¢ we can define a Borel measurable function w : [0,7] x R — U by
u(t,x) =~(t,z,((t,x)), te€][0,T], z€R", (3.57)
and we introduce the so called closed-loop equation
X(s) = —i—/ts F(o,X(0))do + /ts G(o, X (0))r(o, X (o), u(c, X (0)))do

S (3.58)
+ / G(o, X (0))dW (o), s € [t,T].

Since r is bounded, it makes sense to look for an {JF;};>p—adapted solution of this
equation. Indeed, if we set

the Girsanov theorem implies that there exists a probability measure P on (2,F) such
that W is a Brownian motion under P.
We have the following result:
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Theorem 3.35. If Hypothesis 3.28 holds, then U is optimal for the control problem
starting from x at time t if and only if u(s) € T'(s,XY(s),((s,X"(s))) P—a.s., a.e.
set,T].

Moreover, if Hypothesis 3.31 is satisfied and u(t) = u(t, XY(s)), then U is optimal
for the control problem starting from x at time t.

Finally, if Hypotheses 3.21 hold, then

((t,z) = Vyu(t,z)G(t, x), (3.59)

where u is the unique classical solution to the semi-linear Cauchy problem (3.37) (that in
this context is the HJB equation). Hence the feedback law has the form

u(t,x) = y(t,z, Vou(t, z)G(t, )), (3.60)
and U is optimal for the control problem starting from x at time t if and only if

u(s) € T(s, XV (s), Vou(s, XV ()G (s, XY(5))), P—a.s., ae. seltT)]. (3.61)

Remark 3.36. The above formulae hold true also if u is a mild solution to (3.37). Hence,
if Hypotheses 3.26 are satisfied, then (3.59), (3.60) and (3.61) are still true, where u is
the unique mild solution to (3.37).



Chapter 4

Hamilton-Jacobi-Bellman
Equation and Applications to
Optimal Control

4.1 Introduction

The aim of this chapter is the study of the backward parabolic Cauchy problem (BPDE)
of HJB type

Dyv(t,x) + Av(t,z) = (x, G(x)Veo(t,z)), te[0,T), xR
(BPDE)
(T, x) = ¢(x), r € RY,

by analytic methods, and show some of its applications to a particular case of stochastic
optimal control problems. Here, A is the uniformly elliptic differential operator defined
on smooth functions f by

Af(z) = %TT(G(fﬂ)G(fC)Dif(iv)) + (B(x), Vf(x)),

where G : R4 — R? x R%, B : R — R9, 4 is a continuous function which satisfies
some additional conditions and ¢ € Cy(R9).

Under suitable assumptions on the coefficients of the operator A, we prove the
existence and uniqueness of a mild solution to problem (BPDE). More precisely, let
{S(t)}+>0 be the bounded linear semigroup on Cy(R?) associated to the Cauchy problem

Duw(t,z) = Av(t,x), t€ (0,400), =€ R%
U(va) = QO(I'), S Rd7
and let F' be the functional defined by

F(t,u)(x) = ¥(z,G(x)Vu(t,z)), tel[0,T), xR,

41
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for suitable functions u. We show that the functional

T
(Tw)(t,z) := S(T — t)p(x) — /t S(r—t)F(r,v)(x)dr,

admits a unique fixed point v € Cy([0,T] x R?) N C%1([0,T) x R?), i.e., there exists a
unique function v € Cy([0, T] x R?) N C%1([0,T) x R?) which satisfies

T
v(t,x) = S(T —t)p(x) — /t S(r—t)F(r,v)(z)dr.

The proof is based on weighted gradient estimates, which guarantees that, for any
T > 0, there exists a positive constant Cp such that

C
IGV2(8®)@)lloo < 75 1¢ll0e, £ €10,T),

for any ¢ € Cy(R?). This estimate allows us to apply the Banach fixed point Theorem
to an appropriate space of functions, and therefore to deduce the existence of the mild
solution v.

As it is well known equation (BPDE) is the Hamilton Jacobi Bellman (HJB) equation
corresponding to an optimal stochastic control problem (see Chapter 3, Section 3.3).
Moreover, if ¢ € BUC(R?), then the regularity of the mild solution v allows us to show
that it is the Value Function (see [101, Chp. 4]) associated to the control problem given
by the state equation

d. X" = B(X¥)dr + G(X“)r(X¥, u,)dr + G(X)dW,, 7€ [t,T),
(4.1)
Xt =z eRY

and the cost functional is
T
B [ 10 ud+ Eo(Xp) (42)
0

where [ and ¢ are measurable functions, and B and G has been introduced above.
Moreover, the existence of Vv and the estimate on its growth allow us to identify the
optimal feedback law for the control problems.

The key tool to link the HJB equation and the optimal control problem is the backward
stochastic differential equation. The interaction between backward stochastic differential
equations and backward partial differential equations was proved in [89] and [90] for the
finite dimensional case and for classical solutions of the parabolic Cauchy problem

g;t(t,x) + Lu(t,z) + f(t,z,u(t,z), (Vou G)(t,2)) =0, t€[0,T], =cR?

u(T,z) = g(x), z € RY,



4.2. The Semi-Linear PDE 43

where
1 o 2 9
L - = GG* 17 t7 bZ ta 9
G(z) is a (N x d)—matrix valued function and b; are scalar functions, for i =1,..., N.

Forward backward stochastic differential system
dY; = (X;, Z;)dr + Z.dW,, 1€t T],
dX; = B(X;)dr + G(X;)dW,, 1€t T],

(FBSDE)
Yr = ¢(X71),

Xt:'ra xERd,

admits a solution (X,Y, Z) with XY, Z belonging to some suitable spaces, and under
opportune regularity and growth assumptions on ¢, B, G, ¢ the processes Y and Z can
indeed be represented by v(t, X;) and G(X;)V,v(t, X;), respectively (see [89]). Our
analytic results allow us to obtain these identifications relaxing the hypotheses on the
terms of the Cauchy problem, and so to study the control problem in a more general
situation.

The chapter is organized as follows. In Section 4.2 we prove the existence and
uniqueness of a mild solution to (BPDE), and study some of its regularity properties. In
the first subsection, we show that the estimate

C
IGVaS(Belloe < 75 lI0lle, T € (0,77,

holds for any ¢ € Cy(R?), any T' > 0 and some positive constant C' = C(T).

In the second subsection, we show that the integral term of the mild solution has the
required smoothness. Moreover, a classical fixed point argument shows the existence and
uniqueness of a local solution to the Cauchy problem (BPDE), solution which can be
extended to the whole interval [0, T.

Section 4.3 is devoted to the study of the (FBSDE) which, as we stressed above, is
the key tool to prove that v is indeed the Value Function associated to problem (4.1).

Finally, in Section 4.4 we introduce the stochastic controlled equation. The regularity
of v and the solvability of (FBSDE) enable us to prove that v is the value function and
that, under suitable assumptions, the feedback law is verified.

4.2 The Semi-Linear PDE

Let us consider the backward Cauchy problem

Dyu(t, z) + Au(t,z) = ¥(z, QY% (x)V,u(t,z)), te€[0,T), zcRY,
(4.3)
w(T,x) = p(x), r € RY,
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where A is the second order elliptic operator, defined on smooth functions f by

1

Af(z) = QTI"(Q(OU)D?;JC(%)) +(B(x), Vo f(2)), (4.4)

Q(z) = [Qij(z)] is a positive defined matrix for any = € RY, Q'/2 denotes its square root,
@ € Cy(RY), and ¢ is a continuous function, which satisfies the following conditions:

Hypotheses 4.1. There exists a positive constant Ly, such that

[Y(x1, w2) — (Y1, 92)| < Lylwa — ya| + Lylzr — y1| (1 + |z2] + [y2])

|1h(x,0)| < Ly, (4.5)

for any x, 1, 22,51, 92 € R

Hypotheses 4.2. (i) The coefficients Q;; belong to C2L*(R?) for some a € (0,1) and
any 1,5 =1,...,d;

(ii) the coefficients of the vector B belong to CLt*(R?); further, (B(x),x) < Bo(x)|z|
for any x € R? and some negative function By;

(iii) there exist a positive constant Ko and positive functions -y; : R 5 R, i=1,2, such
that

(Q(x),2)| < Ko(1+ |a*)v(x), z € R, (4.6)
VQV(@)|Q™* ()] < m, Q@) <72, Va€R% (4.7)

(iv) the functions v1 and 7o satisfy the following conditions:

o ) 03 ((2)?
|| =400 w(x)

=0, (4.8)

where the function w : R* — R is a negative function which bounds from above the
quadratic form associated with the matriz

d d
M:=QY2(J,B)TQ'2 =Y " Bi(D;QY)Q? = Y ¢;(D5QV)Q7V.
j=1 7,7=1
Moreover,

lim inf (V(x))Q >

|x| =400 w(x) s (49)
|z[v (2)n ()
Jim SEEESE =0 (4.10)
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(v) there exist A >0 and a function f € C%(RY) such that

lim f(z) =00, sup(Af(z)—Af(z)) < o0

|| =400 zeR
Here, we provide an example of operator A whose coefficients satisfy Hypotheses 4.2.
Example 4.3. We consider the operator A with coefficents
Qij(z) = Qij(1+[x),  Bi(x) = =bzmi(1+ [z, i,j=1,....d,

where [Q;;] is a positive definite matriz and b,1,p > 0. Hence, in Hypotheses 4.2(ii) — (iii)
we can choose Ko =1,

Bo(x) = le|(1+[a’)?,  m(z) =2 max |Q1/2r<1+|x|2>—1/2,

1,j=
() = 1QI(1 + z*),

and

i 14 |z)?)P = 2l(1 + |z[H) 2 (d + (20 + d — 1)|z|?)
i=1
b1+ 22t
Finally, the growth conditions in Hypotheses 4.2(iv) — (v) hold if
[>1, p=>2l.
Under Hypotheses 4.2(i), (v), the Cauchy problem
Diu(t,z) = Au(t,z), t>0, z&R%
u(0,z) = ¢(x), r € RY,
admits a unique classical solution

ue C([0,00) x RY) 0 CLH/2279((0, 00) x RY),

loc

for any « € (0, 1), satisfying
lu(t, )] < [|¢lloes t >0, zeR

(see 2).

We define a family of linear bounded operators {S(t) }+>0 by S(t)f(z) = u(t,x), for
any t > 0, z € R% where {S(t)};>0 is the contractive semigroup of linear operators
associated to the operator A.

Now, we introduce a class of function spaces, which is a natural environment where
to set the Cauchy problem (4.3):
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Definition 4.4. For any a > 0, let us consider the space
heCy(T—aT)xRY)NCO ([T —a,T) x RY) :

Ke=0 sup (7= 0)"21QV2(2)Vauh(t,z)| < :
te[T—a,T)
zeRd

endowed with the norm

[Allxc, = [[hlloo + [P, (4.12)
where
[hlx, == sup (T —8)"?|Q*Vh(t, )] co-
te[T—a,T)

For any a > 0 we define the function F, : [T —a,T) x X, — C(R?) by
F(t,u)(z) = ¢(z, G(x)Vyu(t,x)). (4.13)
At this stage formula

T
o(t,z) = S(T — () — /t S(r — ) F(r, v)(z)dr, (4.14)

is just formal. Since ¥ and Q'/2 may be unbounded, to justify this formula we need first
to show that the semigroup {S(¢)}+>0 can actually be applied to F.

4.2.1 Weighted gradient estimates

Our purpose is to prove that, for any ¢ € Cy(RY) and any t > 0, the function z
Q'Y?(z)S(t)p(z) is bounded in R? and that, for any 7' > 0, there exists a positive constant
C'r such that

Cr
1Q2VaS(t)¢lleo < 7516l £ € (0,

To this aim, for any R > 1, we introduce the function ng defined by nr(x) = n(|z|/R)
for any = € R?, where

1, te[0,1/2],
n(t) = Qexp (1= gy ), ¢ € (1/2,3/4),
0 t>3/4.

Clearly, ng € C2(R%), 0 <nr < 1in R% nr =1 in B(R/2), and nr = 0 outside the
ball B(R). Moreover, we have D;ng(x) = —x;nrKgr(x), where

12(4|z|/R — 2)?
2| R (1 — (4]z|/R—2)3)*"
Computing the first and second orders derivatives of ngr, we easily obtain

(1) |QVnr| < cR*K punpg, (i) |Tr(QD2nR)] < cv, (4.15)

Kr(z) == X[1/2,3/4)(|7|/R)

where c is a positive constant independent of R.
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Theorem 4.5. Let Hypotheses 4.1 and 4.2 be fulfilled, and let o € Cy(RY). If u is a
classical solution to the homogenous Cauchy problem

Du(t,z) = Au(t,z), t>0, zcR%
u(0,z) = (), z €RY,

i.e., u € Gy ([0,00) x RY) NCH2 ((0,00) x RY) and it satisfies the above equation and the
initial condition, then the function

(t,z) = Q'*(2)Vyu(t, z)

is bounded in [g,T] x R?, for any 0 < € < T. Moreover, there exists a positive constant
Ct such that
1@V ult, ) oo < Crllpllos, ¢ € (0,T]. (4.16)

Proof. Fix R > 1, T > 0 and let up € Cp ([o,oo) X (R)) not? ((o,oo) X B(R)) be
the solution to the Cauchy Dirichlet problem

Dyug(t,z) = Aug(t,z), t>0, z¢€ B(R),

ur(t,z) =0, t>0, ze€dB(R), (4.17)

ur(0, ) = nr(x)p(z), z € B(R).

We set

vr(t,z) = up(t,z)? + atnk|QY?(x)Vug(t,z))?, te[0,T], = e B(R).

Function vy is continuous in its domain, and it solves the Cauchy problem

Divg(t,x) — Avg(t,z) = gr(t,z), t€[0,T], =€ B(R),

vr(t,z) =0, te[0,T], =€ dB(R), (4.18)

UR(OVT) = (URQO)Q('T)’ US B(R)v

5
where gr(t,z) = tZg@R(t,x), G :=|QY?V, ugl|?, H = Zle |QY/2V (Dsug)|?, and

=1

d d
g1, =—=2t7'G —2anr Y _ BiDimrS —2ang Y Qi{(Q"*Vu(Diug), Q"*V(Djur)),
i=1 i,j=1

d
92,8 = 2an3(Q"*(DB)Vaur, QY*Vaur) — 2an% > | Qi (D Q") Vaur, Q1 Vaug)

ij=1
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—zanRZB D;QY*)V ug, QV*V ug),

d
g3.8 = —2a|Q"*Voup*|Q*Vangl® — 2ank > Qi (D;Q"?)Vaur, (DiQY?)Vaug),

ig—=1
d
g4k = —2anrTr(Q(D*nR))S — 8anr Y Qij(Dinr)((D;Q"*)Vsur, GVug)
ij—1

d
— 8anr Z Qi (Dinr)(Q"Y*V4(Djur), QV*V ug),

1,j=1

d
g5,k = at”'nRS —dant Y Qi;(D;QY*)Ve(Diur), Q'*Vup)
ij=1

d
—dan Y Qi ((D;Q"?)Vaur, QY. (Diug))
i,j=1
+ 4an} (QVPTr((V,.QY?)QY2(D%ur)), QV*V,up),

We are going to prove that there exists a positive constant ¢, independent of R, such
that gr(t,z) < cvr(t, z), for any (¢,z) € [0,T] x B(R).

The terms g1 r and go g are crucial in the estimate of gg, since they allow us to
control all the other terms g; g, i = 3,4, 5.

We get

< —2t71G(t, ) — 2aniv(x)H(t, x) — 2anr(B, V.nr)S(t, x)
< —26719(t, ) — 2w ()31, 2) + 20RiEKRBo(a),

g2.r = 2anR(MQ"*Vug, Q'*V,ug) < 2anFws,

93,r < 0.

gl,R(t7 I’)

94,r is the awkward term. We have to pay particular attention to the way we estimate
its addends which we want to compare with g1 g and go g.

As far as the first addend is concerned, taking advantage of (4.15)(i¢) and of the well
known Young’s inequality ab < (¢/2)a® + (2¢)~!b%, which holds true for any a,b,e > 0,
we get

d
a
2ang E Qij(DimR)9’ < g9 + aenp| Tr(QD*nR)|*S
i,7=1

< g9 + caf-:n}z%yzg.
€
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As far as the second term in the definition of g4 g is concerned, we have

d
8anr Z Qij(DinR)<(DjQ1/2> Vaour, QV*V,ug)

ij=1

d

= [8ang Y Qij(DmR)<(DjQ1/2) Q7 2QY*Vug, QY Vup)
ij=1

< 8ang|QVnr||(V.Q*)Q 2|9

< acR*nEX gy S.

The last term in the definition of g4 g is the worst one because we need to estimate
the growth of both G and H;, with ¢ = 1,...,d. We split it using the following inequality,
which follows applying twice the Young’s inequality, and holds for any b, ¢, h,e > 0:

1/1 1
beh < = <b4 + =t + 25h2> .
4 \ e €
We set

b, 1= ¥/ ®|(QVnr)k|2GY*,
al/891/4

hik = o' QR 294,

for any j,k =1,...,d, and we observe that, since Xrnr < cR_2n}2/3, from (4.15)(i) we
get

(QVnr)kl? < cR'WEKRV? < cR2 il K g1
The particular split into b,c¢ and e arises from the necessity of having suitable

coefficients of H;, 7 = 1,...,d, and G, which we can estimate with g; g and g2 g.
Straightforward computations yield to

d d
8anr Y Qij(Dinr)(Q"*Va(Djur), Q*Vaur)| <8 ) brchjy

ig=1 jk=1
d
2
<8 <4 bk+4—c + 5hjk>
Ji,k=1
2a1/24 3/2
< ¢ g+ ¢ CRQUJQ%ZKRZ/QS + acmﬁ_—iufH.
€ €

The last term that we need to estimate is g5 r. Applying the Young’s inequality we
get

d
dan, >~ Qii((D;Q1?) Q72QY*V.(Diur), QY*Vur)

i,j=1
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d
<dangnvz Y |1QV*Va(Diug)||Q*Vaug|
=1

9
< ;am%eflva% + 2aenprH,

[4ank (@ Tr((V2Q'?) QYA(D*ur)), @'V sur)

d
—dang| S QD1 (QY*V.Djur)m(QY Vug);

i,5,l,m=1
d
< daRnpmy2 Y 1Q"*VaDiug||Q'?V up|
i—1
2a 9 1 9 9 2
S RV V129 + 2aenkr I,
and so 4
a _
l95,8] < — v nE1738 + dasnfy 3.

Hence, collecting the similar terms, we deduce that

gr < 1S+ L,

where, for any z € B(R) and t € [0, T], we have

a 2a'*td 1 4 5

Ltw) = —14—+ + atrfy (@) (2w () + casv®(z) + 4-v 191 (@)1 (@)
a'?c
+ atRn%(2)Kp(2Bo(z) + cRv(x)y1 () + 152 RV (z))

and

Iy(t,x) = atnp(x)v(@)(=2 + (e + 4)).

Choosing & < 2/(c +4) we obtain that I is negative in [0,7] x B(R).

Moreover, Hypotheses 4.2(ii) — (iv) and a suitable choice of € and a imply that Iy is
bounded from above. Hence, there exists a positive constant ¢, indipendent of R, such
that |gr| < cvgr. From the classical maximum principle we deduce that vg < ¢||¢|co-
Taking the limit as R — oo, estimate (4.16) follows. O

Remark 4.6. By the semigroup property, it easily follows that, for any w > 0, there
exists C = C(w) > 0 such that

12y, S(¢ < Cet 4.19
1Q=VeS(t)plloo < Y l¢]loos (4.19)

for any t > 0 and any ¢ € Cy(RY).
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Indeed, for any w > 0, we can choose o = o(w) such that e“'t=Y2 > 1, for any t > 0.
If t > 0 we can estimate (using (4.16) and recalling that {S(t)}i>0 is a contraction
semigroup)

Co
1QY2V4S()¢lloe = 1Q2V2S(0)S(t — 0)¢lloc < m”s(t —0)¢llos
< S ol < S
< m”‘ﬂ“oo = S1/241/2 Plloos

and therefore (4.19) holds with C' = max{C,,oc~1/2C,}.

Proposition 4.7. Under the same assumptions of Theorem 4.5, if ¢ € Cg(Rd), then the
function

(t, ) = Q2 () V.S (1) ()
is bounded in [0,T] x RZ.
Proof. The proof is quite similar to the one of Theorem 4.5, hence we just sketch it.

We fix R > 1, and denote by ug the solution to the Dirichlet Cauchy problem (4.17).
Further we set

vr(t, ) = up(t,2)? + an|QY?(x)Vug(t,z)|?, te (0,T], z < B(R).
Function vy is continuous in its domain and it solves the Cauchy problem

Divg(t,x) — Avg(t,z) = gr(t,z), t€[0,T], =€ B(R),

vr(t,z) =0, te [0, 7], =€ dB(R),

vr(0,2) = (nre)*(2), z € B(R),
5
where gr(t,z) = g1.gr(t,z) + Zgi,R(t, x),
=2
d
gLr = =29 —2an% > Qi{Q"*Vau(Diug),Q"*V.(Djur)) — 2anr(B, Vnr)S,

3,j=1

and g; g, © = 2,3,4,5, have been defined in Theorem 4.5. Repeating the computations of
Theorem 4.5, we see that
gR < I19 + 12%7

where, for any € B(R) and ¢ € [0,T], we have

a 2al/?

Li(t,z) = -2+ -t

+ () (2(w) + casv? (@) + 4-v " (@) )

1/2

a Cc

+ aRng(2)Kr(2Bo(x) + cRv(x)y(x) + Rv*(x))

£
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and
Ly(t,z) = an%(ﬂs)y(x)(—Q +e(c+4)).

With a suitable choice of the parameters a and ¢, there exists a positive constant c,
independent of R, such that gr < cvr (see the proof of Theorem 4.5). An application
of the classical maximum principle implies that |vg| < ¢||¢|loo, and taking the limit as
R — oo we obtain the desired estimate. O

4.2.2 Existence and uniqueness of a mild solution to the semilinear
Cauchy Problem

In this subsection we will prove that the operator I', defined for any u € X by

T
(Tu)(t,z) := S(T —t)p(x) — / (S(r = t)F(r,u))(z)dr,
t
for any t € [0,T] and 2 € R, admits a unique fixed point. We call a mild solution of
problem (4.3) any fixed point v € K7 of the operator I'.

Remark 4.8. If ¢ satisfies Hypothesis 4.1, then (see (4.13))
(Z) ”F(S,U) - F(Sav)HOO < LTZJ(T - 8)71/2[1‘ - U]TKT’ s € [O,T),$ € ]Rdv

4.20
(i) 1F(s,u) o < Ly (1 (T = )7, ) 2

for any u,v € K. Moreover, if u € Kr, F(-,u)(-) : [0,T) x R — R? belongs to
C([0,T) x R%).

The next lemma is a general result of misurability for the supremum norm of continuous
functions. We will repeatedly use it in the follow.

Lemma 4.9. Let f € C([0,T] x RY) such that, for any t € [0,T], f(t,-) € Cy(R?). Then
the function t — || f(t,")|lcc is a measurable function.

Proof. Let n € N. For any t,s € [0,T], we have

1£(s5 WzeeBmyy < Nf(s,) = f(E ) Lo By + I1F &) Lo (Bn))

and

£ ) zeoBmyy < W) = f(s5 )L (Bm)) + [1£(85 )l Loe (Bn))-

Obviously, f is uniformly continuous in [0,7] x B(n); hence, letting s — ¢, from the
uniform continuity of f we get

lim || £ (s, )| Lo By = 1 F(E )z (B,
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i.e., the map ¢~ [|f(s, )|z (B(n)) is continuous in [0,7]. To conclude, it is enough to
observe that, for any t € [0, 7],

(& oo = Tm [|F(E, )| oo (Bn)):

which means that t — ||f(t,)]|c is measurable, being pointwise limit of measurable
functions. O

Hereafter, we will apply Lemma 4.9 without mentioning it.
The following proposition shows some continuity and boundedness properties of the
functions which belong to X, for some § > 0.

Proposition 4.10. If u € K5, for some 6 > 0, F satisfies (4.20) and

sup (T = )"|Q"*Vu(t, -)||oo < oo,
te(T—-46,T)

then the functions

T
(t.2) = F(t.a) = [ (S(r—OF(rew)(a)dr
t
and .
(t,x) = Q"*(x)V, F(t,z)
are continuous and bounded in [T — §,T] x RZ.

Proof. For any fixed t € [T — 0, T], the functions
T
z— F(t,z) = / (S(r —t)F(r,u))(x)dr, =~ QY*(x)V F(t,x)
t

are continuous in R?. Hence it is enough to show that these functions are continuous
with respect to ¢, locally uniformly with respect to x.

Let (tg,20) € (T —6,T) x R%, B = B(xo,1) € R, and fix t € (tg — d,1p + &), where
0 <6 <min{T —tyg,d +to — T'}. We will only prove the continuity from the right with
respect to time, uniformly with respect to z, since the continuity from the left can be
proved arguing in the same way. Hence we consider t € (o, %o + ¢). We have

T
| (to, ) — F(t, )] S/t (S(r = to) F(r,u))(x) = (S(r — ) F(r, u))(x)|dr

t
) [(S(r = to) F'(r, u)) ()| dr

T
=/ (S(r = t0) F'(r,u))(x) = (S(r — ) F(r,w)) (@) X1 (r)dr

+ t |(S(r —to)F(r,u))(x)|dr

=:Ii(t,x) + Ix(t, x).
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Since ||S(r — to) F(r,u)|lec < C, for any r € (to,t0 + 9), I2 tends to 0, as ¢ tends to
to, uniformly with respect to x € B.

Now we consider I7. Since u € K, we can estimate the function under the integral
sign as follows:

[S(r —to)F'(r,u) — S(r — ) F(r, u)|looX (2,1 (1) < 2Mol|F (1, u)]|oo
< 2MoLy (1+ (T = 1) [uly, )
for any r € (tp,T'), and the last function is integrable in (g, 7).

Finally, for any r € (0,7), F(r,u) € Cp(R?) by (4.20). Hence (S(-)F(r,u))(-) belongs
to C([0,00) x R%), and

lim |(S(r — to) F(r, u))(z) = (S(r = ) F(r, u))(z)| =0,

uniformly with respect to x € B, for any r € (0,7).

By dominated convergence we can conclude that I; tends to 0 as ¢ approaches t,
uniformly with respect to x € B.

Proving the continuity of the gradient is a bit more complicated. Let tg, xqg,t, B, be
as above; we have

1QV2(2)V F(tg, x) — QV*(2)V,F(t, )]
T
< / QY2 () Vo (S(r — to) F(r,u)(x) — QYV*(x)Vo(S(r — t)F(r,u))(z)|dr

+ [ 1RV VaS( 0 Flr ) @)l
0
= I, (t,x) + L(t,z).
By Theorem 4.5, there exists a positive constant C such that
1QY2VaS(r — to) F(r,u)l|c < (r — to)~"/?C,

for any r € (to,to + J). Hence, I, tends to zero as t tends to to, uniformly with respect
tox € B.

The term I; should be analyzed differently. Fix ¢ > 0 and ¢ € (to,to + 0) such that
t —ty < €2. Now we split the integral:

Il(t, 33)

=: Ji(t,x) + JQ(t, l’)
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Easy computations show that there exists a positive constant C' > 0, independent of
t, x, such that
Jo(t,r) < Ce, te (to,to+¢e?), z€B.

For Ji, it is enough to observe that the function under the integral sign converges to
0 pointwise with respect to ¢, locally uniformly with respect to x, and that the function
h, defined by

R(r) = CrLy (1+ (T = )" Plulse,) (r = to) /2 + (r = tg — £2)7/?)

is independent on ¢ and x and bounds J; from above. Dominated convergence allows us
to conclude that Jy (¢, x) vanishes to 0 as ¢ tends to tg, locally uniformly with respect to
x. Hence, there exists c. < €2 such that, if tg —t < c. and = € B, then Jy(t,z) <e. It
means that there exists a suitable C' > 0 such that I; (¢, 2) < Ce for any t > to — ¢ and
z € B. O

We now look for a solution to problem (4.3) in 7. At first, we show that, if u is a
mild solution of (4.3) in Ks, for some 6 € (0,7), then it is the unique mild solution in
such a space.

Proposition 4.11 (Uniqueness). If problem (4.3) admits a mild solution in Ks, then it
18 unique.

Proof. Let u,v € X5 be two mild solutions of (4.3). Then, taking (4.5) and (4.16) into
account, for any t € [T — §,T] we get

T
1QY2V a(u— v)(t, Yoo < | / QY8 (r — t) (F(r.u) — F(r,v))dr]|oc
T
< CrlLy / (r— 82 QY o — ) (1, ) odr

T T
< C’%L?p/ (r— t)_l/er(/ (s — r)_1/2
t r

X QY2Va(u = v) (5, ) ods )

T
=GR [ QYA = o), ) s

« </t8(r 2 (s - r)_l/gdr>

T
= C%L?/ﬂr/ HQl/QVx(u —v)(s, )| ccds.
t

Hence, by the Gronwall Lemma we deduce that ||QY?V,(u — v)(t,")||eo = 0, for any
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t € [T —4,T). To conclude, it is enough to observe that
T
[ = vljoo < I/t S(r =0 (F(r,u) = F(r,v))dr|e

T
<1y / 1QY2Y (u(r. ) — v(r, )| scdlr

=0.
O
Now, we prove the existence of a mild solution of problem (4.3).
Theorem 4.12. There exists § < T such that the operator I, defined by
T
(Tv)(t,z) = S(T — t)p(x) — /t (S(r —t)F(r,v))(x)dr, (4.21)

(t,2) € (T — 6, T] x RY, for any v € K5, admits a unique fired point.
Proof. Set

heCy ([T —6,T] x RY) N CO ([T —6,T) xRY) :
Ks,p = ,
Ihllxc; < B

endowed with the norm || - ||x, (see (4.12)). Since K5 pr C Xs, Proposition 4.11 shows
that if I' is a contraction in Xs g then its unique fixed point is the unique mild solution
to problem (4.3) which belongs to XK.

