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Introduction

Phase change compounds are a class of materials employed for data storage applications

such as rewritable optical disks (CD-RW, DVD-RW, Blue-Ray disks) and electronic memories

of new concept, named Phase Change Memories (PCM) [1, 2]. These applications rely on a

fast (50 ns) and reversible change between the crystalline and the amorphous phases upon

heating. The two phases correspond to the two states of the memory, i.e. the 0 and 1 bits, that

can be discriminated thanks to a large diUerence in their optical and electronic properties.

The phase transition is induced by heating due to either a laser pulse in the optical memories

or to electric pulses in PCMs.

A PCM device consists of a resistor made of a thin Vlm of a phase change material between

a metallic top contact and a resistive electrode that heats up the active layer. The readout of

the memory consists of the measurement of the resistivity of the cell at low bias (mV) which

changes by about three orders of magnitude across the phase transition. In fact, the amor-

phous phase is semiconducting, while the crystal is metallic. The programming operations

are performed at a higher bias (few Volts) in order to have a current Wow high enough to

induce by Joule heating either the melting of the crystal and subsequent amorphization or

the recrystallization of the amorphous phase. The materials employed in PCMs are typically

Te-based chalcogenide alloys such as (GeTe)x(Sb2Te3)y pseudo-binary alloys and in particular

the Ge2Sb2Te5 (GST) compound [2, 3]. These devices are already commercial products; PCM

at the 45 nm technological node have been delivered to the market by the company Micron in

early 2013 mostly for applications in mobile phones. These devices provide a better cyclabil-

ity, scalability and a much higher programming speed with respect to Flash memories [4].

In order to widen the Velds of applicability of these devices, alternative materials with a crys-

tallization temperature higher than that of GST are under scrutiny in order to increase the

thermal stability of the amorphous phase and to ensure a data retention for 10 years at 125 ◦C
as required for instance by the automotive market. In this respect, InSbTe [5, 6] and GaSbTe

[7, 8] alloys have been investigated for PCM applications because of their crystallization tem-

perature about 100 ◦C higher than that of Ge2Sb2Te5 and a still high crystallization speed.

DiUerent compositions have been proposed and PCM operation has been demonstrated for

the compositions In3Sb1Te2, In3Sb2.7Te0.8, In3Sb2.5Te1.1 [6, 9] and Ga4Sb6Te3 [8]. Materials

with high crystallization/melting temperatures are also of interest for the realization of core-

shell nanowires [10] (e.g. InSbTe/GST) that might be used to implement multi-bits memory

cells [11]. PCM based on nanowires are of interest also because nanostructuring seems to
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mitigate the phenomenon of resistance drift [12]. This eUect, consisting of an increase of the

electrical resistance of the amorphous phase with time, is detrimental for PCM operation and

it should be kept as low as possible [13].

In this thesis, we have addressed two issues in this context which, in spite of their great tech-

nological relevance, are still unsolved, namely i) the atomistic structure of the amorphous

phase of InSbTe and GaSbTe alloys and ii) the microscopic origin of the resistance drift. The

knowledge of the atomistic structure of the amorphous phase is actually mandatory to achieve

a microscopic understanding of its functional properties including the nature of the structural

relaxations which lead to the resistance drift.

In this work, we have addressed these problems by molecular dynamics simulations based

on Density Functional Theory (DFT). Models, 300-atom large, of the amorphous phase of

In3Sb1Te2, In13Sb11Te3 and Ga4Sb6Te3 compounds have been generated by quenching from

the melt within DFTmolecular dynamics simulations. To assess the reliability of our computa-

tional framework, we Vrst studied the properties of amorphous InSb for which experimental

structural data are available. These preliminary simulations allowed us to choose the more

suitable approximation to the exchange and correlation functional. A comprehensive analysis

of the structural, electronic and vibrational properties of the amorphous models have then

been carried out for the ternary systems. The simulations have actually provided some clues

on the origin of the higher stability of the amorphous phase of these compounds.

The DFT models are, however, still too small to address the study of the resistance drift. This

eUect is in fact believed to originate from an aging of the amorphous phase which leads to a

change in the localized electronic states close to the band edges (Urbach tails) and deep in-

side the mobility gap. These states are actually controlling the conductivity of the amorphous

phase. A suXciently good statistics in the distribution of defect states is therefore needed to

address the study of the drift. To this end, we have then chosen to study the drift in the phase

change compound GeTe for which a reliable interatomic potential is available. The potential

is based on the Vtting of a huge database of DFT energies with a Neural Network scheme [14].

The potential allows simulating several thousands atoms by keeping an accuracy close to that

of the underlying DFT method.

Large models of about two thousand atoms of amorphous GeTe have then been generated by

quenching from the melt within classical molecular dynamics simulations by using a Neural-

Network potential. The electronic structure has then been analysed after geometry optimiza-

tion at the DFT level. The aging of the amorphous phase has been mimicked by either an-

nealing the models at 500 K and by means of metadynamics simulations to accelerate the drift

process at room temperature. The evolution in time of the defect states allowed us to pro-

pose a microscopic model for the resistance drift and to establish a link between the extent

of structural relaxations in the amorphous phase and the speed of the crystallization process.

This study have been carried out within the goals of the European FP7 project SYNAPSE on

the "Synthesis and functionality of chalcogenide nanostructures for phase change memories"
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which aims in particular at realizing core-shell nanowires for multi-bit memories.

The thesis is organized as follows. In Chapter 1 we introduce the general features of phase

change memories and the physical properties of the most studied GST and GeTe compounds.

Available experimental information on InSbTe and GaSbTe alloys are also brieWy reviewed.

Generalities on the crystallization process and on the drift phenomenon in phase change

materials are presented in details in Chapter 1. Chapter 2 is devoted to a brief introduction

to the theoretical methods that we have used, namely DFT molecular dynamics simulation

techniques and the metadynamics method. A novel simulation technique to eXciently gener-

ate amorphous models developed by our coworkers is also presented, as it has been used in

the preliminary simulations on InSb. The results on the structural, electronic and vibrational

properties of amorphous InSb, InSbTe and GaSbTe alloys are reported in Chapter 3. Finally,

Chapter 4 reports our results on the simulation of the drift phenomenon in amorphous GeTe.





1. Phase Change Materials

1.1. General features

Phase change materials are of great technological interest for their application in rewritable

optical memories as CD-RW, DVD-RW, Blue Rays and DVD-RAM. In the last few years, these

compounds have also been proposed as active materials in a new type of electronic non-

volatile memories: the Phase Change Memory (PCM) [1, 2].

The operating principle of PCMs consists of a very fast (∼50 ns) and reversible transforma-

tion between the amorphous and crystalline phases of a small portion of the active material.

The transition is induced by heating using a laser pulse in optical memories or via Joule-eUect

using electrical pulses in PCMs [3].

The two phases are the 0 and 1 states of the memory cell that can be discriminated because

these materials show a large contrast in optical properties and electrical conductivity between

the two phases. The readout of the device consists of a measurement of reWectivity in optical

memories and of resistivity in PCMs.

The Vrst materials showing phase change properties were discovered in the late Sixties by J.

F. Dewald [15] and S. R. Ovshinsky [16], but the crystallization speed of these alloys was too

low for a practical application. In the ’90, the need of faster rewritable optical discs led to the

discover of several phase change compounds based on chalcogenides alloys. PCMs realized

with this kind of materials show a readout speed comparable to that of Flash memories and a

considerably higher writing speed (50 ns against 1-1000 µs of Flash technology) together with

better cycling and scaling properties with respect to other devices on the market. The 45 nm

technological node PCM device [17, 18] became available on the market in 2012 and smaller

scale devices are under development. The increase of the spatial density of information in the

memory device it is also possible by implementing multi-bit memory cells through the PCM

technology as discussed in Section 1.1.1. The future goal is to use phase change memories to

realize so called storage class memories which are not volatile but with access speed not far

from that of DRAM [19].

A PCM cell (Figure 1.1) is composed by a transistor and a resistor. The transistor works as

a selector that modulates the current pulse during the read and write operations, while the

resistor is made by a thin Vlm of active material between a metallic contact and a resistive

electrode, usually TiN or TiSiN, that can heat up the chalcogenide material causing the phase

transition. The device can be read by measuring the resistance using voltages of 100 mV and
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(a) (b)

Figure 1.1.: DiUerent geometries of a PCM device. The scheme of the so called “mushroom”

PCM cell is shown in (a). The thin layer at the chalcogenide/heater interface is the active

region. [1]. (b) Section and SEM (Scanning Electron Micrograph) image of a memory cell in

the bridge conVguration [20].

current pulses 50 ps long. In fact, the amorphous is an insulator, while the crystal is metallic

and the two phases present a diUerence in conductivity of at least three orders of magnitude.

Programming the cell (Figure 1.2), is realized by two diUerent processes: SET and RESET.

During the RESET operation, the temperature of the active layer in the memory cell is raised

over the melting temperature Tm by using a short and intense current pulse. Since only a

small portion of the material is heated up, the temperature gradient generated inside the cell

is very high leading to high cooling rates (1010K/s) that prevent the crystallization of the melt

obtaining an amorphous structure with an electrical resistance of the order of MΩ. To revert

the transformation from the amorphous to the crystalline phase, the material is heated up to

a temperature higher than the glass transition temperature Tg at which the atomic mobility

is high enough to allow the recrystallization on the time scale of tens of ns. This process is

called SET operation and is the slower step of the programming procedure as longer current

pulses are applied. The resistance of the cell in the SET state is of the order of kΩ.

Although the amorphous phase shows high electrical resistivity at low voltages (mV), by

increasing the applied bias above a threshold voltage (Vth) of the order of few Volts, the ma-

terial undergoes an electronic transition to a high conducting state. This phenomenon called

threshold switching allows for Joule heating of the amorphous phase that induces the recrys-
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Figure 1.2.: Scheme of the SET and RESET operations in a phase change device [21]. The two

processes are based on the amorphous-crystalline reversible transition. Amorphization (RE-

SET) occurs by quenching from the liquid phase obtained by heating the cell above the melting

temperature with a short electric pulse. Crystallization (SET) proceeds from the amorphous

by using a longer and less intense pulse.

Figure 1.3.: Typical current-voltage characteristic of a phase change device.When the applied
voltage is low, a very low current Wows through the amorphous material, while, by applying
a bias above a threshold voltage of about 0.7 V, the resistance drops down and the current
intensity increases (threshold switching) inducing recrystallization (memory switching). The
crystalline phase is metallic with a low ohmic resistance [3].

tallization at a moderate voltage. During the readout of the memory, the applied voltage is

lower than the Vth. The plot in Figure 1.3 shows the current-voltage characteristic for the two

phases.
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1.1.1. Multi-bit phase change memories

A way to increase the information density in a memory device is the storing of more than

one bit in a single cell [11]. In the case of PCMs, the realization of multi-bit memories was

Vrstly proposed by Ovshinsky and co-workers in 1995 [22] exploiting the possibility to reach

intermediate-resistance states by controlling the dimensions of the amorphized region within

the memory element. Since phase change materials have a resistivity contrast greater than

three orders of magnitude [23], as reported in Figure 1.4, it is in principle possible to have

well separated intermediate resistance values to realize a multi-bit cell.

Figure 1.4.: Resistivity as a function of temperature for phase change alloys. Resistance
drops sharply when the crystallization temperature is reached. The resistivity of the crys-
talline phase can be even six orders of magnitude lower than that of the amorphous. GST→
Ge2Sb2Te5, N-GST→ 7 at. % N-doped GST, GeSb→ Ge15Sb85, AIST→ Sb2Te doped with 7
at. % Ag and 11 at. % In [23].

A multi-bit PCM that stores a number N of bits in a single cell, needs to have 2N diUerent and

non overlapping resistance values, which are called “levels”. For instance, a 2-bits PCM device

has got 4 diUerent levels. It was shown that up to 16 intermediate levels could be programmed

in a cell [24]. Figure 1.5 shows schematically a 2-bits or 4-levels PCM cell.

In order to realize multi-bit memories, one possibility is to use cell architectures composed

by a stacking of diUerent chalcogenide layers [25–27]. An example of a 2-bits stacked PCM

cell is reported in Figure 1.6a [27]. Tungsten acts as a metallic electrode and SiO2 is a thermal
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Figure 1.5.: Schematic representation of the separate resistance values for a 2-bits PCM
(MLC) and a single-bit PCM (SLC). The single-bit cell shows two diUerent resistance levels
(0 and 1 bits), while the 2-bits cell has four diUerent resistance levels each of them indicating
a couple of bit: 11, 10, 01 and 00. The distributions of resistance values for each level are broad
but do not overlap.

and electrical barrier. The active area of the cell is made of a stack of three layers of phase

change material with three heaters. The diUerent size of the heaters is the key to make the

phase change material transforming layer by layer. This conVguration allows achieving four

diUerent resistance values (Figure 1.6b). Multi-bit phase change memories can be realized also

with the classic “mushroom” conVguration. In this case, it is often necessary to engineer the

active material, for instance through doping as for nitrogen-doped GST. Whit respect to GST,

the doped alloy shows a smoother change of the resistance as a function of temperature al-

lowing to reach intermediate resistance values upon heating [24, 28]. DiUerent programming

protocols are also needed in order to amorphize or crystallize diUerent volume sizes of the

chalcogenide material, resulting in conduction paths with diUerent resistance values [24, 29]

(Figure 1.7).

To obtain well separated resistance values in the multi-level PCM device, it is also essential

to operate an iterative procedure during the programming process. In fact, it is possible that

the same pulse voltage leads to diUerent temperatures in diUerent cells because of nanoscale

variations in the cell structure. To avoid overlap of the resistance distributions for diUerent

levels, a read-verify-write algorithm [24] can be applied. This method iteratively applies a

writing pulse on a cell and reads the resistance value. If this value does not lay within the

target bandwidth, a new slope for the programming pulse is calculated on the basis of the

read resistance and the cell is programmed again. It has been demonstrated that an average of

three of these programming cycles is suXcient to achieve well separated resistance values for

16 intermediate levels. This technique enables a write speed of about 3.5 MB/s and a readout

time of about 120 ns for a 2-bits cell [30].

Another realization of multi-bit PCMs is based on core-shell nanowires (CS-NW). In this con-

Vguration the active region of the memory cell consists of a CS-NW made of two diUerent

chalcogenide materials that feature diUerent electrical and thermal properties. Single-level

PCM devices with GeTe or In2Se3 NW have already been realized [31] showing a lower power

consumption compared to conventional PCMs. NWs allow also to further scale down the size
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(a)

(b)

Figure 1.6.: Scheme of a stacked 2-bits phase change memory cell (a). The TiN layer im-
proves the bonding capability between tungsten electrode and Si substrate. SiO2 acts as a heat
insulator. The active region is formed by three layers of the chalcogenide material spaced out
by three heaters of diUerent size. This conVguration provides a four level resistance-voltage
characteristic (b) [27].

of the device and to obtain defect-free crystalline structures. Multi-level devices can be real-

ized by using CS-NWwhere the two phase change alloys of the core and shell have a diUerent

melting temperature. Programming can be carried out by applying current pulses of diUerent

intensity in order to induce a sequential melting of the components of the wire reaching in-

termediate values of resistance.

Multi-level memories with CS-NWmade of Ge2Sb2Te5 (core) and GeTe (shell) have been real-

ized [10] obtaining devices showing three separated levels (Figure 1.8). The cell has the lowest

resistance when both the GST and GeTe are in the crystalline phase. By applying a current

pulse of 1.2 mA, the GST core melts and amorphize, while GeTe remains crystalline obtaining

an intermediate value for the resistance. The higher resistive state is reached when both GST
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Figure 1.7.: Sketch of the time-temperature-transformation-chart in a multi-level PCM. Start-
ing from a large molten region, the same brief time spent under a linear pulse (vertical line
each temperature) or a stair-case pulse (symbols marking signiVcant time at a few tempera-
tures) provides control over resistance through the time- and temperature-dependent recrys-
tallization of the amorphous plug [24].

Figure 1.8.: Variation of resistance of a core/shell GST/GeTe nanowire device as a function
of current pulses with varying amplitudes. Pulse durations are 100 ns for amorphization and
300 ns for crystallization. The three diUerent resistive states (low, intermediate, and high)
achieved with application of current pulses are clearly distinct. The schematic represents the
cross section of the core/shell nanowire at each stage of transition, where color change corre-
sponds to the phase transition: light orange represents crystalline phase, and dark orange is
amorphous. Blue line refers to an initially amorphous nanowire, while red line to a nanowire
initially in the crystalline phase [10].
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and GeTe are in the amorphous phase.

One of the more important issues in the fabrication of multi-bit phase change memory is the

drift of the amorphous resistance that can lead to an overlap of the intermediate levels that

will be discussed in Section 1.4.

1.1.2. Typical phase change alloys

The materials most commonly used in optical discs are tellurium-based chalcogenides al-

loys [2] (Figure 1.9), in particular along the pseudo-binary tie-line such as (GeTe)x(Sb2Te3)y.

The Vrst compound found to display a fast recrystallization and a high optical contrast was

actually germanium telluride, GeTe [32]. Later Ge, Sb and Te-based alloys have been deeply

investigated, in particular the composition Ge2Sb2Te5 which was employed in DVD-RAM

and it is now utilized in commercial PCM devices. Another class of alloys with phase change

properties includes SbTe-based chalcogenides doped with Ag, In, Ge or Ga. A composition

close to Ag5In5Sb60Te30 forms the active layer of DVD-RW and DVD+RW. The composition

Ge8Sb2Te11 is used instead in blue-ray discs.

Regarding PCMs, Ge2Sb2Te5 or GST is actually the material chosen for industrial applica-

tions because it represents a good compromise between speed of crystallization and stability

of the amorphous phase. In fact, the amorphous phase is a metastable state and it sponta-

neously tends to crystallize causing the loss of the data. In the last years, the need of devices

stable at high temperature for automotive applications has driven the search for materials

stable at higher temperature in the amorphous phase to ensure a data retention for ten years

Figure 1.9.: Ternary phase diagram with diUerent phase change materials, their discovery
year and their employment in diUerent optical memories [3].
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(a) homogeneous
nucleation

(b) growth from
crystal-amorphous
interface

Figure 1.10.: Crystallization mechanisms in a PCM cell [35]. (a) Homogeneous crystalliza-
tion is the process that characterizes compounds like Ge2Sb2Te5 and GeTe, while (b) in GeSb
and antimony rich GeSbTe alloys the crystallization proceeds from the amorphous/crystal
interface.

at 125 ◦C. Some of the materials proposed for this purpose are nitrogen- and oxygen-doped

Ge2Sb2Te5 [33, 34], indium- and gallium-based alloys such as InGeTe2 [35], In3Sb1Te2 [36] and

Ga4Sb6Te3 [37], antimony-rich GeSbTe alloys [38] and doped germanium telluride [39, 40]. All

these compounds have a crystallization temperature higher than that of GST which implies

a greater stability of the amorphous phase and a better retention at high temperature. Con-

cerning the crystallization mechanism, it is possible to classify phase change materials in two

diUerent groups: compounds displaying a homogeneous nucleation (nucleation driven) and

compounds displaying a crystal growth from the crystalline/amorphous interface (growth

driven). Ge2Sb2Te5 presents a homogeneous crystallization mechanism [3] with the rapid

formation of several subcritical nuclei in the supercooled liquid (Figure 1.10a). Growth driven

phase change compounds are, among others, GeSb, antimony-rich GeSbTe alloys [38] and

Ga16Sb84 [41]. In these case the crystallization proceeds from the crystalline-amorphous inter-

face (Figure 1.10b). Materials that crystallize homogeneously present fewer scaling problems

since the kinetic of crystallization is lesser dependent on the volume of the active material.

The origin of the fast crystallization has been addressed in several works and it will be dis-

cussed in details in Section 1.2.2.
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1.2. Physical properties of phase change compounds

1.2.1. GeTe and Ge2Sb2Te5

Germanium telluride was the Vrst phase change chalcogenide material proposed for data

storage applications. Although GST was Vrstly preferred for PCM devices, GeTe is now being

reconsidered for applications at high temperatures due to its higher crystallization tempera-

ture [42]. Burns et al. [43] have also demonstrated that the SET pulse duration can be reduced

down to 1 ns for a GeTe ultrascaled device.

GeTe presents two crystalline phases at normal pressure [44]. The stable phase at low temper-

ature is the trigonal α-phase with space group R3m, lattice parameter a= 4.2398Å and angle

α = 57.9◦ [45], that originates from a distortion of an NaCl-type lattice along the < 111>
direction (Figure 1.11). In this conVguration, Ge atoms are six-fold coordinated forming three

(a) (b)

Figure 1.11.: (a) Crystalline structure of α-GeTe, the stable trigonal phase, [49] and (b) the
trigonal cell that can be seen as a NaCl-type lattice with a distortion along the < 111>
direction [14].
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Figure 1.12.: Schematic representation of the ideal resonant bonding in crystalline GeTe. In
the two limiting structures on the left and on the right, each Ge atom two three p− p bonds
along two perpendicular directions. The situation, shown in the middle of the Vgure, is a
superposition of the two limiting cases with delocalized p electrons [50]. In the real system, a
symmetry breaking (Peierls distortion) leads to a partial resonance with the formation of long
and short bonds.

shorter and three longer GeTe bonds of 2.84 and 3.17 Å, respectively, resulting in a “3+ 3”
coordination (Peierls distortion) [45].

β-GeTe is the stable phase above 430 ◦C with a cubic rocksalt structure (space group Fm3̄m)

and a lattice parameter a = 5.996Å. The 3+3 coordination with shorter and longer bonds

locally survives also in the cubic phase. In fact, the Peierls distortion occurs in a disordered

manner along all equivalent< 111> directions, as revealed by EXAFS measurements [46]. In

this conVguration, each p orbital forms a long and a short bond in two opposite directions.

This situation was called “resonant bonding” by Pauling and is schematically explained in

Figure 1.12 where two limiting cases are shown on the left and on the right with Ge atoms

forming two bonds with the p orbitals along two perpendicular directions. The real conVgu-

ration is a superposition of the two limiting structures with the p electrons delocalized along

all the six directions leading to a high electronic polarizability. However in crystalline GeTe,

a symmetry breaking (Peierls distrortion) leads to two non-equivalent limiting structures and

a weakening of the resonance.

Above 725 ◦C GeTe melts [47] in a semiconducting liquid that still shows locally a “3+ 3”
coordination originated by the Peierls distortion [48]. Although the stable phase at room tem-

perature is the trigonal one, the crystalline structure of interest in PCM cells is the rocksalt

phase. In fact, the amorphous phase can crystallize in the metastable cubic phase which can

be recovered at normal conditions.

Ge2Sb2Te5 or GST is the material of choice for commercial PCM devices and DVD-RAM

thanks to the stability of the amorphous phase and the very fast phase transition. GST presents

two crystalline phases as well at normal pressure: the stable structure has a hexagonal sym-

metry with space group P3̄m1 (Figure 1.13a) [51]. The unit cell has a high aspect ratio and
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contains nine atoms in an octahedral coordination arranged in nine layers stacked along the

c axes. Each layer is shifted by 1/3 with respect to the previous along the [1̄10] direction in

a cubic close packing. Weak Te-Te bonds are present across a van der Waals (vdW) gap. The

arrangement of Ge and Sb atoms in the stacks is still debated and three sequences have been

experimentally proposed:

A Te–Sb–Te–Ge–Te–Te–Ge–Te–Sb–Te

from XRD measurements [51];

B Te–Ge–Te–Sb–Te–Te–Sb–Te–Ge–Te

from high resolution transmission electron microscope (HR-TEM) [52];

C Te–(Sb/Ge)–Te–(Sb/Ge)–Te–Te–(Sb/Ge)–Te–(Sb/Ge)–Te

from XRD measurements with a random distribution of Ge and Sb [53].

Calculations based on density functional theory (DFT) revealed that stacking A is the most

stable, but the computed energy diUerence between A and C is very small [54]. More recent

(a) (b)

Figure 1.13.: Representation of the structure of the two crystalline phases of GST: (a) hexag-
onal [49] and (b) cubic rocksalt-like [60].
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Figure 1.14.: Local structure of GST in the neighbourhood of a Ge atom in the crystalline
phase (left) and in the amorphous phase (right) in the model proposed by Kolobov et al. [65].
The structural transformation due to the “umbrella Wipping” is sketched.

theoretical analysis based on Raman spectra calculations seem to indicate model C as the best

description of atomic species sequence in hexagonal GST [55]. Transmission electron micro-

scopic analysis of Ge2Sb2Te5 nanowires also suggest the disordered structure C [56].

Upon heating above the melting temperature (620 ◦C) and rapidly cooling down, thin Vlms

of GST crystallize in a metastable cubic phase with a rocksalt-like structure (Figure 1.13b),

space group Fm3̄m and lattice parameter a= 6.0293Å [53]. This is the crystalline phase the

amorphous transforms into upon heating in PCM devices. As shown by diUerential scanning

calorimetry (DSC) measurements [57], the cubic phase transforms into the hexagonal phase

at a temperature of about 550 ◦C.
XRDmeasurements [53, 58, 59] on cubic GST showed that the anionic sublattice is entirely oc-

cupied by Te atoms, while the cationic sublattice is formed by Ge and Sb in a random arrange-

ment with 20 % of vacancies. In this conVguration, there are, on average, three p electrons per

lattice site leading to a closed shell system. Also cubic GST shows a 3+3 coordination with

three shorter and three longer resonant bonds. Both GeTe and GST at the ideal composition

are semiconductors with a band gap of the order of 0.5−0.7 eV. These crystals turn into de-

generate p-type semiconductors due to self-doping in the form of Ge/Sb deVciencies (see also

Section 1.4).

By cooling down the liquid phase of a phase change material as GeTe or GST suXciently

fast to avoid crystallization or by deposition by diUerent means (e.g. sputtering, MOCVD),

it is possible to obtain the amorphous phase (a-GeTe and a-GST). As occurs for other phase

change alloys, the amorphization of GeTe and GST is associated with a change in the local

structure that is responsible for a change in properties between the crystal and the amor-

phous. The structure of the amorphous phase thus plays a crucial role in determining the
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characteristics of phase change alloys and it has been matter of debate for years.

Extended X-Ray absorption Vne structure (EXAFS) analysis [61–63] of amorphous GeTe and

GST revealed a four-fold coordination of Ge atoms, as opposed to six-fold (3+3) coordination
in the crystal, which immediately suggested a tetrahedral bonding geometry. On the basis of

EXAFS data, Kolobov et al. [64, 65] proposed a crystallization mechanism based of the con-

version of Ge atoms from a tetrahedral to an octahedral geometry, the so called “umbrella

Wipping” model (Figure 1.14). Other studies based on reverse Monte Carlo (RMC) simulations

and synchrotron-radiation x-ray diUraction data [66] showed, instead, no evidence of tetra-

hedral structures. Later, Vrst principles molecular dynamics (MD) simulations on GeTe and

GST provided a deeper insight into the structure of the amorphous phase revealing the co-

existence of tetrahedral and defective octahedral-like structures [67–72] (Figure 1.15). MD

simulations provided also the total and partial pair correlation functions of GeTe and GST

(Figure 1.16a) revealing the presence of homopolar Ge-Ge bonds and Ge-Sb bonds. Both these

types of bonds are absent in the crystalline phases and are referred to as “wrong bonds”. The

partial coordination numbers for GST emerged from the simulations are reported in Table 1.1.

As shown by the coordination number distributions of Figure 1.16b, Ge and Sb atoms are

(a) (b) (c)

(d) (e)

Figure 1.15.: Schematic representation of the octahedral-like and tetrahedral environments
present in phase change alloys: (a) octahedral, (b), (c), (d) defective octahedral-like with Vve-,
four- and three-fold coordinated atoms and (e) tetrahedral coordination.
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Average coordination numbers

with Ge with Sb with Te total

Ge 0.29 0.36 3.31 3.96
Sb 0.36 0.43 3.36 4.15
Te 1.33 1.34 0.30 2.97

Table 1.1.: Partial average coordination numbers of a-Ge2Sb2Te5 from DFT simulations [72].

mainly four-fold coordinated, while Te is three-fold coordinated. However, only about one

third of the Ge atoms was found to be in a tetrahedral environment for both GeTe and GST. In

fact, the most abundant bonding geometry for both Ge and Sb is the four-fold octahedral-like

one of Figure 1.15c, while Te atoms have a pyramidal bonding geometry as in Figure 1.15d.

Regarding the medium-range order, four-membered rings dominate in the amorphous models

of GeTe and GST (Figure 1.17) and the majority of the four-membered rings is of type ABAB,

where A is Ge in GeTe and Ge or Sb in GST and B is Te. These rings are the building blocks
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Figure 1.16.: (a) Partial and total pair coorelation functions and (b) coordination number
distributions of a-Ge2Sb2Te5 from DFT simulations [72].
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Figure 1.17.: Distribution of the ring lengths in a-Ge2Sb2Te5 from DFT simulations [72].

of the cubic rocksalt crystalline phase as well.

The models emerged from the simulations were also able to reproduce the experimental Ra-

man spectra of GeTe and GST [73–75]. Other ab-initio MD simulations [76] showed that the

fraction of tetrahedral Ge atoms depends on the preparation conditions of the amorphous

samples. In fact, in as-deposited GST, the amount of tetrahedral structures is greater than

in GST models obtained by quenching from the melt. Although the amorphous partially

keeps the coordination typical of the rocksalt structure with shorter and longer bonds in

the octahedral-like structures, the absence of medium-range order hinders the formation of

resonant bonds, resulting in a lower static polarizability and hence in a lower reWectivity with

respect to the crystal [50].

