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Chapter 1 Introduction: Group B Streptococcus and Immunoassays 

 

Streptococcus agalactiae (Group B streptococcus, GBS) is a haemolytic, 

encapsulated Gram-positive bacterium colonizing the ano-genital tract of 25-

30% healthy women [1]. GBS is a major cause of early (EOD) and late (LOD) 

onset neonatal infection leading to neonatal pneumonia, sepsis and meningitis 

causing 4-10% mortality and long-term disability [2]. GBS is also increasingly 

recognized as an important cause of disease in adults, particularly those with 

underlying disease, and in the elderly [3,4] 

Antenatal screening and intra-partum antibiotic prophylaxis for GBS colonized 

women has substantially reduced incidence of GBS neonatal infection [5-7]. Due 

to the causal link between maternal antibody deficiency and susceptibility to GBS 

neonatal infection, the development of safe and effective GBS vaccines remains to 

date the most promising strategy for preventing group B streptococcal disease 

[8-9]. Antibodies are glycoproteins, also called Immunoglobulin, produced by the 

human adaptive immune system in response to the introduction of a dangerous 

external pathogen, such as bacteria, virus or fungi. The antibodies specifically 

have the ability to bind the antigens, molecules typically expressed on the 

pathogen surface, and help the process of eliminations of these dangerous 

elements. Antibodies can be divided in 5 different classes: IgG, IgM, IgA, IgD and 

IgE according to their different chemical composition. Specifically, maternal IgG 

antibodies against the bacterial capsular polysaccharide are known to correlate 

with a serotype specific reduction of disease risk in the newborns [10-12]. Since 

protective immunity to the ten capsular polysaccharide structural variants (Ia, 

Ib, II, III, IV, V, VI, VII, VIII, IX) is serotype-specific, vaccination of pregnant 
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women using epidemiologically relevant GBS capsular polysaccharides could be 

a successful strategy to defeat GBS neonatal disease. Safety and immunogenicity 

of GBS capsular polysaccharide investigational vaccines in healthy adults with 

and without conjugation to carrier proteins has been extensively investigated 

since the 1980s [13-16]. These studies mostly rely on accurate measures of 

serum concentration of vaccine-induced antibodies, which is a crucial issue in 

vaccine development. The quantification of vaccine-induced serum antibodies is 

performed using immunoassays [17]. An immunoassay is a biochemical test 

having the goal to quantify and measure the presence of a macromolecule within 

a solution using antibodies [18]. Usually, the macromolecule of interest is the 

antigen, and the solution is the blood serum.  However, in many cases the role of 

antigen-antibodies is switched, and consequently through the use of antigens the 

immunoassay quantifies the presence of antibodies.   

Immunoassays may be classified in two groups: non-functional and functional 

[17-19]. Non-functional assays are experiments in which the goal is to directly 

quantify the antibody concentration in a serum sample. The non-functional 

immunoassay most widely used is the Enzime-Linked Immunosorbent Assay 

(ELISA) [20]. Functional immunoassays differ from non-functional because they 

do not quantify the amount of serum antibodies, but their functionality in the 

serum. Although antibody serum concentration as measured by ELISA informs 

on the adaptive immune system response to vaccination, its contribution to 

predicting potential vaccine efficacy is confounded by the natural variability of 

the functional profile of the vaccine-raised antibodies. 

Since adaptive immunity against GBS is mediated by opsonin-dependent 

phagocytosis [21,22], an in-vitro assay suitable to estimating functional 
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bactericidal activity of GBS-immunized sera is the better candidate for the 

vaccine development. Opsonin-dependent phagocytosis is the mechanism 

through which the immune system kills foreign particles or living pathogens 

through ingestion by phagocytes (monocytes, macrophages, neutrophils, 

dendritic and mast cells [23]). The opsonisation is an antibody-dependent 

mechanism through which the phagocytic process is enhanced and therefore it is 

called opsonophagocytosis. This mechanism plays a key role in the immune 

system.  

The opsonophagocytosis killing assay (OPKA) is the functional assay that mimics 

the in vivo process of killing by host effector cells, following opsonisation by 

specific antibodies [24-26,39] (Figure 1.1 below). OPKA measures the extent to 

which bacteria are up-taken by phagocyte cells and killed when confronted with 

blood serum through opsonisation. The experimental components of OPKA 

comprise effector cells  (e.g. human  leukocytes), buffer, blood serum, 

complement and bacteria. Opsonophagocytic cells are suspended in buffer and 

aliquoted in different wells. A complement-deactivated blood serum is added, 

together with a bacterial suspension and a rabbit complement. Then the reaction 

runs for 45 minutes. The opsonophagocytosis is quantified using the number of 

bacteria (Colony Forming Unit counts or CFU) before and after the reaction. 

Alternatively, opsonophagocytosis can be quantified by contrasting the CFU 

counts measured after the reaction with that of a control experiment not 

exposing the bacteria to the test serum. The quantification of antibodies 

mediating killing of target pathogens in human serum samples is a cornerstone 

of many vaccine research and development programs [1,40-41]. 
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The primary OPKA readouts is called titers. A titer is a one-dimensional summary 

of a dose-response curve conveying biological and clinical interpretability. As 

such, no titer definition can capture all potentially relevant differences across the 

dose-response curves of different biological samples. However, a titer can 

provide an appropriate tool for decision-making to the extent that it detects 

biologically interpretable and clinically relevant differences across broadly 

different dose-response curves. OPKA titers are estimated by applying two data 

dimensionality reductions to the raw readouts (CFU counts) of serial dilutions 

experiments. First, the CFU counts prior to and after the bactericidal activity at 

each serum dilution are combined into the killing statistic. Second, the dilution-

killing curve is fitted using a non-linear dose-response regression model and the 

titer is defined as the maximum serum dilution associated to a predefined 

bacterial killing threshold value. The choice of a threshold value and of a 

statistical model for titer estimation in functional immunoassays such as OPKA 

represents a source of technical variability that in principle can hinder the 

comparison of different clinical trials results [27].  

The goal of this thesis is to provide more precise methods for titer estimation, 

using a two-step approach: first a threshold and likelihood free approach will be 

presented providing an robust tool to analyse OPKA data and amenable to being 

     Figure 1.1: illustrative vignette of the OPKA assay biology 



 8 

easily implemented into routinely OPKA data analysis also from researchers who 

are not familiar with statistical modeling and language. Second, a likelihood-

based approach will be presented in order to fully articulate the threshold free 

approach to titer estimation by making explicit the mathematical bases of its 

definition and by investigating appropriate numerical tools to derive threshold-

free titer estimates from experimental data. This generalisation confers 

methodological breath to the present thesis, addressing issues of titer 

identifiability, invariance to specific classes of data transformations and 

equivalence to threshold-based titers under linearity of the OPKA dose-response 

curve.  

Since this approach relies on a full understanding of a wide range of statistical 

procedures, the implementation for the routinely OPKA analysis will likely be 

less straightforward compared to the likelihood-free methods illustrated in 

Chapter 2, due to the increased complexity of likelihood-based estimation for 

researchers who are not used to deal with statistical languages. This issue has 

heavily affected the structure and content of this work, mostly stimulating and 

challenging the Author constructively towards a better understanding of the role 

of the applied statistician. One key issue that emerged from this process is the 

need to develop specific tools for data analysis addressing in a timely fashion 

scientifically relevant issues and to be able to effectively communicate their 

added value compared to simple descriptive analyses beyond the technicalities. 

Efforts to accomplish this bridging between statistical modeling and the 

experimental sciences distinguish the applied from the mathematical statistician 

and are vital to raise the awareness of how much a statistical approach is 

relevant for daily experimental work and decision-making. In absence of such 
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effective efforts, the technical discussions about which model may be better to 

address a specific scientific question become meaningless because the 

statistician would not be sufficiently understood nor adequately respected.  

Since these efforts comprised a substantial relational component beyond their 

scientific and technical contents, the ensuing learnings deserve a brief yet 

dedicated reflection, as an example of establishing a path towards successful 

collaboration. At the beginning of my PhD I proposed developing advanced 

statistical approaches, somewhat disregarding the importance of patterns in 

biological data routinely observed in the laboratory yet not formally modeled. 

However, within an environment that is not strong in statistical modeling, this 

approach initially resulted in scepticism towards my work. This led to the 

development of less complex techniques and to presenting their results in such a 

way as to emphasize their practical advantages rather than their methodological 

foundations. Not surprisingly, this approach resulted effective and radically 

improved the interactions with experimental researchers. As soon as these 

understood the utility of what we proposed, their willingness to interact and also 

to ponder the details of novel approaches to data analysis improved. Only after 

being successful in engaging the experimental collaborators it was possible to 

introduce more general methods leveraging on more advanced statistical 

models. It is worth emphasizing this issue this now, because it was one of the 

greatest and probably the most surprising achievements of this PhD work.    

This thesis is organised as follows. Chapter 2 illustrates a novel titer definition 

not depending on any killing threshold or on a dose-response model. These titers 

are hereby referred to as threshold-free titers and are a tool that is a powerful 

candidate to become part of the routinely OPKA analysis. Precision and linearity 
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of traditional and threshold-free titers are compared using simulated data and 

group B Streptococcus OPKA experimental data. Simulated killing values were 

generated using a heteroskedastic four-parameter (4PL) logistic dose-response 

model [28]. The third Chapter of this thesis presents a methodological extension 

of threshold free titers. This extension is motivated by the need to better take 

into account those case in which the assay is saturated for physical limitations of 

the machinery (plateau). These titers are referred as Integrated titers. Integrated 

titers are estimated within the Bayesian framework, and the operational 

properties are evaluated first using an appropriate set of simulation scenarios 

and then using a set of experimental data testing the functionality of anti-GBS 

antibody in human samples collected by a European observational study. The 

fourth Chapter concludes this thesis with a critical appraisal of the results 

obtained so far and illustrating directions of ongoing and future research work. 
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CHAPTER 2 Threshold-free estimation of functional antibody 

titers of a group B Streptococcus opsonophagocytic killing 

assay1 

 

This Chapter illustrates in detail how OPKA titers are currently estimated and a 

novel definition of functional antibody titers. Specifically, Section 2.1 illustrates 

the strengths and weaknesses of threshold-based titer quantification methods. 

Section 2.2 is dedicated to the definition of threshold-free titers. Section 2.3 

presents the simulation study results, focussing on the comparison of the 

operational characteristics of threshold-free and threshold-based titers under 

four illustrative scenarios. Section 2.4 analyses a set of OPKA experimental data, 

contrasting assay precision and linearity under the two titer definitions. Section 

2.5 concludes this Chapter providing a critical summary of its main results and 

describing relevant directions for further research. 

 

2.1 Threshold-based estimation of OPKA titers  

 

The bactericidal activity of the antibody in blood serum i=1,…,I at the dilutions2 

d1 ≤ d2 ≤ ⋯  ≤ dJ, is quantified in OPKA using the number of colony forming units 

CFU0,i(dj) and CFU1,i(dj) for j=1,…,J measured prior to (time t0) and after (time t1) 

                                                        
1 Chapter adapted from "Threshold-free estimation of functional antibody titers of a group B 
Streptococcus opsonophagocytic killing assay", by L.Moraschini, I.Passalacqua, M.Fabbrini, 
I.Margarit Y Ros, F.Rigat. Forthcoming on Pharmaceutical Statistics, 2015 
2 Each dilution value d represents the inverse of the serum concentration used in an experiment. 
For instance, the d=100 means that the serum was diluted one-hundred fold in buffer prior to the 
start of the opsonophagocytic reaction.  
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the in vitro opsonophagocytic bactericidal reaction. These CFU counts are 

combined into the killing statistic 

 

                                  𝐾𝑖(𝑑𝑗) =  100 × 
CFU0,𝑖(𝑑𝑗)  − CFU1,𝑖(𝑑𝑗)

CFU0,𝑖(𝑑𝑗)
.                                          (2.1) 

 

The main strength of (2.1) lies in its biological interpretability, in that killing 

values comprised within the interval (0,100) quantify a net decrease in the 

number of live bacteria at a given serum dilution and negative killing indicates 

net bacterial growth within the time interval (t0, t1). Its main operational 

limitation is that, being (2.1) bounded by construction within the interval (-, 

100), the experimental variability of killing is typically dilution-dependent. The 

killing statistics (2.1) measures the net result of the increase in CFU count due to 

bacterial proliferation and its decrease to bacterial death between times t0 and 

t1. Alternatively, killing can be quantified by contrasting the CFU count measured 

at time t1 with that of a control experiment not exposing the bacteria to the test 

serum. The titer definitions illustrated in this paper are applicable regardless of 

whether killing is measured using either of these two methods. 