Hence, we prove that I'(v) € X5 g for any v € K5 g, and there exists ¢ < 1 such that

[(Tw) — (F’U)HK&R <cllu— 'UHU%,Rv u,v € K5 R.
For this purpose, we set

Cr:= sup tY2|Q2V,S(t)|
t€(0,T)

and recall that sup;cjo ) [[S(¢)]| < 1 since {S(¢)}1>0 is a contraction semigroup.
Then by the second inequality in (4.20) we have

[T}t Yoo < oo + H / " S(r— )P (r 0)dr

o0

+ (4.22)

T
/ S(r—t)F(r,0)dr
t
< [6lloe + 2L6(T — )2 vl + (T — )Ly

< elloo + 2L 6" 2||vllx, 5 + 0Ly

o0
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and

(T = )'2)1Q"2 V(o) (t, )l

T
< Crllplloo + (T - t)l/ZCTLw/ (r—t)='/2
t

% (1Q12F,0(r, )l + 1) dr

T (4.23)
< Crll¢llee + CrLy(T — t)l/QllvHxs,R/ (r—t)Y2(T — )~ 2dr
t
+ 2(T — t)CTLw
< Crl|@lloo + TCTLy(T — t)1/2Hv||g<5,R +2(T — t)Cr Ly,
< Crll@lloo + 78 2Cr Ly |vll5; 5 + 20CT L.
Moreover,
T
[(Tu)(t, ) — (Tv)(t,)|lo < / [S(r —t) (F(r,u) — F(r,v))||codr
. (4.24)
< 2L¢(51/2||u - UHfKa,R
and
(T — )2 QY2V4(Tu)(t,) — QV2V,(Tv) (¢, )|
T
< (T—t)1/2C’TLw/ (r — 1) Y2QY2V,u(r,-) — QY2V,0(r, )| sodr
t
(4.25)

T
< (T—t)1/2CTL¢||U—UII9<5,R/ (r =) — 1)~ dr
t

< a(T = t)"2CrLyllu —vllx; ,
< 78 2CrLy|lu — v, -

Now we have to choose § and R. Set
0= (4L¢ + QWCTL¢)_2 AT
in (4.24) and (4.25); it immediately follows that

[(Tu) = (C)llscy < 2Lu8Y2 = vl , + 0727 Cr Ligllu — vl
— §1/2 (2Ly + 7CrLy) [[u — vl|5; 5

1
< 5l = ollxy
and so I' is a 1/2-contraction. To show that I maps X; g into itself, it is sufficient to take

R=2(142C7) (||¢lloc + 0Ly) -
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Indeed, substituting in (4.22) and (4.23), we get
1) lscs.n < llloc +2Ly8" 2 [ullscs  + 6Ly
+ CTHQOHOO + 51/27TCTL¢HU”9<57R + 2(5CTL¢
< (1+42C7) (Ipllos +6Ly) + 6'/2 2Ly + nC7Ly) ||v]|xc;

R E_p

< =
-2 2

O]

Remark 4.13. If ¢ € Cbl (RY) the same arguments as in the proof of Proposition 4.11
and Theorem 4.12 show that the operator T' in (4.21) admits a unique fized point in the
space Ks defined by

he oy (IT - 5,7 x RY) nc® ([T~ 5,7 x BY)
Ky =
sup 1QY2(2)Vh(t, z)| < .
(t,2)€(T—6,T)xRd
for some 6 > 0.

Now, we can construct the maximally defined solution of (4.3). Set

7(¢) = inf{0 < a < T : problem (4.3) has a mild solution v, in X,},

v(t,z) =v(t,x), ift>T—a.
The function v is well defined, thanks to Theorem 4.12, in the interval
I(¢) = U{[T — a,T] : problem (4.3) has a mild solution v, in K,},
and we have 7(¢p) = inf I(p).

Proposition 4.14. If ¢ € C,(R?) is such that 1(p) # [0, T], and F satisfies (4.20), then
the function
t = (T —1)"?|QY*Vou(t,)|oo

is unbounded in I(p).

Proof. Even if the proof is rather classical, for the reader’s convenience we provide the
details. Let us suppose that the function

t = (T =)@Vt )|

is bounded in I(y), and let v be the maximally defined solution to (4.3). Moreover, we
set 7(p) = 7. S(-)¢ is continuous in (0, 00) x R, and by Proposition 4.10 the function

T
@m%»A‘SW—OF&m»@Mr
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is continuous and bounded in [7,T] X R?. Hence, we can extend v up to ¢t = 7, defining

T
v(t,z) = S(1)e(x) — / (S(r—71)F(r,v))(x)dr.

Since v(7,-) € Cp(R?), by Theorem 4.12 the Cauchy problem
w(t, ) + Aw(t, z) = ¥(z,QV*Vw(t,z)), t<7, xR
w(T,z) = v(T,x), r € RY,
admits a unique mild solution in [T — 9, 7], for some ¢ > 0. If we define

w(t,r), T—8<t<T, x€RY
z(t,x) =
o(t,z), T7<t<T, xcRY

then z is a mild solution of (4.3) in [r — 6, T] x R? which extends v, and it contradicts
the maximality of v. O

Proposition 4.15. If F satisfies (4.1), then the mild solution v of problem (4.3) exists
in [0,T] x R9.

Proof. By Proposition 4.14, it is enough to show that the function
(t,x) = (T = )/2Q"*(2)V,u(t, x)

is bounded in () x RY,
For the sake of simplicity, we set

1(t) = QY u(t,-)lloo,

where v is the maximally defined solution of problem (4.3). Then, for any ¢ € I(¢) and
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x € R? it holds that
(T —t)"21(t)

T

< Orllelloo +L¢/ (T — )2 — )2 (1 +1(r)) dr
t

< Orllellos + 2T Ly

T
b Ly(T — )2 / (r — ) Y2(T — 1)~ V2(T = )20 dr

< O7|l¢llos + 2T Ly

T
LT =0 [ (=7 =) Crllplo + 2T L) dr
t

+ L2(T — t)*/? /T(r —t)71/2 (/T(s — )V — )TV (T - 5)1/21(5)d5> dr

t
< (Crll@lloo + 2T Ly) (1 + TV %7 Ly)

+ L3 (T —t)/? /T(T — 8)" V(T = $)V21(s)ds.

The generalized Gronwall Lemma guarantees that the function
(t,2) > (T = )Y2QY2(@)V (1, o)
is bounded in () x R%, and the thesis follows. O

Remark 4.16. Since the problem (4.3) is autonomous, in Propositions 4.14 and 4.15
we can replace [0, T] with (—oo,T].

Remark 4.17. Under the Hypotheses of Proposition 4.15, if ¢ € C’l} (RY) then the mild
solution v of problem (4.3) exists in (—oo, T] x R, it belongs to C%'((—o0, T] x RY) and
it is bounded in (a,T] x R?, for any a < T.

4.3 The Forward Backward Stochastic Differential Equa-
tion Associated to the Semi-Linear PDE

Let (Q2,F,P) be a complete probability space, (W;);>0 a R¢—valued standard Brownian
motion and N be the family of elements of J of probability 0. We define as F}V the
natural filtration with respect to W3, completed by the P—null set of &, i.e.

FV = o{W,:0<s<t, N}.
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In this setting we study the Forward Backward Stochastic Differential Equation
dY; = (X;, Z)dr + Z:dW,, 1€t T,
dX; = B(X;)dr + G(X;)dW,, T¢€ltT],

(FBSDE)
Yr = ¢(X7),

X, =z, r € RY,

where
Y :RIxRT— R, ¢:RI—R,

are given Borel functions, and
B:RY —RY G:R?— R
are Borel measurable. We will assume further hypotheses on these functions.
Hypotheses 4.18. There exist C > 0 such that, for any z, 2’ € RY, we have
|B() - B(x')| + |G(x) — G(a')| < Cla —].

For any p € [1,00), let HP be the space of progressively measurable with respect to
F}V random processes X; such that

| X |lme :=E sup |X¢|P < o0,
te[0,7)

and let K be the space of (F}V)—progressively measurable processes (Y, Z) such that
T
IV, 2) e = E sup [P+ E [ 12,Pdo < oc.
t€[0,T] 0

Moreover, we denote by Y (s,t,z) and Z(s,t,z) the solution to (FBSDE).

If Hypothesis 4.18 are satisfied, then system (FBSDE) admits a unique solution
(X,Y,Z), where X € HP, for any p € [1,00), and (Y, Z) € K (see [89]). Henceforth, X
denotes the solution to the forward equation in (FBSDE).

Example 4.19. If we consider the operator A with coefficients

@@= (5 (o) BI= e

for any x € R?, then Hypotheses 4.2 and 4.18 are satisfied if m < 1/2.

We will use the result of previous section to show that the solution (X,Y,Z) of
(FBSDE) can be written in terms of the mild solution v of (4.3). This result is well
known if B, G, 1, ¢ satisfy the following conditions (see Chapter 3, Section 3.3).
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Hypotheses 4.20. (i) B and G are of class C' and their derivatives of order 1 are
bounded;

(ii) ¢ is of class C' and it has polynomial growth together with its derivatives of order 1;
(iii) v (t,-,-,-) is of class C1, for all t € [0,T);

(1v) |Vao(t,z,y, 2)| < K1+ |2))(1 + |z| + |y|)* for suitable constants K, > 0;

(v) Vy and V.4 are bounded with respect to y and z.

We want to relax the regularity conditions on 1 and ¢, and the growth conditions on
B and G, and show that the identification formulae

Y(s,t,x) =v(s,X(s,t,2)), Z(s,t,z)=G(X(s,t,2))Vyv(s, X(s,t, 1)), (4.26)

which hold under Hypotheses 4.20, are still true.

Let us assume that G, B, ¢ satisfy Hypotheses 4.1 and 4.2. Moreover, we suppose
that ¢ € BUC(R?). Hence, by Theorem 4.12 and Proposition 4.15, there exists a unique
solution v to (4.3) which belongs to X (see Definition 4.4).

We approximate the functions ¢, by convolution: let (p%),cn and (pﬁ’d)neN be a
standard sequence of mollifiers in R¢ and in R%*¢, respectively, and set

on=@xph, Pnl,2) = 0a(2) (Y % p) (2, 2),
where Xp(n) < On < XB(n+1)- ¥n and @n, are smooth functions and ¢, are bounded.

Lemma 4.21. For any n € N we have that ||pnllco < ||¢llcc and for any n,m € N,
n<m, and x,z1, 2 € R%, it holds that

‘wn(.%', Zl) - ¢($7 22)’
< xB<n><|zl|>Lw<\z1 ot

+ XBm)e (121 Ly (2 + |21] + [22)), (4.27)
(@, 21) = P (2, 22)]

1 1
< o) Do ([ = 2l 4 (5 4+ )3+ [l + a2

241 4 21| + |29
n

34 |21] + |2
oo (a1 X 2 (1 = 2]+ 22

T2 a4 \er) T 2o (22 Lo (@ + 1] + |22]). (4.28)

Proof. The above inequalities follow from the definition of 1, and the properties of
On, P, and 1. O
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For any n € N, let us consider the approximated Cauchy problem

Dtvn(t7 l’) + Avn(t7 l’) = ¢n(l', Ql/Q(x)vm'Un(ta :L'))a te [Oa T), T e Rda

(4.29)
vn (T, ) = pn(x), r € RY,
whose mild solution is given by (see Theorem 4.12)
T
vn(t, ) = S(T' = t)pn(x) - / S(r — ) (x, Q2 (x)Vyvn (r, z))dr
¢ (4.30)

T
— (T — t)pu(a) - / (S(r = t)Fa(r, va))(@)dr,
where
F,:(0,T) x Xp — Co(RY),  Fp(t,u)(z) := ¢n(z, QY% (x)Vau(t, x)).

Remarks 4.13 and 4.17 guarantee that v, € Cy([0,T] x R?) N C%1([0,T] x R%) and
|!Q1/2van(t, Moo < Cp, for any ¢t € (0,T) and any n € N.

Moreover, from Hypotheses 4.1, 4.2(i) and 4.18, it easily follows that B, G = Q'/2, 4,
and ¢, satisfy Hypotheses 4.20. It means that (4.26) hold, provided that we replace

Y, Z,v by Yy, Z,, v, and (X,Y,,, Z,) is solution to
AY? = ¢ (X,, Z0)dr + Z0dWr, T € [t,T],
dX; = B(X;)dr + G(X;)dW,, 1¢€][tT],

(4.31)
Y = on(X1),

| X: ==z, r € R%,

Now we need to study how v,, and GV v, converge to v and GV v, respectively. We
claim that, for any fixed ¢ € [0,T"), vy (t,-) and GVzv, (1, ) converge uniformly. Then, we
can define

Y(s,t,x) :=v(s, X (s,t,x)), Z(s,t,x):=G(X(s,t,2))Vzv(s, X(s,t,)), (4.32)

for any t € [0,7], t < s < T, and 2 € R?. We will show that (X,Y, Z) is a solution to
(FBSDE).

To prove the above claim, we need an intermediate result, contained in the following
lemma.

Lemma 4.22. [v,]x, is uniformly bounded, and there exists a positive constant K such
that ||vn||x, < K, for any n € N.

Proof. Let t € [0,T). Since |1, (x,0)| < Ly, the same computations of Proposition 4.11
yield to the thesis. O
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Theorem 4.23. Suppose that Hypotheses 4.1, 4.2 and 4.18 hold. Moreover, let ¢ €
BUC(RY). Then, for anyt € [0,T), va(t,-) and GV v,(t,-) converge uniformly to v(t,-)
and G(-)Vv(t,-) respectively. Moreover, (X,Y,Z) € HP x K and it is a solution to
(FBSDE), where Y and Z are defined by (4.32).

Proof. As usual, at first we prove the convergence of GV v, since it is involved in the
definition of v,. To simplify the notations, we set

hin(t) := |GV un(t, ) — GV (L, )| so,
from which we deduce

ha(t) = |GV 2 (v — 0) (L, )|

T
< |GVLS(T — t)(pn — DIl + HG% [ s@ =00 - P

We have
(T — )2, (t)

T
< Orllen = @lloo + Cr(T — t)m/ (r = )72 Fa(r, vn) = F(r,v)|loodr
t

T
= CT!%—@HooJrCT(T—t)l/Q/ (r =) || Fn(r, vn) = F(r, vn) || oodr
t

T
+Cn(T - t)l/Q/ (r = )2 F(r, va) — F(r,0)||ocds
t

= I + I5(t)
T
+ CrLy(T — t)/? / (r— ) Y2(T — )" Y2(T — 7)Y 2hy, (t)dr
t
Now we use the estimate
n Ly r -1/2 Ly 1/2
IQ (t) < CTf ('f‘ — t) dr = 2CT7T s
n J n
which follows from (4.27) with z; = z2 and holds for any ¢ € [0, 7). Hence
L
< I 4207211/
n
T L
+ OpLy(T — )12 / (r—t)"Y2(T —r)71/2 (I{‘ + 2CT¢T1/2> dr
. n

+ CFLE(T — t)'/? /T(r —t)71/? ( /T(r —8) V(T — 5) Y2

t T
x (T — 5)1/2hn(7‘)d5> dr
L
< <I{L + 2CT1;”T1/2> (14 xCpLyT"?)

T
L RCRLE(T — 1)!)? / (T — )" V2(T — 5)1/2h, (r)ds.
t
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Since ¢ € BUC(R?), I} tends to zero, as n — +oc. Clearly, also
L
2072112
n

vanishes as n — oo.
Now we apply the generalized Gronwall Lemma to the function

(T — t)2hy, = (T — )/?|GV,(t,-) — GVU(E, )| oo-
‘We obtain

L
(T —t)"?h,, < (I{L + 207 ¢T1/2> (1+7CpLyT?) exp (rCHLAT),

n
and the right-hand side tends to zero, as n — 400, which means that
vavn(ta ) - szv(t, )

as n — oo, uniformly with respect to x.

Using the fact that [v, — v]x, tends to zero, similar computations yield the uniformly
convergence of vy (t,+) to v(t,-), for any ¢t € [0, 7.

Finally, we prove that the processes Y, Z defined in (4.32) are solutions to (FBSDE).
Since Y,,, Z,, are solutions of (4.31), and the equalities hold P—a.s., there exists a family
{0 }nen of elements of F, such that each of them has zero measure. Moreover, if we set
Q = UpQy,, then P(Q) = 0, and in Q¢ (4.31) pointwise holds, for any n € N.

Now we fix z € R, t € [0, 7], set X, := X(7,t,7), and define

Y =ou(r, X;), Y =uv,(7r,X;),

T

Zr = G(X,)Veu(r, X;), Z=G(X;)Vaun(r, X7),
for any 7 € [t,T]. The previous estimates guarantee that
YTn — Y, SOH(XT) - SO(XT)a

uniformly in €2, and

/TT Vn(Xo, 2} )do — /TTQ/J(XU,ZG)dO_.

Indeed, by (4.27) we deduce that

n n n 3+ Zg + ZO'
[¥n(Xo, Zg) = 9 X, Zo)] < XB(n>(|Za|)Lw<|Zg ~ Zo| + ’n|||)

3+ 2K (T — o) 1/2
:Lw<|Z§Za|+ ( ) ,

n
V(Xo, Zo)|, |¥n(Xe, Zy)| < LyC(1 4+ K(T — U>—1/2)7
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for any z € R% any o € [r,T) and n > K(T — o)~ /2, where K has been introduced in
Lemma 4.22. |Z? — Z,| tends to zero uniformly in 2, as n — +oo since, for any w € €,

125 (w) = Zo(w)| < |G(Xo(w))Va(vn —v)(0, Xo(w))]
< NGVe(vn = v)(o, )]l
—0, n—oo.

Moreover, since |(Xs, Z5)|, |n(Xs, Z2)| can be estimated by an integrable function,
we can apply dominated convergence to the integral term.

It remains to prove the convergence of fTT ZdW, to fTT ZsdW,. At first, we prove
that fTT Z,dW, makes sense, since this is not guaranteed by previous estimates, which

show only that the growth Z, can be estimated by (T — ¢)~/2, which is not square
integrable in T'.

We are going to show that {Z”"} is a Cauchy sequence in L2(Q x (0,T)), the space
of the square integrable processes V', endowed with the norm E fOT |V, |?do. Since this
is a Hilbert space, {Z'} converges to a process Z, which is square integrable, and so,
up to a subsequence, {Z'} converges to Z: [0,7] @ P—a.s. But {Z'} converges to Z,
uniformly, hence pointwise, for any 7 € [0,T]. Therefore, Z, = Z, P—a.s., for almost
every 7 € [0, T]. This means that Z, is a square integrable process.

For the reader’s convenience, we introduce some new notations:

Yo=Y - Y
7?"1 =2y — 2y,
Do = on(Xo) — pm(Xo),

Eg’m = wn(Xtﬂ Zg) - wm(Xm Zgn)’

for any n,m € N, o € [0,T]. By the It6 formula, we get

T T T T

Ay = =2yt dr — 2V " 2 AW, + |20

and, recalling that Y?’m = 7", we obtain

T T T
VP [ 2 e =g 2 [V e -2 [ V2w,
T T T
Let us estimate the terms in the right-hand side. Note that (Y™, Z"), (Y™, Z™) € K,
since they are solutions of a backward stochastic differential equation. Hence, the process
I = fOT YZ””?j,”"dWU is a martingale and, in particular, EI. = 0, for any 7. Computing
the expectation, we get

T T
EY,™?+E / Z2" 2do = Blpp™? — 2K / Yo" " do. (4.33)
T

T
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Moreover, by (4.28), the last term in the right-hand side of (4.33) can be estimated
as follows:

T T
E / T do < E< sup [T / w?’”w)
T T

T€[0,7T

T
< Ly sup [[vnloc / " do
neN T

T
<ok [ 52
T

From Lemmas 4.21 and 4.22 we have

m

—n,m —=n,m 1 1 n m
F < V2 ()G 122 122,

for any fixed o € (7,T) and n,m > K(T — o)~ /2, and
23,125 < K(T — o)~ /2.

Moreover,
25" <125 = Zo| + 125 = Zs |,

and the addends in the right-hand side vanish as n, m go to +oo, for any fixed o € (7,T).
Hence, by dominated convergence, there exists 7 € N such that E fTT [ "™ |do < e, for
any n,m > n.
The same arguments can be applied to @""". Indeed, recalling that ¢ is uniformly
continuous, for any € > 0 there exists n € N such that E[@;’m|2 < g, for any n,m > n.
Hence {Z"} is a Cauchy sequence in L2(Q x (0,7)), and this implies that fTT ZgdWs
makes sense. Moreover, since Z™ converges to Z in L?(2 x (0,T)), we see that

2

E — 0, n — oo.

T
/ (20 — Z,)dW,

We can conclude that fTT ZdW, tends to fTT Z,dW, P—a.s., and passing to the limit
(4.31), we obtain that the processes (X,Y, Z) are a solution to (FBSDE) P—a.s. O

4.4 An application to the Stochastic Optimal Control in
Weak Formulation

In this section we consider the controlled equation

d:X; = B(X;)dr + G(X:)r(X;,u;)dr + G(X;)dW,, 1€ [t,T],
(4.34)
X, =z € R,
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and the cost functional

E / (X )t 1 Eo(Xr), (4.35)
0

where u is a progressive measurable stochastic process with values in some specified
set U C R™, r: RYx U — RY, W is a R¥—valued cylindrical Wiener process, and
[ :RYx U — R. Our purpose is to minimize over all admissible controls the cost
functional.

We assume the following hypotheses on [ and r:

Hypotheses 4.24. There exists C > 0 such that for all x,z' € R4t € [0,T],u,u’ € U,
we have

(@, u) = U@ )] + |r(z,u) —r(@’, W) < C (Jo — 2" + [u—u]),

(2, u)| + |r(z,u)] < C. (4.36)

Definition 4.25. An admissible control system (acs) U is the set

~

U= (Qv §:7 (EFt)tZOa@;,l/zv /W7)?)>

where (ﬁ, f;", P) is a probability space, the filtration (g\:t)tzo verifies the usual conditions,
the process W : [0,T] x Q — R? is a Wiener process with respect to (Fi)i>0, U is
progressive measurable with respect to the filtration (F¢)i>0, and X, is a solution to

~

XT—x+/ B()A((,)daJr/ G()?U)r()?g,ﬂo)da+/ G(X,)dW,, 1€t T).
t t t

In this setting, the cost functional has the form
A~ T A~ A~ A~
J(t2,U) = & / IR, Ty)do + Boo(Xr). (4.37)
t

An acs is called optimal for the control problem starting from x at the time ¢, if it
minimizes J(t,z,-), and the minimum value of the cost is called the optimal cost. Finally,
we introduce the value function V : [0, 7] x R — R, defined by

V(t,x) = in{EJ(t,x,u), (4.38)

ue

for any ¢ € [0,T] and x € R%.
The Hamiltonian function of the problem, defined below, is crucial in the analysis of
the stochastic control problem.

Definition 4.26. The function ¢ : R* x RY — R, defined by

P(x,2) = irelﬁ{l(x, u) + zr(z,u)}, (4.39)

is called Hamiltonian function.
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Lemma 4.27. There exists a positive constant ¢ such that

(2, 0)] <,
(2, 2) = (@, )| < clz = 2| +clw — 2/ (L+ |2 + |])
for any x, ', z, 2" € R%,
Proof. The result is well known, we report the proof for the reader’s convenience. We
prove only the second inequality, since the first one is a trivial consequence of Hypothesis
(4.1). For all u € U we have
Uz, u) + zr(z,u) <2’ u) + 2'r(2’ u) + |l(z,u) — (2, u)]
+ |zr(z,u) — 2'r(2,u)|
<2’ u) + 22 u) + [I(z,u) — U(2, )]
+ |zr(z,u) — 2'r(x,u)| + |2r(z,u) — 2'r(2,u)|
<2 u) + 2'r(@u) + clo — x| + c|z — 2| + |z — 2||Z].
Taking the infimum over v and exchanging x, z with 2/, 2/ we get the conclusion. []
We introduce the possibly empty set
Dz, z) :={ueU: p(x,z) =l(x,u) + zr(z,u)}, (4.40)

for any z, z € R%
To prove the main theorem of this section, we need the following hypothesis:

Hypothesis 4.28. The set I' is non-empty.
Remark 4.29. Hypothesis 4.28 is satisfied if U is a compact set.

Remark 4.30. From Hypothesis 4.28 it follows that (see [6, Thm 8.2.10]) there ezists a
measurable map v : R x R — U such that

(x,2) = Uz, vy(x,2)) + 2zr(z,y(z, 2)), (4.41)
for any (z,2) € R x R?,

Section 4.2 assures that the Hamilton Jacobi Bellman equation, associated to the
problem (4.34) and (4.35), admits a unique solution v in the space K7. We stress that
this solution has a good regularity, but not the optimal one; hence, we can not use the It6
formula. However, the BSDE’s techniques enable us to prove that v is indeed the value
function of the problem, and has enough regularity to identify the optimal feedback law.

Theorem 4.31. Let Hypotheses 4.1, 4.2, 4.18, 4.28 and 4.36 hold. Moreover, let ¢ €
BUC(R®). Then the following properties are satisfied:

(i) there exists a unique solution v of HJB such that v € KXp. Hence, G(x)Vv(t,x) is
defined for any t € [0,T),x € RY;
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(ii) v(t,x) < V(t,x), for any t € [0,T],z € RY;
(iii) v(t,x) =V (t,z) if and only if there exists an acs U* such that
VX Z0) = UK ) + Zer (K] u), (442)
where X" is the solution to (4.34), with u = u*;
(iv) there exists an acs U such that (4.42) is satisfied.

Proof. For the reader’s convenience we report the proof, which is close to the one in [41].
(7): since the HJB equation associated to (4.34) and (4.35) is (4.3), the existence and
uniqueness of the mild solution follow from Section 4.2.
(41): we fix an acs U, t € [0,T], z € R%, and consider the equation

XP::H/ B(XE)da+/ G(XE)T(XE,ua)dg+/ G(xXHaw,, relt1).
t t t

Since r is bounded, by Girsanov theorem there exists a probability measure P such
that

_ tAT
W, = WT+/ T(XE,UU)dU
t
is a Wiener process with respect to ﬁ), and XY is a solution to

XP:x+/ B(X}})da+/ G(XV)dW,, 1€t T).
t t

Notice that XU is measurable with respect to the o—field generated by W. Now we
introduce the backward equation

- / ZydiWy = o(XY) + / $(XY, Z,)do.
t t

By the Theorem 4.23 there exists a unique solution (}N/, Z ) of this equation. Writing
the backward equation with respect to W, we get

" T _ T _ T "
YT+/ ZUdWU+/ Zgr(XE,uU)dazw(X%—f—/ V(XY Z,)do. (4.43)

~ 1/2
By easy computations, we have that E (fOT \Zt]2dt> < oo. Hence, taking the

expectation in (4.43) with respect to P and 7 = ¢, we obtain

~ T ~ ~
Y, = Ep(XY) + IE/ [1/}()(}9, Z,) — ZT‘(XE,UU)} do.
t
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Adding and subtracting E ftT (XY ug)do, and recalling that v(t,z) = Y (t,t,z), we
get

T ~ ~
o(t,z) = J(t,z,U) +E/ [w(X}E,ZU) — Zyr(XY, uy) — l(XE,ug)] do.  (4.44)

From the definition of 1, the term in square brackets is non positive. Hence v(¢,z) <
J(y,z,U) for any acs U, and taking the minimum we deduce that

o(t,z) < V(t,z), te€l[0,T], =R

(731): from (4.44), it is clear that v(¢,z) = J(t, z,U*) if and only if the acs U* satisfies
(4.42). In this case, the integral term in (4.44) is zero; hence

v(t,z) < V(tx) < J(t 2, U%) =t z).
(tv): from Remark 4.30 and (4.32), it is natural to define
;7(];) = ’7(%’, G(%)va(t, 1’)),

for any ¢ € [0,T) and x € R%.
Notice that ¥ is, a priori, not regular. Let W be a d—dimensional Brownian Motion
on (Q,7,{F:}+,P), and X# be the solution to

dx?¥ = B(x¥)dr + G(XF)dW,, T € [t,T),
X(t) =z R

For any 7 € [t,T], we set

[

tAT
W# =W, — / (X7, 3(XH))do;
then X# satisfies the close-loop equation
Xf:x—i-/ B(Xf)da+/ G(XH)r(XH,75( da—i—/ G(XH)awH,
¢ t

for any 7 € [t,T]. Clearly, U¥ = (Q,F,{F;}¢,P,7(X#), X# w?) is an acs with u# =
(X 7). Moreover, u” satisfies (4.42): indeed

G(XE, Z#) = UXFE AXE, 28) + 28 (XE A(XE, 22))
<Xf*, (XF) + ZEr(XEF(XE))

T

(XFuff) + ZFr(XF uf),

T 7'

l
l

where Z¥ = G (Xfé )Vzu(T, x¥ ). Hence U? is an optimal control system for the problem.
O



Chapter 5

Systems of Parabolic Equations

5.1 Introduction
In this chapter we deal with systems of parabolic differential equations
Dou(t,z) = (A(t)u)(t,z), t > s, © € RY, (5.1)

where A(t) is the elliptic operator defined on smooth vector-valued functions v

d d
(A(t)v)(z) = Z qij(t,x)ijv(x) + Z Bj(t,x)Djv(z) + C(t,x)v(z), (5.2)

ij=1 j=1
for any (¢,z) € I x RY, with possible unbounded coefficients. Here, I is a right halfline,
possibly I = R. Note that the equations are coupled both at zero and first order.
In particular, we study the Cauchy problem

{ Dyu(t,x) = (A(t)u)(t,z), t>s, zeR% (5.3)

u(s,z) = f(x), r € R4,

where f € Cy(R% R™) and provide sufficient conditions in order to get a unique classical
solution u to (5.3). This is the starting point of our investigation; indeed, throughout this
classical solution we introduce the evolution operator {G(t, s)}¢>ser on Cp(R%R™), and
the rest of the chapter is devoted to the study of continuity and compactness properties
of {G(t,5) >ser-

The chapter is organized as follows. In Section 5.2 we prove the existence and
uniqueness of the classical solution to (5.3). In Subsection 5.2.1 we show some a priori
local estimates of solution of the systems (5.1).