As reported by Raman spectroscopy [61, 64, 75], EXAFS [61, 62], RMC [66] and, as already

discussed, by Vrst principles MD studies [67–69, 71, 72], GeTe and GST present a not negligi-

ble fraction of homopolar Ge-Ge bonds which seem to favour the tetrahedral coordination of

Ge atoms [71]. In fact, the sp3 conVguration is favoured with respect to p− p bonds for Ge-Ge

bonds while the reverse is true for Ge-Te bonds [77]. Tetrahedral structures are absent in the

crystalline phase and they can represent an obstacle to the crystallization process at low tem-

peratures that causes the loss of the data in the PCM cell. Thus, a high concentration of wrong

bonds in the amorphous is supposed to hinder the phase change below the glass transition,

enhancing the stability of the amorphous phase and the retention of data at low temperatures.
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1.2.2. Crystallization in phase change materials

As already mentioned, the DFT simulations revealed that the local bonding geometry in

the amorphous is actually much more similar to that of the crystal than previously assumed

as only about 1/3 of the Ge atoms is in a tetrahedral environment. The network topology

also consists of mostly four-membered ABAB rings which are the same building blocks of

the crystalline phase. The high speed of crystallization in phase change materials actually

allows addressing the mechanism of the phase change by atomistic simulations. Indeed in

the last few years, several works have been reported on the early stage of crystal nucleation

and growth by DFT molecular dynamics simulations which aimed at validating the “umbrella

Wipping” model proposed by Kolobov et al. [64, 65].

An alternative mechanism of crystallization was actually proposed by Hegedüs and El-

liott [67] suggesting that the phase transition occurs thanks to a fast realignment of four-

membered ABAB rings present in both the amorphous and crystalline phases. [66, 68, 78]

(Figure 1.18a). The alignment of square rings was also suggested to be aided by the presence

(a) (b)

Figure 1.18.: (a) Image of the simulation cell of a-GeTe in Ref. [70] where ABAB four-
membered rings are highlighted. Six ABAB rings forming a cube are depicted with balls. Red
represents Ge and yellow represents Te. (b) Representation of the cavities in melt-quenched
Ge8Sb2Te11 [81].

of nanovoids (Figure 1.18b) in the amorphous phase [68].

However, one should consider that in PCM devices the crystallization occurs at a temperature

well above the glass transition temperature Tg where the system is supposed to be in a super-
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cooled liquid state [18]. Thus, the crystallization mechanism during the SET operations and

the high speed of crystallization peculiar of phase change materials should actually depend

on the properties of the supercooled liquid. Recent ultra-fast diUerential scanning calorimetry

(DSC) measurements on GST [79] and MD simulations [80] actually ascribed the fast crystal-

lization of these materials to the fragility of the liquid phase as we will describe below.

Fragility

Supercooled liquids can be classiVed as fragile or strong depending on the temperature

dependence of the viscosity η. Strong liquids show an Arrhenius behaviour of η as a function

of temperature T in the range between the melting temperature Tm and the glass transition

temperature Tg with a single activation energy. Fragile liquids, instead, are characterized by

Figure 1.19.: Behaviour of the viscosity as a function of the reduced temperature for diUerent
supercooled liquids. In strong liquids the viscosity follows an Arrhenius behaviour, while a
super-Arrhenius behaviour is observed for fragile liquids. The blue (green) curve represent
the η values estimated in Ref. [79] for Ge2Sb2Te5 from ultra-fast DSC. By assuming (neglect-
ing) a breakdown of the Stokes-Einstein relation between the viscosity and the self-diUusion
coeXcient (see text).

a super-Arrhenius shape of η (Figure 1.19) often described, close to Tg, by a Vogel-Tammann-

Fulcher (VTF) equation [82]

η = η0e
E

kB(T−T0) (1.1)
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where η0, T0 < Tg and E are Vtting parameters and kB is the Boltzmann constant. The degree

of fragility is quantiVed by the fragility index m as

m=
d(log10η)
d(Tg/T)

∣
∣
∣
∣
T=Tg

(1.2)

which is of the order of few tens for typical strong liquids (m= 15 for SiO2) and of few

hundreds for highly fragile liquids (m= 192 for PVC). For fragile liquids, η can be very low

down to temperatures close to Tg resulting in a high atomic diUusivity which can boost the

crystallization speed. In fact, as predicted by the classical nucleation theory, the diUusion

coeXcient D appears as a kinetic prefactor for the nucleation rate I and the speed of crystal

growth u:

I ∝ De−
∆Gc
kBT (1.3)

u ∝ D

(

1−e−
∆µ

kBT

)

(1.4)

(1.5)

where ∆Gc is the formation free energy of the critical nucleus and is in turn deVned by

∆Gc =
16πγ3

3(ns∆µ)2 (1.6)

where γ is the liquid-solid interfacial tension, ns the number density of particles and ∆µ the

chemical potential diUerence between the liquid and the solid which represents the driving

force for the crystallization process. The self diUusion coeXcient D and ∆µ have an opposite

behaviour in temperature (Figure 1.20) that makes the nucleation rate and the crystal growth

velocity to have a maximum at diUerent temperatures.

In a fragile liquid, the presence of a low viscosity at temperatures well below Tm where the

driving force for crystallization ∆µ is high, may result in a high crystallization speed, as found

for phase change materials. The Vrst evidence of a high fragility in GST was recently provided

by Orava et al. [79] on the basis of ultra-fast DSC measurements. The crystal-growth velocity

(Figure 1.21) was obtained from the analysis of the heat transfer rate and information on the

viscosity was also inferred by the temperature dependence of the speed of crystal growth (Fig-

ure 1.19). These results on the crystal-growth velocity revealed the presence of two regimes

of crystallization with two diUerent activation energies. The Vrst occurs at high temperature,

well above Tg, and is characterized by an activation energy of about 0.5 eV as also obtained

from electrical measurements directly on PCM devices [83]. The second regime appears at low

temperatures near Tg with a higher activation energy of about 2.4 eV [83–86]. The high tem-

perature regime is relevant for programming operations in the PCM cell when crystallization
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Figure 1.20.: Schematic plot of the behaviour for increasing temperatures of the atomic mo-
bility 1/η (left) and of the free energy diUerence between the liquid and the crystalline phase
(right), which represent the driving force for the crystallization process [21].

Figure 1.21.: Crystal-growth velocity for GST as a function of temperature obtained from
ultra-fast diUerential scanning calorimetry [79].

proceeds from the supercooled liquid (SET operations). The low activation energy makes the

phase transformation easier at high temperature. The low temperature regime, instead, con-

trols the data retention at normal temperature. The high activation energy for crystallization

close and below Tg guarantees the stability of the amorphous phase and thus data retention

at normal conditions.
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Breakdown of Stokes-Einstein relation

Another factor that boosts the crystallization speed in phase change materials is the break-

down of the Stokes-Einstein relation (SER) which is often observed in fragile liquids. The

Stokes-Einstein relation links the self diUusion coeXcient D to the viscosity:

D =
kBT

6πηrsph
(1.7)

where rsph is the average dimension of the particles. The breakdown of the SER in GST was

Vrstly proposed in Ref. [79]. However, to deduce the temperature behaviour of the self diUu-

sion coeXcient and of the viscosity, many crucial assumptions have been made on the crys-

tallization process and on the value of Tg itself. In fact, a direct measure of D and η at the

operating conditions of a PCM device has not been performed yet.

In this respect, MD simulations provide a useful tool to estimate independently the diUusiv-

ity, the viscosity and the crystal-growth velocity. MD simulations based on a Neural Network

potential (see Section 2.7) by using large (4096 atoms) GeTe models [80] allowed indeed the

independent calculation of D and η which conVrmed the breakdown of SER below 700 K (Fig-

ure 1.22). This means that, despite the high viscosity found for temperatures close to Tg, the

system still features a high atomic diUusivity that allows for a fast structural reorganization

and crystallization. Both the fragility and the breakdown of SER make the self diUusion coef-

Figure 1.22.: Viscosity calculated as a function of temperature from the Green-Kubo formula
(red triangles), from the scaling of the diUusion coeXcient with the simulation cell size (stars)
and from the self-diUusion coeXcient of a 4096-atom cell and the application of the Stokes-
Einstein relation (open circles) [80]. For temperatures below 700 K the Stokes-Einstein relation
is no longer applicable.
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Vcient of the supercooled liquid to be very high even at temperatures well below the melting

point where the driving force for the crystallization ∆µ is very high. These features lead to

high nucleation rate I and high speed of crystal growth u. Molecular dynamics simulations

allowed also to compute the crystallization speed and the activation energy of the crystal-

lization process in GeTe [87] in the high temperature regime. It was shown that indeed the

crystallization speed can be well described by the classical nucleation theory (CNT) expres-

sion u ∝ D(1−e−∆µ/kBT) with values of u of about m/s in the temperature range 500−700K,
consistent with experimental data on GST (Figure 1.21). The simulations conVrmed that the

high crystallization velocity is actually due to the large value of D resulting from the fragility

of the liquid and the breakdown of the SER.

Dynamical heterogeneity

The Stokes-Einstein relation between D and η is valid when the liquid can be treated as a

continuumwhere all the particles have a homogeneous dynamics. A breakdown of the SER ac-

tually occurs in the presence of dynamical heterogeneities in the supercooled liquid that make

the continuum approximation no longer applicable. Dynamical heterogeneities (DH) consist

of spatially localized regions where atoms move with a higher speed and regions where atoms

move slower and have been experimentally observed in many liquid systems, in particular in

colloidal glasses [88].

Classical MD simulations on 4096-atom models [89] showed indeed the presence of DH in

supercooled liquid GeTe. In fact, for temperatures above Tm where the SER holds, faster and

slower atoms are spatially randomly distributed in the system, while at lower temperatures

where the breakdown of SER occurs, faster and slower atoms cluster into separated domains

(Figure 1.23). No particular structural features were found in clusters of slower atoms, while

clusters of faster atoms contain a fraction of homopolar Ge-Ge bonds higher than the aver-

age. Clusters of mobile atoms turned out to form around chains of homopolar Ge-Ge bonds.

Despite the fraction of Ge-Ge bonds, the number and the length of Ge-Ge chains in the whole

system decrease upon cooling, the fraction of homopolar bonds in clusters of faster atoms

increases, as well as the number and the length of the Ge-Ge chains. Thus the DH in super-

cooled liquid GeTe originates from a structural heterogeneity due to the presence of chains of

homopolar Ge-Ge bonds. Chains of Ge atoms with homopolar bonds are thus responsible for

the DH in liquid GeTe leading to the high mobility at high supercooling which is the ultimate

source of the high crystallization speed exploited in PCMs.

As we will see, these outcomes are of relevance for the analysis of the drift phenomenon in

amorphous GeTe (see Section 1.4) addressed in this thesis. A correlation between the presence

of homopolar bonds and the fragility of the supercooled liquid was found also for the GeAsSe

compounds [90].
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(a)

(b)

Figure 1.23.: (a) Colour map of the distribution of dynamical propensity ρ(DP)i , indicating
the tendency of each atom i to move, at 1000 and 500 K. (b) Number of clusters, average cluster
size and maximum cluster size (number of particles) of most immobile (MI) and most mobile
(MM) atoms at diUerent temperatures [89]. These maps were obtained from averages of the
mean square displacements in the isoconVgurational ensemble (see Ref. [89] for details).

1.3. InSbTe and GaSbTe alloys

In addition to GeTe, other promising candidates to replace GST in phase change memories

are the ternary SbTe-based chalcogenide alloys with gallium or indium. In fact, both these

alloys present a high thermal stability due to their high crystallization temperature. This

feature can also be exploited to realize core-shell nanowires with GST for multi-level PCM

applications [10]. However, very few experimental and theoretical information are nowadays

available on the structure and the properties of the crystalline and the amorphous phases of

these alloys.
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1.3.1. InSbTe alloys

Indium-based alloys have initially attracted interest for application in optical memories.

The phase change compounds actually employed in the realization of DVD and rewritable

CD were, in fact, SbTe alloys doped with In and Ag [91]. More recently, indium phase change

compounds like InGeTe2 [35] have been proposed for phase change memory application due

to their high thermal stability over 125 ◦C.
In this respect the InSbTe (IST) ternary system is even more promising because of the presence

of compositions with high melting [92] and crystallization temperatures [5]. Crystallization

is also very fast (ns) at high temperatures [93]. Furthermore, it has been shown that many

of these alloys undergo a sequence of transformations from the amorphous to the crystal

through intermediate phases [6, 9, 94, 95] that make them suitable for multi-bit memories

applications [6, 94].

InSbTe thin Vlms for PCM can be grown by chemical vapour deposition (MOCVD) obtaining

layers of diUerent composition by controlling the working pressure [96]. In the perspective of

the development of ultra-scaled PCM devices, InSbTe nanowires (Figure 1.24) with an approx-

imative composition of In3.0Sb1.0Te3.2 were also obtained by MOCVD [97]. The In3Sb1Te2

(a) (b) (c)

Figure 1.24.: SEM cross-sectional images of InSbTe nanowires grown at 9.1·102 Pa (a) and at
13·102 Pa (b) with a zoomed nanowire on the right. The numbers on the nanowire indicate
the points in which the nanowire composition plotted in (c) was measured [97].

composition along the pseudobinary InSb-InTe tie line (Figure 1.25) is particularly interesting

because of the existence of a single-phase ternary crystal [98]. Moreover, the amorphous

phase shows a very high stability with a crystallization temperature Tx of about 292 ◦C [6] and

high activation energy for crystallization of the order of 3 eV close to Tx [99]. Although crys-

talline In3Sb1Te2 is stable only in the temperature range 555 ◦C−435 ◦C, it can be recovered as
a metastable phase upon quenching at normal conditions, bypassing the decomposition into

InTe and InSb expected below 435 ◦C [100]. In the past, this composition was proposed for
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Figure 1.25.: Phase diagram of InSbTe alloys [100]. The stoichiometric composition In3Sb1Te2

is metastable at room temperature and can be obtained through a rapid quench avoiding phase
separation.

application in DVDs as well [5, 99]. More recently, crystallization times of about 100 ns were

observed for this compound in PCM devices with about two orders of magnitude increase in

electrical conductivity upon crystallization and good cyclability [94] (Figure 1.26).

The crystal structure of cubic In3Sb1Te2 was assigned to the Fm3̄m space group with a lattice

constant of 6.126(1) Å and a rocksalt geometry [98] with In occupying the cation sublattice and

Sb and Te atoms occupying the anion sublattice in a random manner (Figure 1.27a) as shown

by recent x-ray and neutron diUraction experiments [101]. In this arrangement, there are, on

average, 2.3 p electrons per lattice site leading to an open shell systemwith metallic properties

i.e. high electrical (3.2×104 S·cm−1 at 25 ◦C) and thermal conductivity (23 Wm−1K−1) [101].

It is interesting to note that GST also crystallizes in a metastable rocksalt phase in which,

however, the cation sublattice is occupied randomly by Sb, Ge, and 20% of vacancies, the an-

ionic sublattice being occupied by Te only [53]. Antimony is thus cationic in In3Sb1Te2 and

anionic in GST. The octahedral-like bonding geometry of the cubic ternary In3Sb1Te2 has to

be contrasted with the tetrahedral bonding geometry of the binary compounds InTe (Figure

1.27b) and InSb (Figure 1.27c). In fact, InSb crystallizes in a zincblende structure, while crys-

talline InTe is made of chains of edge-sharing InTe4 tetrahedra intercalated by weakly bound,

interstitial-like In ions [102].
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Figure 1.26.: Electrical resistance as a function of the number of cycles of a PCM cell with
In3Sb1Te2. The phase transition is reversible and the device can be cycled without loss of
resistivity contrast [6].

(a) (b) (c)

Figure 1.27.: Representation of the crystalline structure of (a) In3Sb1Te2 in the rocksalt phase
with In atoms occupying the cationic sublattice and Sb and Te atoms occupying randomly
the anionic sublattice, (b) InTe with interstitial In atoms (In2) and tetrahedral In atoms (In1)
forming chains of edge-sharing tetrahedra, (c) InSb in the zincblende structure. Indium atoms
are depicted by violet spheres, Sb atoms by cyan spheres and Te atoms by black spheres.
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The In3Sb1Te2 alloy is interesting also for multi-bit phase change memory devices because

the amorphous to crystalline transformation proceeds via successive structural transforma-

tions of the ternary compound [6]. Each step is characterized by a diUerent resistance as

reported in Figure 1.28. In the Vrst step at about 5.1 V (about 300 ◦C) the crystalline phase of
InSb is formed from amorphous In3Sb1Te2. At about 6.5 V, corresponding to a temperature

of 400 ◦C, a second step appears due to the formation of crystalline InTe, while above 450 ◦C
(7 V) InSb and InTe react forming crystalline In3Sb1Te2.

Concerning the amorphous phase of In3Sb1Te2, very little is known on its structure. The main

Figure 1.28.:Measured I−V characteristic of a In3Sb1Te2 PCM device showing steps at diUer-
ent resistance values when transforming from amorphous to crystalline. Each step correspond
to a diUerent crystalline phase obtained through phase separation [6].

question that arises is whether the bonding geometry in the amorphous phase is octahedral-

like as in the ternary crystal or tetrahedral-like as in the crystalline phase of the two binary

compounds the ternary system is made of.

InSbTe Vlms with diUerent compositions were also grown by MOCVD in the perspective to

realize a conformal deposition for PCM applications [9]. The compositions In3Sb2.7Te0.8 and

In3Sb2.5Te1.1 were obtained with a noticeable dependence on the Te content of the electrical

performance of PCM devices. A better endurance and a wider programming window has been

found for In3Sb2.5Te1.1 with respect to the composition with a lower Te content (Figure 1.29).

When heated up at 260 ◦C, both these alloys transform into a fcc polycrystalline phase with

composition InSb0.8Te0.2 with the segregation of elemental amorphous Te.
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Figure 1.29.: Cyclability of PCM cells made of InSbTe alloys with composition In3Sb2.7Te0.8

(low Te content) and In3Sb2.5Te1.1 (high Te content). The former compound shows a better
cyclability. Measurements were performed on 93×93 nm2 cells in the SET (crystalline) and
RESET (amorphous) state [9].

1.3.2. GaSbTe alloys

Gallium-based phase change alloys were proposed [7, 8, 41, 103] as well to substitute GST

in PCMs operating at high temperatures. In particular, the binary GaSb system has been pro-

posed as a possible contender for PCM applications [7, 104] because it is free of the toxicity

of Te. The alloy with composition Ga16Sb84 in the form of ultra-thin Vlm (< 10nm) actually

shows a fast single-phase crystallization and high crystallization temperature (about 250 ◦C)
[41]. Unlike the majority of the phase change materials, the Ga1Sb1 composition has a reverse

optical contrast being the amorphous more reWective than the crystal [7]. Recent ab-initio

molecular dynamics simulations on Ga1Sb1 [105] have investigated the origin of this peculiar

behaviour showing that, upon crystallization, amorphous Ga1Sb1 moves from a less tetrahe-

dral structure with few p− p resonant bonds to the completely tetrahedral coordination of

the zincblende structure. This situation is opposite with respect to other phase change alloys

like GeTe, GST or Ga16Sb84 which form crystals with an octahedral-like coordination and res-

onant bonds. In fact, as demonstrated for GST and GeTe the presence of resonant bonds in the

crystal and their disappearance in the amorphous is the key to understand the high optical

contrast between the two phases [50].

Among ternary compounds, the GaSbTe alloys with a high Sb content and composition

Ga25Te8Sb67 and Ga18Te12Sb70 present a high crystallization temperature above 245 ◦C that

ensures a 10 years data retention at 210 ◦C in PCM [103]. Upon annealing at 300 ◦C, both
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these alloys crystallize in a hexagonal-close-packed (hpc) structure with space group R3m,

the same as pure crystalline Sb, with Ga and Te atoms randomly substituting Sb in the crys-

talline lattice [103]. Compositions along the Sb7Te3-GaSb and Sb2Te3-GaSb tie line (Figure

1.30) were also studied for application in rewritable DVDs [106]. Compounds on the GaSb-

Figure 1.30.: Ternary phase diagram of Ga-Sb-Te. The pseudobinary lines are indicated with
dashed lines. The scale on the right side indicates the crystallization temperature of diUerent
GaSbTe alloys [8]. A: Tx = 193 ◦C, B: Tx = 215 ◦C, C: Tx = 227 ◦C, E: Tx = 271 ◦C, F: Tx =
254 ◦Cand G: Tx = 295 ◦C.

Sb8Te2 pseudobinary line like Ga3Sb8Te1 have a high crystallization temperature (277 ◦C) in
spite of a low melting temperature (about 570 ◦C) [107], while the Ga2Sb7Te1 composition

has a very high activation energy for crystallization (5.76 eV [108]). PCM devices with a good

stability at very high temperatures (∼ 250 ◦C) were realized (Figure 1.31) with these alloys

[108]. Quaternary systems like Si-Ga2Sb7Te1 with diUerent Si/Ga2Sb7Te1 ratios are also under

investigation [109] because they show good data retention and high cyclability (Figure 1.32).

At the peritectic composition, the Ga4Sb6Te3 alloy on the GaSb-Sb2Te3 tie line shows interest-

ing properties for applications in PCMs. In particular, Ga4Sb6Te3 displays a fast crystallization

speed, a very high crystallization temperature (271 ◦C) of interest for high temperature ap-

plications, and high electrical contrast [8]. Amorphous thin Vlms of Ga4Sb6Te3 crystallize

in a rhombohedral phase with the same composition and lattice parameters a= 4.28Å and

c= 17.04Å [8], similar to elemental Sb. The presence of an intermetallic crystalline phase for

the ternary alloy and the lesser Sb content with respect to non-stoichiometric alloys make Sb

segregation during phase transformation less likely in Ga4Sb6Te3 which is thus a promising

candidate for PCM applications with high cyclability.
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Figure 1.31.: Electrical resistance versus holding time at four diUerent holding temperatures
of Ga2Sb7Te1 thin Vlms [108]. The failure-time is deVned as the time when the resistance
decline to a half of its original value at a speciVc temperature.

(a) (b)

Figure 1.32.: (a) Data retention of Si29.4(Ga2Sb7Te1)70.6 devices at 250 ◦C beyond 1500 s.
(b) Cycle endurance test for Si29.4(Ga2Sb7Te1)70.6 using a fast switching mode and a slower
switching mode (inset) [109].

Regarding the amorphous phase of Ga4Sb6Te3, neither experimental nor theoretical data on

its structure are available.
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1.4. Resistance drift in the amorphous phase

One of the unsolved problems for the optimum operation of PCM devices is the drift phe-

nomenon which consists of an increase of the electrical resistance of the amorphous phase

with time on the scale of months at room temperature. The change of resistance in time is a

common feature of amorphous semiconductors which is due to aging eUects of the metastable

amorphous state. In amorphous silicon, for instance, a decrease with time of the number of

dangling bonds accompanied by an enhancement of the resistance has been observed [110].

Similarly, SiC shows a resistance drift explained by the relaxation of dangling bonds, dis-

torted bonds and undercoordinated atoms [111]. Annealing-induced resistance drift has been

observed in amorphous carbon [112].

Concerning chalcogenide materials, the drift of resistance is present in all Ge-, Ga- and In-

SbTe alloys, but the process can be faster or slower in the diUerent materials [113] and it can

be accelerated by annealing at high temperature [114, 115]. This phenomenon has been in-

tensively studied because it is detrimental for PCM operations. It is particularly critical for

multi-level programming where the diUerent values of the resistance in diUerent states must

not overlap with time to ensure data retention. In spite of its great technological relevance,

the microscopic origin of resistance drift has not been fully understood yet.

In order to introduce the phenomenological models that have been proposed over the years

to describe the drift phenomenon we Vrst discuss in the next sections the electronic structure

and the electrical conduction mechanisms in the amorphous state of phase change materials.

1.4.1. Electronic structure of the amorphous phase

The typical electronic density of states of an amorphous semiconductor is shown in Fig-

ure 1.33. States in the valence (conduction) band are delocalized below (above) a threshold

energy known as mobility edge. The two mobility edges deVne a mobility gap as shown in Fig-

ure 1.33. Transport of holes in valence band or electrons in conduction band outside the mo-

bility gap can be usually described by a Boltzmann like approach which applies when kL≫ 1
where L is the mean free path and k is the wavevector. Localized states are instead present

inside the mobility gap typically forming exponential tails referred to as Urbach tails (Fig-

ure 1.33). The density of states in the Urbach region is roughly proportional to e−(E−Eme)/U ,

where Eme is the energy of the mobility edge and U is a measure of the width of the tail,

known as the Urbach energy. Localized states inside the mobility gap also contribute to the

conduction via thermally-activated hopping process.

Deep states close to midgap can also be found. This is the case for a-Si where dangling bond

localized states pin the Fermi level at midgap.

Concerning phase change materials, few information are actually available on the electronic

density of states of the amorphous phase. The optical gap is generally about 0.5-1.0 eV wide
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Figure 1.33.: Schematic representation of the electronic density of states of a typical amor-
phous semiconductor. The delocalized states of the valence and conduction band are high-
lighted in orange, while the localized states of the Urbach tails are represented in gray [116].

Figure 1.34.: Electronic density of states of amorphous GeTe that reproduces the experimen-
tal results from steady-state photo conductivity, modulated photocurrent and photothermal
deWection spectroscopy measurements [118]. The large conduction and valence band tails
(CBT and VBT) are a signature of the disorder usually encountered in amorphous materials.

(0.85 eV for a-GeTe [117]). The presence of deep [117, 118] (Figure 1.34) and shallow [117]

localized defect states in the mobility gap was experimentally detected for a-GeTe, a-Ge15Te85

and a-GST. Modulated photo-current measurements on a-GeTe [118] have revealed Urbach

tails in the valence and conduction bands with a Urbach energy of about 30 meV for the va-

lence band and of 63 mV for the conduction band [118]. Regarding the position of the Fermi

level, diUerent groups report a pinning of EF at about midgap [119], but the origin of the
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pinning is controversial: on the basis of photo-thermal deWection spectroscopy, Luckas et al.

[117] stated that the pinning is due to the presence of negative U defects, while Huang and

Robertson [120] proposed a pinning of the Fermi energy caused by an overlap of the valence

and conduction band Urbach tails.

The pinning of the Fermi level at midgap in the amorphous phase is actually the key to un-

derstand the contrast in resistivity with respect to the crystal. In fact, GeTe and GST in the

crystalline phase are degenerate p-type semiconductors with a Fermi level close or even in-

side the valence band due to the presence of defects in stoichiometry in the form of Sb/Ge

vacancies. The crystalline phases are thus self-doped by Sb/Ge deVciencies. On the contrary,

the amorphous phase at the same composition can accommodate the Sb/Ge deVciencies by

still keeping a closed shell conVguration with EF at midgap [72, 120].

1.4.2. Conduction in the amorphous phase

The description of electrical conduction in amorphous materials is a challenging task as

band theory and Boltzmann transport equation can not often be applied to disordered systems.

Regarding chalcogenide alloys, many diUerent models were proposed over the years for the

electrical conduction in the amorphous phase. The model proposed by Ielmini et al. [115, 121–

124] seems so far the more viable as it is able to reproduce both the non-ohmic current-

voltage characteristic below threshold and also several features of the threshold switching

itself. The model assumes that conduction is controlled by disorder-induced localized states

in the mobility gap via two mechanisms:

• thermally activated hopping among localized states in the mobility gap;

• a Veld assisted carrier injection from localized states (either electrons or holes) to delo-

calized states outside the mobility gap.

In the latter case the injected carriers can experience conventional band (Boltzmann) conduc-

tion with kL≫ 1 (see Section 1.4.1).

Both mechanisms are assisted by the electric Veld which reduces either the activation energy

for hopping among localized states (Poole eUect) or the barrier for ionization of the defect

(trap) state according to the Poole-Frenkel eUect. The barrier lowering due to the electric Veld

are depicted in Figure 1.35, while a sketch of the band diagram of the amorphous used in the

model is shown in Figure 1.36. For a high concentration of defects, electrons hop from trap

to trap by overcoming an activation barrier. The applied voltageVA induces a barrier lowering

∆UP as given by the Poole relation [122]

∆UP =
qVA∆z
2ua

(1.8)
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(a) (b)

Figure 1.35.: Potential proVle of trap centers in an amorphous structure for an increasing
applied electric Veld (a) [122] and for diUerent inter-trap distances (b) [124]. The barrier be-
tween trap I and II becomes lower along the direction of the Veld. By varying the inter-trap
distance, the dependence of the barrier lowering from the applied Veld changes.

Figure 1.36.: Sketch of the band diagram of the amorphous phase of a chalcogenide material.
The electronic density of states is reported on the left, while a schematic band gap view is
shown on the right. Ev and Ec indicate the valence and the conduction mobility edges and EF

is the Fermi level [124].

where q the elementary charge, ua the amorphous thickness and ∆z the inter-trap distance.

∆UP is linearly dependent from VA which leads to a current which depends exponentially on

the applied voltage (see below). If the traps are far away from each other, carriers do not hop

among the traps but they are promoted outside the mobility gap by ionization of the traps.