An alternative summary statistic of CFU counts that preserves biological 

interpretability is the log-ratio: 

 

                                    (𝑑𝑗) = Log2 (
CFU0,𝑖(𝑑𝑗)

CFU1,𝑖(𝑑𝑗)
) = −Log2 (1 −

𝐾𝑖(𝑑𝑗)

100
).                        (2.2) 

 

This statistic is a real-valued monotone transformation of (2.1) taking high 

values when killing is high and vice versa. Due to its amenability to statistical 
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inference, the statistical model used in this work will be specified as a probability 

distribution of the log-ratio over different serum dilutions. 

The threshold-based titer estimator for each serum i, hereby denoted as 𝑇𝑘∗,𝑖, is 

defined as the maximum serum dilution within the interval  [𝑑1, 𝑑𝐽] such that the 

fitted killing curve �̂�𝑖(𝑑) is greater or equal than a predefined threshold value 𝑘∗: 

 

𝑇𝑘∗,𝑖 = max {𝑑 ∶  �̂�𝑖(𝑑𝑗) ≥ 𝑘∗}.                                             (2.3) 

 

The titer estimator (2.3) depends on the fixed threshold 𝑘∗, which is a killing 

value contained within the expected range of linearity of the killing curves of all 

tested sera. Consistently with common experimental practice, throughout this 

paper titers (2.3) are estimated using 𝑘∗= 50. However, when the killing curves 

of many sera are fitted over the same set of dilutions, the range of killing values 

where all curves are approximately linear in the dilution can be either null or it 

can be an interval. Therefore, in practice titers (2.3) are defined using a killing 

threshold that is either suboptimal or arbitrarily chosen within many equally 

suitable values. Also, since the number of tested serum dilutions is typically low, 

the dilution associated to this critical cut-off can be estimated precisely only by 

using an interpolating dose-response model. The simplest such model used in 

current practice is piece-wise linear interpolation (PWLI), which estimates the 

killing curve within [𝑑1, 𝑑𝐽] by connecting with a segment the measured killing of 

each pair of tested dilutions. PWLI is simple, in that no statistical package is 

required to estimate titers. Its main limitation is that the values of titers (2.3) 

estimated by PWLI depend only on the two data points where the critical killing 

threshold is crossed. Also, when the killing curve does not cross its critical 
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threshold 𝑘∗ or it crosses it at multiple dilutions, titers (2.3) are either undefined 

or not unique. These limitations are mitigated when estimating (2.3) using 

monotone dose-response models, so that all data points contribute to titer 

estimation and the only titer estimate exists when the fitted killing curve crosses 

the threshold 𝑘∗. These threshold-based titers do not need to lie within the range 

of tested dilutions [𝑑1, 𝑑𝐽] as the fitted killing curve can be extrapolated beyond 

this range. Table 2.1 summarizes the operational attributes of titer estimates 

(2.3) under PWLI and monotone dose-response models. Biological 

interpretability, computational simplicity, uniqueness and dependence on all 

observed data are identified in Table 21..1 as strengths. However, lack of 

robustness arises as a result of the dependence on one killing threshold and on 

specific dose-response modelling assumptions. 

 

Operational Attributes 
Piece-wise Linear 

Interpolation 

Monotone dose-

response models 

Threshold-independent No No

Extrapolation  No Yes 

Uniqueness No Yes 

Computationally simple Yes No 

Estimated using all data  No Yes

Table 2.1: operational attributes of threshold-based titer estimates under PWLI and  

monotone dose-response models. 
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2.2 Threshold-free estimation of OPKA titers 

 

A titer estimator having all attributes listed in Table 2.1 can be defined as a 

weighted average of the tested serum dilutions, with weights taken as functions 

of the associated killing values. For each serum i the threshold-free titer is 

defined as  

 

                                                        𝑇𝑓,𝑖 = ∑ 𝑑𝑗𝑤𝑖𝑗
𝐽
𝑗=1 ,                                                          (2.4) 

 

with 𝑤𝑖𝑗 ≥ 0 and ∑ 𝑤𝑖𝑗
𝐽
𝑗=1 = 1.  Here we investigate the operational 

characteristics of (2.4) when the weights 𝑤𝑖𝑗 are defined as the normalized non-

negative killing values  

 

                                                    𝑤𝑖𝑗 =
𝐾𝑖(𝑑𝑗)1

{𝐾𝑖(𝑑𝑗)≥0}

∑ 𝐾𝑖(𝑑𝑗)1
{𝐾𝑖(𝑑𝑗)≥0}

𝐽
𝑗=1

.                                                (2.5)                                                

 

These weights are normalized in (2.5) so as to ensure that the resulting 

estimates lie within the interval of tested dilutions [𝑑1, 𝑑𝐽]. Under (2.5), the 

threshold free titer estimator (2.4) is an average of the tested serum dilutions 

demonstrating antibody functionality against the bacteria (positive killing) 

weighted by the associated killing values. High threshold-free OPKA titers are 

indicative of persistent bactericidal activity of the serum antibody even when 

highly diluted. Also, while any set of killing curves crossing the critical threshold 

from above at the same dilution share the same titer (2.3), threshold-free titers 
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(2.4)-(2.5) are invariant to multiplication of all positive killing values by the 

same positive factor. 

Threshold-free titers are sensitive to saturation of the killing curve either above 

(left plateau) or below (right plateau). In these cases, estimates of (2.4)-(2.5) can 

be skewed towards lower or higher dilution values respectively. This potential 

oversensitivity to assay saturation is prevented by generalizing the definition of 

the weights (2.5) as 

 

                             𝑤𝑖𝑗 =   
𝐾𝑖(𝑑𝑗)1

{𝐾𝑖(𝑑𝑗)≥0, 𝑑𝑔(𝑧)≤𝑑𝑗≤ 𝑑𝑟(𝑧)}

∑ 𝐾𝑖(𝑑𝑗)1
{𝐾𝑖(𝑑𝑗)≥0, 𝑑𝑔(𝑧)≤𝑑𝑗≤ 𝑑𝑟(𝑧)}

𝐽
𝑗=1

,                                              (2.6)         

 

where the range of dilutions associated to non-zero weights becomes: 

 

 𝑑𝑔(𝑧) = min𝑑(|𝐾(𝑑𝑘) − 𝐾(𝑑𝑘+1)| ≥ 𝑧, 𝑘 = 1, … , 𝐾 − 1),                   

                         𝑑𝑟(𝑧) = max𝑑(|𝐾(𝑑𝑘) − 𝐾(𝑑𝑘+1)| ≥ 𝑧, 𝑘 = 1, … , 𝐾 − 1).              (2.7)      

 

The plateau condition z ∈ (0,100) in (2.6) and (2.7) represents the smallest 

biologically meaningful difference between killing values associated to 

successive serum dilutions. High values of z imply that only a small number of 

tested dilutions are used for estimating threshold-free titers. Therefore, plateau 

threshold-free titers (pTf) calculated using high z values tend to be less precise 

than estimates calculated under (2.5). In this paper we estimate threshold-free 

OPKA titers using z values within the range 0-20.  Ideally, the values of z should 

be selected on a set of ad-hoc experiments designed to analytically quantify 

when a difference between successive killings is sufficient to exclude the 
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occurrence of plateaus. In practice, this exercise is almost impossible to perform 

due to many reasons, so we decide according to OPKA researchers to use the 

method using a biological rationale.  

To illustrate the robustness of pTf titers, Figure 2.1 displays one killing curve 

showing a long left plateau associated to high killing values (solid curve) and a 

second curve displaying a long right plateau associated to small and positive 

killing values (dashed curve). The T50 titers for the dashed and solid curves are 

4.4 and 49.8 respectively, indicating higher antibody functionality for the solid 

curve. In contrast, the Tf titers for the dashed and solid curves are 40 and 21 

respectively, indicating higher antibody functionality for the dashed curve. This 

result is biologically questionable because the solid curve exhibits much higher 

killing values through most of the range of tested dilutions. However, when 

threshold free titers are estimated using the plateau condition z=5 the pTf titers 

are 7.8 and 26.1 for the dashed and solid curves respectively. Here pTf estimates 

are calculated from six and four dilution/killing pairs for the solid (dilutions 8 

through 256) and dashed (dilutions 4 through 32) curves respectively. 

Therefore, robustification against assay saturation ensures the biological 

interpretability of threshold free titers while preserving its ability to learn from 

the unsaturated portion of the killing curve. 
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Figure 2.1: Plateau threshold free titers preserve biological interpretability when curves 

having long plateaus are confronted 

 

2.3 Operating characteristics of threshold-based and threshold-

free OPKA titers using simulated data 

 

OPKA data were simulated under four scenarios s=1,…,4, encompassing the 

absence of saturation or “no plateau”, constant killing at low serum dilutions or 

“left plateau” and constant killing at high serum dilutions or “right plateau”. To 

this end, the log-ratio simulation model used was 

 

                                         𝐿𝑅𝑠(𝑑𝑗 , ℎ)~𝑁(𝐿𝑅𝑠(𝑑𝑗), ℎ ∗ 𝐿𝑅𝑠
′ (𝑑𝑗)),                                     (2.8) 

 

where the mean log-ratio curve is taken as the 4PL logistic model:  
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                                    𝐿𝑅𝑠(𝑑𝑗) = 𝐿𝑅(𝑑𝑗 , 𝛼𝑠, 𝛽𝑠, 𝛾𝑠, 𝛿𝑠)
 

= 𝛿𝑠 +
𝛼𝑠−𝛿𝑠

1+(
𝑑𝑗

𝛾𝑠
)

𝛽𝑠
 .                     (2.9) 

 

Using (2.2), for each simulated log-ratio value the corresponding killing is:  

 

                                               𝐾𝑠(𝑑𝑗) = 100 x (1 − 2−𝐿𝑅𝑠(𝑑𝑗))                                     (2.10) 

 

Model (2.8) makes sense for OPKA data because, like many other bioassays, 

OPKA presents saturation both above and below. This key feature of the assay is 

taken into account in equation (2.9) because 𝛿𝑠 and 𝛼𝑠 are upper and lower 

asymptotes of the log-ratio curve. In addition, larger values of 𝛽𝑠 correspond to 

steeper curves and larger values of 𝛾𝑠 shift the curves horizontally along the 

dilution axis [13]. The main drawback of this model lies in its weakly 

identifiability requiring the user to impose a constraint on whether alpha or 

delta represent the upper asymptote.  

 The parameter h  0 in (2.8) defines the scale of the variance of the simulated 

data with larger h values corresponding to larger variances. Dose-response 

curves typically present a variability that is closely related to the sensitivity of 

the assay. Therefore, a convenient and appropriate way to define the variance in 

equation (2.8) is to multiply the scaling factor h for the first derivative of the 4PL 

mean function:  

 

                                            𝐿𝑅𝑠
′ (𝑑𝑗) =

 −(𝛼𝑠−𝛿𝑠)𝛽𝑠(𝑑𝑗)𝛽𝑠−1

𝛾𝑠
𝛽𝑠(1+(

𝑑𝑗

𝛾𝑠
)

𝛽𝑠
)

2  .                                             (2.11) 
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The no plateau (s=1), one left plateau point (s=2), two left plateau points (s=3) 

and long right-plateau (s=4) scenarios were defined using the 4PL coefficient 

values 

 𝛼1 =-5; 𝛽1 =1, 𝛾1 =60; 𝛿1 =1.7, 

    𝛼2 =-4; 𝛽2 =4; 𝛾2 =120; 𝛿2 =1.5, 

𝛼3 =-2; 𝛽3 =4; 𝛾3 =300; 𝛿3 =2, 

  𝛼4 =-2; 𝛽4 =3; 𝛾4 =70; 𝛿4 =-0.3, 

 

and the six common dilutions [30,60,120,240,480,960]. Figure 2.2 shows the 

corresponding non-negative killing values for each of the four simulation 

scenarios calculated from the 4PL log-ratio means of (2.8) using (2.10). The 

threshold-based titers (2.3) for scenarios s=1,...,4 are 89, 126, 228 and 79 

whereas the threshold free titers Tf are 56, 63, 98 and 187 and the plateau 

threshold free titers pTf using z=5 are 56, 83, 165 and 79.  The Tf  titers for 

scenarios 1-3 range from one third to one half of the corresponding T50  titers. As 

expected, the values of Tf and pTf for scenario 1 coincide due to the absence of 

plateaus, whereas for scenarios 2 and 3 pTf is closer to T50 values compared to Tf, 

with both threshold free titers yielding more conservative estimates of antibody 

functionality compared to T50. For the right plateau scenario Tf  is larger than T50 

due to the long right tail of small and positive killing values. In this case the value 

of pTf  is much smaller than that of Tf  demonstrating again the relevance of the 

plateau condition when estimating threshold free titers from partially saturated 

killing curves. 
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Figure 2.2: killing curves generated by different 4PL coefficients defining no plateau points (s=1), 

one left plateau point (s=2), two left plateau points (s=3) and long right plateau (s=4) scenarios. 