Subsection 5.2.2 is devoted to the uniqueness of a classical solution. We combine the
techniques in [55, Chp. 8|, where a maximum modulus principle for systems in bounded
domains and smooth coefficients has proved, and a Lyapunov method for a suitable scalar

72
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differential operator. In particular, we require that there exists a positive constant € > 0
and a function « : I x R? — R, bounded from above by a constant xo such that

d
iK(tv z, 77) = Z Qi (t7 ZL’) [<Bi(tv 33)777 77> <Bj (tv x)nv 77> - <Bi(tv 90)*777 Bj (ta 33)*77”
1,j=1
— 4{C(t,x)n,n) + 4ek(t,z) > 0,

where Q(t,z)~! = [a;;(t,2)], and for any bounded interval J C I there exist a constant
As and a positive function p; € C?(R?), blowing up as |z| — +oo, such that

sup sup (A, ()ps)(z) — Aps(x)) < 400, (5.4)
n€OB(1) (t,x)€J xR

where A, = Tr(QD?) + Z;l:l by ;D;j + 2ex and by ; = (Bjn,n).
In such a this way we prove that, if a classical solution to (5.3) exists, it satisfies

hat, )lloo < €00 |f]|oc, t>s,

and uniqueness immediately follows.

The existence of a classical solution is the content of Subsection 5.2.3. Here, we
construct a function u as limit in C12(K;R™) of the solutions {u, },en of the Cauchy
problems

Dyu,,(t,x) = (Auy,)(t,x), tE (s,+00), x € B(n),
u,(t,z) =0 t e (s,+00), x€dB(n),
u(s,z) = f(x), x € B(n),

for any compact set K C (s,400) x R%. To conclude, we show that u is continuous up
to s and u(s,-) = f. This result has been obtained using a localization method: we fix
M € N, consider a function 9 such that xpr—1) < 9 < xp(ar) and v := Jug, and study
the Cauchy problem

Divi(t,z) = (Avy)(t,x) + gr(t,x), te(s,T], =€ B(M),
vi(t,z) =0 te(s,T], xe€0B(M),

vi(s, z) = (9f)(x), x € B(M),

which vy, solves, where gy, = —Tr(QD?*9)u,,, — 2(J,uy,, )QVY — Z?Zl(Bjunk)Djﬁ.

Throughout this solution we can define a family {G(¢, s)};>ser as follows: for any
f € Cy(R% R™) we consider the classical solution u of (5.3) and, for any ¢ > s € I and
r € R we set G(t,s)g(z) := u(t,z). Moreover, we set G(t,t)g = g. G(t,s) turns out
to be an evolution operator of bounded linear operators on Cy(R%; R™)

In Section 5.3 we deal with the continuity properties of {G(t, s) }1<ser. In particular,
we prove that, if {f,},eny C Cyp(R% R™) is uniformly bounded and pointwise converges to
[ € Cy(R?), then {G (-, s)f,, }nen converges to G-, s)f locally uniformly in (s, +00) x R%.
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Moreover, representation Riesz Theorem implies that there exists a family of finite Borel
signed measures {p;;(t,s,z,dy) :t >sel, x € R? 4,5 =1,...,m} such that

(9D ()= ) [ pttsadnri), (55)

where f; denotes the j—th component of f. Moreover, the signed functions p;;(t, s, z, dy)
are absolutely continuous with respect the Lebesgue measure. As a byproduct, we deduce
that {G(t, s) }+>ser is Strong Feller.

Finally, in Section 5.4 we assume further hypotheses in order to link the compactness of
{G(t, $)}+>scg and {G(t, s) }t>seg, where j € I and {G(t, $)}+>scs in the scalar evolution
operator generated by a suitable linear operator A.

First of all, we obtain pointwise estimates which relate the vector-valued evolution
operator to the scalar one. Easily follows that the compactness of {G(t, s)}t>secs implies
the compactness of {G(t, s)}t>se-

Proving that the compactness of the vector-valued evolution operator implies the
compactness of the vector-valued one is much more complicated, and we obtain it under
some additional conditions related to the growth of the coefficients of operator A. The
critical point consists in proving that

. ¢ (5.6)
+/ (G(t,r)(C}., G(r,s)f))(x)dr,

(Gt 5)0);(0) = (Gts) F)) + [ (G(t,r>2<<éi>j.vDi<G<n s>f>>)<x>dr

for some j € {1,...,m}. Then, we conclude adapting the procedure in [31, Thm. 3.6] to
our situation.

We observe that the last integral makes sense if the vector Cj. = (Cj1,...,Cjn) is
bounded, for some j. The first one is more difficult to treat, since, in general, the function
under the integral sign is not bounded.

To overcome this problem we prove the following weighted gradient estimates

(t—5) > _1QY(t,)Va(G(t, 5)f);1I2, < CIIf|%,
j=1

for G(t, s)f, which are obtained with techniques similar to those used to prove (4.16).
Hence, from an approximation argument we get (5.6).

5.2 The evolution operator G(t,s)

Let I be an open right-halfline (possibly I = R). In this section we prove that we can
associate an evolution operator in Cj(R%;R™) with the system of elliptic operators A (t)
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(t € I), defined on smooth functions v by

d d
(A(t)v)(z) = Z ¢ (t, x)D%v(w) + Z Bj(t,z)Djv(z) + C(t,x)v(z), (5.7)

2,j=1 Jj=1

for any (t,x) € I x R%. For any f € Cy(R%R™), G(t, s)f will be defined as the value at ¢
of the unique classical solution to the Cauchy problem

(5.8)

Du(t,r) = (Au)(t,z), t>s, z€RY
u(s,z) = f(x), r € R4

which is bounded in all the strips [s, 7] x R?. Throughout this chapter we assume the
following standing assumptions.

Hypotheses 5.1. (i) For anyi,j =1,...,d, the coefficients q;; and the entries of the
matrices B and C' belong to C’gé27a(I x R%).

(ii) The matriz Q = [gi;] is uniformly elliptic, i.e., there exist a function v with positive
mnfimum vy such that

(Q(t,2),€) > v(t,z)|Ef?, tel, z,£eRY: (5.9)

(iii) there exist € > 0 and a function k : I x RY — R, bounded from above by a constant
Ko, such that K(t,z,n) >0 for any (t,x) € I x R? and any n € OB(1), where

d
‘(K(tv €T, 77) = Z Qij (tv :C) [<Bi(t7 '7:)777 77> <Bj (t7 90)77’ 77) - <Bi(t7 J})*T}, Bj (t’ Jj)*nﬂ
ij=1
—4(C(t,z)n,n) + 4ek(t, x), (5.10)

and Q(t,x)~! = la;j(t, x)].

(iv) for any bounded interval J C I there exist a constant A\j and a positive function
@0y € C*(RY) blowing up as |x| — +oo such that

sup  sup  (A,(t)ps)(x) — Aps(x)) < 400, (5.11)
n€dB(1) (t,z)eJ xR4

where A, = Tr(QD?) + Z;-lzl byjDj + 2ek and b, ; = (Bjn,mn).

In Subsection 5.2.2 we will prove that problem (5.8) admits at most a unique classical
solution, then in Subsection 5.2.3 we will show that problem (5.8) is solvable with a
classical solution which is bounded in each strip [s, 7] x R

At first, we present a priori estimates which we will widely use in the continuation.
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5.2.1 A priori estimates for solutions to parabolic systems

Here, we prove some a priori estimates for classical solutions to the Cauchy problem (5.8).
To enlighten the notation, throughout this subsection we set || - ||hz0.2 = | - ||C£L(B(R).Rk)

for any h € N and k € NU {0}, R > 0. We simply write || - ||,z when x¢g = 0. Moreover,
for any o, 8 > 0, we denote by || - [|as the norm of the space C%P([s,T] x R%).

We recall that, for any 0 < o < # and any bounded domain © of class C?, there exists
a positive constant ¢ such that

1-< a
1£]lco@mrry < cllflloe *lIE]|7, (5.12)

for any £ € C?(Q;R¥) (k > 1). Moreover, if T € L(C(Q; R¥); CA(Q; R*))NL(CY(Q; RF); CF (Q; RF))
for some 3,6 > 0, then T is bounded from C$(Q;RF) to C?(Q; R¥), for any a € (0,0) \N,
and

1«
1Tl g @eryor @y < I Capeyor@mip 1T ILcg@anycr@rey- - (5:13)

Estimate (5.12) holds true also when € is replaced by R¢.

Proposition 5.2. Let Q be an open set and u € Cy([s, s + 1] x Q) N C12((s, s+ 1) x Q)
satisfy Dyu — A(-)u =h in (s, s + 1) x Q, where h € C*/>%([s, s + 1] x ;R™). Further,
assume that the function t — (t — s)||u(t, ')HCf(Q) is bounded in (s,s + 1). Then, for

any Ry > 0 and any xy € Q, such that B(xg, R1) € ), there exists a positive constant
¢ = c¢(Ry) such that

(t — s)|D2u(t, ) oo (Bao, ry)) + VE— sl Jeu(t, ) oo (B, R1)
< clllulley (51150 T 1Blloarza (s s 1xm)mm); (5.14)

foranyt e (s,s+1).

Proof. Throughout the proof, we denote by || - ||o the sup-norm over (s,s+ 1) x Q, by
[|h|/2,o the norm ||h||C°‘/27‘1([s,s+1]Xﬁ);Rm7 and by ¢ a positive constant, which can vary
from line to line and it is independent of n. We fix x¢p and R; as in the statement, and
Ry such that B(zg, R2) € Q. Then, we define r, :== 2R; — Ry + (R2 — R1) > 1 27k for
any n € NU {0}. Further, we consider a sequence (9,,) C C2°(R%) of functions such that
0<v,<1linR% ¥, =1on B(r,) and ¥, = 0 on R?\ B(r,,1), for any n € N. As it is
easily seen, HﬁnHCf(Rd) < 2knc for any k = 0,1,2,3. Let us set u, := 9J,u and observe
that, for any n € N, the function u,, solves the Dirichlet-Cauchy problem

Dyu,(t,x) = (A(t)un)(t,x) +gn(t,z), te(s,s+1), =€ Blxog,Tnt1),

u,(t,x) =0, tels,s+1], x€ IB(xo,Tn+1),

un(s,x) = (ﬁnf)(x)a x e B(l‘oﬂ“n+1)7
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where
d d
gn = — Tr(QD219n)u — Z DjﬁnBju -2 Z ql-jDiﬁnDju
j=1 i,j=1
d m m
+ 00> > (Bi);Diuj + 05 Y Cju,
=1 j=1 j=1

and A = Z?jzl qi]-D?jIm. Since the coefficients of the operator A(-) are smooth and

bounded in [s, s + 1] X B(zg, Rn+1), we can associate an evolution operator Gy, 4+1(t, s) to
its realization in C'(B(R,+1)) with homogeneous Dirichlet boundary conditions. In view
of the variation-of-constants-formula it thus follows that

t
u(t,z) = (Gnya(t, s)Unu(s, -))(z) + / (Grt1(t, r)gn(r, ) (x)dr,
for any ¢t € [s,s + 1], x € B(R,). By classical results (see e.g. [70, Chp. 7])
(t = ) Gnia(t, $)Kll2,20.rn41 < Ko k € C(B(zo,mn+1); R™)
and

1 ~ ~ ~ -
(t = 8)2[Grir(t, $)kll2rnn < Cllkllrnas k € Co(B(wo,mns1); R™),

for any t € (s,s + 1) and any n € N. Note that the constant ¢ in the previous two
estimates is independent of n since it depends on the ellipticity constant of the operator
A(-) and the norms of its coefficients in (s, s + 1) X B(xg, 7ni1), which can be estimated
in terms of the same norms taken in (s,s + 1) x B(zg, Ra2).

From estimate (5.13), with # = 1 and 8 = 2, we deduce that

(t - 3)17% HGn-i-l(t7 8>gH211’077’n+1 < CHgHa,wo,TnH?

for any g € C§(B(rp+1); R™). Since, for any o € (s, s+ 1) each function g, (o, -) satisfies
these properties, we can thus estimate

t
(= s)lun(t; )l2w0.m < cllulloo + C/ (t =) 20 Mamoraadr  (5.15)
S
for any t € (s,s+ 1). Note that

18n(5 )lazornis < clldnllzramorn (I0l0s ) htamornss + [hllasza), (5.16)
for any o € (s,s+ 1). Using (5.12), we can estimate, for any o € (s,s+ 1) and n € N

1
2
27

1
Laormyr <cllu(o,-)[|% (e, -)]

[u(o;-)

Z0,"n+1
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D=

1 1
<c(o —s) z[jul|&% ( sup (o — s)[lu(o, ')||2,960,7"n+1>

o€(s,s+1)
1 1 o
=:c(0 = 5)"2[[ufl%d (5.17)
and
_atl l-a 14a
[J2u(0, )l azo,rnen <clo— )7 2 [ulled 25 (5.18)

Using Young inequality a’b'~? < ea + coe~? (=9 which holds for any a,b,e > 0, any
6 € (0,1) and some positive constant ¢y, from (5.17) and (5.18) we deduce that

1
(o, hwograss < (0= 5)72 (e ulfloo + Cnta) s (5.19)
_atl _lto
1200, Masaraen < (0= 5)"F (e=™ 5 oo + 2Cusa ) (5.20)

for any o € (s,s + 1) and ¢ > 0. From (5.16), (5.19), (5.20) and observing that
||19n||cg+a(Rd) < 8", for any n € N, we can estimate

1+

ol _lta
1800V laumnrai < 80 = 5)7 5 (e I8 + G ) + 87l Bllaz.0

for any o € (s,s+ 1), any € > 0. Replacing this estimate into (5.15) yields

(t = 8)[lun(t, )

n _lta
2anrn < clulloo + 8% (€772 ulloe + Gt + [Blaj20)
t
X (t— s)/ (t — o) 1F2(g — 5)~ (@12
n _lta ’
< cljufloe + 8" (€714 s + Gus1 + [Blasaa)
1
% (t _ 5)1/2/ (1 o 7_)—1—&-04/27_—(oz—i—l)/2da
0
Hence,
_lta
Co <cl[u]|oo + 8¢ (5 0 [l oo + €Cagr + ||h||a/2,a) . neN e£>0, (521

Let us fix n € (0,64~0-%)) and choose € = &, > 0 such that 8"ce = . With this
choice of ¢, from (5.21) we deduce that

Cn <6475 |[u]| oo + 8™ |h]l0 /2.0 + NCnrt1, neN. (5.22)
Multiplying both sides of (5.22) by " we get

"G = 1" Gur <6430 [u]l oo + 8" [l j2.0s neN,
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which implies that

n n

o= 0" M1 = D17 — 0 Ghp1) < cllullo D 64T 0" + clhlo 20 D (80)"
k=0 k=0 k=0

< (cllulloe + [hlla/2,a);

for any n € N, since ;20 64ﬁn”,zzozo(8n)” < +00 due to our choice of . To
conclude, we observe that n" !¢, 1 tends to 0 as n — +o0o. Indeed, by assumptions,
Cna1 is bounded, uniformly with respect to n. It thus follows that "*1¢, 1 vanishes as
n — 4+00. We have so proved that

(t = s)llut; )lzzo.r: < c(l[ulloo + [[Bllas2.a); te(s,s+1). (5.23)

Again, estimate (5.12) implies that

1 1
[ Jza(t, oz, m1 < ellults )G ag,p, 10 I3 20,7, te(s,s+1),
which, combined with (5.23), allows us to complete the proof of (5.14). O

We now prove some interior Schauder estimates for classical solutions to problem
(5.8).

Theorem 5.3. Fiz T > s € I and let u € Clita/z’QJra((s,T] x R4 R™) satisfy the
differential equation Dya = A(-)u+h in (s, T] x RY, where h € C%/%%((s,T] x R:;R™).
Then, for any T € (0,T — s) and any pair of bounded open sets Qy and Qo such that
Q1 € o, there exists a positive constant ¢, depending on 1,9, 7,5, T, but being

independent of u, such that
HuHCl+a/272+0‘((s+T,T)><Ql;Rm) SC(HuHCb((s-i-T/Q,T)XQQ;Rm)
+ [l carza((str /2,0y x 20mm) )- (5.24)

Proof. The main step of the proof consists in showing that, for any o € Q; and any
r > 0, such that B(zg,2r) € Qo, there exists a positive constant ¢ > 0, independent of u,
such that

||u’|01+ﬂ/2a2+ﬂ((s+T,T) x B(zo,r);R™) SC( Hu||c’((s+7-/2,T) x B(zg,2r);R™)

F Bl garza((sir /2,1 x Baozrmm))- (5.25)
Indeed, once (5.25) is proved, a covering argument allow us to obtain easily estimate (5.24).
So, let us prove (5.25). In the sequel, we denote by ¢ a positive constant, independent of
u and n, which may vary from line to line. Fix zg € Q1, 7 € (0,7 — s), r > 0 such that
B(xg,2r) € Qg, and, for any n € N, any ¢t € R and = € R?, set

%(t):@(lg—s—tw)’ ﬁn(w):ﬂ<1+laf—ﬂcd—m>,

tyn — tn+1 Tn+1 — Tn
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where ¢, 9 € C®(R) satisfy Xpp,00) < ¢ < X[1,00) @A X(—001] < U < X(—o02]s Tn =
(2—-2""r and t, = (271 + 27" 1)1, for any n € N. The function v, defined by
v (t, ) = u(t, x) @, (t)9,(x) for any (t,2) € [s,T] x R and any n € N, vanishes at t = s

~

and satisfies Dyv,, = A(:)v,, + g, where

d d
gn = _(PnU-Tr(QDQQSQn) —On Z DjﬁnBju —20n Z QijDiﬁnDju
Jj=1 3,j=1

+ go;b'l?nu + wntnh,

and A is a nonautonomous elliptic operator with bounded and smooth coefficients,
which coincides with A in [s,T] x B(zg,2r) (recall that v, is compactly supported in
[s,T] x B(xg,2r)).

By well known results and a straightforward computation we get

Vallajza <ellgnllisa/z2rata/2a
<elBalls 12 (18l cora(srt,1 715 B0 g7
+ VUl garz.a((sstner 1) x Baornir )R
+ Hh”COC/ZO&((s+tn+1,T)xB(xo,rn+1);Rm))
<2¢(|Vatillajza + 1JaVntilla/2.a
+ 1l carza((sstnsr T)x Blazo s RM)) - (5.26)
Now, using (5.12) we can estimate
Il < € (5 ¢lloe +liClzra) . ¢ € CFRER™),
IClhita < € (7 ¢lloo +eliCllora) € € CERER™),
[9llar2 < C (7 W lloo + el llae) s % € CF2([s, THR™),

for any £(0,1). Applying these estimates to v,,41, we deduce that
HVn+1Ha/2,a + | Jzvntilloa < c <5HVn+1H1+o</2,2+a + 5_(1+a)HVn+1”00> ) (5.27)
for any € > 0 and any n € N.

To estimate the o /2-Hélder norm of the function v, 41 (-, ) for any 2 € RY, we observe
that v,1.1 € Lip([s, T}, C¢*(R™; R™)) and [[vi11|Lip < ¢l[Vatill14a/2,24a- Indeed,

t
Vint1(t, ) — vpp1(r,x) = / Dyvyi1(0o, x)do, rtels,T], zeRe
T

which implies that

Vn+1(t7 1’) - Vn+1(r7 .%') - Vn-‘rl(tv y) + Vn—‘rl(T? y)
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t
:/ (Dtvn+1(07 l‘) - Dtvn+1(ga y))d07

for any r,t as above and z,y € R%. From these formulas, we immediately deduce that
[Vng1(t) = Va1 ()l o rey < cllDevinga

Since the function v,,41 is bounded in [s, T] with values in C’nga(Rd), by interpolation
we can estimate

0,a-

[Vit1(t1, ) = vt (t2, )l
lia l—a
<c|viti(ts, ) = vari(te, )lla® (Va1 (1, ) = v (t2, )lla s
1ta
<c|vitillita22talte —t1] 72 .

This shows that J, v, € CU+9)/20((s T) x R%: R™) and

| JeVnt1ll(14a)/2,0 < cllVatillita/2,2+a- (5.28)

Using the interpolative estimate

—Q 1 (0% 2 m
1llase < e (I$loraye +elo) . % € G 3([s, TIR™),
which holds for any € € (0,1), and (5.27) and (5.28) we obtain that

levasillarza < ¢ (vt lisarzzra + € MVnsllso + e 1 ovarillo) - (5.29)
Now,

1
”van+1||oo < 5HVn+1HO,2+a +4§ Tta ||VTL+1”007 o€ (Oa 1)
Choosing § = e!*® and replacing this estimate in (5.29), we get

(1+o¢)‘

Mavatilajza < ¢ (elvasillisaara + & varilo )

From (5.26), (5.27) and (5.29) it follows that

(14«

IVallita/2.2+a <2°"c(e|lVatillita/aota + € IVasilloo

+ 1l a2 (st a1 T)x Blzormss)RT)) (5.30)
for any € € (0,1). Now, we are almost. Indeed, if we fix n € (0,27°2+%)) and choose
£ =g, =21y, from (5.30) we obtain

(2+a)chn+1 oo

Valli4a/2.24a <IVaiilitas2,2ea + 27"
1Bl carza (st 0 T)x Blzormss) )
<(lvisillisa/2,2+a + 25n(2+a)cHuHC’b((s+7/2]><B(xg,2r))

+ HhHC’O‘/?’a((s—i—T/Q,T)XBQT,:EQ);R’”))’

and can proceed as in the proof of Proposition 5.2 with ¢, = [|[Vall14a/2,2+4a- O
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5.2.2 Uniqueness of the classical solution to problem (5.8)

The uniqueness of the classical solution to problem (5.8) which is bounded in any strip
[s,T] x R%, s < T, is a straightforward consequence of the following result, whose proof
is an adaption to our situation of the methods in [55, Thm. 8.6] which deals with the
case of smooth coefficients in bounded domains.

Proposition 5.4. Let f € C,(R%R™) and let u be a classical solution to problem (5.8)
which is bounded in the strip [s,T] x R? for any s,T € I, s < T. Moreover, suppose that
Hypothesis 5.1 holds. Then,

ha(t, )lloo < €00 |1f]|oc, t>s, (5.31)

where kg is defined in Hypotheses 5.1(ii1).

Proof. Fix T'> s and set J = [s,T]. Up to replacing Ay with a larger constant if needed,
we can assume that

sup  sup  ((Ay(t)ps)(z) — As(z)) <O.
n€dB(1) (t,z)eJ xR4

and Ay > 2ekg. To enlighten the notation, from now on we simply write A and .
For any t € [s,T] any x € R? and n € N, we set

n(t,2) 1= NI uft, )2 - =020 g2 £
n
As it is immediately seen,

Dyon(t,-) = = e M u(t, ) * + (A~ 2%0) OB g2,

+e Alt— )<.A0( _22(1’3 Dju )Du( )

i,7=1

d
£ 23 Byt ) Dyult, ), ult, ) + 2(0( Yl ) ut ->>)
=1

=~ Ae a2 + (A — 2erq)e” P20 E=S) | g2
+ (Ao(t) + 2ek(t, ) (e M u(t, ) ?
—2e ANV (¢, - Dyu(t,-), ..., Dau(t, ), u(t,-)),

for any t € (s,T] and x € R?, where Ajg is the principal part of the operator A and

d d
V(€640 = qii(€,8) =D (BiE,¢) — ((C = er)¢, ),
1,j=1 j=1
for any ¢1, ..., €%, ¢ € R™. Equivalently, we can write

Dyon(t, ) — (Ao(t) +2er(t, ) = Ava(t, -) = 2e(n(t, -) — ro)e” A= ]|
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:%(Ao(t) + 2ek(t, ) — Ao — 2¢ NV (¢ - Dyu(t,-), ..., Dau(t,-),u(t,-), (5.32)

for any ¢ € (s,T] and x € R%.

Our aim consists in proving that v, < 0 in [s,7] x R? for any n € N. Indeed in
this case letting n — oo and recalling that T" has been arbitrarily fixed, we will obtain
e 2em0(t=8) |y (¢, ) |2 — ||f||%, < O for any t € [s,T] and z € R? i.e, (5.31) will follow from
the arbitrariness of T' > s.

Since vy, tends to —oo as |z| — 400, it has a maximum attained at some point
(to,z0) € [5,T] x RZ If ty = s, then we are done since v, (s,-) < 0. Suppose that tg > s
and assume, by contradiction, that v, (tg,z9) > 0. Then, Dv,(t9,z9) > 0. Moreover,
since 2ek(tg, 7o) — A < 2ek9— A < 0, it follows that (Ag(to) +2ek(to, xo) — N)vn(to, ) < 0.
Hence, the left-hand side of (5.32) is strictly positive at (to, zo).

Let us prove that the right-hand side of (5.32) is nonpositive at (to,xo). This will
lead us to a contradiction and we will conclude that v, < 0 in [s, 7] x R

Since Vo, (to, o) = 0, we deduce that

)\(t()fs)
2n

Therefore, to prove that the right-hand side of (5.32) is nonpositive it suffices to show
that the maximum of the function

Foc(€,.. . ¢h = %(Ao(to) + 2ek(t,-) — N@(zo) — 2V (to, 20, EL, . .., €4, 0),

in the set ¥ = {(fl, L E) eER™ (gD ) = ﬁngb(xo), ji=1,.. .,d} is nonpositive,
where ¢ = eMo=%), Note that, for any fixed ¢ € R™, the function (€1,...69)
V(to, o, &Y, ..., €%, ¢) tends to +o0 as ||(€1,...,£%)| — +oo. Hence, F,, ¢ has a maximum
in 3 attained at some point (fé, e ,fg). Applying the Lagrange multipliers theorem, we
easily see that (£f,...,¢3) satisfies

e

<Dj11(t0,.%’0),u(t0,.1‘0)> = D]QD('Z‘O% ] = 17"'ad'

d m
2> gi(to, 20)&6,; — Y (Bj(to, 20))kiCk — piéi =0,  i=1,....d, j=1,...,m,
k=1 k=1
(5.33)
for some real numbers pq, ..., g, where f{ii and ¢; (i =1,...,m) denote, respectively,

the components of the vectors ¢§ and ¢. Multiplying both sides of (5.33) by ¢; and
summing over ¢, we get

d
0 :2quk(to,l‘o)<§§,0 — (Bj(to, z0)¢, €) — pjl¢[?

k=1
= (@0, 70)Vp(0)); — (Bjltn, 70)-C) — msICP

for any j =1,..., m. Hence,

My = |C’_2 [;(Q(thxO)VSE(xO))] - <B](t0ax0)C7C> ) .7 = 17 ceey M.
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Replacing the expression of y; in (5.33) we deduce that

d

1 . 1 " _
& Z%K! 2(D;jp(wo) + 5 Zajk(tal') [Br(to, z0)*¢ — [¢|7%(Bi(to, z0)¢, )]
k=1
for j =1,...,d, where we recall that (Q ' (to, o)),k = [ajk(to, z0)]. We can now compute

the value of V' (tg, xo, Eé, . ,561, (). For this purpose, we observe that

d

(€h, &) ZMSWD@(:EO)DM(J»‘O) +i > ainaje(Bn(to, 20)*¢, Br(to, 30)*C)
hok=1
1|2 S e Bltor20)6. ) (Beltor20)C. ).

‘C h,k=1

Hence,

Z qij 50750 4n2|<|2< (to,l‘o)V@(fo),V@(Io))
i,7=1

d
+i > ain(B; (to, 20)C, B (to, 20)C)

d
. > ain{Bi(to, %0)¢, ¢){Bn(to, 20)¢, €),

d d
> (Bj(to, 20)€),¢) = - E ZDj¢(x0)<Bj(to,xo)<,C>

J=1




5.2. The evolution operator G(t,s) 85

1 d
- Se? > " D;@(x0)(Bj(to, 20)¢, C)
j=1

—((C(to, z0) — ek(to, 70))C, C)-

It follows that
Fo¢ =Fpc(& d
mzZ:iX n’C = n7<(£07 .. 750)
1 - - -
ZE(Ac;Aq(to)@(xo) — Ap(z0))

1 _ N 1 _

- W<Q(to7xo)vw(fﬁo)a V(o)) — §|C|25<(750,$o, <1710). (5.34)
By Hypothesis 5.1(iv) and the choice of A, the last side of (5.34) is nonnegative. The
proof is now complete. O

Remark 5.5. Hypothesis 5.1(iii) can be replaced with the weaker condition X > —c; in
J x R% x 9B(1), for any bounded interval J C I and for a suitable positive constant c,.
Indeed, if u is a classical solution to (5.8), then we define v(t,z) := e~/ =)/ 4u(t, z). v
is a regular function which satisfies the Cauchy problem

Dyv(t,z) = (A — %) v(t,z), t€[s,T], x=€RY
v(s,z) = f(x), r € RY

Hence, condition (5.10) for v is satisfied if X > —c;, and the uniqueness of v is equivalent

to the uniqueness of u.

Remark 5.6. (i) Weakly coupled systems of elliptic operators have been considered
in [31] in the autonomous case. In this case, the equation are coupled only in the
zero-order terms. More precisely, A is given by (5.7) with Bj(x) = b;(x)Id for any
r € RY any j =1,...,d and some functions bj: I x R? — R. We claim that the
conditions in [31] coincide with Hypotheses 5.1 in this situation. The regularity
conditions in [31] are the same that we are assuming here. Moreover, Hypothesis
5.1(iii) reduces to the condition (C(x)n,n) < ex(x) for any z € R, which is the
same condition assumed in [31]. Similarly, since A, = Tr(QD?) + Z?:l b;jD;j + 2ek,
Hypothesis 5.1(iv) coincides with Hypothesis 2.1(iv) in [31].

(ii) In the particular case when m = 1 i.e., in the scalar case when the elliptic operator
in (5.7) is A = Tr(QD?) + (b, V) + c, if we take € = 1 and k = c then Hypothesis
5.1(iii) is immediately satisfied. Moreover, in the scalar case, to guarantee the
uniqueness of a classical solution to problem (5.8) (which is bounded in every strip
[s, T] x R?), typically one assumes that c is bounded from above and that there exist
A € R and a function ¢ € C%(R?), blowing up as |x| — +o0, such that Ap — Ap < 0.
When this is the case, with the previous choices of ¢ and k, Hypothesis 5.1(iv) is
clearly satisfied by the same function .
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We now provide some examples of operators which satisfy Hypothesis 5.1.

Example 5.7. Let A(t) be as in (5.7), with

qij(t,x) = 65, Bj(t,x) = —z;(1 + |z|*)'g(t) B,
C(t,x) = —|z|*(1 + |z[*)Ph(t)C,

for any (t,2) € I x R% i,j =1,...,d where Bj (j=1,...,d) and C are constant and

positive definite matrices, g, h € Ca/

o (I) have positive infimum, and p > 21 > 0. We
observe that

d
() =1+ ol 0(0)* 3 o (¢Banm)? = 1BnP?)