The external Veld induces a lowering of the barrier which depends linearly on the square root
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of the applied bias (Poole-Frenkel eUect):

∆UPF =

√

q3VA

πε∞ua
(1.9)

where ε∞ is the amorphous dielectric constant for clamped ions. The height of the total barrier,

corresponding to the activation energy of the conduction process, can thus be written as

Ea = Ec−EF −∆U (1.10)

where Ec is the conduction band edge, EF the Fermi level and ∆U is assigned by the Poole

(1.8) or by the Poole-Frenkel (1.9) model.

In the subthreshold regime, the electric current along the same direction of the Veld (forward

current) is given by

I→ = qAN
∆z
τ→

(1.11)

where A and N are the area of the contact and the trap concentration, respectively and τ is

the time that an electron needs to escape from a trap center. Since the escaping process is

thermally activated, τ can be written as

τ→ = τ0e
Ea

kBT (1.12)

where τ0 is the characteristic attempt-to-escape time for a trapped electron, kB the Boltzmann

constant, T the temperature of the system and Ea the barrier height given by equation (1.10).

The current I has thus an Arrhenius like behaviour:

I→ = qAN
∆z
τ0

e−
Ea

kBT . (1.13)

For small applied Velds, the probability that a trapped electron jumps back to a trap in a

direction opposite to that of the electrostatic force can not be neglected and a reverse current

has to be taken into account:

I← = qAN
∆z
τ0

e−
Ec−EF+∆U

kBT . (1.14)

In the reverse direction the potential barrier to overcome is higher with respect to the zero

Veld case.

The net current is the diUerence between the forward and the reverse contributions:

I = I→− I← = 2qAN
∆z
τ0

e−
Ec−EF

kBT sinh

(
∆U
kBT

)

. (1.15)
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For small voltages, the sinhfunction can be approximated by a linear dependence for both the

Poole and the Poole-Frenkel case:

IP ∼ q2AN∆z2

kBTτ0ua
e−

Ec−EF
kBT VA

IPF ∼ 2q5/2AN√
πεua

∆z
τ0

e−
Ec−EF

kBT
√

VA. (1.16)

In the high Veld regime, the barrier to overcome in the direction opposite to the Veld is too

high and the probability of a jump back too low. The reverse current is thus negligible and

the net current equals the forward current I→.
On the basis of numerical simulations, it has been demonstrated by Ielmini et al. [123] that the

Poole model better describes the system in case of low bias, while the Poole-Frenkel model

better applies for higher voltages. Moreover, a crossover between the Poole and Poole-Frenkel

regime is observed upon annealing as shown in Figure 1.37 due to the reduction of defect

states.

Figure 1.37.: Experimental curves taken before and after a bake of 15 hours at 100 ◦C. The
curve before bake follows a Poole dependence. The curve after bake follows a Poole-Frenkel
dependence
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1.4.3. Drift of resistance

As demonstrated by time-resolved analysis of the electrical resistance R in PCMs [125], the

evolution of R in time (Figure 1.38) shows a rapid increase for short times (few nanoseconds)

after the RESET and then a slower monotonic increment. This second process is the so called

Figure 1.38.: Plot of the resistance of the amorphous phase as a function of time. For short
times, Rshows a transient in which it raises exponentially, then resistance increases following
a power law (1.18) [125].

resistance drift and saturates in 104 s at 75 ◦C [126]. The saturation time at room temperature

has not been calculated yet since it exceeds normal experimental times, but the predicted

value is 107 s [126].

Immediately after the application of the programming pulse, the resistance of the amorphous

phase rises up from values close to the resistance of the crystalline phase (tens of kΩ) to values

typical of the amorphous (MΩ). This transient lasts few tens of nanoseconds and results from

the presence of residual free and trapped carriers that recombine. In this stage the evolution

of R is described by the equation

R(t) = R(0)et/τ (1.17)

where R(0) is the resistance at time zero in the transient and τ is the eUective recombination

time for excess carriers [125]. In order to have a resistance windowwide enough to distinguish

between the crystalline and the amorphous bit, the readout of the cell should thus not be

performed below a time of 15 ns from the RESET process.
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After this transient the resistance increases with a power low [13, 125] (Figure 1.39)

R(t) = R0

(
t
t0

)ν
(1.18)

where R0 is about 1 MΩ, t0 is the reference time and ν is the power-law time exponent. The

drift parameter ν is of about 0.1 for GST at room temperature [127, 128].

Figure 1.39.: Bilogarithmic plot of measured resistance as a function of time in a GST-PCM
device for the RESET (amorphous) and the SET (crystalline) state. The amorphous shows a
power-law dependence of the resistance while no resistance drift is detected for the crystal
[125].

1.4.4. Possible mechanisms of the resistance drift

The microscopic process responsible for the resistance drift is still unclear. Two main in-

terpretations of the drift mechanism have been proposed. The Vrst ascribes the drift to the

relaxation of compressive stress in the amorphous. In fact, the crystalline and the amorphous

phase of a phase change material show a diUerence in density of about 6 %, being for instance

0.033 atoms/Å3 for cubic GST and 0.031 atoms/Å3 for amorphous GST [129]. In PCMs, the

phase change occurs within a small droplet of the amorphous phase embedded in crystalline

matrix which is in turn covered by hard materials such as TiN or W. The amorphous phase

can not thus adjust its density and it is subject to a compressive stress. Since the band gap

decreases upon the application of a compressive stress in these materials [130], the relaxation
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of stress in the amorphous could give rise to an increase of the mobility gap and hence of the

activation energy for the conduction process, since EF is pinned at midgap. This argument

is supported by experimental studies on GST nanowires of diUerent size [12] (Figure 1.40)

which show that nanowires with free surfaces have a smaller drift coeXcient with respect

Figure 1.40.: Resistance drift measured in amorphous GST-nanowires unembedded and em-
bedded in a dielectric matrix. In the “free standing” nanowires, the drift process is faster than
in the embedded nanowires supporting the thesis of resistance drift driven by a stress relax-
ation process [12].

to thin Vlms and to nanowires embedded in a dielectric matrix of SiO2, Si3N4. Unembedded

nanowires could better release the compressive stress resulting in a weaker drift. Measure-

ments in PCM arrays have also shown that the drift coeXcient ν depends on the size of the

amorphous volume and the increase of the resistance could thus be due to stress relaxation

[131]. Furthermore, ab-initio calculations on amorphous GST models 72-atoms wide [132] re-

ported that models generated under pressure show a higher number of defect states and a

smaller band gap.

However, resistance measurements on stress-free GST Vlms yielded the same drift exponent

obtained from PCM devices [128] which suggest that the stress relaxation can not be consid-

ered the main origin of the drift process.
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A second more viable source of the resistance drift was thus identiVed with the structural

relaxations, a phenomenon occurring in semiconductors and metallic glasses [133–135] as

well as in phase change chalcogenide materials [136]. Since the amorphous is a metastable

phase, the structure tends to evolve in time leading to a more stable conVguration with a dif-

ferent defect density. This process could result in a modiVcation of the electronic structure in

proximity of the mobility edges and inside the mobility gap with a decrease of the number of

in-gap states and, as a consequence, an increase of the activation energy for the conduction

process. The structural relaxation was also indicated to be responsible of the drift in amor-

phous Si [110], SiC [111] and C [112].

A model of the time dependence of the resistance as due to structural relaxation activated by

temperature has been in fact able to reproduce the experimental data on resistance of GST

samples with diUerent degree of annealing [127].

Recent ellipsometric measurements on a-GST thin Vlms joint with electrical measurements

[137, 138] reported that the resistance drift is accompanied by a widening of the optical (Tauc)

band gap Eg of about 0.04 eV after 173 hours for an amorphous GST Vlm [137] (Figure 1.41a).

(a) (b)

Figure 1.41.: (a) Tauc plot for optical absorption before and after the drift E
√

ε2 is plotted
versus E, where E is the photon energy and ε2 the imaginary part of the dielectric function.
(b) Band gap widening during time. The dashed line represents the analytical increase of the
activation energy for conduction calculated with the equation 1.20. The results were obtained
from ellipsometric measurements on amorphous GST thin Vlms [137].



1.4 Resistance drift in the amorphous phase 45

Figure 1.42.: Correlation between the ε∞ decrease and the increase of the band gap (triangles)
and decrease of ε∞ as a function of time (circles) [138] in amorphous GST thin Vlms.

By considering the Meyer-Neldel rule for the conduction process (see Ref. [127])

R= R00e
Ea

kBTC e
Ea

kBT (1.19)

and the drift power law (1.18), the enhancement of the activation energy in time ∆Ea can be

linked with the drift exponent obtained from electrical measurements by

∆Ea(t) =
νkBT

1− T
TC

ln

(
t
t0

)

. (1.20)

This relation provides a good agreement with the time dependence of the optical gap ∆Eg

measured by ellipsometry (Figure 1.41b). The widening of the optical Tauc gap is also accom-

panied by a reduction of the Urbach tails [137]. A Kramers-Kronig analysis of the amorphous

spectra also provided the dependence on time of the static dielectric constant ε∞ and its cor-

relation with the band gap [138]. Once plugged in equation (1.9), the change in ε∞ measured

optically was also able to reproduce the change in time of the Poole-Frenkel contribution to

the subthreshold current [138].

Modulated photo-current and photo-thermal deWection measurements also show a widening

of the band gap with time in a-GeTe [117]. The evolution of the in-gap states upon drift is

instead controversial as both an increase [139] or a decrease [117] of deep defect states have

been reported. We remark that in addition to a gap widening, also the reduction of the Urbach

band tails would result in an increase in resistivity.

The reduction of defect states close to the band edges would in fact lead to a decrease of both
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Figure 1.43.: Schematic representation of the electronic density of states (DOS) of the amor-
phous before and after aging. Before aging, electrons at the top of the valence band can be
promoted by the electric Veld via the Poole-Frenkel eUect into empty localized states in the
proximity of the valence band edge leaving holes in the valence band. The aging process re-
duces the width of Urbach tails and a smaller number of empty defect states is available for
Poole-Frenkel injection of holes in the valence band.

(a) (b)

Figure 1.44.: (a) Experimental Ge L3-edge XANES spectra measured for as-deposited amor-
phous (red dotted line) and crystalline (black solid line) GeTe (left panel) and GST (right
panel). (b) Ge L3-edge XANES spectra simulated for each of the 20 Ge atoms in a model for
amorphous GST (left panel) which demonstrate contribution of octahedral (red), pyramidal
(blue), and tetrahedral (black) structural units to the overall XANES spectrum. Averaged lo-
cal projected density of states for tetrahedrally, octahedrally, and pyramidally coordinated Ge
atoms are given in the right panel [141].
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carrier hopping among defect states and carrier injection in valence/conduction bands via the

Poole-Frenkel mechanism (see Section 1.4.2 and Figure 1.43).

Information on the structural relaxations responsible for the drift have been recently obtained

from Ge K-edge x-ray absorption near-edge structure (XANES) measurements on amorphous

GST samples annealed at diUerent temperatures. A correlation was found between the resis-

tance drift and the reduction of tetrahedral Ge atoms [140]. Indeed, it was shown that the drift

is correlated with the reduction of a step-like feature in the pre-edge XANES spectra [140].

The same feature was actually previously ascribed to the presence of tetrahedrally coordi-

nated Ge from the comparison between experimental spectra and ab-initio XANES spectra

computed for small atomistic models [141] (Figure 1.44). The results seem thus to suggest that

the drift is correlated with a reduction of Ge in tetrahedral sites.





2. Computational methods

In this chapter we describe the computational methods employed in the analysis of phase

change materials. The amorphous phase of the InSbTe and GaSbTe alloys of interest for their

high crystallization temperature was studied by generating melt quenched models through

ab-initio Molecular Dynamics (MD) simulations based on density functional theory (DFT).

The calculations were performed with three diUerent approaches to molecular dynamics: Car-

Parrinello MD, Car-Parrinello MD in the scheme proposed by Kühne et al. [142] and inverse

simulated annealing (ISA). These methods allow simulating models few hundreds-atom large,

enough to have a description of the structural properties of the amorphous phases. In partic-

ular, the scheme proposed by Kühne et al. [142] allow speeding up substantially the DFT-MD

simulations. The ISA method is devoted to generating amorphous models by imposing con-

straint on structural data available from experiments.

In order to study the structural relaxations leading to the change in the electronic structure re-

sponsible for the drift process, larger amorphous models of thousands of atoms are needed to

have a suXciently good statistics on the electronic defect states. In this case, classical MD sim-

ulations were performed to generate amorphous models of GeTe by using a Neural-Network

interatomic potential for GeTe. To accelerate the occurrence of the structural relaxations, we

also used a metadynamics technique that allows overcoming large activation barriers on the

short time scale accessible by the simulations. In this chapter we brieWy introduce some gen-

eralities on MD simulations and DFT theory, we then discuss in more details the scheme

proposed by Kühne et al. [142], the ISA method and Vnally the metadynamics technique.

2.1. Molecular Dynamics

Molecular Dynamics (MD) is a technique that allows calculating equilibrium and dynamical

properties of a many-body classical system once the initial conditions of positions, velocities

and the interaction potential between particles at time t0 are known. Position and velocity of

all the particles at any instant value of time after t0 are calculated by numerically integrating

the Newton’s equations of motion. The reliability of the calculation depends on the accuracy

of the interaction potential.

In classical molecular dynamics, the interatomic potential is generally described by an analyt-

ical expression that contains empirical parameters obtained from the Vtting of experimental
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or ab-initio data. In this respect, the reliability of the results is closely linked to the transfer-

ability of the potential which generally well describes the system only in conditions similar to

those at which the parameters of the potential were obtained. This approach allows for long

simulations (several ns) of very large systems, up to 107 atoms.

In ab-initio molecular dynamics, ions are still considered as classical particles but the forces

acting on the ions are obtained by solving the electronic problem within the Born-Oppenhei-

mer approximation. The Schrödinger equation for electrons is thus solved for every ionic

conVguration. This method ensures a much better accuracy with respect to classical MD, but

it is more computationally demanding and allow simulating small systems of at most several

hundred atoms for few hundreds of ps.

Once the forces acting on the ions are known, the time evolution is ruled by the equation of

classical mechanics:

MI R̈I = FI (2.1)

where FI is the force on the I -th nucleus and MI and R̈I are the nuclear mass and acceleration,

respectively. The numerical integration of the equation of motion (2.1) is performed by a Vnite

diUerence method by discretizing the time in steps ∆t [143–146]. One of the most simple and

stable algorithm is the Velocity Verlet algorithm [145, 146]. In this method, positions Ri and

velocities vi at time t +∆t can be obtained from the values at time t from

RI (t +∆t) = RI (t)+vI (t)∆t +
F({RI (t)})

2MI
(∆t)2

vI (t +∆t) = vI (t)+
FI ({RI (t)})+FI ({RI (t +∆t)})

2MI
∆t. (2.2)

The atomic trajectories allow computing microscopic observables A which can be expressed

as a function of ions positions and velocities. Under the assumption of the ergodic hypothesis,

A is obtained as a time average over the trajectories

〈A〉ens= 〈A〉exp= lim
τ→∞

1
τ

∫ τ

0
A({RI (t)},{vI (t)})dt. (2.3)

The solution of the equations of motion (2.1) allows one to obtain a trajectory that, under the

ergodic assumption, correctly samples the microcanonical ensemble (NVE). However, con-

stant temperature averages can also be obtained in molecular dynamics simulations. By in-

troducing an external thermostat coupled to the ions, it is possible to suitably modify the

trajectory of the ions in such a way that the time average (2.3) corresponds to the average

over the canonical ensemble (NVT). A possible scheme is the Langevin dynamics [147] in

which the equation of motion is modiVed as

MI R̈I =−
∂V
∂RI
− γLṘI +Ξ(t) (2.4)
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where γL is a friction coeXcient and Ξ represent the stochastic forces. In order to sample the

canonical ensemble, γL and Ξ must be chosen in order to fulVll the Wuctuation-dissipation

theorem [148] which states that

〈ΞI (t)ΞI (t
′
)〉= 6γLMIkBTδ(t− t

′
). (2.5)

2.2. Density functional theory

First principles MD simulations on amorphous models were performed within the density

functional theory (DFT), a very eXcient scheme to calculate the ground state electronic struc-

ture based on the celebrated theorems by Hohenberg and Kohn [149] and Kohn and Sham

[150].

Density functional theory can be applied to any system of interacting particles in an external

potential Vext(r). According to the Hohenberg and Kohn theorem, the ground state energy E
of the electronic Hamiltonian can be written as a unique functional of the electron density

n(r):

E[n(r)] =
∫

drVext(r)n(r)+
1
2

∫
drdr ′

n(r)n(r ′)
|r − r ′| +F [n(r)]. (2.6)

The second term in equation (2.6) represents the Coulomb interaction between electrons in

the mean Veld (Hartree) approximation, while the third term F [n(r)] is a universal functional
of the ground state electron density which describes the kinetic energy and the exchange and

correlation energy of the system. The calculation of the ground state energy does not require

the knowledge of the ground state wavefunction which depends on the position of all the

electrons in the system, but it can be obtained by minimizing the functional which is varia-

tional with respect to the density. The density n(r) that minimizes the functional is the ground

state electron density n0(r). However, the calculation of the ground state energy requires the

knowledge of the universal functional F [n(r)] whose exact expression is unknown.

A method to Vnd reliable approximations for F [n(r)] was proposed by Kohn and Sham. It

is based on the introduction of an auxiliary system made of non-interacting particles with a

ground state electronic density n0(r) equal to the density of the original problem of interact-

ing particles (Kohn-Sham Ansatz). The single particle wave functions of this non-interacting

system ψi satisfy the condition

n(r) = ∑
i
|ψi |2 (2.7)

and the energy of the system can be written as

E = ∑
i

〈

ψi

∣
∣
∣
∣
−▽

2

2

∣
∣
∣
∣
ψi

〉

+
∫

drVext(r)n(r)+EH +Exc (2.8)
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where the Vrst term is the kinetic energy of non-interacting electrons, EH is the Hartree

energy and Exc is the exchange and correlation energy which contains all the terms in F [n(r)]
not included in the kinetic term. The Kohn-Sham eigenstates ψi are obtained by minimizing

the functional of equation (2.8) which yields a self-consistent single particle equation

HKSψi(r) =
[

−1
2
▽

2
r +Vext(r)+VH(r)+Vxc(r)

]

ψi(r) = εiψi(r) (2.9)

where εi are the Kohn-Sham eigenvalues.

The Hartree electronic potential VH(r) is deVned by

VH(r) =
∫

dr ′
n(r ′)
|r − r ′| (2.10)

while the exchange and correlation potential Vxc(r) is the functional derivative of the xc en-
ergy with respect to the electron density:

Vxc(r) =
δExc[n(r)]

δn(r)
. (2.11)

This is the unknown term of equation (2.9). The total energy of the system can thus be ex-

pressed as

E = ∑
iocc

εi−
1
2

∫
drdr ′

n(r)n(r ′)
|r − r ′| +Exc[n(r)]−

∫
drn(r)Vxc(r). (2.12)

The Kohn-Sham equation (2.9) is solved self-consistently with iterative methods, once the xc

functional has been deVned. Although the energy Exc[n(r)] represents only a small fraction of

the total energy of the system, it gives an essential contribution to the formation of chemical

bonds, therefore the correct estimate of the exchange and correlation energy is crucial to

determine the energy of a system.

A Vrst approximation for the exchange and correlation functional was proposed by Kohn

and Sham. The energy density of the system was locally set equal to that of a homogeneous

gas εxc(n(r)) of free electrons (jellium) with the same local density of the non-homogeneous

system. Thus the xc energy can be written as a local functional of the density as

ELDA
xc [n(r)] =

∫
drεgas

xc (n(r))n(r). (2.13)

This approximation for the xc functional, known as the Local Density Approximation (LDA),

gives accurate results even for solids with highly inhomogeneous electron densities as semi-

conductors and insulators. It is possible to take into account the spin degrees of freedom by

separating the electron density into the contributions n↑ and n↓ for spin up and spin down
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electrons (Local Spin Density Approximation, LSDA).

The agreement with experimental data can be improved by using xc functionals based on the

Generalized Gradient Approximation (GGA) [151, 152] where the exchange and correlation

energy depends on the local electron density and on its gradient:

EGGA
xc [n(r)] =

∫
drεxc[n↑(r),n↓(r),▽n↑(r),▽n↓(r)]n(r) (2.14)

where n↑ and n↓ are the spin resolved electron densities.

Although the KS eigenvalues do not formally represent, within DFT, the single particles eigen-

states, they provide a good description of the band structure of solids. However, xc functionals

in the local and semi-local approximation typically underestimate the band gap of semicon-

ductors and insulators which actually hinders the possibility to perform a quantitative anal-

ysis of electronic in-gap states in the amorphous materials we are interested in. In order to

overcome this limitations of LDA and GGA functionals we resort to hybrid functionals dis-

cussed in the next section which better describe the band gap.

2.3. Hybrid functionals

Hybrid exchange and correlation functionals were Vrstly introduced by Becke [153]. These

functionals combine a fraction of the exact Hartree-Fock exchange energy EHF
x with a fraction

of exchange and correlation energy in the LDA or GGA approximation. Hybrid functionals

better reproduce the experimental gap of insulators and semiconductors. The xc functional

proposed by Becke was initially given by

Exc =
1
2
(EHF

x +EDFA
x )+EDFA

c (2.15)

where EDFA
x and EDFA

c are the LDA o GGA exchange and correlation energy.

More recently, new density functional approximations to the hybrid functionals have been

proposed mixing exact exchange and the DFT energy in diUerent ratios. For large systems

the calculation of exchange integrals can be computationally very demanding due to the slow

decay of the Hartree-Fock exchange interaction with the interatomic distance. To overcome

this problem, screened hybrid functionals, which take into account only a short range term of

the HF exchange, have been introduced.

To calculate the electronic structure of the amorphous models of InSbTe and GaSbTe alloys,

the screened Heyd-Scuseria-Ernzerhof HSE06 functional [154] was used. This functional com-

bines a fraction of HF exchange with a fraction of GGA exchange and correlation proposed
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by Perdew, Burke and Ernzerhof (PBE) [151] as

EHSE03
xc =

1
4

EHF,sr
x +

3
4

EPBE,sr
x +EPBE,lr

x +EPBE
c (2.16)

where superscripts sr and lr indicate the short- and long-range components, respectively.

The separation of the short- and long-range terms is obtained by decomposing the 1/r term,

deVned as r = |r − r ′|, as

1
r
= Sµ(r)+Lµ(r) =

er f c(µr)
r

+
er f(µr)

r
(2.17)

where Sµ(r) and Lµ(r) represent the short- and long-range terms, while er f(µr) and er f c(µr)
are, respectively, the error function and the complementary error function and µ is an empir-

ical parameter indicating the characteristic distance at which the short-range interactions of

the HF term become negligible.

It has been shown that calculations with the screened HSE06 functional give results very

similar to those of calculations with the corresponding non-screened hybrid functional PBE0

[155].

2.4. Quickstep algorithm

To generate models of amorphous InSbTe and GaSbTe alloys we used the CP2K code with

the particular implementation of the DFT method that we describe here. By expanding the

Kohn-Sham (KS) states on a Vnite basis set, the single particle diUerential equation (2.9) turns

into the problem of diagonalization of a matrix. For condensed systems, a plane wave basis set

is usually used which allows to eXciently calculate the Hartree energy EH and the exchange

and correlation energy Exc. In quantum chemistry codes the eigenfunctions ψi are instead

expanded on a set of Gaussian functions localized on the atoms. The main advantage of this

approach is that the number of Gaussian functions required for a good description of the ψi

wavefunctions is signiVcantly lower with respect to the number of plane waves. However, the

solution of the Poisson equation becomes in this case more diXcult. A good compromise be-

tween the two approaches, is oUered by the hybrid Gaussian and Plane Waves (GPW) method

[156], implemented in the Quickstep algorithm [157]. This scheme employs a mixed basis set

by expanding the ψi on a set of Gaussian functions and the electron density n(r) on a plane

wave set:

n(r) =
1
Ω ∑

G
ñ(G)eiG·r = ∑

µν
Pµνϕµ(r)ϕν(r) (2.18)

where ψi = Cµ
i ϕµ, Pµν = ∑i C

µ
i Cν

i are the elements of the density matrix, ϕµ(r) = ∑i diµgi(r)
with gi(r) Gaussian functions with contraction coeXcients diµ, Ω is the unit cell volume and
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G a reciprocal lattice vector limited by the cut-oU imposed on the plane waves expansion.

Once the representation of the electronic density in real space is known, it is possible to

obtain its representation in reciprocal space with a Fast Fourier Transform (FFT) technique

which allows solving the Poisson equation eXciently. By using this dual representation of the

density and KS orbitals, the expression of the energy has the form

E[n] = ET +Eext+EH +Exc[n]+EII

= ∑
µν

Pµν〈ϕµ(r)|−
1
2
▽

2|ϕν(r)〉+∑
µν

Pµν〈ϕµ(r)|V loc
PP (r)|ϕν(r)〉

+ ∑
µν

Pµν〈ϕµ(r)|Vnl
PP(r , r

′
)|ϕν(r

′
)〉+2πΩ∑

G

n∗(G)n(G)

G2

+
1
2 ∑

I 6=J

ZIZJ

|RI −RJ|
+Exc[n(r)] (2.19)

where ET is the electronic kinetic energy, Eext[n] the electronic interaction with ionic cores,

EH [n] the Hartree electronic energy, Exc[n] the exchange and correlation energy and EII the

ion-ion interaction.

Core electrons are not explicitly considered and only valence electrons are taken into ac-

count. The interaction between the valence electrons and the ionic cores is actually described

by pseudopotentials VPP built on an all-electrons calculation on isolated atoms. In the Quick-

step scheme the pseudopotentials are expressed as a linear combination of Gaussian functions

as proposed by Gödecker, Teter and Hutter (GTH) [158, 159] which ensures an eXcient eval-

uation of the Eext term in equation (2.19). The pseudopotential is written as the sum of a local

V loc
pp (r) and non-local Vnl

pp(r , r
′) terms.

Once solved the electronic problem, the forces acting on the ions are obtained from the

Hellmann-Feynman [160] theorem:

FI =−
∂〈Ĥ〉
∂RI

=−
〈 ∂Ĥ

∂RI

〉

(2.20)

where Ĥ represents the hamiltonian operator that describes the electrons and the ion-electron

interactions.

In Born-Oppenheimer molecular dynamics the electronic problem is solved at each step of the

ions dynamics.

2.5. Car Parrinello ab-initio molecular dynamics

An alternative approach to Born-Oppenheimer ab-initio MD was proposed in 1985 by Car

and Parrinello [161]. This technique, employed in this thesis to generate small models (100
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atoms) of amorphous Ga4Sb6Te3, is based on the transformation of the Kohn-Sham states in

classical Velds to which a Vctitious kinetic energy is associated in the Lagrangian given by

L = ∑
i

1
2

µ
∫

Ω
|ψ̇i(r)|2dr +∑

I

1
2

MI Ṙ2
I −EDFT [{ψi(r)},{RI}]. (2.21)

The Euler-Lagrange equations obtained from Lagrangian (2.21) with the holonomic constraint

of ortho-normality of the ψi , generate a dynamics in which the Velds ψi adiabatically fol-

low the nuclear motion by oscillating on the Born-Oppenheimer (BO) surfaces assigned by

the EDFT functional. The adiabatic separation requires, however, Vctitious masses µ small

enough to ensure that the characteristic oscillation frequencies of the Velds ψi are consider-

ably larger than the characteristic vibrational frequencies of the ions. This scheme avoids the

self-consistent solution of the Kohn-Sham problem at each step of the ionic dynamics at the

cost of using a time step of the order of 1/10−1/100of that used in BO-MD, because of the

need of describing the fast dynamics of the electronic Velds.

Recently, Kühne et al. [142] proposed a new method that combines the advantages of the

Car-Parrinello and of the BO schemes. In this approach, the electronic states are propagated

without solving the self-consistent problem but by still using the typical time steps of the BO-

MD. This scheme allowed us to generate large models (200-300 atoms) of amorphous InSbTe

and GaSbTe alloys by slowly quenching from the melt (up to 300 ps).

In this method the wave functions are calculated in a self-consistent way only in the Vrst

steps of the dynamics and then the density matrix P= CCT is propagated with the Always

Stable Predictor Corrector (ASPC) algorithm of Ref. [162]. The expansion coeXcients of the

Kohn-Sham states C on the local basis set are calculated through the Predictor algorithm

Cp(tn)∼=
K

∑m=1
(−1)m+1m

( 2K
K−m

)

(2K−2
K−1

)C(tn−m)CT(tn−m)
︸ ︷︷ ︸

=P(tn−m)

S(tn−m)C(tn−1) (2.22)

where S is the overlap matrix of the basis functions. In equation (2.22) the PSmatrices of the

previous K steps are linearly combined. PS is invariant with respect to a unitary transforma-

tion of the coeXcients C and hence, as opposed to the C coeXcients, it varies slowly as the

ionic positions change and it can be easily extrapolated.

Once the coeXcients are obtained, the Corrector algorithm is applied to the Cp(tn) in order

to minimize the error in the propagation:

C(tn) = ωMIN[Cp(tn)]+(1−ω)Cp(tn) (2.23)

where

ω =
K

2K−1
(2.24)
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and MIN[Cp(tn)] represents a single minimization step. This procedure obviously introduces

an error in the calculation of the ground state density. C(tn) is an approximated eigenfunction

of H[np] in the subspace sampled by the Vnite basis set used and this implies that the error on

the forces is negligible only if C(tn) is close to the ground state. However, it can be demon-

strated that the forces calculated with this method are very close to those obtained with a

self-consistent procedure and the error on the forces can be approximated by a white noise.

