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Introduction

In this thesis we present some partial results on Melnikov’s surface group
conjecture. Melnikov conjectured that if G is a residually finite, non-free,
non cyclic hereditary one-relator group, then G is a surface group.

In this original form the conjecture is not true. Baumslag-Solitar groups
BS(1,m) = 〈x, y|xymx−1y−1〉 are residually finite, non-free and non-cyclic
one-relator groups, all their subgroups of finite index are again one-relator
groups, but they are not surface groups. The conjecture can thus be restated
as follows.

Conjecture 1. Let G be a residually finite, non-free, non cyclic hereditary
one-relator group. Then G is either a surface group or a Baumslag-Solitar
group BS(1,m) for some m ∈ Z.

A group G is called a surface group if it is isomorphic to the fundamental
group of a closed surface. Surface groups present some interesting properties.
It is known that they admit a one-relator presentation, namely

〈x0, x1, . . . , xg|x2
0x

2
1x

2
2 . . . x

2
g〉

for non-orientable closed surfaces of genus g, and

〈x1, x2, . . . , x2g|[x1, x2] . . . [x2g−1, x2g]〉

for orientable closed surfaces of genus g. Moreover, every subgroup of finite
index of a surface group is again a surface group, and consequently a one-
relator group. In this work we will refer to a one-relator group in which all
the subgroups of finite index are again one-relator groups as a hereditary
one-relator group.

As a closed surface X is aspherical, it coincides with the classifying space
BG = K(G, 1) of its fundamental group G = π1(X, x0), i.e. the cohomology
of a surface group and that of its associated surface are isomorphic. Thus
surface groups have cohomological dimension 2 and they are duality groups.

In [3] G. Baumslag proved that surface groups are residually finite.
It is known that subgroups of infinite index of surface groups are free.

In [8] Rosenberger et al. classified cyclically pinched and conjugacy pinched
one-relator groups such that every subgroup of infinite index is free. Us-
ing this result they proved a modified form of the surface group conjecture,
namely that if G is a finitely generated, non-free, freely indecomposable, fully
residually free group such that every subgroup of infinite index of G is free,
then G is a surface group.
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A first approach to a positive solution of the problem is combinatorial.
Some properties of one-relator groups are reflected by properties of the single
relator r. For example, a one-relator group is torsion-free if and only if its
relator is not a proper power. Using the theory of automorphisms of free
groups it is possible to decide whether a given one-relator group is free or
not, and whether it is isomorphic to a free product of a one-relator group
with a free group.

Theorem 1. Let G = 〈x1, . . . , xn|r〉 be a hereditary one-relator group such
that r is a commutator involving every generator and not a proper power.
Then G is non-free, torsion-free and is freely indecomposable.

A deeper and more useful combinatorial result is Lyndon’s Identity The-
orem, which can be proved using the machinery of free differential calculus.
Using this theorem it si possible to prove that if a one-relator group G is
non-free, torsion-free and freely indecomposable, then it is a duality group.
Furthermore, the Identity Theorem plays a central role in determining the
structure of the dualizing module.

After this elementary combinatorial first step, we proceed with the anal-
ysis of hereditary one-relator groups using a result due to Bieri and al., that
proved that Poincarè duality groups of dimension two are surface groups (see
[9]).

Using Lyndon’s identity theorem one knows that the dualizing module
DG of a one-relator duality group G = 〈x1, . . . , xn|r〉 can be written as

DG =× H2(G,ZG) =
ZG∑
ZG ∂r

∂xi

In fact, it is a quotient of ZG and we have a lifting

DG

ε0

  

ZG

OO

ε // Z

of the augmentation map ε : ZG→ Z to a map ε0 : DG → Z if and only if r
is a commutator. If K = ker(ε0) is trivial then DG ' Z and G is a surface
group, so K can be seen as a measure of how distant G is to being a surface
group. We refer the interested reader to chapter 3 for a more precise analysis
of the properties of K, which satisfies an interesting duality relation in the
context of derived categories with duality.

The hypothesis of the surface group conjecture have some striking simi-
larities to some properties of Demushkin groups, which are one-relator pro-p
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groups and Poincarè duality groups. Labute’s classification of Demushkin
groups shows that they admit a (pro-p) presentation that is quite similar to
the presentation of a surface group of an orientable surface. We decided to
pursue the possibility of a relation between the two situations.

Let G be a group that satisfies the hypothesis of the surface group con-
jecture and whose single relator r is a commutator. Our idea is to take the
pro-p completion of G and study its structure. Since surface groups are in
fact residually free we also require G to be residually free. Then we prove
that G is p-good, that is that the natural isomorphism between G and its
completion induces isomorphisms between the cohomology groups of the two
groups. We use this to characterize the pro-p completion of G (see 2.6.5).

Theorem 2. Let G be a residually finite non-free, non-cyclic hereditary one-
relator group, suppose that the single relator r is a commutator. Then Ĝp, the
pro-p completion of G, is an oriented Demushkin group and thus coincides
with the pro-p completion of a surface group.

Using Labute’s classification we then conclude that G must have an even
number of generators and that r is not in the second derived subgroup of the
free group whose quotient gives the presentation of G (see 2.6.1).

Also, if G has only two generators we have a positive answer to the
conjecture.

Theorem 3. Let G be a group such that

i) G is a residually finite, non-free, non cyclic one-relator group;

ii) the single relator r is a commutator;

iii) G has only two generators as a one-relator group.

Then G is free abelian and thus a surface group.

The outline of this thesis is the following.
In the first chapter we recall some classical combinatorial results on one-

relator groups. The aim of this chapter is to show that many properties of a
one-relator group can be determined by the single relator word.

We present the basic theory on free groups and homomorphisms of free
groups, in order to show that is decidable if a given word in a free group is a
free generator. Then we define presentations and one-relator groups, citing
Magnus’ Freiheitssatz to prove some embedding results due to Lyndon. Then
we introduce free differential calculus and use the results to prove Lyndon’s
Identity Theorem.
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In the second chapter we define surface groups and duality groups and
give a brief survey of results regarding the surface group conjecture. Then
we focus on one-relator groups that satisfy some of the conditions of the
conjecture and have a relator in the commutator subgroup. We show that
such groups have a goodness property, using this and classification of De-
mushkin groups we are able to prove that the relator cannot be in the second
derived subgroup and to prove the conjecture for the case of two generators
and relator in the commutator.

In the third chapter we define derived categories with duality, that are
the natural framework for the study of augmented duality groups, a class of
groups that generalize duality groups. T. Weigel has proved that free groups
are augmented duality. We prove here that one-relator groups with relator
in the commutator are also augmented duality groups.
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Chapter 1

Classical results on one relator
groups

In this chapter we recall basic definitions about free groups and presentations
and classical results on one relator groups, obtained mainly by Magnus and
Lyndon. Then we delineate the technique of free differential calculus, which
we use to prove Lyndon’s Identity Theorem following [14]. We refer the
reader to [13], [15], [21] and [20] for a more comprehensive treatment of these
subjects.

1.1 Free groups

We give here the definition of free groups and recall how it is possible to
construct a free group over any set X.

Definition. Let X be a set, F a group and ψ : X → F a function from X
to F . F is a free group with basis X if for any group G and any function
f : X → G there is a unique group homomorphism φ : F → G such that
f = φ · ψ, that is such that the diagram

X

f   

ψ
// F

φ
��

G

is commutative.

It follows from the definition that free groups with basis of the same
cardinality are isomorphic. Given a set X, it is always possible to obtain a
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free group with basis X, we will provide here the classical construction of
such a group.

Let X be a set, let X−1 be a disjoint set with a one-to-one correspondence
to X, the element of X−1 corresponding to x ∈ X will be denoted by x−1.
A word in X is a finite sequence of elements of X ∪X−1, the sequence with
no elements is the empty word ε.

The set W (X) of the words in X with the operation given by concatena-
tion is a monoid with identity element ε.

w ∈ W (X) is a reduced word if it does not contain subsequences of the
form xx−1 or x−1x for any x ∈ X. We say that two words v, w ∈ W (X) are
equivalent (writing v ∼ w) if it is possible to obtain w from v adding (at any
point) or removing subsequences of the form xx−1 or x−1x for some x ∈ X in
a finite number of steps; this is an equivalence relation and the reduced words
are a system of representatives for the equivalence classes. The equivalence
is compatible with the concatenation and the quotient W (X)/ ∼ is a group
under this operation. The inverse of a word

∏l
i=1 x

εi
i , xi ∈ X, εi = ±1, is

the word
∏l

i=1 x
−εi
l+1−i, xi ∈ X.

This group, with the natural immersion of X in W (X)/ ∼, is a free group
with basis X and thus isomorphic to any free group with basis X. For this
reason, we will often refer to the elements of any free group as words.

We give now some definitions that can be useful in describing the elements
of a free group.

Let F be a free group with basis X. We say that a reduced word r ∈ F
involves x ∈ X if x or x−1 appears in r.

If r is a reduced word, the length l(r) of r is the number of symbols from
X ∪X−1 appearing in r. When we write l(w) for some element w ∈ F , we
indicate the length of the reduced word corresponding to r.

We say that a word r is ciclically reduced if it is reduced and the first
and last symbol of its expression are not x and x−1, or viceversa, for every
x ∈ X.

For x ∈ X, we denote with #x(r) the number of occurrences of x in r,
that is the total number of the letters x and x−1 in r.

We denote with σx(r) the exponent sum of x in r, that is the number of
letters x ∈ X in r minus the number of letters x−1 ∈ X−1 in r.
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1.2 Nielsen transformations

Let B = (b1, b2, . . .) be an ordered subset of a free group F . A Nielsen
transformation is any finite product of the following transformations on the
set of ordered subsets of F :

N1) substitute a bi with b−1
i ;

N2) substitute a bi with bibj for some j 6= i;

N3) delete ui if ui = 1F .

The three transformations above are called elementary Nielsen transforma-
tion.

A Nielsen transformation is called regular if it has no factor of type N3
and singular otherwise.

Since the inverse of a Nielsen transformations of type N1 and N2 is again
a Nielsen transformation, the regular Nielsen transformations form a group.

The interest in Nielsen transformations lies in the fact that they bring
sets of generators of any subgroup H of F in sets of generators of the same
subgroup.

Proposition 1.2.1. Let B be an ordered subset of F and C its image under
a Nielsen transformation. Then the subgroup of F generated by B coincides
with the subgroup of F generated by C.

Proof. Since Nielsen transformations are compositions of elementary Nielsen
transformations, it suffices to show that the theorem holds for elementary
Nielsen transformations.

Let FB be the subgroup of F generated by B and FC the subgroup of F
generated by C.

Let C be the image of B under an elementary Nielsen transformation
of type N1. Since FB is a group, it contains every b−1

i , then C ⊆ FB and
consequently FC ⊆ FB. Viceversa, FC must contain the inverse of every
element of C, so if b−1

i ∈ C then (b−1
i )−1 = bi ∈ FC , so B ⊆ FC and

consequently FB ⊆ FC . We conclude that FB = FC .
Let C be the image of B uncer an elementary Nielsen transformation of

type N2. Since FB is a group, it contains every bibj for every bi, bj ∈ B, so
C ⊆ FB and consequently FC ⊆ FB. Viceversa, FC contains bibj and bj, so
it must contain (bibj)b

−1
j = bi, then B ⊆ FC and consequently FB ⊆ FC . We

conclude that FB = FC .
Let C be the image of B under an elementary Nielsen transformation of

type N3, then C ⊆ FB because C is contained in B as a (non-ordered) set,
and B ⊆ FC because 1F ∈ FC . Then we conclude that FB = FC .
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The aim is to modify the set of generators of a given subgroup via Nielsen
transformations in order to obtain a reduced set of generators, in the following
sense.

Definition. Let B = (b1, b2, . . .) be an ordered subset of a free group F with
basis X. We say that B is N -reduced if for every choice of elements β1, β2,
β3, where βi = bj or βi = b−1

j for i = 1, 2, 3 and some bj ∈ B, we have:

1. β1 6= 1F ;

2. if β1β2 6= 1F , then l(β1β2) ≥ l(β1) and l(β1β2) ≥ l(β2);

3. if β1β2 6= 1F and β2β3 6= 1F , then l(β1β2β3) > l(β1)− l(β2) + l(β3).

The interest in N -reduced sets of words is that every subgroup of F
generated by such a set is free.

Proposition 1.2.2. Let B be a N-reduced set of words in F , then the sub-
group of F generated by B is free.

Proof. For any b ∈ B±1, b = ibtnfb, where ib is the longest initial subword
of b that cancels in any product ab with a ∈ B±1, fb is the longest terminal
subword of b that cancels in any product ba with a ∈ B±1 and tb 6= 1F
because B satisfies the third condition for N -reduced sets.

Let c =
∏n

i=1 bi with bi ∈ B±1 for 1 ≤ i ≤ n, with bibi+1 6= 1 for 1 ≤ 1 ≤
n − 1. Then by the observation above c =

∏n
i=1 b

′
i where b′i is a subword of

bi containing tbi and there is no cancellation in b′ib
′
i+1 for 1 ≤ i ≤ n − 1. It

follows that l(c) ≥ n.
Let G be the free group with basis B, let φ : B → F the immersion of B

in F , then φ extends uniquely to a group homomorphism Φ : G → F since
G is free. Let g ∈ G, g 6= 1 be a reduced word in G, let l(g) = n, then also
l(Φ(g)) = n, so Φ is injective. Then Φ(G) is the subgroup generated by B
and it is a free subgroup of F .

The following proposition ensures that it is always possible to bring a
finite set of elements of F in a N -reduced one applying Nielsen transforma-
tions.

Proposition 1.2.3. Let B = (b1, b2, . . . , bn) be a finite ordered subset of F .
Then there exists a Nielsen transformation h such that h(B) is N-reduced.

Proof. Let A = (a1, . . . , an) be a finite ordered subset of F , we define µ(A) =∑n
i=1 l(ai).
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Observe that utilizing elementary Nielsen transformations of type N1 and
N2 we can obtain any permutation of the bi and substitute any bi with its
inverse.

Suppose that B does not satisfy the second condition. Without loss of
generality we can suppose that there are some bi, bj such that bibj 6= 1F
and l(bibj) < j. Since l(w2) ≥ l(w) for any w ∈ F , it is i 6= j. Using an
elementary Nielsen transformation of type N2 we can substitute bj with bibj
obtaining the set B′, observe that µ(B′) < µ(B). Then by induction we
can obtain a set B′′ such that that µ(B′′) is minimum, hence B′′ satisfy the
second condition.

Applying an elementary Nielsen transformation of type N3 to B′′, the
resulting ordered set C satisfies the first condition.

Let a, b, c ∈ C with ab 6= 1F and bc 6= 1F . Since C satisfies the second
condition for N -reduced sets, l(ab) ≥ l(a) and l(bc) ≥ l(c). Let u be the
initial subword of b that is cancelled in the product ab and w the final subword
of b that is cancelled in bc, then u and w have length less than or equal to
l(b). So it is a = a′u−1, b = ub′w, c = w−1c′ for some reduced words a′, b′, c′,
and abc = a′b′c′.

If b′ 6= 1F there are no cancellations in the second product, so

l(abc) = l(a)− l(b) + l(c) + l(b′)

since l(b′) ≥ 1 we have that a, b, c satisfy the third condition for N -reduced
sets.

If b′ = 1F then abc = a′c′ and

l(abc) ≤ l(a)− l(b) + l(c),

in this case a, b, c do not satisfy the third condition.
Then take any well-ordering of the set X ∪ X−1, this induces a lexico-

graphical well-ordering < on the elements of F identified with the reduced
words in X∪X−1. For every reduced word w let L(w) be the reduced subword

given by the initial l(w)
2

letters if l(w) is even or the first l(w)+1
2

letters if l(w)
is odd. We now define a well-ordering ≺ on the set of the pairs (w,w−1) with
w reduced word in F . (w,w−1) ≺ (u, u−1) if one of the following conditions
is verified:

1. min(L(w), l(w−1) < min(L(u), l(u−1)

2. min(L(w), l(w−1) = min(L(u), l(u−1) and

max(L(w), l(w−1) < max(L(u), l(u−1)

9



If u < w−1 in the lexicographical ordering, we have that

(bc, (bc)−1) = (uc′, (uc′)−1) ≺ (c, c−1) = (w−1c′, (w−1c′)−1)

since L(uc′) has u as an initial subword and L(w−1c′) has w−1 as an initial
subword and L(c′−1w) = L(c′−1u−1) since C ′ satisfies the second condition for
N -reduction. On the other hand, if w−1 < u in the lexicographical ordering,
we have that

(ab, (ab)−1) = (a′w, (a′w)−1) ≺ (a, a−1) = (a′u−1, (a′u−1)−1)

We can substitute a with (ab)−1 = w−1a′−1 using elementary Nielsen
transformations of type N1 and N2, or substitute c with bc = uc′. Let C ′

be the set obtained with this substitution. Note that in either case µ(V ) =
µ(C ′), so the second condition is still satisfied. By induction we can use
elementary Nielsen transformation to minimize the words in C ′ with respect
to the relation ≺, then there are no triples a, b, c such that b cancels out
completely in abc and the third condition is satisfied.

This is enough to prove an important theorem about subgroups of free
groups, at least for finitely generated subgroups.

Theorem 1.2.1. Let F be a free group and U a finitely generated subgroup
of F . Then U is a free group.

Proof. Let X be a basis for F , let B be a finite (ordered) set of generators
for U . By Proposition 1.2.3 above there is a Nielsen transformation f such
that f(A) is N -reduced. By Proposition 1.2.1 U is generated by f(B), then
by the proposition above U is free.

1.3 Free generators

Let F be a free group with basis X. Then the image of the set X under
every automorphism of F is a basis for F as a free group. Conversely, any
one-to-one map between two basis of F can be extended to an automorphism
of free groups.

For any x ∈ X, let αx be the endomorphism under which the image of x
is x−1 and that fixes X \ {x}. For any x, y ∈ X, with x 6= y, let βxy be the
endomorphisms under which the image of x is xy and that fixes X \ {x}.