+ 4|z (1 + [af? )ph( ){Cn,n)

>(1+ |z»)%(g Zwl in ( in,n)* _|BZ’-“77]2)

neo

+ 4|z (1 + |z )phoco,

for any t € I, z € R%, 1 € OB(1), where hg denotes the positive infimum of the function
h and cg is the minimum eigenvalue of the matrix C. Since p > 21, the function X'(t, -, n)
tends to +00 as |z| — 400, uniformly with respect to t € I and n € 9B(1). Therefore,
we can find a positive constant x such that K (¢, z,n) = K'(t,z,1) +4x > 0 in I x R? and,
Hypothesis 5.1(iii) is satisfied with € = 1. On the other hand, the function ¢, defined by
o(x) = 1+ |z|?, for any € RY, satisfies Hypothesis 5.1(iv), with ¢ = 1, for any A > 0.

Example 5.8. Let A(t) be as in (5.7), with

gij(t, x) = g(t)(1 + |=[*)"1d,
Bi(t,x) = —h(t)z;(1 + |=))"Td + £(t)(1 + =[P B;,  j=1,....,d,
<C(t,l’)€,§> S Kl‘ﬂza § € Rm?

for any (t,:n) € I x R?, where g,h € o1 (I) have a positive infimum, ¢ € Ca/2( I), B;

loc loc
( =1,...,d) are constant (m X m)-matrices, the entries of the matrix valued function C

belong to C'a/2 (I x RY) and K is a positive constant. Finally k,p,r € [0, +00) satisfy
< k<rtl.

As in the previous example, to check Hypothesis 5.1(iii), we just need to show that
the function X', given by the first three terms in the right-hand side of (5.10) is bounded
from below in I x R?. It turns out that

2
(e = SO (g MPZ( o)~ |Bjnl?) — 4(C(t)n.m)
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((t)? —k+2 2: Pk, 12 K
> 1 + p “f n B” 4
- ( ]x\ nefi—)B 1) ( i > | J | ) b

for any (t,x) € I x R and € dB(1). Since k > 2p and g has a positive infimum, the
last side of the previous formula is bounded in I x R%. Then we can find a constant
such that the function X = X' + 4k satisfies Hypothesis 5.1(iii), with £ = 1.

Moreover, the function ¢, defined by ¢(z) = 1 + |z|? for any = € R?, satisfies

(A(t)p) () = Ap(x) = 2dg(t)(1 + |2*)* — 2h(t)]a(L + |a]?)"

QL

+20(6)(1 + |z|?) Z Bin,n) — A1+ |z|?),

for any A > 0, (t,z) € I x R? and n € dB(1). Our assumptions on k,p,r and on the
functions g, h, [ reveal that the leading term in the last side of the previous formula is
the second one. Therefore, for any A > 0 and any bounded interval J C R, the function
fln(t)w — Ay tends to —oo as |x| — +o0, uniformly with respect to t € J and n € 9B(1).
This immediately implies that Hypothesis 5.1(iv) is satisfied for any A > 0.

5.2.3 Existence of a solution to problem (5.8)

Here, we prove the existence of a classical solution u to problem (5.8) which belongs to
Co([5,T) x R4 R™), for any s, T € I, s <T.

Theorem 5.9. For any f € Cy(R%R™) and any s € I, the Cauchy problem (5.8) admits a
(unique) classical solution u which belongs to C([s, +00) x R%; ]Rm)ﬁC'fsga/2 (5, 400) x
RY; R™). Moreover,

hat, oo < e 0¢||E]|oc, t>s, (5.35)

where £ and ko are defined in Hypotheses 5.1(ii).

Proof. Fix f € Cy(R% R™) and let u,, be the unique classical solution to the Cauchy-
Dirichlet problem

Dy, (t,z) = (Auy,)(t,x), te(s,+00), z € B(n),
u,(t,z) =0 t € (s,+00), x€ dB(n), (5.36)
u(s,x) = f(x), x € B(n),

(see [63, Thm. IV.5.5]). By classical solution we mean a function which belongs to
C12((s,+00) x B(n)) which is continuous in ([s, +o0) x B(n)) \ ({s} x 0B(n)).

Let us prove that the sequence (u,) converges to a solution to problem (5.8) which
satisfies the properties in the statement. The same arguments as in the proof of Proposition
5.4 show that

lan(t, )lloo < e flo t>s. (5.37)
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Hence, the interior Schauder estimates in Theorem 5.3 guarantee that, for any compact
set K C (s,+00) x R? and large n, the sequence [unllgrtas22ta(grm) is bounded by
a constant independent of n. The Ascoli-Arzela Theorem, a diagonal argument and
the arbitrariness of K show that there exists a subsequence (u,, ) which converges to a

function u € C’llota/Q’QJra((s, +00) x R%:R™) in CL2(K;R™) for any K as above. Clearly,
u satisfies the differential equation in (5.8) as well as the estimate (5.35), as it is easily
seen letting n — 400 in (5.37); we just need to show that u is continuous in ¢t = s and it
therein equals the function f. As a byproduct, we will deduce that the whole sequence
(u,) converges in C12(K;R™), for any compact set K as above, since any subsequence
of (u,) has a subsequence which converges in C%?(K;R™).

Fix M € N and let ¥ be any smooth function such that xp—1) <9 < xp(ur). For
any ny > M the function vy := Ju,, belongs to C([s,T] x B(M);R™) N CH2?((s,T] x
B(M); R™) and solves the Dirichlet-Cauchy problem

Dyvi(t,x) = (Avg)(t, z) + gr(t,x), te(s,T], =€ B(M),
vi(t,z) =0 te(s,T), ©€dB(M),

Vk(S,.%') = (ﬂf)(x), T € (M)a

where gj, = —Tr(QD?*9)u,, — 2(Jyu,, )QVYI — Z?Zl(Bjunk)Djﬂ, for any ny > M. Note
that

g6(t,)] < Konr (€081 e (many + 1ot (1l (50 )

for any t € (s,T], z € B(M) and some positive constant K s independent of k, where we
have used (5.37).

Since the function t — (t —s)||uy, (¢, ‘)HC}?(B(M)) is bounded in (s, s+1) (by a constant
depending on k) we can apply Proposition 5.2 and, taking (5.37) into account, we obtain
that || Jxtn, || e (B(ar)) < c(t — s)71/2||f| o, for any t € (s, s+ 1) and some constant ¢ > 0,
independent of k. Therefore we can estimate |gg (¢, z)| < K’ (1+(t—5)7"/2)||f] 0o, for any
(t,z) € (s,s+1) x B(M) and any ny > M where K, is a positive constant independent
of k. We can thus represent v; by means of the variation-of-constants formula

Vit @) = (G (5,1)(9F) () + / (Gar(t,P)ge(r, ) (@)dr,

where G (s, t) is the evolution family associated to the realization of A(-) in Cy(B(M)); R™)
with homogeneous Dirichlet boundary conditions. Since vi = u,, in B(M — 1), it follows
that

up, (1, 2) — £(2)| < |Gum(t, 8)(0F)(x) — £(z)| + K?&Ilflloo/ (14 (r—s)""/?)dr,

for any ¢t € (s,s+ 1), z € B(M — 1) and some positive constant K, independent of k.
Letting k tend to +o0o we get

t
la(t, z) — £(2)] < [|G(s, t)(IF) — || Loe(Brr—1)) + waHflloo/ (1+(r—s)"/?)dr,
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which shows that u is continuous at ¢ = s for any x € B(M —1), Since M € N is arbitrary,
we conclude that u € C([s,T] x R%R™) and u(s,-) = f. O

5.3 The evolution operator {G(t, s)}i>s

For any t > s € I and any f € Cy(R% R™), let G(t, s)f denote the value at ¢ of the unique
classical solution to the Cauchy problem (5.8). The uniqueness of the solution to such
a problem shows that the family {G(t, s)}+>ser is an evolution operator in C,(R%; R™).
Moreover, estimate (5.31) shows that

|G (t, 5)f]|o0 < e 0E3)||f]| o, f e C(RLR™), t>sel. (5.38)

We are interested in studying some properties of this evolution operator which, from
now on, will be denoted simply by G(t, s).

Proposition 5.10. Let (f,) be a bounded sequence of functions in Cy(R%R™). Then,
the following properties are satisfied:

(i) if £, converges pointwise to f € Cy(R%GR™), then G(-,s)f, converges to G(-, s)f in
CY2(D) for any compact set D C (s, +00) x R%;

(ii) if £, converges to f locally uniformly in R, then G(-,s)f, converges to G(-,s)f
locally uniformly in [s, +o00) x RY.

Proof. (i). From (5.35) and the interior Schauder estimates in Theorem 5.3 we deduce
that, for any compact set D C (s, +00) x R?, it holds that

sup HG(a S)an01+a/2,2+a(D) < 4o0.
neN

Therefore, using the same arguments as in the proof of Theorem 5.9, we can prove that
there exists a function v € Cllota/Q’nga((s, +00) x R%) and a subsequence G, (-, s)f,, which
converges to v in C12(D) as k — +o0, for any D as above. Clearly, Dyv — A(-)v = 0 in
(s,+00) x RY,

To complete the proof, we need to show that v can be extended by continuity on
{s} x R? and v(s,-) = f. Indeed, once this property is proved, we can conclude that v is
a classical solution to problem (5.8), which is bounded in each strip [s,T] x R?. Hence,
by Proposition 5.4, we conclude that v = G(-, s)f. Since this argument can be applied
to any subsequence of (G(-, s)f,) which converges in C1?((s, +00) x R?), and the limit
is G(+, s)f, we conclude that the whole sequence (G(-, s)f,,) converges to G(-, s)f locally
uniformly in (s, +00) x R?.

To prove that v can be extended by continuity at t = s, we fix m, M € N, with m > M.
From the proof of Theorem 5.9, with its notation, and recalling that sup,,cy ||fn]|cc < +00,
we deduce that

(G (L, 8)n) (2) — £u(2)] < [Gar(t, 5)(0Fn)(2) — O(@)Eu(@)| + crrVE — s,
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for any (¢,x) € (s,s+ 1) x B(M — 1), and some positive constant cy; independent of m,
We can let m — 400 and conclude that

(G(t, 9)fn)(x) — £,(2)| < |Gum(t, s) (V) (z) — d(x)E(x)| + e vVE— s, (5.39)

for any (t,z) € (s,s+1) x B(M —1). Next step consists in letting n — +o0. Clearly, the
left-hand side of (5.39) converges to |v(t,x) — f(z)| for any (¢,z) € (s, +00) x R%. As far
as the right-hand side is concerned, we observe that Riesz’s representation theorem (see
[2, Rem. 1.57]) shows that there exists a family {pf‘j/»[(t, s,x,dy):t>s, x € B(M),i,j=
1,...m} of Borel finite measures such that

m
(Cuult.g)@) =3 [ ol (hsady). g€ CoBONRY)
j=1
for any t > s, € R, i =1,...,m. Since each function 9f, is compactly supported in

B(M), from the previous representation formula it follows that G (-, s)(9f,) converges
to Gaz(-, s)(Vf) pointwise in [s, +00) x R as n — +o0o. Hence, we can let n — 400 in
(5.39) and obtain

v(t, ) — £(2)| <G, 5)(0F)(2) = I(@)E(2)] + epvE = s,

for any (t,z) € (s,s+1)x B(M —1). Now, we are done. Indeed, the function G;(-, s)(9f)
is continuous in [s,+00) x B(M). Hence, letting t — s we conclude that v can be
extended by continuity to {s} x B(M —1). The arbitrariness of M shows that v is
continuous on {s} x R% and v(s,-) = f.

(ii). Fix T > s € I. In view of property (i), we just need to prove that, for any
compact set K C R? and e > 0, there exists § > 0 such that

limsup |G(-, s)fn — G(, 8)f | o (s s8] x mm) < €. (5.40)

n—-+o00

Indeed, we can estimate

1G (-, 8)fn — fullosrxcrm) SIG(, 8)fn — fallo((s,s6)x i Rm)
+ G (-, 8)fn — full o(ss.7)x K Rm)-

Therefore,
lim sup HG(7 S)fn - anC’([s,T}XK;Rm)
n—-+o0o

<limsup |G(-, $)f, — fullo(s,sro)xiirm) + Hm[|G(-, 8)fn — £allo(s s 1)x iRm)
n——+00 n——+00

<2e,

due to the property (i) and (5.40). The arbitrariness of ¢ > 0 shows that G(-, s)f,
converges to G(-, s)f, uniformly in [s,T] x K, and we are done.
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To prove (5.40), we fix M € N, such that K C B(M — 1), and we observe that
estimate (5.39) shows that

IG(:, )fn — anC([s,sH}xB(Mq)) <G (- 8) () — ﬂfn”C([s,er(ﬂxm) + eV,
(5.41)

Since 9f,, converges to Jf, uniformly in B(M), from estimate (5.37) we deduce that
G (-, s)(0f,) converges to Gas(+, s)(9f) uniformly in [s,s + 1] x B(M —1). Letting
n — +oo in (5.41) it follows that

limsup ||G(-, s)f,

n—-+00

~ fullo (s srapmar—omm) SIGMC, ) (0F) = o, o1 5 Bar1m)
+ CM\/S.

We are almost done. Indeed, we can estimate

IG(, s)fn — G(-, S)fHC’([s,s—&-(S]xB(M—l);Rm)

<SNGCs 8)fn

o f”HC’([s,s—&-é]xB(M—l);Rm)

I — tlloar) + I1GC )~ Ello sro)xBET— DR
Letting n — 400 and recalling that f,, tends to f, locally uniformly in R¢, we conclude
that

limsup |G(-, $)f, — G(, S)fHC([s,s+6]xB(M—l);Rm)

n—-+o0o

<G (-, ) (IF) = Ol (s 155 BT Tymm) T MV

+IG( 9)f - fHC([s,s-&-é]xB(M—l);Rm)’
Since the functions Gps(-, s)(9f) and G(-, s)f are continuous in [s,s + 1] x B(M — 1),
from the previous estimate, it follows immediately that, for any € > 0, we can find 6 > 0
such that (5.40) holds true. O

Theorem 5.11. There exists a family {p;;(t,s,z,dy):t >s €,z €R% i, j=1,...m}
of finite Borel measures, which are absolutely continuous with respect to the Lebesgue
measure, such that

@ = [ HWstsad),  FeGRIRY.  (542)
j=1

for any t > s, x € R%, i = 1,...,m. Moreover, through formula (5.42), the evolution
operator G(t,s) extends to By(R%R™) with a strong Feller evolution operator. Actually,

G(,s)f € C’l+a/2’2+a((s, +00) x RY) for any f € By(RGR™) and s € 1.

loc
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Proof. Throughout the proof, s is arbitrarily fixed in I. Since, for any (t,z) € (s, +00) X
R?, the map f — (G(t,s)f)(z) is bounded from Cy(R%;R™) into R, from the Riesz’s
Representation Theorem (see e.g., [2, Rem. 1.57]) it follows that there exists a family
{pijt,s,z,dy) : t >s €1,z €R i, j=1,...m} of finite Borel measures such that (5.42)
is satisfied by any f € Co(R% R™). To extend the previous formula to any f € Cj(R%; R™),
we consider a bounded sequence (f,) C Co(R% R™) converging to f, locally uniformly
in R%. Writing (5.42), with f being replaced by f,,, and using Proposition 5.10(ii) and
the dominated convergence theorem, applied to the positive and negative parts of the
measures p;;(t, s, z,dy), we conclude that (5.42) is satisfied also by f € Cy(R%; R™).

It is clear that formula (5.42) allows us to extend the evolution operator G(t,s) to
By(R%; R™),

Let us now prove that each measure p;;(t,s,z,dy) is absolutely continuous with
respect to the Lebesgue measure. Equivalently, we can limit ourselves to proving that,
for any (¢,z) € (s,+00) x R and any 4,7 = 1,...,m, the positive and negative parts
of pi;(t,s,x,dy) are absolutely continuous with respect to the Lebesgue measure. For
this purpose, we recall that, the Hahn decomposition theorem (see e.g., [96, Thm. 6.14])
shows that, for any (t,2) € (s, +00) x R?, there exist two Borel sets P = P(t, s, z) and
N = N(t, s, z) such that the maps p;;-(t, s, x,dy) and pi_j(t, s, x,dy), defined, respectively,
by p:'j(t, s,x, A) = p;ij(t,s,z, AN P) and pi_j(t, s,x, A) = —pij(t,s,x, ANN) for any Borel
set A C R%, are positive measures and p;;(t, s, z, dy) = p;-;»(t, s, x,dy) — pi_j(t, s, x,dy).

Being rather long, we split the proof into several steps.

Step 1. In view of formula (5.42) we can extend G(t,s) to By(R% R™). We claim
that, for any f € B,(R?) and any j = 1,...,m, G(-,s)(fe;) € Cl+a/2’2+a((s, +00) x R9),

loc
DyG(-,5)(fe;)~AG(-, 5)(fe;) = Din (s, +00) xRe and [ G(t, 5)(fey) [oe < 0] o
for any t > s. Since G(-, s)f = 37", G(:, 5)(f;e;) for any f € By (R4, R™), from the claim
it follows immediately that the function G(-, s)f has the claimed regularity properties
in the statement of the proposition and ||G(t,s)f||sc < Vdes0(t=5)||f|| for any t > s.
(This estimate will be improved in Corollary 5.12, removing the constant /d.).

To prove the claim, we begin by recalling that the space B(R?) of all the real valued
Borel functions coincides with the set B“!(R?) = Un<en B"(RY), where, throughout
this step, we denote by 7 the ordinal numbers and w; is the first nonnumerable ordinal
number. The sets B7(R?) are defined as follows: BY(R%) = C(RY) and, if n > 0, the
definition of B"(R?) depends on the fact that 1 + 1 is a successor ordinal or not. In
the first case, B(R?) is the set of the pointwise limits, everywhere in R%, of sequences
of functions in B7(R?), where 7 + 1 = n; in the second one, B"(R%) = U<y B™ (R9).
Hence, any Borel function belongs to B"(R?) for some ordinal less than w;. We refer the
reader to [61, Chpt. 30] [84, Introduction] and [99] for further details.

We fix j € {1,...,m} and, for any ordinal n < wy, we set P;(n) = {f € BZ’(Rd) :
G(,)(fe;) € Ce™ (s, +00)xRY), DiG(-,5)(fe;)~AG(,5)(fe;) = 0, |G(-, 5)(fe;)]|o <

e50(=5)|| f|lo }, where, as usually, the subscript “b” means that we are considering
bounded functions.
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We use the transfinite induction to prove that P;(n) = B}(R?) for any ordinal less
than w;. In view of Theorem 5.9, P;(0) = BY(R?) = C,(R?). Fix now an ordinal 7 and
suppose that P;(8) = B}(R?) for any ordinal 8 < n. We first assume that n + 1 is a
successor ordinal. In such a case, f is the pointwise limit, everywhere in R?, of a sequence
(fn) € B](R%). Since, by assumptions, f is bounded, up to replacing f,, by fn A | fllso;
we can assume that [|fn|lec < [|f|lso for any n € N. Note that f, A ||flle € BX(R?)
for any n € N, as it can be easily checked. Since the function G(-,s)(fne;) belongs
to Cllcia/z%a((s, +00) x R?) for any n € N, using the interior Schauder estimates in
Theorem 5.3, as in the proof of Theorem 5.9, we can prove that, up to a subsequence,
G(t, s)(fne;j) converges in C12(K), for any compact set K C (s, 4+00) x R%, to a function
v € CLr22% (5 400) x RY). Moreover, since |G (%, 8)(frej)]loo < €03 folloo <
e=50(=5)|| || 00, for any ¢ > s and any n € N, it holds that ||v(t,-)||ec < €09/ f||s0 for
any t > s, so that v € Cy([s,T] x R%: R™) for any T > s. The representation formula
(5.42) reveals that v = G(-, s)(fe;). Moreover, since D;G(-, s)(fne;) — AG(:,s)(fne;j) =
0 in (s,4+00) x R%, letting n — +oo, we immediately deduce that D;G(-,s)(fe;) —
AG(-,s)(fej) = 0 in (s,+00) x R% Hence, f € BZH(Rd). Suppose now that n + 1
is a limit ordinal. Then, f € BZH(Rd) means that f € Bg (R9) for some ordinal

B less than 7. Since P(3) = Bf(Rd), then G(-,s)(fe;) € Cllota/Q’%a((s,%—oo) x R%),
DiG(-,5)(fe;)~AG(-5)(fe;) and |G (-, s)(fej)[| < e=0l=)|| f[o. Therefore, f € P;(n),
and we are done also in this case. The claim is thus proved.

Step 2. Here, we prove that, for any M > 0, there exists a positive constant c,

depending on M but being independent of ¢ and f, such that

1Gar(t, s)(Fe) ey Boanymmy < G a(t,8)flle, ) + vt = sl fllo, (5.43)

for any t € (s,s + 1), f € C***(B(M)) and j € {1,...,m}. Here, Gy (t,s) and
G wm(t, s) denote, respectively, the evolution operator associated with the realization in
Cy(B(M); R™) of the operator A in (5.7) and the elliptic operator A = Tr(QD?2). Both
these operators are endowed with homogeneous Dirichlet boundary conditions.

Throughout this and the next step, we denote by ¢ a positive constant, which is
independent of ¢ € (s,s+ 1), z € B(M) and may vary from line to line. By [38, Chp. 3,
Sec. 7, Thm. 16], G/(t,s) can be extendend to any function f € By(B(M)). Moreover,
G (t. ) ey man) < ot — )72 fllo for any F € Co(B(M)) and any ¢ € (s, + 1)
(see [70]).

Fix f € C?T*(B(M)) and j € {1,...,m}. Since the function u = Gp(,s)(fe;)
solves the Cauchy problem

Dou(t,z) = (Au)(t,x) +g(t,z), te(s,s+1), e B(M),
u(t,xz) =0, te(s,s+1), xe B(M),
u(s,z) = f(a)ey, x € B(M),

where A is the diagonal operator all whose components coincide with the operator A
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and g = — Z?:l BjDju — Clu, the variation-of-constants-formula shows that

u(t,z) = (Gu(t, 8)(fej)(fv)+/ (Gar(r, s)g(r, ) (x)dr, (t,2) € (s, +00) x B(M),

) ) (5.44)
where (Gs(t, 8)g)kr = Gu(t, $)gi for any k =1,...,m. Therefore,

Vaou(t,z) = (VmGM(t, s)(fej))(x) —I—/ (VaGar(r, s)g(r,-))(x)dr, (5.45)

for any (t,z) € (s,4+00) x B(M). Taking the norms of both the sides of (5.45) we can
estimate

IVzu(t, )l c,Banrm)
C

t
1
m“f“oo + C/ N (IVzu(r, e, sanzmy + [, )l sangm)) dr

<

c to1
Sm“f“®©+¢/£ pra— ‘Vgﬂl(T’,')HCb(B(M);Rm)dT,

for any t € (s,s + 1). To get the previous estimate we took advantage of the fact that
lu(t, )|loo < ¢||fllco for any t € (s,s + 1). The generalized Gronwall lemma (see [46])

shows that

C
IVault, e, oanrm) < ﬁ\\f“w te(s,s+1). (5.46)

In view of (5.46) we can estimate [|g(t,)|lc,(B(m)rm) < c(t — $)" 12| f|lso for any
t € (s,s+ 1). Taking the norms in both the sides of (5.44) we get

t
~ _1
G (t,s)(fes)lle,Bonyrmy <G (t, 8) flle, ) +C\|f||oo/ (r—s)"2dr
=[G (t, 8) fllcyBany + ¢ VE— 5] flloo,

for any t € (s,s + 1). Estimate (5.43) follows.

Step 3. Here, we prove that, for any Borel set O C R? with zero Lebesgue measure,
any M > 0any j € {1,...,m} and any t € (s,s+ 1), it holds that

[(G(t, s)x0e;) ()] < evit—s, te(s,s+1), x € B(M/2). (5.47)
To prove this inequality, it suffices to prove that
Gt 5)(fep)lloyanmm) < IGar(t,s) flle,sany + eVt = sl flloos (5.48)

for any t € (s,s+1) any f € By(R%) and j € {1,...,m}. Indeed, it is well known that, if
O has null Lebesgue measure, then G/ (t, s)xo = 0 (see [38, Chp. 3, Sec. 7, Thm. 16]).
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Estimate (5.48) can be proved by transfinite induction, arguing as in Step 1. For
this purpose, let us prove that, if f € By(R?) is the pointwise limit everywhere in R?
of a sequence (f,,) C By(R?) of functions, which satisfy (5.48) and || fnlco < ||.flleo for
any n € N, then f satisfies (5.48) as well. This property will imply in particular that
all the functions in Cy(R?) satisfy (5.48) and gives the argument to make the transfinite
induction work.

Fix M > 0, f and (f3) as above and a function ¥ € C°(R%) such that XB(m/a) <9<
XB(M/2)- By the proof of Theorem 5.9, we know that G(-, s)(fxe;) is the local uniform
limit in (s, +00) x R? of the unique classical solution u} to the Cauchy problem (5.36),
with f being replaced by U fie;, As it is easily seen, the function v := Ju} solves the
Cauchy problem

Divi(t,z) = (Av)(t,z) + gl (t,x), t>s, xe B(M),
v(t,z) =0, t>s, xe€dB(M),
Vi (s,2) = () fr(x)e;, z € B(M),

where
d
gl = —Tr(QD*9)u} — 2(J,u})QVY — Z(BjuZ)Djﬁ'
j=1

The variation-of-constants formula yields that

vi(t,2) = (Gu(t, 5)(Vfej)) () +/ (Gt r)gr(r;-))(2)dr,

for any s < ¢, and z € B(M). From estimate (5.14) and recalling that || fx|lco < || flleo

for any k € N, it follows that there exist two positive constants ¢; and ¢y, independent
of k and n, such that

_1
Gt m)gr (7, ) e (Bary) < crllgk (7 )l oo (Bar/2)) < emll flloo(1 4 (E—17)72),
for any ¢ € (r,s+ 1). Hence, taking (5.43) into account, we can estimate
Vit 2)| < [(Gar(t, ) (9 fre))(@)] + earl fllooVE = 5, te(s,s+1), € BM).

Letting n — 400 we get

(G(t,8)(frep)(@)| < |Gaa(t, s)(Dfre;) ()] + earllfllocv/E s, (5.49)

for any t € (s,5s 4+ 1) and € B(M/2). Clearly, U fx converges to 9 f pointwise in R?
as k — 4o0o. The same arguments as in the proof of (ii) reveal that G (-, s)(9fre;)
converges to G (-, 8)(9 fe;) pointwise in (s, s + 1) x B(M). Hence, letting k — +o00 in
(5.49) we get (5.48).

Step 4. We fix i,j € {1,...,m}, to > s, o € R? and prove that the mea-
sures p;;(to,s,xo,dy) and pi_j(to,s,xo,dy) are absolutely continuous with respect to
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the Lebesgue measure. We begin by considering the measure p;;(to, s, xo,dy) and we fix
a bounded Borel set A with null Lebesgue measure. Clearly A N P has null Lebesgue
measure. Therefore, from estimate (5.47) it follows that

|(G(t, s)(xanrej))(x)| < eVt — s, te(s,s+1), z€ B(M/2).

It thus follows that G(t, s)(xanpe;) tends to 0 uniformly in B(M/2) as t — s*. By the
arbitrariness of M, we deduce that G(t, s)(xanpe;) tends to 0, locally uniformly in R%, as
t — sT. From Step 1, the function v, defined by v(s,-) = 0 and v(t,-) = G(t, s)(xanre;),
if t > s, belongs to C’lita/z’ﬂa((s,%—oo) x R%GR™) N Cy([s, +00) x REGR™) and is a
classical solution to the Cauchy problem

Diu(t,z) = (Au)(t, x), t>s, xeRY
u(s,z) =0, r € RY.

By Proposition 5.4, it follows that v = 0. Thus, we conclude that G(-,s)(xanre;) =0
in (s,00) x R%. In particular, (G(+, s)(xanpe;))(zo) = 0 which implies that

0 =(G(to, s)(xanre;))i(zo) = /d XAnppij(to, s, zo, dy)
R
=pi;(to, s,x0, AN P) = p;;(to, 5,0, A)

and we are done.
In the same way, one can show that pi_j(t, s,x,dy) = 0 is absolutely continuous with
respect to the Lebesgue measure. The proof is complete. O

Corollary 5.12. The following properties are satisfied.
(i) Estimate (5.38) is satisfied by any f € By(R% R™).

(ii) Proposition 5.10(i) holds true for any bounded sequence (f,) of Borel functions
which converge pointwise (almost everywhere in R?) to a Borel measurable function

f.

Proof. (i) Since any function f € By(R?) is the almost everywhere pointwise limit in
R? of a bounded sequence (f,,) C Cp(R?), and the measures p;;(t, s, z, dy) are absolutely
continuous with respect to the Lebesgue measure, for any ¢t > s € I and any = € RY,
by formula (5.42) and the dominated convergence theorem, we deduce that G(t, s)f,
converges to G(t,s)f pointwise everywhere in R? as n — +o0. Clearly, without loss
of generality we can assume that || f,||co < ||f]|co for any n € N. From (5.38) it follows
that |G(, s)f,) ()| < e 09 ||f, || o < e0E=9)||f, || for any t > s € I and any 2 € R%
Letting n — 400, we conclude the proof of (i).

(ii) Fix s € I and (f,),(f) as in the statement. For any ¢ > 0 the functions
G(s +¢,5)f, and G(s + ¢, s)f are bounded and continuous in R?, thanks to property
(ii). Moreover, the representation formula (5.42) shows that G(s + ¢, s)f,, converges
pointwise in R? to G(s + ¢, s)f as n — +o00. The evolution law which allows us us to
split G(t, s)f, = G(t,s +¢)G(s + ¢)f,, for any n € N and Proposition 5.10(i) allow us to
conclude the proof. ]
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5.4 Compactness

In this section we provide sufficient conditions ensuring that the evolution operator G(t, s)
is compact in £(Cy(R%R™)). Besides Hypotheses 5.1(i), (ii) we assume the following
additional conditions on the coefficients of the operator A.