 

Figure 2.3 shows the dilution-dependent standard deviations of the log-ratio 

(2.8) for each simulation scenario. Thick curves represent the dilution ranges 

associated to positive killing values. Empty circles mark the values of standard 

deviation associated to the six dilutions used for titer estimation. The one point 

left plateau scenario (s=2) exhibits the highest standard deviation at the third 

dilution, which is associated to the lowest positive killing value. In this case, the 

probability that its associated killing is negative under (2.8) is non-negligible so 

that this dilution value will be randomly included or excluded from (2.4) across 

simulations, leading to an increased variability of threshold-free titers compared 

to scenarios 1 and 3. Also, since the variability of the log-ratio under scenario s=3 

is either lower or comparable to that of scenario s=1, the variability of threshold-

free titers under scenario 3 is lower than for scenario 1. In addition, although the 
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variability of the log-ratio curve under scenario 4 is higher than those of 

scenarios 2 and 3 at low dilutions, this curve displays non-negative killing values 

at all six dilutions. Therefore, the variability of its threshold free titer can be 

expected to be lower than that of the same titers for the other scenarios due to 

the larger number of dilutions available for titer estimation.  

For each scenario, N=2000 threshold-based titers (2.3) were estimated using the 

log-ratio values simulated by (2.8) under two dose-response models: PWLI and 

the heteroskedastic 4PL data-generating model (2.8) estimated by maximum 

likelihood.  Specifically, the likelihood of model (2.8) was maximized with 

respect to its five arguments 𝛼, 𝛽, 𝛾, 𝛿 and h using the Nelder-Mead simplex 

method implemented in the R routine optim.  Threshold free titers (2.4) were 

estimated from the same simulations using (2.5)-(2.7) with z= 0 (Tf) and 5 (pTf) .  

The precision of all titers was assessed using the coefficient of variation (CV%):  

 

                                                                    𝐶𝑉𝑠,𝑘 = 100 (
𝜎𝑘

𝜇𝑘
),                                          (2.12)        

 

where  CVs,k  is the value of the CV% for the k-th titer estimator k = {𝑇50
𝑃𝑊𝐿𝐼, 𝑇50

4𝑃𝐿, 

𝑇𝑓,pTf} calculated for each scenario s=1,2,3,4 from the curves shown in Figure 2.2 

across the 2000 simulations.  
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Figure 2.3: simulation variability of log-ratio-dilution curves is proportional to the first 

derivative of the log-ratio curve and it is more pronounced for the one left plateau point scenario 

(s=2). 

 

Table 2.2 shows that the CV% of threshold-free and plateau threshold free titers 

was always lower (higher precision) than those of threshold-based titers using 

PWLI. Also, the threshold free and plateau threshold free titers (2.4) had 

comparable or lower CV% than threshold-based titers calculated by estimating 

the 4PL data-generating model. In addition, Tf are marginally more precise than 

pTf due to the larger number of points used for titer estimation when z=0 

compared to when using z=5. These results show that threshold-free titers were 

found to increase the precision of OPKA under all simulated scenarios when 

compared to T50 (PWLI) and they preserved at least the same precision of T50 

estimated using the 4PL model.  

 



 24 

Titer 

definition 

Coefficient of Variation (%) 

no plateau 

s=1 

1 left plateau point 

s=2 

2 left plateau points 

s=3 

right plateau 

s=4 

𝑇50
4𝑃𝐿 23 19 16 27 

𝑇50
𝑃𝑊𝐿𝐼 25 22 14 26 

𝑇𝑓(z=0) 14 15 10 6 

pTf (z=5) 17 21 11 12 

Table 2.2: the coefficients of variation (CV%) calculated for each titer definition and data 

simulation scenario show that threshold-free titers tend to be more precise than 

threshold-based titers. 

 

2.3.1 The precision of threshold-free titers increases in the number of 

serum dilutions. 

 

Comparability of threshold-free titers across sera is ensured when all sera are 

tested using the same set of dilutions. Therefore, optimization of experimental 

design for estimating threshold-free titers requires establishing the number and 

value of the dilutions common to all sera. This issue is addressed here using the 

simulation model (2.8)-(2.11) under scenario s=3 (long left plateau) and h = 300. 

A higher value of the variance scaling h was used here compared to the 

simulations summarized in table 2 to measure appreciable differences across the 

coefficients of variation associated to different numbers of dilutions. A total of 

2000 simulations were run with n= 3, 5, 9, 17 dilutions and the corresponding 

2000 x 4 threshold-free titers were estimated using (2.4)-(2.5). No dilution 

smaller than 60 or larger than 240 was used to prevent the simulation of killing 

values within the plateau part of the curve or negative killing values. For, n = 3 
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the dilutions were [60,120,240]. Then, dilutions were equally spaced between 

the limits defined by each pair of dilution. For instance, for n = 5 the dilutions 

were [60,90,120,180,240] and so forth. 

Figure 2.4 plots the CV% of the 2000 simulated threshold-free (dots) and PWLI 

threshold-based (asterisks) titers against the number of dilutions used in the 

simulations. These results show that the precision of the simulated threshold-

free titers increase in the number of dilutions used for titers estimation.  In 

particular, when 3 or 5 dilutions are used the CV% of threshold-free titers in this 

simulation scenario is ensured to be approximately 25% and 15% respectively. 

Figure 2.4 also shows that the precision of PWLI threshold-based titers does not 

increase with the number of dilutions. This result is due to the threshold-based 

titer estimates being always calculated using the two dilutions where killing 

crosses 50. Since both dilutions used for PWLI titer estimation always fall within 

the range of assay sensitivity the resulting CV% are invariant to the total number 

of dilutions used in the simulation. Based on these results, at least 3 dilutions 

within the OPKA sensitivity range should be used for accurate estimation of 

threshold-free titers from killing curves exhibiting partial saturation. 
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Fig 2.4: CV% of threshold-free (dots) and threshold-based (asterisks) titers calculated 

using different numbers of dilutions show that precision of threshold-free titers increase 

in the number of dilutions 

 

2.4 Group B Streptococcus OPKA data analysis 

 

Threshold-based and threshold-free titers were compared using repeatability 

and linearity experiments [29] of a research group B Streptococcus (GBS) OPKA. 

These experiments provide ideal data for comparing the operational 

characteristics of (2.3) and (2.4) because they measured a relatively large 

number of killing values for different sera under identical experimental 

conditions. 
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2.4.1 Estimation of OPKA titers using repeatability experiments 

 

OPKA repeatability was measured for three of the epidemiologically dominant 

GBS serotypes Ia, Ib and III [1]. For each serotype, three sera were selected 

according to their ELISA antibody concentrations to encompass a wide range of 

OPKA titers. These sera are hereby referred to as serum 1 (low titer), 2 (medium 

titer) and 3 (high titer). The same operator assayed each serum 10 times in one 

analytical session using the same set of six dilutions. Table 2.3 compares the 

CV% of threshold-based titers using the PWLI and 4PL models and those of 

threshold-free titers for each serum. First, Table 3 shows that the average CV% 

of threshold-free titers Tf (z=0) across the tested sera is always the lowest 

among all titer definitions. This result indicates that (2.4)-(2.5) yields the most 

precise titer estimates among all the assessed titer estimators. Second, Table 2.3 

shows that the CV% of threshold-free titers Tf are lower than those of threshold-

based titers for 8/9 (one-tailed Binomial test p-value=0.02) combinations of 

serotype and ELISA concentration when using either PWLI or the 4PL model. 

This result confirms that threshold-free titers Tf tend to be more precise than 

threshold-based titers. The bottom three rows of each section of Table 2.3 show 

the CV% of the plateau threshold free titers pTf calculated using z = 5, 10, 20. 

Overall, these CV% tend to be larger than the corresponding CV for Tf due to the 

lower number of dilution-killing points used for titer estimation when plateaus 

are excluded. Also, as an average across sera, the most precise plateau threshold 

free titers are obtained when using z=20 for serotype Ia, z=5 for serotype Ib and 

either of these two z values for serotype III. 
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GBS Ia OPKA titers 
Coefficients of variation (CV%) 

Serum 1 Serum 2 Serum 3 Mean 

𝑇50
4𝑃𝐿 20 8 14 15 

𝑇50
𝑃𝑊𝐿𝐼

 22 8 5 12 

Tf (z=0) 6 12 2 7 

pTf (z=5) 32 22 22 25 

pTf (z=10) 31 11 9 17 

pTf (z=20) 17 11 2 10 

GBS Ib OPKA titers Serum 1 Serum 2 Serum 3 Mean 

𝑇50
4𝑃𝐿

 19 25 10 18 

𝑇50
𝑃𝑊𝐿𝐼

 22 25 8 18 

Tf (z=0) 17 20 3 13 

pTf (z=5) 19 30 2 17 

pTf (z=10) 27 26 2 18 

pTf (z=20) 36 32 18 29 

GBS III OPKA titers Serum 1 Serum 2 Serum 3 Mean 

𝑇50
4𝑃𝐿

 11 30 10 17 

𝑇50
𝑃𝑊𝐿𝐼

 9 17 9 12 

Tf (z=0) 7 14 3 8 

pTf (z=5) 19 25 2 15 

pTf (z=10) 16 25 13 18 

pTf (z=20) 16 12 18 15 

Table 2.3: CV% of threshold-free titers calculated by applying 4 different plateau 

conditions z using the GBS OPKA repeatability experiments for each combination of tested 

sera and serotypes 
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2.4.2 Estimation of OPKA titers using linearity experiments 

 

OPKA data were generated to investigate whether titers are linear when the 

same serum is analysed at different starting dilutions. For each serum, linearity 

is assessed by plotting the starting dilutions versus their corresponding titer 

estimates. The experimental design used to assess OPKA linearity involved 

testing 4 sera for each serotype having increasing antibody concentrations as 

measured by ELISA (hereby referred to as sera 1 through 4). Each serum has 

been assayed six times (2-fold-step) in five analytical sessions using again 2-fold-

step starting dilutions. For example, serum 1 for serotype Ia was assayed using 

the dilution sets:  

[50,100,200,400,800,1600],  

[100,200,400,800,1600,3200],  

[200,400,800,1600,3200,6400], 

[400,800,1600,3200,6400,12800], 

[800,1600,3200,6400,12800,25600]. 

 

2.4.2.1 Assay linearity cannot be measured using T50 

 

To show that assay linearity cannot be measured using the threshold-based titer 

(2.3) it is useful to focus on the first two sets of dilutions listed above used for 

testing serotype Ia antibodies functionality of serum 1. For each serum, if the 

assay is highly repeatable the killing values associated to the common dilutions 

100,200,400,800 and 1600 in the first session are the same as those measured in 

the second session. The same killing values will be in fact observed in any 
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analytical session using the same dilutions. Since T50 is a dilution value, it follows 

that using this experimental design its estimate will be the same when defined. 

As a consequence, when these T50 titer estimates are divided by the ratios of 

their starting dilutions to the lowest tested dilution (50/50,100/50, … and so on) 

and the resulting values are plotted against these starting dilutions (50, 100, 200 

and so on) in log2-log2 scale, all points will lie on a line with slope -1 by 

construction. This plot would further establish assay repeatability, which was 

demonstrated in section 4.1 above, without offering insights into the linearity of 

titers with respect to their starting dilutions.  

 

2.4.2.2 Assay linearity can be measured using Tf 

 

In contrast to what described above for T50 titers, Tf titers vary in their starting 

dilution because the right-hand side of (2.4) depends on the number and values 

of all dilutions used for testing and on their associated killing. Therefore, using 

(2.4) assay linearity becomes measureable when the assay has good 

repeatability.  