The deviation from the BO surface leads to a dissipative dynamics which can be, however,

compensated by a thermostat as described below. It has been shown that the forces FPC,

obtained from the Predictor-Corrector step, diUer from that obtained in a conservative BO

dynamics by a dissipative term as

FPC = FBO− γDṘI (2.25)

where γD is a friction coeXcient. In order to correctly sample the canonical ensemble the dissi-

pative term can be compensated by stochastic forces ΞD
I (t) according to a Langevin dynamics

(see Section 2.1) as

MI R̈I = FPC+ΞD
I (t). (2.26)

Moreover, it is also necessary to introduce a second Langevin thermostat at the target tem-

perature with friction coeXcient γL and stochastic force ΞL
I (t) to provide a fast equilibration.

Thus, the overall equations of motion are

MI R̈I = FPC− γLṘI +ΞL
I (t)

= FBO− (γD + γL)ṘI +ΞI (t) (2.27)

where ΞI (t) = ΞD
I (t) +ΞL

I (t). While the choice of γL is arbitrary, the value of γD must be

determined so that the associated white noise compensates the dissipation due to the error in

the calculation of the forces, keeping the energy constant during the dynamics.

2.6. Inverse simulated annealing

The Born-Oppenheimer or the Car-Parrinello like methods described in the previous sec-

tion can be used to generate models of the amorphous phase by quenching from the melt.

However, preparation methods diUerent from melt-quenching such as deposition by sputter-

ing or MOCVD might lead to diUerent amorphous structures. These polyamorphisms might

make the comparison between theory and experiments problematic when the theoretical

models are generated only by quenching from the melt.

An alternative method to generate amorphous models has been proposed recently by Los and

Kühne [163]. This method, called Inverse Simulated Annealing (ISA), is a combination of a

simulated annealing and Reverse Monte-Carlo (RMS) scheme and exploits the advantages of
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both the techniques. In this scheme, the potential energy calculated at the DFT level is min-

imized under soft constraints imposed by experimental data. The use of DFT in this method

rules out the possibility of generating unphysical structures which are sometimes found by

traditional RMC Vtting of the experimental data. Moreover, the method allows generating

amorphous models at a desired target pressure which is particularly needed if the experimen-

tal density of the amorphous is not known or when it is anyway expected to diUer from the

theoretical equilibrium density.

The ISA simulations allow generating amorphous models suitable to reproduce available ex-

perimental data and at the same time to lie in a low local minimum of the potential energy sur-

face. In this work, the ISA method was applied to InSb alloys in order to generate amorphous

models at the theoretical equilibrium density by Vtting the available experimental structural

data on amorphous samples grown by sputtering.

In the ISA technique, the ionic positions RI are assigned by minimizing a function of the form

Ũ(R) =U(R)+∑
p

wp
(
χp(R)−χexp

p

)2
(2.28)

where R = {Ri},U is the DFT potential energy and χp are properties of the system for which

experimental data χexp
p are available. These ones may include structural properties from scat-

tering data, but also properties related to the electronic structure, such as the band gap. Alter-

natively, χexp
p in equation 2.28 could be replaced by a target property, e.g. a desired property

for a certain application.

The minimizer of the function Ũ(R) is a Monte-Carlo (MC) method with all atom trial moves

that involve the forces and follows an NVE approach with the corresponding acceptance prob-

ability. The all atom trial moves are generated by a single, energy conserving, Velocity-Verlet

[145, 146] MD step (see equation 2.2) but with a randomly chosen time step dt ∈ (0,dtmax),

where dtmax is Vxed and, typically, up to an order of magnitude larger than the time step

in a normal MD simulation. From MC simulation within the NVE ensemble, the acceptance

probability of the trial move is given by

P= min

(

1,

(
E−Ũ ′

E−Ũ

)ν( 3N
2 −1)

)

(2.29)

where E is the total energy, N is the number of atoms in the system, Ũ ′ the energy of equation
2.28 calculated for the new trial move and ν is a number larger than zero adjusted on the Wy

to achieve the desired acceptance rate (generally 50 %). Indeed, for ν→ 0, P→ 1 and all move

are accepted, while for very large ν only moves for which Ũ ′ < Ũ are accepted, excluding

the possibility to cross energy barriers of any height. In a NVE simulation, the total energy

E is Vxed while the average temperature is assigned by E−U = K = 3
2NkBT , where K is the

kinetic energy.
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In an annealing simulation T is linearly lowered from Thigh to Tlow = 0+ as a function of

the MC step, still preserving the NVE features. In this scheme, E is updated in steps as

soon as the measured temperature Tmeasis outside a given window ∆Twindow around the ap-

plied temperature T . The measured or actual “temperature”, Tmeas, is associated to the kinetic

energy K of the system by K = E− Ũ = 3
2NkBTmeas. After each accepted move, whenever

|Tmeas−T| > ∆Twindow, E is adjusted such that the kinetic energy, and correspondingly the

velocities, are in agreement with the applied temperature, i.e. such that E−Ũ = 3
2NkBT .

A Wowchart of the minimization algorithm used in the ISA method is reported in Figure 2.1.

Figure 2.1.: Flowchart of the minimization algorithm used in conjunction with ISA. In the
upper panel, vi is the velocity of atom i and f̃ i is the best approximation of the total force
∂U/∂r i on atom i.
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2.6.1. Volume Wuctuations

A minimization with ISA at constant volume will in general lead a structure with non-zero

stress, depending on the chosen density. In fact, the experimental density is often not known

and, anyway, it would be preferable to generate an amorphous model at the theoretical equi-

librium density which might diUer from the experimental one because of the inaccuracies of

the interatomic potential (exchange and correlation functional) used. An amorphous model at

zero pressure can be generated by including volume Wuctuations in the ISA scheme, similarly

to standard MC simulations at constant pressure. In order to keep the pressure Wuctuating

around a given target pressure Pext , we may simply add the volume dependent contributions

to the Gibbs free energy to the function to be minimized, which then turns into (calling it G̃):

G̃(R,V) =U(R)+PextV−NkBT ln(V)+∑
p

wp
(
χp(R,V)−χexp

p

)2
. (2.30)

One then applies the standard MC acceptance probability for volume changes

P= min
(

1,
(

e−β∆G̃
))

(2.31)

with β = 1/(kBT) and where ∆G̃ is the change in G̃ due to the volume change. Without

the contributions from the constraint terms, this probability would be equal to the standard

probability for volume Wuctuation in NPT MC simulations [164]. Indeed, minimization of

G̃(R,V) with respect to V leads to

dG̃
dV

= −Pvir +Pext−Pkin+2∑
p

wp
(
χp(R,V)−χexp

p

) dχp

dV

= Pext−Ps+2∑
p

wp
(
χp(R,V)−χexp

p

) dχp

dV

= 0 (2.32)

where Pvir = −dU/dV is the virial contribution and Pkin = NkBT/V the ideal vapor (kinetic)

contribution to the total pressure Ps = Pkin+Pvir . Hence, without the constraint terms, the

condition dG̃/dV = 0 implies Ps = Pext. In that case the actual pressure Ps of the system

in an NPT MC simulation Wuctuating around Pext, the size of the Wuctuations depending on

temperature. How to achieve this situation with the constraint terms is not obvious. Note that

in general dχp/dV is non-zero, and neither is χp(R,V)− χexp
p during the simulation. As a

general rule to circumvent or reduce the problem of spurious pressure contributions coming

from the constraint terms one should choose the weight factor wp as small as possible, but at

the same time large enough to achieve the desired agreement with the experimental property.

For certain properties the above problem can be solved in a more rigorous way by deVning
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the constraint term in a form that is invariant under volume Wuctuations. In particular, this

holds for a very important property, for which experimental data are often available, namely

the pair correlation function (PCF). For this property, the constraint term, Ũg, can be deVned

in a scale invariant form as:

Ũg(R) = wg

Nrn

∑
n=1

(gs(R;sr rn)−gexp(rn))
2 (2.33)

where the sum runs over the Nrn grid points rn on which the experimental PCF, gexp(rn),

is tabulated and where sr = (V/Vexp)
(1/3) = (ρexp/ρ)(1/3) is a scale factor with ρ = 1/V

the actual density of the system and ρexp= 1/Vexp the experimental density. Using the scale

invariant form for Ũg in equation 2.33, the constraint is restricted to the shape of the PCF,

so that diUerences between the experimental and theoretical density due to bond distance

under-/overestimation by DFT are not penalized by Ũg. For the reduced PCF (RPCF), deVned

as G(r) = 4πrρ(g(r)−1), the scale invariant form of the constraint term reads:

ŨG(R) = wG

Nrn

∑
n=1

(
s2
r Gs(R;sr rn)−Gexp(rn)

)2
. (2.34)

2.7. Neural Network interatomic potential

In order to study the microscopic origin of defect states in the amorphous phase whose

aging is responsible for resistance drift, large models of thousands of atoms are needed. Un-

fortunately, such large-scale simulations are not accessible by ab-initioMD.We thus restricted

ourselves to the study of the resistance drift in amorphous GeTe for which a reliable inter-

atomic potential was available and suitable to be used in simulations with several thousands

of atoms. The interatomic potential for GeTe was generated by Vtting a database of DFT en-

ergies [14] with the Neural Network (NN) method proposed by Behler and Parrinello [165].

Neural Networks (NN) are a class of algorithms widely applied to classiVcation problems as

speech [166] and text recognition [167], to Vnancial market analysis [168] or weather forecast

[169] and as Vtting algorithms [170]. In this respect, it has been demonstrated that NNs can Vt

any continuous real-valued function of any dimension with arbitrary accuracy [171]. Among

simulation techniques applied to materials science, Neural Networks become particularly use-

ful to Vt the potential energy surface (PES) of a system. In fact, other Vtting algorithms fail

in case of high dimensional functions as for example the PES of large models. NN, instead,

can be nested to create hierarchical algorithms that provide a very high degree of Wexibility,

being able to handle Vtting procedures of high dimensional functional mapping in a massively

parallel way.

The potential energy surface can be represented by a feed-forward neural network which is
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Figure 2.2.: Schematic representation of a simple feed-forward NN topology with two hidden
layers.

a type of artiVcial NN formed by diUerent layers where the information always moves in one

direction, from the input layer to the output layer and never goes backwards. A schematic

representation of a simple feed-forward NN is reported in Figure 2.2. The input and output

layers are always present, while a variable number of hidden layers can be present between

inputs and outputs. Each layer can be thought as a single neuron in a biological neural net-

work and is composed by a certain number of nodes. The Wexibility of the NN can be increased

by increasing the number of hidden layers or the number of nodes in the hidden layers and

hence the number of Vtting parameter on which the function depends. These Vtting parame-

ters are sort of “weights” that connect the nodes in a layer with the nodes in the next one. In

Figure 2.2 the parameter that weighs the i node in the k layer connecting it with the j node
in the l layer is indicated by wkl

i j . Moreover, the hidden layers can be linked with a bias layer

with weights b j
i .

In order to calculate the output of the neural network, each point xi of the Vtting dataset is

assigned to a diUerent node in the input layer and the output values y1
j of the Vrst hidden

layer are calculated through two steps. In the Vrst step the input values are linearly combined

with the weights w01
i j and a bias value b1

j is added

χ1
j = b1

j +
4

∑
i

w01
i j ·xi . (2.35)
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Then, a highly non-linear function f 1
j is applied to the χ1

j values

y1
j = f 1

j (χ
1
j ). (2.36)

The f 1
j is an activation function that makes the NN able to Vt any arbitrary function. In a

similar way, the values of the nodes of the next layers and of the output can be obtained from

the values calculated in the previous layers. The output of the NN may be an array of values

or a single number calculated by summing up the results of the hidden layers as exempliVed

by the equation

E = f 3
1

(

b3
1+

3

∑
i=1

w23
i1 + f 2

i

(

b2
i +

4

∑
j=1

w12
ji f 1

j −
(

b1
j +

3

∑
k=1

w01
k j xk

)))

(2.37)

that describe the procedure sketched in Figure 2.2.

Within the Neural Network, an activation function f is applied to the nodes in each hidden

layer. The f function is generally a non-linear function that asymptotically converges to a

Vnite value for very large and very small arguments, while in between it displays a non-

linear behaviour. DiUerent types of activation functions can be used, for example the sigmoid

function (Figure 2.3)

f (x) =
1

1+e−x , (2.38)

the hyperbolic tangent or Gaussian functions.

All these functions have a narrow range of possible values which may not match the range

of values of interest in the functional mapping and need to be rescaled or shifted by a proper

adjustment of the weights. The bias weights, instead, shift the position of the non-linear re-

gion of the activation function. Generally, from the last hidden layer to the output layer, the

activation functions are linear in order to avoid any constraint in the range of output values.

In order to determine the values of the Vtting parameters, an error function Γ, that describes
how far is the i-th output value of the NN Ei,NN from a reference value Ei,re f of the dataset,

must be deVned:

Γ =
1

2N

N

∑
i=1

(
Ei,NN−Ei,re f

)2
(2.39)

where N is the number of points in the dataset. If the activation functions in the neural net-

work are diUerentiable, also the output of the NN will be diUerentiable with respect to both

input variables and weights and hence the error function Γ is a diUerentiable function of the

weights. The error functions can thus be minimized by Vnding the roots of the partial deriva-

tives of the error function with respect to the weights through a minimization procedure. The

algorithm for evaluating the derivatives of the error function is known as “back propagation”,

since it corresponds to a propagation of errors backwards through the NN. The process by
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Figure 2.3.: Illustration of the sigmoid function of equation (2.38).

which the weights are iteratively improved until they provide a reasonable approximation of

the underlying function is called ”training” or ”learning”, and each iteration of this process is

known as ”epoch” in the NN context.

2.7.1. Neural Network potential energy surfaces for atomistic

simulations

Neural networks have been used in atomistic simulations to build the potential energy

surface of many diUerent systems such as small molecules [172] and isolated gas molecules

interacting with a surface [173]. In these cases a single NN is used to calculate the energy of

the molecule and the NN potential is easy to implement due to the small number of degrees

of freedom. However, once the Vtting parameters of the NN are determined, the resulting po-

tential have a very little transferability since it cannot be applied to systems with a diUerent

number of atoms. In fact, the number of input nodes, and hence the values of the weights, is

Vxed and assigned by the number of degrees of freedom of the system.

When the NN tool is applied to large systems of thousands of atoms, the Vtting procedure

gets longer and it would be not feasible to generate a diUerent NN potential for each system

size.

A Vrst NN scheme to reproduce potential energy surfaces with a large number of degrees of

freedom independently on the system size was proposed by Hobday et al. [174] for carbon-

based systems. In this work, the chemical environment of each bond in the model was de-

composed into a variable number of input vectors characterizing three-atom chains, which

all have the same dimensionality. Starting from this idea, in a new approach to NNs the total

energy of the system has been written as sum of the atomic energies, each obtained from a

single atomic NN [175]. Each of these individual NNs has an input vector with a Vxed number
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of elements that describe the local environment of the atom and returns as output an atomic

energy. This scheme was later used to generate a NN potential for silicon giving good results

[176].

A further development of this method was proposed in 2007 by Behler and Parrinello [165]

starting from the deVnition of the total energy as sum of the atomic energies

Etot =
N

∑
i=1

Ei({r}). (2.40)

In this approach (Figure 2.4), the architecture of the NN is Vxed for a given chemical element

allowing to use a standard NN for each atom. An input vector for each atom describe the

local environments considered up to a cut-oU distance. In order to have a number of input

nodes independent on the number of neighbours of each atom, the environment is described

not in terms of Cartesian functions, but through special types of many-body “symmetry func-

tions”. The symmetry functions give information on the radial and angular arrangement of

neighbours for each atom in the system. The symmetry functions must be chosen in order to

ensure the invariance of the energy with respect to symmetry operations such as translations

and rotations of the whole system and the exchange of two atoms of the same species. The

input values of an individual atomic NN are a vector of symmetry function values {Gi}, each
of them depending on the coordinates of all the atoms of the environment within the cut-oU.

For a given atomic species, the architecture and the Vtting parameters of the NN are Vxed,

ensuring the invariance of the total energy with respect to the exchange of two atoms of the

same type. The weights of the neural network are determined by Vtting the total energies of

diUerent conVgurations obtained from DFT calculations.

Figure 2.4.: Sketch of a neural network according to the scheme proposed by Behler and
Parrinello [165].
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Symmetry functions

In the generation of the NN potential for GeTe [14], two types of symmetry functions have

been used: radial symmetry functions built by summing up two-body terms, and angular

symmetry functions which contain three-body terms. The radial environment of atom i is
described by two diUerent radial functions with the form

G1
i = ∑

j
fc(Ri j )

G2
i = ∑

j
e−η(Ri j−Rs)

2 · fc(Ri j ). (2.41)

The cut-oU function fc is deVned by

fc(r i j ) =

{

0.5
[

cos
(

πr i j
rc

)

+1
]

for r i j < rc,

0 for r i j > rc.
(2.42)

Function G1
i is the sum on all the neighbouring j atoms within the cut-oU, while G2

i is a sum

of Gaussian functions centered at a certain radial distance Rs and multiplied by the cut-oU

function. These “shifted” G2
i functions are suitable to describe a spherical coordination shell

around the reference atom. The radial distribution of neighbours can be described by using

a set of radial functions with diUerent spatial extensions, for example G1
i functions with dif-

ferent cut-oU radii, or G2
i functions with diUerent cut-oUs and/or η and RS parameters. The

radial functions are sums over all the neighbours and hence they describe the pair correlation

function of the system within the cut-oU distance. Typical forms of the radial symmetry func-

Figure 2.5.: Radial symmetry functions. a) G1
i -type symmetry functions for diUerent cut-oU

radii. b) G2
i -type symmetry functions for diUerent radial distances Rs with η=2 and Rc=8 Å

respectively.
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tions are plotted in Figure 2.5 for several parameter values. Angular symmetry functions are

deVned as functions of the bond angle θ jik that the i-th atom forms with its two neighbours j
and k and have the form

G3
i = 21−ξ

all

∑
j,k6=i

(1+λcosθi jk)
ξ ·e−η(R2

i j+R2
ik+R2

jk)
2
· fc(Ri j ) · fc(Rik) · fc(Rjk). (2.43)

The parameter λ assumes values±1 shifting the maxima from 0◦ and 180◦ to 90◦. The angular
resolution is controlled by the parameter ξ, high ξ values yield a narrower range of non-zero

symmetry function values (Figure 2.6). A set of angular functions with diUerent ξ-values can
thus be used to obtain a measure of the bond angle distribution function of each reference

atom. The angular distribution is sampled at various distances from the central atom by a

suitable choice of η and Rc, which control the radial part. The parameters that deVne the

symmetry functions are Vxed in the training process of the NN. The total number of values of

symmetry functions describing a given structure is much larger than the number of degrees

of freedom of the system. This ensures that the full dimensionality of the system is captured

and the resulting redundancy of the information is not usually a problem for a NN algorithm.

Figure 2.6.: Angular symmetry functions G3
i for several values of ξ with λ = 1.

Forces and stress evaluation

Since the NN energy is an analytical function of the symmetry functions, which in turn de-

pend on the atomic coordinates, the energy is an analytical function of the ionic coordinates.

The atomic forces and the stress tensor can thus be computed analytically. The force Fk acting
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on the k-th atom is

Fk = − ∂E
∂Rk

= −
N

∑
i=1

∂Ei

∂Rk

= −
N

∑
i=1

Mi

∑
j=1

∂Ei

∂Gi, j

∂Gi, j

∂Rk
(2.44)

where i runs on atoms and j on the symmetry functions. Since the energy is a function of

interatomic distances Rk j =Rk−R j , the stress tensor can be obtained from the virial theorem

[144] as

σα,β =
N

∑
i=1

N

∑
k=1

Rik,α ·
∂E

∂Rik,β
(2.45)

where α and β are Cartesian coordinates.

Extrapolation

The NN method allows interpolation of the points in the dataset of a multi-variate function

with any arbitrary functional form. However, the NN algorithm fails in predicting the value

of the Vtted function outside the conVgurational space spanned by the training dataset. This

condition can be simply checked by keeping memory of the minimum and maximum values

assumed by each symmetry function for the whole input dataset. In this way, the values as-

sumed by the symmetry functions depending on the atomic positions during the simulation

can be compared with the values of the G functions of the dataset. If a certain atom conVgu-

ration cause one or more symmetry functions to assume values outside the range deVned by

the training set, a so called extrapolation occurs and the resulting NN energy could be not

reliable. To Vx this issue, the atomic environment that causes the extrapolation can be added

to the initial dataset Vtting again the potential to extend its transferability.

Neural Network potential for GeTe

The NN potential for GeTe was generated by Vtting the total energy of about 30000con-
Vgurations of 64-, 96- and 216-atom supercells computed within DFT [14]. Crystalline, liquid

and amorphous conVgurations and mixed crystalline/amorphous models were generated with

the PBE functional. ConVgurations at diUerent pressure, temperature and stoichiometry were

also included in the dataset. The structure of the neural network employed to Vt the ab-initio

data includes three hidden layers with 20 nodes each. The local environment of each atom is

described by the value of 159 radial and angular symmetry functions deVned in terms of the
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positions of all neighbours within a distance cut-oU of 6.88 Å.

The generated NN potential well reproduce the structural features of amorphous, liquid and

crystalline GeTe [14] and it has been validated in several works [80, 87, 89]. Figure 2.7 shows

the comparison between the pair correlation functions calculated for amorphous GeTe models

generated with DFT and with the NN potential. The agreement is very good.

Figure 2.7.: Total and partial pair correlation functions of amorphous GeTe from a NNmolec-
ular dynamics simulation at 300 K with a 4096- and 216-atom cell, compared with results from
DFT simulation at the same temperature using 216-atom cells. NN and DFT data for the small
cell are averaged over 10 independent models [14].

2.8. Metadynamics

The structural relaxations responsible for the drift phenomenon occur on the time scale

of minutes up to several months. To speed up the transformations and make them visible on

the short time span of an atomistic molecular dynamics simulation one might increase the

temperature. For phase change alloys this procedure might, however, lead to crystallization of

the amorphous phase. To circumvent this problem, acceleration techniques suitable to allow

overcoming large energy barriers at low temperature in an aUordable simulation time must

be used.
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In this respect, metadynamics is a technique based on molecular dynamics that improves the

sampling of the potential energy surface allowing the crossing of energy barriers higher than

the thermal energy [177]. This can be done through a non-markovian dynamics in a space of

few coordinates called collective variables (CV) that can discriminate between the initial and

the Vnal conVgurations. The dynamics spans the free energy surface, expressed as a function

of the collective variables, and a biasing external, history-dependent, potential is added dur-

ing the simulation. The biasing potential, built as a sum of Gaussian functions centered along

the trajectory in the space of the collective variables, drives the system towards the lowest

saddle point in the free energy surface.

The external biasing potential is made of intermittently added Gaussian functions that dis-

courage the system from remaining in the region already visited and push it over the lowest

energy barrier towards a new local minimum (Figure 2.8). The biasing potential VG acting on

Figure 2.8.: Schematic representation of the metadynamics technique. Intermittently added
Gaussian functions are introduced to discourage the system from remaining in the region
already visited and to push it over the lowest energy barrier towards a new local minimum.

the system at time t is a function of the array of collective variables sat time t and at preceding
times t ′ as

VG(t) = w
t ′<t

∑
t ′=τG,2τG,...

e−
(s(t)−s(t′))2

2δs2 . (2.46)

The VG potential is essentially deVned by three parameters:

• the height of the Gaussian function w;

• the width of the Gaussian function δs;

• the frequency τG with which a new Gaussian function is added.

This procedure is applied as long as the free energy basin is Vlled and the system jumps into

another local minimum.

The algorithm keeps memory of the positions in which the Gaussian functions were deposited
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and it is thus possible to reconstruct the proVle of the free energy surface in the space of the

CVs:

lim
t→∞

VG(s, t) =−F(s) (2.47)

where F(s) is the free energy. In order to obtain a reliable reconstruction of the free energy,

the parameters that deVne the Gaussian functions of the bias potential should be tuned. If the

Gaussian functions are too large and added with high frequency, the potential well will be

Vlled in few steps, but free energy proVle should be aUected by large errors. Otherwise, when

the Gaussian functions are too small, a very accurate free energy proVle could be obtained

but longer simulation times are needed.

A way to reconstruct rapidly and with high accuracy the free energy surface was proposed

by Barducci et al. [178]. In this method called well-tempered metadynamics the height w of

the added Gaussian varies during the dynamics as

w(t) = w0e−
VG(t)
kB∆T (2.48)

where w0 is the initial Gaussian height, kB is the Boltzmann constant and ∆T is an input pa-

rameter with the dimension of a temperature. The height of the Gaussian functions becomes

smaller and smaller the larger is the biasing potential already added to the same point in the

phase space.

The metadynamics approach can be applied to various systems, from small molecules to pro-

teins and solids to accelerate rare events such as chemical reactions. To this aim a careful

preliminary identiVcation of the set of CVs, able to describe the process of interest, is needed

[179]. The derivative of the free energy with respect to the collective variables, in fact, cor-

responds to the driving force of the reaction. Once a suitable set of CVs is identiVed, meta-

dynamics is able to provide very reasonable transition pathways and to discover new unpre-

dicted stable and metastable states. In principle, the CV should satisfy three properties:

• They should clearly distinguish the initial, Vnal and intermediate states.

• They should describe all the slow events that are relevant to the process of interest.

• Their number should not be too large, otherwise it will take a very long time to Vll the

free energy surface.

Typical collective variables are geometrical parameters such as distances, angles and dihedrals

which are useful to study chemical reactions.

In this thesis we applied the metadynamics method to study structural relaxations in amor-

phous GeTe. As we would like to simulate processes in which Ge-Ge bonds break and new

Ge-Te bonds are formed, we used as collective variables the partial coordination numbers of
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Ge-Ge and Ge-Te pairs deVne as

S(r) = ∑
i j

f (r i j ) (2.49)

where f is a switching function [180] deVned as

f (r i j ) =
1−
(

r i j−d0
r0

)n

1−
(

r i j−d0
r0

)m (2.50)

and r i j is the distance between the i-th atom of the Vrst subset of atoms and the j-atom of

the second subset of atoms. The parameter r0 is a measure of the steepness of the f function
and d0 is the value on which the function is centered and roughly correspond to the cut-oU

distance on the bond length; the parameters n and m tune the smoothness of the function.

This deVnition ensures that the calculated coordination number is a diUerentiable function of

the ionic coordinates.



3. Atomistic simulations of InSbTe and

GaSbTe alloys

Although GST is presently the material of choice for PCM, there is a need to develop al-

ternative phase change alloys for applications at high temperatures, e.g. for the automotive

market. InSbTe and GaSbTe alloys are interesting alternatives to GST thanks to their higher

crystallization temperatures. However, no structural experimental data are actually available

for the amorphous phase. We have thus generated models of the amorphous phase of InSbTe

and GaSbTe at diUerent compositions by quenching from the melt within ab-initio simula-

tions. The models allowed for a full characterization of the structure of the amorphous phase

which also shed light on the functional properties exploited in the devices. As a preliminary

work, the binary compound InSb was analysed.

3.1. InSb

In order to asses the reliability of our theoretical DFT framework for the modeling InSbTe

alloys, we Vrstly focused on the amorphous phase of the binary compound InSb which has

been already experimentally and theoretically investigated in the past.

Amorphous InSb (a-InSb) is itself an interesting material for application in micro- and opto-

electronic devices, such as infrared photodetectors [181]. The binary alloy at the eutectic

composition (In32Sb68) has been also proposed as phase change material in rewritable digital

versatile disc [182].

InSb is a semiconductor with a zincblende crystalline structure (Figure 1.27c) with space group

F 4̄3mmade of tetrahedrally coordinated In and Sb atoms. The lattice parameter obtained from

x-ray powder diUraction is 6.47937(3) Å [183] corresponding to a density of 0.0294 at./Å3

(5.775 g/cm3) for the zincblende crystal. Under particular conditions, InSb Vlms can crystal-

lize in a rocksalt-like structure with lattice parameter 6.12 Å [184].

A systematic x-ray diUraction study of the structural properties of amorphous III-V semicon-

ductors, including InSb (a-InSb), has been performed long ago by Shevchik and Paul [185]

reporting for InSb a density 2 % lower than that of the crystal and a nearest neighbour dis-

tance of 2.86 ± 0.03 Å. More recently, extended x-ray absorption Vne structure (EXAFS) mea-

surements [186] on sample deposited by sputtering revealed the presence of slightly longer
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In-Sb bonds in a-InSb with respect to the crystal that is accompanied by a counterintuitive

increase of about 5 % in density, being 0.0311 at./Å3 (6.1 g/cm3). This feature has been as-

cribed to the presence of homopolar Sb-Sb and In-In bonds. Since pure In and pure Sb are

denser than InSb, a concentration of 10 % of homopolar “wrong” bonds can lead to a higher

density in the amorphous phase with respect to the crystal. A sizable fraction of homopolar

bonds is indeed present in models of a-InSb generated by quenching from the melt within

classical molecular dynamics simulations using empirical interatomic potentials [187, 188].