Hypotheses 5.13. (i) For anyi=1,...,d, there exist b; € Cﬁ?’a(l x R%) and B; €
Ca/Q’a(I x R R™) such that B;(t, @) := bi(t, ) Idm + Bi(t,z) for anyi=1,...,d

loc
and any (t,z) € I x R%. Further, for any bounded interval J C I there exists a
positive constant Z; such that |(B;) k| < Ej/v in J X R, for any j,k=1,...,m,

i=1,...,d where (B;);i denotes the jk-th element of the matriz B;;

(ii) for any bounded interval J C I, there exists a constant ¢y € R such that (C(t,x)n,n) <
cy, for any (t,x) € J x R% and any n € OBy;

(iii) for any bounded interval J C I there exist a constant \j and a positive function
@07 € C*(RY) blowing up as |z| — +oo such that

sup  (A(t)es)(x) — Asps(x)) < +oo0,
(t,x)eJ xR

where A = Tr(QD2) + (b, V) and b = (b1, ..., By).

Since we no longer assume Hypotheses 5.1(iii), (iv), we can not apply Proposition
5.4 to guarantee the uniqueness of the solution to the Cauchy problem (5.8). The role
of the following proposition twofold. First, it replaces Proposition 5.4, and, combined
with Theorem 5.9, it shows that the Cauchy problem (5.8) admits a unique solution
u € C([s,+00) x RER™) N C1He/2.2+a((5, 400) x R%R™), which is bounded in each
strip [s, 7] x R This allows us to define the evolution operator G(t,s) in Cy(R%; R™),
as we did in Section 5.3, and all the results therein proved still hold true, since they are
mainly based on Schauder estimates and on the arguments in the proof of Theorem 5.9.
Secondly, Proposition 5.14 shows that, for any f € By(R?;R™), the function |G (-, s)f|?
can be estimated pointwise in terms of G(t, s)|f|?, where G(t,s) denotes the evolution
operator in Cb(Rd) associated with the operator A, whose existence has been proved in
[60]. This is the first step to provide sufficient conditions for the compactness of the
evolution operator G(t, s).

Throughout this section, for any interval J C I we set Ay = {(t,s) € J x J: t > s}.

Proposition 5.14. Suppose that Hypotheses 5.1(i), 5.1(it) and 5.13 hold true. Then, for
any s € I and any f € Cy(R%R™), the Cauchy problem (5.8) admits a unique solution
u € O([s, +00) x R%: R™) N CHHa/2.2+0 (5, 400) x REGR™), which is bounded in each strip
[s,T] x RY. Setting G(-,s)f := u, we define an evolution operator in Cy(R%;R™) which
extends to By(RYR™). Moreover, for any T > s € I there exists a positive constant
¢ =c(s,T) such that

(Gt @) < o(Glt, 5)[E2) (@), (5.50)

for any (t,x) € [s,T] x R and any bounded Borel measurable function f.
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Proof. The core of the proof consists in showing that any solution u to problem (5.8)
corresponding to f € Cy(R% R™) and enjoying the regularity properties in the statement
of the proposition, satisfies the estimate

lu(t,z)* < c(G(t, s)[f*)(z), (t,z) € (5,T) x RY, (5.51)

for any T' > s and some positive constant ¢ = ¢(s,T"). Clearly, this estimate gives the
uniqueness of the solution to problem (5.8). Moreover, the arguments here below can also
be applied to prove that the solution u, to the Cauchy problem (5.36) satisfies (5.51), with
R¢ being replaced by B(n). This estimate replaces (5.37) and allows us to repeat verbatim
the proof of Theorem 5.9. We can thus define the evolution operator G(t, s) in Cj,(R%; R™)
and, then extend it to By(R%R™). To extend (5.50) to functions in B,(R% R™), we
approximate any function f € By(R% R™) by a sequence (f,,) € Cp(R%;R™) converging
to f almost everywhere in R, as n — +o00. Writing (5.50) with f being replaced by f,
and using the result in Proposition 5.10(¢) and the dominated convergence theorem to
let n — 400, we get (5.50) also for bounded and Borel measurable functions.

So, let us assume that f € Cy(R%;R™). For any T' > s € I, we consider the interval
J =1s,T] and we set K = c; + m2E?,d, where the constants ¢; and = are defined in
Hypotheses 5.13. Moreover, we consider the function v : [s,7] x R — R defined by
v(t, z) == e 2K |u(t, 2)|? — w(t, z) for any (t,x) € J x R%, where w = G(-, s)|f|%. The
function v belongs to Cy([s, T] x R?) N CH2((s,T) x RY) and, taking Hypothesis 5.13(i)
into account, a straightforward computation yields

d
Dy(t, x) = (Av)(t, ) + 2 2K(=9) (Z(E(t, z)Dyu(t, z), ut, z))
=1
- TI‘(un(t, ‘T)Q(ta x)(un(t, ‘T))T)

+(C(t,z)u(t,x),u(t,z)) — K|u(t,x)]2),

for any (t,z) € (s,T] x R%. From estimate (5.9), it follows that —Tr(J,uQ(J,u)?) <
—v|Jpul? in J x R%.
Young, Cauchy-Schwarz inequalities and Hypothesis 5.13(i) imply that

d d

d
2> (B;Diu,u) <2 || Bi[|| Dsulfu| < 2mEZ;v/v|u] Y [Diul

i=1 i=1 i=1
1
<em?Z3dv|Jul* + g\u|2,
Now, choosing ¢ = (m?Z%d)~! and taking Hypothesis 5.13(ii) and our choice of K
into account, we get

Dyu(t, z) — (Av)(t, z) <2 2KE) (¢; 4+ m2Z2d — K)|u(t, z)> = 0,

for any (t,z) € (s,T] x R Moreover, since v(s,-) = 0 in RY, the maximum principle in
[60, Thm. 2.1] shows that v < 0 in [s, 7] x R? which is the claim with ¢ = eX(T=5) [
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Remark 5.15. If the constants ¢y and Z; in Hypotheses 5.13(i) and 5.13(ii) are in-
dependent of the bounded interval J C I, then the proof of Proposition 5.14 reveals
that

(G(t, )F) (2)]? < et ZDE=5) (G (¢, ) |F?) (), t>sel, zeR

We can now prove the following result, which allows us to provide sufficient conditions
for the compactness of G(t,s).

Theorem 5.16. Let J C I be an interval. If the family {G(t,s) : (t,s) € Ay} consists
of compact operators in Cy(R%R™), then, for any (t,s) € Ay and i,j = 1,...,m the
family of measures {p;;(t,s,x,dy) : x € R4 is tight. If, in addition, Hypotheses 5.13
hold true and G(t,s) is compact in Cy(RY) for every (t,s) € Ay, then G(t,s) is compact
in Cy(REGR™) for every (t,s) € Ayj.

Proof. Let J be as in the statement, fix an index jo € {1,...,m}, (¢,s) € Ay, and
set f, := Xpa\p(n)€jo for any n € N. Clearly f,, vanishes locally uniformly in R? as
n — +oo and, by formula (5.42), it is easy to deduce that (G(¢, s)f;,); vanishes pointwise
in RY as n — +oo for any i = 1,...,m. Fix an arbitrary point r € (s,t). The
previous argument can be applied to show that the sequence (G(r,s)f,)neny (Which
consists of bounded and continuous functions by Corollary 5.12(i)) converges pointwise
to zero as n — +oo. Since G(t,r) is compact in Cy(R% R™), there exists a sequence
(G(r,9)f,,) C (G(r, s)f,) such that G(¢, s)f,,, = G(t,r)G(r, s)f,,, vanishes uniformly in
R? as k — +o00. As a byproduct, we deduce that, for any i € {1,...,m}, the whole
sequence (G(t,s)f,); converges to 0 uniformly in R? as n — +oc0. By formula (5.42) it
follows that (G(t, s)£,); = pijo (¢, s,-, R4\ B(n)) for any n € Nand i € {1,...,m}. Hence,
the tightness of the family {p;;(t,s,z,dy) : x € R} follows from the arbitrariness of i
and jo.

Now, let us assume that Hypotheses 5.13 are satisfied. We fix (t,s) € Ay, r € (s,t)
and, for any n € N, we consider the operator R, := G(t,7)(xp(n)G(,5)) in Cyp(R%R™).
Since G(t,r) is strong Feller (see again Corollary 5.12(i)), each operator R,, is bounded
in Cy(R% R™). Moreover, from estimate (5.50) it follows that

(G(t,7) (xza\ B G (1, 5)f)) ()]
<e(G(t,r) (Xra\B(m) |G (1, 5)f*)) ()

— / (G(r, $)f) () Pgr.r(x, dy)
R4\ B(n)

<ce® U813, 91,0 (2, R\ B(n)), (5.52)

(G(t, 5)f)(2) — (Ruf)(2)]”

for any f € Cp(R% R™) where g, s are the transition kernels associated to G(t,s) in
Cy(R%). Since the compactness of G(t,s) is equivalent to the tightness of the family
{gt.s(x,dy) : x € R}, (see [71, Thm 3.3]), from (5.52) we deduce that R,, tends to G (t, s)
in £(Cy(R%R™)) as n — +oo. Therefore, we can limit ourselves to proving that each
operator R,, is compact. To this aim, let (f;) be a bounded sequence in Cy,(R%; R™). From
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the interior Schauder estimates in Theorem 5.3 it follows that the sequence (G(r, s)fx) is
bounded in C?*®(B(n); R™). Hence, there exists a subsequence (G (r, s)fy,) converging
uniformly in B(n) to some function g as j — +oco. As a byproduct, xp(m)G(r, s)fk,
converges to X p(,)g uniformly in R? as j — 4o00. Since the estimate (5.38) holds true
also for bounded Borel functions (see Theorem 5.11), we conclude that R, fy; converges
uniformly in R? to G(t, 7)(XB(n)8) as j — +oc. Hence, Ry, is compact in Cy(REGR™). O

In view of Theorem 5.16 and [71, Thm 3.3], some sufficient conditions in order to get
compactness of G(t,s) can be provided.

Corollary 5.17. Suppose that there exist a C? function W : RY — R such that
lim| ;00 W(z) = 400, a number R > 0 and a convex increasing function g : [0, +00) — R
such that 1/g belongs to L'((a,+o0)) for large a and (A(t)W)(x) < —g(W(x)) for any
t € I and any |z| > R. Then G(t,s) is compact in Cy(R%R™) for anyt > s € 1.

In Theorem 5.16, we have proved that the compactness of the scalar evolution operator
G(t,s) in Cy(R?) implies the compactness of the evolution operator G(t, s) in Cy(R%; R™).
As in [31], we are also interested in providing sufficient conditions which guarantee that
the compactness of G(t,s) in Cp(R% R™) implies the compactness of G(t, s) in Cy(R?).
The main step in this direction, consists in writing, by means of the variation-of-constants
formula, the components of G(t, s)f in terms of the scalar evolution operator introduced
in Proposition 5.14. More precisely, under suitable assumptions, we will prove that

(G(t, 8)f)p(2) = (G(t, 8) f5) (x) +/ (G(t, ) g g (r, ) () dr, (5.53)

for any (t,s) € Ay, any € R, and some k € {1,...,m}, where J C I is an interval and
d ~
= Z<T0w§3i7 DZG(a S)f> + <T‘0’U)EC, G(a 3)f>
i=1

To give a meaning to formula (5.53) we need to guarantee that the function ®¢ g(r,)
is bounded in R? for any r € (s,t). Indeed, the results in [60] show that G(t,s) is
well defined in By(R?). In the weakly coupled case considered in [31], B; = 0 for any
it =1,...,d. Hence, the boundedness of row;C' was enough to guarantee the existence of
the integral term in (5.53). In our situation things are much more difficult since we have
to guarantee that also the function 3%, (rowg B;(r,-), D;G(r, s)f) is bounded in R? for
any r € (s,t), in order to apply the evolution operator G(t,r) to such a function. This
is proved as a byproduct of some weighted gradient estimate. To prove them, besides
Hypotheses 5.13 we consider the following stronger conditions on the coefficients ¢;; and
b;.

Hypotheses 5.18. (i) The coefficients q;; belong to C’llonga(I xR%) for some o € (0,1)
and any 1,7 =1,...,d;
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(ii) the coefficients of the vector b and the entries of the matrices B; (i =1,...,d) and
C' belongs to C’loo’iJra(I x RY); further, (b(t,z),z) < bo(t,z)|z| for any t € T any
z € RY and some negative function by;

(iif) there emist a function Ko : I — Ry and positive functions 1; : I x RT — R
(j=1,...,6) such that

(Q(t,z),z)| < Ko(t)(1 + |z|*)v(t, z), z e R, (5.54)
VoQUNQT2 < wn, |QVAVLCyl Su, ij=1....d (5.55)
QY (B) k@i *| < 3 ih=1,....d, jk=1,...,m, (5.56)
(C€,€) < —yalel?, £ eRY, (5.57)
Q2R <5, QI <vs, Bl <, (5.58)
in I x RY;
(iv) the functions i, V3, Y4, Vs, e and 17 satisfy the following conditions:
t,x t,x
el oo w(uﬁi(—’ w)@, 2]~ lel m@jﬁ(— w)<t, )
B i (1) (21 ) N (0 Vi B

Ja| oo da(t, ) — w(t,z)  Jal=too Yu(t, x) — wit, )

uniformly with respect to t in bounded intervals J C I, where the function w :
I x R4 = R is a function which bounds from above the quadratic form associated
with the matriz

d d
Ql/Q(be)TQ_1/2 - ij(Dle/Z)Q—l/Q - Z ng(ngQl/z)Q_l/z
j=1 ij=1
Moreover,

(v(t,2))* + (¥a(t, 2))?

0 <suplimsup < 400, 5.60
ted jo|otoo  Ya(t,T) —w(t, 7) (5.60)
inf qim EDGGD) (5.61)
teJ |z|—4o00 bo(t, )
2
inf lim inf Jzl(w(t, 2))7 —00, (5.62)

ted |z|—+o00  bo(t, x)
for any J as above.

Remark 5.19. Note that, in the particular case when @ is independent of x (e.g., when
Q@ = 1d) the matrix M reduces to the matrix J,b. Therefore, we are assuming a bound on
the growth as |z| — 400 of the quadratic form associated with the matrix J,b, i.e., we
are assuming a dissipativity condition on the diagonal part of the drift of A. In the scalar
case, this is an hypothesis typically assumed in the literature to prove gradient estimates
both in the autonomous and nonautonomous setting. See e.g., [4, 14, 15, 60, 66, 72].
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Here, we provide an example of operator A whose coeflicients satisfy Hypotheses 5.13
and 5.18.

Example 5.20. We consider the operator A with coefficients
gij(t,2) = q(O)aiy (1 + =), 4,5 =1,...,m,
(b(t,2)); = —2ib()(1 + [z, i=1,....d,

(Bl(tax))]k = B(t)(BZ)]k(l + ‘x’2)r7 1= 17 e 7d7 j7 k= 17 U
(C(t,2))jn = —c®)Cir(1+ [2[?)°, Gk =1,...,m,

where I, p,r, s are positive numbers. We assume that the following conditions hold true:
e g€ C’I} (I) and there exists a positive constant ¢ such that q(t) > g, for anyt € I;

e b,b,c € Cy(I) and there exists a positive constant D such that b(t),c(t) > E, for
anyt € I;

o the matrices Q = [q;1] and C = [Cji] are positive definite, i.e., there exists a
positive constant vy such that (QE,€), (Cn,n) > vy|€|?, for any € € R? and n € R™.

Under above assumptions, in Hypotheses 5.18(ii) — (iii) we can choose as by, Ko, V;,
i=1,...,4 the following functions:

bo(t,x) := —Blz|(1 + |a|*)?
q9(t)|Q)
ko) = 1014,
Yi(tz) =11+ |27,
Yot @) = 25v/a(O)lelloe | max |Cyl(1+ fa )20,
Vst ) = T”bHOO =1,.. 7crl%‘%c}{=1,...,m|(éi)jk|(1+|$‘2)T_1/2,
Ya(t,x) = nB(1+ [2f?)”,
! ‘O
¥t @) i= =
bo(t, ) = [lallo|QI(1 + [2]*),
Pr(t,x) < Hb||ooijup_d|3 il (1 + 2 )T,

for any t € I and x € R%. Moreover, long but straightforward computations show that

w(x) < =bt) (1 + [z*)? — wog(1 + |z*)' >(d + (21 + d — 1)[]*)
d
H1b(t) Y aF (1 [P
j=1
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Finally, Hypotheses 5.13(i),5.13(ii7) and 5.18(iv) are satisfied if we assume that the
following inequalities hold:

r<l1l/2, l<1, p>max{2l,1+2s—1}.

Now, we prove a weighted gradient estimate satisfied by G(t, s)f which allows us to
deduce that the first integral in (5.53) is well defined.

Proposition 5.21. Assume that Hypotheses 5.13 and 5.18 are satisfied. Then, for any
j=1,...,d, the function (t,z) — Ql/Q(t,x)Vmuj(t,$) is continuous and bounded in
JxR? for any J € (s,+00). Moreover, for any T > s € I there exists a positive constant
C =C(s,T) such that

(t = 9)Q2(t, ) (JG(t, D)% < C|f]%, (5.63)
for any t € (5,T) and £ € Cy(R?,R™).

Proof. To simplify the notation we set u := G(+, s)f, u,, = G, (t, s)f,,, where G, (¢, s) is
the evolution operator associated with the realization of the operator A(¢) in Cy(B(n), R™)
with homogenous Dirichlet boundary conditions Further, we denote by u, ; the j-
th component of u,. Finally, we set &F, := Z?:l 27;1 ’Ql/QVx(Diun,j)|2, G, =
Z;”Zl \Ql/ 2Vgcfu]~7n|2 and, throughout the proof, we denote by ¢ a positive constant, which
may vary from line to line, may depend on s and 7" and is independent of n. Let us con-
sider the function v, := |u,|?>+a(-—s)n2G,, where a is positive parameter to be fixed later
on, nu(x) = n(|z|/n) for any x € R and n(t) = xj0,1/9(t) + exp (-%)Xu/m/zx) (t)
for any t € R. Clearly, 1, € C?(R%) and XB(n/2) < Tln < XB(3n/4)- Easy computations
show that D;n, () = —xn,(2)K,(z) for any 2 € R?, where

12(4|z|/n — 2)?
Kp(x) = -
) 2l (1 — (42| /n — 2)%)

d
X[z, 3,) (), z € R

Moreover, as it is easy to see computing the first and the second order derivatives of 7,
we have

(@) |QV 1| < en*vXKnn, (b) |Te(QD?n,)| < cv, (5.64)

Long but straightforward computations show that

d
Dyvn, =Alun* + (an} = 2)Gn + 2> _(Biuy, Diuy) + 2(Cup, uy)
=1

NE

+ 2( — 5)@77% <Dthxun,ja vﬁfu”aj>

1

.
Il

+2(- — s)anp,

i

Dzzkun,j <Q1/2vxq1ka Ql/vaun,j>

M=

o

=1
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Then we consider the spacial derivatives; we get

<b> V:)ﬂ-}n> :<bv vx|un|2> + 2(' - S)ann<b’ Vn">9n

d m
+2(- = s)an2 3 D" bl DiQ*Vatun . QY Vun )

=1

<.
Il
—

d m
£o0— a2 S QYT Dyt QP ).

i=1 j=

=

and

d m
Tr(QD%v,) =Tr(QD2|un|?) +4(- — s)an Y Y qin(DiQ"* Vo Dyun j, Q2 V un ;)

ik=1 j=1
+2(- — 8)a ((QVn, Vi) + 0aTe(QD* 1)) G
d m
+8(-=s)ann Y > qiDina(DrQ Vo 5, Q7 Vun )
ik=1j=1

d m
+8( = s)amm > Y qirDinn (QY2VeDyun 4, QY2 V un ;)
ik=1j=1
d m
40 =) 30 3 6 DiQYAV st 5, QYo Dy )
ik=1j=1
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=8 C”?n Z qu D 1@ 12v unJle Y U”J>

d m
+2(-—s)an2 > > qir{QY*VaDitn j, QY4 Dy 5).

Hence, v, is the unique classical solution to the Cauchy problem
Dyvp(t,x) — Avy(t,x) = gn(t,z), te(s,T], x€ B(n),
v (t,z) =0, te(s,T), ze€0dB(n),

vn(s, ) = [f(2)[?, z € B(n

~—

where g, = Z?:l Gin With

Gin =—2[1+ (- = 5)a{QVnn, V)] Gn
d

—2(- — s)an, Z Z Qik<Q1/2vxDiumj’ Qlﬂvak“nvj%

ik=1j=1

g2 =2( = s)a Y _(MQ 2Vt j, Q' Vi )
J=1

—2(- = s)an; Z > an(DiQ*Visun g, DiQ' Vo)
ik=1j=1

2= s)and Y CiplQ Vit b, QY Vo ),
Gk=1

g3 = —2(- — 8)an, Tr(QD*ny) G — 2(- — 8)an (b, V1) G

d m
—8( = s)an Yy _ Y (QVna)i(DrQ"*Vattn,, Q' Voun )
k=1 j=1

d m

- - S C”?n Z Z Qvﬁ QI/QV Dkun]v Q vIuTLj>

k=1 j=1
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94an :2( - S ann Z ZDzkun] Q1/2VIQik7Q1/2vasun,j>

i,k=1j=1

d m
—A(- = s)ang > Y qie(DiQY Ve Dyn, j, QY V s )

ik=1j=1

d m
—4(—s)an2 3N an(DiQ YV i, QY. Dy ),

ik=1j=1

d m
g5.n =2 Z(Bium Di“n) + 2<Cuna un> + ( - S)aﬁi Z<DtQ1/2vfﬂunda Ql/szun,ﬁ
i=1 Jj=1

d m
+C”7n9n+2 6”7 Z Z Ql/ \Y Dunka vxunj>
i=1 j,k=1

d m
+2( = 8)ana > Y Dittn 1 (Q"?Va(By) ji, QP Vst )
=1

+2( = s)any > unk(QV2VaCir, QP Vottn 5).
k=1

Let us estimate the function g,. Recalling that, for any pair of nonnegative definite
matrices M; and Ma, it holds that Tr(M;Ma) > Amin (M71)Tr(Ms) , where Apin (M7) is
the minimum eigenvalue of M;, we conclude that g1, < —2G, —2(- — s)anivd,.

The assumptions on the matrices M and C' allow us to estimate go , < 2(- — s)an2 (w —

w4)9n

Let us now consider the function g3,. Using both the estimate in (5.64) and and
Young inequality we get

3

Z 93,k,n

k=1

<2(- — s)acn,vG, + 2(- — s)afKnnZ(b(t, x),2)Gn

m d
+8(-— s)acynin2ﬂ<n Z Z |DkQ1/2Q71/2HQ1/2vaﬂ2
j=1 k=1

s
< acSn + (- — s)eacn?v*S, + (- — s)anXK,n? (bo + 8cnvipy)Gn

Finally, to estimate g3 4, we observe that, using (5.64)(a) and the estimate X1, <
cn*Qn}/S, we get [(QVana)il? < en*2XK3%n? < cn21/2fKn77f§/3. Using this estimate,
(5.64)(a) and the estimate

1 4 4 1 2
< — —
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which holds for any € > 0, with
ajg = a0/ S| (QVma )i 2|QVAV puy 2,
B; = a1/8|Q1/2qu]~|1/2,
k= \/5772/6|(vann)k|1/2|Ql/2v1Dkuj’a

to get
m d
|93.m] <8(-—5) > > B
Jj=1k=1
m d 1
4 4
<=9 3 (00 + et 5ok
Jj=1k=1
m d
==(- — 8)dv/aGy, + 4(- — s)ean’ BZZ] QV 211 )k |QY?V . Dyu; |2
Jj=1k=1
2 m d
z 3/2 2/3 1/2 2
+2( - 2D [ @Vana)il* QY2 V|
7=1 k=1
2
Sg( — s)va (d+ acn®K,n2v?) Gy + 4(- — 8)eacnZvT,.

Similarly, we split g4, = g4,1,n + g4,2,n + 94,30 To estimate g4 1, we observe that
1/2
S et Vaaan Dy = 258 Va2 (QY?V o Diuj)i. Hence,

Z ZDzku] Q1/2v$qm7@1/2vl’uj> X[n/2,3n/4)
i,k=1j=1
d

Z Z Ql/zszl/Q (QY2V . Diuj)r, QV*V u;)

i,k=1j5=1

X[n/2,3n/4)

d m
<cis Yy Y QYD) QY Vuy|

ik=1j=1
<evF, +e e IR,

To estimate the other two terms, we write D;QY/2V, = (D;Q'/2Q~1/?)Q'/?V, and argue
similarly. Collecting everything together, we get

. — 8 _
1l <~ ShasnoT + - aen U3,

Finally, taking Hypothesis 5.13 into account and writing

(DyQVu;, QV*V up) = (QV2D,QQ~V*)QY?V puj, QV*V yuj)
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we can estimate

-—5

‘.%,n‘ <c (1 + 5

1
a) \un]2 +2(-— s)aen,%u&"n + ( + a) Sn

-1
+ (- — s)acn? (wg eyl s+ 2T ) S

€
Then, collecting all the terms, we get that

t—s

gn < c (1 + a> lu, | 4 2(- — s)an?v(ce — 1)F, + IS,

3

where

t— t—
J(t,x):—§+a—|—2 Sd\/ﬁ—i— % ac

2 € €
+ (t = 8)a(na(2))?01(t 2) + (t = s)a(nn(@))*nKn (2)I2(t, 2),

for any (t,) € [s,T] x R? and

J1(t,z) =2w(t, x) — 204(t, ) + g(v(t,x))‘l(wl(t,:v)ﬂwa(t, z))?
¢7(t,$)1/_1>

€

o (e(v(t,x»z (b 2) + (Wl 1) + s(t2) +
f

Jo(t, x) =bo(t, z) + cla|v(t, 2)n (t, x) + ?ac]x\(v(t,a:))z.

Clearly, the coefficient in front of u, is bounded in [s,T] for any choice of a and e.
Moreover, the coefficient in front of F,, tends to —v as ¢ — 0F. Therefore, there exists
g0 > 0 such that this coefficients is negative for any ¢ € (0,p) and any a > 0.

Let us consider the term J. As far as J; is concerned, we get

9401, ) =2t ) — 205(8, ) + SO0t 2) 7 202wt )+ LT

+e{el(v(t,2)* + (¥a(t,2))?] + ¥s(t,2) + ¥s(t,2)

From (5.59) and (5.60) it follows immediately that J; is bounded from above in [s, 7] x R?
provided € > 0 is properly fixed. Finally, taking a small enough and using conditions
(5.61) and (5.62) we deduce that J5 is nonpositive as well.

Summing up, we have shown that |g,| < ¢ (Jun|? + a(- — s)n2Gn) = cvy, in [s, T] x R?,
and we can invoke the classical maximum principle to infer that |v,| < ¢||f|~, i-e.,
|G (t, $)flloo + (t — 8) /2 [1,QY2(JoGn(t,8)F)  [loo < ¢||f]lo for any t € (s,T]. As the
proof of Theorem 5.9 shows, Gy, (¢, s)f converges to G(t, s)f in C?(B(M)) for any M > 0.
Therefore, letting n — +o0o in the previous estimate for Gy, (¢, s)f, inequality (5.63)
follows at once.

3

O]



5.4. Compactness 109

Now, we show that, under suitable assumptions, it is possible to write a component
of the vector-valued evolution operator G(t, s) by means of the scalar evolution operator
G(t,s). A sufficient condition in order to prove this fact is the following additional
assumption.

Hypotheses 5.22. There exists k € {1,...,m} such that all the entries of row,C belong
to Cy(I x R%R™).

Proposition 5.23. Assume that Hypotheses 5.13, 5.18 and 5.22 hold true. Then, for
any (t,8) € Ar, z € R and any £ € By(R%GR™), formula (5.53) holds true.

Proof. Let us fix T > s € I and x € RY. We prove (5.53) for any ¢t € (s,T]. The
arbitrariness of T' > s will allow us to complete the proof. Being rather long, we split
the proof into four steps and, to simplify the notation, as usually we set u := G(-, s)f
and, for any n € N, u,, := G, (-, s)f, where G, (¢, s) is the evolution operator in Cy(B(n))
associated with the operator A with homogeneous Dirichlet boundary conditions. Finally,
A =Tr(QD2) + (b,V,).

Step 1. Fix f € C?**(R%;R™) and let ng be the smallest integer such that supp f C
B(ng). For any n € NN [ng, +00), we consider the classical solution w,, of the Cauchy-
Dirichlet system

Dwv(t,z) = (AV)(t,z) + ®,(t,x), te(s,T), =€ B(n),
v(t,z) =0, te(s,T), xe€dB(n), (5.65)
v(s,z) =f(x), x € B(n),

where, as in the proof of Theorem 5.11, A is the dlagonal operator with all the components
which coincide with the operator A, ®,; = 1, S0, (row; B;, Dju,) + (row;C, uy,), for
any j =1,...,m, (n,) C CX(R?) is the same sequence of cut-off functions considered
in the proof of Proposition 5.21 and u,, is the classical solution to the Cauchy-Dirichlet
system (5.36).

We claim that u is the limit of sequence (wy,).

Since u, € C'T*/22+((5,T) x B(n); R™) (see [63, Thm. VIL4.1]) and Hypotheses
5.1(i) and 5.13(i) are satisfied, ®, belongs to C%/*%((s,4+00) x B(n); R™). Hence,
from [63, Thm. IV.5.5] it follows that there exists a unique classical solution w,, €
C*e/224a((5,T) x B(n)) to the problem (5.65). Moreover, the variation-of-constants
formula yields

W () = (Gl ) fi) () + / (G, ) B () (), (5.66)

for any t € (s,T), any « € B(n) and k = 1,...,m, where G, (t, s) denotes the evolution
operator associated to A(t) in Cy(B(n)). Recalling that u,, is bounded in C" /% 2+O‘(K)

loc
for any compact K C (s,T") x B(n) (see the proof of Theorem 5.3, the function ®,, belongs
to LT/ 2+O‘((8, T) x B(n)). Hence, by the classical Schauder estimates in Theorem 5.3,

loc
there exists a positive constant C independent of n such that |’Wn”cl+a/2,2+a(K.Rm) <C
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for any compact set K C (s,T) x R? and n large enough. The Ascoli-Arzela Theorem and
a diagonal argument guarantee the existence of a subsequence (wnj) which converges in

CY2((s+1/R,T) x B(R); R™), for any R > 0, to some function w € C'IIOJCFQ/ZHQ((S, T) x
RY), as j — +o0. Since u, converges to u in C12((s,s+1/R) x B(R); R™) for any R > 0
(see the proof of Theorem 5.9), we immediately obtain that w satisfies the equation
Dywv = Av + ® in (5,T) x R? where &), = Z?:1<rowkéi,D,;u> + (rowC,u) for any
k=1,...,m. To claim that w = u, it suffices to show that w can be extended by
continuity at ¢ = s, where it equals f. For this purpose, we argue as in the proof of
Theorem 5.9. We fix M € N and a function 9 € C2°(R?) such that xBM-1) <9 < X

For any n; > M the function v,,, = 9wy, belongs to C1+¢/22+2((s,T) x B(M); R™) and

Dyvy,, (t,x) = (Avnj)(t,:r) +gn,(t,x), te(s,T], xe B(M),

v, (t,z) =0 te(s,T), € 0dB(M),
Vi (5,) = (9F)(2), x € B,
where g, = —wp, AV — 2J,w,,, (QVY) + 0@, for any n; > M. Clearly, g,, €

C*/%((s,T) x B(M)). Therefore, we can represent Vp; by means of the variation-
of-constants formula

Vi (1) = Goag (1, 5)(98) () + / (G (t, ), (1)) () dr, (5.67)

for any ¢ € (s,T") and x € B(M), where G/(¢, s) is the evolution operator associated to
the realization of A in Cy(B(M); R™) with homogeneous Dirichlet boundary conditions.