Figures 2.5-2.7 show the log2 values of each starting dilution (horizontal axis) 

versus the log2 values of the corresponding estimated titers divided by the ratios 

of their starting dilutions to the lowest tested dilution. The plateau threshold 

free titer estimates depicted here were calculated using z = 20 for serotype Ia 

and z=5 for serotypes Ib and III. Table 2.4 shows that the threshold-free titers 

shown in Figures 2.5-2.7 decrease linearly in their starting dilutions with slopes 

of approximately -2/3 for all sera and serotypes for z=0 and with slopes close to 

-1 when the serotype-specific plateau conditions z=5 or z=20 are used. The 
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difference between the linearity slopes of Tf and pTf here is imputable to the 

presence of left plateaus in the underlying killing curves when using lowest 

starting dilutions, similarly to the simulation scenario s=3 presented above.  

These results show that, regardless of which plateau condition is used, 

threshold-free titers are measurably linear in their starting serum dilution. Also, 

when appropriate plateau conditions are used threshold-free titers are halved 

when the staring serum dilution is doubled. 

 

Figure 2.5: Plateau threshold-free titers estimated from the GBS serotype Ia OPKA data 

have linearity slopes close to-1, whereas threshold-free titers slopes are close to -2/3, 

showing that both are linear in their starting dilution and that the plateau threshold-free 

titers are halved when doubling their starting dilution. 
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Figure 2.6: Plateau threshold-free titers estimated from the GBS serotype Ib OPKA data have 

linearity slopes close to-1, whereas threshold-free titers slopes are close to -2/3, showing that both 

are linear in their starting dilution and that the plateau threshold-free titers are halved when 

doubling their starting dilution. 

 

Figure 2.7: Plateau threshold-free titers estimated from the GBS serotype III OPKA data 

have linearity slopes close to-1, whereas threshold-free titers slopes are close to -2/3, 

showing that both are linear in their starting dilution and that the plateau threshold-free 

titers are halved when doubling their starting dilution. 
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Serotype 

Linearity Slopes 

Threshold free titers 

(slope and 95% c.i.) 

Plateau threshold free titers 

(slope and 95% c.i.) 

Ia 

-0.64 (-0.77, -0.51) -0.98(-1.09, -0.87) 

-0.67(-0.77, -0.57) -1.03(-1.05, -1.02) 

-0.69(-0.81, -0.58) -1.05(-1.20, -0.89) 

-0.63(-0.68, -0.58) -0.95(-1.18, -0.72) 

Ib 

-0.59(-0.68, -0.49) -0.81(-1.45, -0.17) 

-0.61(-0.7, -0.45) -0.87(-1.28, -0.46) 

-0.60(-0.72, -0.48) -0.88(-1.09, -0.68) 

-0.61(-0.86, -0.37) -0.97(-1.52, -0.78) 

III 

-0.69(-0.81, -0.57) -1.03(-1.02, -0.53) 

-0.63(-0.76, -0.51) -0.83(-1.28, -0.65) 

-0.65(-0.72, -0.59) -1.00(-1.27, -0.72) 

-0.79(-1.04, -0.54) -1.14(-1.27, -1.02) 

Table 2.4: the linearity regression slopes and their asymptotic Gaussian confidence 

intervals show that plateau threshold-free titers are halved when their starting dilution is 

doubled. 
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2.5 Summary and discussion of Chapter 2 

The biological interpretability of threshold-free titers as weighted averages of 

tested serum dilutions, their higher precision compared to threshold-based titers 

and the measurability of titer linearity demonstrated in this paper indicate that 

threshold-free titers (2.4) are appropriate tools for analysing OPKA data. 

Unlike for threshold-based titers, experimental designs for estimating 

biologically relevant and accurate threshold-free titers require testing different 

sera using the same set of dilutions. This set of serum dilutions can be 

determined by setting three design parameters: the extreme (minimum and 

maximum) killing values to be measured and the lowest number of dilutions 

associated to non-negative killing values for all sera. For instance, the maximum 

killing may be required to exceed 50 and the minimum killing may be required to 

be less than zero, showing bacterial proliferation. The simulation study 

presented in this paper shows that precise threshold-free titers can be estimated 

using as few as three dilutions associated to non-negative killings. 

Assay saturation is taken into account in this paper using a plateau condition 

determined prior to estimation of threshold free titers. From this angle, a 

threshold-free titer estimator that automatically down-weights the dilutions 

associated to saturated killing would be desirable. This can be achieved by 

making the weights (2.5) functions of the slope of the log-ratio curve with 

respect to dilution. The construction of such weights requires a continuous dose 

response model and robust computational routines for titer estimation. The 

simulation model (2.8) used in this paper is a first step in this direction using a 

standard 4PL mean structure and a dilution-dependent variance function. 



 35 

Estimation of threshold-free titers under this model requires extending their 

definition to the continuous case as an integral and adopting robust numerical 

techniques such as Monte Carlo importance sampling [30]. The assessment of 

whether such model-based titer estimates could become part of the routine 

analysis of OPKA data is a topic currently under investigation. 
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CHAPTER 3 Bayesian modeling of functional antibody titers3  

 

Chapter 2 of this thesis illustrated a novel definition of antibody titers that is 

based neither on a bacterial killing threshold nor on the selection of a dilution-

killing model. This definition was generalized to take into account the potential 

biasing effects of assay saturation either above or below (plateaus), consisting of 

a user-defined additional parameter z ∈ (0,100) within the definition of the 

weights (formulas 2.6-2.7). This plateau condition specifies the smallest 

biologically interpretable jump in the dilution-killing curve. Compared to 

threshold-free titers using z = 0, plateau threshold-free titers were shown to be 

less precise due to the less number of point used for titer calculation, but they do 

preserve better precision compared to T50. However, the choice of an optimal 

plateau condition for each of the analysed sera remains unaddressed by this 

simple approach, because the value of z is based on general biological 

considerations as opposed to being tailored to the dose-response measured for 

each serum using statistical methods. These methods would thus rely on an 

estimation process having the goal to maximize the precision of the resulting 

procedure for each serum. To fully address this issue in this Chapter a threshold-

free titer definition that automatically takes into account the occurrence of 

plateau is proposed and investigated. Following an established tradition of 

bioassay data modeling and analysis [30-34], this new proposal is developed 

within a Bayesian approach to dose-response modelling and relies both on the 

dilution-dependent slope of a smooth dilution-killing model for down-weighting 

                                                        
3 Chapter 3 adapted from: "Bayesian Modelling of functional antibody titers". L.Moraschini,  

M.Fabbrini, I.Margarit Y Ros, F.Rigat. Submitted for publication. 
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points associated to its plateau regions and on the selection of a set of prior 

distributions for the coefficients of the dilution-killing model. These priors 

summarize the maximum likelihood regression estimates of the dilution-killing 

curves measured in replicate experiments performed during assay 

characterization (data shown in Chapter 2). 

The properties of this new method will be first assessed using a simulation 

analysis similar to that shown in Chapter 2, using different number of scenarios 

and different ranges of dilutions; then the operational characteristics of this new 

method will be assessed using data from the European study DEVANI [42] that 

has the goal to develop immunization strategies for inducing immunity against 

GBS. 

 

3.1 Integrated titers definition 

 

A threshold free model based generalization of (2.4) using continuous weights 

that automatically take into account the saturation of each analysed killing curve 

while preserving biological interpretability is the Integrated titer: 

 

                                             TI =  
∫ 𝑥𝑘(𝑥|𝜃𝑖)|𝑑𝑘(𝑥|𝜃𝑖)

𝑑𝑀(𝜃𝑖)

𝑑𝑚(𝜃𝑖)

∫ 𝑘(𝑥|𝜃𝑖)|𝑑𝑘(𝑥|𝜃𝑖)
𝑑𝑀(𝜃𝑖)

𝑑𝑚(𝜃𝑖)

 .                                        (3.1) 

 

In (3.1) the function 𝑘(𝑥|𝜃
𝑖
) represents a continuous dose-response model with 

sample specific coefficients 𝜃𝑖  . 

Integrated titers (3.1) average all dilutions within the range (dm(𝜃𝑖), dM(𝜃𝑖)) with 

respect to an assumed dilution-killing model 𝑘(𝑥|𝜃
𝑖
) multiplied by its first 
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derivative. Using the first derivative Integrates titers automatically estimates 

antibody functionality from the unsaturated region of the dilution-killing curve. 

According to what considered for threshold free titers (2.4) the range (dm(𝜃𝑖), 

dM(𝜃𝑖))  is defined as follows: 

 

                                   𝑑𝑚(𝜃
𝑖
) = min𝑥 ∈  [𝑑1,𝑑𝐽] {𝑘 (𝑥|𝜃

𝑖𝑖
) ≥ 50},                            (3.2) 

      𝑑𝑀(𝜃
𝑖
) = max𝑥∈  [𝑑1,𝑑𝐽] {𝑘 (𝑥|𝜃

𝑖
) ≥ 0}. 

 

The interpretation of Integrated titers (3.1) is analogous to that of threshold free 

titers: it is the mean of the dilution weighted for the corresponding killing values 

and the first derivative values. In other words, Integrated titers quantify the 

antibodies functionality from the unsaturated part of the dilution-killing curve.  

In addition, Integrated titers preserve all properties of threshold free titers listed 

in table 2.1 (uniqueness, threshold-independence and use of all data points). 

Also, Integrated titers depend on the set of assumptions built into the dilution-

killing model required for estimation of (3.1).  

When the killing curve is linear within the dilution range (dm(𝜃𝑖), dM(𝜃𝑖)), both 

titer estimators TI and T50 have closed forms. 

In this case, necessary and sufficient conditions for equality of titers can be 

derived explicitly. We present these results in the following theorem. 

 

Theorem 3.1   Let 𝜏 ∈  (0,100) be the critical killing threshold used in (2.3) and 

let 𝑘(𝑑|𝛼, 𝛽) ≈  𝛼 +  𝛽𝑑 within the dilution range d  ∈  [𝑑1, −
𝛼

𝛽
 ] with  𝑑1 > 0, 𝛽 <

0 and  𝛼 +  𝛽𝑑1 ≥ 𝜏. Then, the followings hold: 
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I. 𝑇𝜏(𝛼, 𝛽) =
𝜏−𝛼

𝛽
, 

II. 𝑇𝐼(𝛼, 𝛽) =
−(𝛼2−𝛼𝛽𝑑1−2𝛽2𝑑1

2)

3𝛼𝛽+3𝛼𝛽2𝑑1
  

 

Proof. For any given 𝜏 the value of the threshold-based titer 𝑇𝜏 in the first 

statement I trivially follows from inversion of the linear killing curve.  

To demonstrate statement II, let the killing curve be linear within the generic 

range (XL, XU) and plug the expression of the linear killing curve in (3.1) so that: 

 

𝑇𝐼(𝛼, 𝛽) =  
∫ 𝑥(𝛼 +  𝛽𝑥)𝑑𝑥

𝑋𝑈

𝑋𝐿

∫ (𝛼 +  𝛽𝑥)𝑑𝑥
𝑋𝑈

𝑋𝐿

 

 

=

𝛼
2

(𝑋𝑈
2 − 𝑋𝐿

2) +
𝛽
3

(𝑋𝑈
3 − 𝑋𝐿

3)

𝛼(𝑋𝑈 − 𝑋𝐿) +
𝛽
2

(𝑋𝑈
2 − 𝑋𝐿

2)
 

 

=
𝛼(𝑋𝑈 + 𝑋𝐿) +

𝛽
3

(𝑋𝑈
2 + 𝑋𝐿𝑋𝑈 + 𝑋𝐿

2)

𝛼 +
𝛽
2

(𝑋𝑈 + 𝑋𝐿)
 

 

Statement II follows by substituting  XL=d1 and 𝑋𝑈 = −
𝛼

𝛽
 in the right-hand side of 

the above equation. 

Lemma 3.1 Under the conditions of Theorem 3.1 for any given (𝜏, 𝛼, 𝑑1) T50 and 

TI yield the same titer value iff there exist at least one value 𝛽∗ < 0 such that 

  



 40 

𝛽∗ =
3𝑑1𝜏−4𝛼𝑑1±√(−3𝑑1𝜏+4𝛼𝑑1)2−8𝑑1

2(2𝛼2−3𝛼𝜏)

4𝑑1
2                            (3.3) 

 

Lemma 3.1 shows that, having fixed by design the initial dilution d1 and the 

critical killing threshold 𝜏, for any intercept 𝛼 there may exist up to two slope 

values such that T50 and TI coincide. Here we present a numerical example 

deriving the values of the killing slope yielding equality of Integrated titers and 

threshold baser titers. 