First principles simulations based on density functional theory (DFT) have been performed

for the liquid phase [189]. A continuous random network model of the amorphous phase was

also investigated from Vrst principles [190]. However, an ab-initio model of amorphous InSb

generated by quenching from the melt is still lacking.

In order to analyse the amorphous structure of InSb, we performed ab-initiomolecular dynam-

ics simulations generating melt-quenched models of a-InSb. The structural properties of this

compound turned out to be strongly dependent on the choice of the exchange and correlation

functional. Namely models generated with the Perdew-Burke-Ernzerhof (PBE) [151] func-

tional are mainly octahedral-like in contradiction with the experimental data, while model

obtained with the Becke-Lee-Yang-Parr (BLYP) [152] is mostly tetrahedral and better Vts the

experimental diUraction data. Here, we present a summary of the attempts we made to re-

produce the experimental data on amorphous InSb which allowed us to select the best suited

exchange and correlation functional. After a brief section on the computational details, we

present Vrst the results with the PBE functional and then the results with the BLYP one.

3.1.1. a-InSb with the PBE functional

Computational details

We Vrstly performed ab-initio molecular dynamics simulations at DFT-PBE level in the

scheme of Kühne et al. [142] described in Section 2.5 as implemented in the CP2K code

[157, 191]. Norm-conserving Gödecker-type (GTH) pseudopotentials [158, 159] with three

valence electrons for In and Vve valence electrons for Sb were used. The Kohn-Sham orbitals

were expanded in a double-zeta-valence plus polarization (DZVP) Gaussian-type basis set

[192], while the charge density has been expanded in a plane-wave basis set with a cut-oU of

100 Ry to eXciently solve the Poisson equation within periodic boundary conditions using the

Quickstep scheme [157]. Brillouin zone integration was restricted to the supercell Γ point. We

at Vrst chose the PBE exchange and correlation functional because it has been demonstrated

to give good results for several phase change materials [68–73, 76, 193]. In order to check

the reliability of the GTH pseudopotentials, we Vrstly computed the equation of state of the

zincblende and of the rocksalt crystals with the quantum-espresso suite of programs and a

16×16×16Monkhorst-Pack mesh [194] for the integration of the Brillouin zone (Appendix



3.1 InSb 75

A.1). No substantial diUerences have been found by considering three or thirteen valence elec-

trons for indium. The lattice parameter of the zincblende crystal is overestimated by about 2 %

with respect to experiments. This somehow large discrepancy in the lattice constant is also

found in other DFT-PBE calculations using diUerent codes and pseudopotentials [195].

We generated several models of the amorphous phase of InSb by cooling the liquid at 1000 K

down to 300 K with diUerent quenching times from 50 to 300 ps at Vxed density. The amor-

phous models were then equilibrated at 300 K for at least 20 ps. The quenching protocol

adopted for the model labelled MD-L1 is reported in Figure 3.1. This scheme has been al-

te
m

pe
ra

tu
re

 [K
]

time [ps]

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200  250

Figure 3.1.: Evolution of the temperature during the quench of a 216-atom model of amor-
phous InSb (MD-L1). The system has been cooled down from 1000 to 300 K in 225 ps through
molecular dynamics simulations. PBE exchange and correlation functional and a DZVP basis
set have been used.

ready adopted in several other works on phase change alloys giving good results [71–73, 196–

200]. We used a cubic 216-atom cell. Due to the experimental uncertainty on the density of

the amorphous phase, the models were generated at the crystalline density of 0.0294 at./Å3

(5.775 g/cm3) as already done in other classical molecular dynamics simulations [187, 188].

The resulting total energies and pressures of the amorphous models are collected in Table 3.1.

Models MD-S1−MD-S4 are rapidly quenched, models MD-L1 and MD-L2 are quenched more

slowly. Model MD-SZ is generated with an incomplete basis set and it will be discussed later

on. Model ISA-V is generated with the ISA method (see Section 2.6) by Vtting the experimental

pair correlation functions discussed later on. The structures of models MD-S1−S4 and MD-L1,

MD-L2 are all very similar. We thus discuss here model MD-L2 which has the lowest energy.
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a-InSb models - PBE functional

model quench. time [ps or nMC] energy [eV] pressure [GPa]

MD-S1 50 5.394 -0.83
MD-S2 75 5.708 -0.74
MD-S3 90 5.687 -0.82
MD-S4 130 4.557 -0.46
MD-L1 225 5.263 -0.67
MD-L2 350 0.000 -0.87
MD-SZ 350 2.552 0.67
ISA-V 10000 1.548 0.30

Table 3.1.: Total DFT-PBE energy (216 atoms) and pressure of the relaxed structure at 0 K
of diUerent a-InSb models. MD-Sx and MD-Lx models were generated by quenching from the
melt (1000 K) with a DZVP basis set, while MD-SZ with a SZV basis set [201]. ISA-V was,
instead generated with the inverse simulated annealing method at constant density. In the
last case the quenching time is expressed by the number of Monte-Carlo steps (nMC). The
reference of the energy was set to the energy of MD-L2.

Structural properties

The structural properties, calculated as averages on the 300 K trajectory of the melt-quenched

models of a-InSb, were studied by computing the total and partial pair correlation functions

(PCF) for the atomic species α and β deVned by

gαβ(r) =
1

Nαρβ

〈

∑
i∈α

∑
j∈β

δ(r +Ri−R j)
〉

(3.1)

where Nα is the number of atoms of species α, ρβ the density of atoms of species β, Ri and

R j the positions of the i-th and j-th atom, respectively and δ is the Dirac delta function. The

total pair correlation function can be obtained from equation (3.1):

g(r) = ∑
αβ

NαNβ

N 2 gαβ (3.2)

where Nα and Nβ are the number of atoms of species α and β and N is the total number of

atoms of the system. The partial coordination numbers for the pair of atomic species α and β
were obtained from the integration of the partial pair correlation functions as

nαβ =
∫ rcuto f f

0
gαβ(r)ρβ4πr2dr (3.3)
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where rcuto f f corresponds to the Vrst minimum position of the partial gαβ(r) and ρβ is the

density of atoms of species β. The total coordination number for species α is deVned as

nα = ∑
β

Nβ

N
nαβ. (3.4)

The plot of the total and partial PCF of Figure 3.2 shows the presence of a sizable number of

homopolar In-In and Sb-Sb bonds with a particularly broaden Vrst peak for the In-In partial

PCF. The In-Sb correlation function is also very broad. The total PCF of MD-L2 shows large
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Figure 3.2.: Total and partial correlation functions of a 216-atom model of a-InSb (MD-L2)
generated with the PBE functional by quenching from the melt in 350 ps (a). The dashed
vertical lines indicate the bonding cut-oU distances used in the other structural analysis which
are 3.30 Å, 3.25 Å and 3.50 Å for In-In, Sb-Sb and In-Sb pairs, respectively. The data were
obtained by averaging over a 30 ps long trajectory at 300 K. A comparison with the total
experimental g(r) [185] is provided in panel (b).

discrepancy with respect to the experimental data reported in Figure 3.2b. The Vrst peak po-

sition is shifted of about 0.15 Å. The Vrst minimum is less deVned and the second maximum

is smaller compared with the experiment, indicating a lesser degree of medium-range order

in the PBE model.
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To analyse the geometry of the local environments in the a-InSb models, we computed the

distribution of the bond angles deVned by

P(θ) =
1

Ntot

Ntot

∑
i=1

Ntot

∑
k, j>k

δ(θ−θ jik) (3.5)

where Ntot is the total number of bonds in the structure and θ jik the bond angle that the

i-th atom forms with its nearest neighbours j and k. Two atoms are considered chemically

bound if their interatomic distance is smaller than a given cut-oU. The mean bonding cut-

oU distance for each pair of atomic species is usually obtained from the position of the Vrst

minimum of the partial pair correlation function. Since the Vrst minima in the PCF are not

well deVned, the coordination numbers were computed by adjusting the cut-oU distances in

order to obtain a small fraction of zero- and over-coordinated atoms. The results are shown in

the inset of Figure 3.3 reporting the distribution of coordination numbers calculated with cut-

oU distances of 3.30 Å, 3.25 Å and 3.50 Å for In-In, Sb-Sb and In-Sb pair, respectively. The total
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Figure 3.3.: Calculated bond angles distribution for the MD-L2 model of a-InSb obtained
with the PBE functional. The total distribution (continuous grey line) was also resolved into
the contributions from In (violet dashed line) and Sb species (blue dot-dashed line). The inset
shows the distribution of the coordination numbers.
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and partial P(θ) in Figure 3.3 show that, although the distribution for In is peaked at typical

tetrahedral angles of∼ 110◦, typical bond angle of tetrahedral structures (see Figure 1.15), the
curve is very broad and presents a shoulder at ∼ 90◦ indicating the presence of In atoms in

an octahedral-like geometry (see Figure 1.15). Sb atoms are clearly mostly in an octahedral-

like coordination with bond angles of about 90◦ and 180◦. The disagreement between the

theoretical and experimental PCF (Figure 3.2b) suggest that the topology of the amorphous

network resulting from model MD-L2 might diUer from the real one [185].

Accidentally, we obtained a good agreement with experimental data by generating a model

with an ab-initio MD quench 350 ps long using the PBE functional and a minimal single-

zeta-valence (SZV) basis set (MD-SZ in Table 3.1) [201]. The system was initially quenched at

the crystalline density, then the equation of state was calculated by relaxing the amorphous

structure for diUerent cell volumes at 0 K. The energy-volume E−V points were Vtted with

a Murnaghan function deVned by

E(V) = E0+
B0

B′0
V

[

(V0/V)B′0

B′0−1
+1

]

− B0V0

B′0−1
(3.6)

where E0 and V0 are the equilibrium energy and the equilibrium volume, respectively, B0 is

the bulk modulus and B′0 is the Vrst derivative of the bulk modulus with respect to the equi-

librium pressure A theoretical density of 0.0286 at./Å3 (5.61 g/cm3) was found. The misVt of

about 8 % between the experimental density of a-InSb of Ref. [186] and that of our optimized

amorphous model is not surprising if we consider that the theoretical DFT-PBE equilibrium

density of the crystal is 6.6 % lower than the experimental value (see Appendix A.1). In order

to compare this structure with the recent EXAFS data [186], the amorphous model at the den-

sity of 5.78 g/cm3 was compressed up to the experimental density of 6.1 g/cm3 by isotropically

shrinking the simulation cell in a few steps. This is valid under the assumption that the misVt

with experiments in the density is due to an error in the bond length and not to a diUerence

in the topology of the amorphous network. Our model scaled at the experimental density of

6.1 g/cm3 is subject to a pressure of 1.2 GPa with a maximum oU-diagonal component of the

stress tensor of 0.13 GPa and a maximum anisotropy in the diagonal components of 0.26 GPa.

The model at the new density was further equilibrated at 300 K.

By comparing the structural properties of the compressed and uncompressed model, it can be

seen that the structure of the system is quite independent on the density change of about 5 %.

Sharp and well deVned Vrst peaks were found in the partial and total pair correlation func-

tions (Figure 3.4) and the bond angle distributions (Figure 3.5) clearly indicate a tetrahedral

coordination for both In and Sb. This has to be contrasted with the structure of model MD-L2

which is mostly octahedral.

This model generated with the minimal SZ basis set and discussed in our work of Ref. [201]

was initially considered the best one since it reproduces the experiments and, once relaxed
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Figure 3.4.: (a) Total and partial correlation functions of a 216-atom model of a-InSb (MD-SZ)
generated with the PBE functional by quenching from the melt in 350 ps with a single-zeta-
valence basis set (a). The model at the crystalline density of 5.78 g/cm3 has been also rescaled
to the experimental density of 6.1 g/cm3 [186] and re-equilibrated at 300 K. Dashed vertical
lines indicate the bonding cut-oU distances used in the other structural analysis, being 3.20 Å,
3.10 Å and 3.30 Å for In-In, Sb-Sb and In-Sb pairs, respectively. The data were obtained by
averaging over a 20 ps long trajectory at 300 K. A comparison with the total experimental
g(r) [185] is provided in panel (b).

with a DZVP basis set, it showed the lowest energy. However, further MD simulations with

long quenching time (∼ 300ps) and a more accurate basis set (DZVP) allowed us to obtain a

model (MD-L2) with lower energy but octahedrally coordinated (Table 3.1).

In attempting to obtain a structure that Vts the experimental data by using the accurate

DZVP basis set, we further generated models of the amorphous phase by imposing a con-

straint on the PCF forcing the system to reproduce the experimental pair correlation func-

tions. Two diUerent models with 216 atoms in a cubic cell were then generated with the

inverse simulation annealing (ISA) method discussed in Section 2.6 at the Vxed crystalline

density (ISA-V) or at constant zero pressure (ISA-P) to Vnd the theoretical equilibrium den-
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Figure 3.5.: Calculated bond angles distribution for the MD-SZ model of a-InSb rescaled at
the experimental density of 6.1 g/cm3 [186] obtained with the PBE functional and a single-
zeta-valence basis set. The total distribution (continuous grey line) was also resolved into the
contributions from In (violet dashed line) and Sb species (blue dot-dashed line). The inset
shows the distribution of the coordination numbers.

sity. In this latter model, van der Waals interactions according to Grimme [202] were also

included to better reproduce the equilibrium density. Long range van der Waals interactions

are in fact non included in GGA exchange and correlation functionals such as PBE or BLYP

ones. A factor wg of 1.0 eV·Å−4 was used to weight the contribution of the experimental g(r)
to the energy (see equation (2.30)). Liquid InSb was initially equilibrated at 1000 K for 1000

Monte-Carlo (MC) steps, then the models were quenched from 1000 to 300 K in 8000 MC

steps linearly lowering the temperature as a function of the number of MC steps. A more

rapid quenching form 300 to 5 K followed to reach near zero temperature and the structures

were then equilibrated at 300 K for 25 ps. At this last step the constraint on the PCF was re-

moved. Figure 3.6 reports the evolution of the potential energy, the density and the pressure

during the quenching of the model generated at constant pressure, ISA-P. At the end of the

simulation, a density of 0.0289 at./Å3 (5.679 g/cm3) was reached. This value is lower than the

crystal density, in contrast with EXAFS measurements [186] that predict an increase of the
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Figure 3.6.: Evolution of the potential energy U , density ρ and pressure P during the ISA
quenching of a-InSb at constant pressure as a function of quenching “time” expressed by the
number of Monte-Carlo steps nMC.

density in the amorphous with respect to the crystal, but it is in agreement with an older

work in Ref. [185]. The resulting density is similar to that obtained from the Murnaghan Vt of

the energy-volume points calculated for the model generated with SZV basis set.

Figure 3.7 shows the pair correlation functions of the ISA-P model just after the ISA quench-

ing with the constraint on PCF and after an equilibration at 300 K without the constraint. A

very good agreement with experiments was obtained for PCFs calculated directly after the

ISA quenching before the constraint were removed. After removing the constraint and equi-
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Figure 3.7.: Total pair correlation function of the ISA-P a-InSb model directly after the ISA
quench with constraint on g(r) and after equilibration at 300 K without constraint on g(r),
compared with the experimental g(r) [185].

librating the amorphous at 300 K, the PCF slightly changes in the direction of the PCF found

by MD quench simulations.

The comparison between PCFs of ISA-P and ISA-V models obtained by averaging on a tra-

jectory at 300 K where the constraint on the PCF was removed is shown in Figure 3.8. Again

a large amount of homopolar In-In and Sb-Sb bonds is present. However, the Vrst peak of

gInIn(r) and gInSb(r) are more sharp and well deVned with respect to the structure of model

MD-L2, revealing a higher degree of short-range order. The comparison with the experimental

data (Figure 3.8b) shows a better agreement with respect to the previous models without the

constraint on the PCF. The calculated bond angles distributions (Figure 3.9) show a tetrahe-

dral local geometry for both In and Sb atoms displaying less broad distributions with respect

to the DZVP-MD-models. The structure of these two models obtained with the ISA method is

close to that of MD-SZ model and represents a reliable description of amorphous InSb. Despite

the fact that these models Vt the experimental PCF of a-InSb, they show a higher energy with

respect to the octahedral-like MD-L2 model generated through standard MD. Thus, a mostly

tetrahedral structure does not seem to be reachable by quenching from the melt within DFT-

PBE with an accurate basis set and without any external constraint. These results indicate that
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Figure 3.8.: (a) Total and partial pair correlation functions of the 216-atoms models of a-InSb
generated with the PBE functional by quenching with the ISA method at Vxed crystalline
density 0.0294 atom/Å3 (ISA-V) and at constant pressure (ISA-P). The dashed vertical lines
indicate the bonding cut-oU distances used in the other structural analysis, being 3.30 Å,
3.25 Å and 3.50 Å for In-In, Sb-Sb and In-Sb pairs, respectively. The data were obtained by
averaging over a 20 ps long trajectory at 300 K. A comparison with the total experimental
g(r) [185] is provided in panel (b).

the most stable structure obtained with the PBE functional is mainly octahedral-like. Actually

it is known experimentally that a-InSb crystallizes in a cubic rocksalt phase under moderate

pressure of 1-1.3 GPa [203] which would correspond to a density increase of only 4 % by as-

suming a crystalline-like bulk modulus of 35 GPa [201]. It is therefore conceivable that a close

competition arises between octahedral-like and tetrahedral-like local geometries and that PBE

functional seems to fail in properly describing the energy hierarchy of these two structures.

We then investigated whether another functional, the BLYP functional, is able to better repro-

duce the experimental data as discussed in the next section.
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Figure 3.9.: Calculated bond angles distribution for the ISA-P model of a-InSb generated
with the PBE functional. The total distribution (continuous grey line) is resolved into the
contributions from In (violet dashed line) and Sb species (blue dot-dashed line).

3.1.2. a-InSb with the BLYP functional

Due to the unsatisfactory agreement between theory and experiment for a-InSb gener-

ated with the PBE functional, we performed ab-initio MD simulations with the BLYP [152]

exchange and correlation functional that was shown to better describe other chalcogenide

materials like liquid selenides [204–206].

Computational details

GTH-BLYP pseudopotentials were previously tested on the zincblende and the rocksalt

phases of InSb (see Appendix A.2) and a better agreement with the experiments has been

obtained for the equilibrium lattice parameter, with respect to PBE calculations. The lattice

parameter of the zincblende crystal is, in fact, overestimated by only 1.5 %.

The Kohn-Sham orbitals were expanded in a Triple-Zeta-Valence plus Polarization (TZVP)

Gaussian-type basis set [192]. The equilibrium density of the system was Vrst obtained by

performing an ISA quenching at constant zero pressure with BLYP functional and a DZVP

basis set. The van der Waals interactions according to Grimme [202] were included. A con-

straint on the pair correlation functions was also added to Vt the experimental data. This
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Figure 3.10.: Evolution of the temperature during the MD quench of a 216-atom model of
InSb at Vxed density (5.355 g/cm3) with the BLYP functional and a TZVP basis set.

simulation assigned a density of 0.0273 atoms/Å3 (5.355 g/cm3) which is lower than the ex-

perimental data (5.66 g/cm3 [185] or 6.1 g/cm3) and lower than the PBE density (5.61 g/cm3)

calculated above. However this diUerence is probably due to the fact that the samples analysed

in Refs. [185, 186] are as-deposited amorphous InSb, while in our case the amorphous phase

was obtained by quenching from the melt. In fact, the structural properties of the amorphous

chalcogenides depend on the preparation method [76]. As discussed in Section 1.2.1 GeSbTe

alloys for instance have a larger fraction of tetrahedra when the amorphous phase is deposited

as a thin Vlm with respect to the glass generated by quenching from the melt [76].

An amorphous 216-atom model was then generated at the Vxed density as assigned by a stan-

dard MD quenching from the melt in about 100 ps from 1000 to 300 K (Figure 3.10).

Structural properties

The structural properties of the BLYP model generated by the MD quenching from the melt

were investigated by averaging on a trajectory at 300 K 10 ps long. The pair correlation func-

tions (Figure 3.11) are sharper and less broad with respect to previous MD melt-quenched

models generated with PBE functional (Figure 3.2). The agreement with experiments is good

for what concerns the position of Vrst maximum and Vrst minimum of the total PCF (Fig-

ure 3.11b). We remark that no constraint on the structure have been applied in this case. The

model shows again a sizable fraction (26 %) of homopolar In-In and Sb-Sb pairs, as highlighted

also by the partial average coordination numbers in Table 3.2a and by the distribution of the

diUerent bond types in Table 3.2b. The partial PCF were integrated up to a cut-oU distance

shown in Figure 3.11. The distribution of coordination numbers resolved for diUerent atomic
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Figure 3.11.: (a) Total and partial correlation functions of a 216-atom model of a-InSb gener-
ated with the BLYP functional by quenching from the melt in 100 ps. The dashed vertical lines
indicate the bonding cut-oU distances used in the other structural analysis which are 3.20 Å,
3.20 Å and 3.30 Å for In-In, Sb-Sb and In-Sb pairs, respectively. The data were obtained by
averaging over a 10 ps long trajectory at 300 K. A comparison with the total experimental
g(r) [185] is provided in panel (b).

Average coordination numbers

with In with Sb total

In 1.01 2.82 3.83
Sb 2.82 0.95 3.78

(a)

Types of bonds (%)

with In with Sb

In 13.2 74.2
Sb 12.6

(b)

Table 3.2.: (a) Partial average coordination numbers and (b) percentage of the diUerent types
of bonds in the BLYP a-InSb model calculated by using the cut-oU distances shown in Fig-
ure 3.11.

species (Figure 3.12) show that both In and Sb atoms are mainly four-fold coordinated, consis-

tently with a tetrahedral bonding geometry, while a minor fraction of three-fold coordinated

atoms (about 20 %) is present.
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Figure 3.12.: Distribution of the coordination numbers of the a-InSb model obtained from
MD quench and the BLYP functional. The contributions from the diUerent atom pairs are
indicated by diUerent colours.

The bond angles distributions (Figure 3.13) provide information on the bonding geometry.

The total distribution and the partial distribution of both In and Sb are peaked at about the

tetrahedral angle of 110◦. By further resolving the bond angle distributions for diUerent co-

ordination numbers and diUerent environments (Figure 3.14), it can be noticed that three-fold

coordinated Sb atoms present bond angles smaller than the typical tetrahedral bond angle of

110◦ and the peak of the distribution is closer to values typical of a defective octahedral-like

environment (about 90◦). The type of bonds also slightly inWuences the bond angles: while

heteropolar triplets as SbInSb and InSbIn have distributions peaked at exactly 110◦, In and Sb

atoms with homopolar bonds show broader bond angle distributions. No signatures of defec-

tive octahedral-like environments for four-fold coordinated atoms with 180◦ bond angles are

present (cf. Figure 1.15c). The statistics of the diUerent environments present in the structure

is listed in Table 3.3. Five-fold and four-fold coordinated In atoms present environments with

a high indium content, while four-fold and particularly three-fold coordinated Sb atoms dis-

play a high fraction of homopolar bonds; Sb3 environments are also present for Sb atoms.

In order to quantify the fraction of tetrahedra for In and Sb atoms, we used the order param-
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Figure 3.13.: Bond angles distribution for the model of a-InSb obtained with the BLYP func-
tional. The total distribution (continuous grey line) is resolved into the contributions from In
(violet dashed line) and Sb species (blue dot-dashed line).
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Local environments

2 3 4 5
In: 1.9% 13.0% 79.6% 5.6%

InSb: 1% InSb2: 9.3% InSb3: 34.3% In3Sb2: 4.6%
SbSb: 1% Sb3: 2.7% Sb4: 25.9% In2Sb3: 1.0%

In2Sb: 1.0% In2Sb2: 14.8%
In3Sb: 4.6%

Sb: − 24.1% 72.2% 3.7%

In2Sb: 9.3% In3Sb: 38.9% In4Sb: 1.9%
InSb2: 7.4% In4: 20.4% In5: 1.9%
In3: 5.6% In2Sb2: 13.0%
Sb3: 1.9%

Table 3.3.: Statistics of In and Sb coordination environments for atoms with diUerent co-
ordination numbers given in the Vrst line for the a-InSb model generated with the BLYP
functional. The data were obtained for the relaxed conVguration at the BLYP-DFT level.

eter q introduced by De Benedetti and Errington [207] and deVned by

q= 1− 3
8 ∑

i>k

(
1
3
+cosθi jk

)2

(3.7)

where the sum runs over the pairs of atoms bonded to a central atom j and forming a bond

angle θi jk . This local order parameter assumes diUerent values for the diUerent bonding ge-

ometry as:

q= 0: ideal octahedral (six-fold coordinated);

q= 1
3: Vve-fold coordinated defective octahedral-like;

q= 5
8: four-fold coordinated defective octahedral-like;

q= 7
8: three-fold coordinated defective octahedral-like;

q= 31
32: three-fold coordinated planar;

q= 1: tetrahedral.

Figure 3.15 reports the distribution of the q parameter for each atomic species resolved for

diUerent coordination numbers. It can be seen that the overwhelming majority of the four-

fold coordinated In atoms is in a tetrahedral bonding geometry. Four-fold coordinated Sb
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Figure 3.15.: Distribution of the local order parameter q for tetrahedricity (see text) for the
model of amorphous InSb obtained from MD quenching with the BLYP functional. The dis-
tributions for In, Sb and Te atomic species are resolved for diUerent coordination numbers.
Vertical lines indicate the values of q for selected ideal geometries. The distributions for four-
fold coordinated In and Sb atoms are further resolved for atoms with and without homopolar
bonds (lower panels).

atoms are also mostly tetrahedral but with larger distortion.

The eUects of homopolar bonds on the bonding geometry can be analysed by resolving the

q distribution for four-fold coordinated atoms into the contribution of atoms which form or

not form homopolar bonds (Figure 3.15, lower panels). In the case of In, the presence of In-In

bonds do not inWuence the bonding geometry. For Sb, instead, the presence of Sb-Sb bonds

slightly shifts the peak of the q parameter distribution towards lower values with respect to

the ideal tetrahedral coordination leading to more distorted bonding geometries. To estimate

the concentration of tetrahedral structures, the q distribution of the four-fold coordinated

In and Sb atoms has been integrated in the range 0.8− 1.0. This method has already been

applied to other Ge and In based phase change alloys [71, 199, 200] giving accurate results.

The reliability of the integration range has also been checked for the InSbTe system as it will

be disscussed later in Section 3.2.1.

A percentage of about 68 % (74 % in the relaxed structure) of tetrahedral In atoms and of

about 52 % (61 % in the relaxed structure) of tetrahedral Sb atoms was found, conVrming the

tetrahedral character of the bonding network of a-InSb. Moreover, all the In tetrahedra shares
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at least one corner with other tetrahedra and, among them, the 13 % of the In tetrahedra are

edge-sharing.

Concerning three-fold coordinated atoms, Sb atoms are in a pyramidal geometry with bond

angles of about 90◦ but also in a defective tetrahedral-like geometry with bond angles of 110◦

(for which q is equal to one).

Three-fold coordinated In atoms present, instead, a planar geometry with bond angles of

about 120◦ corresponding to an sp2 hybridization. To discriminate between pyramidal and

planar environments we resort to the analysis of the Wannier functions (WFs) since the q
values for these two geometries are too close.

The WFs are the periodic version of the Boys orbitals obtained by the unitary transformation
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Figure 3.16.: Pair correlation functions g(r) of three-fold coordinated In atoms (upper panel)
and three-fold coordinated Sb atoms (lower panel) with the centers of the Wannier functions
in the a-InSb model obtained with the BLYP functional. The dashed line is the running integral
of 4πr2g(r)ρ where ρ is the density of the Wannier centers (right scale).

of the occupied KS orbitals that minimizes the quadratic spread [208–210]. An In atom with

an sp2 hybridization makes three covalent bonds giving rise to three WFs centered close to

the middle of the bonds. In the case of a pyramidal conVguration only the p valence electrons

take part in the bonding. Thus, a lone pair remains close to the In atom in a s-type orbital and
a WF with spherical shape centered on the atom can be found. As a consequence, sp2 and not

hybridized In atoms can be distinguished on the basis of the presence of an s-type WF close

to the central atom. To estimate the fraction of not hybridized In atoms, we computed the pair

correlation function between three-fold coordinated In atoms (13 % of the total number of In
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Figure 3.17.: Pair correlation functions g(r) of four-fold coordinated In atoms (upper panel)
and four-fold coordinated Sb atoms (lower panel) with the centers of theWannier functions in
the a-InSb model obtained with the BLYP functional. The dashed line is the running integral
of 4πr2g(r)ρ where ρ is the density of the Wannier centers (right scale).

atoms) and the centers of the WFs of the system (Figure 3.16, upper panel). By integrating

the curve up to the position of the Vrst minimum (0.75 Å) one obtains a fraction of about

2 % of In atoms in pyramidal conVgurations. The remaining 11 % of three-fold coordinated In

are sp2 hybridized as also checked by visual inspection. The same procedure can be applied

to antimony (Figure 3.16, lower panel). In this case, all the three-fold coordinated Sb atoms

(24 %) have a pyramidal bonding geometry.

The absence of an s-typeWF centered on a central atom can also identify tetrahedral four-fold

coordinated atoms with sp3 hybridization. Atoms that do not hybridize form p-type σ-bonds
in an octahedral-like conVguration keeping the s-type lone pair unshared. By calculating the

pair correlation functions between four-fold coordinated atoms and the centers of the WFs

(Figure 3.17) and integrating up to a cut-oU distance of 0.7 Å, a fraction of 80 % of tetrahedral In

atoms and of 67 % of Sb atoms was found, in rather good agreement with the previous estimate

from the q parameter (74 % and 61 %, respectively). The CPMD code [211] was used for the

WFs calculations. The main types of local environments in a-InSb are shown in Figure 3.18

together with the isosurfaces of the WFs.