To estimate the sup-norm of the function gy, (r,-), we begin by recalling that the
proof of Proposition 5.21 shows that n2|QY%(t, z)(Jyun(t,z))T > < C(t — s)~1|f]|eo for
any t € (s,T), any « € B(n), any n € N and some positive constant C', independent of ¢,
n and f. Arguing as in the proof of (5.70) we deduce that

d 2
| >_(row;Bi(r,-), Dyuy(r, )| < Cd=E, 1y(r — )7 '|[f],
i=1
for any r € (s,T] and j = 1,...,m. Moreover, since the evolution operator G,(t, s) is

~1/2||f|| o and, consequently,

contractive, it follows that || ®,, (7, )|lc,(Bar) < em(r —s)
using (5.66) we deduce that |[wy, (7, -)llc, By < em(r — $)1/2||f||oo for some positive
constant c¢ys independent of j. Differentiating formula (5.66) with respect to x and using

the interior Schauder estimates in Theorem 5.3, we obtain that

t
w0 ey < (0= 77208+ [ (0= 17210, ) ygnyar)

s

< ¢ flloo((t = 8)7% + V/7),

for any t € (s,T] and some positive constant ¢, independent of j. We have so proved
that |gn; (¢, z)| < K (t — $)~12||f|| s for any t € (s, s+ 1), 2 € B(M) and some positive
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constant K s independent of j. Arguing as above, we deduce that the integral term in
(5.67) can be controlled from above by c(t — s)'/?||f||s for any (t,z) € (s,s+ 1) x B(M)
and some positive constant ¢, independent of ¢ and f.

Since vy,; = Wy, in B(M — 1), it follows that

(Wi, (t, ) = £(2)| < [(Gar(t, s)(0F))(2) — £(2)] + K v/t = 5 [|f]| oo, (5.68)

for any ¢t € (s,s + 1), z € B(M — 1) and some positive constant Kjs, independent of j.
Thus, letting j tend to +oc in (5.68) we get

wi(t,-) = fllo,B—1y) < |G (t, 8)(9F) — I, (Bar—1)) + Kmvt — s |[f]oo;

for any ¢ € (s,s+1). This shows that w(t,-) tends to f as t — sT, uniformly in B(M — 1)
and, by the arbitrariness of M € N, we obtain that w can be the extended by continuity
to [s,T] x RY by setting w(s, ) = f. We have so proved that u = w

Step 2. Here, we prove that there exists a positive constant ¢, independent of n, t
and f € Cy(R%; R™) such that

19,57, My By < e(r =)™ 2(|f]|oo, te(sT). (5.69)
For this purpose, we observe that the proof of Proposition 5.21 shows that
[wn(t, ey, By + VE— s Q"2 (Jpun(t, ))THCZ,(B(n)) < || flloo> te(s,T),

for any n € N and some positive constant ¢, independent of ¢, n and f. It thus follows
that ||(row;C, u) < ¢||rowzC||oo||f||cc- Moreover,

<Z|roka P Z\D uy(r
Smd:.[syT]V’v]xun Ty )‘2

<md=3, 11| QY*(r, ) (Toun(r, )|

<Cmd=2, 1 - o) (5.70)

lo(s 1<)

d

Z(row,;éi( ), Dijug (r

i=1

for any r € [s,T]. Estimate (5.69) now follows at once.
Step 3. Here, we prove formula (5.53) for functions f € C2+*(R?; R™). We observe
that formula (5.66) yields that

Wy, 7t 2) = (G, (8 8) ) (2) + / (G, (t,7) @,y () (), (5.71)

for any (t,z) € (s,T) x B(n;). To let j tend to 400 in (5.71), we begin by observing
that, by [60, Thm. 2.2], (Gy,(t,s)f;)(x) increases to (G(t,s)f;)(z) as j — oo for any
x € Rd As far as the convolution term in (5.71) is concerned, we claim that Gy, (t,7)®,,_ %

converges pointwise in R? to G(t, 1)@ f as j — +o0. Indeed,

|an (tv T)(I)an’C(T', ) - G(tv T)(I)f,k(rv )’
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San (t, T)|C1)nj7,‘€(7“, ) - (I)f,l_c(’r? )| + ‘an (t, T)(I)f:(T, ) - G(t7 r)(I)f,E(Tv )’
SG(t’ T)‘(I)nj,l_c(’r? ) - (I)f,l_c(r7 )‘ + ’Gn] (t’ T)(I)f,l_c(’r’ ) - G(t7 T)q)f,l_c(r’ )|7 (5'72)

for all r € (s,t]. Clearly, Gy, (t,7)®¢ 3 (r, ) converges to G(t,7)®g p(r,-) for any r € (s,1],
as j — +oo and, since ®,, 7 (r,-) converges to ®; g (r, -) locally uniformly in R? for any r €
(s, T], G(t,7)|®,,, 5(r,-)—Pgf(r, )| converges to 0 locally uniformly in R? for any r € (s, T]
(see [60, Prop.3.1]). Therefore, from (5.72) we deduce that Gy, (t,r)®,, 1 converges, locally
uniformly in R?, to G(t,r)P¢; as j — +oo. Moreover, since Gy, (¢, s) is a contractive
evolution operator for any j € N, from (5.69) it follows that |Gy, (¢,7)®,, g(r,-)|| <
c(r — 5)71/?||f||oo for any r € (s,t]. Thus by the dominated convergence theorem we
conclude that the integral in (5.71) converges to fst(G(t,r)q)f,,;(r, ))(x)dr as j — +o0.
Thus, letting j — 400 in (5.71) we obtain (5.53) for any f € C2+*(R%; RY).

Step 4. Now, we extend (5.53) to any f € By(R?;R™). For this purpose, let us fix
such a function f and a sequence (f,) € C2+*(R% R™) converging to f pointwise almost
everywhere in RY, as n — 400, and satisfying ||f,]|oc < ||f]lcc for any n € N. By Step 3,

(G(t; s)fn)z(x) = (G(2, 5)En)5) () +/ (G(t,7)®g, . (r,-))(2) dr, (5.73)

for any t € (s,7T], z € R and n € N. From Corollary 5.12(ii), (G(r, s)f,)z and G(r, ) fuk
converge, respectively, to (G(r, s)f); and G(r, s)f; in C?*(B(R)), for any R > 0 and any
r € (s,T), as n — +oo. Similarly, ®¢ r(r,-) converges locally uniformly in R? to Py ()
as n — 4oo for any r € (s,7). To conclude the proof, let us observe that, since the
constant ¢ in (5.69) is independent of n, we can estimate

1G(t,7) g, 5 (r oo < et = )72 |fulloc < et =) 72| £, r € (s,1).

Now, taking into account that G(t,s) is a contractive evolution operator in Cy(R?), we
can let n — +o0 in (5.73), and the representation formula (5.53) is proved in its full
generality. O

Proposition 5.24. Assume that Hypotheses 5.13, 5.18 and 5.22 hold true and that
G(t, s) is compact in C,(R%R™) for any (t,s) € Ao and some interval [a,b] C I. Then
G(t,s) is compact in Cy(RY) for any (t,s) € Apqy-

Proof. Lett > s € [a,b]. We consider a sequence (f,,) C Cy(R%) such that || f,lcc < M for
any n € Nand weset f, = fre;. Let so € (s, t] satisfy so—s < (865”3(”5)5[@71)] VdmCM)=2,
where € and kg are defined in Hypotheses 5.1 and C' = C(a,b) is the constant appearing
in (5.63).

Since G(sg,s) is compact in Cy(R%;R™), there exists a sequence (G(s0,8)fj0) C
(G (sq, s)f,) converging uniformly in R? as j — +o0 to some function g, € Cp(R%;R™).
Formula (5.53) yields that

(G(t, ) fi0)(x) = (G(t, S)fjg,k)(ff)—/ (G(t,r)®g,  (r,-))(2) dr,

ns
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for any x € R? and any n; € N. Clearly, (G(t, s)fj0)j converges uniformly to the k-th
component of G(t,s0)gs,. As far as the second term is concerned we have

/S (Gt ), ¢

3987 5%,

() @)dr

- / (Gt rows Bi(r, ), DiG(r, ) (£ — £ ) (2)dr

+ / (Gt rowrC(r, ), Glr,5) (£ — £ )))(x)dr:
The contractiveness of the evolution operator G(, s) implies that
|G (L, ) (rowC(r,-), G(r, s)(£j0 — 0 ))loo < [[rowiClleol|G(r, $)(£j0 — £jo )[loo

Moreover, we have

/s (Gt ) (rowg Bu(r. ), DiG(r. ) £ — £ ))) () dr

_ / (Gt ) rowg Bi(r, ), DiG(r, ) (£ — £0))) () dr
- /t(G(t, r)(rowgBi(r, ), DiG(r, s)(f0 — 0 )))(x) dr

S0

=D+ Iz
Using again the contractiveness of G(t, s), taking (5.63) and the choice of sy into account,

and arguing as in estimate (5.70) with u being replaced respectively by G(r, s)(fjo — £;0 )
and by G(r,50)G(s0, s)(fjo — fj0 ), we obtain

N

80
Ilvj SCEKJ(t*S)E[mb]W”fjg — ij,LHOO/ (T — S)il/2d7’ <
and
Ir; < C”G(S()?S)(fjg - fj,on)HOW

where ¢ = 265“3(’5*5)E[a7b] VdmC(b — a)'/2. Summing up we deduce that

IG(t,5)(fjo — fio oo < % + (Gt s)(£j0 — £j0 )il + cllG(s0,5)(£j0 — £j0,) [l
(5.74)

By the assumptions the last two terms in the right hand side of (5.74) vanishes as
Jj — +oo. Therefore, there exists No € N such that ||G(Z,s)(fjo — fjo )llc <1 for any
n,m > Ny.

Now, we fix s1 € (s,t) such that s—s1 < (166853(75_5)3[&75} VdmCM)~2. Since G(s1, s)
is a compact operator, there exists a subsequence (f;1) C (fjo) such that G(si,s)f;
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converges uniformly in R? to some function g,,. The same arguments as above reveal
that

1
1G(t, 8)(fi = Fp oo < 7 + (G 8) (52 = £51 )il + cllGs1,8) (£ — £51)lloo-

1
n

Hence, we can determine N; € N such that

—

HG(t, 8)(f]7ll - fj}n)Hoo < 5, m,n > Ni.

Iterating this argument, for any h € N we can determine a subsequence (f;n) C ( fth)
and an integer Ny, such that

16 )(f — Fp)loe <27 myn> N (5.75)

Now, we are almost done and to conclude the proof we consider the diagonal sequence
(¢n) with 4, = fjn for any n € N. Of course (¢,,) is a subsequence of (f,). We claim
that G(t, s)i, converges uniformly in R?. For this purpose, we fix ¢ > 0 and h € N
such 27" < e. We also set N = max{h, Nj,}. With this choice of N, and recalling that
U, Ym € (fjg) if n,m > h, from (5.75) we deduce that

IG(t, $)(Vn — ¥m) |0 < &, m,n > N,

which, clearly, shows that (G(t, s)1,) is a Cauchy sequence. O



Chapter 6

Semilinear System and
Applications to Differential
Games

6.1 Introduction

Let (92,7, P) be a complete probability space, (W;);>0 be an R?—valued standard Brow-
nian motion and N be the family of elements of F of probability 0. We define as F}" the
natural filtration with respect to W}, completed by the P—null set of JF, i.e.

FV = o{W,:0<s<t, N}.

We analyze a nonzero-sum stochastic differential game (NZSDG) which is described
as follows. Suppose that we have m players, which intervene on a system. For each of
them, we introduce the space of admissible controls and the space of admissible strategies.

Definition 6.1. For any player i, with i =1,...,m, we fit V' C R™ and define

U= {u:[0,T] x Q — V' : u is a predictable process}.

Ut is called Space of admissible controls, for any i =1,...,m, and the set
m .
U=]]v
i=1

is the Space of admissible strategies. Clearly, every player i will choose its strategy u’
which belongs to U°.

Let T >0, and 0 < ¢t < T. When m players make use of a strategy u := (u!,... u™),
the dynamics of the controlled system is described by the Controlled Stochastic Differential

115
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Equation (SDE)

ax = y(X)dr + G )X, up) + GX)aw, 7 e 1T,
(6.1)
xX® g z € R%,

where
b: R — R, G:R?— R™

are Borel measurable functions, 7 : R x U — R? is a measurable and bounded function,
uwe U and X = (X®W(7,t,2),Q,F® PO W) is the weak solution to (6.1).
If we define

B TAt
W, = WT(") +/ r(Xs, us)ds,
t

by the Girsanov Theorem there exists a probability measure P such that W, is an
R%—valued P—Brownian motion.

Now we associate a functional cost to any player ¢, which will depend on the strategies
of the whole players. This means that the cost for the ¢ — th player will derive not only
by its choice u’, but it will be a consequence of the choice u/ of any other player j, with
j # i. In this setting, the cost functionals have the following form:

T
Ji(u) = E™ UO P (Xs,us)ds + ¢'(X7)|, i=1,...,m, (6.2)

where E is the expectation with respect to P and h: R? x U — R™ and g : R — R™
are Borel measurable and bounded functions. Here, h is the running cost, while g is the
terminal cost, and h' and ¢’ denote the i—th component of h and g, respectively.

Definition 6.2. We say that 4. = (ﬂl, . ,&m), u € U, is a Nash equilibrium if, for any
i=1,....,m, any u* € U*, we have

Jia) < Jt(at . el att o ™) (6.3)

The above definition means that if @ is a Nash equilibrium, for ¢ = 1,...,m, the

player ¢ has no earn changing its control @*, if the other m — 1 players choose the strategy
(ala s ,ai,1,6i+1, s 7ﬂm)

We follow the approach of [47], where the case of bounded coefficients of the controlled
system has been considered, and the diffusion does not depend on the control. Here, the
authors prove the existence of a solution to a Backward Stochastic Differential Equation
(BSDE for short) and, consequently, the existence of a Nash equilibrium for an N —players
NZSDG. The result of [47] has been extended in the infinite dimensional setting in [39],
where the drift term of the BSDE has been considered only continuous. Moreover, in
[48] authors has proved the existence of a Nash equilibrium, relaxing as much as possible
the boundedness of the drift and diffusion coefficients of the controlled system.

We prove the existence of a Nash equilibrium in a more general setting by analytic
methods, considering the case of unbounded coefficients for the controlled system. In
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particular, we link the NZSDG with the mild solution to the backward semilinear Cauchy
problem

Div(t,2) + Av(t,2) = ¥z, QY (1) Vav(t,2)), t€[0,T), = eRe,
(SL-CP)
v(T,x) =f(z), r € R4,

where v is an R"™—valued function, A is the autonomous elliptic operator defined on
smooth R"—valued functions ¢ by

m
(A);(z) = TriQ(x)D?¢;(x)] + D _((B)jr(2). Vor), j=1,....m,
k=1
and ¢ : R x R™*% — R is a continuous function which satisfies the following conditions:
(1, 21) = (w2, 2)| < O+ [2a] + [2af) (o1 = mal™ + 21 = 2],
Y (2, 2)] < O(1+ [z]).

This connection is possible by means of solution to the System of Forward Backward
Stochastic Differential Equations

(dY, =H(X,,Z.)dr + Z.dW,, 7€ [t,T),
dX, = b(X,)dr + G(X,;)dW,, €[t T),

Yr = g(XT)v

X, =z, z € RY,

where H is the Hamiltonian function of the controlled system. In particular, we want to
prove that both Y and Z can be expressed in terms of v and QY/2V v, respectively.

The chapter is organized as follows. In Section 6.2 we show the existence of a mild
solution to the semilinear Cauchy problem (SL-CP). This result is proved in Subsections
6.2.1 and 6.2.2. In the first one, we repeat the procedure of Chapter 4 to get the existence
of a mild solution v when 1 satisfies stronger assumptions. In Subsection 6.2.2, we
approximate v by Lipschitz continuous functions {1, }»en, and prove that the sequence
of the corresponding mild solutions {v, },en converges to a function v which is a mild
solution to (SL-CP), which means that v satisfies

T
vt z) = T(T — 1) (x) —/t (T(s — £)F(5,v))(x)ds,
for any ¢ € [0,7] and = € R%, where

F(s,w)(z) := ¢(z, Q*V,w(s, z)).
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Section 6.3 is devoted to prove of the identification formulae
Y (s, t,z) :=v(s,X(s,t,2)), Z(s,t,x):=G(X(s,t,2))Vav(s, X(s,t,)),
where v has been introduced above and (X,Y,Z) is the predictable solution to
dY, =H(X;,Z;)dr + Z.dW., T¢€]ltT],
dX, =b(X;)dr + G(X;)dW,, 71e€ltT],

Yr= g(XT)7

\ Xi =z, r € RY.

Finally, throughout the identification formulae, in Section 6.4 we are able to prove
that a Nash equilibrium for (6.1) and (6.2) is reached, and it can be written in terms of
the mild solution v of (SL-CP).

6.2 The Semilinear System

In this section we deal with the system of backward autonomous semilinear parabolic
equations

Dyu(t,z) + Au(t, z) = ¢(z, Q2 (x)Vu(t,z)), t€[0,T), zcR?
(6.4)
u(7T,x) =f(x), r € RY,

where f € Cy(R%R™) and A is the vectorial operator defined on R™—valued smooth
functions ¢ by

d m
(Ag)j(z) = Tr[Q(x)D*¢;(x) + > Y ((Bi)jr(), Vér), j=1,...,m, (6.5)
=1 k=1

and ¥ : R? x R¥™*™ 5 R™ is a continuous function which satisfies the following
assumptions.

Hypotheses 6.3. ¢ is a continuous function and

lan, ) = Y(az, )] < OO+ [aal + |z2l) (for = 22l + |21 = 2I°),
(. 2)| < O+ 2],

(6.6)

for any x, 1,29 € R? and z, 21, 20 € R>™, for some positive constant C' and o € (0,1).
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Throughout this chapter, we assume the following standing assumptions (see Chapter
5), which are related to the existence and uniqueness of a classical solution to the linear
Cauchy problem

Dyu(t,r) = Au(t,x), t€[0,T), x¢cR%
(6.7)
u(T,z) =f(x), r € R4,

Hypotheses 6.4. (i) For anyi,j =1,...,d, the coefficients g;; and the entries of the
matrices B; belong to C2 (R%), for some a € (0,1);

loc

(ii) the matriz Q = [gi;] is uniformly elliptic, i.e., there exists a function v with positive
nfimum vy such that

(Q@)6,&) 2 v(@)lef?,  zeR! £eRY (6.8)
(iti) for anyi=1,...,d, there ezist b; € C (RY) and B; € C2 (R%R™ ™) such that
Bi(x) = bi(z)Idm + B;(z),

for any i = 1,...,d and any x € R?. Further, there exists a positive constant C
such that |(B;)jx|> < Cv in R?, for any j,k=1,...,m,i=1,...,d where (Bi)jk
denotes the jk-th element of the matriz B;;

(iv) there exists a constant ¢ € R such that (C(x)n,n) < ¢, for any x € R? and any
n € 0By;

(v) there exist a constant A and a positive function p € C?(R%) blowing up as |z| — +o0
such that

S%I;(ﬂ(t)w)(x) — Ap(z)) < +o0,

where A = Tr(QD?2) + (b, V) and b= (by,...,bn).

Remark 6.5. Hypotheses 6.4 guarantee that the linear Cauchy problem (6.7) admits a
unique classical solution u, for any T > 0 (compare with Hypotheses 5.13 and see Theorem
5.9 and Proposition 5.14). We denote by {T(-)}s>0 the semigroup on Cy(R% R™) defined
by T(t)f(x) := u(t, x), where u is the unique classical solution to (6.7). {T(t)}+>0 is a
semigroup of bounded linear operators, and there exists a positive constant K = K(T')
such that

(T@)E)(2)* < "H(S)IF%) (), (6.9)

for any (t,x) € [0,T] x R? and any f € Cy(R%GR™), where {S(t) }i>0 is the semigroup
associated to A in Cy(R?) (see Proposition 5.14).

To go further, besides Hypotheses 6.4, we will consider the following stronger condi-
tions on the coefficients ¢;; and b;.



6.2. The Semilinear System 120

Hypotheses 6.6. (i) The coefficients q;; belong to CIZOJga(Rd) for some o € (0,1) and
any i,7 =1,...,d;

(ii) the coefficients of the vector b and the matrices B; (i = 1,...,d) belong to CLT*(R%);

loc

further, (b(z),z) < bo(z)|z| for any x € R and some negative function by;

(iil) there exist a positive constant Ko and positive functions 1; : RT — R (j =1,2,3)
such that

(Q(x), )| < Ko(1 + [2|*)v(x), z € RY, (6.10)
V(@R <wr, QI < v (6.11)
(iv) the functions 11, 12, 13 satisfy the following conditions:

va@) _ (v(2) " (Y1 (x))? (Ya(x))?

= 1
|z|—+o00 w(T) || —+o00 w(x)

=0, (6.12)

where the function w : R* — R is a function which bounds from above the

quadratic form associated with the matric Ql/Q(be)TQ*W_Z;l:l b;(D;QY/2)Q /2
N z:?’j:l ij (Dilem)Qfl/Q- Moreover,

(v(x))®

\l;|m—>}|-no£ e > —00, (6.13)
: |CU’V( Y1 ()

mlﬂm bo(x) =0 (6.14)

T [GICO) (6.15)

jalotoo bo(w)
We recall a result of the previous chapter (see Proposition 5.21), which will be useful
in order to prove the existence of a solution to (6.4).

Proposition 6.7. Assume that Hypotheses 6.6 are satisfied. Then, for any j =1,...,d,
the function (t,z) — QY2(x)Vu;(t,x) is continuous and bounded in J x R? for any
J € (0,400). Moreover, for any T > 0 there exists a positive constant C = C(T) such
that

ty_1Q*Va(T()E);]% < ClIflIZ, (6.16)
j=1

for any t € (0,T) and f € Cy(R%R™).

The goal of this section is to provide sufficient conditions to prove the existence of a
mild solution v of (6.4), i.e., a function v € Kp which satisfies

T
v(t,x) =T(T —t)f(x) — /t (T(s —t)F(s,v))(x)ds, (6.17)
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for any ¢ € [0,7] and = € R, where F(s,w)(2) i= %(s,Q"/*(x)Vow()), for any
s € [O,T) X I(T7 and
h ey ([T —6,T] x RER™) N COL ([T —6,T) x RGR™)
Ks = ’
[h[lk, < oo

Ik, := |hllec + ]k, Mk, = sup (T =623 1Q"*()Vahy(t, ),

te[T—46,T) j=

for any § > 0.

At this stage, (6.17) is only formal, because, in general, {T(¢)};>0 can be applied
only on bounded and continuous functions. Hence, we prove that it is possible to apply
T(t) to the function F(s,w), provided that w belongs to a suitable space of functions.
Then we show that, if ¢ is Lipschitz continuous, a classical fixed point argument shows
that there exists a unique mild solution v. Finally, if ¢ satisfies Hypothesis 6.3, then we
can define a sequence {1, }en of Lipschitz continuous functions such that the sequence
of associated solutions {v;, },en converges to a function v € K¢ which satisfies (6.17).

6.2.1 Existence and uniqueness of a mild solution to (SL-CP) when
is a Lipschitz continuous function

We introduce the following space of functions: for any § > 0 and R > 0 we set
Ksr:={wekK;:|w|k, <R}
Moreover, throughout this subsection we assume a further assumption on .
Hypothesis 6.8. There exists a positive constant C' > 0 such that
(2, 21) — ¥(z, 22)| < Clz1 — 22|,
for any x € R? and 21, zp € R™*4,

In this subsection we will prove that the operator I', defined for any u € K¢ by

T
(Cw)(t.2) i=T(T = 0f(a) = [ (T(s ~ ) F(s.w)(w)ds,
t

for any t € [0, 7] and = € R?, admits a unique fixed point in K7. Clearly, any fixed point
of I in K7 is a mild solution to problem (SL-CP).
Remark 6.9. If ¢ satisfies Hypothesis 6.8, then

(Z) ”F(s, u) - F(87V)HOO < C(T - 3)_1/2[11 - V]KT7

- 12 (6.18)

(i1) 1(F(s,wlloe < € (14 (T = ) Julk, )

for any s € [0,T), any u,v € Kp. Moreover, if u € Ky, then the function F(-,u)(-) :
[0,T) x RY — R™ belongs to C([0,T) x R%R™).
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As in Chapter 4, we begin showing that the function t — ||f(¢,-)||ec is measurable,
for any f € C([0,T] x R% R™) such that f(¢,-) is bounded, for any ¢ € [0, .

Lemma 6.10. Let f € C([0,T] x REG,R™) such that, for any t € [0,T], f(t,-) €
Cy(R%R™). Then the function t — || f(t,-)||so is a measurable function.

From now on, we won’t refer to Lemma 6.10, but directly use it.
The following proposition shows some continuity and boundedness properties of the
function F'. These results and their proofs are analogous to those of Proposition 4.10.

Proposition 6.11. If u € Ky, for some 6 > 0, F satisfies (6.18) and

te(T-46,T)

sup (T —6)"2 ) [1QV*V,u(t,-)l|oo < o0,
7j=1
then the functions

T
(t,z) — F(t,x):= / (T(s —t)F(s,u))(z)ds
t
and 3
(t,z) = QY (2)V.F(t,x),
are continuous and bounded in [T — 6,T] x R and [T — 6,T) x R?, respectively.

Now we prove the existence and uniqueness of a mild solution v to (6.4). We follow
the same reasoning of Chapter 4, Subsection 4.2.2; at first we show the uniqueness of the
mild solution to problem (SL-CP).

Proposition 6.12. If problem (6.4) admits a mild solution in Ks, then it is unique.

Proof. Let u,v € K; be two mild solutions of (6.4). Then, taking (6.16) and (6.18) into
account, for any ¢t € [T — a,T) we get

Q¥ (w = v)(t, )l

T
/ Q'?V.(T(s — t)(F(s,u) — F(s,v))(-))ds

t

<

T o0
<CrC [ (5= IQUAVau = v (s, )i
t
T T
50%02/ (s —t)"Y2ds </ (r—s)1/2\|Q1/2vx(u—v)(r,.)uoodr>
t S

- e | Q2T 1 — V), ) oot ([ =070 as)

T
- G3C%x / 1QY29 0 (u = v)(r, )| sodr-
t
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Hence, by the Gronwall Lemma we deduce that [|Q'/2V (u — v)(t,-)||ec = 0, for any
t € [T —6,T). To conclude, it is enough to observe that

=)t o < | [ (T~ D0F G5~ Flsv @)

<c / 1QY2V 4 (u(s, ) — (s, ))lods
= 0.
O

The existence of a mild solution to (6.4) is a byproduct of the Banach fixed point
theorem, applied to the space Ks g, with suitable 6 and R.

Proposition 6.13. There exist § <T and R > 0 such that the operator I', defined by

T
(Tv)(t,z) = T(T — t)f(z) — /t (T(s —t)F(s,v))(x)ds, (6.19)

(t,x) € (T — 6, T) x RY, for any v € K; r, admits a unique fized point in Ks g.

Proof. We prove that I' is a contraction on K; r, endowed with the norm || - |k, i.e.,
I'(K; r) C K; r and there exists a positive constant ¢ < 1, such that

[(Tv) = (Tu)|x, <cllv—ulk,,

for any u,v € Ksg.
We set M := sup;c(o 11 [T(#) [ ¢(c, (me;mmy)) and

Cr:= sup (T =)' Q*V.T ()| 50, (resm))-
tel0,T) =1

The following computations are similar to those in the proof of Theorem 4.12, hence
we skip some details. From estimates (6.18) we deduce

T
IV () loo < Mo + /t (T(s =) F(s,v)(-))ds

- (6.20)
< M||f]loo + 2MC5Y2||v ||k, + OMC.
and
D23 QY (V) (1))l
j=1
(6.21)
< Ol + (T~ 020 [ (5~ 07 (1Q2Vv(s, e + 1) s

< Cr||f|loe + w6 2CrCv| ks + 20CTC.
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Moreover,
T
W) = V) Dl < [ 1T =D w = Fav)lds o
< 2MCHY?|lu - vk,
and
(T =023 1QVVal(Cw)(t.); — QV2Va((TV)(E )l
B (6.23)

7=1
T
< (T - t)l/QCTC/ (s — 1) 2QY2V,u(s, ) — QV2Vyv(s, ) |lods
t
<70 2CrClu - vk,

Thus, choosing

. 1
0 = min { (AMC + 2rCrC)2’ T} ’
R =2(M + Cr)([[f[|c +256C),

we obtain

vk, < R,

Iy~ Tulig, < g v —ulx,.
Therefore, I' is a contraction on K r and it follows that there exists a unique v € Ks g
such that I'(v) = v in [T — 4, T] x R%. O
Propositions 6.12 and 6.13 easily imply the following theorem.
Theorem 6.14. There exists a unique v € Ks which satisfies (6.17).