Since the image of X under αx and βxy is a basis for F , they are auto-
morphisms of F .
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Proposition 1.3.1. Let F be a free group with basis X, let Autf (F ) be the
subgroup of Aut(F ) generated by the elementary Nielsen transformations.
Then for any γ ∈ Aut(F ) and for any w1, . . . , wk ∈ F , k ∈ N, there is
α ∈ Autf (F ) such that γ(wi) = α(wi) for 1 ≤ i ≤ k.

Proof. Let Y be the set of the elements of X involved in w1, . . . , wk, then
Y = {y1, . . . , yt}, t ∈ N, is a finite subset of X and w1, . . . , wk are in the
subgroup of F generated by Y .

α−1(X) is a basis for F , so there is a finite subset Z ⊆ X such that the
group generated by α−1(Z) contains Y , moreover we can suppose Y ⊆ Z =
{y1, . . . , yt, yt+1, . . . , ym}, m ∈ N.

Let B = {b1, . . . , bm}, with bi = α−1yi, ≤ i ≤ m. Then some Nielsen
transformation β carries B into β(B) reduced. The group generated by β(B)
coincides with the group generated by B = α−1(Z), since this groups have
rank m, β is regular. But Y is contained in the subgroup of F generated
by B, so Y ⊆ B±1, and without loss of generality we may assume B =
(x1, . . . , xt, zt+1, . . . , zm) for some z1, . . . , zm ∈ F .

Z is an initial segment of X, so α−1(Z) is an initial segment of α−1(X).
Since β is a composition of trasformations that involve only the first m com-
ponents of a matrix, βXα−1 = β(B) coincides with the initial segment of
length m of βZα−1. But X is the matrix of the identity automorphism, so
βXα−1 = βα−1. Then we have α−1(β(xi)) = xi.

Let w be a ciclically reduced word in a free group F over a set X, then any
word conjugated to w is either not ciclically reduced or a cyclical permutation
of the letters of w, hence we can identify the conjucacy classes of F with the
sets of cyclic permutations of ciclically reduced words. This motivates the
following definition.

Definition. A cyclic word of length n is a ciclically ordered set of n letters
ai, i ∈ Zn, such that aiai+1 6= 1 for all i ∈ Zn.

Given a cyclic word w, we define the function γw : X±1×X±1 → Z, where
γw(x, y) is the number of subwords xy−1 or yx−1 in w. If the cyclic word is
clearly stated we will write x · y instead of γw(x, y). For W1,W2 ⊆ X±1 we
define

W1 ·W2 =
∑

w1∈W1,w2∈W2

w1 · w2

A Whitehead automorphism of F is any automorphism of F that either
permutes the elements of X±1 or carries each x ∈ X±1 into one of x, xa, a−1x
or a−1xa for some fixed a ∈ X±1. If α is a Whitehead automorphisms of the
second kind we define α = (A, a), where A is the set of all the x ∈ X±1 such
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that α(x) = xa or α(x) = a−1xa, including a but not a−1. We denote the set
of Whitehead automorphisms with Ω.

If α = (A, a), then α−1 = ((A\{a})∪{a−1}, a−1). If ᾱ = (A′, a−1), where
A′ is the complement of X in A, then α−1 ◦ ᾱ is the inner automorphism
defined by conjugation by a. Then α−1 ◦ ᾱ is the identity over the set of
cyclic words, so α(w) = ᾱ(w) for every cyclic word w.

We give the following technical proposition about Whitehead transforma-
tions, that will be used to prove that the existance of an automorphism of F
that brings one given word in another given word is always decidable.

Proposition 1.3.2. Let v1 and v2 be cyclic words, let v2 = α(v1) for some
α ∈ Aut(F ) and l(v2) ≤ l(v1). Then α =

∏n
i=1 τi, n ≥ 0, τi ∈ Ω for every

i, 0 ≤ i ≤ n, and l((
∏j

i=1 τi)(v1)) ≤ v1 for every j, 0 < j < n. The equality
holds if and only if l(v1) = l(v2).

Proposition 1.3.3. Let F be a free group, w1, w2 ∈ F . Then it is decidable
whether there is an automorphism α of F such that α(w1) = w2.

Proof. Since w1, w2 are contained in a finitely generated subgroup of F , we
can suppose without loss of generality that F is finitely generated.

Let (w1) and (w2) be the cyclic words associated to w1 and w2. Since the
Whitehead automorphisms are finite, we can replace (w1) (risp. (w2)) with
a word that is of minimal length under Whitehead automorphisms. Then by
Proposition 1.3.2 (w1) and (w2) have now minimal length under Aut(F ).

If l(w1) 6= l(w2) then no automorphism of F can bring w1 in w2. Suppose
l(w1) = l(w2) = n. The set V of cyclic words of length n in F is finite
because F is finitely generated. Let Γ = (V,E) be a graph with V as the
set of vertices and E = {(v1, v2) ∈ V × V |∃α ∈ Ω : α(v1) = v2} Then by
Proposition 1.3.2 there is an automorphism that brings (w1) in (w2) if and
only if there is a connected path in Γ from (w1) to (w2).

If there is such an automorphism α, then α(w1) is conjugate to w2 since
they have the same cyclic word, so there is an automorphism that brings
α(w1) to w2, and by composition there is an automorphism that brings w1

to w2.

1.4 Presentations

Every group G is isomorphic to a quotient of some free group F over a normal
subgroup K of F . If K is the normal closure of the subgroup of F generated
by a subset R ⊆ F and X is a basis for F then we write

G = 〈X|R〉
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This is called a presentation for G. X is called a set of generators and R a
set of defining relations for G. The elements of K are called consequences of
R.

Definition. Let G be a group. G is finitely presented if G = 〈X|R〉 with X
and R finite.

It should be noted that if G is a finitely presented group, while the sub-
group generated by R is a finitely generated free subgroup of F , its closure
K is not, in general, finitely generated.

A presentation determines a group uniquely (up to isomorphisms), but a
group admits infinitely many different presentations. Furthermore, in gen-
eral it is not possible to decide whether two different presentations define
isomorphic groups.

It is clear that if we have a presentation G = 〈X|R〉 and we add a
consequence of R to the set of relations, or add a generator y /∈ X and a
relation that defines this new generator in terms of the elements of X, the
resulting presentation defines a group isomorphic to G. On the other hand,
we can omit superfluous relations and generators that are defined in terms
of the others (substituting their expressions in all the relations in which they
appear). We formalize these procedures.

Definition. A Tietze transformation is a passage from a presentation 〈X|R〉
to a presentation 〈X ′|R′〉 in one of the following ways.

1. Given a consequence w of R, take X ′ = X and R′ = R ∪ {w}.

2. If w ∈ R is a consequence of R \ {w}, take X = X ′ and R′ = R \ {w}.

3. Given y /∈ X, take X ′ = X ∪{y} and R′ = R∪{y−1t} with t any word
in X.

4. If x ∈ X and there is only one r ∈ R involving x and r = x−1t with t
any word in X \ {x}, take X ′ = X \ {x} and R′ = R \ {r}.

The Tietze transformations are the only way to modify a finite presen-
tation obtaining another presentation of the same group, in the sense of the
following theorem.

Theorem 1.4.1. Two finite presentations define isomorphic groups if and
only if it is possible to obtain one from the other by a finite sequence of Tietze
transformations.
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Proof. A presentation and one obtained from it by a Tietze transformation
define isomorphic groups, so the same holds true for a finite sequence of
Tietze transformations.

Viceversa, let 〈X1|R1〉 and 〈X2|R2〉 two presentations of the same group
G with X1∩X2 = ∅, let φ1 and φ2 two homomorphisms respectively from the
free group F1 over X1 and from the free group F2 over X2 in G with kernel
the normal closure respectively of R1 and R2.

For any x ∈ X1 let tx be an element in F2 such that φ2(tx) = φ1(x), and
for any y ∈ X2 let uy be an element in F1 such that φ1(uy) = φ1(y). Let R3 =
{x−1tx|x ∈ X1}, R4 = {y−1uy|y ∈ X2}, then using Tietze transformations we
obtain the presentation 〈X1∪X2|R1∪R4〉 from 〈X1|R1〉 and 〈X1∪X2|R2∪R3〉
from 〈X2|R2〉 in a finite number of steps.

φ1 and φ2 determine a unique group homomorphism φ from the free group
F over X1∪X2 in G such that φ1(x) = φ(x) for every x ∈ X and φ2(y) = φ(y)
for every y ∈ X2. Then φ(r) = 1G for every r ∈ R1 ∪ R2 ∪ R3 ∪ R4, but the
kernel of φ is the normal closure both of R1 ∪R4 and of R2 ∪R3, so each set
is composed of consequences of the other. Then we can pass from both the
presentations 〈X1 ∪X2|R1 ∪R4〉 and 〈X1 ∪X2|R2 ∪R3〉 to the presentation
〈X1 ∪X2|R1 ∪R2 ∪R3 ∪R4〉 with a finite number of Tietze transformations,
since every Tietze transformation is invertible we can then pass from 〈X1|R1〉
to 〈X2|R2〉.

Tietze transformations are useful to simplify presentations and can be
used in certain cases to show that two presentations define isomorphic groups.
For a simple consequence of the theorem above, we observe that we can
assume that every relation in a presentation is ciclically reduced, since every
word in a free group is conjugated to a ciclically reduced word.

Finally we define the concept of a HNN extension of a group giving its
presentation.

Definition. Let G be a group with a presentation 〈X|R〉 and α : H → K be
an isomorphism between two subgroups H and K of G. Let t /∈ X, then the
HNN-extension of G relative to α is the group defined by the presentation

G∗α = 〈X, t|R, tht−1 = α(t) ∀h ∈ H〉

1.5 One-relator groups

We are particularly interested in the case where R has only one element.

Definition. A group G is a one-relator group if G = 〈X|r〉 for some set X
and reduced word r. If X is finite then G is a finitely generated one-relator
group.

14



For example, all finite cyclic groups are one-relator groups via the pre-
sentation Cn = 〈x|xn〉, n ∈ N. More interesting is the fact that all the
fundamental groups of 2-manifolds (called surface groups) are one-relator
groups.

One of the first results on one-relator groups is Magnus’ Freiheitssatz.

Theorem 1.5.1. [Magnus’ Freiheitssatz] Let G = 〈x1, . . . , xn|r〉 a one-
relator group with r cyclically reduced word, suppose that r involves x1. Then
the subgroup 〈x2, . . . , xn〉 is a free group with free generators {x2, . . . , xn}.

The theorem is equivalent to stating that every non-trivial consequence
of the reduced word r involves every generator involved in r.

Using this Lyndon proved that every one relator group can be embedded
in an HNN extension of a one relator group with a shorter relation, providing
a framework for induction on the length of the relator.

Theorem 1.5.2. Let G = 〈t, x1, . . . , xn|r〉 a (non-free) one-relator group,
with n ≥ 1 and r a cyclically reduced word that involves at least two gener-
ators, one of which has exponent sum zero. Then G can be expressed as a
HNN extension of a one-relator group with a shorter relation.

Proof. Without loss of generality, we can assume that t is the generator
involved in r with exponent sum zero and that r involves x1 as well.

Let xi,j = t−jxit
j for j ∈ Z, 1 ≤ i ≤ n. We can write r as a shorter word

r′ in terms of the xi,j, replacing each occurrence of xi in r with xi,k, where k
is the exponent sum of t in the subword of r preceding the given occurrence
of xi. Obviously, l(r′) = l(r)−#t(r).

Let m and M be respectively the smallest and greatest integers such that
r′ involves x1,m and x1,M . Let H be the group with the following presentation:

H = 〈x1,m, . . . , x1,M , xi,j, 2 ≤ i ≤ n, j ∈ Z|r′〉.

By Magnus’ Freiheitssatz, H has the two free subgroups

H1 = 〈x1,m, . . . , x1,M−1, xi,j, 2 ≤ i ≤ n, j ∈ Z〉,
H2 = 〈x1,m+1, . . . , x1,M , xi,j, 2 ≤ i ≤ n, j ∈ Z〉.

We define a homomorphism φ : H1 → H2 that takes every generator xi,j of
H1 in a generator of H2 via φ(xi,j) = xi,j+1.

It’s easy to check that G is isomorphic to the HNN-extension H∗φ.

Theorem 1.5.3. Let G = 〈x1, . . . , xn|r(x1, . . . , xn)〉 be a (non-free) one-
relator group with relation r involving at least two generators. Then G can be
embedded in a HNN extension of a one-relator group with a shorter relation.
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Proof. If at least one generator appears in r with exponent sum zero, then
we can apply Theorem 1.5.2 and we are done. Suppose then that every
generator that appears in r has non-zero exponent sum. Without loss of
generality we can assume that r involves x1 and x2, with σx1(r) = k and
σx2(r) = l.

Let H be the amalgamated product of G with F1 = 〈y1〉 ' Z, the free
group of rank one, along the free group of rank one generated by x2 in G
and by yk1 in F1. Obviously there is an injection from G to H. We want to
prove that G is a HNN extension of a one relator group with defining relation
shorter than r.

We have

H = G ∗Z F1 = 〈x1, . . . , xn, y1|r(x1, . . . , xn), yk1 = x2〉,

using Tietze transformations we obtain the relations

H = 〈x1, . . . , xn, y1|r(x1, y
k
1 , x3, . . . , xn), yk1 = x2〉 =

= 〈x1, y1, x3, . . . , xn|r(x1, y
k
1 , x3, . . . , xn)〉 =

= 〈x1, y1, x3, . . . , xn, y2|r(x1, y
k
1 , x3, . . . , xn), y2 = x1y

l
1〉 =

= 〈x1, y1, x3, . . . , xn, y2|r(x1, y
k
1 , x3, . . . , xn), x1 = y2y

−l
1 〉 =

= 〈y1, y2, x3, . . . , xn|r(y2y
−l
1 , yk1 , x3, . . . , xn)〉.

Note that r(y2y
−l
1 , yk1 , x3, . . . xn) involves the generators y1 and y2 and

that the exponent sum of y1 is zero. Then by Theorem 1.5.2 H is a HNN
extension of a one relator group H1 with defining relation r′ shorter than the
relation r(y2y

−l
1 , yk1 , x3, . . . , xn). We have

l(r(y2y
−1
1 , yk1 , x3, . . . , xn)) = l(r) + (k − 1)#x2(r) + #x1(r),

then, as seen in the proof of Theorem 1.5.2, we can take r′ such that

l(r′) = l(r(y2y
−1
1 , yk1 , x3, . . . , xn))− σy1(r(y2y

−1
1 , yk1 , x3, . . . , xn)) =

= l(r) + (k − 1)#x2(r) + #x1(r)− (k#x2(r) + #x1(r)) = l(r)−#x2(r),

so r′ is shorter than r and we have the desired result.

Finally, we note that it is always possible to know if a given one-relator
group is in fact a free group.

Proposition 1.5.1. Let G = 〈x1, . . . , xn|r〉 be a one-relator group. It is
decidable whether G is a free group or not.
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Proof. G is free if and only if r is a free generator of F , the free group with
basis X. r is part of a free basis of X if and only if there is an automorphism
of F that sends an element of X±1 in r. By Proposition 1.3.3, since X±1

is finite, it is decidable if there is such an automorphism by checking every
generator.

1.6 Free differential calculus

Let G be a group. A derivation from G to a ZG-module M is a map d :
G→ M such that d(gh) = d(g) + g · d(h) for all g, h ∈ G. Every derivation
can be extended uniquely to a homomorphism d′ of abelian groups from ZG
to M such that d′(αβ) = d′(α)ε(α) + αd′(β) for every α, β ∈ ZG, where
ε : ZG→ Z is the augmentation homomorphism.

Since for any derivation d we have

d(1) = d(1 · 1) = d(1) + 1 · d(1) = d(1) + d(1),

it is d(1) = 0. Since for any g ∈ G it is

0 = d(1) = d(g−1g) = d(g−1) + g−1 · d(g),

we conclude that d(g−1) = −g−1 · d(g)
The set Der(G,M) of derivations from G to M has an obvious Z-module

structure. There is an isomorphism ρ : Der(G,M) → HomZG(G,M), where
G is the augmentation ideal of ZG, given by ρ(d)(x − 1) = d(x) for any
d ∈ Der(G,M), x ∈ G.

Let F = 〈x1, . . . , xn〉 be a free group. F , the augmentation ideal of F ,
is a ZG-free module on the set {xi − 1}ni=1. Using the isomorphism above, a
choice of n elements α1, . . . , αn ∈M identifies a unique derivation d : F →M
with d(xi) = αi, 1 ≤ i ≤ n.

Let ∂
∂xi

: F → ZF be the derivation of F to ZF such that ∂
∂xi

(xj) = δi,j,
we call this derivation a partial derivative with respect to xi. It’s easy to
check that for any derivation d : F →M we have

d(g) =
n∑
i=1

∂g

∂xi
d(xi) ∀g ∈ F.

In particular, if we consider the inner derivation g 7→ g−1 ∀g ∈ F we obtain
the relation

g − 1 =
n∑
i=1

∂g

∂xi
(xi − 1).
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Let dZF be the module of all linear forms v =
∑n

i=1 vidxi in the inde-
terminates dxi with coefficients vi ∈ ZF ; dZF has an obvious F -module
structure by taking g · v =

∑n
i=1 g · vidxi ∀g ∈ F . We define a derivation

d∗ : F → dZF

setting

d∗g =
n∑
i=1

∂g

∂xi
dxi.

By the observation above it’s obvious that any derivation d of F in a F -
module M factors in d∗ followed by a F -module homomorphism γ from dZF
to M with γ(dxi) = d(xi).

Now let G = F
K

be a quotient of F by the normal subgroup K. The
projection from F to G induces a projection π from ZF to ZG, whose kernel
is the ideal K − 1 generated by the elements k − 1 ∈ ZF with k ∈ K. We
say that two elements a, b ∈ ZF are equivalent modulo K, writing a ≡ b
mod K, if π(a) = π(b) in ZG. With this notation we can also define the
quotient ring dZG of dZF by taking coefficients modulo K.