The medium-range order a-InSb was analysed by computing the ring distribution accord-

ing to Ref. [212]. The results are shown in Figure 3.19 and the statistics of the diUerent types

of rings is reported in Table 3.4. As typical of mostly tetrahedral networks, many Vve-, six-
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(a) (b) (c) (d)

Figure 3.18.: Isosurfaces of Wannier functions for (a) three-fold coordinated planar sp2 In,
(b) tetrahedral In, (c) three-fold coordinated Sb in a pyramidal-like bonding geometry and
(d) four-fold coordinated Sb in a tetrahedral environment. Atoms of In are depicted by violet
spheres and Sb by cyan spheres. Isosurfaces with diUerent colours (red and blue) have diUerent
sign. The Wannier function with spherical isosurface in (c) is an s-like lone pair.

and seven-membered rings are present. In particular, six-membered rings of type ABABAB,

where A stands for In and B for Sb, are the building blocks of the zincblende crystal. However,

the most abundant six-membered rings are of type AABABB which contains homopolar In-In

and Sb-Sb bonds. Among the six-membered rings there are structures with a high In content,

in particular InInInInInSb and InInInInSbSb rings. The majority of the four-membered rings

are of ABAB type and about one half is formed by edge-sharing tetrahedra.

In summary, the model of a-InSb generated with the BLYP functional has a mostly tetrahe-

dral network and reproduces well the experimental PCF. The tetrahedral bonding geometry
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Figure 3.19.: Distribution of the ring lengths in the a-InSb model generated with the BLYP
functional computed according to Ref. [212].
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Rings statistics

4-membered

InSbInSb 55% 6 ABAB
InInSbSb 27% 3 AABB
InInInSb 9% 1 AAAB
InSbSbSb 9% 1 ABBB

5-membered

InSbInSbSb 51% 43 ABABB
InInSbInSb 38% 32 AABAB
InInSbSbSb 5% 4 AABBB
InSbSbSbSb 4% 3 ABBBB
InInInSbSb 2% 2 AAABB

6-membered

InInSbInSbSb 25% 23 AABABB
InSbInSbInSb 24% 22 ABABAB
InInInSbInSb 16% 15 AAABAB
InSbInSbSbSb 11% 10 ABABBB
InInSbInInSb 9% 8 AABAAB
InInInInInSb 5% 5 AAAAAB
InSbSbInSbSb 4% 4 ABBABB
InInInSbSbSb 3% 3 AAABBB
InInInInSbSb 1% 1 AAAABB
InSbSbSbSbSb 1% 1 ABBBBB

Table 3.4.: Abundance of the diUerent types of rings of diUerent size in the 216-atom model
of a-InSb generated through an MD quench with the BLYP functional. The absolute number
of rings is also given in the second column. The type of the rings is indicating by A and B
letters where A stands for In and B for Sb.

is favoured with respect to the octahedral-like geometry by the BLYP functional. In fact, once

relaxed with the BLYP functional, the mostly octahedral MD-L2 model generated with the

PBE functional is higher in energy by about 41 meV/atom with respect to the tetrahedral-like

model generated with the BLYP. The reverse is true if we optimize with the PBE functional

the tetrahedral model which becomes 29 meV/atom higher in energy than MD-L2 model at

PBE level.

The eUect of the van der Waals interactions on the topology of the structure was also investi-

gated by generating an amorphous model of InSb by quenching from the melt with BLYP-MD

simulations and by including van der Waals interactions according to Grimme [202] (see Ap-

pendix A.3). No substantial diUerences can be found with respect to the BLYP model without

van der Waals and the fraction of tetrahedra is about 2 % lower for In atoms and about 2 %

higher for Sb atoms in the model generated with van der Waals. These results points to a de-

Vciency of the PBE exchange-correlation functional when dealing with the close competition

in energy between tetrahedral-like and octahedral-like conVgurations, which is probably also

responsible for the tetrahedral-to-octahedral transition observed experimentally in a-InSb un-

der moderate pressure [203].
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Electronic properties

In order to study the electronic properties of the system, we used the HSE06 hybrid func-

tional [154] which better reproduces the band gap. Since the HSE06 functional is built on the

PBE functional, the structure obtained with the BLYP functional was Vrstly relaxed with the

PBE functional and then the electronic structure was calculated with the HSE06 functional at

the PBE geometry. We also computed the electronic density of states (DOS) with the BLYP

exchange-correlation functional on the BLYP-relaxed structure and the PBE DOS on the PBE-

relaxed structure. The DOSs were obtained from the Kohn-Sham (KS) energies at the Γ-point
broadened with Gaussian functions of 27 meV width. The comparisons are shown in Fig-
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Figure 3.20.: a) Electronic density of states for the 216-atom model of a-InSb generated with
the BLYP functional. The DOS is calculated either the BLYP (continuous black line) or with
the PBE functional (dashed red line). The DOSs were computed on structures relaxed with the
BLYP functional and with the PBE functional, respectively. The KS energies are broadened by
Gaussian functions of 27 meV width. The DOSs are aligned with respect to the energy of the
highest occupied orbital corresponding to zero. b) A zooming of the DOS of panel a) close to
the band gap.

ure 3.20 and do not evidence important diUerences in the electronic structure. The band gap

is very small, if any, due to the well known deVciency of the GGA functional in reproducing

band gaps.

The DOS was then calculated with the HSE06 functional (Figure 3.21) which turns the a-InSb

model into a semiconductor with a small band gap of about 0.27 eV.

To quantify the localization properties of individual KS states, we have computed the Inverse

Participation Ratio (IPR), which is deVned for the i-th KS state by

IPRi =
∑ j c

4
i j

(∑ j c
2
i j )

2
(3.8)
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Figure 3.21.: a) Electronic density of states (HSE hybrid functional [154], see text) of the a-
InSb model, generated with the BLYP functional. The KS energies are broadened by Gaussian
functions of 27 meV width. The zero of energy corresponds to the top of the valence band.
The Inverse Participation Ratio (IPR) is also given (blue spikes, see text for deVnition). b)
A zooming of the DOS of panel a) close to the band gap. c) Projections on atomic s and p
pseudo wavefunctions of the DOS of panel a). The contribution from d pseudo wavefunctions
is negligible on the scale of the Vgure and is omitted.

where j runs over the Gaussian-Type Orbitals (GTOs) of the basis set, while ci j are the ex-

pansion coeXcients of the i-th KS state in GTOs. The higher the IPR value the higher is the

localization of the state. The IPR is also given in Figure 3.21 and apparently, no localized states

ascribed to defects can be found at the valence and conduction band edges nor in the band

gap.

To investigate the atomic oxidation state, we computed the Bader ionic charges from the to-

tal electronic charge density by using the scheme of Ref. [213]. To this aim we added to the

valence charge density the core charges localized on the atoms. The results reported in Fig-

ure 3.22 show a tail of the distribution towards zero due to the presence of homopolar bonds.

The two In atoms with the greater (+0.4 a.u.) and the lower (−0.1 a.u.) charge are bound to

each other, while positively charged Sb atoms are three-fold coordinated Sb atoms in InSb2 or

Sb3 environments. No charge defects are present in the model.
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Figure 3.22.: Bader ionic charges (atomic units) of the model of a-InSb generated with the
BLYP functional. Each point corresponds to an individual atom in the supercell.

Vibrational properties

Regarding the vibrational properties, the phonon frequencies of the amorphous model were

computed by diagonalizing the dynamical matrix obtained in turn from the variation of atomic

forces due to Vnite atomic displacements 0.0053 Å large. Only phonons with the periodicity

of our supercell (Γ-point phonons) were considered. The phonon density of states is shown

in Figure 3.23 for the model generated with the BLYP functional. In an amorphous material,

phonons display localization properties that depend on the frequency. To address this issue,

we have computed the inverse participation ratio (IPR) of the j-th vibrational mode deVned

as

IPR=
∑κ

∣
∣
∣

e( j,κ)√
Mκ

∣
∣
∣

4

(

∑κ
|e( j,κ)|2

Mκ

)2 , (3.9)

where e( j,κ) are phonon eigenvectors, while the sum over κ runs over the N atoms in the

unit cell with masses Mκ. According to this deVnition, the value of the IPR varies from 1/N
for a completely delocalized phonon, to one for a mode completely localized on a single atom.

The plot of the IPR in Figure 3.23 reveals the presence of phonons strongly localized on In

atoms above 160 cm−1.
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Figure 3.23.: Upper panel: phonon DOS of a-InSb and phonon IPR (blue spikes, left scale, see
text for deVnition) superimposed to the DOS. Lower panel: projections of the phonon DOS on
diUerent species (In and Sb).

Summary

In conclusion, Vrst principle simulations on the amorphous phase of InSb have shown that

the PBE functional is not able to reproduce the experimental data on the pair correlation func-

tion. The position of the Vrst maximum of the PCF is overestimated by about 5 % with respect

to experiments. This problem can be overcome by using the BLYP exchange-correlation func-

tional which gives an error on the position of the Vrst maximum of the PCF below 1 %. This

misVt arises because the octahedral-like structure seems to be too favoured with respect to a

tetrahedral one by using the PBE functional.

The structure of a-InSb emerged from the BLYP simulations is mostly tetrahedral with a siz-

able fraction of homopolar bonds.
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3.2. InSbTe alloys

The In3Sb1Te2 and In13Sb11Te3 ternary compounds were then analysed. Both these alloys

have a high crystallization temperature that makes them suitable to substitute GST in PCM

devices and in multi-bit memories.

The stoichiometric composition In3Sb1Te2 can be thought of as a pseudo-binary alloy of InSb

[183] and InTe [102] which both display tetrahedral environments in the crystalline phase

(Figure 1.27). This composition is interesting for PCM applications since it presents a crys-

talline phase with cubic rocksalt structure [98], metastable at 300 K. This phase can be ob-

tained by rapidly quenching from the melt avoiding phase separation. As opposed to the two

binaries InSb and InTe, the ternary In3Sb1Te2 crystal displays octahedral environments. Since

no experimental data are available on a-In3Sb1Te2, it is unclear whether the structure of the

amorphous phase might be similar to that of the two binary crystals showing tetrahedral envi-

ronments or to the structure of the ternary crystal with an octahedral-like bonding geometry.

The In13Sb11Te3 composition was also analysed being close to the alloys grown experimen-

tally by metal-organic chemical vapour deposition (MOCVD) by Fallica et al. [9] for which we

hope that structural data will be available in the near future.

We addressed the study of the amorphous structure of these compounds by DFT simulations

as described in the next section.

3.2.1. In3Sb1Te2

Computational details

Simulations with both PBE and BLYP exchange and correlation functionals have been car-

ried out to model the glassy phase of the ternary compound In3Sb1Te2. As already pointed out

for InSb, also in this case PBE-models are mainly octahedrally coordinated [214], while BLYP

functional predicts a much higher fraction of tetrahedral structures. Models of a-In3Sb1Te2

were generated by quenching from the melt. A 300-atoms cubic cell was quenched from 1000

to 300 K in 250-300 ps by means of DFT simulations with the CP2K code (see Section 2.5). The

quenching protocols are shown in Figure 3.24. The models were then equilibrated at 300 K

for about 30 ps. Norm-conserving GTH [158, 159] pseudopotentials with three, Vve and six

valence electrons for In, Sb and Te, respectively have been used. The Kohn-Sham orbitals

were expanded in a double-zeta-valence plus polarization (DZVP) Gaussian-type basis set

[192], while the charge density has been expanded in a plane-wave basis set with a cut-oU

of 100 Ry, Brillouin zone integration was restricted to the supercell Γ point. Since we had

no information on the density of the liquid and amorphous phases, we Vrst Vxed the den-

sity of the liquid to 0.0323 atoms/Å3 (6.448 g/cm3) which is about 7 % lower than the density

of 6.94 g/cm3 that can be assigned to the ideal rocksalt crystal with the experimental lattice

parameter of 6.126(1) Å [98]. A similar increase in density upon crystallization of the amor-
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Figure 3.24.: Evolution of the temperature during the quench of 300-atoms model of amor-
phous In3Sb1Te2 at high density (6.448 g/cm3) and at low density (5.75 g/cm3). PBE exchange
and correlation functional and a DZVP basis set have been used.

phous is found in phase change GeSbTe alloys [21]. There is, however, a large uncertainty in

our chosen density, as picnometric measurement of the density in the crystal gives 6.77 g/cm3

which suggests the presence of about 2 % of vacancies [98]. A Vrst model was thus gener-

ated at the estimated density of the liquid 6.448 g/cm3 and the density of the amorphous was

optimized by Vtting the energy-volume points with a Murnaghan function (3.6), obtaining a

value of 0.0288 atoms/Å3 (5.75 g/cm3). A second model was later generated at the Vxed den-

sity of (5.75 g/cm3) by quenching from the melt. This density is about 11 % lower than the

starting density of 6.448 g/cm3. However, an overestimation of the bond lengths using the

PBE functional is actually found in the Sb-containing amorphous compounds Ge2Sb2Te5 [71]

and Sb2Te3 [196], as well as in InSb, as discussed before. Therefore the starting density of

6.448 g/cm3 might be closer to the real density of the amorphous phase, that we do not know,

than the theoretical one.

A third model of amorphous In3Sb1Te2 was Vnally generated by quenching with the ISA

method from 1000 to 300 K in 10000 Monte-Carlo steps with the BLYP exchange and correla-

tion functional. As already done for the binary InSb system, the liquid was Vrstly equilibrated

at 1000 K in 1000 MC steps and then linearly quenched to 300 K in 8000 MC steps. A faster

quench from 300 to 5 K in 1000 MC steps followed to reach near zero temperature. The ISA

simulations (Figure 3.25) were performed at constant zero pressure by including the van der

Waals interactions according to Grimme [202] to better reproduce the equilibrium density.

At the end of the simulation, a density of 0.0278 atoms/Å3 (5.554 g/cm3) was found, which is
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Figure 3.25.: Evolution of the potential energy U , density ρ and pressure P during the ISA
quenching of a model of amorphous In3Sb1Te2 at constant pressure with the BLYP exchange
and correlation functional. These parameters are represented as function of quenching “time”
expressed by the number of Monte-Carlo steps nMC.

again lower than the PBE equilibrium density. The model was then equilibrated at the Vnal

Vxed density at 300 K for 20 ps. The model generated with ISA and the BLYP functional is

thus at the theoretical equilibrium density at zero pressure.

Structural properties

The pair correlation functions of the two PBE models of density 6.448 g/cm3 and 5.75 g/cm3

and of the BLYP model at density 5.554 g/cm3 are compared in Figure 3.26. The PBE model

at lower density presents sharper peaks in the total and partial PCFs and a higher degree of

medium-range order with respect to the PBE model at higher density. These features are even

more evident in the BLYP model at the lowest density where the second coordination shell

position is well deVned for all the atomic pairs. The In-In pair correlation function shows the

largest diUerences between the three structures. Two cut-oU distances were deVned for the

In-In bond on the basis of the position of the Vrst minimum, being 3.35 Å for the PBE model

at higher density and 3.10 Å for the PBE model at lower density and the BLYP model.
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Figure 3.26.: Total and partial pair correlation functions of the 300-atom models of a-
In3Sb1Te2 generated by quenching from the melt with ab-initio molecular dynamics simula-
tions. Data for (a) PBE models at the density of 6.448 g/cm3 (continuous line) and of 5.75 g/cm3

(dashed line) and for (b) the model generated at constant pressure with the BLYP functional
which yields an equilibrium density of 5.554 g/cm3 are reported. The vertical lines are the
cut-oU radii used to deVne the coordination numbers (3.35 or 3.10 Å, 3.30 Å, 3.40 Å, 3.25 Å,
3.20 Å and 3.20 Å for the In-In, In-Sb, In-Te, Sb-Te, Sb-Sb and Te-Te bonds, respectively). The
data were obtained by averaging over a 20 ps long trajectory at 300 K for the PBE models and
on a 10 ps long trajectory at 300 K for the BLYP model.

The average coordination numbers for diUerent pairs are obtained by integrating the partial

PCFs up to the bonding cut-oU distances. The results reported in Table 3.5, together with the

fraction of the diUerent types of bonds (Table 3.6) show the presence of very few Sb-Te pairs

against a great number of In-Sb and In-Te bonds, indicating that the amorphous phase can be

mostly seen as a mixture of the InSb and InTe binary systems. Sb-Te pairs can be considered

as “wrong bonds” as well as the homopolar pairs since in the rocksalt crystal Sb and Te atoms
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PBE - Average coordination numbers

with In with Sb with Te total

In 1.01 (0.37) 0.79 (0.68) 2.70 (2.28) 4.50 (3.32)
Sb 2.36 (2.03) 1.22 (1.31) 0.57 (0.30) 4.15 (3.64)
Te 4.04 (3.41) 0.29 (0.15) 0.01 (0.00) 4.34 (3.56)

BLYP - Average coordination numbers

with In with Sb with Te total

In 0.95 0.78 1.93 3.66
Sb 2.35 0.92 0.28 3.55
Te 2.89 0.14 0.00 3.04

Table 3.5.: Average coordination numbers for diUerent pairs of atoms computed from the
partial pair correlation functions of Figure 3.26 of a-In3Sb1Te2 obtained with the PBE func-
tional (left table) at higher (6.448 g/cm3) and, in parentheses, at lower density (5.75 g/cm3).
Results for the ISA-BLYP model (5.554 g/cm3) are reported on the right.

PBE - Types of bonds (%)

with In with Sb with Te

In 11.5 (5.3) 18.0 (19.6) 61.5 (65.9)
Sb 4.6 (6.3) 4.3 (2.9)
Te 0.0 (0.0)

BLYP - Types of bonds (%)

with In with Sb with Te

In 13.8 22.8 56.2
Sb 4.5 2.7
Te 0.0

Table 3.6.: Percentage of the diUerent type of bonds in the amorphous PBE models (left table)
of In3Sb1Te2 at high density (6.448 g/cm3) and, in parentheses, at lower density (5.75 g/cm3).
Results for the ISA-BLYP model at the density of 5.554 g/cm3 are reported on the right.

randomly occupy the same sublattice and do not form Sb-Te bonds. The Vrst peak of the pair

correlation functions is sharper in the models at lower density, especially for the Sb-Sb pair,

resulting in lower coordination numbers for all atoms.

The model at 5.75 g/cm3 density shows a reduction of homopolar In-In bonds and a smaller

number of Sb-Te bonds with respect to the high density model, while the BLYP functional

seems to slightly favour the presence of In-In and In-Sb bonds with respect to In-Te bonds.

The distribution of the diUerent types of bonds (Table 3.6) is overall very similar in the three

models. However, the average atomic coordination and the distribution of the coordination

numbers in Figure 3.27 are very diUerent. Many atoms are overcoordinated, in particular in

the denser model, with respect to the 8−N rule which states that an atomic species forms a

number of bonds equal to 8 minus the number of its valence electrons (s+ p). Antimony and

tellurium can display higher coordination numbers thanks to the formation of dative bonds

with In atoms. As it will be discussed later, this situation results in a defective-octahedral

coordination. The PBE models show broader distributions of the coordination numbers, es-

pecially for In atoms. In the BLYP model, instead, more than 80 % of In atoms are four-fold

coordinated, while about 3 % of indium is isolated with no nearest-neighbours. Antimony is

also prevalently four-fold coordinated. Overall, the Vrst coordination is much well deVned
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Figure 3.27.: Distribution of the coordination numbers of a-In3Sb1Te2 models obtained by
quenching from the melt at Vxed volume with the PBE functional at a density of 6.448 g/cm3

(left panel) and of 5.75 g/cm3 (central panel) and through ISA quench and BLYP functional
yielding a density of 5.554 g/cm3 (right panel). The contributions from the diUerent atom
pairs are indicated by diUerent colours.

with sharper minima in the PCF for the BLYP model.

Information on the local bonding geometry is provided by the bond angle distribution func-

tions P(θ) deVned by equation (3.5) (Figures 3.28 and 3.29), which highlight the structural

diUerences among the three models. The P(θ) distribution of the denser model has a bi-

modal shape with two peaks at about 90◦ and 180◦ which are typical of defective-octahedral

structures (Figure 1.15). The PBE model at lower density shows both tetrahedral and defec-

tive octahedral-like conVgurations. In fact, a bimodal shape of the P(θ) distribution can still

be distinguished with peaks at ∼ 90◦ and ∼ 180◦, but also In atoms with tetrahedral sp3

hybridization are present. The diUerence in bond angles corresponds to a diUerence in coor-

dination numbers as shown in Figure 3.28b by the distribution functions resolved for atoms

with diUerent coordination. Three- and Vve-fold coordinated In atoms form bond angles of

90◦, four-fold coordinated In atoms form bonds at about 100◦, in between the typical values

of octahedral and tetrahedral bond angles. Concerning Sb atoms, the majority is in a defective

octahedral environment, but a shoulder in the distribution of the four-fold coordinated Sb

atoms of the model at 5.75 g/cm3 can be see at about 110◦. The BLYP model, instead, is char-
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Figure 3.28.: Bond angle distribution functions resolved (a) for atomic species and (b) for
diUerent coordination numbers in a-In3Sb1Te2. Models were with the PBE functional at a
Vxed density of 6.448 g/cm3 (left panel) and of 5.75 g/cm3 (central panel) and through ISA
quench and BLYP functional at yielding a density of 5.554 g/cm3 (right panel).

acterized by bond angles of about 110◦ typical of a tetrahedral coordination. Only a small tail

towards high (∼ 180◦) bond angles is present for In atoms, indicating the presence of a very
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Figure 3.29.: Bond angle distribution functions resolved for diUerent triplets in a-In3Sb1Te2.
Models were obtained with the PBE functional at a Vxed density of 6.448 g/cm3 (left panels)
and of 5.75 g/cm3 (central panels) and through ISA quench and BLYP functional yielding a
density of 5.554 g/cm3 (right panels).

small fraction of octahedral-like conVgurations. Four-fold coordinated Sb atoms are mostly

tetrahedrally coordinated as well in the BLYP model.

By further resolving the distribution for diUerent types of atomic triples, it is possible to note

that in the BLYP model InInTe angles have a broad distribution, while InTeIn, InSbIn and

SbInTe triplets form angles of ∼ 110◦. InSbTe, SbSbTe and TeSbTe angles deviate from the

tetrahedral conVguration recalling the octahedral structures of Sb2Te3.

A list of the main types of local environments and their abundance is reported in Table 3.7 for

the three models. As the density decreases, the In content in the local environments of four-

fold coordinated In atoms increases. Homopolar Sb-Sb bonds are, instead, present in particular

in the PBE model at lower density (5.75 g/cm3) where a not negligible fraction of Sb3 and Sb4

environments for Sb atoms was found. The main types of local environment of each atomic

species in a-In3Sb1Te2 models, together with the isosurfaces of the Wannier functions are

reported in Figure 3.30.
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PBE - Local environments

1 2 3 4 5 6
In: - (5.3%) 1.3% (13.3%) 1.3% (18.0%) 38.7% (59.3%) 37.3% (4.0 %) 20.0% (-)

Te: - (4.7%) Te2: 1.3% (11.3%) Te3: - (12.7%) SbTe3: 8.7% (14.3%) In2Te3: 9.3% In3Te3: 3.3%
TeSb: - (2.0%) SbTe2: 1.3% (3.3%) Sb2Te2: 8.0% (8.0%) SbTe4: 8.0% (1.3 %) InSbTe4: 2.7%

InTe3: 6.7% (10.0%) InTe4: 4.7% In2Te4: 2.7%
InSbTe2: 5.3% (12.7%) InSbTe3: 3.3% SbTe5: 2.0%

Te4: 4.0% (6.7%) In3SbTe: 2.7% In2Sb2Te2: 2.0%
In2SbTe: 2.0% In2SbTe2: 2.7%

In2Te2: 2.0% (3.3%) InSb2Te2: 2.0%
InSb2Te: - (2.7%)

Sb: 22.0% (44.0%) 46.0% (46.0%) 22.0% (10.0%) 10.0% (-)

In2Sb: 6.0% (10.0%) In3Sb: 20.0% (12.0%) In3Sb2: 8.0% In4Sb2: 4.0%
InSbTe: 6.0% (2.0%) In2SbTe: 12.0% In4Sb: 6.0% (2.0%) In5Sb: 4.0%
InSb2: 4.0% (20.0%) In2Sb2: 6.0% (18.0%) In3Te2: 4.0% In4SbTe: 2.0%

Sb2Te: 4.0% InSb3: 4.0% In2SbTe2: 2.0% (2.0%)
SbTe2: 2.0% InSbTe2: 2.0% (4.0%) In3SbTe: 2.0% (2.0%)
Sb3: - (6.0%) In4: 2.0% (6.0%) InTe4: - (2.0%)
In2Te: - (4.0%) Sb4: - (2.0%) In5: - (2.0%)
In3: - (2.0%) In3Te: - (2.0%)

In2Te2: - (2.0%)

Te: - (5.0%) 15.0% (29.0%) 28.0% (52.0%) 44.0% (13.0%) 12.0% (-)

In2: - (4.0%) In3: 9.0% (25.0%) In4: 25.0% (41.0%) In5: 34.0% (12.0%) In6: 12.0% (-)
In2Sb: 4.0% (4.0%) In3Sb: 2.0% (11.0%) In4Sb: 9.0% (-)

InSb2: 2.0%

BLYP - Local environments

1 2 3 4 5
In: 2.7% 3.3% 5.3% 82.7% 2.0%

Te: 2.7% Te2: 2.7% InSbTe: 2.0% InSbTe2: 20.7%
InTe3: 16.0%
In2Te2: 11.3%
Sb2Te2: 9.3%
SbTe3: 8.0%
In2SbTe: 6.7%
InSb2Te: 4.7%
In3Te: 2.0%

Sb: 48.0% 52.0%

In2Sb: 22.0% In3Sb: 28.0%
InSbTe: 8.0% In2Sb2: 10.0%
In2Te: 6.0% In4: 6.0%
InSb2: 6.0% In3Te: 4.0%
In3: 4.0% In2Te2: 2.0%
InTe2: 2.0% In2SbTe: 2.0%

Te: 18.0% 61.0% 21.0%

In2: 15.0% In3: 54.0% In4: 19.0%
InSb: 2.0% In2Sb: 6.0% In3Sb: 2.0%

Table 3.7.: Statistics of In, Sb and Te coordination environments for atoms with diUerent
coordination numbers given in the Vrst line for a-In3Sb1Te2 models generated with the PBE
functional at Vxed density of 6.448 g/cm3 and of 5.75 g/cm3 (in parenthesis) and with ISA
quenching and BLYP functional yielding a density of 5.554 g/cm3. Only environments in a
fraction larger than 2 % are reported.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 3.30.: Isosurfaces of the Wannier functions for diUerent local environments in a-
In3Sb1Te2: three-fold coordinated In atom in (a) planar sp2 and (b) pyramidal bonding ge-
ometry, (c) four-fold coordinated In in a defective octahedral coordination, (d) tetrahedral In,
(e) three-fold coordinated pyramidal Sb, (f) defective-octahedral like four-fold coordinated
Sb, (g) tetrahedral Sb, (h) three-fold coordinated pyramidal Te and (i) distorted defective-
octahedral like four-fold coordinated Te. Atoms of In are depicted by violet spheres, Sb by
cyan spheres and Te by black spheres. Isosurfaces with diUerent colours have diUerent sign.
Wannier functions with spherical isosurfaces in the defective-octahedral conVgurations are
s-type lone pairs.