Proof. From Proposition 6.13 there exists a unique v € Kjr which satisfies ['v = v.
Since K5 r C Ks, using Proposition 6.12 we conclude that v is the unique element of Ks
such that

T
v(t,z) = T(T — t)f(z) — /t (T(s —t)F(s,v))(x)ds,
for any ¢t € [T — 6,T] and = € R%. O

In the last part of this subsection we show that it is possible to extend v to the whole
interval [0, T]. We follow the procedure of Subsection 4.2.2, hence we just state the main
result.

Proposition 6.15. If F' satisfies (6.18), then the mild solution v of problem (6.4) exists
in [0, T] x RY.
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6.2.2 Convergence of Mild Solutions

In this subsection we prove that, if ¥ only satisfies Hypothesis 6.3, then the Cauchy
problem (6.4) admits a mild solution v € K. We approximate ¢ by suitable more
regular functions 1,,, and we consider the mild solution v,, of the approximate Cauchy
problem with data ,, for any n € N. We want to prove that, up to a subsequence,
{vn}nen converges to a function v € Ky and

T
v(t,x) =T(T —t)f(x) — /t (T(s—t)F(s,v))(x)ds,

for any (¢,z) € [0,T] x R%. Let {p,}nen be a standard sequence of mollifiers in R™*?
and, for any n € N, let 6,, € C°(R™*?) satisfy XB(n) < On < XBn+1)- We set
Un(z,2) := On(2)(pn *z ) (z,2), neN, (6.24)

Rmxd

for any € R? and z € , where %, denotes the convolution only with respect to the

variable z.
Lemma 6.16. For any k,n € N, k <n, any x € R? and 21, 20 € R™*¢, we have

(@) onlar.2) — i, ) < S

(”) |¢n($az) _wk(xaz)’

1
a1 + € (22021 + ) X (12D,

(G, CeEDY

+(CEEED o (24 2l 4 1 ) ) e (2D

+C<4—|—4|ZH—:L+;> XB(n)e(12]), (6.25)
(i) Ponlar,2)] < O(L+ 2, (6.26)
(1) |Yn(, 21) — Yu(x, 22)| < Cnlz1 — 22, (6.27)

where C' has been defined in (6.6) and C,, is a suitable positive constant which depends
on n and blows up as n — 0.

Proof. (i) follows from

nl2) = 6. = [ pnl)Ou(a)0lez = 9) — bl 2y

<) [ ooz =) = (e )ldy
+Oxmae ) [ o).z =) = b2

<X [ pu)+ 12|+ 12— ks
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+Oxae() [ p @A alds (629)

(79) is a byproduct of (6.28) and the fact that

|@/}n($72) - 1/)(ac,z)| + |1,Z)(:L‘, Z) - wk(mwzﬂ

For any n € N, we consider the approximate problem

Dtvn(ta :U) + AVn(t, :L') = @Zjn(l'a Ql/z(x)vxvn(t7 l’)), te [07 T), T €< Rda
(6.29)
vu(T, z) = f(2), z € R%,

From (6.27), v, is Lipschitz in R™*¢. Hence, Theorem 6.14 implies that there exists
a unique mild solution v, € Ky to (6.29), i.e., there exists a unique function v,, which
belongs to K and satisfies

T
V() = T(T — )f(x) — /t (T(s — £)Fu(s, va)) (x)ds,
for any t € [0,T), any = € R?, where

Fu(s,u) () = tn(2, Q' (2)V,u(s, 2)),
for any u € Kp, any s € [0,7) and x € R
Remark 6.17. For any n € N, any u € Ky and s € [0,T), we have
1Fn(s, ) loo < C(1+ [[u]lie, (T —5)72).
Lemma 6.18. There exists a positive constant K such that
[vallk, < K, (6.30)
for any n € N.

Proof. We set hy, () := ||QY?V vy (t, )]s, for any t € [0,T). It follows that
T
(T = )2, (t) < O[]l + (T — t)1/2/ CrC(s — 1) V2(1 4 hp(s))ds
< Crllf]lwe + (T — t)1/2C’TC’/ )=112g

( 1/2CTC/ 1/2}1 ( )ds = (). (6.31)
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If we write hy,(s) = (T — s)~Y2(T — 5)1/?h,(s), and we replace (T — 5)'/2h,,(s) with
the right-hand side of (6.31), then we get

T
(%) < Cr||f|lse + TCrC + Tl/QCTC/ (s — ) "VHT — s) 71207 ||f] 0o ds
t

+ T2 /tT(s - t)1/2</T(r — )7 V2(1 4 hn(r))dr>ds

S

< Op||f|los + TCTC + T Cr)?Cr||f|| o + 2T%2(CrC)?

T
+TV2(CrC)*r / (T — r)"Y2(T — r)/?n,, (r)dr,
t

where

Cri= sup (I'- 02D 1R PVT(®) (0 mimm))-
e I

j=1
The generalized Gronwall lemma implies that
(T — t)?h, (t) <Cp(||f|lse + TC + T 2CrCr||f|| oo + 2T°/2CrC?)
x exp(21%/%(CrC) ). (6.32)

Further, we have

T
WMmSMMM+MCl(HWMﬂMM8

T
SMHfHOOJrMC/ (14 (T = )" (T — $)"?||h(s) ] oc)ds

IN

Cr, (6.33)
by virtue of (6.32).
Finally, combining (6.32) and (6.33), we obtain the thesis, with
K = (C7||f||lsc + T(Cr)?Cr|f]| o0 + (TCTC)?7) (1 + 2MCT/?)
x exp(2T*3(CrC)*r) + M| f||oo + TMC.
O

To go further, we need an intermediate result. At first, for any [ € N, we introduce
the space of functions

X; = Cy([0, T — 1/1) x B(I); R™) n %1 ([0, T — 1/I] x B(l); R™),
where [ := [1/T] + . Then we define
T

@ﬂ@@@rﬂT@—wmm—/‘ (T(s — 1) Fy(s, w))(x)ds,

t+1/7

for any n € N, any (¢,z) € [0,7 —1/7] x R?, any u € Ky and k,n € N. We want to
prove that ®} is compact from K7 in Xj.
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Remark 6.19. from Lemma 6.18 it follows that || @3 (vin )|k, < K, for any k,m,n € N
and some positive constant K.

Proposition 6.20. ®} is compact from Kt in X;, for any l > n.

Proof. We fix k,l,n € N, [ > n. We consider a uniformly bounded subset W C Kr, i.e.,
such that [|w|k, < H for any w € W and some H > 0. We observe that we can limit
ourselves to consider only the integral term of ®}, and we define

T
gw(t,z) = / (T(s —t)Fi(s,w))(x)ds,
t+1/7

for any t € [0, — 1/I] and 2 € B(l). We claim that {gw }wew is equibounded and
equicontinuous in X;. The equiboundness is trivial, since

T 1/2

lwloe < [ MO+ H (@ - 5) 1 )ds
t
T 1/2
1V 28wlloo g/ CrC(s — ) V21 + Hyy (T = 5)"1/?)ds,
t

where 1 has been defined in Hypothesis 5.1(i7). To prove that it is equicontinuous, we
recall that T(-)f is the locally uniform limit of a sequence of functions {u, },cn, which
r—th element is solution to

Dy, (t,x) = (Au,)(t,z), te (0,+00), z€ B(r),
u,(t,z) =0, t € (0,+00), x € dB(r),
u,-(0,z) = f(x), x € B(r),

for any r € N (see Theorem 5.9), and, from Theorem 5.3, for any compact set K C
(0, 400) x R?, there exists a positive constant Cx such that

[urllcrvarzzva(rerm) < Crlflloo-

Hence
[Tl cr+ar22tagrm) < Ckllf]lo, (6.34)

for any f € Cp(R% R™). R A
We go back to our problem. For any ¢,r € [0,7—1/l],t > r, and x,y € B(l), we have

lgw(t, ) — gw(r,y)| < lgw(t, ) — gw(r, o)| + |gw(r, o) — gw(r,y)|

‘/H/n T(s = 1) = T(s = 7)) Fi(s, w)) (z)ds

t+1/n
+ / (T(s — r)Fi(s, W) (£)ds| + [gw (1, 2) — g (1)

r+1/n

=0+ 1y + Is.
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The estimate of I; is a byproduct of above results; indeed, for any s € (¢t + 1/n,T)
the function under the integral sign is uniformly bounded by an integrable function, i.e.,

[((T(s — 1) = T(s — 7)) Fi(s, w)) ()]
< sup [ Dy(T(r) Fie(s, w)) (@)|(t —7)
re(1/a,T), = € B(l),
< Cn[|Fi(s, W) loo(t — 1)
< CpgC(1+ H(T = 5)7 2)(t 1),
for any ¢, € [0,T — 1/I] and = € B(l), where Ch, is a positive constant which denotes
the constant Cg in (6.34), related to the compact set K = [1/7,T] x B(I). Hence

I < CpC[T =t —1/0) 4+ 2H(T — t — 1 /)Yt — 7).
The estimate of I is trivial, since
(T(s — ) Fi(s,w))(2)| < MO(1 + H(T - 5)"'/?),

and so

t+1/n
I <MC/ (VT +2)(1 + H(T — s)~Y?)ds

+1/7
<MC(t- 7/” F2H(t+1/)Y? — 2H(r + 1/7)'/?)
<MC(TY? 4+ 2H)(t —r)'/2,
Finally, for I3 we note that, for any s € (r +1/7,T) and x € B(l) we have
IVa(T(s = ) Fy(s, W) (@)] < Crogl| Fi(, W) oo < Cog(1+ H(T = 5)/2).
Therefore
8w (r,2) — gw(r,y)]

T
= [ (s = PEs,w)@) ~ (T = )l ) 1) s
r+1/h

T
< o —y|Cos / (1+ H(T — $)~Y2)ds
< |z — y|Cpy(2VT + 2H(T — 1)/?).
We get

Igw(t,2) — gw(r,y)| <(t —r)CpyC[T —t — 1/iv+ 2H (T — t — 1/2)"/?]
+ (t—r)2MC(TY? + 2H)
+ |z — y|Cpa(2VT + 2H(T — r)/?).
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Next, we observe that

‘vxgw(ta $) - vzgw(ra y)|
< |Vagw(t,z) = Vagw (1, 2)| + |Va8w (7, ) — Vagw (1, v)]

T

< /H_l/ﬁ Vx((T(S — 75) — T(S — T))Fk(S,W))(SU)dS
t+1/7

o e s
r+1/n

+ |vxgw(T7-T) - ngw(T7 y)|
= J1+ Jo+ Js.

By (6.34), for any compact set K C (0, +00) x R? we have
[VmT(’)f]Ca/la(K;Rm) < CKHf||OO~

Hence, arguing as in I, for J; we get

Vo ((T(s —t) — T(s — 7)) Fi(s,w)) (2) < CpyC(1 + H(T — s)Y2)(t — r)*/2,

and so
Ji < (t —r)*2C CIT —t —1/a+ 2H(T —t — 1/0)'/2).

As far as Jo is concerned, we have

_5)-1/2
Vo (T(s — ) Fi(s, w)) ()] < 2284 +i(f rwl :

40

Therefore

t4+1/7
Jo gCTC / (s — )" V2(1 + H(T — s)"Y/?)ds
r+1/n

120

Vo

<(t—1)
By (6.35), in J3 we have

J3 <

+1/n
T
1+ H(T - s)_l/z) ds

<l Cuc [
r+1/7
<l|x-— y|°‘C’n7lC\/T <ﬁ+ 7TH> )

Hence

T
/ (VI(T(S —1)Fi(s,w))(z) — V(T (s — r)Fy(s, w))(y))ds

(6.35)

Vogw(t,x) — Vagw(r,y)| <(t —r)/2Co O[T —t — 1/ + 2H(T — t — 1/0)/?]
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Yo

+ |z —y|*Cp, CVT (\/T—F 7TH> .

+(t—r)

A A

Therefore {gw fwew and {Vzgw }wew are equicontinuous in [0,7 — 1/I] x B(l). By
Ascoli-Arzela Theorem it follows that ®} is compact from Kr in Xj, for any k,l,n € N,
n > . O

Proposition 6.21. Suppose that Hypothesis 6.3 holds. Then, up to a subsequence,
{Valnen and {Vovy nen converge locally uniformly in [0,T] x R? and [0,T) x R?, re-
spectively. If we denote by v the limit of {vy}nen, then v € Kp and it is a mild solution

of (6.4).

Proof. We recall that, from Remark 6.19, we have that ||®7(v,,)||lk, < K, for any
k,m,n € N. Moreover, to simplify the proof, we consider at first the case 7' > 1, from
which it follows that 7 = n. The general case can be obtained with identical proof,
provided that one replaces n with 7.

STEP 1: convergence of {®}(v,,)}m.

Since {®}(vy)bmen is compact in X; by Lemma 6.18 and Proposition 6.20, there
exists a subsequence {v(q 1), }JmeN C {Vm}men such that {(I)%(V(l,l)m)}meN converges in
X1. We define

Ean(to) = lim j(viy,)(t ).

Clearly
Diga(t,x) = lim Di®i(v(i,,,)(t ),

forany i =1,...,d and (¢t,2) € [0,T — 1] x B(1).

Now we consider the sequence {®? (V(1,1)n) }men. Arguing as above, we deduce that
there exists a subsequence {v(a1),, }men C {V(1,1),, Jmen such that {q)%(v(m)m)}m@\;
converges in Xo.

Also for {@%(V(Qvl)m)}mEN we can find a sequence {v(39), tmen C {V(2,1),, JmeN such
that {®3(v(2.9),,) bmen converges in X5. We set

Ee(t2) = lim D3(viry, (o), j=1.2,

for any (t,z) € [0,T —1/2] x B(2).

Iterating the above argument, we get that, for any k,n € N, k
ists a sequence {V(, k), fmeN C {V(j)mtmen, | < morl =n and j
{ @ (V(n,k)m ) fmen converges in Xy, to &, k-

Let us observe that

there ex-

< n,
< k, such that

g(l,j) (t, l‘) = lim (I)é'(v(n,k)m)(ta x)a (636)

m—ro0

D& (t,) »= lim Di®}(viy ), )(t, ), (6.37)
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for any I <norl=nand k > j, for any (t,z) € [0, — 1/1] x B(l).
Now, for any n € N, we set

§n = Emm)y Wi i = Vi), (6.38)

STEP 2: convergence of {®](w,,)},en and {D; P (w,,) }nen, i=1,...,d.
For any k,m,n € N, n > k, and any (¢,z) € [0,T7 — 1/k] x B(k), we have

@Z(Wm)(t7 .ZL‘)

T

— (T(T - )f)(z) — /t o, T = Do) @)
T

= (T(T —t)f)(x) — /+1/k(T(s —t)Fi(s,Wp))(x)ds

+ /jl/k ( s — ) Fg(s,wp))(z) — (Fn(s,wm))(x)) ds
t+1/k
- [ = O F s W) @)

t+1/k
= OF (W) (t, z) — /t+1/ (T(s —t)Fn(s,wp,))(x)ds

T
+ /t+1/k’ ((T(s = (s, wm))(z) — (T(s — t) Fu(s, wm))(:c)) ds. (6.39)

We consider the sequence {®(wy)}nen. Fix l € N, (¢t,2) € (0,7 —1/1) x B(l), and
k,n,m € N such that n,m > k > [. Hence, for any fixed ¢ > 0, we have

= @7 (W) (t, ) — @] (Win) (8, 2)| < | @5(Wn)(E, ) — (W) (¢, 7))
T

+ ((T(s — t)Fi(s,wy))(z) — (T(s — t)Fy (s, Wn))(a:)>ds
t+1/k

S

+ /t+1/k ((T(s —t) (s, wWm))(x) — (T(s — t) Fin (s, Wm))(x)>ds

t+1/k

+ /t (T(s —t)F, (s, wy))(x)ds| +

+1/n
= An,m,k(ta x) + Bn,k(t7 .T,') + Bm,k(t7 33) + Cn,k(t7 :L') + Cm,k(ta 1’),

t+1/k
/ (T(s — t)Fp(s,wp))(x)ds

t+1/m

where
Apmi(t,z) = \@ﬁ(wn)(t,x) — @g(wm)(t,xﬂ,

T
/ ((T(s —t)(F(s,wy) — Fu(s, Wn)))(m)> ds|, (6.40)
+1/k

By i(t,z) =
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t+1/k
Cri(t,x) = /t (T(s —t)F, (s, wy))(x)ds| . (6.41)

+1/n

Since {Wn tn>ks {Wimtm>k C {V(k k), }jen, from (6.36) it follows that {®F (W) (t, ) }nen
is a Cauchy sequence in R™. Hence, there exists N € N such that

Apm () < 2, mym = Ni,
We fix 0 < € < 1/1 such that
OMCO(E + 2KVE) < 15—0,

and we observe that
T T
M/ | Fr (s, Wi) — Ep (5, W) |loods < 2M/ C(1+ K(T —s)"Y?)ds
T—¢ T—¢
< 2MC(¢ + 2K V?). (6.42)
Hence,
T
Busltia) <M [ 1Fi(s,wn) = Fils, i) s
t

T
< M/ 1F(5, W) — Fu(s,w0)|lsods
T—€

T—¢€
M / 1 Fi (5, W) — (5, W)l oodls
t

T—¢&
<<y M/ 1B (5, Wn) — Fa(s, wn)||ods. (6.43)
t

From Lemma 6.18, for any fixed s € [0, T') we have |QY/2Vw,(s,)||e0 < K(T —s)~/2.
Hence, if k > K(T — s)~'/2, from Lemma 6.16 we deduce that

2C(2 4 K(T — s)~/?)
ke ‘

Indeed, in the right-hand side of (6.25) it remains only the first addend, since the
others vanish when |z| > k, and

[1F5 (8, Wn) — Fn(s, Wn)l|oo <

(6.44)

| F(s, W) (@) = Fu(s, wa)(@)| < C(2+ QY (2) Vwal(s, 2))) <nl + kl)

_ 2002+ |QY/2(2)Vwi(s,z)|)
p— ka b
for any (s,z) € [0,T) x R? and n > k. From estimate (6.44) we obtain

e 2012+ K/VE) [T—¢
TO + —ka /t ds

(6.45)

Bn,k(ta ZL‘) <
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<iﬁ+2ﬂﬂ2+KAf) (6.46)

for any k > K/V/2. This follows from the fact that s < T'—¢& implies (T—s)"12 < (8)"1/2,
Hence, there exists k1 = k1(€) such that

By i(t,x) <e/5,
for any n > k1. Obviously, we also have
Bm,k(t,x) < 8/5,

for any m > k.
Finally, by (6.26) and

(T =)< (T —t—1/k)72 < (1/1—1/k)/?
<(- 1A+ )V <141,
for any s <t+1/k and k > 1+ 1, it follows that

t+1/k
amuw)g/‘ MCO(1+ K(T — $)~Y2)ds
t+1/n

SMC( ”"(77) 1/2) (z‘%)
_ MCOU+K(+1)
< - ,

for any n > k > [ + 1. Hence, there exists ko € N such that
Cri(t,x), Cpy i(t,x) < /5,
for any n,m < ko. Therefore, for any n, m > max{Ny, k1, k2}, we have
D5 (wn) (t, ) — ©py (Wi ) (8, )| <,

for any (¢t,z) € [0,T —1/(1)) x B(l).

It follows that {®]'(wy,)(t, z) }nen is a Cauchy sequence in R™. In a similar way we
can prove that {D;®]'(w,)(t,z)}nen is a Cauchy sequence, for all i = 1,...,d. Indeed,
we have

k(8 %) + B i (L, )

| D@y (W) (1, ) — Di®p (W) (8, 2)| < Ay, 2) +
+ + O ie(t, ),

B,
é(,)é

where
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T
Bmk(t, x) = /t+1/k D; (T(s —t)(Fy(s,wy) — Fy(s, Wn))) (x)ds|, (6.47)
~ t+1/k
Coi(t,z) = /t+1/ D;(T(s —t)F,(s,wy))(x)ds| . (6.48)

From (6.37) we know that there exists Nj € N such that, for any n,m > N, it holds
that

An,m,k(ta .’L‘) <

ot m

By, ;. can be estimated as above. We recall that

[1Di(T(s — t)(Fr(s, Wn) — Fn(s,Wn))) [loo
< Cr||Fi(s, Wn) — Fu(s, Wn)lloo
= NP T

and (t,x) € [0,7 —1/1] x B(l). Hence, from (6.45), fixed 0 < & < 1/(l+ 1) which satisfies

207C(1+ 1)

N (2 +2KVE) <

€
10’
we obtain

: _ O [T 1Fk(s,wn) = Fu(s, W)l

Bn t7 = d
»k( 3:') \/% . (S—t)1/2 s
Or [T Bl wa) — s W) s
Vo Jr-s (s —t)1/2
& = | Fy(s, wn) — Fn(suwn)noods
Vo Ji (S_t)l/Q .
The first addend can be estimated as follows:
C'T T HFk(S,Wn) - Fn(sywn)Hoods
Vo Jr-s (s —)1/2
9 T
< CTC(T—g—t)—1/2/ (14 (T — 5)~/2)ds
V0 T-¢
2070C (12 +1)1/2
< 2+ ) (£ + 2KV/?)
V%
€
< .
— 10

As far as the second one is concerned, we get

Cr r-e 1 F%(s, Wn) — Fn(s,wn) |l

—_— d
V%0 )i (s — 1)1/? ’
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< QCTC(Q + K/ﬁ)i /T(S o t)fl/ZdS

< N e
_ 2WWTCpC (2 + K/VE)
< N ,

for any k > K/v/Z. Hence, there exists k; = k;(€) such that

By i(t,x) <e/5,

for any n > k1. Obviously, we also have

B i(t,x) < €/5,

for any m > kq. .
Finally, we consider C,, x(t,z). From (6.26) it follows that

otz [ GO oy
n Yy U) >
* t+1/n V(s — )2

t+1/k
_ area T/ﬂ((lﬂ))/ (s — 12
%) t+1/n
_20rCA 4+ K(41), 1
< NG

Hence, there exists ko € N such that

Cn,k(ty x)a Cm,k(ty x) < 5/57

for any n,m < k.
We have so proved that {®]'(w,,)}nen is a Cauchy sequence in X; for any [ € N. We
set
v(t,z) = lim @) (wy,)(t,z),

n—oo

for any t € [0,T), any = € R%. Of course, v € X; for any [ € N.

STEP 3: convergence of {w, },cn.

Now we show that also {w, },en converges in X, for any [ € N. Indeed, from (6.39)
we have

t+1/n
Walt,) = ¥ ()6 = [ (D = ) F, (5w ()
= ¢Z(Wn)(tv T) — B(n,n)n,n(ta z) — Dy (t, ),

where B, j, has been defined in (6.40), and

t+1/n
Du(t, ) = /t (T(s — ) Finmy, (5, W) (2)ds.
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Binn)n(t, ) goes to 0, as n — oo. This easily follows from the computations in
(6.42) - (6.46) about By, 1(t,x). Also D,(t,x) vanishes, as n — oo, because the function
under the integral sign is bounded in a neighborhood of t; indeed,

IT(5 — ) Fnny, (5, Wa)lloo < MC(1+ K(T — 5)7/2).
Hence

nh—>Holo wy(t,x) = nh_>n010 O (wy,)(t,z) = v(t,x),

for any (t,z) € [0,T) x R%,
The same reasoning holds for {D;w,, },,cn, and so we have that

Vev(t,x) = le Diw,(t,z), i=1,....d,

for any (t,z) € [0,T) x R?, and both the convergences are locally uniformly in [0, T') x R
STEP 4: v is a mild solution of (6.4) and v € K.
For any z,y € R, for any t,s € [0,T), we have

V(s,9)| + (T = H21QV2(2) Vv (t, o))
= Tim (Iwals,9)| + (T = )121Q2 (@) Vaw(1,2)])
< timsup ([[walloo + (7 = 0)2Q'*()Vawa(t, ) )
<K. (6.49)
We recall that

T
walt,2) = (T(T — )f) () - / (T(s — ) Flnmy, (5, W) (2)ds,

that V,w, (s, -) converges to V,v(s, -) locally uniformly, and Fj(s, u)(z) = ¥ (z, QY/?(z)V,u(s, z)).
By the properties of T and v, and the hypotheses on v, we deduce that the function
under the integral sign converges to

(T(s =) F(s,v))(@)(s),

pointwise with respect to s. Moreover,

0 = ) (s, < 216 (14 ).

The dominated convergence theorem implies that the integral in the right-hand side
converges to

T
| @=0Fe )@,
as n — o00. Also wy(t,z) converges to v(t,z). Hence we can conclude that
T
v(t,z) = (T(T — )f)(x) - /t (T(s — )F(s,v))(x)ds,

for any t € [0,T), any x € R%. Moreover, we can extend by continuity v in T setting
v(T,-) = f. Putting together with (6.49), we conclude that v € K. O
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6.3 The System of Forward Backward Stochastic Differen-
tial Equations

We consider the System of Forward Backward Stochastic Differential Equations (S-
FBSDE)
(dY,=H(X;,Z;)dT +Z.dW,, 7€][t,T],

dX, = b(X,)dr + G(X,)dW,, 7€ [t,T],
(6.50)
Yr = g(XT)7

Xt = :[," T E Rd,
where
H: R x R™* — R™,

is a given Borel function, and b, G, g have been defined above. The processes Y and
Z take values in R™ and R™*?, respectively, and the first and the third equation are
considered component by component.

For any p € [1,00), let HP be the space of progressively measurable with respect to
F}V random processes X; such that

IX ||z == E sup | X < oo,
te[0,7)

and let K be the space of (F}V)—progressively measurable processes Y, Z such that

T
H(Y,Z)H%om :=FE sup \Yt\2 —HE/ \ZU\QdU < oo.
t€[0,7] 0

Moreover, we denote by Y (7,¢,2) and Z(7,t,z) the solution to (6.50).
We introduce the differential operator A defined on smooth functions ¢ by

(A9)(x) = Tr[Q(x)D*¢;(x)] + (b(z), Vo),

where G = Q/2.
We assume the following hypotheses on H.

Hypotheses 6.22. (i) There exist (v;)jx € C2.(RY), i = 1,...,d, j,k = 1,...,m,
and a function 1) € C(R? x R™;R™) such that

Hj(z,2) =) Y (i)ul@)z +5(,2), j=1,...,m, (6.51)
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for any x € R, z € R™*4 and

d 2
S (@)@ (@) < Cawla), i=1,....d j=1,....m, (6.52)

=1

for some positive constants Cy, Co;
(ii) v satisfies
(@1, 21) — (@2, 22)| < C(1 + |21| V [22]) (o1 — @2| + |21 — 22]%)
or any x € R, any 21,20 € R™*™ some o € (0,1) and some positive constant C.
Y Y

Remark 6.23. The functions (v;)jr are bounded, for any j,k = 1,...,m. Indeed we

have
d d | 4 2
ST @) =313 Q5 (@)@ (@) (@)
i=1 i=1 |h,l=1
d d d 2
=Y D@ @Y (@ @)
=1 |h=1 =1

2

Q@) (@ (@) ()n(@)) |

< @@

< 3.

Remark 6.24. It easy to see that (6.51) and (6.52)
[9(t, 2)] < C(1+ [2]),
for some C > 0.

Remark 6.25. We split H into the sum of different terms in order to generalize the
condition on its smoothness. Indeed, a coefficient of a linear term with respect to z in H
may have the Holder’s constant which depends on x, but in this case it has to satisfy the
growth condition (6.52). Otherwise, if its Holder’s constant depends only on z, it has to
fulfill only (6.51).

Hereafter, we assume the following additional assumptions on b and G.

Hypothesis 6.26. There exists C > 0 such that, for all x,z’ € R%, we have

b(z) — b(z")] + |G(z) — G(2')| < Clz — 2] (6.53)
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If Hypothesis 6.26 is satisfied and
lg(x)| + [H(z,0)] < C(1 + |2]*), = eR™

for some k € RT, then system (6.50) admits a unique solution (X,Y,Z), where X € HP,
for any p € [1,00), and (Y,Z) € K (see [89]). Henceforth, X denotes the solution to the
forward equation in (6.50).

Now we introduce the system of differential equations

Dyu(t, z) + Au(t, z) = H(z, QV/?(z)Vu(t, z)).
By (6.51) we obtain
Dyu(t, z) + Au(t, z) = ¢(x, QY*(x)Vu(t, z)),
where

(Ag);(x) = Tr(Q(x)D¢;(x)] + > (B Votr), J=1,...,m,

k=1

d
= = > (W@ (@) + bilw).
=1

Hence the growth of the drift term satisfies Hypothesis 6.4(¢i7), with C' = Cs.
This means that the Cauchy problem

Dyu(t,z) + Au(t,z) = H(z, Q/?(2)Vu(t,z)), t€[0,T), zeR?
(6.54)
w(T,z) = g(x), z € RY,

and

Duu(t, z) + Au(t, x) = Y(x, Ql/Q(:I:)VIu(t,x)), tc0,T), xcRY,
(6.55)
u(T, z) = g(x), z €RY,

are equivalent.

(6.54) (or, equivalently, (6.55)) is strictly connected to (6.50). Indeed, if u €
C12([0,T] x R%:R™) is a classical solution to (6.55), then u(t,z) = Y(t,t,z). Con-
versely, if H, g, b, G, satisfy the following hypotheses, then, setting u(t,z) = Y (¢, t,x), it
turns out that u € C%1([0, 7] x R R™) and it is a mild solution to (6.55) (see [89]).

Hypotheses 6.27. (i) b and G are of class C' and their derivatives of order 1 are
bounded;

(ii) g is of class C' and it has polynomial growth together with its derivatives of order 1;

(iii) H(¢,-,-,-) is of class C', for all t € [0,T);



6.3. The System of Forward Backward Stochastic Differential Equations 141

(iv) |V.H(t,z,y,2)| < K(1+ |2])(1 + |z| + |y|)* for suitable constants K, > 0;
(v) VyH and V. H are bounded with respect to y and z.

We want to relax regularity conditions on H and g, and growth conditions on b and
G, and prove that u is still a solution to (6.55). For this purpose, we will use the results
in Section 6.2.

Now we approximate both g and H by means of convolution; let {p%},en, pnmx’d be
a standard sequence of mollifiers in R%, R™*? respectively. We set

gn =gk o, (Ho)j(z,2) = 0u(2)(Hy % (007" ))(2,2), neN,

where 6,, € O (R™*4) and XB(n) < 0n < XB(n+1)- For any n € N we have

() (5, 2) = 0u(2) 334 / o () () (& — w)duw
— Rd

+ 00 (2) (95 % (PP h)) (2, 2)

d m
= en(z) Z Z((’Vn)z)jk(x)z;c + (¢n)](x7 Z)?

where

D)= [ b))l — v, — y)dudy,
(@)= [ o) on)sela — w)do.