We state some easy properties of d∗ with respect to the equivalence mod-
ulo K. For any k1, k2 ∈ K, g ∈ F , ε = ±1, it is

d∗(k1k2) = d∗k1 + k1d
∗k2 ≡ d∗k1 + d∗k2 mod K;

d∗(k−1
1 ) = −k−1

1 d∗k1 ≡ −d∗k1 mod K;

d∗(gkε1g
−1) = d∗g + gd∗kε1 − gkε1g−1d∗g ≡ εgd∗k1.

In the following theorems and in their proofs we will usually write a ≡ b,
omitting mod K.

Theorem 1.6.1. d∗u ≡ 0 mod K if and only if u ∈ [K,K].

Proof. Let u ∈ [K,K], then u =
∏k

i=1[ai, bi] with ai, bi ∈ R, so

d∗u =
k−1∑
i=0

((
i∏

j=1

[aj, bj]

)
d∗[ai, bi]

)
.

But d∗[ai, bi] = d∗ai+aid
∗bi+aibid

∗a−1
i +aibida

−1
i d∗b−1

i ≡ d∗ai+d∗bi−d∗ai−
d∗bi = 0, so d∗u = 0.

If d∗u ≡ 0, then u−1 ≡ 0 and u ∈ K. Writing u in terms of the generators,
u =

∏m
i=1 x

εi
ni

we see that from d∗u ≡ 0 follows that the indices can be paired

in couples i, j with xnj
= xni

, εi = −εj, and
∏i−1

l=1 x
εl
nl
≡
(∏j−1

t=1 x
εt
nt

)
x
−εj
j , so∏i

l=1 x
εl
nl
≡
∏j−1

t=1 x
εt
nt

.
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Let qk =
∏k

t=1 x
εt
nt

and choose a representative q̄k for qk modulo K, with
q̄0 = q̄m = 1. We define rk = q̄k−1x

εk
nk
q̄−1
k ∈ K, obviously

∏m
k=1 rk = u.

From the previously stated pairing of the indices we deduce that q̄i−1 = q̄j,

q̄i = q̄j−1. Since xεini
= x

−εj
nj , it is ri = r−1

j . This means that u ∈ [K,K].

Corollary 1.6.1. The coefficient sums of all the ∂u
∂xi

are zero if and only if
u ∈ [F, F ].

Proof. Taking K = F in the previous theorem we have that d∗u ≡ 0 mod F
if and only if u ∈ [F, F ]. The kernel of the projection π from ZF to ZG =
ZF
F
' Z is F , the augmentation ideal of ZF , so π is the augmentation

homomorphism ε : ZG→ Z, which sends any element in its coefficient sum.
Since d∗u ≡ 0 mod F if and only if ∂u

∂xi
≡ 0 mod F for 1 ≤ i ≤ n, we are

done.

Theorem 1.6.2. Let F0 be the group generated by a certain subset of the
generators xi of the free group F , let K0 be the smallest normal subgroup of
F containing F0 ∩K. Then if

v =
∑
xi∈F0

vi(xi − 1) ≡ 0 mod K

there exists r ∈ K0 such that ∂r
∂xi
≡ vi for all xi.

Proof. Each vi is a sum of finitely many elements of F with coefficient ±1.
Since −(xi − 1) = xi(x

−1
i − 1), we can write

v =
m∑
k=1

wk(x
εk
ik
− 1)

where wk ∈ F , εk = ±1. We make induction on m.
Suppose the thesis holds for any l < m. v =

∑m
k=1 wk(x

εk
ik
− 1) ≡ 0, so∑m

k=1 wkx
εk
ik
≡
∑m

k=1wk. Then for any index a there is an index b such that
wax

εa
ia ≡ wb, but m is finite, so there exists an integer 1 ≤ q ≤ m such that,

reindexing, we have

w2 ≡ w1x
ε1
i1

w3 ≡ w2x
ε2
i2
≡ w1x

ε1
i1
xε2i2

. . .

wq+1 = w1 ≡ wqx
εn
iq
≡ w1x

ε1
i1
xε2i2 · · ·x

εq
iq
.

We define v1 =
∑q

k=1wk(x
εk
ik
− 1), so v1 ≡

∑q
k=1(wk+1 − wk) = 0, and we

have v = v1 + v2 with v2 =
∑m

k=q+1wk(x
εk
ik
− 1); since v ≡ 0 and v1 ≡ 0,
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we have also v2 ≡ 0. Collecting the terms of v1 and v2, we can write v1 =∑
xj∈F0

v1,j(xj − 1) and v2 =
∑

xj∈F0
v2,j(xj − 1). Obviously vj = v1,j + v2,j

for every 1 ≤ j ≤ n.
Let r1 = xε1i1x

ε2
i2
· · ·xεniq ∈ F0. Since w1 ≡ w1r1 and w1 ∈ F , it is r1 ∈

K ∩ F0 ⊆ K0, so w1r1w
−1
1 ∈ K0. Computing the partial derivatives we

obtain

∂w1r1w
−1
1

∂xj
=
∂w1

∂xj
+ w1

∂r1

∂xj
+ w1r1

∂w−1
1

∂xj
=

=
∂w1

∂xj
+ w1

∂r1

∂xj
− w1rw

−1
1

∂w1

∂xj
≡ w1

∂r1

∂xj
,

on the other hand it is

w1(r1 − 1) = w1

n∑
j=1

∂r1

∂xj
(xj − 1) =

= w1

q∑
k=1

xε1i1x
ε2
i2
· · ·xεk−1

ik−1
(xεkk − 1) ≡

q∑
k=1

wk(x
εk
ik
− 1) = v1,

so
∂w1r1w

−1
1

∂xj
≡ w1

∂r1
∂xj
≡ v1,j for every xj. If n = m we are done; this establish

also the first step of the induction process (because if m = 1, then n = m =
1).

If n < m, then for induction hypothesis there exists r2 ∈ K0 such that
∂r2
∂xj
≡ v2,j for every vj. Lat r = w1r1w

−1
1 r2, then taking the partial derivatives

we have

∂r

∂xj
=
∂w1r1w

−1
1 r2

xj
=
∂w1r1w

−1
1

∂xj
+ w1r1w

−1
1

∂r2

∂xj
≡ v1,j + v2,j = vj

so the theorem holds.

Corollary 1.6.2.
∑n

i=1 vi(xi − 1) ≡ 0 mod K if and only if there exists
r ∈ K such that ∂r

∂xi
≡ vi, 1 ≤ i ≤ n.

Proof. If r ∈ K and vi = ∂r
∂xi

for every xi, then
∑n

i=1 vi(xi−1) ≡
∑n

i=1
∂r
∂xi

(xi−
1) = r − 1 ≡ 0 mod K.

If
∑n

i=1 vi(xi − 1) ≡ 0 mod K, taking F0 = F in the previous theorem
we have that there exists r ∈ K such that ∂r

∂xi
≡ vi mod K for every xi.

We conclude this section with a result on zero divisors in ZG.
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Proposition 1.6.1. Let g ∈ G such that gq ≡ 1 mod K for some q ∈ N.
Let s =

∑q−1
i=0 g

q.
If u(g − 1) ≡ 0, then u ≡ vs for some v.
If us ≡ 0 then u ≡ v(g − 1) for some v.

Proof. For x ∈ ZG, if x =
∑n

i=1 aigi with ai ∈ Z, gi ∈ G, with gi 6= gj if
i 6= j, we define |x| =

∑n
i=1 |ai|.

Let u(g − 1) ≡ 0. If |u| = 0, then u = 0 = 0 · s. Suppose the result
holds for |u| < m, let ū ∈ ZG with ū = m and ū(g − 1) ≡ 0. We can
write ū as

∑m
i=1 εigi where εi = ±1, gi ∈ G. Since ū(g − 1) ≡ 0, it is∑m

i=1 εigig =
∑m

i=1 εigi, then up to a reindexing, it must be

g1 ≡ g0g g2 ≡ g1g g0g
2 ... gq−1 ≡ gq−2g ≡ g0g

q−1

so ū ≡ g0s+ u′, with |u′| < |u| = m, so by the induction hypothesis u′ ≡ v′s
for some s′. Taking v = g0 + v′ it is ū ≡ vs.

Let us ≡ 0. We can write u as
∑m

i=1 εigi where εi = ±1, gi ∈ G and
m = |u|, so us =

∑m
i=1

∑q−1
j=1 εigig

j ≡ 0. Then for every couple (i1, j1) there

is a couple (i2, j2) such that gi1g
j1 ≡ gi2g

j2 , hence gi1 ≡ gi2g
j2−j1 . Then we

can decompose u as a sum of elements ũ of ZG such that ũ ≡ u′
∑t

k=1 nkg
k

with nk ∈ Z and u′ ∈ G, and ũs ≡ 0. But gks ≡ s, so ũs ≡
∑t

k=1 nks ≡ 0,
but then it must be

∑t
k=1 nk = 0. Then the polynomial

∑t
k=1 nkg

k admits
g − 1 as a factor, so we can write ũ ≡ u′ṽ(g − 1) for some ṽ. Since u is sum
of elements of this form, u ≡ v(g − 1) for some v.

1.7 Identity Theorem

The aim of this section is to establish Lyndon’s Identity Theorem (see [14]).
Throughout this section, let F be a free group on generators x1, . . . , xn+s,

y1, . . . , ym and R1, . . . , Rn be cyclically reduced words in 〈x1, . . . , xn+s〉 ⊆ F
such that t and t+ s are respectively the least and greatest indices of the xi
involved in Rt, with Rt = Qqt

t for qt maximal. Let also K be the smallest
normal subgroup of F containing all the Rt and G = F

K
the quotient group.

Theorem 1.7.1 (Identity Theorem). If
∏m

i=1 TiR
εi
tiT
−1
i = 1 with Ti ∈ F ,

εi = 1 and 1 ≤ ti ≤ n for every 1 ≤ i ≤ m, then the indices 1, . . . ,m fall
into pairs (i, j) such that ti = tj, εi = −εj and there are ci ∈ Z such that
Ti ≡ TjQ

ci
ti mod K.

If n = 1 we can drop the hypothesis of cyclical reduction of R1, stating
the Simple Identity Theorem.
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Theorem 1.7.2 (Simple Identity Theorem). Let R = Qq for q maximal be
a word in F free group, and K the smallest normal subgroup of F containing
R. If

∑m
i=1 TiR

εiT−1
i = 1, with Ti ∈ F and εi = ±1 for every i, then the

indices can be grouped in pairs (i, j) such that εi = εj and there is ci ∈ Z
such that Ti ≡ TjQ

ci mod K.

We will use the following consequence of the Freiheitssatz and some re-
sults on free products to reduce the Identity Theorem to the Simple Identity
Theorem.

Proposition 1.7.1. The Identity Theorem is equivalent to the theorem ob-
tained taking the hypothesis

m∏
i=1

TiR
εi
tiT
−1
i ∈ [K,K]

instead of
m∏
i=1

TiR
εi
tiT
−1
i = 1.

Proof. Obviously if the theorem holds for
∏m

i=1 TiR
εi
tiT
−1
i ∈ [K,K] then it

holds for
∏m

i=1 TiR
εi
tiT
−1
i ∈ [K,K].

Vice versa, if P =
∏m

i=1 TiR
εi
tiT
−1
i ∈ [K,K] then we can write it as a

product P ′ with indices paired so that corresponding T ′i are equal. Applying
the identity theorem to PP ′−1 we obtain a pairing on the indices of the
product from which we get the pairing on P .

Proposition 1.7.2. Let F1 = 〈x1, . . . , xt+s〉, F2 = 〈xt+1, . . . , xn+s, y1, . . . , ym〉,
and G1 = F1

K∩F1
, G2 = F2

K∩F2
. Then G ∼= G1 ∗G0 G2 with G0 free.

Proof. By the Freiheitssatz, F1 ∩K is generated in F1 by R1, . . . , Rt, while
F2 ∩ K is generated in F2 by Rt+1, . . . , Rn. G0 ' F1∩F2

F1∩F2∩K , but F1 ∩ F2 =
〈xt+1, . . . , xt+s〉, so by the Freiheitssatz it is F1 ∩ F2 ∩ K = 〈1〉 and G0 is
free.

Proposition 1.7.3. Let G = G1 ∗G0 G2 with G0 free, with G = F
K

where F

is a free group and Gi = Fi

Ki
where Fi is a subgroup of F and Ki = Fi ∩K,

i = 0, 1, 2. Let (K,K) be the smallest normal subgroup of F containing [K,K]
and (K1, K1) be the smallest normal subgroup of F containing [K1, K1]. If

P =
m∏
i=1

uiRiu
−1
i ∈ (K,K),
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where ui ∈ F and Ri ∈ K1 or Ri ∈ K2, then there exist vi ≡ ui mod K such
that

P ′ =
∏

1≤i≤m,Ri∈K1

viRiv
−1
i ∈ (K1, K1).

Proof. We can rearrange the factors of P to obtain a product Q = P1P2

where P1 is the product of the factors uiRiu
−1
i with Ri ∈ K1, while P2 is the

product of the factors with Ri ∈ K2. Obviously it is Q ∈ (K,K).
d(P1P2) = dP1 + P1dP2 ≡ dP1 + dP2 ≡ 0 mod K, since

d(uiRiu
−1
i ) = dui + uidRi − uiRiu

−1
i dui ≡ dui + uidRi − dui = uidRi

we have that ∂P1

∂xi
≡ 0 mod K for all xi such that xi /∈ F0. By Proposition

1.6.2 dP1 ≡ dP0 for some P0 ∈ K0, but G0 is free so we can choose F such
that K0 = 〈1〉, thus it is dP1 ≡ 0.

Fix a system α of representatives for the cosets of F modulo F1, then any
u ∈ F can be written uniquely as u = fw with f ∈ α and w ∈ F1. Fixing
also a system β of representatives for the cosets of F2 modulo K2 we obtain
that every f ∈ α can be written uniquely as f = gr with g ∈ β, r ∈ F2, so
every u ∈ F can be written uniquely as u = fgw, with f ∈ α, g ∈ β and
w ∈ F1. Decomposing the ui appearing in P1 as u1 = figiwi in this way and
rearranging its factors so that those with the same gi are grouped together,
we obtain

P̄1 =
∏
h

gh(
∏
k

rhkwhkRhkw
−1
hk r

−1
hk )g−1

h .

Since rhk ∈ K2 then vhk = ghwhk ≡ ghrhkwhk = uhk. Define now

P ′1 =
∏
h

gh(
∏
k

whkRhkw
−1
hk )g−1

h =
∏
hk

vhkRhkv
−1
hk ,

this prouct is of the form required, so we only need to show that it lies in
(K1, K1).

Since rhk ∈ K it is dP ′1 ≡
∑
gh
∑
whkdRhk ≡ dP1 ≡ 0 mod K. But

the gh were taken as representatives of the cosets of F2 mod K2 = F2 ∩K,
so it must be

∑
whkdRhk ≡ 0 for any h. whk ∈ F1 and Rhk ∈ F1, so

we have
∑
whkdRhk ≡ 0 mod K1 and by Proposition 1.6.1 we have Ph =∏

k whkRhkw
−1
hk ∈ [K1, K1] for every h, so P ′1 =

∑
h ghPhg

−1
h ∈ (K1, K1).

Proposition 1.7.4. If the Simple Identity theorem holds for each Rt then
the Identity Theorem holds for R1, . . . , Rn.
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Proof. Fix t ∈ N, 1 ≤ t ≤ n. By Proposition 1.7.2 we can decompose G as
G1 ∗G0 G2 with G0 free, with F1 = 〈x1, . . . , xt+s〉, K1 = F1 ∩K and G1

∼= F1

K1
.

Let
∏m

i=1 TiR
εi
tiT
−1
i = 1 with Ti ∈ F , by Proposition 1.7.3 there is a product

P ′1 =
m′∏
j=1

vjR
εj
tj v
−1
j ∈ (K1, K1),

where (K1, K1) is the smallest normal subgroup of F containing [K1, K1], the
index j runs through the i such that ti ≤ t and vj ≡ Tj mod K.

We apply Proposition 1.7.2 again to obtain a decomposition of G as

G = G′1 ∗G′0 G
′
2

with G′0 free, where G′1 =
F ′1

F ′1∩K
and F ′1 = 〈x1, . . . , xt−1+s〉. Now we apply

Proposition 1.7.3 to P ′1, obtaining that there is a product

P ′′12 =
m′′∏
k=1

wkR
εk
tk
w−1
k ∈ (Kt, Kt),

where Kt = K ∩ 〈Rt〉 and (Kt, Kt) is the smallest normal subgroup of F
containing [Kt, Kt], the indiex k runs through the j such that ti = t and
wk ≡ vk ≡ Tk mod K.

By Proposition 1.7.1 if the Simple Identity Theorem holds for Rt we can
apply it to P ′′12. Then the indices ī such that t̄i = t admit a pairing (i, j)
with εi = −εj and such that there are ci ∈ Z with Ti ≡ wi ≡ wjQ

ci
t ≡ TjQ

ci
t

mod K.
Since we can find a pairing as above for every 1 ≤ t ≤ n, the Identity

Theorem holds.

Proposition 1.7.5. The Simple Identity Theorem holds for any power of a
free generator of F .

Proof. Without loss of generality, let R = xq1 with q > 0. It is dR =
(
∑q−1

j=1 x
j
1)dx1, or, in the notation of Proposition 1.6.1, dR = sdx. If we have

an identity
∑m

i=1 TiR
εiT−1

i = 1 then

d

(
m∑
i=1

TiR
εiT−1

i = 1

)
=

m∑
i=1

εiTidR =

(
m∑
i=1

εiTi

)
sdx1 ≡ 0

so (
∑m

i=1 εiTi) s ≡ 0 and by Proposition 1.6.1 it is
∑m

i=1 εiTi ≡
∑m′

i=j εjT
′
j ,

T ′j ∈ F , where
∑m′

i=j εjT
′
j is divisible by x1 − 1, so there is a pairing (j1, j2)
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on the indices such that εj1 = −εj2 and T ′j1 ≡ T ′j2x
ci
1 for some ci ∈ Z. Adding

zeroes if necessary, we can take m = m′, and up to reindexing we have
Ti ≡ T ′i , 1 ≤ i ≤ m, so the pairing on the indices j induces the desired
pairing on the indices i.