Atoms in an octahedral-like conVguration have an s-type WF on the central atom that cor-

responds to a lone pair. Three-fold coordinated In atoms in the BLYP model are mainly in

a planar conVguration (Figure 3.30a) with an sp2 hybridization and bond angles of ∼ 120◦,
while in the PBE models are mainly in a pyramidal geometry (Figure 3.30b) with bond angles

close to 90◦. To quantify the fraction of atoms in diUerent bonding geometries, the q or-

der parameter deVned by equation (3.7) was calculated for the three models. This parameter

can distinguish between octahedral and tetrahedral geometries as q is equal to 1 for a perfect

tetrahedral environment and equal to 0 for an ideal octahedron. The distribution of q, resolved
for diUerent atomic species and coordination numbers is reported in Figure 3.31. Three-fold

coordinated Te and Sb atoms are in a pyramidal conVguration with a geometry close to that

of a defective octahedron in the PBE models. In the BLYP model, these pyramidal structures
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Figure 3.31.: Distribution of the local order parameter q for tetrahedricity deVned by equa-
tion (3.7) for the models of a-In3Sb1Te2 obtained with PBE functional (a) and (b) and with
the BLYP functional (c). The order parameters for the In, Sb and Te species are resolved for
atoms with diUerent coordination numbers Nc. Vertical lines indicate the values of q for se-
lected ideal geometries of defective octahedra with diUerent coordination and tetrahedra. The
distribution is further resolved for four-fold coordinated In atoms with or without homopolar
bonds in the lower left panels.

are Watter and are more similar to a defective tetrahedron, rather than an octahedron. Four-

and Vve-fold coordinated Sb and Te atoms occupy sites with a defective-octahedral geom-

etry in the PBE models, but the very broad distribution for four-fold coordinated Sb atoms

indicates the presence of many distorted structures. In the BLYP model, instead, a fraction of

four-fold coordinated Sb is tetrahedral. Regarding In, there is again a prevalence of octahedral

structures in the PBE models, while tetrahedral In atoms are the overwhelming majority in
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the BLYP model. By resolving the q distribution of four-fold coordinated In atoms for atoms

with and without In-In homopolar bonds as shown in Figure 3.31, it can be noticed that In-In

bonds disfavour the tetrahedral geometry. For the model at 6.448 g/cm3, the q distribution

for four-fold coordinated In atoms is very broad and does not present a clear bimodal shape

making diXcult to disentangle the contribution of tetrahedra and octahedra. To identify the

tetrahedral sites of In at high density, we then proceeded as follows: we Vrst selected In atoms

with q > 0.8 which can be safely attributed to tetrahedra in GeSbTe alloys and in InGeTe2,

then among those we selected atoms that have all four bonds shorter than 3.2 Å. This choice

is dictated by the fact that in amorphous GeSbTe [71, 72, 74] and InGeTe2 [199] the defective

octahedra are made of three shorter and one or more considerably longer bond(s) in a 3+n
coordination as discussed in Section 1.2.1. On the other hand the In-Te bonds in InTe4 tetra-

hedra are always shorter than 3.2 Å in amorphous InGeTe2 [199] and In-Sb bond lengths in

InSb4 tetrahedra are also shorter than 3.2 Å in amorphous InSb [201]. The angle distribution
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Figure 3.32.: Angle distribution function for four-coordinated In atoms with the tetrahedral
order parameter q< 0.8 (continuous line) and q> 0.8 and all four bond length shorter than
3.2 Å (dot-dashed line) or with at least one bond longer than 3.2 Å (dashed line). The data
refer to the model at the density of 6.448 g/cm3.

function for In atoms with q > 0.8 is thus resolved for atoms with all bonds shorter than

3.2 Å and for atoms with one or more bonds longer in the model at high density (Figure 3.32).

Although the angle distribution for atoms with all short bonds is peaked closer to the tetra-

hedral angle of 109.8◦, also the very few (0.8 %) In atoms with a longer bond display bond

angles compatible with the tetrahedral geometry. The fraction of In atoms with q> 0.8 can
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thus be safely identiVed with tetrahedral In. The fraction of In atoms with q> 0.8 does not

change by reducing the In-Te cut-oU distance to 3.25 Å instead of 3.40 Å in the deVnition of

the coordination number from the very beginning.

The concentration of tetrahedral In atoms can thus be estimated by integrating the q distribu-

tion for four-coordinated atoms in the range 0.8−1which yields a fraction of tetrahedral In of

about 23 % (34 atoms among 150) at the density of 6.448 g/cm3, of about 47 % (71 atoms among

150) at the density of 5.75 g/cm3 and of about 77 % (116 atoms among 150) at 5.554 g/cm3. The

same procedure can be applied to Sb atoms giving a fraction of tetrahedral Sb atoms of about

10 % (5 atoms among 50) at the density of 6.448 g/cm3, of about 18 % (9 atoms among 50) at

the density of 5.75 g/cm3 and of about 45 % (23 atoms among 50) at the density of 5.554 g/cm3.

A further conVrmation of the fraction of tetrahedral In computed above is provided by the

analysis of the WFs. In fact, atoms in a defective octahedra are supposed to display a s-type
WF localized on the atom since the bonding is only p-type. The fraction of four-coordinated

atoms with a localized s-typeWF can be obtained [199] by integrating the correlation function

between four-fold coordinated In atoms and the center of WFs up to the Vrst minimum (0.6 Å)

shown in Figure 3.33a for the model at the density of 6.448 g/cm3. The average coordination
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Figure 3.33.: (a) Pair correlation function g(r) of four-fold coordinated In atoms with the
centers of the Wannier functions in the a-In3Sb1Te2 with density of 6.448 g/cm3. (b) Pair cor-
relation function of three-fold coordinated In atoms with the centers of theWannier functions
in the a-In3Sb1Te2 at the density of 5.554 g/cm3. The dashed line is the running integral of
4πr2g(r)ρ where ρ is the density of Wannier centers (right scale).

number of In atoms with the s-type localized WF gives the fraction of non-tetrahedral-like

atoms with coordination four. The remaining In can thus be assigned to a tetrahedral envi-

ronment in a fraction (25 %) very close to that previously estimated from the analysis of the

q local order parameter (23 %). The same calculation gives a fraction of 51 % of tetrahedral
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structures in the model at 5.57 g/cm3, to be compared with a value of 47 % obtained from the

integration of q distribution, and a fraction of 82 % compared to 77 % for the BLYP model

at 5.554 g/cm3. As indicated by these data, the tetrahedricity of the models of a-In3Sb1Te2

increases for decreasing density in PBE. In fact, a tetrahedral coordination gives a smaller

packing factor with respect to octahedral-like coordination and is thus probably favoured in

low density structures. The sharp increase in the tetrahedra content in the BLYP model can

not be ascribed just to the denisty, but to a diUerent description of the competition between

tetrahedra and octahedra provided by the BLYP functional.

From the positions of the centers of theWFs it is also possible to estimate the fraction of three-

fold coordinated In atoms in a planar sp2 conVguration. As discussed before for amorphous

InSb, planar sp2 In atoms do not show an s-like WF centered on the atom, while three-fold

coordinated pyramidal In atoms display an s-like WF at very short distances. For the BLYP

model at the lower density, by integrating the g(r) between three-fold coordinated In atoms

and the WF centers in Figure 3.33b up to the Vrst minimum (0.6 Å), a fraction of 1.3 % of

pyramidal three-fold coordinated In atoms was found, while the remaining 4 % of three-fold

coordinated In atoms is planar sp2. In the other two PBE models, all the three-fold coordi-

nated In atoms have a pyramidal shape.

The medium-range order in the three models was studied by computing the rings statistics

according to the method presented in Ref. [212]. As shown by the distribution of the ring
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Figure 3.34.: Rings distribution function of a-In3Sb1Te2 computed according to Ref. [212] for
the three models at diUerent densities. The two denser models were generated with the PBE
functional, while the model at lower density was obtained with the BLYP functional.
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lengths in Figure 3.34, the denser model present a rather broad distribution with a similar

abundance of 4-, 5- and 6-membered rings, while in the model at 5.75 g/cm3 5-membered

rings dominate. The square 4-membered ring, corresponding to p-type σ-bonds in defective

octahedra (Figure 3.36a), is the building block of the cubic rocksalt phase and is the most

abundant ring in GST and GeTe [67, 68, 71, 73]. In these structures the atoms of the cationic

sublattice and those of the anionic sublattice alternate forming an ABAB square ring where A

and B are the atoms of the two sublattices, respectively. By considering In as atoms of type A

and Sb and Te as atoms of type B, it can be seen from the rings analysis in Table 3.8 that the

most abundant 4-membered rings are of ABAB type. Five- and six-membered rings are typical

of a mostly tetrahedral network and have a higher concentration in the model at 5.75 g/cm3,

more tetrahedral than the denser one. Six-membered rings of type ABABAB are the building

PBE - Rings statistics

4-membered

InTeInTe 59% (37%) 135 (13)
ABAB 79% (69%) 181 (24)InSbInTe 19% (31%) 44 (11)

InSbInSb 1% (−) 2 (−)
InInInTe 13% (8%) 29 (3) AAAB 13% (9%) 30 (3)

InSbSbTe 3% (6%) 7 (2)
ABBB 4% (17%) 10 (6)

InSbSbSb 1% (6%) 3 (2)
InTeSbTe − (6%) − (2)

InInSbSb 2% (3%) 4 (1)
AABB 3% (3%) 6 (1)

InInSbTe 1% (−) 2 (−)

5-membered

InInTeInTe 40% (30%) 94 (22)
AABAB 54% (43%) 128 (32)

InInSbInTe 14% (14%) 33 (10)

InTeInSbSb 16% (20%) 39 (15)

ABABB 33% (46%) 79 (34)
InTeInSbTe 12% (15%) 29 (11)
InSbInSbSb 3% (7%) 6 (5)
InSbInSbTe 2% (4%) 5 (3)

InInInInTe 6% (3%) 14 (2) AAAAB 6% (3%) 15 (2)

InSbSbSbTe 1% (1%) 2 (1) ABBBB 3% (3%) 6 (2)

InInSbSbSb 1% (−) 3 (−)
AABBB 2% (1%) 5 (1)

InInSbSbTe 1% (1%) 2 (1)

InInInSbSb 1% (−) 2 (−)
AAABB 2% (1%) 4 (1)

InInInSbTe 1% (1%) 2 (1)

SbSbSbSbSb − (3%) − (2) BBBBB − (3%) − (2)

6-membered

InTeInTeInTe 39% (23%) 76 (10)
ABABAB 61% (49%) 120 (21)InSbInTeInTe 22% (21%) 43 (9)

InSbInSbInTe 0.5% (5%) 1 (2)

InInInTeInTe 25% (2%) 29 (1)
AAABAB 15% (9%) 30 (4)

InInInSbInTe − (7%) − (3)

InInTeInSbSb 6% (7%) 11 (3)

AABABB 10% 19
InInTeInSbTe 2% 4
InInSbInSbTe 1% (2%) 2 (1)
InInTeInTeSb 1% (2%) 2 (1)

InTeInSbSbSb 2% (7%) 4 (3)
ABABBB 6% (12%) 11 (5)InTeInSbSbTe 2% (2%) 3 (1)

InTeInTeSbTe 1% (2%) 2 (1)

InInSbInInTe 2% (2%) 4 (1)
AABAAB 3% (12%) 6 (5)

InInTeInInTe 0.5% (9%) 1 (4)

InInInInInTe 2% (−) 3 (−) AAAAAB 2% (−) 3 (−)
InInInInSbTe 1% (−) 2 (−) AAAABB 2% (−) 3 (−)
InSbSbInSbTe 0.5% (5%) 1 (2) ABBABB 2% (5%) 3 (2)

Table 3.8.: Abundance of the diUerent types of rings of diUerent size in the 300-atom models
of a-In3Sb1Te2 at a density of 6.448 g/cm3 and, in parenthesis, of 5.75 g/cm3 obtained with the
PBE functional. The absolute number of rings is also given in the second column. The type of
the rings is indicated by A and B letters where A stands for In and B for Sb or Te. Rings with
abundance lower than 1 % have not been considered.
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Figure 3.35.: Distribution of the size of Sb clusters (a) computed in the PBE models of a-
In3Sb1Te2 at two diUerent densities of 6.448 g/cm3 and 5.75 g/cm3 and in the BLYP model
at the density of 5.554 g/cm3. (b) Representation of the clusters in the model at 5.75 g/cm3.
A cluster of 12 Sb atoms is present at the lower right corner. Sb atoms are depicted as cyan
spheres and a cut-oU of 3.20 Å on the Sb-Sb bond distance was used in the calculation.

units of the zincblende crystals. In the model at low density there are fewer rings because of

the lower average coordination. A non negligible fraction of rings with a high Sb content as

InSbSbSb, InInSbSbSb, InSbSbSbTe, InTeInSbSbSb and SbSbSbSbSb is present, in particular in

the model at a density of 5.75 g/cm3 which shows the highest fraction of Sb-Sb homopolar

bonds. An analysis of the Sb structures in the PBE models (Figure 3.35) shows the presence of

short chains and small clusters of Sb atoms. In particular, the denser model present a higher

fraction of Sb-Sb dimers and small chains with three and four atoms. Groups composed by

Vve Sb atoms are branched chains and cluster with four-membered rings. The model at the

density of 5.75 g/cm3 presents, instead, a cluster of medium dimension composed by twelve

Sb atoms which form a four- and a six-membered ring and two Vve-membered rings. Other

Sb groups are chains of seven, Vve and four Sb atoms, dimers and trimers. Despite the low

Sb content (17 %) of the In3Sb1Te2 compound, Sb shows a tendency to segregate. The BLYP

model at the density of 5.554 g/cm3 presents instead a high fraction of Vve-, six- and seven-

membered rings with a predominance of rings with six atoms and few 4-membered rings. The

most abundant four-membered rings are again of ABAB type (Table 3.9), but in this case the

majority of the ABAB rings (10 over 15) does not originate from the combination of octahedral

structures, but rather from the presence of edge-sharing tetrahedra of In (Figure 3.36b) as oc-

curs in crystalline InTe [102] and in amorphous InGeTe2 [199] where chains of edge-sharing
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(a) (b)

Figure 3.36.: Representation of some four-membered rings in the models of a-In3Sb1Te2 at
(a) 6.448 g/cm3 (PBE) and (b) 5.554 g/cm3 (BLYP). In the denser model, rings are generated by
octahedral-like structures, while in the other case by edge-sharing tetrahedra. In atoms are
depicted by violet spheres, Sb by cyan spheres and Te by black spheres. Bonds in the four-
membered rings are represented by thicker lines, while other bonds are represented by thin
lines.

tetrahedra give rise to four-membered rings with two opposite bond angles smaller than 90◦

and two greater than 90◦. In a-In3Sb1Te2 most of the tetrahedra are corner sharing with just

a minority fraction of edge-sharing tetrahedra and few or no isolated tetrahedra, as in the

model at the lower density. The statistics of the diUerent types of connectivity of the tetrahe-

dral structures is summarized in Table 3.10. Edge-sharing tetrahedra are also corner-sharing.

Since the fraction of edge-sharing tetrahedra in the model at high density is actually small,

the most abundant four-membered rings are due to p-type σ-bonds in defective octahedra.

Further discussion and summary on the structural properties and their dependence on the

funcional are given at the end of Section 3.2.1.
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BLYP - Rings statistics

4-membered

InTeInTe 53% 10
ABAB 79% 15

InSbInTe 26% 5

InInSbSb 11% 2
AABB 16% 3

InInSbTe 5% 1

InInInTe 5% 1 AAAB 5% 1

5-membered

InInTeInTe 43% 34
AABAB 59% 47InInSbInTe 15% 12

InInSbInSb 1% 1

InTeInSbSb 16% 13

ABABB 34% 27
InTeInSbTe 8% 6
InSbInSbSb 6% 5
InSbInSbTe 4% 3

InSbSbSbSb 1% 1
ABBBB 3% 2

InSbSbSbTe 1% 1

InInInSbSb 3% 2 AAABB 3% 2

InInSbSbSb 1% 1 AABBB 1% 1

InInInInTe 1% 1 AAAAB 1% 1

6-membered

InSbInTeInTe 23% 19

ABABAB 46% 38
InTeInTeInTe 16% 13
InSbInSbInTe 6% 5
InSbInSbInSb 1% 1

InInInSbInTe 10% 8
AAABAB 19% 16InInInTeInTe 8% 7

InInInSbInSb 1% 1

InInTeInSbSb 11% 9

AABABB 16% 13
InInSbInTeSb 2% 2
InInSbInSbSb 1% 1
InInSbInSbTe 1% 1

InInTeInInTe 7% 6
AABAAB 10% 8InInSbInInSb 1% 1

InInSbInInTe 1% 1

InTeInSbSbSb 4% 3
ABABBB 6% 5InTeInSbSbTe 1% 1

InTeInSbTeSb 1% 1

InInInInInTe 2% 2 AAAAAB 2% 2

InSbSbInSbSb 1% 1 ABBABB 1% 1

Table 3.9.:Abundance of the diUerent types of rings of diUerent size in the 300-atommodel of
a-In3Sb1Te2 at 5.554 g/cm3 obtained with the BLYP functional. The absolute number of rings
is also given in the second column. The type of the rings is indicated by A and B letters where
A stands for In and B for Sb or Te.

tetrahedra statistics

density [g/cm3] isolated corner-sharing edge-sharing

6.448 11.8% (4) 82.4% (28) 5.9% (2)
5.75 1.4% (1) 67.6% (48) 31.0% (22)
5.554 − 84.3% (91) 15.7% (17)

Table 3.10.: Statistics of the connectivity of the tetrahedral structures for the models of a-
In3Sb1Te2 at three diUerent densities. The percentage and the number (in parenthesis) of the
diUerent types of tetrahedra are given for each model.
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Electronic properties

In order to investigate the oxidation state of the diUerent atomic species, we computed the

Bader ionic charges from the total charge density by using the scheme of Ref. [213]. To this

aim we added to the valence charge density the core charges localized on the atoms. Two

types of diUerently charged In atoms are actually present in crystalline InTe [102]: In1 at the

center of InTe4 tetrahedra and weakly bound In2 atoms between neighbouring chains. In1-Te

and In2-Te bond lengths are respectively 2.819 Å and 3.576 Å long. In a-In3Sb1Te2, as op-

posed to amorphous InGeTe2 [199], we Vnd very few undercoordinated (one- and two-fold)

In atoms in the models at low density that could be associated to the interstitial In2 species

of crystalline InTe, but they do not show any peculiar oxidation state. The resulting Bader

charges distribution in Figure 3.37 is particularly broad for In atoms due to several types of

bonding geometries. It does not show a bimodal shape as opposed to what occurs in InGeTe2

[199] in which isolated In2-like and tetrahedral In1-like atoms with diUerent oxidation states

were clearly visible. Note that Sb atoms may have both positive and negative Bader charges.

They behave as cations in Sb2Te3-like environments and as anions in InSb-like ones. In spite

of the amphoteric behaviour of Sb in the amorphous phase, no signiVcant antisite disorder is

found experimentally in crystalline In3Sb1Te2 [101].

The electronic densities of states were calculated on the relaxed structure of the three mod-

els at the DFT-PBE level with the hybrid HSE06 exchange and correlation functional [154] in

order to better reproduce the energy gap of the material. The relaxation with the HSE06 func-

tional is computationally too demanding and thus we sticked to the PBE-relaxed structure

because the HSE06 functional is closer to the PBE than to the BLYP functional. Concerning

the model at the density of 5.554 g/cm3 obtained with ISA simulations and BLYP functional,

the amorphous structure was Vrstly relaxed with the BLYP functional and then with the PBE

functional at zero temperature. The resulting conVguration is slightly diUerent from the BLYP

geometry with a concentration of tetrahedral In atoms that decreases from 72 % in the BLYP-

relaxed structure to 63 % in the PBE-relaxed structure. In fact, as demonstrated before for InSb

(Section 3.1), the fraction of tetrahedra in the structure depends on the choice of the exchange-

correlation functional. However, although during the PBE relaxation the system tries to reach

a conVguration more similar to that of the other PBE models, the network remains mainly

tetrahedral.

The electronic Density of States (DOS) of a-In3Sb1Te2 at the three densities is shown in Fig-

ure 3.38 as computed from KS orbitals at the supercell Γ-point. Projection of the DOS on

atomic orbitals is also given in Figure 3.38. The structural diUerences between the models at

the three densities result in a sizable change of the electronic band gap which measures only

0.13 eV in the denser model. The other two more tetrahedral models show a wider HOMO-

LUMO gap of 0.41 eV at ρ = 5.75 g/cm3 and 0.47 eV in the model at ρ = 5.554 g/cm3. To

quantify the localization properties of individual KS states, we computed the Inverse Partic-
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ipation Ratio (IPR), which is deVned for the i-th KS state by equation (3.8) The IPR is given

in Figure 3.38 a)-f). No strongly localized states deep in the gap nor close to the conduction

and valence bands edges are found in the model at high density, while few localized states

appear at low density. By considering the four more localized states close to the band gap in

the models at low density as ingap states, the resulting HSE band gap between the extended

band edges turned out to be 0.77 eV for the model at the density of 5.75 g/cm3 and 0.75 eV for

the model at 5.554 g/cm3. Snapshots of the localized states close to the band gap in the models

at low density are given in Figure 3.39. All these defect states involve homopolar In-In bonds.

Kohn-Sham orbitals close to the valence band edge in the model at 5-75 g/cm3 are localized

on undercoordinated or distorted In and Te atoms, while LUMO and LUMO+1 states as well

as all the four defect states in the model at 5.554 g/cm3 are localized on tetrahedral In atoms

which form chains of corner-sharing tetrahedra (Figures 3.39c and 3.39g) and four-membered
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Figure 3.37.: Distribution of the Bader ionic charges (atomic units) of a-In3Sb1Te2 for the
diUerent species and for the three models at diUerent densities.
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Figure 3.38.: Electronic density of states (HSE hybrid functional [154]) for the models of a-
In3Sb1Te2 at density of a) 6.448 g/cm3, b) 5.75 g/cm3 and c) 5.554 g/cm3. The KS energies are
broadened by Gaussian functions of 27 meV width. The zero of energy corresponds to the top
of the valence band. The Inverse Participation Ratio (IPR) is given on the right scale (blue
spikes, see text for deVnition). d)-f) A zooming of the DOS of panel a)-c) close to the band
gap. g)-i) Projections on atomic s and p pseudo wavefunctions of the DOS of panels a)-c).
The contribution from d pseudo wavefunctions is negligible on the scale of the Vgure and is
omitted.

rings (Figures 3.39f and 3.39h). The overall most localized states are s-like states of Sb, deep in
energy, for all the three models.

To investigate the optical properties of a-In3Sb1Te2 we computed the imaginary part of the

dielectric function ε2 in the Random Phase Approximation from KS orbitals with the HSE

functional as was already done in the past for GST, GeTe and Sb2Te3 [215]. Neglecting local

Veld eUects has been proven to be adequate in previous calculations on GeTe [216].
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(a) HOMO −1 (b) HOMO (c) LUMO (d) LUMO +1

(e) HOMO −1 (f) HOMO (g) LUMO (h) LUMO +1

Figure 3.39.: Snapshot of the most localized Kohn-Sham states close to the band gap of the
two models of a-In3Sb1Te2 (a)-(d) at the density of 5.75 g/cm3 and (e)-(h) at the density of
5.554 g/cm3. Semitransparent red and blue surfaces render an isovalue of +0.016357a.u. and
−0.016357a.u., respectively. The whole bonding network is displayed with thin lines. The
states are mostly localized on the atoms highlighted with violet, cyan and black spheres for
In, Sb and Te, respectively.

The ε2 function is computed as one third of the trace of the dielectric tensor given by

ε2(ω) =
8π2

3V0Nkω2 ∑
v,c,k
|〈c,k|p|v,k〉|2δ(ω−Ec,k +Ev,k) (3.10)

where Ec,k and Ev,k refer to the energies of conduction and valence bands at the Nk k-points in
the Brillouin zone. We actually restricted the calculation to the Γ-point of the supercell with
volumeV0. The δ-functions are substituted by a Gaussian functions with variance of 0.136 eV.

Decreasing the variance to 20 meV makes the spectra more noisy but does not change sizably

their overall shape and values at maxima of ε2.

The theoretical ε2 function of a-In3Sb1Te2 is reported in Figure 3.40 for the three models
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Figure 3.40.: Imaginary part of the dielectric function ε2 of equation (3.10) in the left panels
and of the Joint Density of States (JDOS) J(ω)/ω2 of equation (3.11) in the right panels for
the three models of a-In3Sb1Te2 at diUerent densities and for the ideal cubic crystal.

at diUerent densities. The switch of tetrahedra into defective octahedra upon increasing the

density has a large eUect on the optical response. This is due both to a change in the electronic

density of states and to a change in the optical matrix elements. It is in fact conceivable that

the optical matrix elements between bonding and antibonding sp3-like states in the models at

low densities would be diUerent from those involving p-type states of defective octahedra in
the model at high density.

To disentangle the role of the matrix elements we computed the Joint Density of States (JDOS)

J(ω) deVned by

J(ω) =
1
V0

∑
c,v

δ(ω−Ec+Ev) (3.11)

where the sum is over the valence and conduction states at the supercell Γ-point. For the sake
of comparison with the ε2 function, we report in Figure 3.40 the function J(ω)/ω2 (see 3.10

and 3.11). The JDOS of the denser model of the amorphous phase and that of the two models

at lower density are actually diUerent in the range 0−2 eV as one could also infer from the

DOS in Figure 3.38. The densities of states of the two models at low density are very similar

in the whole analysed spectral range. Larger diUerences arise, instead, in the imaginary part

of the dielectric function of the two models at the density of 5.75 g/cm3 and 5.554 g/cm3, in-

dicating that a diUerence in the optical matrix elements between the two models is present in

the range 1-3 eV.
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In order to study the optical contrast with respect to the crystal of relevance for applications

in DVDs, the comparison with the ε2 and the JDOS of the crystals is also given in Figure

3.40. The crystal has been modeled by a cubic supercell with 216 atoms with In on one sub-

lattice and Sb and Te on the other sublattice. The experimental density was chosen with no

vacancies. However, this analysis is, at this stage, problematic since the precise structure of

the crystal is not fully resolved. In fact, a concentration of vacancy of about 2 % is needed to

reconcile the measured lattice parameter and the picnometric density [98]. Still, it is instruc-

tive to compare ε2 and J(ω)/ω2 of the amorphous models with those calculated for the ideal

crystal with no vacancies at the experimental lattice parameter (a= 6.126Å) shown in Figure

3.40. A strong optical contrast is present between the crystal and the mostly octahedral-like

amorphous model at high density (6.448 g/cm3) although the bonding geometry is quite sim-

ilar. The presence of tetrahedra is suXcient to produce a strong optical contrast with the

cubic octahedral-like crystal [217], but they are not necessary. In GeSbTe alloys the loss of

long range order and the misalignment of p σ-bonds is actually responsible for a reduction

the optical matrix elements in the octahedral-like amorphous phase with respect to the cubic

crystal [50, 120, 215]. In In3Sb1Te2 both a change in the optical matrix elements and a change

in the J(ω)/ω2 contribute to the optical contrast between the octahedral-like crystal and the

octahedral-like amorphous phase.

Vibrational properties

Regarding the vibrational properties of a-In3Sb1Te2, we computed the phonon frequencies

by diagonalizing the dynamical matrix obtained in turn from the variation of atomic forces

due to Vnite atomic displacements 0.0053 Å large. Only phonons with the periodicity of our

supercell (Γ-point phonons) were considered. The phonon density of states is shown in Figure

3.41 for the three a-In3Sb1Te2 models at diUerent densities.

In an amorphous material, phonons display localization properties that depend on the fre-

quency. To address this issue, we have computed the inverse participation ratio (IPR) of the
j-th vibrational mode deVned in equation (3.9). Phonons above 140 cm−1 are mostly localized

on tetrahedra centered on In. We further resolved the projection on tetrahedral In atoms with

diUerent environments in the model at the density of 5.554 g/cm3, where a large fraction of

tetrahedra is present. It can be seen that the modes at highest energy (above 180 cm−1) can be

assigned to tetrahedral In atoms with homopolar In-In bonds (Figure 3.42). From the projected

DOS we also computed the Debye-Waller factor for each species deVned by [218]

Bκ =
8π2

3
〈u2

κ〉 (3.12)
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Figure 3.41.: Theoretical phonon DOS of the models of a-In3Sb1Te2 at density of (a)
6.448 g/cm3, (b) 5.75 g/cm3 and (c) 5.554 g/cm3. The phonon IPR (green spikes, see text for
deVnition) is superimposed to the DOS in the upper panels. Projections on diUerent species
(Sb, Te, tetrahedral In and non tetrahedral In) are reported in the lower panels.

where κ runs over the three species and 〈u2
κ〉 is the mean average square displacement of

atoms of species κ computed from harmonic phonons as

〈u2
κ〉= ∑

j,m

~

ω j

|e( j,m)|2
Mκ

[

nB(
~ω j

kBT
)+

1
2

]

(3.13)

where m runs over atoms of species κ, ω j and e( j,m) are frequency and eigenvector of the j-

th harmonic phonon. The temperature dependence is introduced by the Bose factor nB(
~ω j
kBT ).

The resulting Debye-Waller factors as a function of temperature are reported in Figure 3.43.

The Debye-Waller factor of In is larger than for the other two species as occurs in amorphous

InGeTe2 as well [199]. However, in the most tetrahedral model at the density of 5.554 g/cm3,

the average square displacement of In atoms is lower with respect to the other two models.

Tetrahedral In atoms are, in fact, characterized by a high energy phononic modes and can

move less freely with respect to In atoms in an octahedral conVguration.



3.2 InSbTe alloys 125

D
O

S
 [a

rb
. u

ni
ts

]

ω [cm−1]

ρ = 5.554 g/cm 3
heteropolar In

1(In−In)
2(In−In)
3(In−In)

 

 

 

 

 

 

 

 

 0  50  100  150  200

Figure 3.42.: Phononic DOS of a-In3Sb1Te2 at the density of 5.554 g/cm3 projected on tetra-
hedral In atoms in diUerent environments with no homopolar bonds and with one, two or
three homopolar In-In bonds.
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Figure 3.43.: Debye-Waller factor Bκ (see text) of In, Sb and Te atoms as a function of tem-
perature in the models of a-In3Sb1Te2 at density of 6.448 g/cm3, 5.75 g/cm3 and 5.554 g/cm3.

Discussion and summary

As already found for the binary InSb system, also for InSbTe a strong dependence of the

structural properties on the exchange and correlation functional has been found. The PBE

functional leads to prevalently octahedral-like structures, while BLYP functional favours a
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tetrahedral geometry for both In and Sb atoms with a lower equilibrium density with respect

to PBE, even when van der Waals interactions are included.