 

Example 3.1 For 𝛼 = 100, 𝜏 = 50 and d1=30 two distinct killing slopes 𝛽∗ exist, with 

values then -0.83 and -3.33. Since only the value -0.83 fulfils the conditions of 

theorem 3.1, in this case there exists a unique linear killing functions ensuring 

equality of T50 and TI. For values of 𝛽 respectively larger (smaller) than -0.83 the 

threshold based titer T50(100, 𝛽) becomes larger(smaller) than TI (100, 𝛽) 

Example 3.1 implies that, when doubling a serum dilution halves the bacterial 

killing, T50(100, −1) =50. In this case, TI (100, −1)< T50(100, −1) for d  ∈  (0,25) 

and TI (100, −1)>T50(100, −1) for d  ∈  (25,50) with d1=25 yielding equality of 

titers. This example demonstrates that values of T50 estimated from 

experimental data would be in general more sensitive to the range of tested 

dilutions fixed a priori by design compared to TI. Titer estimation will be 

illustrated in detail in the next section.  
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3.2 Model based estimation of Integrated titers  

 

In Chapter 2 a likelihood free approach was used to estimate both threshold free 

titers and T50 titers. In this Chapter a likelihood-based approach is used both for 

the estimation of Integrated titer and T50 titers. 

Accordingly to what shown in the first Chapter, the log-ratio likelihood was used 

for each serum i at dilution d as follows: 

 

                            𝐿𝑅𝑖𝑑~𝑁(𝜇(𝑑𝑖| 𝜃𝑖
), ℎ𝑖 ∗ 𝜇′(𝑑| 𝜃

𝑖
)),                                       (3.4) 

 

where 𝜇′(𝑑𝑖| 𝜃𝑖
) =

𝜕 𝜇(𝑑𝑖| 𝜃
𝑖
)

𝜕𝑑
 

the mean structure of model (3.4) needs to incorporate the features of bioassay 

data: the occurrence of finite upper and lower asymptotes and a monotone 

relation between dilution and log-ratio. To incorporate this constraint the 4PL 

logistic model was used as in Chapter 2: 

 

𝜇 (𝑑, 𝜃
𝑖
)

 
= 𝛿𝑖 +

𝛼𝑖−𝛿𝑖

1+(
𝑑

𝛾𝑖
)

𝛽𝑖
   so that  𝜃𝑖 = [𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝛿𝑖]                  (3.5) 

 

The variance of model (3.4) reflects another typical feature of bioassay data, 

defining proportionality between assay saturation and precision of the measured 

log-ratio data up to an unknown and possibly serum-dependent coefficient hi. 

Under (3.6) and taking the log-ratio data as conditionally independent given the 



 42 

model coefficient 𝜃𝑖  and the tested dilution (d1,...,dJ) the log-likelihood of the log-

ratio data is: 

 

𝑙(𝐿𝑅𝑖1, . . . , 𝐿𝑅𝑖𝐽|𝜃
𝑖
, d1, . . . , d𝐽) ∝ −

1

2ℎ𝑖
∑ (

𝐿𝑅𝑖𝑗−𝜇(𝑑𝑗,𝜃𝑖
)

𝜇′(𝑑𝑗,𝜃𝑖
)

)𝐽
𝑗=1                     (3.6) 

 

3.2.1 Measurement error priors  

 

Identifiability of 𝜃𝑖  under (3.4) even when J>5 is problematic due to 𝜇(𝑑𝑗,𝜃𝑖
) 

being invariant to simultaneous inversion of the signs of (𝛼𝑖 , 𝛿𝑖, 𝛽𝑖) at any 

dilution d.  

as 𝛼𝑖>𝛿𝑖, or by fixing a priori the sign of the slope coefficient 𝛽𝑖 [35]. Here we 

take a different approach, by defining the prior probability distribution for each 

component of 𝜃𝑖  independently by modelling the frequency distribution of the 

maximum likelihood estimates (MLEs) of each model parameter. These MLEs 

were calculated from the set of OPKA experiments used in Chapter 2.4.1 for the 

repeatability analysis, which are experiments run under the same identical 

condition for each of the 9 sera tested. Only sera where maximum killing 

exceeded 50 and the minimum estimated killing was larger than the theoretical 

maximum bacterial proliferation within the assay time (-300) were considered 

for the prior specification.  Therefore, as opposed to representing an a priori 

subjective opinion of the experimental scientist, these priors quantify the 

expected range and variability of the model parameters induced by the 

experimental error measured when testing in OPKA a wide range of human sera.  
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Figure 3.1 shows the kernel density estimates for the distributions of 

(𝛼𝑖 , 𝛽𝑖, 𝑙𝑜𝑔(𝛾𝑖), 𝛿𝑖, log(hi)). All five distributions seem symmetric and amenable to 

be tested for the hypothesis of Gaussian distribution. 

The p-values of the Kolmogorov-Smirnov statistics testing Gaussianity of the 

MLE frequency distributions of (𝛼𝑖 , 𝛽𝑖, 𝑙𝑜𝑔(𝛾𝑖), 𝛿𝑖 ,log(hi)) were (0.17, 0.36, 0.32, 

0.10, 0.28) respectively. Since none of these p-values indicated a gross 

inconsistency between the observed MLE frequencies and the Gaussian 

distribution, the prior distributions used here were 

 

          𝛼𝑖~𝑁(1.4,0.8)                                                     (3.7)     

        𝛽𝑖~𝑁(−2.4,1.3) 

   𝛿𝑖~𝑁(−4.7,1) 

     𝛾𝑖~𝐿𝑁(7.4,1.4) 

     ℎ𝑖~𝐿𝑁(4.2,0.5) 

 

where N(a,b) and LN(a,b) indicate respectively the Gaussian and log-Normal 

distributions with mean equal to a and SD equal to b. The prior moments in (3.7) 

matched the empirical moments of each parameter’s MLEs. Consistently to what 

presented in Chapter 2, in this section threshold based titers T50 will be 

calculated using the dilution-logratio model (3.5) to interpolate dilution-logratio 

data points. 

Figure 3.2 depicts the prior predictive mean and the point-wise prior predictive 

intervals for the killing curve (left panel) and the prior predictive distributions of 

the threshold-based T50 and Integrated titers under (3.6) and (3.7). The prior 

predictive killing mean (whole black curve in Figure 3.2) displays a visible 
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saturation to the left, corresponding to dilution factors lower than 1000 and to 

very high killing values, reflecting the relatively high concentrations of functional 

antibody in the sera used for defining this prior. Also, the prior predictive 

intervals around the mean are very wide, suggesting that the strength of this 

prior is low. Despite the substantial difference between the titer functionals T50 

and TI the right panel in Figure 3.2 shows that their prior distributions are very 

similar, being approximately symmetrical in the log-dilution factor with 

interquartile range of approximately (670, 4500) and prior predictive mean of 

2900. Figure 3.2 implies that a priori neither of the two titer definitions is 

expected to yield appreciably different point estimates or titer estimates with 

different precision.   

 

 

Figure 3.1: kernel density estimate for the distributions of (𝜶𝒊, 𝜷𝒊, 𝒍𝒐𝒈(𝜸𝒊), 𝜹𝒊, 𝒍𝒐𝒈(𝒉𝒊) ). All 

five distributions seem symmetric and amenable to be tested for the hypothesis of 

Gaussian distribution. The Kolmogorov-Smirnov P-Values  (0.17, 0.36, 0.32, 0.10, 0.28) 

indicate that this hypothesis can't be rejected 
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Figure 3.2: the left panel shows the prior predictive dilution-killing mean (whole curve) 

along with its 95%, 50% and 20% prior probability intervals. The right panel shows the 

prior predictive distributions of T50 and TI titers. These distributions are closely matched, 

being approximately symmetrical in the log-dilution factor with interquartile range of 

approximately (670, 4500) and prior predictive mean of 2900. 

 

3.2.2 Posterior inference  

 

Under the likelihood (3.6) and priors (3.7), the conditional posterior 

distributions of the coefficients 𝜃𝑖  are not closed under sampling, so that 

marginal posterior estimates need begin approximated using numerical 

techniques. To this end, an independent sampler Markov chain Monte Carlo 

(MCMC) was used with proposal distributions for each of the coefficients 

(𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝛿𝑖, hi) centred at their maximum likelihood estimates (MLEs) and with 

standard deviations (0.1,0.1,0.1,0.05,0.05). These proposals yielded mixing rates 

approximately matching the optimal 0.234 [36] with one proposed value being 
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accepted every three to six iterations. Each of the two titers T50 and TI were 

calculated at each iteration of the MCMC and approximate marginal posterior 

median titers were estimated using ten thousand iterations. Given the model 

parameters, calculation of the threshold-based titer T50 is analytical [28], 

whereas no closed-form expression for the integrated titer TI is available. The 

integral defining (3.2) was then approximated numerically within the MCMC by 

using importance sampling with a uniform importance density over the range of 

dilutions yielding non-negative killing values. 

 

3.3 Operational characteristics of threshold free Integrated titers using 

simulated data 

 

OPKA curves were simulated using the likelihood (3.6) under the three scenarios 

shown in Figure 3.3. In this figure, the curves are represented first on the 

dilution-Logratio scale (left panel) and then on the dilution-killing scale (right 

panel). These scenarios respectively represent pronounced assay saturation at 

low dilutions (s=1 or "left plateau"), no assay saturation (s=2 or "no plateaus") 

and pronounced assay saturation at high dilutions associated to non-negative 

killing values (s=3 or "right plateau"). Table 3.1 shows the values of the model 

parameters associated to these three scenarios used to calculate the Logratio 

killing curves, as well as the corresponding values of T50 and TI titers and the 

values of the variance scaling factors h used to simulate OPKA data around these 

expected OPKA curves. A lower h value was used when simulating from the no 

plateaus scenario, because the derivative of the log-ratio curve is large and 

constant over the range of dilutions. This value was used to generate OPKA data 
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using standard deviations comparable to those used when simulating from the 

other two scenarios where the first derivative is less pronounced. As shown in 

Table 3.1, the left plateau curve displays the maximum associated titer, 

irrespectively of whether T50 or TI are used. Titer T50 for the no plateaus scenario 

(s=2) is larger than that of the same titer for the right plateau curve (s=3) 

whereas the opposite is true for titers TI. This difference is due to the 

insensitivity of T50 to the long tail of positive killing values of the right plateau 

scenario. Since this curve has non-negligible first derivative within the dilution 

interval (0,10000), titer TI is pulled to the right compared to its value for the no 

plateaus curve. These numerical discrepancies reflect the inherent difference in 

the notions of antibody functionality embedded in the titer definitions T50 and TI, 

in that T50 reflects the dilution associated to one killing value whereas TI 

summarizes the pattern of the OPKA curve over the range of assay sensitivity. 

 

Figure 3.3: dilution-logratio (left panel) and corresponding dilution-killing (right panel) 

sigmoidal curves for three illustrative scenarios, displaying a pronounced saturation at 

low dilutions (s=1 or ``left plateau''), no saturation (s=2 or  ``no plateaus'') and a 

pronounced saturation at high dilutions associated to non-negative killing values (s=3 or 

``right plateau'' 
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Serotype lef plateau no plateaus right plateau 

𝜶 -2 -5 -2 

𝜷 4 1 3 

𝜸 15000 3000 3500 

𝜹 2 1.7 -0.012 

T50 11397.5 4444.4 3511.7 

TI 10687.1 3215.7 3566.8 

H 30000 300 10000 

Table 3.1: values of the model parameters (3.6) defining the three simulation scenarios 

depicted in Figure 3.3 corresponding titers T50and TI and corresponding variance scaling 

factors h used to simulate data 

 

Figure 3.4 shows the simulation results with N=2000 for each of the three 

simulated scenarios. The dilution values used here were (30, 120, 480, 1920, 

7680, 30720), closely mimicking the assay characterization experiments used to 

derive the prior predictive distributions shown in Figure 3.2. Each point 

displayed in the upper panels of Figure 3.4 plots one estimated titer T50 versus 

its corresponding titer estimate using TI. The lower panels of Figure 3.4 plot the 

coefficients of variation (CV%) of each titer estimate (T50) calculated along its 

Markov chain versus the CV% of the corresponding titer estimate TI. 