In particular, the Simple Identity Theorem holds for any R = Qq ∈ F , q
maximal, such that l(Q) = 1. We will make induction on k = l(Q), bearing in
mind that if the Simple Identity Theorem holds for all R with l(Q) < k then
by Theorem 1.7.4 the Identity Theorem holds for any collection R1, . . . , Rn

with l(Qj) < k, 1 ≤ j ≤ n. Furthermore, by Theorem 1.7.5 we can suppose
that Q involves at least two generators.

Proposition 1.7.6. Suppose l(Q) = k and that Q involves at least two free
generators of F , one of which with exponent sum zero. Then under the
induction hypothesis the Simple Identity Theorem holds for R.

Proof. Without loss of generality let x1 be the generator involved in Q with
exponent sum zero.

The one-relator group G = 〈F |R〉 can be expressed by Theorem 1.5.2 as
a HNN extension of a one-relator group H with a shorter relation R′ = Q′q

′
.

x1 plays the role of t in the proof of Theorem 1.5.2 and obviously any f ∈ F
can be written as a product f̄xs1 for some f̄ ∈ F2 and s ∈ Z, where F2 ≤ F
is the free group on the generators xj,k = xk1xjx

−k
1 , yj,k = xk1yjx

−k, whose
quotient is H.

If we define Qi = xi1Qx
−i
1 and Ri = Qq

i = xi1Rx
−i
1 , then any identity∑m

i=1 TiR
εiT−1

i = 1 can be written as
∑m

i=1 T̄iR
εi
ji
T̄i
−1

= 1 with T̄i ∈ F2.
Since σx1(Rj) = 0, every Rji is an element of F2. Moreover, K / F2 and it is
the smallest normal subgroup of F2 containing every Rt.

Writing R0 = R in terms of the generators xj,k of F for every j let kj1 and
kj2 be respectively the least and greatest integer such that R involves xj,kjs ,
s = 1, 2, then for every j the least and greatest integers such that Rt involves
xj,k are kj,kj1 and kj,kj2 respectively. Since the identity

∑m
i=1 T̄iR

εi
ji
T̄i
−1

= 1
contains only a finite number of Rt, we can reindex the Rt and rearrange the
generators xj,k so that the Identity Theorem is applicable to the identity.

Since the length of any Qt expressed in the free generators of F2 is l(Q)−
#xi(Q) < k, by induction hypothesis the Identity Theorem holds for the
relevant Rt, then we have a pairing (i1, i2) on the indices such that εi1 = −εi2 ,
ti1 = ti2 and T̄i1 ≡ T̄i2Q

ci2
ti2

mod K for some ci2 ∈ Z. But then Ti1 = T̄i1x
ti1
1 ≡

T̄i2Q
ci2
ti2
x
ti1
1 = T̄i2x

ti1
1 Qci2 = Ti2Q

ci2 and we have the desired pairing on the
original identity.
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Proposition 1.7.7. Suppose l(Q) = k and that Q involves at least two free
generators of F , but none of the free generators involved in Q has exponent
sum zero. Then under the induction hypothesis the Simple Identity Theorem
holds for R.

Proof. Without loss of generality we can assume that Q involves both x1

and x2.
From Theorem 1.5.3 we have that G can be embedded in a HNN exten-

sion H of a one-relator group with defining relation R′ = Q′q of length
less than k = l(R). Using letters z1 and z2 to express the generators
y1, y2 of H in the proof of Theorem 1.5.3, we can write Q as a word Q′

in F2 = 〈z1, z2, x3, . . . , xn〉 via the obvious injection τ of F in F2.
Then σz1(Q

′) = 0, #z2(Q
′) = #x2(Q) and #xi(Q

′) = #xi(Q) for every
i 6= 1, 2, so by the previous Proposition the Simple Identity Theorem can be
applied to Q′ in F2. Then for any identity

∑m
i=1 TiR

εiT−1
i = 1 in F expressed

in terms of z1, z2, x3, . . . , xn the indices fall into pairs (i1, i2) with εi1 = −εi2
and there is ci1 ∈ Z with Ti1 ≡ Ti2Q

′ci1 mod K̄, where K̄ is the smallest
normal subgroup of F2 containing R. Since Ti1 , Ti2 and Q′ are in the image
of F in F2 via τ , then we can conclude that Ti1 ≡ Ti2Q

ci1 mod K, thus
proving that the Simple Identity Theorem holds for R.
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Chapter 2

Surface group conjecture

In this chapter we state the surface group conjecture, recalling first the rele-
vant definitions about duality groups. Then

2.1 Group homology

Let G be a group. The integral group ring ZG is the free Z module generated
by the elements of G.

A left ZG-module or G-module, consists of an abelian group A together
with a homorphism from ZG to the ring of endomorphisms of A, or equiva-
lently of an abelian group A together with an action of G on A.

Let (Pn, δn)n∈N be a projective resolution of Z over ZG, that is an exact
sequence

. . .→ P3
δ2→ P2

δ1→ P1
δ0→ ZG ε→ Z→ 0

with Pi a projective ZG-module for every i ∈ N and where ε : ZG → Z is
the augmentation map.

We call Hi(G;M) the i-th homology group of the chain complex obtained
by (Pn, δn)n∈N applying the functor − ⊗G M . It is the left derived functor
of the right exact functor that associates to a ZG module M the group MG

of co-invariants of M , that is the quotient of M by the additive subgroup
generated by elements gm−m, m ∈M , g ∈ G.

We call Hi(G;M) the i-th homology group of the cochain complex ob-
tained by (Pn, δn)n∈N applying the functor Hom(−;M). It is the right derived
functor of the left exact functor that associates to a ZG module M the group
MG of invariants of M under the action of G.
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2.2 Ends

Definition (Cayley graph). Let G be a finitely generated group and S a
finite set of generators for G, 1G /∈ S, S = S−1. The Cayley graph ΓG,S of
G with respect to S is the graph whose set of vertices is G and whose edges
are given by (g, gs) for any g ∈ G, s ∈ S.

Since S is a finite set of generators, the Cayley graph is a connected and
locally finite graph.

Theorem 2.2.1. Let G be a finitely generated group, let S and T be two
finite sets of generators for G, 1G /∈ S, 1G /∈ T , S = S−1, T = T−1. If ΓS
and ΓT are the Cayley graphs of G with respect to S and T respectively, then
there are maps φTS : ΓT → ΓS and φST : ΓS → ΓT such that:

1. φTS ◦φST and φST ◦φTS induce the identity on the set of vertices of ΓS
and ΓT respectively;

2. there is N ∈ N such that φTS ◦ φST sends any edge e = (g, h) of ΓS in
the ball B(h,N) of ΓS, and φST ◦φTS sends any edge e′ = (g′, h′) of ΓT
in the ball B(h′, N) of ΓT .

Proof. Let the maps φTS and φST be the identity maps on the set of vertices,
then the first condition is trivially met.

For every s ∈ S, let ws =
∏m

i=1 ti be a word in the alphabet T ∪ T−1 that
expresses s in the set of generators T . Let e = (g, gs) be an edge of ΓS, then
the map φST sends e to the path given by (g, gt1)(gt1, gt1t2) . . . (g

∏m−1
i=1 ti, gs).

The map φTS is defined similarly, for every t ∈ T let wt =
∏k

i=1 si be
a word in the alphabet S ∪ S−1 that expresses t in the set of generators s.
Then the map φTS sends an edge (g, gt) to the path from g to gt described
by wt.

Let M be the maximal length of the words ws and wt for s ∈ S, t ∈ T .
Then the image of any edge in S under φST and of every edge in T under
φTS is a path of length at most M . Then M2 can be taken as the constant
for the second condition of the theorem.

If Γ is a connected and locally finite graph, let BΓ(n) be the ball of radius
n in Γ based on a fixed vertex. We call CΓ(n) the number of connected and
unbonunded components of Γ \BΓ(n).

Proposition 2.2.1. Let Γ be a locally finite graph. If n < m then CΓ(n) ≤
CΓ(m).
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Proof. Let Y be an unbounded connected component of Γ\BΓ(n). Then Y \
BΓ(m) is unbounded and it is either connected (and thus still an unbounded
connected component) or not connected, in this case it contains at least one
unbounded connected component. Then the number of unbounded connected
components of Γ \BΓ(m) is at least CΓ(n).

Definition (Ends of a graph). Let Γ be a connected, locally finite graph.
Let BΓ(n) be the ball of radius n based on a fixed vertex v of Γ. The number
of ends e(Γ) of Γ is defined as

e(Γ) = lim
n→∞

CΓ(n)

The limit in the definition exists because C(n) is a non-decreasing suc-
cession. Furthermore, the limit does not depend on the choice of vertex v.
The number of ends can also be computed using finite subgraphs instead of
balls of fixed radius.

We want to consider the number of ends of the Cayley graph. The first
step is to establish the independence of the limit from the choice of system
of generators.

Proposition 2.2.2. Let G be a finitely generated group, let S and T be two
finite sets of generators for G, 1G /∈ S, 1G /∈ T , S = S−1, T = T−1. If ΓS
and ΓT are the Cayley graphs of G with respect to S and T respectively, let
BS(n) and BT (n) be the balls of radius n in ΓS and ΓT respectively. Then
there is a constant K such that if g and h are vertices in ΓS that can be
joined by an edge path outside of BS(Kn + K) then g and h are outside of
BT (n) in ΓT and can be joined by a path without edges in BT (n).

Proof. Let ΦST be the map defined as in Theorem 2.2.1. Let λ be the length
of the longest expression chosen to represent the generators in S as words in
T , then the distance in ΓT from g to h is at least equal to the distance in ΓS
from g to h divided by λ. Let K = λ2 + 1.

Let W = {g, g1, . . . , gn−1, h} be the vertices that occur on an edge path
from g to h contained in ΓS \BS(Kn+K). Then the distance in T between
any two vertices inW is greater than n+λ, so they are all outside ofBT (n+λ).

If e is an edge from gi to gi+1 in ΓS, then ΦST (e) is an edge path of length
at most λ. Then ΦST (e) is outside BT (n), so ΦST takes the path from g to
h in ΓS \BS(Kn+K) to a path from g to h in ΓT \BT (n).

Theorem 2.2.2. Let G be a finitely generated group, let S and T be two
finite sets of generators for G, 1G /∈ S, 1G /∈ T , S = S−1, T = T−1. If ΓS
and ΓT are the Cayley graphs of G with respect to S and T respectively, then
e(ΓS) = e(ΓT ).
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Proof. By the previous proposition, if two vertices in ΓS can be connected
with a path in ΓS \ BS(Kn + K) then that vertices can be connected in
ΓT with a path in ΓT \ BT (n). Then the number of unbounded connected
components of ΓS \BS(Kn+K) is at least equal to the number of unbounded
connected components of ΓT \BT (n). We conclude that

lim
n→∞

CΓS
(n) ≥ lim

n→∞
CΓT

(n)

so e(ΓS) ≥ e(ΓT ).
Using ΦTS instead of ΦST , we conclude that e(ΓT ) ≥ e(ΓS), so the equality

holds.

This theorem proves that the number of ends doesn’t depend on the choice
of set of generators for G. Thus it is possible to define the concept of ends
of a group recurring to the ends of its Cayley graph.

Definition (Ends of a group). Let G be a finitely generated group. The
number of ends of G, denoted with e(G), is the number of ends of any of its
Cayley graphs.

A finitely generated group can only have zero, one, two, or infinitely many
ends. This is stated in the Freudenthal-Hopf Theorem.

Theorem 2.2.3 (Freudenthal-Hopf Theorem). Every finitely generated group
has either zero, one, two, or infinitely many ends.

Proof. Let G be a finite group, then its Cayley graph is a finite graph and
obviously e(G) = 0. In fact, since a finitely generated group H with e(H) = 0
must have a bounded Cayley graph, H is finite. So a group has zero ends if
and only if it is finite.

The free group F1 with only one generator is isomorphic to Z, its Cayley
graph with respect to the free generator and its inverse is an unbounded
sequence of edges. Then e(F1) = 2, since removing any finite sequence of
edges leaves two unbounded connected components.

The free abelian group A2 with two generators is isomorphic to Z⊕Z. Its
Cayley graph with respect to the free generators and their inverses is a grid,
removing a ball of finite radius leaves one unbounded connected component,
so e(A2) = 1.

The free group F2 with two generators has a Cayley graph, with respect
to the free generators and their inverses, that is a tree with valency 4 on
each vertex. Then removing a ball of radius n gives a number of unbounded
connected components strictly increasing when n increases, so e(F2) =∞.

30



Thus a finitely generated group can have zero, one, two or infinitely many
ends. We need only to prove that there is no group G with e(G) finite but
e(G) > 2.

Suppose G is a finitely generated group with a Cayley graph Γ with k
ends, k ∈ N, k ≥ 3. Then G is an infinite group since e(G) 6= 0 and there is
a number n such that Γ \B(n) has k unbounded connected components.

Since G is infinite, there is an element g ∈ G whose distance from 1G is
greater than 2n, and that is a vertex of an unbounded connected component
of Γ \ B(n). Then g · B(n) ∩ B(n) = ∅, and g · B(n) is contained in an
unbounded connected component of Γ\B(n). g ·B(n) divides this component
into at least k connected pieces, and at least k−1 of them must be unbounded.
Then B(n) ∪ g ·B(n) is a finite subgraph of Γ whose removal leaves at least
2k− 2 unbounded connected components, so e(Γ) ≥ 2k− 2 > k since k ≥ 3,
this contradicts e(G) = k.

The number of ends is an invariant for subgroups of finite index. We refer
to [17] for the proof.

Theorem 2.2.4. Let G be a finitely generated group and H a subgroup of G
of finite index. Then e(G) = e(H).

We have already seen that e(G) = 0 if and only if G is finite. We now
want to characterize groups with 2 or infinite ends.

Proposition 2.2.3. Let G be a finitely generated group with e(G) = 2, let
C be a subgraph of a Cayley graph Γ of G such that Γ \C consists exactly of
two unbounded connected components, let E be the set of vertices of one of
the components. Then the subset

H = {g ∈ G|E∆gE is finite}

forms a subgroup of index at most 2, where ∆ denotes the symmetric differ-
ence.

Proof. We need to prove that H is a subgroup.
Since |E∆h−1E| = |hE∆E|, if h ∈ H then hE∆E is finite, so also

h−1 ∈ H and H is closed under inverses.
Let h1, h2 ∈ H, then h1E∆E and h2E∆E are finite. We have

E∆h1h2E = (E∆h1E)∆(h1E∆h1h2E) =

= (E∆h1E)∆h1(E∆h2E)

so h1h2 ∈ H since the symmetric difference of two finite sets is finite. So H
is closed under products and it is a subgroup of G.
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Suppose H 6= G, let g1, g2 ∈ G \H. Then it is

E∆g1g
−1
2 E = (E∆g1E)∆(g1E∆g1g

−1
2 E) =

= (E∆g1E)∆g1(E∆g−1
2 E) = (E∆g1E)c∆g1(E∆g−1

2 E)c

Since G has two ends and E∆g1E and E∆g2E are infinite because g1, g2 /∈ H,
the sets E∆g1E and E∆g−1

2 E must be finite, so E∆g1g
−1
2 E is finite and the

index of H in G is two.

Theorem 2.2.5. Let G be a finitely generated group. Then e(G) = 2 if and
only if G contains a finite index subgroup isomorphic to Z.

Proof. Suppose e(G) = 2, let C be a subgraph of a Cayley graph Γ of G
such that Γ \ C consists exactly of two unbounded connected components,
let E be the set of vertices of one of the components. Then H = {g ∈
G|E∆gE is finite} is a subgroup of G by the previous proposition. If h ∈ H,
E∆hE is finite, so E ∩ hEc and Ec ∩ hE are finite. Let φ : H → Z be the
function that sends each h ∈ H to |E ∩ hEc| − |Ec ∩ hE|

If h′ ∈ H, then E ∩ hEc is the disjoint union

E ∩ hEc = (E ∩ hEc ∩ hh′Ec) ∪ (E ∩ hEc ∩ h′hEc)

and Ec ∩ hE is the disjoint union

Ec ∩ hE = (Ec ∩ hE ∩ hh′E) ∪ (Ec ∩ hE ∩ h′hE)

so it is

φ(h) = |E ∩ hEc ∩ hh′Ec|+|E ∩ hEc ∩ h′hEc|−|Ec ∩ hE ∩ hh′E|−|Ec ∩ hE ∩ h′hE|

On the other hand

φ(h′) = |E ∩ h′Ec| − |Ec ∩ h′E| =
= |hE ∩ hh′Ec| − |hEc ∩ hh′E|

We can divide hE ∩hh′Ec and hEc∩hh′E in the subsets of vertices that are
in E and that in Ec, so it is

φ(h′) = |E ∩ hE ∩ hh′Ec|+ |Ec ∩ hE ∩ hh′Ec| − |E ∩ hEc ∩ hh′Ec| − |Ec ∩ hEc ∩ hh′Ec|

Then we obtain

φ(h) + φ(h′) =

= |E ∩ hEc ∩ hh′Ec|+ |E ∩ hE ∩ hh′Ec| − |Ec ∩ hE ∩ hh′E| −
∣∣Ec ∩ hEc ∩ hh′EE

∣∣ =

= |E ∩ hh′Ec| − |Ec ∩ hh′E| = φ(hh′)
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Thus φ is a group homomorphism from H to Z.
C is a finite subgraph of Γ, so there are finitely many elements h ∈ H such

that C ∩ hC 6= ∅. If C ∩ hC = ∅, then either E ∩ hEc = ∅ and Ec ∩ hE 6= ∅,
or Ec ∩ hE = ∅ and E ∩ hEc 6= ∅, so φ(h) 6= 0. We conclude that the kernel
of φ is finite.

Let h ∈ H be an element such that φ(h) 6= 0, then H ′ = 〈h〉 ' Z and H ′

is of finite index in H. But either G = H or [G : H] = 2, so H ′ is of finite
index in G.

Conversely, let H ′ be a subgroup of finite index in G, H ′ ' Z. Then
e(G) = e(H ′) = 2, since e(Z) = 2.

John Stalling characterized in [22] finitely generated groups with more
than one end.