Lemma 6.28. {((7n)i)jk}nen converges to (v;)ji locally uniformly.

Proof. The proof is trivial, since (7;)jx € C2 (RY), for any i = 1,...,d and j,k =
1,...,m. O

Remark 6.29. For any n € N, g,, and H,, satisfy Hypotheses 6.27(it) — (iv).

The statement of the following lemma is a byproduct of straightforward computations,
hence we skip the proof.

Lemma 6.30. For any n,k € N, n <m, and x € R?, 21,20 € R™*? we have

’1[)71(1',21) - 7[’71(1'722)’ < Cn|Zl - Z2|;
|n(,0)] < C,

~ 2C(2
dn(e.2) — i, 2)] < ZCCEED o el) + 2002 4 el a2,

|Vn(, 2) — Pr(, 2)| < (20(27; D, 20(2;{: M)) X)) (|121)
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2C(2 + |z
+ <(na||) +2C(2+ |z])) X(Bm)nB Kk (12])

14002 + |2 )X (2], (6.56)
(s 21) — (@, 22)] < xB<n><\Z1r>c(2 ) + mr) (= 4 21— 2]
+ XB(m)e([211)C (2 + |21] + [22]), (6.57)

(o 20) = Gl 2)] < Xy (aDC (2 [l ol ) (0 472 4 21 = )
+xBm)e(|21DxBw) (122 C (K™% + |21 — 22| + 1)
+ 2xB(k)(122])C (2 + |21 + |22]), (6.58)
for some positive constants C' and C,,.
For any n € N, we consider the approximate problem

Dy, (t,z) + Avy(t, ) = P (z, Q1/2($)van(t,x)), tc0,T), xcRY,
(6.59)
Va(T,2) = ga(2), r R

and its unique mild solution (see Subsection 6.2.1)

T
Vn(tv x) = (T(T - t)gn)('r) - /t (T(S - t)(¢n(> Q1/2(')V:BV7L(S> )))) (as)ds,

for any t € [0,T), any = € R?.

Moreover, Since g € Cy(R?%; R™), Proposition 5.10 implies that T(T — t)g,, converges
to T(T — t)g locally uniformly. Hence, we can apply the same procedure of Subsection
6.2.2 in order to prove that, up to a subsequence, {v,},cn locally uniformly converges
to a function v € K7 and

T
v(t,z) = (T(T - t)g)(x) —/t (T(s = )W (-, QV2()Vav(s,)))) (x)ds,
for any t € [0,T), any = € R%.
From Remark 6.29 we have that
v (t,x) =Y"(t, t,z), G(x)Vyvy(t,z)=2Z"(t,t, x),
for any t € [0,T), z € R?, where (X,Y",Z") € HP x K is the unique solution to
dY"™), = H, (X, Z)dr + Z"dW,, T € [t,T),
dX; =b(X;)dr + G(X;)dW-, T € [t,T],

(6.60)
(Yn)T = 8n (XT>7

X; ==, z € R?,
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Hence, if for any 0 < ¢t < 7 < T and z € R? we define Y(7,t,2) := v(r, X(7,t,2))
and Z(7,t,x) := G(X.(1,t,z))v(r, X(7,t,z)), then we have the following result.

Theorem 6.31. If Hypotheses 6.4, 6.6, 6.22 and 6.26 hold, then (Y,Z) € K and (X,Y,Z)
is a solution to (6.50).

Proof. We prove that (X,Y,Z) is a solution to (6.50). Since Y",Z" are solutions of
(6.60), and the equalities hold P—a.s., there exists a family of elements of &, {,,}, such

that each of them has zero measure. Moreover if we set Q = U, Q,, then P(Q) = 0, and
in Q° (6.60) holds, for any n € N.
Now we fix z € R?, t € [0,T], set X, := X (7,t, ), and define

Y,=v(r,X:), Y!=v,(1,X;), Z: = G(X;)Vv(1, X;), Z} = G(X;) Vv (T, X;),

for any 7 € [t,T]. Since v,, and D;v,, for any i = 1,...,d, converge locally uniformly,
we have
Y;L — YT7 gn(XT) — g(XT)>

and
T T
/ H,(X,, Z")do —> / H(X,,Z,)do,

pointwise in 2.
Indeed, from Remark 6.23 and Lemma 6.30 we deduce that

‘Hn(Xm ZZ) - H(ch Zo)| = WNJH(XCH ZZ) - ¢(X07 Z0)|
+ 100 (Z"™) (1)) (Xo)Z™ — (7)(Xo)Z|
< C<2 +|Z2) + |Z, |> (= +|Zy} — Zo|%)
+1(((m)i(Xo) = (v
(X, Zo)|, [n(Xo,2Z5)| < C(1+ K(T — o)~/
7" Z, < K(T — o)~ /2,
1((v)i) g lloos 11(Yi)jklloe < C3,

)i(X0))Zo| + C3|Z — Zo|,
)

)

for any z € R? and o € [1,T) and n > K(T — s)~'/2, where K has been defined in
Lemma 6.18. |Z! — Z,| tends to zero uniformly in €2, as n — 400, since, for any w € €,

Z6(w) = Zo(w)| < |G(Xo(w)V(un — u)(0, Xo(w))|

—0, n— oo.

Moreover, from Lemma 6.28 deduce that, for any o € [0,T) and w € Q,

[((m))i(Xo) = (7);(Xo)| =0,

as n — Q.
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Since in (??) [Y(Xs, Zo)|, |Yn(Xes, Z7})| can be estimated by an integrable function,
we can apply dominated convergence to the integral term.

It remains to prove the convergence of fTT Z7dW, to fTT Z,dW,. At first, we prove
that fTT Z,dW, makes sense, since this is not guaranteed by previous estimates, which
show only that the growth Z, can be estimated by (T' — o)~ /2
integrable in T

We are going to show that {Z"},cn is a Cauchy sequence in the space L?(2 x (0,T)),

the space of the square integrable processes V', endowed with the norm E fOT |V, |%do.

, which is not square

Since this is a Hilbert space, {Z}} converges to a process Z, which is square integrable,
and so, up to a subsequence, {Z"} converges to Z, [0,T] ® P—a.s. But {Z"} converges to
Z, uniformly, hence pointwise, for any 7 € [0,T]. Therefore, 7, =7, P—as., for almost
every 7 € [0, T]. This means that Z, is a square integrable process.

For the reader’s convenience, we introduce some new notations:

Yor=vr oYk,

z," =7 -7},

gt = ga(Xo) — gr(Xo),

H," = H,(X,, 22) — Hy(X,, Z5),

for any n,k € N, o € [0,T]. By the It6 formula, we get

dY TP = —2(Y et ' dr — 2700, 20N aw,

T ) T T T

k
+ (27 [P,
and, recalling that ?z}k = E%’k, we obtain
~"n.k2 T 1.k 2 _n,k |2 T N,k T=n,k
Y. "7 + Z," |°do = |g7"|° =2 | (Y, .,H, )do

ag g

T
_9 / Xz aw,.

Let us estimate the terms in the right-hand side. Note that (Y™, Z"), (Y*, Z¥) € K,
since they are solutions of a backward stochastic differential equation. Hence, the

S
process I, = / (YZ’k, ZZ’k>dWo is a martingale and, in particular, EI, = 0, for any 7.

0
Computing the expectation, we get

"k 2 T 1,k 9 —n.k\2 T .k T=n.k
EY 7 2+E [ 20 do =Eiglt 2 -k [ (YR E Y do. (6.61)

g g
T T

Moreover, the last term in the right-hand side of (6.61) can be estimated as follows.
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E r |?’nykﬁn7k|d < E fn,k T fn,k
o H,'|do < sup [Y. 7| [ |[H,"|do
T T€[0,T7] T

T
—n,k
< sup sl [ "o
neN T

and

—=n,k ~ n " ny . j n my.J m
Hy"| = 190n(Xo, Z3) — Uk (Xo, ZE) | + 00(Zi)y (2) 2y — 0 (25 ()20

< (2 + |Z7| + |Z’;|> (N~ + k™ + 2|22 — ZE|*)
+(((9)5(Xo) — () (X0)) 22| + C3|Z2 — ZE|,

for any n,m > K(T — s)~1/2.
By the definitions of Z",Z””“, ((7m)i);x and the above estimates, it is easy to prove,
using dominated convergence, that, for any ¢ > 0, there exists 7 € N such that
EfOT ]ZZ’k|da < e, for any n,k > n.
The same arguments can be applied to g;l"“. Indeed, recalling that g is uniformly
continuous, for any ¢ > 0 there exists 7 € N such that E]g;’kP < g, for any n,k > n.
Hence {Z"} is a Cauchy sequence in L?(£2 x (0,7)), and this implies that fTT ZydW,
makes sense. Moreover, since Z" converges to Z in L?(2 x (0,7)), we see that

2

E — 0, n — o0

T
/ (2" — Z,)dW,

We can conclude that fTT Z"dW, tends to fTT Z,dW, P—a.s., and passing to the limit
(6.60), we obtain that the processes (X,Y,Z) are a solution to (6.50) P—a.s. O

Corollary 6.32. For any t € [0,T], the law of the process {Y;} c|y), obtained as limit
of the sequence {Y " }rcpy 1, s uniquely determined. This means that if (0, F,{F;},P) and
(0, F,{F:},P) are two probability spaces, and {Y;} 1) and {Y},cp 1) are the random
processes of Theorem 6.31, in such a these spaces, then {Y} e and {Y+}rcp ) have
the same law.

Proof. The result is a straightforward consequence of the uniqueness in law for the
solutions {Y"},,en of approximated problems (6.60), and of the P—a.s. convergence of
{Ym}meN to Y. L]
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6.4 Existence of a Nash Equilibrium for Stochastic Differ-
ential Games

We recall that, for any fixed u € U, Xt(u) is the weak solution to

ax! = p(x"dr + (X)X u)dr + GXM)aw™, 1 e, T),

(6.62)
X, =z € R,
and that the cost functional associated to the i—th player is
J'(u) = E® [/ WX ug)ds + ¢ (X7)|, i=1,...,m. (6.63)
0

We provide sufficient conditions in order to get a control @ € U which realize a Nash
equilibrium. At first, we define the Hamiltonian function associated to the (6.62) with
cost functionals (6.63).

Definition 6.33. We define the function H : R x R4 x U — R™ qs
Hi(z,2z,u) = (', r(z,u)) + hi(z,u), (6.64)
for any x € R, z e R™*4 y e U.
We assume the following hypotheses on r and A, i =1,...,m.

Hypotheses 6.34. There exists L > 0 and two measurable functions r1 : R — RY,
re : RY x U — RY, such that r(z,u) = ri(x) + ra(z,u) for any x € R? and v € U, and
for all z,2’ € RE,u, v/ € U, for anyi=1,...,m, we have

| (x,u) — b (2!, )| + |ro(z,u) — ro(a’,u')| < L (Jz — 2" + Ju—d'|),

W (z,u)| + |r1(@)| + |ra(z, )| < L, (6.65)

for some «y € (0,1). Moreover, r, € C7 (R%R?).

loc

We require that H satisfies the following hypothesis.

Hypotheses 6.35. We assume that H satisfies the generalized minimax condition (GMC
for short), i.e., for any i = 1,...,m there exists a continuous function @ : RY x R™*¢ —;
U such that for any x € R%, z € R™? and v € U?, for any i = 1,...,m, P—a.s the
following inequality holds:

Hi(z, 2, i(x, 2) < Hi(z, 2,4 (x, 2), ..., 0 Yz, 2), ut, 0 (2, 2), ..., 0™ (x, 2)).  (6.66)
Moreover, there exist a positive constant K and € (0,1) such that

(a1, 21) — (@, 22)| < K (|g[;1 — ol 4 |z — zz\ﬁ) , (6.67)

for any x1,x9 € R? and any 21,29 € R™*d,
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Definition 6.36. If set H(z,2) := H'(z, z, 0(z, 2)) and ¥(z, ) := (2, ro(x, @(z, 2))) +
hi(z,i(z, 2)), then we can write

Hz(x,z) = <Zi7r1(x)> + wi<xvz)v
for any x € R* and z € R™*4,

Lemma 6.37. The function v satisfies the following inequalities:
(@1, 21) = P(@2, 22)| < C(1 + |21| V [22]) (w1 — w2|™ + |21 — 22]%)
zeRY, 2,z € R™, (6.68)
[(z,2)] <C(1+]2]), =eR? zeR™™,

for a suitable positive constant C' and o = [, where v and B have been defined in
Hypotheses 6.34 and 6.35, respectively.

The above Lemma shows that the function H satisfies Hypotheses 6.22, with
(vi)jk(x) = (r1(x))idjk, for any i@ = 1,...,d and j,k = 1,...,m. Therefore the re-
sults of previous section hold, and in particular we will use the fact that the system
(6.50) admits a solution (X,Y,Z) to prove the existence of a Nash equilibrium.

Theorem 6.38. There exists a Nash equilibrium for (6.62) and (6.63).

Proof. We set

it = (), a2, ad).

@) . .
Hence X, is solution

~—1

X =gy / b(XE" ) )do + / GXT DX, 4, do
t t
o [as . etr
t
:x—i—/ b(X§ﬂ1)>da+/ G )dws,
t t

where
B . tAT ) 1
Wy =w ) +/ r(X) a7 do,
t
and by P we denote the probability with respect to W is a Brownian motion. Further,

X (@Y is measurable with respect to the o—field generated by W.
We introduce the backward system

YT+/ ZadWa:g(X}ﬁl))Jr/ H(XE ), Z,, 4, ") do.
t t

By Theorem 6.31 there exists a solution (X ), Y, Z) of this system.
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Writing the backward system with respect to W(ﬂ_l), we get

T T
Y, + / ZodW ) 4 / Zor(XD) 4 do =
T 4 (6.69)

- T ~
) +/ H(X ), Z,)do.
5 .\ 1/2
We have that E(® (fo |Z| dt) < o0o. Indeed, we have

T T
/ zadWﬁ“l)‘sz sup Y|+ / (1Zo| + H(X{ D, Z,)|)do.
T T€[0,7T T

Taking into account the Burkholder-Davis-Gundy inequalities, we get

@ ([ g
E \Z,|2dt
0

< E@) sup [Y,|+ E®
T7€[0,7T

1/2

T
(1Zo| + H(XS ), Z,)|)do

\

T
< E@ sup Y|+ EE / (1Zo] + [HXE D, 0)[)do
T7€[0,T]

T
+ @Y / |Zo |t do

- - . (T . 1/2
BV (E sup [V +E [ (12 + [HOXE,0)%)do)
T7€[0,T] T

- - (T 2/(14«)
+C(Ep2/(1—a))(1—a/)2(E/ |Zo|2da)

T

< 00,

where p = dP(® / dP is the Girsanov density, and E denotes the conditional expectation

with respect to P.
Hence, taking the conditional expectation in (6.69) with respect to P@™) and 7 = t,

we obtain
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T
Adding and subtracting E(® ") [/ h(Xg“il), ﬂ;l)da\fft} , and setting t = 0, we get
t

) Zm) - ZUT(X(Sﬂ_l) a_l)

y o

Yo=J(a ") +E® [
“h(XE DAY )dg} (6.70)

T
= 3@ + B U (B0, 2) - BT, 7,3, ) d"}’
t

where J = (J1,...,J™), and considering the first component we conclude that
Yi<Jah).

The thesis follows because we can apply the same reasoning to any ¢ = 2,...,m. [



Appendix A

Basic Stochastic Calculus

For the results of this appendix, we refer to the monograph [101].

A.1 Introduction

Definition A.1. Let I be a nonempty index set and (2, F,P) be a probability space.
A family {X(t) : t € I} of random variables from (2, F,P) to R™ is called Stochastic
process. For any w € Q, the map w — X (t,w) is called Sample path.

Hereafter, we will consider I = [0,T] or I = [0, 00). Moreover, we recall that a Polish
space is a separable complete metric space.
Now, we provide some useful definitions for the continuous.

Definition A.2. Let X(t), X(t) be two stochastic processes. We say that X and X are
stochastically equivalent if

X(t)=X(t), P—as., Vtel. (A.1)
In this case, one is called a modification of the other.

Definition A.3. The process X (t) is said to be stochastically continuous at s € I if for
any € > 0 we have

%imIP’{w €N |X(t,w) — X(s,w)| > e} =0.
—s

Moreover, X(t) is said to be continuous if there exists a P—null set N such that
t— X(t,w) is continuous for any w € Q\ N.

We introduce an increasing family of o—fields F; C T, for any t € I, with F;, C T3,
for any t1,ty € I, t1 < tg. Such a family is called filtration. Set Fyt = Mg Fs, we say that
{Fi}ier is right continuous if F = F. We call (Q, F,{Ft}i>0,P) a filtered probability
space.

150
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Definition A.4. We say that (2, F,{Ft}i>0,P) satisfies the usual condition if (2, F,P)
is complete, Fy contains all the P—null sets in F and {Fi}er is right continuous.

Definition A.5. Let (2, F,{Fi}ier, P) be a filtered probability space and X (t) be a process
taking values in a metric space (U,d). The process X (t) is said to be:

(1) measurable if the map (t,w) — X (t,w) is (B(I) x F, B(U))—measurable;
(i) {Ft}ier—adapted if for any t € I, the map w — X (t,w) is (Ft, B(U)—measurable;

(iii) {F;}ier—progressively measurable if for any t € I the map (s,w) — X(s,w) is
(B([0,t]) x F¢, B(U))—measurable.

It is clear that if X (¢) is {F; }1er—progressively measurable, then it is also {F; } —adapted.
Conversely, on a filtered probability space we have the following result.

Proposition A.6. Let (Q,F,{F:}er,P)) be a filtered probability space, and let X (t)
be an {F}rer—adapted process. Then there exists an {F;}ier—progressively measurable
process X (t) which is stochastically equivalent to X. Moreover, if X(t) is also right
continuous, then X (t) itself is {F;}rer—progressively measurable.

Next we set
W := C([0, 00); R"), (A.2)
and define the following spaces:
WP = {£( AD)IE €W, Vi € [0,00),
Bi(W") i= o(B(WY)), Vi € [0,00),
By (W) == () o(B(WY)), Vi€ [0,00).
s>t
B (W™) and By (W™) contain W", for any ¢ € [0,00), and clearly both
(W™, B(W"),{B{(W")}1>0),
(W, B(W"), {Bi4-(W") }:>0),

(A.3)

are filtered measurable spaces.

Moreover, for any Polish space U let A™(U) be the set of all { By (W™)}4>o—progressive
measurable processes 7 : [0,00) x W — U. Then we have the following result.
Theorem A.7. Let (Q,F,P) be a completely probability space and (U,d) a Polish space.
Let £ : [0,00) x @ — R™ be a continuous process and I}"f = 0{&(s)|0 < s <t}. Then
0 :]0,00) x Q@ — U is {Ft}1>0—adapted if and only if there exists n € A™(U) such that

nt, (- Ntw)) = p(t,w), P—as. —weQ, Vte]|0,o0).

Finally, it is possible defining a metric p on W” under which W” is a Polish space.
This metric is defined by

plw, ) =Y 277w — dleqogmny Al Y, € W (A.4)
j=1



A.3. Strong Solutions 152

A.2 Stochastic Differential Equations

The goal of this section is the study of Stochastic Differential Equations (SDE’s for short)
which can be considered as an extension of Ordinary Differential Equations (ODE’s for
short). An SDE of It6 type has the form

dXt = b(t,X)dt + O'(t,X)th, t> 0,
(A.5)
Xo = 67

where b € A"(R") is the drift term, o € A"(R™*™) is the diffusion one and ¢ is a random
variable. In the above equation the unknown is the process X, and it is understood in
the integral sense, which means that we want to solve the integral equation

X(t) = x—i—/o b(s,X)ds—i—/O o(s, X)dW (s). (A.6)

At first, we deal with the measurability of the drift term.

Lemma A.8. Let b € A"(R"™) and (2, F, {Ft}t>0,P) be a filtered probability space which
satisfies the usual condition. If X is a continuous R"—valued {F;}1>0—adapted process,
then the process t — b(t, X (-,w)) is {Ft}r>0—adapted.

Equation (A.5) admits different notions of solutions. They depend on different roles
that the underlying filtered probability space (0, F, {F;}+>0,P) and the Brownian motion
W are playing.

A.3 Strong Solutions

Definition A.9. Let (Q,F,{F:}i>0,P) be a filtered probability space which satisfies the
usual condition, W an m—dimensional standard Brownian motion on such space, and

¢ an Fo—measurable random variable. An {F;}i>0—adapted process X is called strong
solution of (A.5) if

X(0)=¢ P-—a.s.,

/t{]b(s,X)|2 + |o(s, X)|*}ds < 00, t>0, P—a.s., (A.7)
0
X(t) == —I—/O b(s, X)ds —I—/O o(s,X)dW(s), t>0, P—a.s. (A.8)

If for any two strong solutions X and Y of (A.5) defined on any given filtered
probability space (0, F,{Ft}+>0,P) along with any {Ft}1>0— Brownian motion W we have

P{w|X(t,w)} = Y(t,w), ¢t >0} =1, (A.9)

then we say that the strong solution is unique or, similarly, that strong uniqueness holds.
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Now we provide sufficient conditions in order to get existence and uniqueness of
strong solutions to (A.5).

Hypotheses A.10. Let b € A"(R™),c A"(R™™™). Moreover, suppose that there exists
L > 0 such that for any t € [0,00), x,y € W",

[b(t, 2(-)) = b(t, y(-))| < Llx(-) = y(-)lwn,
ot z(-)) — ot y()] < Llz(-) = y()lwn, (A.10)

|b(a0)|+|0(70)‘ ELQ(O)T;R)a \V/T>07
We say that b and o are Lipschitz continuous in X () if the first two inequalities hold.

Theorem A.11. Assume Hypothesis A.10 holds. Then, for any & € LgO(Q;R”),p >1,
the problem (A.5) admits a unique strong solution X such that, for any T > 0, there
exists a positive constant Kp such that

Esupg<s<p [X(s)[P < Kr(1 + E[]P),
(A.11)
E|X(s) — X(OF < Kr(1 + ElEP)}t — P2, Vst [0,T]

Moreover, zfé € LgO(Q;R”),p > 1 is another random variable and X the corre-
sponding solution to (A.5), for any T > 0 there exists a positive constant K such
that

E sup [X(s) = X(s)|” < KrE|¢ — &P, (A.12)
0<s<T

In a special case of SDE’s, we consider the functions b : [0,00) x R” — R" and
o :[0,00) x R" — R™™_ Then the maps (¢,w) — b(t,w(t)),o(t,w(t)) are progressively
measurable maps from [0,00) x W™ to R"™, R"*™ respectively. (A.5) becomes
dX; = b(t, X (t))dt + o(t, X (t))dWy, t >0,
(A.13)
XO = ga

Such an equation is said of Markovian type. If, in addition, b and o do not depend
on time, (A.13) is called time homogeneous Markovian SDE. In this case we assume the
following hypotheses on the coefficients b and o.

Hypotheses A.12. b: [0,00) xR" — R™ and o : [0,00) x R" — R™*™ are measurable
with respect to t € [0,00). Moreover, there exists L > 0 such that for any t € [0, 00),

‘b(t,l’)—b(t,y)‘ §L|$_y|7 ‘v’x,yER”,
‘U(t?x) - O-(tay)| < L|.ZE - y|a \V/ZE,y € Rna (A14)

‘b(vo)‘ + |U(70)| € LQ(OvT,R)) VT > 0,
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Under this conditions, we get the existence and uniqueness of strong solutions to
problem (A.13).

Corollary A.13. If Hypothesis A.12 holds, then problem (A.13) admits a unique strong
solution.

A.4 Weak Solutions

Definition A.14. A 6—tuple (Q, F,{Ft}i>0,P, W, X) is called weak solution of (A.5) if
(i) (Q,F,{Fi}i>0,P) is a filtered probability space satisfying the usual condition;

(ii) W is an m—dimensional standard {F; }+>0— Brownian motion and X is an {F }1>0—adapted
and continuous random process;

(i1i) X (0) has the same distribution of &;
(iv) (A.7) and (A.8) hold.

The main difference between strong and weak solution is that, in the last one, also the
probability space is part of the solution, while in the strong formulation (2, F, {F; }+>0, P)
and the Brownian motion W are a priori fixed.

Definition A.15. If for any two weak solutions (0, F, {Ft}1>0,P, W, X) and Q, 7, {f;"t}tzo, P, W, X)
of (A.5) with o
P(X(0) € B) = P(X(0) € B), VB e B(R"),
we have o
P(X € A)=P(X € A), VBe B(W"),

then we say that the weak solution to (A.5) is unique in law.
Definition A.16. If .

P(X(t)=X(t), 0<t<o0)=1,
for any two weak solutions (Q, F, {Ft}i>0,P, W, X) and (2, F, {f;'“t}tzo,IP’, W, X) of (A.5)
with }

P(X(0) = X(0)) = 1,

then we say that the weak solutions have pathwise uniqueness.

The following two theorems clarify the relationships between strong and weak solutions,
and weak and pathwise uniqueness.

Theorem A.17. Let b € A"(R") and o € A"(R™™). Then (A.5) admits a unique
strong solution if and only if for any probability measure p on (R™, B(R™), (A.5) admits
a unique weak solution with the initial distribution u and pathwise uniqueness holds for

(A5).
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Theorem A.18. Pathwise uniqueness implies weak uniqueness.

We conclude with the general existence result of weak solutions for equations with
only continuous coefficients

Theorem A.19. Let b € A*(R") and o € A"(R™ ™) be bounded and continuous. Then
there exists a weak solution to (A.5).

A.5 Other Types of SDE’s

Here, we discuss of another type of equations that play a crucial rule in establishing a
right formulation for optimal stochastic control problems. We consider the following

SDE:
dX; =b(t, X, W)dt + o(t, X, W)dW,;, t>0,

(A.15)
onfv

where b and o are defined on [0, 00) x W*W™. If we define Y (¢t) = W(t), then the above

equation is equivalent to
dX: =b(t, X,Y)dt +o(t,X,Y)dW;, t >0,
DY (t) = dW (1), t>0, (A.16)
Xo=¢&, Y(0)=0.

This is a special case of (A.5). Thus, we can extend all the notions of strong and
weak solutions and of strong, weak and pathwise uniqueness to (A.15). In particular, we
assume that the following holds true.

Hypotheses A.20. Let b € A"T™(R") and o € A"T™(R"*™), and suppose that there
exists a positive constant L such that, for any t > 0, any z(-),y(-) € W" and any
w(-) € W™ we have

[b(t; (), w(-)) = bt (), w(-))] < Llz(-) = y()lwn,
lo(t,2(-), w(-)) = ot z(), w(-))] < Llz() = y()wn,

b(t, 2(-), w(-)| + o (t, z(-), w(-))| < L+ [x(-)|wn).

Theorem A.21. Under Hypotheses A.20, equation (A.15) admits a unique strong solu-
tion, which means that both pathwise and weak uniqueness and existence hold.
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List of symbols

Number sets and vector spaces

N, R, set of natural and real numbers

I right halfline of real numbers (possible I = R)
R™ set of all real n-tuples

alNb,aVb minimum and maximum of a and b

|| the length of the multi-index «, i.e.

ol =a1+ -+ oy
Topological and metric space notation

E topological closure of E

OF topological boundary of E

Ec the complementary set of £/ in a domain
Qor in R”

FeF E C F, E compact

B(z,r) open ball with center x and radius r

B(r) B(0,r)

L(X,Y) set of bounded and linear operators
from X to Y

L(X) L(X,X)

Matriz and linear algebra

Id the identity matrix

detB the determinant of the matrix B

€; i-th vector of the canonical basis of R”

TrB the trace of the matrix B

| Bloo the Euclidean norm of the matrix B, i.e.
(51 b))

(w)orz-y the Euclidean inner product between the

vectors z,y € R"
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Function spaces: let f: X =Y

XE characteristic function of the set F
Ut partial derivative with respect to ¢
D; or 8%1- partial derivative with respect to x;
D} or 2 D;D;
Du or V;u space gradient of a real-valued function
D%y, Hessian matrix of a real-valued function u
Au Tr(D%u)
B(X;Y) space of Borel measurable functions from X into Y
C(X;Y) space of continuous functions from X into Y
B(Q) space of R—valued Borel measurable functions
By () space of R—valued bounded Borel measurable functions
c(Q) space of R—valued continuous functions
Ce(2) functions in C(Q2) with compact support in
Co(Q) closure in the sup norm of C.(Q)
BUC () space of the uniformly continuous and bounded
functions on 2
CF(Q) space of k-times differentiable functions with D™ f
for |m| < k bounded and continuous
up to the boundary
c(Q) space of a-Holder continuous functions, a € (0,1)
Cre(Q) space of f € C¥(Q) with D™ f € C%(Q) for
|m| <k and a € (0,1)
[u] e () the seminorm sup, ,cq %
|+l Lo () sup norm
C(IxX;Y) space of functions u from I x X into Y
Cy(I x X3Y) space of bounded functions u from I x X into Y
[W]5 5.0 SUD (¢ 2) (1 ), (t,2) K ‘”(ﬂgf”_);ﬁ/‘i"'”” + |“(t’|ﬁ/)_;7£t’x)|,

Co/2 I x X;Y)

loc
COUTI x X;Y)
C12(I x X;Y)
Cl+a/2,2+oc([ “« X- Y)

loc

(LP(Q), [ - lzr (o))

with a € (0,1), for any K € I x X

u € C(I x X;Y) such that [u]g/la < 00,

forany K € I x X

u € C(I x X;Y) such that Dju € C(I x X;Y)

u € C(I x X;Y) such that u, Diu, Df; € C(I x X;Y)
u € CY2(I x X;Y) such that ue, D € Cp/* (I x X;Y)

loc

usual Lesbegue space
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Probability

(Q,9,P) Complete probability Space

{W(t)}ser or {Wi}ier Standard Brownian motion defined in (€2, F,P) in the interval I

N Family of elements of F with probability 0

[TV Veer Filtration generated by {Ws:s€ I,s <t}UN

E Expectation with respect P, i.e., for any random variable Y
EY] := [, Y (w)dP(w)

F(Y)dw, It integral with respect W, i.e., fg f(Yy)dWs

E[Y9] Conditional Expectation of Y with respect to §
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