The upper left panel in Figure 3.4 shows that a tight linear relationship was 

observed between the estimated titers T50 and TI for the left plateau scenario 

(Pearson correlation coefficient >99 and slope equal to 0.92), with integrated 
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titer estimates taking lower values than the corresponding threshold-based 

titers in the upper range consistently with the true titer values displayed in 

Table 3.1. Also, the lower left panel in Figure 3.4 shows that both titer estimates 

are equally precise, with maximum CV% lower than 6%. The upper central plot 

in Figure 3.4 shows that the linear relationship between the titer estimates T50 

and TI is also very strong for the no plateau scenario (Pearson correlation = 0.95 

and slope equal to 0.63) but the Integrated titer estimates are consistently 

smaller than their corresponding threshold-based titer estimates. This result can 

be explained by noting from Figure 3.3 that the positive portion of the killing 

curve of this simulation scenario is approximately linear, with slope larger than 

its critical value 𝛽∗.  

The lower central panel in Figure 3.4 shows that the CV% of the integrated titer 

estimates for this simulation scenario tend to be lower than the CV% of the 

corresponding threshold-based estimates, demonstrating that TI provides a 

more precise quantification of antibody functionality in absence of assay 

saturation. The upper right panel in Figure 3.4 shows that integrated titer 

estimates for the right plateau simulation scenario tend to be larger than the 

corresponding threshold-based titer estimates, preserving excellent linearity 

(Pearson correlation=0.96 and slope equal to 1.02). Consistently with the true 

titer values shown in Table 3.1, this discrepancy is due to the ability of TI to 

reflect the positive killing values at high dilutions over portion of the OPKA curve 

having non-negligible first derivative. The lower right panel in Figure 3.4 shows 

that also for this scenario the CV% of the integrated titer estimates tend to be 

much lower than the CV% calculated on the corresponding threshold-based 

estimates, again providing a more precise measure of antibody functionality.  In 
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general, the results of the simulation analysis indicate that Integrated titers are 

linearly related to traditional T50 titers, and they are more precise in terms of 

coefficient of variation calculated on each single simulated serum. This result is a 

first good indication because the scenarios considered in this analysis are 

representative of the routinely analysed serum samples of OPKA dilution-killing 

data.    

 

 

Figure 3.4: each point displayed in the upper panels plots one titer T50 estimated from 

simulated data versus its corresponding titer estimate using TI .The lower panels plot the 

coefficients of variation (CV%) of each titer estimate T50 calculated along its Markov chain 

versus the CV% of the corresponding titer estimate TI. Strong linear relationships between 

the two titer estimates are observed for all simulation scenarios. The CV% associated to 

both titer definitions estimated from the left plateau scenario are consistently low. The 

CV% of the Integrated titers for the other two scenarios tend to be lower than those of the 

threshold-based titer estimates, indicating that in these cases TI provides a more precise 

quantification of antibody functionality 
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3.4 Operational characteristics of threshold free Integrated titers using 

DEVANI data 

Functional antibody titers were estimated using T50 and TI from a set of OPKA 

experiments performed on human sera collected in the context of the DEVANI 

study (www.devaniproject.org). The aim of this study was to characterise the 

seroepidemiology of group B Streptococcus (GBS) in pregnant women in Europe. 

The data analyzed here were collected from 30, 43, 53 randomly selected human 

sera respectively for the three GBS serotypes Ia, Ib, III. Unlike in the simulation 

example illustrated above, each serum analyzed here was tested using 4 serum 

dilutions, comprised between a minimum of 30 and maximum of 10800. 

Therefore, unique maximum likelihood estimates of the five coefficients of model 

(3.5) are not possible from this limited number of data. In this case, the Bayesian 

approach offers two big advantages: first the titer estimation leverages the assay 

characterization experiments via the priors (3.7) incorporating the key 

knowledge that these experiments has offered; second it also makes possible and 

meaningful the estimation of a unique titer for each analysed serum.  

Independent MCMC runs with length 2000 iterations were used when estimating 

T50 and TI for different sera, yielding acceptance rates within 10% and 40%.  

The upper panels of Figure 3.5 show the posterior median estimates of T50 

(horizontal axis) plotted against those of TI for each analysed serum and for each 

of the three GBS serotypes. The two titer point estimates are very similar, with 

the TI titers displaying marginally lower values than the corresponding T50 

estimates consistently with the simulation results displayed in Figure 3.4. Similar 

results were obtained when using the posterior mean as titer point estimate. The 

lower panels in Figure 3.5 show the relationship between the posterior CVs of 
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each T50and TI titer estimate analogously to Figure 3.5. For serotype Ia (left 

panel), the proportion of CV% of TI titers lower than those of the corresponding  

T50 estimates is 22/30 = 73%. For serotype Ib, 29/43 =67% of TI CV% are lower 

than those of the corresponding T50 estimates. For serotype III (right panel), 

40/53= 0.75% of TI CV% are lower than those of T50 titers. These results indicate 

that TI titer estimates are more precise than T50 estimates (Binomial test p-

values < 0.05 for all three serotypes), although this difference is less pronounced 

than for simulated data due for instance to the lower range of CV% values 

estimated from experimental OPKA data. 

 

Figure 3.5: posterior median estimates of T50 (horizontal axis) plotted against those of TI 

for each analyzed serum and for each of the three GBS serotypes (upper panels). The 

relation between the two point estimates is linear, as in the simulation results shown in 

Figure 3.4, with TI titers displaying marginally lower values than the corresponding T50 

estimates. The lower panels show the relation between the posterior CVs of the TI and T50 

titer estimates analogously to Figure 3.4. The CVs of TI estimates are consistently lower 

than those of the corresponding T50 estimates, indicating again that TI titers provide more 

precise quantifications of antibody functionality compared to T50 titers 
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The upper-left panel in Figure 3.6 shows the dilution-killing data, estimated 

posterior killing and titers for one serum tested in OPKA for serotype III GBS 

antibody functionality. In this case the posterior medians of TI and T50 almost 

coincide, taking values 72 and 73 respectively. The upper-right panel in Figure 

3.7 compares the positive portion of this estimated killing curve to the linear 

interpolant passing through the two measured dilution-killing data points, with 

coordinates (30,76) and (90,39). Since the linear interpolant closely resembles 

the estimated killing curve, Theorem 3.1 and Lemma 3.1 apply in this case. The 

linear interpolant has intercept 𝛼= 94.5 and slope 𝛽 = -0.62. Since d1 = 30 here, 

using Lemma 3.1 with 𝜏 = 50 and 𝛼 = 94.5 the slope value ensuring equality of 

titers is 𝛽 * = -0.65. The proximity between the estimated killing curve under 

(3.6) and (3.7) to the linear interpolant combined with the small discrepancy 

between 𝛽 and 𝛽 * explain why in this case the TI and T50 estimates are very 

close both to each other and to the titer estimates calculated from the linear 

interpolant using Theorem 3.1 (taking respectively values 71 and 72).  

The lower panels in Figure 3.7 show the data and killing curves for two 

additional sera. The left panel shows one case where �̂�50 = 33 and �̂�𝐼= 93, so that 

�̂�50< �̂�𝐼 . These titer estimates represent a killing curve barely exceeding 50 at the 

lowest dilution and having moderate slope. The right panel illustrates the killing 

curve of a different serum, where �̂�50= 1365 and �̂�𝐼=1015. Here the killing 

associated to the lowest dilution is close to 100 and most of the non-negative 

killings are associated to dilutions lower than �̂�50so that �̂�50> �̂�𝐼 . In both cases �̂�50 

fails to represent most of the killing pattern, being by construction independent 

of the killing values observed respectively at higher or lower dilutions. In 
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contrast, �̂�𝐼 more closely reflect the killing curves of these human sera, which 

exhibit many non-negative killing values respectively above and below �̂�50.  

 

 

Figure 3.6: dilution-killing data, estimated posterior killing and titers for one serum 

tested in OPKA for serotype III GBS (upper left panel). Since the linear interpolant closely 

resembles the estimated killing curve, Theorem 3.1 and Lemma 3.1 apply in this case 

(upper right panel). The proximity between the killing estimated under (2.6) and (2.7) to 

the linear interpolant and the small difference between 𝜷= -0.62 and 𝜷* = -0.65 explain 

why in this case the TI and T50 estimates are very close to each other (72 and 73) and to 

the titer estimates calculated from the linear interpolant (71 and 72). The lower panels 

show the killing curves of two other sera where�̂�50 = 33 and �̂�𝐼= 93  (left panel), so that 

�̂�50 < �̂�𝐼 , and �̂�50 = 1365 and �̂�𝐼= 1015. (right panel), so that �̂�50 > �̂�𝐼 . In both cases �̂�50 

fails to reflect most of the killing curve, whereas �̂�𝐼 more closely reflect the many non-

negative killing values respectively above and below �̂�50 
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3.5 Summary and discussion of Chapter 3 

 

Here the threshold-free titer definition proposed in Chapter 2 was extended so 

as to incorporate an assumption of monotonicity of the dilution-killing curve, as 

reflected by the 4PL model. The main strength of this approach is that saturation 

of the killing curve is automatically taken into account when estimating 

threshold-free titers, as opposed to being accounted for by specification of the 

plateau condition z. In this way the plateau occurrence is handled from a 

statistical point of view that automatically incorporate the biological meaning 

(down-weight of plateau).  

In addition, this Chapter demonstrates three main strengths of a Bayesian 

approach to modelling and analysis of antibody functional activity. First, prior 

distributions derived from assay characterization experiments establish a formal 

link between the assay operational characteristics and the analysis of 

subsequent data. Second, these priors robustify titer estimation when the 

number of tested dilutions is low. Third, marginal posterior distributions 

provide estimates of titer precision without relying on the asymptotics 

underpinning the derivation of confidence intervals. 

This work thus poses the bases for Integrated titers to become a tool for the 

analysis of clinical data.  In practice, this will be possible if the numerical 

methods for titer estimation are implemented efficiently for routine use. 

For instance, the Markov chain Monte Carlo sampler used here does not exploit 

the posterior conjugacy of the variance scaling coefficient h, which would ensue 

from using an Inverse Gamma prior. If this prior can be supported by further 

assay characterization experiments, then h can be integrated out of the joint 
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posterior thus simplifying the posterior sampling of the remaining model 

coefficients.  Also, other numerical methods for approximate posterior inference 

can be used, such as the integrated nested Laplace approximation [37] in the 

pursuit of further numerical robustness and efficiency. Both threshold-based and 

Integrated titers are invariant to specific classes of transformations of the 

dilution-killing curve. Threshold-based titers are invariant to transformations 

leaving unchanged the dilution associated to the critical killing value 𝜏, whereas 

Integrated titers are invariant to multiplication of all non-negative killing values 

by the same non-negative constant. The strong linear relations between the 

posterior point estimates of threshold-based and Integrated titers shown in 

Figure 3.4 and 3.5 demonstrate that the estimated antibody functional activity is 

similar across the two titer definitions, although Integrated titers tend to provide 

more precise estimates. If titer invariance to multiplicative transformations of 

killing proved inadequate, different threshold-free titer definitions could be 

readily proposed. For instance, weighted averages of the minimum and 

maximum tested dilutions with weight proportional to interpretable killing 

statistics could provide alternative estimators of antibody functional activity. 

The parametric model used for simulation and analysis of experimental data is in 

our experience adequate to fit the observed OPKA curves. If non-linear 

heteroskedastic monotone models were found inadequate, for instance for the 

analysis of a large number of clinical data, flexible non-parametric Bayesian 

models centred at the current parametric likelihood using Dirichlet priors could 

be developed following [34]. A limitation to employing non-parametric models of 

the dilution-killing curve is that typically only a low number of serum dilutions 

are tested for each serum. 
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In this case, titer inferences may thus be sensitive to the value of the Dirichlet 

precision parameter. Also, in practice only experiments yielding a monotone 

dilution-killing pattern are deemed valid, making largely superfluous the 

development of non-monotone models for titer inference. Finally, a further 

limitation to using nonparametric models for titer inference is that the need for 

interpretable dilution-killing parameters is deeply ingrained in the current 

experimental practices, which have historically relied on biophysical dose-

response models. From this perspective, the development of interpretable yet 

flexible non-linear dose-response models with identifiable parameters is a 

relevant and timely theme for further research in this field.  
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Chapter 4: Discussion of thesis results and ways forward. 