Theorem 2.2.6. Let G be a finitely generated group. Then e(G) > 1 if and
only if one of the following conditions hold:

1. G splits as a free product with amalgamation G = H ∗C K, where C is
a finite group, C 6= H, C 6= K;

2. G splits as a HNN-extension G = 〈H, t|Ct
1 = C2〉, where C1 and C2

are finite subgroups of H C1 ' C2.

In particular, if G is a finitely generated torsion-free group, then e(G) = ∞
if and only if G admits a non-trivial free product decomposition.

2.3 Duality groups

We recall that the projective dimension of an A-module M is the length of
the shortest projective resolution of M as an A-module.

Definition. The cohomology dimension of a group G, or cdG, is the pro-
jective dimension of Z as a ZG-module.

The projective dimension of aR-moduleM is n if and only if Extn+1
R (M,−) =

0 and Extn+1
R (M,N) = 0 for some R-module N , so it is

cdG = sup{n : Hn(G,M) for some G-module M}.

Definition. A group G is said to be of type FPn if Z is of type FPn as a
ZG-module, that is Z admits a partial projective resolution

Pn → . . .→ P0 →M → 0
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over ZG of finite type (i.e. each Pi is finitely generated as a ZG-module).
A group G is said to be of type FP∞ if it is of type FPn for every n.
A group G is said to be of type FP if Z admits a finite projective reso-

lution over ZG.

Every group is of type FP0 because ZG→ε Z→ 0 is a partial projective
resolution of Z over ZG of finite type.

A group is of type FP1 if and only if Z is finitely presented as a ZG
module, and this holds if and only if G is finitely generated.

Proposition 2.3.1. Let G be a group. G is of type FP2 if and only if it is
almost finitely presented.

Proof. If G is of type FP2, then it is also of type FP1 and therefore finitely
generated.

Then there is an exact sequence of groups

0→ K → F
π→ G→ 0

where F is a finitely generated free group, F = 〈x1, . . . , xn〉. Let F be the
augmentation ideal of ZF , it is a free ZF -module of finite rank. Then we
have the following free resolution of Z over ZF :

0→ F → ZF ε→ Z→ 0.

Applying ZG⊗ZF− to the sequence we obtain, by definition of H1(F ;ZG)
and right exactness of the tensor product, the exact sequence

0→ H1(F,ZG)→ ZG⊗ZF F → ZG⊗ZF ZF → ZG⊗ZF Z→ 0.

It is ZG⊗ZF ZF ' ZG and ZG⊗ZF Z ' Z because the action of G on Z is
the trivial action induced by ZF . ZG ⊗ZF F is a free ZG-module of finite
rank, with generators {1 ⊗ (xi − 1)}ni=1. So we have an exact sequence of
ZG-modules

0→ H1(F,ZG)→ ZG⊗ZF F → ZG ε→ Z→ 0

and G is of type FP2 if and only if H1(F,ZG) is a finitely generated ZG-
module. Since K is free,

H1(F,ZG) ' H1(F, IndFK Z) ' H1(K,Z) ' K

[K,K]

so G is of type FP2 if and only if K
[K,K]

is finitely generated as a ZG-module,
i.e., G is almost finitely presented.
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Remark. With the notation of the proof above, note that if K
[K,K]

is finitely
generated and projective we have obtained a resolution for Z over ZG, and
G has cohomological dimension at most 2.

Theorem 2.3.1. Let G = 〈x1, . . . , xn|r〉 be a non-free, torsion free one-
relator group such that every generator is involved in r, let F = 〈x1, . . . , xn〉
and K be the normal closure of r in F . Then K

[K,K]
' ZG.

Proof. Let g be an element of K, then g =
∏m

i=1 fir
εif−1

i with εi = ±1,
fi ∈ F for all i. Let φ : K

[K,K]
→ ZG be the abelian group homomorphism

such that φ(g[K,K]) =
∑m

i=1 εiπ(fi), where φ is the projection of F on G.
By Proposition 1.7.1 and the Simple Identity Theorem, if g ∈ [K,K] then the
indices fall into pairs (i, j) with εi = −εj and π(fi) = π(fj), so φ([K,K]) = 0
and φ is well defined.

Let g[K,K] ∈ Kerφ, then
∑m

i=1 εiπ(fi), so the indices must fall in pairs
(i, j) with εi = −εj and π(fi) = π(fj). We prove that g ∈ [K,K] by induction
on m.

If m = 0, then g = k ∈ [K,K]. Otherwise, let g =
∏m

i=1 fir
εif−1

i , then
there is an index j, with 1 < j ≤ m, such that εj = −ε1 and fj = f1k1 for
some ki ∈ K, let S =

∏j−1
i=2 fir

εif−1
i and T =

∏m
i=j+1 fir

εif−1
i , we have

g = f1r
ε1f−1

1 Sf1k1r
−ε1k−1

1 f−1
1 T =

f1r
ε1f−1

1 Sf1r
−ε1f−1

1 S−1Sf1r
εk1r

−εk−1
1 f−1

1 T ;

it is n1 = f1r
ε1f−1

1 Sf1r
−ε1f−1

1 S−1 ∈ [K,K] because S ∈ K, and n2 =
f1r

εk1r
−εk−1

1 f−1
1 ∈ [K,K] because rεk1r

−εk−1
1 ∈ [K,K] characteristic sub-

group of K, so

g = n1Sn2T = n1Sn2S
−1n−1

2 n2ST ∈ [K,K]

since n1, n2, Sn2S
−1n−1

2 are in [K,K], and also ST ∈ [K,K] by induction
hypothesis.

This proves that every finitely generated, non free, torsion free one relator
group is of type FP with cohomological dimension 2.

Definition. A group G of type FP is a duality group if there is an integer
n and a G-module D such that

Hi(G,M) ' Hn−i(G,D ⊗M)

for all G-modules M and all integers i.
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Theorem 2.3.2. Let G be a group of type FP . Then the following are
equivalent:

1. G is a duality group.

2. There is an integer n such that

Hi(G,ZG⊗ A) = 0

for all i 6= n and every abelian group A.

3. There is an integer n such that Hi(G,ZG) = 0 for all i 6= n and
Hn(G,ZG) is torsion-free as an abelian group.

4. There are natural isomorphisms

Hi(G,−) ' Hn−i(G,D ⊗−)

where n = cdG and D = Hn(G,ZG), compatible with the connecting
homomorphisms in the long exact homology and cohomology sequences
associated to a short exact sequence of modules.

Proof.

1.⇒ 2. Let A be an abelian group, then M = ZG ⊗ A is an induced module,
as also D ⊗M is. For i 6= n it is

Hi(G,M) ' Hn−i(G,D ⊗M) = 0

because induced modules are H∗-acyclic.

2.⇒ 3. Let A = Z, then ZG⊗ A ' Z, so Hi(G,ZG) = 0 for i 6= n.

Let A = Zk, k ∈ N, then we have the short exact sequence

0→ ZG→·k ZG→ ZG⊗ Zk → 0

so applying the long exact sequence for cohomology we have

0 = Hn−1(G,ZG⊗ Zk)→ Hn(G,ZG)→·k Hn(G,ZG)

Then Hn(G,ZG) has no k torsion, since k is arbitrary, Hn(G,ZG) is
torsion-free.
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3.⇒ 4 Since G is of type FP there is a finite projective resolution of Z over ZG
of length n. Consider the dual complex P̄ = HomG(P,Z), this provides
a projective resolution for D = Hn(G,ZG) since Hi(H,ZG) = 0 for
i 6= n.

Using the duality isomorphism HomG(P,M) ' P̄ ⊗GM we have

Hi(G,M) ' H−i(P̄ ⊗GM) = Hn−i(Σ
nP̄ ⊗GM) = TorGn−i(D,M)

for any G-module M . Since D is torsion-free it is

TorGn−i(D,M) ' Hn−i(G,D ⊗M).

Since all the isomorphisms are natural and compatible with the con-
necting homomorphisms, we have proved the implication.

4.⇒ 1. Trivial.

Theorem 2.3.3. Let G be a duality group with cd(G) > 1. Then G cannot
be decomposed as a free product of non-trivial groups.

Proof. Suppose G = H1 ∗ H2, with H1 and H2 non-trivial. Then H1 and
H2 are torsion-free and of type FP∞ (since they have finite cohomological
dimension). Using the Mayer-Vietoris exact sequence, we have

0→ H0(1,ZG)→ H1(G,ZG)→ H1(H1,ZG)⊕ H1(H2,ZG)

Since H0(1,ZG) ' ZG, it is H1(G,ZG) 6= 0, and G is not a duality group,
against our hypothesis.

Theorem 2.3.4. Any finitely presented group G of cohomological dimension
2 not freely decomposable is a duality group.

Proof. G is finitely presented and cd(G) = 2, so it is of type FP .
Let A be an abelian group, we have to prove that Hi(G,ZG⊗A) = 0 for

i < 2.
For i = 0 it is obvious since H0(G,M) = MG.
For i = 1, H1(G,ZG) is a free abelian group of rank e − 1, where e is

the number of ends of G, and G has only one by Stalling’s theorem. Since
H1(G,ZG⊗ A) ' H1(G,ZG)⊗ A, we have the thesis.

In particular, finitely generated, non free, torsion free and freely indecom-
posable one relator groups are duality groups.

For finitely generated one relator groups we can find the dualizing module
through the explicit resolution of Z over ZG.
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Theorem 2.3.5. Let G be a one-relator group with presentation

G = 〈x1, x2, . . . , xn|r〉

Then H2(G,ZG) = ZG∑
ZG ∂r

∂xi

Proof. Let F be the free group on X = {x1, . . . , xn} and K the normal
closure of the subgroup generated by r in F . Then we have an exact sequence
of groups

0→ K → F
π→ G→ 0

and a free resolution of Z over ZF

0→ F → ZF εF→ Z→ 0

where F is the augmentation ideal of ZF and εF : ZF → F is the augmen-
tation map.

Applying the functor −⊗ZK Z we obtain the free resolution of Z over ZF

F ⊗ZK Z→ ZF ⊗ZK Z εF⊗ZK id→ Z⊗ZK Z→ 0

F '
∑n

i=1 ZF 〈xi− 1〉, so F ⊗ZK Z '
∑n

i=1 ZG〈xi− 1〉, ZF ⊗ZK Z ' ZG and
Z⊗ZK Z ' Z. Then we can rewrite the exact sequence as

n∑
i=1

ZG〈xi − 1〉 δ1→ ZG ε→ Z→ 0

where δ1(
∑
i = 1ngi〈xi−1〉) =

∑n
i=1 gi(xi−1) for gi ∈ ZG, i = 1, . . . , n, and

ε is the augmentation map from ZG to Z.
Since the homology of the complex above would be H∗(K,Z), the kernel

of the morphism δ1 is H1(K,Z) ' K
[K,K]

' ZG by Prop. 2.3.1. The map

δ2 : ZG →
∑n

i=1 ZG given by δ2(f) =
∑n

i=1 f
∂r
∂xi
〈xi − 1〉 for any f ∈ ZG

yields an exact sequence

0→ ZG δ2→
n∑
i=1

ZG〈xi − 1〉 δ1→ ZG ε→ Z→ 0

which is a resolution of Z over ZG.
Applying the functor HomG(−,ZG) to the resolution above we obtain the

complex

0→ HomG(ZG,ZG)
�δ1→ HomG(

n∑
i=1

ZG,ZG)
�δ2→ HomG(ZG,ZG)→ 0

from which we can compute H∗(G,ZG). In particular, since HomG(ZG,ZG) '
ZG and HomG(

∑n
i=1 ZG,ZG) '

∑n
i=1 ZG, by the injectivity of the compo-

sition by δ2 we get H2(G,ZG) = ZG∑
ZG ∂r

∂xi

.
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2.4 Surface group conjecture

Definition. A group G is called a surface group if it is isomorphic to the
fundamental group π1(X) for some closed surface X of genus at least 1.

For an orientable closed surface of genus g ≥ 1, the fundamental group
admits the presentation

π1(X) = 〈x1, x2, . . . , x2g|[x1, x2] . . . [x2g−1, x2g]〉

while for a non-orientable closed surface of genus g ≥ 1 we have a presentation

π1(X) = 〈x0, x1, . . . , xg|x2
0x

2
1 . . . x

2
g〉

Consequently, surface groups are one-relator groups. Since in either case the
relation is not a free generator or a proper power, they are non-free and
torsion-free.

Since covering spaces of closed surfaces are again closed surfaces, we have
that every subgroup of a surface group is again a surface group.

Furthermore, since a closed surface is aspherical, the cohomology of X
and of its fundamental group are isomorphic. For orientable closed surfaces
this means that π1(X) is a Poincarè duality group of dimension 2.

Melnikov conjectured that if G is a residually finite, non free and non-
cyclic hereditary one-relator group, then G is a surface group.

In this original form the conjecture is not true. Baumslag-Solitar groups
BS(1,m) = 〈x, y|xymx−1y−1〉 are residually finite, non-free and non-cyclic
one-relator groups, all their subgroups of finite index are again one-relator
groups, but they are not surface groups. The conjecture can thus be restated
as follows.

Conjecture 2. Let G be a residually finite, non-free, non cyclic hereditary
one-relator group. Then G is either a surface group or a Baumslag-Solitar
group BS(1,m) for some m ∈ Z.

It is known that subgroups of infinite index of surface groups are free.
In [8] Rosenberger et al. classified cyclically pinched and conjugacy pinched
one-relator groups such that every subgroup of infinite index is free. Using
this result they proved a modified form of the surface group conjectur.

Conjecture 3. Let G be a finitely generated, non-free, freely indecomposable,
fully residually free group such that every subgroup of infinite index of G is
free, then G is a surface group.
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In this thesis we are particularly interested in hereditary one-relator
groups where the single relator is in the commutator subgroup. If the surface
group conjecture is true for this groups, then they must be isomorphic to the
fundamental group of an orientable surface. Bieri and Eckmann proved that
Poincarè duality groups of dimension 2 are surface groups, so it would suffice
to prove that such groups are Poincarè duality groups.

We give here the outline of Bieri and Eckmann’s result.
First we stare a couple of propositions used in their proof. The first is

due to Strebel and is proved in [23].

Proposition 2.4.1. Let G be a Poincarè duality group of dimension 2. If
H is a torsion-free subgroup of G with [G : H] =∞ then H is a free group.

Definition (Kaplansky rank). Let N be a finitely generated projective ZG-
module. Let M be a ZG-module such that N⊕M is a finitely generated free
ZG-module, let φ : N ⊕M → N ⊕M be the endomorphism φ = idN ⊕M .
Given a basis β for N ⊕M , the trace t = trβ(φ) ∈ ZG has a coefficient α1

for 1 ∈ G that does not depend on the choice of M and of β. The Kaplansky
rank is defined as k(N) = α1.

If N is a free module then k(N) = rankZG(N).
We make use of the following theorem, proved in [16].

Theorem 2.4.1. If N 6= 0 then k(N) > 0.

Proposition 2.4.2. Let G be a Poincarè duality group of dimension 2. Then
the first Betti number βi(G) = rank Hi(G,Z) is not 0.

Proof. Since G is a group of dimension 2, there is a finite projective resolu-
tion of Z over ZG

0→ P2 → P1 → P0 → Z→ 0

with Pi finitely generated projective ZG-modules, i = 0, 1, 2. Then the first
three Betti numbers βi(G), i = 0, 1, 2, are equal to the ranks of the three
abelian groups Z⊗ZG Pi, i = 0, 1, 2.

If G is orientable, then β0(G) = β2(G) = 1 and β1(G) must be even. If G
is non-orientable, β0(G) = 1 and β2(G) = 0. Since the Euler characteristic
of G is χ(G) = β0(G)− β1(G) + β2(G), we have to prove that χ(G) ≤ 0.

If G is non-orientable, then it has an orientable subgroup H of index
2. Since G is of type FP , it is χ(H) = |H|χ(G), so if χ(H) < 0 then
also χ(G) < 0. Consequently, we need to prove the proposition only for the
orientable case.
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Since G is a Poincarè duality group of dimension 2, it admits a resolution
of Z over ZG of the form

0→ P → ZGd δ→ ZG ε→ Z→ 0

where P is a finitely generated projective module over ZG. Applying HomG(−,ZG),
since HomG(ZG,ZG) ' ZG we get the sequence

0→ ZG→ ZGd δ∗→ P ∗ → 0

where P ∗ = HomG(P,ZG) is a finitely generated projective ZG-module.
Since Hi(G,ZG) = 0 for i 6= 2 and H2(G,ZG) = Z we obtain another finite
resolution of Z over ZG with finitely generated projective ZG-modules

0→ ZG→ ZGd δ∗→ P ∗ → Z→ 0

Then χ(G) = r − d + 1, where r is the rank of Z ⊗ZG P
∗, and β1(G) =

2− χ(G) = 1 + d− r.
Since P ∗/δ∗(ZGd) ' ZG/δ(ZGd) ' Z, we have P ∗ ⊕ δ(ZGd) ' ZG ⊕

δ∗(ZGd), so there is a surjective map α : ZGd+1 → P ∗ ⊕ δ(ZGd). Since
δ(ZGd) 6= 0, we have also a surjective map ᾱ : ZGd+1 → P ∗, if ker(ᾱ) = N
then ZGd+1 ' P ∗ ⊕N . N is a finitely generated projective ZG-module and
we have

rank(Z⊗ZG P
∗) + rank(Z⊗ZG N) = d+ 1

so r = d+ 1− rank(Z⊗ZG N). Then β1(G) = rank(Z⊗ZG N).
If P is a free ZG module, then also P ∗ is a free ZG-module then, since

P ∗ ⊕ N is free, k(N) = rank(Z ⊗ZG N) = β1(G), so by Proposition 2.4.1 it
is β1(G) > 0.

If P and P ∗ are not free ZG-modules, by a criterion of Bass in [2] if
k(N) 6= rank(Z ⊗ZG N) then G contains a subgroup H isomorphic to the
additive group Z[1

p
] for some prime p. If [G : H] < ∞, then H should be

a Poincarè duality group of dimension 2, but it is not; if [G : H] = ∞
then by Proposition 2.4.1 H should be free, but it is not. We conclude that
k(N) = rank(Z⊗ZGN) = β1(G), so by Proposition 2.4.1 it is β1(G) > 0.

The results above will be used to prove the following theorem.

Theorem 2.4.2. Let G be a Poincarè duality group of dimension 2. Then
G is a surface group.

We will need to define first the splitting of a group over a subgroup and
relative homology.
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Definition. Let G be a group and H a subgroup of G. We say that G splits
over K if either G is an amalgamated free product H = K ∗H L with K 6= H
and L 6= H, or G is a HNN -extension G = K∗H,t = 〈K, t|ht = φ(h), h ∈ H〉
for some injective group homomorphism φ : H → K.

Let G be a group and H a finite subgroup of G. Then by Stalling’s
structure theorem G splits over H if and only if H1(G,ZG) 6= 0.

Definition. A group pair (G; {Sj}j∈J) consists of a group G and a family
{Sj}j∈J of subgroups of G, not necessarily distinct.

For a subgroup S of G, let ZG/S be the G-module whose underlying
Abelian group is freely generated by the cosets xS with G-action by left
multiplication.

Let (G; {Sj}j∈J) be a group pair, we define ∆ = {⊕jZG/Sj
ε→ Z} where

ε(xSj) = 1 for all x ∈ G, j ∈ J . Then we use this module to define the
relative cohomology of the pair (G; {Sj}j∈J):

Hi(G; {Sj}j∈J ;A) = Hi−1(G; ∆⊗ A)

Hi(G; {Sj}j∈J ;A) = Hi−1(G; Hom(∆, A))

for a G-module A, where ⊗ and Hom are equipped with diagonal G-action.
A duality pair of dimension n with dualizing module D is a group pair

(G; {Sj}j∈J) such that:

1. Hi(G;A) ' Hn−i(G; {Sj}j∈J ;D ⊗ A)

2. Hi(G; {Sj}j∈J ;A) ' Hn−i(G;D ⊗ A)

for every G-module A.
We say that a group pair (G; {Sj}j∈J) is an orientable Poincarè duality

pair of dimension n if D = Z and

Hi(G;A) ' Hn−i−1(G; ∆⊗ A)

and the second isomorphism is implied by the first.
(G; {Sj}j∈J) is an orientable Poincarè duality pair of dimension n if and

only if G is a duality group of dimension n − 1 with dualizing module D.
Furthermore, relative exact sequences show that {Sj}j∈J must be a finite
family of Poincarè duality groups of dimension n− 1.

Definition. Let G be a group and H a finitely generated subgroup of G.
Let {xv} be a set of coset representatives of G mod H. Let

r : H1(G,ZG)→ ⊕v H1(H,ZH)xv
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be the composition of the restriction map

res : H1(G,ZG)→ H1(H,ZG)

with the isomorphism between H1(H,ZG) and H1(H,ZH)xv.
The minimal number of non-zero components of r(c) for all c in N(G;

S1, . . . , Sm), c 6= 0, is called the weight n(H) of H with respect to G and
S1, . . . , Sm.

n(H) = 0 if and only if N(G;H,S1, . . . , Sm) 6= 0, that is if and only if G
splits over H.

H. Muller established in [18] the simultaneous splitting theorem, as a
corollary of this theorem we can classifyG andH for n(H) = 1 and n(H) = 2.
We are interested in the particular cases outlined in the following proposition.

Proposition 2.4.3. Let G be a a group and H a subgroup of G.
If G is torsion free and n(H) = 1 then G and H must be one of the

following:

1. G = G1 ∗ G2 for some subgroups G1, G2 of G, with H = H1 ∗ H2,
H1 < G1, H2 < G2;

2. G = G1 ∗ 〈t〉 for some subgroup G1 of G, with H = H1 ∗H t
2, H1 < G1,

H2 < G2;

3. G = 〈t〉 = H and S1 = S2 = . . . = Sm = 〈1G〉 or m = 0.

If G is torsion-free, H is infinite cyclic and n(H) = 2 then G and H must
be one of the following:

1. G = G1 ∗G2 for some subgroups G1, G2 of G, with H = 〈g1g2〉, gi ∈ Gi,
gi 6= 1G, i = 1, 2;

2. G = G1∗〈t〉 for some subgroup G1 of G, with H = 〈gt1g2〉, Hg1, g2 ∈ G1;

3. G = 〈t〉, H = 〈t2〉, and S1 = S2 = . . . = Sm = 〈1G〉 or m = 0.

The following proposition, proved by Bieri and Eckmann in [6], establish
that a free product of Poincarè duality group pairs of dimension n with an
amalgamated boundary component yiels again a Poincarè duality group pair
of dimension n.

Proposition 2.4.4. Let (G1;S0, . . . , Sm) and (G2;S ′0. . . . , S
′
m′) be group pairs,

let Ti be a subgroup of Gi for i = 1, 2, with T1 ' T2. Let G be the amalga-
mated product G1 ∗T G2 with T = T1 = T2, then, identifying the subgroups of
G1, G2 with subgroups of G, there is a group pair (G;S0, . . . , Sm, S

′
0, . . . , S

′
m′).
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1. If (G1;S0, . . . , Sm) and (G2;S ′0. . . . , S
′
m′) are Poincarè duality group

pairs of dimension n then also (G;S0, . . . , Sm, S
′
0, . . . , S

′
m′) is a Poincarè

duality group pair of dimension n.

2. If (G;S0, . . . , Sm, S
′
0, . . . , S

′
m′) is a Poincarè duality group pair of di-

mension n and T is a Poincarè duality group pair of dimension n− 1,
then (G1;S0, . . . , Sm, T ) and (G2;S ′0. . . . , S

′
m′ , T ) are Poincarè duality

group pairs of dimension n

Poincarè duality group pairs of dimension 2 are also completely classified.

Proposition 2.4.5. Let (G;S0, . . . , Sm) be a Poincarè duality group pair of
dimension 2. Then it is one of the following:

1. G is a free group generated by t1, . . . , tm, x1, . . . , x2g, with m + g > 0,
S1, . . . , Sm are generated by conjugates of t1, . . . , tm and S0 is generated
by
∏m

i=1 ti
∏g

j=1[x2j−1, x2j];

2. G is a free group generated by t1, . . . , tm, x0, . . . , xg, m ≥ 0, g ≥ 0,
S1, . . . , Sm are generated by conjugates of t1, . . . , tmand S0 is generated
by
∏m

i=1 ti
∏g

j=0 x
2
j .

Proposition 2.4.6. Let (G;S0, . . . , Sm) be a Poincarè duality group pair of
dimension 2. Then (G;S0, . . . , Sm) is a surface group pair.

Proof. Let n be the rank of the finitely generated free group G. We make
induction on n.

If n = 1, then G is infinite cyclic, G = 〈g〉, and H1(G;ZG) = Z, since G
is a duality group of dimension 1, the dualizing module D is isomorphic to
Z. From the exact sequence

0→ D → ⊕mi=1ZG/Si → Z→ Z

we obtain that ⊕mi=1ZG/Si ' Z ⊕ Z, this can happen if and only if either
m = 1 and S1 = S2 = G or m = 0 and G = 〈g2〉. Then the group pair
is respectively the lowest orientable case for g = 0,m = 1 and the lowest
non-orientable case for g = 0,m = 0 of the presentation list of surface group
pairs.

Suppose n > 1, by Proposition 2.4.3 G splits in one of the following ways:

1. G = G1 ∗ G2 with S0 = 〈g1g2〉, gi ∈ Gi, gi 6= 1G for i = 1, 2, while Sj
is conjugate to a subgroup of G1 or G2 for j > 0, we can suppose that
Sj is conjugate to a subgroup of G1 for 1 ≤ j ≤ k and to a subgroup
of G2 for k + 1 ≤ j ≤ m;
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2. G = G1 ∗ 〈t〉 with S0 = 〈gt1g2〉, gi ∈ G1 for i = 1, 2, and Sj conjugate
to a subgroup of G1.

In the first case (the second case is analogue), G = (G1 ∗ 〈g2〉) ∗〈g2〉 G2,
so S0 ⊆ G1 ∗ 〈g2〉. Then the group pair (G2; 〈g2〉, Sk+1, . . . , Sm) is a Poincarè
duality group pair of dimension 2 by Proposition 2.4.4. Similarly we have
that also (G1; 〈g1〉, S, . . . , Sk) is a Poincarè duality group pair of dimension
2.

Since the rank ofG1 andG2 is less than n, by induction (G1; 〈g1〉, S, . . . , Sk)
and (G2; 〈g2〉, Sk+1, . . . , Sm) are surface group pairs, so (G;S0, . . . , Sm) is a
surface group pair.

Let (G;S0, . . . , Sm) be a Poincarè duality group pair of dimension 2 with
m ≥ 0 and Si infinite cyclic for 1 ≤ i ≤ m and rankG > 1. The exact
relative cohomology sequence of the group pair is

0→ H1(G;S0, . . . , Sm;ZG)→ H1(G;ZG)
r→

⊕mi=1 H1(Si;ZG)→δ H2(G;S0, . . . , Sm;ZG)→ 0

where r is the map (res1, . . . , resm). We have that

H1(G;S0, . . . , Sm;ZG) = 0

and
H2(G;S0, . . . , Sm;ZG) ' Z

since (G;S0, . . . , Sm) is a Poincarè duality group pair of dimension 2. If we
omit S0, the last term becomes 0 and the first must be non zero, that is
N = N(G;S1, . . . , Sm), the intersection of the kernels of the resi, 1 ≤ i ≤ m,
is non zero. The weigth n(S0) is the minimal number of components in
H1(S0;ZG) ' ⊕v∈V H1(S0;ZS0)xv, where {xv}v∈V is a set of representatives
for the cosets of G modulo S0 of res0(c) for all c ∈ N , c 6= 0, and ker res0 ∩N =
0. r(N) = (res0, 0, . . . , 0) = (H1(S0,ZG), 0, . . . , 0) ∩ ker δ and δ restricted
to any summand Zxv of H1(S0,ZG) is bijective, so the minimum number of
components of non zero elements in res0(N) is 2. We conclude that r(N) = 2.

G is a Poincarè duality group of dimension 2 with G = G1 ∗L G2 where
L is free, rankL > 1. Consider the Mayer-Vietoris exact sequence

. . .→ 0→ H1(G1;ZG)⊕H1(G2;ZG)
res1− res2→ H1(L;ZG)

δ→ H2(G;ZG)→ . . .

res1 and res1 are injective, so n(L) > 0 with respect to the group pair (G1; ∅)
and (G2; ∅). Since L is free of rank greater than 1, H1(L;ZL) is free abelian
of infinite rank. Then the restriction of δ to H1(L;ZL) is not injective since
H2(G;ZG) ' Z, this implies that im(res1− res2) ∩ H1(L;ZL) 6= 0.
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If n(L) were greater than 1 with respect to both (G1; ∅) and (G2; ∅),
then the image of any (c1, c2) ∈ H1(G1;ZG) ⊕ H1(G2;ZG), (c1, c2) 6= (0, 0),
through res1− res2 cannot lie in H1(L;ZL), so n(L) = 1 with respect to at
least one of the two group pairs.

Proposition 2.4.7. Let G be a Poincarè duality group of dimension 2. Then
G is a surface group.

Proof. Since H1(G;ZG) 6= 0, by Stalling’s structure theorem G splits over
a finite subgroup H, since G is torsion-free it must be H = 〈1G〉.

By Proposition 2.4.3 it is either G = G1 ∗L G2 or G = G1 ∗L 〈t〉 with L
finitely generated. Since H1(G;ZG) = 0 it is L 6= 1. [L : G] = ∞, so by
Strebel’s theorem cdL ≤ 1, so L is a finitely generated free group. We will
analyze the first case, the second is similar.

If G = G1 ∗L G2 with rankL > 1 then we have one of the following
splittings:

1. G1 = H1 ∗H2, L = L1 ∗ L2 with Li ⊆ Hi for i = 1, 2;

2. G1 = H ∗ 〈t〉, L = L1 ∗ Lt2 with Li ⊆ H for i = 1, 2.

In the first case, G = H1∗L1 (H2∗L2G2). If L1 6= H1 then G splits over L1,
if L1 = H then G splits over L2, in both cases G splits over a free subgroup
of rank less than that of L.

In the second case, G = (H ∗L1 G2)∗L2,t, so G splits over L2 whose rank
is less than that of L.

By induction, we can suppose that G splits over an infinite cyclic sub-
group, so rankL = 1. Then L is a Poincarè duality group of dimension 2
and by Proposition the group pairs (G1, L) and (G2, L) in the first case and
(G1, {L,Lt}) in the second case are Poincarè duality group pairs of dimension
2. Then by Proposition 2.4.6 these are surface group pairs corresponding to
closed surfaces with one disk or two disks removed respectively.

In the first case, G = G1 ∗L G2 is the fundamental group of the closed
surface obtained identifying the boundary circles; in the second case G is
the fundamental group of the closed surface obtained by joining the two
boundary circles by a tube.

2.5 Demushkin groups

The hypothesis of the surface group conjecture have some striking similarities
to some properties of Demushkin groups, which are one-relator pro-p groups
and Poincarè duality groups.
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Definition (Direct systems). Let (I;≤) be a partially ordered set. A direct
system of groups over I is a collection {Gi}i∈I of groups together with a
collection of homomorphisms φij : Gi → Gj for every i ≤ j, such that the
diagram

Gi

φij
//

φik

  

Gj

φjk
��

Gk

commutes for every i ≤ j ≤ k and φii = idGi
for every i ∈ I.

Definition (Compatible homorphisms). Let ({Gi}i∈I ; {φij}ij∈I) be a direct
systems of groups indexed over the partially ordered set I. Let H be a group
and {ψi}i∈I be a collection of group homomorphisms with ψi : Gi → H.
{ψi}i∈I is called a collection of compatible homomorphisms if the diagram

Gi

φij
//

ψi

  

Gj

ψj

��

H

commutes for every i ≤ j.

Definition (Profinite and pro-p groups). Let ({Gi}i∈I ; {φij}ij∈I) be a direct
systems of group indexed over the partially ordered set I. A group G together
with a collection of compatible group homomorphisms ψi : Gi → G, i ∈ I,
is called a direct limit of the direct system if for any group H, together
with compatible group homomorphisms λi : Gi → H, there is a unique
homomorphism γ : G→ H such that the diagram

Gi
ψi //

λi

  

G

γ

��

H

commutes for every i ∈ I. We write G =
lim← Gi.

If G is the direct limit of a direct system of finite groups, G is said to be
a profinite group.

If G is the direct limit of a direct system of finite p groups, G is said to
be a pro-p group.

If we equip the groups of the direct system with the discrete topology,
then the direct limit G inherits a topology and it is a topological group.
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The kernels of the projection homomorphisms from G to Gi, i ∈ I, is a
fundamental system of open neighborhoos of 1G. A subgroup U of G is open
if and only if U is closed of finite index.

Given a profinite group G and a profinite ring R, the complete group
algebra [[RG]] is the inverse limit

[[RG]] = lim
←
R
G

U

where RG
U

is the ordinary group algebra and U ranges over the open normal
subgroups of G. [[RG]] is a profinite ring.

IfG is a profinite group, we can consider the projective resolution of [[ẐG]]
over Ẑ and use this resolution to define a profinite homology Ĥn(G,M) and

profinite cohomology Ĥ
n
(G,M), where M is a profinite [[ẐG]]-module.

If G is a pro-p group, then Ĥ
n
(G,Fp) has a natural structure of vector

space over the finite field with p elements Fp. For n = 1, 2 this structure is
linked to the presentation of G as a quotient of a pro-p free group.

Theorem 2.5.1. Let G be a pro-p group. Then dimFp Ĥ
1
(G,Fp) = d(G),

where d(G) is the minimal cardinality of a set of generators of G converging
to 1G, which is the minimal dimension of free pro-p groups with quotient G.

Proof. Let X be a set such that |X| = dimFp Ĥ
1
(G,Fp), let F be the free

pro-p group on the set X. We have

Ĥ
1
(F,Fp) = Hom(F,Fp) = ⊕x∈XFp,

so dimFp Ĥ
1
(G,Fp) = |X|. Then there is an isomorphism

α : Ĥ
1
(G,Fp)→ Ĥ

1
(F,Fp),

so there exists a continuos homomorphism φ : F → G that induces α and
d(G) ≤ |X|.

Let Y be a set such that |Y | = d(G), let F2 be the free pro-p group on
the set Y . Then there is a continuos epimorphism ψ : F2 → G and this

epimorphism induces an injective homorphism β : Ĥ
1
(G,Fp) → Ĥ

1
(F2,Fp),

so we have
dimFp Ĥ

1
(G,Fp) ≤ Ĥ

1
(F2,Fp) = |Y | = d(G).

We conclude dimFp Ĥ
1
(G,Fp) = d(G).

The next theorem gives another property of the first cohomology group.
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Theorem 2.5.2. Let G be a pro-p group and K a closed normal subgroup of
G. Then the smallest cardinality of a generating set of K as a closed subgroup

of G is equal to dimFp Ĥ
1
(G,Fp)G, where Ĥ

1
(K,Fp)G is the fixed submodule

of Ĥ
1
(K,Fp) under the action of G.

If G is a finitely generated pro-p group, let G = 〈X|R〉 be a presentation
of G as a pro-p group such that |X| = d(G). Then R generates a normal
subgroup K of F , the free pro-p group on the set X. We define r(G), the
relation rank of G, as the smallest cardinality of a generating set of K as a
normal subgroup of F . This is the smallest cardinality for a subset R′ of F
such that 〈X|R′〉 = G.

Theorem 2.5.3. Let G be a finitely generated pro-p group. Then

dimFp Ĥ
2
(G,Fp) = rr(G).

Proof. Let X be a set such that |X| = d(G), let F be the free pro-p group
on the set X, let 〈X|R〉 be a presentation of G and K the normal subgroup
of F generated by R. We have an exact sequence of groups

1→ K → F → G→ 1

This exact sequence induces a five term exact sequence

0→ Ĥ
1
(G,Fp)→ Ĥ

1
(F,Fp)→ Ĥ

1
(K,Fp)F → Ĥ

2
(G,Fp)→ Ĥ

2
(F,Fp)

By Theorem 2.5 we have that Ĥ
1
(G,Fp) and Ĥ

1
(F,Fp) are Fp-vector space

of the same dimension, so the injective homomorphism between them is also
an isomorphism.