 

Here an approach to bioassay quantification from serial dilution experiments 

using dimensionality reduction indices estimated from the viable portion of a 

dilution-killing curve was demonstrated. This approach is in essence different 

from the mainstream principles used for bioassay quantification, which are 

based on extrapolation of one dilution value at one fixed killing threshold. The 

strengths of the approach proposed here compared to the traditional approach 

are simply the result of the higher precision of estimators reflecting an 

aggregated behaviour along a curve compared to estimators of one value of the 

curve at a fixed point. This increased precision is reached both using a model 

free and a model approach. The first one is simple in its methodological 

foundation also for non-statisticians who can independently implement the 

method. Despite the simplicity of the methodological foundations of our 

approach, its acceptance in mainstream experimental work is currently being 

assessed, as its values in a large number of samples need being observed before 

a comprehensive opinion is crystallised. This assessment was welcome and 

taken as a healthy sanity check of methods that can be used for analyses as 

delicate as those performed on clinical trial samples. 

The second approach preserves the same simple rationale and therefore at least 

the meaning is easy to understand. Its increased complexity from a 

methodological point of view make this method extremely interesting from the 

point of view of a researcher who have a strong quantitative background, but it 

becomes harder to implement for who have not programming knowledge. 
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Therefore the road for a wide acceptance of Integrated titers will be much longer 

but simultaneously more challenging. 

Beyond the results illustrated here, some further research areas are being 

deepened. First, the computational robustness of TI: in this paper MCMC 

algorithm that efficiently estimated Integrated titers was developed, however its 

complexity is an issue potentially limiting a wide understanding of the method 

proposed. Therefore the optimization of such algorithm exploring alternative 

methods, including adaptive MCMC algorithms, is currently under investigation.  

Second, a hybrid threshold free definition is being developed, which is a linear 

combination of the two definitions proposed in this thesis.  The weight 

associated to each of these titer definitions reflects how well the dilution-killing 

model fits the data: if the model fits perfectly, then only the TI estimator will be 

used, if it doesn't fit at all, then the Tf titers will be preferred. Third, estimation of 

threshold free and Integrated titers can be extended beyond the analysis of 

OPKA data. For instance the serum bactericidal assay [SBA, 38], which is used to 

measure the ability of serum antibody to kill gram-negative bacteria, represents 

an important experimental setup for further assessing the applicability of 

integrated titer definitions. Successful application of Integrated titers in this case 

would have particular relevance because SBA titers are the recognised 

immunological correlate of protection against meningicoccal diseases. 

 In addition, threshold free titer definitions could be in principle used for non-

functional immunoassay, such as Enzime-Linked-Immunoassay (ELISA). In such 

cases, the assay features will pose new issue to further improve the current 

definitions. In the ELISA assay, the outcome (optical density) is bounded 

between 0 and 4. This additional constraint (finite lower bound) poses 
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additional challenges for the application of threshold-independent titer 

definitions, such as model selection and their biological interpretability.  
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Appendix: R code for estimation of Integrated titers 

Here the R code written for estimating Integrated titers is reported in full, along 

with one example of titer inference from simulated data. This appendix 

demonstrates the computational complexity involved in titer estimation and the 

Author's efforts to provide numerically stable code ensuring the reproducibility 

of the results reported in this thesis. This code is currently not packaged into a 

user-friendly form and brief comments and interviewed below to the different 

computational routines. Efforts to present this code in a dedicated R package are 

currently ongoing. 

 

load(drc) 

#set of dilutions considered for simulation 

dilutions=c(30,120,480,1920,7680,30720) 

seq = seq(min(dilutions),max(dilutions),5) 

 

#parameter values for one simulation scenario 

a = -2 

d = 2 

ys = -1 

c=15000 

b=4; 

#corresponding Log-ratios and killings 

Logratio<- d + (a-d)/((1+(dilutions/c)^b)^1) 

killing=100*(1-2^ Logratio) 

Logratio_seq<- d + (a-d)/((1+(seq/c)^b)^1) 

 

#estimated "true" t50 

t50  = c*(((a-d)/(ys-d))^(1/1) -1)^(1/b)   

 

#first derivative of Logratio and killing 

fprimox<-function(x,a,b,c,d,g){ 

 -((a-d)*g*b*(x)^(b-1))  /  (((1+(x/c)^b)^(g+1))*c^b) 

} 

#kprimo 

kprimox=function(fprimo,LR){ 

-log(2)*fprimo*2^(LR) 

} 

 

#estimated "true" Integrated titers 

NN=1000 

rr = c(min(seq), max(seq[100*(1-2^Logratio_seq) > 0])) 

difference = diff(rr) 

un= seq(rr[1], rr[2], difference/NN)  

LR = d + (a-d)/((1 + (un/c)^ b)^1) 

kill_un = 100 * (1 - 2^(LR)) 

kprime = abs(kprimox(fprimox(un, a,b,c,d, 1), LR)) 

cons = diff(rr) * mean(kill_un * kprime) 

tInt = diff(rr) * mean(un * kill_un * kprime)/(cons) 
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# 

Niter=2000 #number of simulation 

ldil=length(dilutions) 

 

#simulation of Logratio data 

LR4dil_s1=matrix(0,Niter,ldil) 

h=30000# h values for this scenario 

sds_4PL_dil = h*fprimox(dilutions,a,b,c,d,1)#first derivative of 

dilution-logratio curve 

kk = matrix(0,Niter,1) 

 

for(i in 1:Niter){ 

 COND = 0  

 aaa = 0 

 while(COND < 1){ 

  LR4dil_s1[i,]=rnorm(ldil,Logratio,sds_4PL_dil) 

  COND = (sum(diff(LR4dil_s1[i,])<0)==0) #monotone data 

  aaa=aaa+1 

 } 

 kk[i,1]=aaa 

} 

 

 

#likelihood model 

 loglik4pl_optim = function(par,dilution,logratio,msds){ 

 rrr = 0 

 for(i in 1:dim(logratio)[[1]]){ 

     fpl = par[4] + (par[1]-

par[4])/(1+((dilution[i,]/par[3])^par[2])) 

    

 sds=par[5]*abs(fprimox(dilution[i,],par[1],par[2],par[3],par[4

],1) ) 

     sds = apply(t(as.matrix(sds)),2,max,msds)   

      # Log-likelihood   

        rrr = rrr+sum(dnorm(logratio[i,],fpl,sds,log=TRUE)) 

    }   

    if(is.na(rrr)==1 | is.infinite(rrr)==1 | par[5]<=0 | par[3]<=0)  

rrr = -.Machine$double.xmax # numerical patch 

    return(rrr) 

 } 

 

#function for MLE estimates of parameters likelihood  

 

estimate_4pl_optim=function(fivep_dil,dil,h_0,msds) { 

 

coef=matrix(0,1,6) 

dimnames(coef)[[2]]=list("b","d","a","c","g","h") 

 

 coef[1,1:4]=coef(drm(as.vector(fivep_dil)~as.vector(dil),fct=LL.4())

) 

  

 a=coef[1,3]#d 

 b=coef[1,1]#b 

 c=coef[1,4]#e 

 d=coef[1,2]#c 

 g=1#f 

 coef[1,5]=1  

 

par=c(a,b,c,d,h_0) 

fit=optim(par, 
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loglik4pl_optim,logratio=t(as.matrix(c(fivep_dil))),msds=msds, 

dilution=t(as.matrix(c(dil))),lower=0,upper=1000,method="L-BFGS-B") 

 

coef[1,6]=fit$par[5] 

list(par,c(fit$par[1:4],g,fit$par[5]),fit$convergence) 

 

 

} 

 

 

#MCMC algorhitm  

mcmc4PLcu <- function(dilution, 

logratio,mu_0,sigma_0,coeff_0,sigma_q,N,sss,NN,sw,msds){  

   

 if(max(100*(1-2^logratio)) <0|| min(100*(1-2^logratio))>50   

){coeffs = matrix(-1000,N,9)} 

  

 else{ 

 i=1 

 coeffs = matrix(0,N,9) # a,b,d,c,h,loglik,tINT,t504PL,tINT2 (one 

additional titer definition) 

 coeffs_prop = matrix(0,N,5)  

  

 coeffs_prop[i,1:3] = rnorm(3,coeff_0[1:3],sigma_q[1:3]) 

 coeffs_prop[i,4:5] = rlnorm(2,log(coeff_0[4:5]),sigma_q[4:5])  

  

 if(sum(coeff_0)!=0){ 

  coeffs[i,1:5]=coeff_0 

 } 

 else{ 

  coeffs[i,1:3] = rnorm(3,mu_0[1:3],sigma_0[1:3]) # a,b,d 

  coeffs[i,4:5] = rlnorm(2,mu_0[4:5],sigma_0[4:5]) # c,h 

 }  

   

 LR4p_1 <- coeffs[i,3] + (coeffs[i,1] - coeffs[i,3])/((1 + 

(sss/coeffs[i,4])^ coeffs[i,2])^1) 

 Kil4p_1 = 100 * (1 - 2^(LR4p_1)) 

 

     if (max(Kil4p_1)>50){ 

 

  rr_4Pl_1 = c(min(sss), max(sss[Kil4p_1 > 0])) 

  d_rr_4Pl_1 = diff(rr_4Pl_1) 

  un_4Pl_1 = seq(rr_4Pl_1[1], rr_4Pl_1[2],d_rr_4Pl_1/NN) 

   

  LR_un_4Pl_1 = coeffs[i,3] + (coeffs[i,1] - coeffs[i,3])/((1 + 

(un_4Pl_1/coeffs[i,4])^ coeffs[i,2])^1) 

  kill_un_4Pl_1 = 100 * (1 - 2^(LR_un_4Pl_1)) 

 

  #integrated titer 4PL kk' 

  kprime_4Pl_1 = abs(kprimox(fprimox(un_4Pl_1, coeffs[i,1], 

coeffs[i,2], coeffs[i,4], coeffs[i,3], 1), LR_un_4Pl_1)) 

 

  C_un_4Pl_kprime_1 = diff(rr_4Pl_1) * mean(kill_un_4Pl_1 * 

kprime_4Pl_1) 

 

  coeffs[i,7] = diff(rr_4Pl_1) * mean(un_4Pl_1 * kill_un_4Pl_1 * 

kprime_4Pl_1)/(C_un_4Pl_kprime_1) 

  

  # closed form expression for t504PL, conditional on estimated 

coeffs 

      coeffs[i,8]=coeffs[i,4]*(((coeffs[i,1]-coeffs[i,3])/(ys-
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coeffs[i,3]))^(1/1) -1)^(1/coeffs[i,2]) 

 

 #integrated titer 4PL kk' second version 

 w = C_un_4Pl_kprime_1/kill_un_4Pl_1[1] 

 coeffs[i,9]= rr_4Pl_1[2]*w + rr_4Pl_1[1]*(1-w) 

 

 }  

 else {  

   

  coeffs[i,7]= NA 

  coeffs[i,8]= NA 

  coeffs[i,9]= NA  

   

 } 

  

 loglik_cur = 

loglik4pl_optim(c(coeffs[i,1],coeffs[i,2],coeffs[i,4],coeffs[i,3],co

effs[i,5]), dilution ,logratio,msds) 

 

 coeffs[i,6]=loglik_cur 

 

 uu = log(runif(N,0,1)) 

   

 for(i in 2:N){ 

   

  logpro_diff = matrix(0,1,5) 

  if(sw==0){ # random walk proposal  

    

   # plain RW proposal 

   coeffs_prop[i,1:3] = rnorm(3,coeffs_prop[i-

1,1:3],sigma_q[1:3]) 

   coeffs_prop[i,4:5] = rlnorm(2,log(coeffs_prop[i-

1,4:5]),sigma_q[4:5]) 

    

  } 

  else { # independent sampler proposal  

   coeffs_prop[i,1:3] = rnorm(3,coeff_0[1:3],sigma_q[1:3]) 

   coeffs_prop[i,4:5] = 

rlnorm(2,log(coeff_0[4:5]),sigma_q[4:5]) 

    

   logpro_diff[1:3] = dnorm(coeffs_prop[i-

1,1:3],coeff_0[1:3],sigma_q[1:3],log=TRUE)-

dnorm(coeffs_prop[i,1:3],coeff_0[1:3],sigma_q[1:3],log=TRUE) 

    

   logpro_diff[4:5] = dnorm(log(coeffs_prop[i-

1,4:5]),log(coeff_0[4:5]),sigma_q[4:5],log=TRUE)-

dnorm(log(coeffs_prop[i,4:5]),log(coeff_0[4:5]),sigma_q[4:5],log=TRU

E)  # c,h 

  } 

   