F is a free pro-p group, so its cohomological dimension over Fp is 1. Then

Ĥ
2
(G,Fp)→ Ĥ

2
(F,Fp) = 0.

We conclude that the morphism between Ĥ
1
(K,Fp)F and Ĥ

2
(G,Fp) in

the five term exact sequence is an isomorphism.

Since by Theorem 2.5.2 dimFp Ĥ
1
(K,Fp)F is the smallest cardinality of a

generating set of K as a normal subgroup of G, it is dimFp Ĥ
2
(G,Fp) = rr(G).

The interest in the properties of low cohomology groups is motivated by
the definition of Demushkin groups.

Definition. A pro-p group is a Demushkin group if

1. dimFp Ĥ
2
(G,Fp) = 1;

49



2. dimFp Ĥ
1
(G,Fp) <∞;

3. Ĥ
i
(G,Fp) = 0 for all i > 2;

4. the cup product ∪ : Ĥ
1
(G,Fp) × Ĥ

1
(G,Fp) → Ĥ

2
(G,Fp) is a non-

degenerate bilinear form.

Since the first cohomology group of a Demushkin group has finite dimen-
sion and the second cohomology group has dimension 1, Demushkin groups
are finitely generated one-relator pro-p groups. Since the definition implies

that Ĥ
2
(G,Fp) ' Fp, they can be seen as the pro-p analogue of Poincarè du-

ality groups of dimension 2. A subgroup of finite index of a Demushkin group
is again a Demushkin group, so Demushkin groups are hereditary one-relator
groups.

Labute completed in [12] the classification of all Demushkin groups. There
are two important inveriants associated to Demushkin groups. The first is d,
the minimal number of generators of G. The quotient group G

[G,G]
is either

a free abelian pro-p group of rank d or the direct product of a finite cyclic
group of order pm for some m, and a free abelian pro-p group of rank d− 1;
we define the invariant q as ∞ in the first case and pm in the latter. We will
need the classification only for q 6= 2.

Theorem 2.5.4. Let G be a Demushkin group with invariants d and q, sup-
pose q 6= 2. Then d is even and G admits a presentation 〈x1, x2, . . . , xd|r〉
where

r = [x1, x2][x3, x4] · · · [xd−1, xd]

if q =∞ and
r = xq1[x1, x2][x3, x4] · · · [xd−1, xd]

if q is finite.

2.6 Goodness

Given a group G, the set of all the quotients G
H

where H is a normal subgroup
of G of finite index, together with the projection homomorphisms, is a direct
system of finite groups. The inverse limit of this direct system is a profinite
group, called the profinite completion Ĝ of G.

Similarly, the set of all the quotients G
H

where H is a normal subgroup
of G with [G : H] = pα for a fixed prime p, together with the projection
homomorphisms, is a direct system of p-groups. The inverse limit of this
direct system is a pro-p group, called the pro-p completion Gp of G.
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Definition. Let G be a group and Ĝ its profinite completion (risp. pro-p
completion). G is called good (risp. p-good) if the natural homomorphism

G→ Ĝ induces isomorphisms between the cohomology groups Ĥ
i
(Ĝ,M) and

Hi(G,M) for every finite G-module M .

Proposition 2.6.1. Let G be a residually free group and Ĝ its profinite
completion. Then the following properties are equivalent.

1. Ĥ
i
(Ĝ,M)→ Hi(G,M) are bijective for i ≤ n and injective for i = n+1

for every finite module M ;

2. Ĥ
i
(Ĝ,M) → Hi(G,M) are surjective for i ≤ n for every finite module

M ;

3. for all x ∈ Hi(G,M), 1 ≤ i ≤ n, and for every finite module M , there
is a Ĝ-module N such that M is isomorphic to a G-submodule of N
and the morphism Hi(G,M)→ Hi(G,N) sends x in 0;

4. for all x ∈ Hi(G,M), 1 ≤ i ≤ n, and for every finite module M , there
is a subgroup H of G, with [G : H] < ∞, such that x induces zero in
Hi(H,M).

Proof. We prove some implications.

1⇒ 2) Trivial.

2⇒ 3) Since the category of Ĝ-modules has enough injectives, there is N injec-
tive Ĝ-module such that M injects in N . Then we have a commutative
square

Ĥ
i
(Ĝ,M)

��

// Hi(G,M)

��

Ĥ
i
(Ĝ, N) // Hi(G,N)

for every i ∈ N. Since N is injective as a Ĝ-module, it is Ĥ
i
(Ĝ, N) = 0

for i ≥ 1. Since for 1 ≤ i ≤ n we have that Ĥ
i
(Ĝ,M) → Hi(G,M) is

surjective, the morphism Hi(G,M)→ Hi(G,N) is the zero morphism,
proving the implication.

2⇒ 4) Let x ∈ Hi(G,M), with 1 ≤ i ≤ n, let x̂ ∈ Ĥ
i
(Ĝ,M) such that its image

in Hi(G,M) is x. Since x̂ ∈ Hi(Ĝ,M) there is a normal subgroup of

finite index Û of Ĝ such that there is an element x̄ ∈ Ĥ
i
( Ĝ
Û
,M) which
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is sent to x̂ by the inflation map Ĥ
i
( Ĝ
Û
,M)→ Ĥ

i
(Ĝ,M), furthermore I

can assume Û acts trivially on M .

From the Hochschild-Serre spectral sequence for cohomology we have
that the composition

Ĥ
i
(
Ĝ

Û
,M)→ Ĥ

i
(ĜM)→ Ĥ

i
(Û ,M)

is the zero morphism, so x̂ induces 0 in Ĥ
i
(Û ,M). Taking U as the

inverse image of Û under the natural morphism from G to Ĝ, we obtain
a commutative diagram

Ĥ
i
(Ĝ,M)

��

// Hi(G,M)

��

Ĥ
i
(Û ,M) // Hi(U,M)

and this proves the thesis.

4⇒ 3) Take x ∈ Hi(G,M) and letH be the subgroup of finite index such that x
maps to 0 in Hi(H,M). Then M injects in the module N = CoindHG M
and there is a natural isomorphism between Hi(H,M) amd Hi(G,N),
so x maps to 0 in Hi(G,N).

4⇒ 1) For n = 0, we have Ĥ
0
(Ĝ,M) ' H0(G,M) because M Ĝ ' MG, and

Ĥ
1
(Ĝ,M)→ H1(G,M) is injective because G is dense in Ĝ.

If the implication is true for j < i, then we have only to prove that

Ĥ
i
(Ĝ,M)→ Hi(G,M) is surjective and that Ĥ

i+1
(Ĝ,M)→ Hi+1(G,M)

is injective.

For any x ∈ Hi(G,M) there is U of finite index such that the image
of x in Hi(U,M) is 0, then by the Hochschild-Serre spectral sequence

there is y ∈ Hi(G
U
,M) whose image is x, since Ĥ

i
(Ĝ,M) is the limit of

the i-th cohomology groups of the finite quotients of G, it follows that

Ĥ
i
(Ĝ,M)→ Hi(G,M) is surjective.

Let x ∈ Ĥ
n+1

(Ĝ,M) such that its image in Hn+1(G,M) is 0 Let IM be
an injective Ĝ-module such that M injects in IM . Then IM is the direct
limit of all the finite G-submodules of IM containing the image of M .
Since Hn+1(G; IM) = 0 there is a finite G-module M ′, M ⊆ M ′ ⊆ IM ,
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such that the image of x in Hn+1(G,M ′) = 0. Take the short exact
sequence

0→M →M ′ → X → 0

For the long exact sequence for cohomology and naturality we have

Ĥ
n
(Ĝ,M ′)

��

// Ĥ
n
(Ĝ,X)

��

// Ĥ
n+1

(Ĝ,M)

��

// Ĥ
n+1

(Ĝ,M ′)

��

Hn(G,M ′) // Hn(G,X) // Hn+1(G,M) // Hn+1(G,M ′)

Since the image of x in Ĥ
n+1

(Ĝ,M ′) is 0, by exactness there is y ∈
Ĥ
n
(Ĝ,X) whose image is x, but Ĥ

n
(Ĝ,X) ' Hn(G,X) because X is

finite, let ȳ ∈ Hn(G,X) be the image of y. By commutativity the
image of ȳ in Hn+1(G,M ′) is 0, so by exactness again there is z̄ ∈
Hn(G,M ′) whose image is ȳ, since again Ĥ

n
(Ĝ,M ′) ' Hn(G,M) let

z be counterimage of z̄. Then by commutativity y is in the image
of Ĥ

n
(Ĝ,M ′) in Ĥ

n
(Ĝ,X) and by exactness it is x = 0, proving the

injectivity of Hn+1(Ĝ;M)→ Hn+1(G,M).

Proposition 2.6.2. Let G = 〈x1, . . . , xn|r〉 be a torsion-free non-free one-
relator group, then H2(G,Fp) ' Fp if and only if r ∈ F p[F, F ].

Proof. Let 0→ K → F → G→ 0 be a presentation for G. For the five-term
exact sequence we have

0→ H1(G,Fp)→ H1(F,Fp)→ H1(K,Fp)G → H2(G,Fp)→ H2(F,Fp)

H2(F,Fp) = 0 because F is a free group.
H1(K,Fp) ' Fp[G]∗ by a corollary of Lyndon’s theorem, so H1(K,Fp)G '

Fp.
Then H2(G,Fp) ' Fp if and only if H1(G,Fp) → H1(F,Fp) is an isomor-

phism, that is if and only if G
Gp[G,G]

' F
F p[F,F ]

. But this happens if and only

if r ∈ F p[F, F ].

Proposition 2.6.3. Let p be a prime. G is p-good if and only if for all
x ∈ Hi(G,Zp), 1 ≤ i ≤ n, there is a subgroup H of G, with [G : H] < ∞,
such that x induces zero in Hi(H,Zp).

Proof. Obviously if G is p-good then one of the implications is 4) above for
M = Zp.
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For the other implication, let M be a finite G-module, we make induction
on the length of the composition series of M . The first step is our hypothesis.

Let 0 → M ′ → M → Zp → 0 be an exact sequence where the length of
the composition series of M ′ is shorter than that of M . By applying the long
exact sequence for cohomology and naturality we obtain the commutative
diagram

Hn−1(Ĝ,Zp)

��

// Hn(Ĝ,M ′)

��

// Hn(Ĝ,M)

��

// Hn(Ĝ,Zp)

��

// Hn+1(Ĝ,M ′)

��

Hn−1(G,Zp) // Hn(G,M ′) // Hn(G,M) // Hn(G,Zp) // Hn+1(G,M ′)

By induction hypothesis the first two and the last two vertical morphisms
are isomoprhisms, so for the five lemma Hn(Ĝ,M) ' Hn(G,M).

Proposition 2.6.4. Let G be a finitely generated one-relator group such that
every subgroup of finite index is again a non-free one-relator group and with
relator in [F, F ] involving every generator of F . Then G is p-good for every
prime p.

Proof. We only need to prove that for every p prime H2(G,Zp) maps to 0
in H2(U,Zp) for some U of finite index in G.

Since r ∈ [F, F ] we can choose U of index p by taking the inverse image
of the subgroup of index p of the abelianization of G. U is a torsion-free
one-relator group of finite index in G, so H2(U,Zp) ' Zp.

For any x ∈ H2(G,Zp) it is corGU resUG x = [G : U ]x, but [G : U ] = p, so it
is the zero morphism.

The corestriction corGU : H2(U,Zp) → H2(G,Zp) is surjective, so we have
that the restriction must be the zero morphism, thus proving our claim.

Proposition 2.6.5. Let G be a non-free, torsion-free one-relator group such
that every subgroup of finite index is again a non-free one-relator group and
with relator in [F, F ] involving every generator of F . Then Ĝp, the pro-p
completion of G, is a Demushkin group.

Proof. G is p-good, so we have that Ĝp has cohomological dimension 2.

For every maximal subgroup U of Ĝp we have that U is the pro-p com-

pletion of U ∩G, where G is the immersion of G in Ĝp, but U ∩G has finite

index in G, so it is a one-relator group. Thus Û is a one-relator pro-p group.
We can conlude that G is a Demushkin group.
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Proposition 2.6.6. Let G be a non-free, torsion-free one-relator group such
that every subgroup of finite index is again a non-free one-relator group and
with relator r in [F, F ] involving every generator of F . Then r /∈ γ3(F ).

Proof. Suppose r ∈ γ3(F ), then, for every p, Ĝp should be an orientable

Demushkin group, so Ĝp would be a pro-p group one-relator group with
relator not in γ3, which is absurd.

We have an interesting result for the case with only two generators.

Theorem 2.6.1. Let G = 〈x, y|r〉 be a residually finite, hereditary one relator
group with only two generators, suppose r ∈ [F, F ].

Then G is a surface group.

Proof. Let p be a prime, the pro-p completion Ĝp of G is an orientable
Demushkyn group, so r = [x, y]r′ for some r′ ∈ γ3(F ).

Let P be a p-Sylow of Ĝ, we know that H2(Ĝ,Fp) → H2(P,Fp) is an
isomorphism because G is p-good.

Since Ĝp has two generators, P must have at least two generators. If P

had three or more generators, then there would be an open subgroup U of Ĝ
such that dimFp H1(U,Fp) ≥ 3, a contradiction. Then H1(Ĝ,Fp)→ H1(P,Fp)
is an isomorphism.

We can conclude that Ĝ is p-nilpotent for every p, and that the p-Sylow
of G is isomorphic to Zp⊕Zp, so Ĝ ' Ẑ⊕Zp is abelian. Since G is residually
finite, G is also abelian and thus a surface group.
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Chapter 3

Augmented duality groups

In this chapter we want to establish the concept of augmented duality group
and show that finitely generated free groups and some one-relator groups
are augmented duality groups. We will follow the unpublished papers of T.
Weigel.

3.1 Triangulated categories

We recall here briefly the definition of triagulated category, following mainly
[19].

Let C be an additive category with an additive and invertible endofunctor
Σ. We will write X[n] for ΣnX. A candidate triangle in C is a diagram of
the form

X
u // Y

v // Z
w // X[1]

where v ◦u, w ◦ v and u[1]◦w are zero morphisms. A morphism of candidate
triangles is a commutative diagram whose rows are candidate triangles.

Definition. A triangulated category T is an additive category, together with
an additive and invertible endofunctor Σ called suspension functor, and a
class T ∇〉(T ) of candidate triangles called distinguished triangles that satisfy
the following conditions:

[T1] Any candidate triangle which is isomorphic to a disinguished triangle
is a triangle.

[T2] For any object X in T the candidate triangle

X
1 // X // 0 // X[1]

is a distinguished triangle.
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[T3] For any morphism f : X → Y in T there exists a distinguished triangle
of the form

X
f
// Y // Z // X[1]

The object Z is called a mapping cone on the morphism f .

[T4] If the candidate triangle

X
u // Y

v // Z
w // X[1]

is a disitnguished triangle, the candidate triangles

Y
−v
// Z

−w
// X[1]

−u[1]
// Y [1]

and

Z[−1]
−w[−1]

// X
−u
// Y

−v
// Z

are distinguished triangles (we say that this distinguished triangles are
obtained rotating respectively forward and back the original distin-
guished triangle).

[T5] For any commutative diagram

X u //

f

��

Y v //

g

��

Z w // X[1]

X ′
u′ // Y ′

v′ // Z ′
w′ // X ′[1]

whose rows are distinguished triangles there exists a morphism h : Z →
Z ′ such that

(a) the diagram

X u //

f

��

Y v //

g

��

Z w //

h
��

X[1]

f [1]
��

X ′ u′ // Y ′ v′ // Z ′ w′ // X ′[1]

is commutative;

(b) the mapping cone of the previous morphis of distinguished trian-
gles

Y ⊕X ′
(−v 0
g u′

)
// Z ⊕ Y ′

(−w 0
h v′

)
// X[1]⊕ Z ′

(
−u[1] 0
f [1] w′

)
// Y [1]⊕X ′[1]

is again a distinguished triangle.
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Let A be an abelian category, we call K(A) the category whose objects
are chain complexes A = (Ak, δk) in A and whose morphisms are homotopy
equivalence classes of morphisms of cahin complexes. K(A) is again an ad-
ditive category. We can define the endofunctorfunctor Σ : K(A) → K(A)
with ΣAk = Ak+1 and δΣA

k = −δAk , it is invertible and additive. K(A) is
an example of triangulated category, with the mapping cone on a morphism

A→ B given by Cn
f = An+1 ⊕Bn and δ

Cf
n =

(
−δAn+1 0
fn+1 δBn

)
..

The derived category D(A) is the localization of K(A) with respect to
quasi-isomorphisms, that is morphisms of chain complexes that induce iso-
morphisms on the cohomology of the chain complexes. D(A) is again a
triangulated category, inheriting the structure from K(A).

3.2 Triangulated categories with duality

We define here the concept of duality in the contest of triangulated categories,
introduced by P. Balmer in [1].

Definition (Categories with duality). Let C be a category. A pair ( ], ω),
where ] : Cop → C is a controvariant functor and ω : idC → ]] is a natural
isomorphism, is called a duality if

ω(C)] ◦ ω(C]) = idC]

for all C ∈ obj(C).
An easy example of an additive category with duality is a ring with an-

tipode.
If (C, ], ω) is a category with duality, then any map α : A → B] in C

has an adjoint α]ω : B → A] given by α] ◦ ω(B). Analogously, any map
β : A] → B in C has an adjoint ωβ

] : B] → A given by ω(A)−1 ◦ β]. From
the definition of duality follows that (α]ω)]ω = α and ω(ωβ

])] = β.
We say that a map α from A] to A (respectively from A to A]) is self-

adjoint if α]ω = α (respectively ωα
] = α).

Proposition 3.2.1. Let (C, ], ω) be a category with duality, let α be a self-
adjoint isomorphism. Then α−1 is also a self-adjoint isomorphism.

Proof. Suppose α : A→ A], the case α : A] → A is analogous.
Since α is a self-dual, α = α]ω = α] ◦ ω(A). ω(α−1)] = ω(A)−1 ◦ (α−1)] by

definition, so

ω(α−1)] ◦ α = (ω(A)−1 ◦ (α−1)]) ◦ α]ω =

= ω(A)−1 ◦ (α−1)] ◦ (α] ◦ ω(A)) = idA]
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and

α ◦ω (α−1)] = α]ω ◦ (ω(A)−1 ◦ (α−1)]) =

= (α] ◦ ω(A)) ◦ ω(A)−1 ◦ (α−1)] = idA

We conclude that ω(α−1)] = α−1.

We will call a self-adjoint isomorphism a self-duality.
Now let (C, T (C) and (D, T (D) be triangulated categories. A controvari-

ant functor F : Cop → D satisfying F (C[n]) = F (C)[−n] for all n ∈ Z,
C ∈ obj(C) is called δ-exact, δ = ±1, if for every distinguished triangle in
T (C)

A
α // B

β
// C

γ
// A[1]

the candidate triangle

F (C)
F (β)

// F (B)
F (α)

// F (A)
δF (γ)[1]

// F (C)[1]

is also a distinguished triangle in T (D). If F is δ-exact then F ( )[n] is
(−1)n · δ-exact.

A trangulated category with δ-duality is a triangulated category (C, T (C)
together with a δ-exact controvariant functor ] : Cop → C and a natural
isomorphism ω : idC → ]] such that

ω(C)] ◦ ω(C]) = idC]

and
ω(C[n]) = ω(C)[n]

for all C ∈ obj(C), n ∈ Z.
If (C, T (C, ], ω) is a triangulated category with δ-duality, then (T (C, ], ω)

with ] and ω defined in the obvious way is a category with duality. A self-
duality in this category is an isomorphism of distinguished triangles

A
α //

f
��

B
β
//

g

��

C
γ
//

h
��

A[1]

f [1]
��

C] β]
// (B] α]

// A]
δγ][1]
// C][1]

with g self-duality and f and h isomorphisms satisfying h = f ]ω.
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3.3 Derived categories with duality

Let R be a commutative ring and (A, σ) an associative R-algebra with an-
tipode σ.

If P is a finitely generated projective left A-module then twisting the
action through the antipode σ we obtain a finitely generated projective right
A-module P× and vice versa.

The σ-dual of a finitely generated projective left A module P will be
defined as

P ∗ = Homσ
A(P,A) = {F ∈ HomZ(P,A)|f(a×p) = f(p)×σ(a)∀p ∈ P, a ∈ A}

P ∗ is a finitely generated projective left A-module. The map

ω : P → (P∗) ∗ p→ ω(p)

where ω(p)(x∗) = ω(x ∗ (p)) for all x∗ ∈ P∗ is an isomorphism of left A-
modules. If α : P → Q is a homomorphism of finitely generated projective
left A-modules then the adjoint map α∗ : Q∗ → P ∗ is given by α ∗ (q∗)(p) =
q∗(α(p)).

We call D(×A) (respectively D(A×)) the full subcategory of Db(AMod)
(resp. Db(ModA)), the bounded derived category of chain complexes of left
(resp. right) A-modules, whose objects are the finite chain complexes of
finitely generated projective left (resp. right) A-modules. D(×A) (resp.
D(A×)) is a triangulated category.

Given P = (Pk, ∂k) ∈ obj(D(×A)) finite chain completx of finitely gener-
ated projective left A-modules, the σ-dual chain complex P~ = (P~

k , ∂
~
k ) is

defined by P~
k = P ∗−k and ∂~k(p∗k)(p1−k) = p ∗k (∂1−k(p1−k))

Proposition 3.3.1. Let (A, σ) be an associative R-algebra with antipode.
Then:

1. The functor ~ : D(×A)op → D(×A) is a controvariant +1-exact functor
and P~[n] = (P [−n])~ for all P object in D(×A)op and n ∈ Z.

2. The natural morphism ω : idD(×A) → ~~, defined for P = (Pk, ∂k)
object in D(×A) by wk(pk)(q

∗
−k) = σ(q∗−k(pk)) where pk ∈ Pk, is a

natural isomorphism of covariant additive functors that satisfyies the
identities ω(P )~ ◦ ω(P~) = idP~ and ω(P [n]) = ω(P )[n] for all n ∈ N.

Proof. 1. Let f : P → Q be a morphism of degree 0 of finite chain
complexes of finitely generated projective left A-modules.
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Consider the diagram

P [1]~
−δ~

// C(f)~ π~
//

β(−δ~)
��

Cyl(f)~
f
~

// P~

P [1]~
−δ~
// Cyl(−δ~)

π(−δ~)
// C(−δ~)

δ(−δ~)
// P~

where the chain elements and chain morphisms are defined in the fol-
lowing way:

P [1]~−k = P ∗k+1

∂
P~[1]
k (p∗k−1) = −∂P~

k−1(p∗k−1)

C(f)~−k = P ∗k+1 ⊕Q∗k
∂
C(f)~

−k (p∗k+1, q
∗
k) = (∂

P [1]~

−k + f ∗k , ∂
Q~

−k )

Cyl(f)~−k = P ∗k ⊕ P ∗k+1 ⊕Q∗k
∂
Cyl(f)~

−k (p∗k, p
∗
k+1, q

∗
k) = (∂P

~

−k (p∗k), ∂
P [1]~

−k (p∗k+1)− p∗k + f ∗k (q∗k), ∂
Q~

−k (q∗k))

C(−δ~)−k = P ∗k ⊕ P ∗k+1 ⊕Q∗k
∂
C(−δ~)
−k (p∗k, p

∗
k+1, q

∗
k) = (∂P

~

−k (p∗k), ∂
P [1]~

k (p∗k+1)− p∗k + f ∗k (q∗k), ∂
Q~

−k (q∗k))

Cyl(−δ~)−k = P ∗k+1 ⊕ P ∗k ⊕ P ∗k+1 ⊕Q∗k
∂
Cyl(δ~)
−k (r∗k+1, p

∗
k, p
∗
k+1, q

∗
k) = (∂

P [1]~

−k (r∗k+1)− p∗k, ∂P
~

−k (p∗k), ∂
P [1]~

−k (p∗k+1)− p∗k + f ∗k (q∗k).∂
Q~

k (q∗k))

for p∗k ∈ P ∗k , p∗k−1 ∈ P ∗k−1, r∗k+1, p
∗
k+1 ∈ P ∗k+1, q∗k ∈ Q∗k.

The maps are given by

−δ~k (p∗k+1) = (−p∗k+1, 0)

π~
k (p∗k+1, q

∗
k) = (0, p∗k+1, q

∗
k)

f
~
k (p∗k, p

∗
k+1, q

∗
k) = p∗k

−δ~k (r∗k+1) = (r∗k+1, 0, 0)

π(−δ~)k(r
∗
k+1, p

∗
k, p
∗
k+1, q

∗
k) = (p∗k, p

∗
k+1, q

∗
k)

δ(−δ~)k(p
∗
k, p
∗
k+1, q

∗
k) = p∗k

β(−δ~)k(p
∗
k+1, q

∗
k) = (0, 0, p∗k+1, q

∗
k)

The two rightmost suqares of the diagram commute as maps of chain
complexes. The leftmost square commutes as a mapping of chain
complexes modulo chain homotopies (cf). Sinche β(−δ~) is a quasi-
isomorphism, the diagram is an isomorphism of triangles, but the sec-
ond row is a distinguished triangle, hence
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P [1]~ → C(f)~ → Cyl(f)~ → f
~
P~

is also a distinguished triangle.

2. For q∗1−k ∈ P ∗1−k, pk ∈ Pk we have that

(∂P
~~

k (ωk(pk)))(q
∗
1−k) = σ(∂P

~

1−k(q
∗
1−k)(pk)) =

= σ(q∗1−k(∂
P
k (pk)))(q

∗
1−k),

Then ω is a mapping of chain complexes of degree 0 and a natural
isomorphism for hhh.

For p∗k ∈ P ∗k , q−k ∈ P−k it is

(ωP )~k (ωP
~

k (p∗k))(q−k) = ωP
~

k (p∗k)(ω
P
−k(q−k)) = σ((ωp−k(q−k)(p

∗
k))) =

= σ2(p8
k(q−k)) = p∗k(q−k)

Form this we conclude that (ωP )~ ◦ ωP~
= idP~ .

The identity ω(P )~ ◦ ω(P~) = idP~ and ω(P [n]) = ω(P )[n] is obvious.

The proposition above shows that ( ~, ω) is a +1-duality on the triangu-
lated category D(×A) that depends only on the antipode σ. We will therefore
write (D(×A), σ) instead of (D(×A), ~, ω) to underline this dependance.

3.4 Augmented duality groups

Let G be a duality group of cohomological dimension d. Its integral group
algebra Z[G] admits an antipode σ obtained by the standard antipode on G,
g → g−1, by twisting with a linear character.Then D(×A) has a structure of
triangulated category with duality induced by σ.

Definition. Let P ∈ obj(D(×A)) a finite and finitely generated projective
resolution of the trivial left Z[G] module concentrated in degree 0. (G, σ) is
called an augmented duality group of dimension d if there exists a mapping
ζ : P~[d]→ P such that:

1. the morphism H0(ζ) :× D → Z is surjective;

2. ζ is (−1)d-symmetric in (D(×A), σ)[d];

62



3. let C = C(ζ)[1] be the 1-shifted cone of ζ, then there is a (−1)d−1

self duality η : C → C~[d − 1] in (D(×A), σ)[d − 1] that gives the
isomorphism of distinguished triangles

P [−1] a // C b //

η

��

P ]1
ζ
//

(−1)d id
P]1

��

P

P [−1]
−b]2ω1 // C]2 a]2 // P ]1

ω1ζ
]1
// P

where ( ]1 , ω1) denotes the duality in (D(×A), σ)[d] and ( ]2 , ω2) the
duality in (D(×A), σ)[d − 1], a and b are canonical maps and b]2ω2

=
b]2 ◦ ω2(P [−1]), ω1ζ

]1 = ω1(P )−1 ◦ ζ]1

Theorem 3.4.1. Let F be a finitely generated free group. Then F is an
augmented duality group of dimension 1.

Proof. Let F be a finitely generated free group over the basis X. Let P =
(Pk, δk) be the chain complex of left ZF modules given by

P0 = ZF 〈1〉, P1 =
∏
x∈X

ZF 〈x〉, Pk = 0(k 6= 0, 1)

δ1(〈x〉〈1〉) = (x− 1) ∀x ∈ X

Then ε : P → Z[[0]], ε0(a〈1〉) = ε(a) for a ∈ ZF , where ε is the augmentation
map from ZF to Z, εk = 0 for k 6= 0, is a projective resolution of the trivial
left ZF module Z concentrated in degree 0, that is an isomorphism in the
derived category of bounded chain complexes of left ZF -modules.

P is a finite complex of finitely generated projective left ZF -modules
and it is possible to give an explicit description of the dual of the standard
complex shifted by 1, that is P~[1].

P~[1]0 =
∏
x∈X

ZF 〈x∗〉, P~[1]1 = ZF 〈1∗〉, P~[1]k = 0(k 6= 0, 1)

δ~1 (〈1∗〉) =
∑
x∈X

(1− x−1)〈x∗〉

where 〈1∗〉 ∈ (ZF 〈1〉)∗ with 〈1∗〉(〈1〉) = 1 and 〈x∗〉 ∈ (ZF 〈x〉)∗ with 〈x∗〉(〈x〉) =
1 for every x ∈ X.

Since F is a finitely generated free group, it is a duality group of dimension
1, so we have that H0(P~[1]) =× D where D denotes the right dualizing of
F and ×D is the corresponding left ZF -module via the antipode σ, while
Hk(P~[1]) = 0 for k 6= 0.
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Now let ζ : P~[1] → P be the map given by ζ0(〈x∗〉) = x〈1〉, ζ1(〈1∗〉) =∑
x∈X〈x〉 and ζk = 0 for k 6= 0, 1, it is a mapping of chain complexes of

degree 0 and it induces a surjective map

H0(ζ) : H0(P~[1])→ H0(P )

The mapping εD :× D → Z is the unique map such that the diagram

H0(P~[1])
H0(ζ)

// H0(P )

H0(ε)
��

×D
εD // Z

commutes. Let (−], ω̄) be the duality in the triangulated category with
duality (D(×ZF ),−~, ω)[1]. We have that −] is (−1)-exact and ω̄ = −ω.
The mapping of chain complexes ω̄(P )−1 ◦ ζ] =ω̄ ζ

] : P ] → P is then given
by

ω̄ζ
]
0(〈x∗〉) = −〈1〉, ω̄ζ

]
1(〈1∗〉) =

∑
x∈X

−x−1〈x〉

and ω̄ζ
]
k = 0 for k 6= 0, 1.

Let sk : P ]
k → Pk+1 defined by s0(〈x∗〉) = 〈x〉 and sk = 0 for k 6= 0, then

it is (ω̄ζ
] + ζ)k = δk+1 ◦ sk + sk−1 ◦ δk, that is ω̄ζ

] is homotopy equivalent to
−ζ. Thus ζ is (−1)-symmetric in (D(×ZF ),−~, ω)[1].

Let C = C(ζ)[1] be the 1-shifted cone of ζ, it is defined by the following:

C−1 = P0, C0 = P ∗1 ⊕ P1, C1 = P ∗0 , Ck = 0(k 6= ±1, 0)

δC1 (〈1∗〉) =
∑
x∈X

(1− x−1)〈x∗〉 −
∑
x∈X

〈x〉

δC0 (〈x∗〉) = −x〈1〉
δC0 (〈x〉) = (1− x)〈1〉

Then we have that the σ-dual chain complex C~ is defined as follows:

C~
−1 = P ∗∗0 , C~

0 = P ∗∗1 ⊕ P ∗1 , C~
1 = P ∗0 , C

~
k = 0(k 6= ±1, 0)

δC
~

1 (〈1∗〉) = −
∑
x∈X

x−1〈x∗∗〉+
∑
x∈X

(1− x−1)〈x∗〉

δC
~

0 (〈x∗∗〉) = (1− x)〈1∗∗〉
δC

~

1 (〈x∗〉) = −〈1∗∗〉

where 〈x∗∗〉(〈x∗〉) = 1 for x ∈ X and 〈1∗∗〉(〈1∗〉) = 1.
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We have a mapping of chain complexes η : C → C~ defined by

η−1(〈1〉) = −〈1∗∗〉,
η0(〈x〉) = −〈x∗∗〉,

η0(〈x∗〉) = −(〈x∗〉+ 〈x∗∗〉),
η1(〈1∗〉) = −〈1∗〉

and it is η~ ◦ ω = η, so it is a self-duality in (D(×ZF ),−~, ω)[1].
Let a : P [−1] → C and C → P~[1] be the canonical maps, consider the

diagram

P [−1] a // C
b //

η

��

P ]1
ζ
//

(−1)d id
P]1

��

P

P [−1]
−b]2ω1 // C]2 a]2 // P ]1

ω1ζ
]1
// P

where ω1ζ
]1 = ω̄(P )−1 ◦ ζ~[1].

The first square is commutative because

η−1(a−1(〈1〉)) = η(〈1〉) = −〈1〉∗∗ = −b]2−1(〈1〉∗∗) =

= −b]2−1(ω(P )0)(〈1〉))
η0(a0(〈x〉)) = η0(〈x〉) = −〈x∗∗〉 = −b]20 (〈x∗∗〉) = −b]20 (ω(P )1(〈x〉))

η1 ◦ a1 = 0 = −b]21 ◦ ω(P )2

In particular we have that

a]21 ◦ η]2 = −ω(P )]1 ◦ b]2]2 = −b ◦ ω(C)−1,

since η]1 ◦ω = η we have that the central square is also commutative. Finally,
the third square is commutative because because ζ is −1-symmetric.

We conclude that the diagram is an isomorphism of distinguished triangles
and conclude that G is an augmented duality group.

Theorem 3.4.2. Let G = 〈X|r〉 be a non free and torsion free finitely gener-
ated one-relator group, such that the relation r (minimal under isomorphisms
of the free group generated by X) involves every generator with exponential
sum 0. Then G is an augmented duality group.

Proof. Let G = 〈X|r〉 be a non free and torsion free finitely generated one-
relator group, such that the relation r (minimal under isomorphisms of the
free group generated by X) involves every generator with exponential sum
0. We have already seen that the dualizing module H2(G,ZG) is a quotient
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of ZG that inherits the augmentation. If K is the kernel of the inherited
augmentation, we have a short exact sequence of left ZG-modules

0 // K // H2(G,ZG) // Z // 0

If P is the projective resolution of Z over ZG then P~[2] is a projective
resolution of H2(G,ZG) over ZG. The morphism H2(G,ZG)→ Z induces a
morphism ζ : P~[2]→ P in D(×A) such that H0(η) : H2(G,ZG)→ Z is the
inherited augmentation.

Since
0 // K // H2(G,ZG) // Z // 0

is an exact sequence, if Q is a projective resolution of K over ZG we have an
induced distinguished triangle

P [−1] α // Q
β
// P~[2]

ζ
// P

Let (−], ω̄) be the duality in the triangulated category with duality (D(×ZF ),−~, ω)[2].
We have that −] is 1-exact and ω̄ = ω, so ζ is 1-symmetric.

Consider the commutative diagram

P [−1] α // Q
β
// P~[2]

idP~[2]

��

ζ
// P

P [−1]
−β]2

ω1 // Q~[2] αω2
// P~[2]

ω1ζ
]1
// P

The lines are distinguished triangles, so there is a unique morphism η : Q→
Q~[2] (up to homotopy equivalence) such that the diagram

P [−1] α // Q
β
//

η

��

P~[2]
ζ
//

idP~[2]

��

P

P [−1]
−β]2

ω1 // Q~[2] αω2
// P~[2]

ω1ζ
]1
// P

is commutative. η is a −1-self duality in (D(×ZF ),−~, ω)[1], since ω̄ is −1-
exact.

Since the distinguished triangle

P [−1] α // Q
β
// P~[2]

ζ
// P

is isomorphic to the distinguished triangle

P [−1] a // C b // P~[2]
ζ
// P

where C is the mapping cone of ζ, we have that G is an augmented duality
group.
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