  # a,b,d   

  logpri_diff = matrix(0,1,5) 

 

  logpri_diff[1:3] = 

dnorm(coeffs_prop[i,1:3],mu_0[1:3],sigma_0[1:3],log=TRUE)-

dnorm(coeffs[i-1,1:3],mu_0[1:3],sigma_0[1:3],log=TRUE) 

   

  #c,h 

  logpri_diff[4:5] = 

dnorm(log(coeffs_prop[i,4:5]),mu_0[4:5],sigma_0[4:5],log=TRUE)-

dnorm(log(coeffs[i-1,4:5]),mu_0[4:5],sigma_0[4:5],log=TRUE) 
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  # print(dnorm(log(coeffs[i-

1,4:5]),mu_0[4:5],sigma_0[4:5],log=TRUE)) 

  # 

print(dnorm(log(coeffs_prop[i,4:5]),mu_0[4:5],sigma_0[4:5],log=TRUE)

) 

  # print(coeffs_prop[i,4:5]) 

  # print(logpro_diff) 

  # print(logpri_diff) 

# #  print(coeffs_prop[i,])  

 

 # component-wise update 

 

  # recompute likelihood because the data have changed 

  loglik_cur = loglik4pl_optim(c(coeffs[i-1,1],coeffs[i-

1,2],coeffs[i-1,4],coeffs[i-1,3],coeffs[i-

1,5]),dilution,logratio,msds) 

 

 # update coefficient a 

 loglik_prop = loglik4pl_optim(c(coeffs_prop[i,1],coeffs[i-

1,2],coeffs[i-1,4],coeffs[i-1,3],coeffs[i-

1,5]),dilution,logratio,msds) 

  

 loglik_diff = loglik_prop-loglik_cur #  

  

    #print(loglik_diff) 

            

 acc_a = (uu[i]<=loglik_diff+logpri_diff[1]+logpro_diff[1]) # do MCMC 

 coeffs[i,1] = coeffs_prop[i,1]*acc_a + (1-acc_a)*coeffs[i-1,1] 

 loglik_cur=loglik_prop*acc_a + (1-acc_a)*loglik_cur  

 

 # update coefficient b 

 loglik_prop = 

loglik4pl_optim(c(coeffs[i,1],coeffs_prop[i,2],coeffs[i-

1,4],coeffs[i-1,3],coeffs[i-1,5]),dilution,logratio,msds) 

 

# print(loglik_diff) 

        

 acc_b = (uu[i]<=loglik_diff+logpri_diff[2]+logpro_diff[2]) # do MCMC 

 coeffs[i,2] = coeffs_prop[i,2]*acc_b + (1-acc_b)*coeffs[i-1,2] 

 loglik_cur=loglik_prop*acc_b + (1-acc_b)*loglik_cur  

 

 # update coefficient c 

 loglik_prop = 

loglik4pl_optim(c(coeffs[i,1],coeffs[i,2],coeffs_prop[i,4],coeffs[i-

1,3],coeffs[i-1,5]),dilution,logratio,msds) 

 

 loglik_diff = loglik_prop-loglik_cur 

#print(loglik_diff) 

 

 acc_c = (uu[i]<=loglik_diff+logpri_diff[4]+logpro_diff[4]) # do MCMC 

 coeffs[i,4] = coeffs_prop[i,4]*acc_c + (1-acc_c)*coeffs[i-1,4] 

 loglik_cur=loglik_prop*acc_c + (1-acc_c)*loglik_cur  

 

 # update coefficient d 

 loglik_prop = 

loglik4pl_optim(c(coeffs[i,1],coeffs[i,2],coeffs[i,4],coeffs_prop[i,

3],coeffs[i-1,5]),dilution,logratio,msds) 

  

 loglik_diff = loglik_prop-loglik_cur 

#print(loglik_diff) 
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 acc_d = (uu[i]<=loglik_diff+logpri_diff[3]+logpro_diff[3]) # do MCMC 

 coeffs[i,3] = coeffs_prop[i,3]*acc_d + (1-acc_d)*coeffs[i-1,3] 

 loglik_cur=loglik_prop*acc_d + (1-acc_d)*loglik_cur  

 

 # update coefficient h 

 loglik_prop = 

loglik4pl_optim(c(coeffs[i,1],coeffs[i,2],coeffs[i,4],coeffs[i,3],co

effs_prop[i,5]),dilution,logratio,msds) 

 

 loglik_diff = loglik_prop-loglik_cur 

#print(loglik_diff) 

        

 acc_h = (uu[i]<=loglik_diff+logpri_diff[5]+logpro_diff[5]) # do MCMC 

 coeffs[i,5] = coeffs_prop[i,5]*acc_h + (1-acc_h)*coeffs[i-1,5] 

 loglik_cur=loglik_prop*acc_h + (1-acc_h)*loglik_cur  

   

 coeffs[i,6] = loglik_cur  

   

 acc_all = acc_a+acc_b+acc_c+acc_d+acc_h 

 

 if(sum(is.na(acc_all))==0) {  

   

 if(acc_all>0){  

   LR4p_1 <- coeffs[i,3] + (coeffs[i,1] - coeffs[i,3])/((1 

+ (sss/coeffs[i,4])^ coeffs[i,2])^1) 

   Kil4p_1 = 100 * (1 - 2^(LR4p_1)) 

 

    if(max(Kil4p_1)<50){ 

      coeffs[i,7]= NA 

      coeffs[i,8]= NA 

      coeffs[i,9]= NA 

     }  

     else{ 

 

  rr_4Pl_1 = c(min(sss), max(sss[Kil4p_1 > 0])) 

  d_rr_4Pl_1 = diff(rr_4Pl_1) 

  un_4Pl_1 = seq(rr_4Pl_1[1], rr_4Pl_1[2],d_rr_4Pl_1/NN) 

  LR_un_4Pl_1 = coeffs[i,3] + (coeffs[i,1] - coeffs[i,3])/((1 + 

(un_4Pl_1/coeffs[i,4])^ coeffs[i,2])^1) 

  kill_un_4Pl_1 = 100 * (1 - 2^(LR_un_4Pl_1)) 

 

  #integrated titer 4PL kk', set 1 

  kprime_4Pl_1 = abs(kprimox(fprimox(un_4Pl_1, coeffs[i,1], 

coeffs[i,2], coeffs[i,4], coeffs[i,3], 1), LR_un_4Pl_1)) 

 

  C_un_4Pl_kprime_1 = d_rr_4Pl_1 * mean(kill_un_4Pl_1 * 

kprime_4Pl_1) 

  coeffs[i,7] = d_rr_4Pl_1 * mean(un_4Pl_1 * kill_un_4Pl_1 * 

kprime_4Pl_1)/(C_un_4Pl_kprime_1) 

   

  logratiop <- coeffs[i,3] + (coeffs[i,1] - coeffs[i,3])/((1 + 

(dilution/coeffs [i,4])^ coeffs[i,2])^1) 

  

  # closed form expression for t50PL conditional on estimated 

coeffs    

        coeffs[i,8]=coeffs[i,4]*(((coeffs[i,1]-coeffs[i,3])/(ys-

coeffs[i,3]))^(1/1) -1)^(1/coeffs[i,2]) 

  

  #integrated titer 4PL kk' second version 

 w = C_un_4Pl_kprime_1/kill_un_4Pl_1[1] 
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 coeffs[i,9]= rr_4Pl_1[2]*w + rr_4Pl_1[1]*(1-w)      

 

  }   

    } 

  else{ 

   coeffs[i,7]=coeffs[i-1,7] 

   coeffs[i,8]=coeffs[i-1,8] 

   coeffs[i,9]=coeffs[i-1,9] 

  }   

 }  

 else{ 

  coeffs[i,7]=coeffs[i-1,7] 

  coeffs[i,8]=coeffs[i-1,8] 

  coeffs[i,9]=coeffs[i-1,9] 

 } 

}  

 } 

 return(coeffs) 

} 

 

 

 

#empty matrices required for titer simulation 

fits4dil = matrix(0,Niter,7) 

N=2000#number of MCMC iteration 

msds=0.005#constant to prevent numerical issues (defined in 

likelihood) 

bnin = 1 

coeff=array(matrix(1,N,9),c(N,9,Niter))#matrix with estimates of 

a,b,c,d,h,likelihood value, t50 and tInt 

t_Int_sim=matrix(0,Niter,1) 

t_50_sim=matrix(0,Niter,1) 

CV_sim_t50=matrix(0,Niter,1) 

CV_sim_tInt=matrix(0,Niter,1) 

mu_0=c(1.4, -2.4 ,-4.7 , 7.4 , 4.2)#prior means distribution (from 

charachterization data) 

par4PL_est_b=matrix(0, Niter,5)#bayesian estimates of likelihood 

parameters 

par4PL_est_mle=matrix(0, Niter,5)#maximum likelihood estimates of 

likelihood parameters 

arate_Int = matrix(0,dim(coeff)[3],N-1) # acceptance rates for 

Integrated titers (each simulation) 

arate_50 = matrix(0,dim(coeff)[3],N-1) #acceptance rates for T50 

titers (each simulation) 

sigma_0=c(0.8,1.3,1,1.4,0.5)#starting values for MCMC  

sigma_q = c(0.2,0.2,0.2,0.1,0.1)#starting values for MCMC  

NN=2000 

sw=1#use independent sampler  

 

#run the 2000 simulations for estimating t50 and tInt using MCMC 

function (one chain-independent sampler component-wise update) 

 

da1 = date() 

for(i in 1:Niter){ 

 

  stimadil=estimate_4pl_optim(LR4dil_s1[i,],dilutions,h,msds) 

  

  fit4PLdil = unlist(stimadil[2])## 

  par4PL_est_mle[i,] = fit4PLdil[c(1:4,6)] 

 

  coeff_0 = c(fit4PLdil[1], fit4PLdil[2], fit4PLdil[4], fit4PLdil[3], 
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fit4PLdil[6]) 

  coeff[,,i]= 

mcmc4PLcu(t(as.matrix(dilutions)),t(as.matrix(LR4dil_s1[i,])),mu_0,s

igma_0,coeff_0,sigma_q/6,N,seq,NN,sw,msds) 

 

  t_Int_sim[i,]= median(coeff[bnin:N,7,i],na.rm=T) 

  t_50_sim[i,]= median(coeff[bnin:N,8,i],na.rm=T) 

  

CV_sim_t50[i,]=sd(coeff[bnin:N,8,i],na.rm=T)/mean(coeff[bnin:N,8,i],

na.rm=T) 

  

CV_sim_tInt[i,]=sd(coeff[bnin:N,7,i],na.rm=T)/mean(coeff[bnin:N,7,i]

,na.rm=T) 

  par4PL_est_b[i,]=apply(coeff[bnin:N,1:5,i],2, mean,na.rm=T) # 

 

 arate_Int[i,1:(sum(is.na(coeff[,7,i])==F)-1)] = cumsum(diff(coeff[, 

7,i][is.na(coeff[,7,i])==F])>0)/(1:(length(coeff[,7,i][is.na(coeff[,

7,i])==F])-1)) # HERE 

 arate_50[i,1:(sum(is.na(coeff[,8,i])==F)-1)] = 

cumsum(diff(coeff[,8,i][is.na(coeff[,8,i])==F])>0)/(1:(length(coeff[

,8,i][is.na(coeff[,8,i])==F])-1)) # HERE 

 

print(i) 

} 

da2 = date() 

rbind(da1,da2) 

 

t_simdil_Dec =data.frame(cbind( t_50_sim,t_Int_sim, CV_sim_t50, 

CV_sim_tInt)) 

 

#typical plot to assess relationship and precision of TI and T50 

plot(t_simdil_Dec $t_50_sim, t_simdil_Dec 

$t_Int_sim,xlim=c(3000,20000),ylim=c(3000,20000),xlab="Threshold 

based titers",ylab="Integrated titers",main="scenario X 

titers",cex.main=1.8,cex.lab=1.5,cex=1.5,cex.axis=1.3) 

abline(0,1) 

plot(100*(t_simdil_Dec $CV_sim_t50), 100*(t_simdil_Dec 

$CV_sim_tInt),ylim=c(0,8),xlim=c(0,8),xlab="Threshold based 

titers",ylab="Integrated 

titer",cex.main=1.8,cex.lab=1.5,main="Scenarion X 

CV%",cex=1.5,cex.axis=1.3) 

abline(0,1) 

 

 

 

 

 