In a-InSbTe a strong competition is indeed present between octahedral and tetrahedral struc-

tures. In fact, at the In3Sb1Te2 composition the system crystallizes in an octahedral rocksalt

structure, while the two binary alloys InSb and InTe forming In3Sb1Te2 have a tetrahedral

bonding geometry. The question that arises is whether the topology of the amorphous net-

work of In3Sb1Te2 is more similar to that of the crystalline phase of the ternary compound, as

occurs for Ge2Sb2Te5 or whether it is closer to the binary systems InTe and InSb the ternary

compound is made of.

Note that to compare to experiments, it is better to analyse the structure at the theoretical

equilibrium density where the bond lengths are in equilibrium. The models at low density

(5.75 g/cm3 and 5.554 g/cm3) with large fraction of tetrahedral-like sites are therefore prob-

ably more similar to the real experimental system at equilibrium. Moreover, since previous

analysis on the binary alloy showed that BLYP functional better describes the structure of

amorphous InSb with respect to PBE functional, the mostly tetrahedral model at the density

of 5.554 g/cm3 is probably closer to the real structure.

Still the analysis of the model at high density is important because in the PCM devices the

amorphous is not free to relax to its equilibrium density but experience instead a compressive

stress because of the embedding within the denser crystalline matrix. Therefore, we can not

exclude that the octahedral-like model at 6.448 g/cm3 might be instead closer to the structure

of the melt-quenched In3Sb1Te2 phase formed during the reset process in PCM. The larger

fraction of tetrahedra have Vngerprints in the optical response and in the vibrational spec-

tra as discussed in previous sections. In particular, since the bond lengths in tetrahedra are

shorter than the bond lengths in defective octahedra, phonons localized on tetrahedra have

frequencies in the higher region of the vibrational spectrum which thus acquires a larger

weight in the model at low density.

A link between the structure of the amorphous phase and the easy of the phase transfor-

mation, either the crystallization of the amorphous [67] or the amorphization of the crystal

[197, 219], has been proposed in previous theoretical works on Ge2Sb2Te5. The fast crystalliza-

tion of the amorphous phase has been ascribed to the predominance of four-membered ABAB

rings in both the amorphous and the crystalline phases [67]. On the contrary the presence

of tetrahedra, absent in the crystal, is supposed to hinder the crystallization [200]. These fea-

tures would surely have an impact on the crystallization at low temperatures, below the glass

transition, of relevance for data retention. Therefore one might suggest that data retention

in a-In3Sb1Te2 would be better for the model at low density which features a larger content

of tetrahedra and of Vve-membered rings, both absent in the crystal. On the other hand, the

compressive stress experienced by the amorphous region in PCMwould reduce data retention

by bringing the system closer to our model at high density with a larger content of octahedra

and the four-membered rings. Regarding the crystallization in set operation PCM, we remark
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that the amorphous is brought to high temperatures just below the melting point [18]. The

amorphous region thus turns into a supercooled liquid whose crystallization properties are

mostly controlled by the atomic mobility as discussed in other works on the GeSbTe system

[79, 80]. Therefore, it is not clear how the density would impact on the crystallization speed

at high temperature where the structure of the supercooled liquid is of relevance.
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3.2.2. In13Sb11Te3

Films of InSbTe ternary alloys with low Te content have been grown experimentally by

MOCVD. In particular, the compositions In3Sb2.7Te0.8 and In3Sb2.5Te1.1 have been investi-

gated by measuring electrical and thermal conductivity [9] and by realizing PCM cells which

show good switching properties [9]. However, experimental data on the structure of the amor-

phous phase are not available yet. To gain insights on the structure of these alloys, we per-

formed simulations of the In13Sb11Te3 (In3Sb2.5Te0.7) composition which is close to the ex-

perimental ones, by generating a model of the amorphous phase with the inverse simulation

annealing method (ISA). Since no experimental data on the density are available, we used the

ISA method at constant pressure to generate a model at the theoretical equilibrium density.

The ISA method was used with no constraints on the experimental data. The In13Sb11Te3 al-

loy can be thought as a pseudo-binary compound formed by the two binary systems InSb and

In2Te3 in the ratio (InSb)11(In2Te3)1. Since it is almost entirely constituted by InSb with only

a small percentage of In2Te3, we expect that the amorphous structure of the ternary com-

pound should be close to that of a-InSb. As discussed before, crystalline InSb has a zincblende

structure and a-InSb shows as well a mainly tetrahedral network. In2Te3, instead, has two

crystalline phases. The high temperature phase is stable above 523 K and it corresponds to a

defect zincblende structure with F 4̄3m space group [220] where two thirds of the tetrahedral

sites of the cationic sublattice are randomly occupied by In atoms. The low temperature phase

has a defective anti-Wuorite structure and space group F 4̄3m [221] where only one third of

the cationic tetrahedral sites are occupied by In atoms.

Measurements on thin Vlms of In3Sb2.7Te0.8 and In3Sb2.5Te1.1 [9] have shown that a poly-

crystalline face centered cubic fcc phase with composition InSb0.8Te0.2 can be obtained by

heating above 260 ◦C, while by annealing at about 500 ◦C the formation of the stoichiometric

crystalline phase In3Sb1Te2 with rocksalt structure occurs.

Computational details

To characterize the structure of amorphous In13Sb11Te3, a 324-atom model was generated

by quenching from the liquid phase from 1000 K to 300 K in 8000 MC steps and from 300 K to

5 K in 1000 MC steps. Simulations were performed with the ISA method at constant pressure

to reach the equilibrium density at near zero temperature. Van der Waals interactions in the

scheme of Grimme [202] were included (Figure 3.44). Energies and forces during the quench-

ing have been calculated from Vrst principles with the CP2K code by using BLYP functional. A

triple-zeta-valence plus polarization (TZVP) basis set was used to expand the Kohn-Sham or-

bitals while the electronic density was expanded on plane-waves with a cut-oU of 100 Ry. The

resulting amorphous structure at the BLYP theoretical equilibrium density of 0.0283 atoms/Å3

(5.60 g/cm3) was then equilibrated for 12 ps at 300 K.
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Figure 3.44.: Evolution of the potential energy U , density ρ and pressure P during the ISA
quenching of a model of amorphous In13Sb11Te3 at constant pressure with the BLYP func-
tional. The quenching “time” is expressed by the number of Monte-Carlo steps nMC.

Structural properties

The total and partial pair correlation functions shown in Figure 3.45a were obtained by

averaging over a 10 ps long trajectory at 300 K. As already found for InSb, there are many

homopolar In-In and Sb-Sb bonds while, as in a-In3Sb1Te2, very few Sb-Te bonds are present.

The partial average coordination numbers and the percentage of the diUerent bond types are

listed in Table 3.11a and 3.11b. As for a-In3Sb1Te2, the a-In13Sb11Te3 alloy appears as a solid

solution of InSb and InTe with a predominance of InSb due to the low Te concentration. The

coordination numbers distributions in Figure 3.45b show that both In and Sb atoms are mainly

four-fold coordinated, consistently with a mainly tetrahedral network, while the majority of

Te atoms is three-fold coordinated. This is conVrmed by the bond angles distributions (Figure

3.46a) which are peaked at about 110◦ for In and Sb atoms. The P(θ) function of Te, instead, is

broader and typical of pyramidal environments. By resolving the distributions with respect to

the coordination number (Figure 3.46b), it can be noticed that four-fold coordinated Sb atoms
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Figure 3.45.: (a) Total and partial pair correlation functions of a-In13Sb11Te3. The vertical
lines are the cut-oU radii used to deVne the coordination numbers (3.10 Å, 3.30 Å, 3.30 Å, 3.20
Å, 3.20 Å and 3.20 Å for the In-In, In-Sb, In-Te, Sb-Te, Sb-Sb and Te-Te bonds, respectively).
(b) Distributions of the coordination numbers. The contribution from the diUerent atom pairs
are represented with diUerent colours.

Average coordination numbers

with In with Sb with Te total

In 1.00 2.08 0.64 3.72
Sb 2.46 1.16 0.07 3.69
Te 2.77 0.24 0.00 3.01

(a)

Types of bonds (%)

with In with Sb with Te

In 13.2 55.3 17.0
Sb 13.0 1.5
Te 0.0

(b)

Table 3.11.: (a) Partial average coordination numbers and (b) percentage of the diUerent types
of bonds in a-In13Sb11Te3 calculated by using the cut-oU distances given in Figure 3.45a.
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Figure 3.46.: (a) Total distribution of the bond angles in amorphous In13Sb11Te3 and distri-
butions resolved for diUerent atomic species and (b) bond angles distributions resolved for
coordination number (left panels) and for diUerent triplets (right panels).

form bond angles of about 110◦ typical of tetrahedra, while the bond angles distribution for

three-fold coordinated Sb atoms is peaked at ∼ 95◦, indicating the presence of pyramidal

structures. The presence of this two types of environments for Sb might arise from the high

fraction of homopolar Sb-Sb bonds in three-fold coordinated Sb atoms. In fact, about 40 % of

the bonds formed by three-fold coordinated Sb is a homopolar bond and the local geometry of

Sb is similar to that of elemental Sb, which presents a “3+3” coordination with bond angles at
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90◦. Thus Sb-Sb bonds favour octahedral-like environments for Sb, while Sb-In bonds favour

the tetrahedral geometry.

Table 3.12 reports the statistics of the diUerent types of local environments. Three-fold co-

ordinated Sb presents a high fraction of homopolar bonds with a small percentage of Sb-Sb3

structures containing only antimony. The majority of the local environments of In contains

homopolar In-In bonds but, as it will be discussed later, this does not aUect the bonding ge-

ometry for In. Both the type and the abundance of Te environments are very close to those of

a-In3Sb1Te2.

In order to quantify the fraction of tetrahedral structures, the q order parameter deVned

by equation (3.7) was computed. Figure 3.47 shows the q-distributions resolved for diUerent
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Figure 3.47.: Distribution of the local order parameter q for tetrahedricity (see text) for the
model of amorphous In13Sb11Te3. The distributions for In, Sb and Te atomic species are re-
solved for diUerent coordination numbers. Vertical lines indicate the values of q for selected
ideal geometries. The distribution for four-fold coordinated In atoms is further resolved for
atoms with and without In-In homopolar bonds (lower left panel).

atomic species and coordination numbers. By integrating the distribution of four-fold coordi-

nated In and Sb atoms in the range 0.8−1.0 as already discussed for amorphous In3Sb1Te2,

a fraction of 68 % (106 atoms among 156) of In atoms and of 44 % (58 atoms among 132) of

Sb atoms in tetrahedral environments was found. A fraction of 14 % (15 atoms among 106) of

tetrahedral In atoms are in edge-sharing tetrahedra and among them, three tetrahedra shares

two edges with other tetrahedral In atoms. The remaining tetrahedra with a central In atom
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Local environments

1 2 3 4 5
In: 8.3% 82.7% 3.2%

Sb: 1.3% − InSb2: 3.2% InSb2Te: 17.9%
Sb3: 1.9% InSb3: 16.7%

InSbTe: 1.3% Sb3Te: 9.6%
In2Sb2: 9.0%
Sb4: 7.1%

InSbTe2: 6.4%
In2SbTe: 5.1%
Sb2Te2: 4.5%
In3Sb: 3.2%
InTe3: 1.3%
In2Te2: 1.3%

Sb: − 31.8% 65.9% 1.5%

In2Sb: 12.1% In3Sb: 30.3% In5: 1.5%
InSb2: 9.1% In4: 16.7%
Sb3: 3.8% In2Sb2: 10.6%
In3: 3.8% InSb3: 4.5%
In2Te: 2.3% In2SbTe: 3.0%

Te: 13.8% 61.1% 25.0% −
In2: 8.3% In3: 41.7% In4: 25.0%
InSb: 5.6% In2Sb: 19.4%

Table 3.12.: Statistics of In, Sb and Te coordination environments for atoms with diUerent
coordination numbers given in the Vrst line for the a-In13Sb11Te3 model generated with ISA
simulations and BLYP functional The data were obtained for the relaxed conVguration at the
BLYP-DFT level and only environments in a fraction larger than 1 % are reported.
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are corner-sharing. By further resolving the q-distribution for four-fold coordinated In atoms

with and without homopolar In-In bonds (Figure 3.47) it can be seen that, as opposed to a-

In3Sb1Te2, the presence of homopolar bonds has no eUect on the position of the peak of the

q-distribution and hence it does not cause a change in the bonding geometry. A similar situa-

tion was found for a-InSb. Three-fold coordinated In atoms are in a pyramidal geometry or in

a planar conVguration with an sp2 hybridization.

The concentration of tetrahedral structures in the amorphous phase can be obtained also from

the integration of the pair correlation functions of four-fold coordinated atoms with the cen-

ters of the WFs (Figure 3.48) as discussed before. Similarly, the fraction of planar sp2 indium
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Figure 3.48.: Pair correlation functions g(r) of three-fold (lower panel) and four-fold coordi-
nated In atoms with the centers of the Wannier functions in a-In13Sb11Te3. The dashed line is
the running integral of 4πr2g(r)ρ where ρ is the density of the Wannier centers (right scale).

atoms can be calculated by integrating the pair correlation functions of three-fold coordinated

atoms with the WFs centers (Figure 3.48). By integrating the PCF up to the Vrst minimum

(0.8 Å, see Figure 3.48), we obtained a fraction of 1.3 % of four-fold coordinated In atoms in

defective octahedral-like environments which results in a concentration of 71 % of tetrahedral

indium atoms, in good agreement with the estimate obtained from the q parameter. Regarding

three-fold coordinated In atoms, the integration of the PCF from 0 to 0.85 Å (Vrst minimum
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position) gives a fraction of pyramidal In atoms of 2 % and the concentration of planar sp2 In

atoms is 6.4 %.

Concerning the medium-range order, the distribution of the rings lengths reported in Fig-

ure 3.49 shows a predominance of Vve- and six-membered rings which are typical of tetra-

hedral networks. Four-membered rings are mainly of type ABAB, where A is In and B in

Sb or Te (Table 3.13) and present a couple of opposite bond angles smaller than 90◦ and a

couple of bond angles greater than 90◦ since originate from edge-sharing tetrahedral struc-

tures as found in a-In3Sb1Te2 and in a-InSb. The majority of the Vve-membered rings (54 %)
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Figure 3.49.: Distribution of the ring lengths in a-In13Sb11Te3 computed according to Ref.
[212].

presents In-In homopolar bonds, while the most abundant type of six-membered rings is the

AABABB sequence showing again In-In couples. The 26 % of six-membered rings is, instead,

of type ABABAB as can be found in the zincblende phase of InSb. Very similar percentages

of AABABB and ABABAB rings were found in a-InSb conVrming that a-In13Sb11Te3 can be

seen essentially as a-InSb with a small amount of Te. Rings with a high concentration of Sb-Sb

bonds are also present, in particular the model shows InSbSbSb, SbSbSbSb, InSbSbSbSb, InSbS-

bSbTe, InInSbSbSb, InInSbSbSbSb and InSbSbSbSbSb rings. The distribution of the dimensions

of Sb clusters, Sb chains and branched chains in Figure 3.50 shows the presence of a 15-atom

and of a 17-atom cluster. The Vrst one is a branched chain with a four-membered rings while

the second is a branched chain.
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BLYP - Rings statistics

4-membered

InSbInSb 35% 8
ABAB 65% 15

InSbInTe 26% 6
InTeInTe 4% 1

InInInSb 13% 3
AAAB 17% 4

InInInTe 4% 1

InSbSbSb 13% 3 ABBB 13% 3

SbSbSbSb 4% 1 BBBB 4% 1

5-membered

InInSbInSb 19% 19
AABAB 45% 45InInSbInTe 19% 19

InInTeInTe 7% 7

InSbInSbSb 23% 23

ABABB 39% 39
InTeInSbSb 12% 12
InSbInSbTe 2% 2
InTeInSbTe 2% 2

InSbSbSbSb 5% 5
ABBBB 7% 7

InSbSbSbTe 2% 2

InInInInSb 5% 5 AAAAB 5% 5

InInInSbSb 2% 2 AAABB 2% 2

InInSbSbSb 1% 1
AABBB 2% 2

InInSbSbTe 1% 1

6-membered

InInSbInSbSb 18% 25

AABABB 31% 44
InInTeInSbSb 8% 11
InInSbInSbTe 4% 5
InInSbInTeSb 1% 2
InInTeInTeSb 1% 1

InSbInSbInSb 15% 21
ABABAB 26% 37InSbInSbInTe 9% 13

InSbInTeInTe 2% 3

InInInSbInSb 8% 12
AAABAB 16% 23InInInSbInTe 6% 9

InInInTeInTe 1% 2

InInSbInInSb 6% 9
AABAAB 8%

11InInTeInInTe 1% 2

InSbInSbSbSb 5% 7
ABABBB 7% 10InTeInSbSbSb 1% 2

InSbInSbSbTe 1% 1

InSbSbInSbSb 5% 7
ABBABB 6%

9
InSbSbInSbTe 1% 2

InInSbSbSbSb 2% 3
AABBBB 3% 4

InInSbSbSbTe 1% 1

InInInSbSbSb 1% 2 AAABBB 1% 2

InInInInSbSb 1% 1 AAAABB 1% 1

InSbSbSbSbSb 1% 1 ABBBBB 1% 1

Table 3.13.: Abundance of the diUerent types of rings of diUerent size in the 324-atom model
of a-In13Sb11Te3 The absolute number of rings is also given in the second column. The type
of the rings is indicating by A and B letters where A stands for In and B for Sb or Te.
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Electronic properties

The electronic properties of a-In13Sb11Te3 were calculated with the HSE06 hybrid exchange

and correlation functional [154] on the structure relaxed with the PBE functional. Figure 3.51

reports the electronic DOS and the IPR value for each electronic state deVned by equation

(3.8). The model has a small gap of about 0.32 eV and shows few more localized states at
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Figure 3.51.: a)Electronic density of states (HSE hybrid functional [154]) of a-In13Sb11Te3

with KS energies broadened by Gaussian functions of 27 meV width. The zero of energy
corresponds to the top of the valence band. The Inverse Participation Ratio (IPR) is also given
(blue spikes, see text for deVnition). b) A zooming of the DOS of panel a) close to the band
gap. c) Projections on atomic s and p pseudo wavefunctions of the DOS of panel a). The
contribution from d pseudo wavefunctions is negligible on the scale of the Vgure and it is
omitted.

the edge of the valence and conduction bands. States close to the valence edge are mainly

localized on Sb atoms with homopolar bonds, while states at the conduction band edge are

formed by three-fold coordinated In and Sb atoms. By considering the localized states at band

edges with IPR value greater than 0.012 as defect states, the band gap turns out to be about

0.56 eV. From the projection of the total DOS on diUerent atomic species resolved for diUerent
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channels of angular momentum (Figure 3.51), the very localized deep states can be ascribed to

s-type orbitals of Te while the contribution to the DOS at the band edges is almost the same

for all the three atomic species.

Vibrational properties

The phonon DOS was computed from the diagonalization of the dynamical matrix obtained

in turn from the variation of atomic forces due to Vnite atomic displacements 0.0053 Å large.

Only phonons with the periodicity of our supercell (Γ-point phonons) were considered. The
phonon DOS of a-In13Sb11Te3 is reported in Figure 3.52a together with the phonon Inverse

Participation Ratio deVned by equation (3.9) which gives a measure of the localization of each

phonon.
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Figure 3.52.: (a) Theoretical phonon DOS of the model of a-In13Sb11Te3. The phonon IPR
(green spikes, see text for deVnition) is superimposed to the DOS in the upper panel. Projec-
tions on diUerent species (Sb, Te, tetrahedral In and non tetrahedral In) of the phonon DOS of
the upper panel are reported in the lower panel. (b) Projection of the phonon DOS on tetrahe-
dral In atoms in diUerent environments with no homopolar bonds and with one, two or three
homopolar In-In bonds.
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As already found for a-In3Sb1Te2, phonons with frequency above 180 cm−1 are strongly lo-

calized on tetrahedral In atoms and, in particular, phonons with energy at about 200 cm−1 are

due to tetrahedral In atoms with homopolar bonds, as it can be noticed from the projection of

the phonon DOS on diUerent types of tetrahedral In atoms in Figure 3.52b.

The Debye-Waller factor Bκ for each atomic species was then calculated according to (3.12)

and the resulting temperature dependence of Bκ is shown in Figure 3.53 for each species. The

results are very close to those obtained for a-In3Sb1Te2 at the lowest density.
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Figure 3.53.: Debye-Waller factor Bκ deVned by equation (3.12) of In, Sb and Te atoms as a
function of temperature in the model of a-In13Sb11Te3.

Summary

The amorphous phase of In13Sb11Te3 shows features very similar to the other previously

discussed alloys, InSb and In3Sb1Te2. The In13Sb11Te3 alloy can be seen as composed mainly

by InSb with a small amount of InTe. The structural properties of a-In13Sb11Te3 are, in fact,

very close to those of a-InSb with similar coordination numbers and fractions of homopolar

In-In and Sb-Sb bonds. Also the geometry of local environments and the medium-range order

are very similar in the two compounds.

Both a-In13Sb11Te3 and a-In3Sb1Te2 appear as mixtures of the binary compounds InSb and

InTe and present a mostly tetrahedral network.
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3.3. Ga4Sb6Te3

The Ga4Sb6Te3 alloy is a phase change material characterized by a particularly high crystal-

lization temperature (271 ◦C [37]) which guarantees a high stability of the amorphous phase

and thus a high data retention. This compound is a pseudobinary alloy of the binaries GaSb

and Sb2Te3, in the ratio (GaSb)4(Sb2Te3)1. In the crystalline phase GaSb has a zincblende

structure with tetrahedral environments, while Sb2Te3 has a rhombohedral lamellar struc-

ture formed by layers of six-fold coordinated Sb atoms in an octahedral arrangement (Fig-

ure 3.54). The ternary crystal with composition Ga4Sb6Te3 has also a rhombohedral phase,

(a) (b)

Figure 3.54.: Representation of the crystalline structure of (a) GaSb in the zincblende phase
and of (b) Sb2Te3 in the rhombohedral phase. Ga atoms are depicted by red spheres, Sb atoms
by cyan spheres and Te atoms by black spheres.

but the atomic arrangement inside the structure is still unknown. However, octahedral-like

environments are probably present. Thus, as already found for InSbTe alloys, there is again

a competition between tetrahedral and octahedral-like structures that makes the short-range

geometry of the amorphous phase very diXcult to be predicted.

Computational details

We studied the Ga4Sb6Te3 alloy by means of DFT simulations. We generated models of the

amorphous phase by quenching from the melt. We used two diUerent MD approaches: Car-

Parrinello (CP) [161] MD, as implemented in the CPMD code [211] with a plane waves basis

set, and the scheme of Kühne et al. [142] (see Section 2.5) implemented in the CP2K suite of
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programs [157, 191] with a Gaussian-type basis set for KS orbitals. All the simulations were

performed with the BLYP exchange and correlation functional which was shown to provide

a good description of the structural properties of amorphous and liquid selenides [204–206]

and to better describe the amorphous phase of In-based phase change alloys as discussed be-

fore in Section 3.1. Brillouin Zone integration was restricted to the supercell Γ-point. Norm
conserving pseudopotentials were used with three, Vve and six valence electrons for Ga, Sb

and Te, respectively. Norm-conserving pseudopotentials of the Troullier-Martins (TM) type

[222] were used in all CPMD simulations with the inclusion of non-linear core correction

(NLCC) [223] for Ga. In the CP2K simulations, instead, we used Gödecker-Teter-Hutter (GTH)

pseudopotentials [158, 159] not including any NLCC. The inWuence of the diUerent choice of

pseudopotentials, especially in the case of the Vrst peak in the Ga-Ga pair correlation func-

tion will be discussed later. In all CPMD simulations the valence electrons are represented

in a plane-wave basis set with an energy cut-oU of 60 Ry, assessed on the basis of the accu-

racy of the stress tensor in constant pressure simulations. Temperature was controlled with a

Nosé-Hoover [224–226] thermostat chain [227]. An integration step of 0.12 fs ensured a good

control of the conserved quantities all along the simulations. The CP2K simulations employ a

Triple-Zeta-Valence plus Polarization (TZVP) Gaussian-type basis set, while the charge den-

sity is expanded in a planewave basis set with a cut-oU of 100 Ry to eXciently solve the Pois-

son equation within periodic boundary conditions by using the Quickstep scheme [157, 191].

The completeness of the TZVP basis set was demonstrated by comparing the structural prop-

erties of a 117-atom model of a-GaSbTe equilibrated at 300 K with CP2K and CPMD with the

same pseudopotentials without NLCC. In the CP2K simulations we used a time step of 2 fs,

the Langevin thermostat of Ref. [142] for temperature control, and the GTH pseudopoten-

tials mentioned above. The resulting model was also further equilibrated at Vxed volume with

CPMD to assess the dependence of the structure on the choices of pseudopotentials which

diUer in the two codes.

Benchmark simulations

In the lack of experimental data on the density of the amorphous and liquid phases, we

performed CPMD constant pressure simulations of a 117-atom liquid model at 900 K which

yielded an equilibrium density of 0.03076 atom/Å3. The energy cut-oU of 60 Ry is large enough

to neglect Pulay contributions to the stress tensor. Starting from the melted phase at the liq-

uid density, the system was rapidly quenched at constant volume from 900 K to 300 K by

varying the temperature according to two cooling protocols summarized in Figure 3.55. The

resulting amorphous models at 300 K were then further optimized by releasing the internal

stress yielding an equilibrium density of 0.0278 atom/Å3. The analysis of the structural prop-

erties revealed some diUerences between the two models obtained from the short (100 ps)
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Figure 3.55.: Temperature as a function of time in the quenching protocol used to generate
the 117-atom amorphous models with a short (red line) and long quenches (blue line) with
the CPMD code and the larger 299-atom model with the CP2K code (orange line).

and long (300 ps) quenching schedules. The partial and total pair correlation functions of

the 117-atoms models were computed according to equations (3.1) and (3.2) and the resulting

curves in Figure 3.56 show slightly diUerent peak shapes and positions of the Vrst minimum.

The coordination numbers are also somehow aUected by changes in the quenching schedule.

Overall, they appear to increase for the longer quench (Table 3.14).

We then generated a larger 299-atom amorphous model by quenching from the melt in about

350 ps at the theoretical equilibrium density of 0.0278 atom/Å3 discussed above in NVT sim-

Average coordination numbers

with Ga with Sb with Te total

Ga 0.22 (0.18) 1.83 (1.71) 1.59 (1.24) 3.64 (3.13)
Sb 1.22 (1.14) 1.76 (1.66) 0.25 (0.33) 3.23 (3.13)
Te 2.12 (1.66) 0.49 (0.66) 0.00 (0.00) 2.61 (2.32)

Table 3.14.: Average coordination numbers for diUerent pairs of atoms computed from
the partial pair correlation functions of Figure 3.56 of the amorphous 117-atom models of
Ga4Sb6Te3 obtained by quenching from the melt in 300 ps and, in parentheses, in 100 ps with
the CPMD code.
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Figure 3.56.: Comparison of the partial and total pair correlation functions of the two 117-
atom large models of a-Ga4Sb6Te3 quenched from 900 K to 300 K in 100 or 300 ps.

ulations with the CP2K code according to the cooling protocol reported in Figure 3.54. The

resulting model was then equilibrated with CPMD to asses the dependence of the structure

on the choice of the pseudopotentials. The structural properties of the 299-atom amorphous

models equilibrated with either CP2K or CPMD turn out to be very similar. Some diUerences

are found only in the position of the Vrst peak in the Ga-Ga pair correlation function, which

changes from 2.45 Å to 2.54 Å in the cases of CP2K and CPMD, respectively, as reported in

Table 3.15. This discrepancy is clearly due to the inclusion of NLCC in the pseudopotential for

Ga used in CPMD simulations. Indeed, when the same pseudopotentials, namely GTH, were

used in both codes the pair correlation functions of the models of a-GaSbTe are the same. To

assess which pseudopotential is in fact better transferable for the description of a-GaSbTe,

we optimized the internal positions of a 240-atom supercell of cystalline GaTe with CPMD,

with the GTH pseupotentials or with the TM pseudopotentials including NLCC for Ga. We

chose this system since the crystal presents Ga-Ga dimers. Crystalline GaTe, in fact, has a

monoclinic lamellar structure (space group B2/m) with weak interactions between Te atoms

of diUerent planes (Figure 3.57). During the simulations, the lattice parameters were Vxed to
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PCF Vrst peak position [Å]

CPMD-NLCC CP2k

Ga-Ga 2.54 2.45
Ga-Sb 2.73 2.70
Ga-Te 2.69 2.70
Sb-Sb 2.91 2.92
Sb-Te 2.88 2.89
Te-Te − −

Table 3.15.: Position [Å] of the Vrst peak of the partial pair correlation functions of the
299-atom amorphous model of a-Ga4Sb6Te3 equilibrated at 300 K with CPMD and the NLCC
pseudopotential (CPMD-NLCC) for Ga and with CP2K and GTH pseudopotentials without
NLCC (CP2K).

the experimental values of a=17.404 Å, b=10.456 Å, c=4.077 Å and β =104.44◦ [228]. The
main distances between atoms independent by symmetry are compared in Table 3.16 with

experimental data. As a further check, the GTH results were also reproduced by relaxing the

c-GaTe - Interatomic distances

NLCC GTH exp.

Ga(1)-Ga(2) 2.506 2.376 2.431
Ga(1)-Te(1) 2.677 2.639 2.638
Ga(1)-Te(2) 2.701 2.666 2.669
Ga(2)-Te(1) 2.692 2.658 2.660
Ga(2)-Te(3) 2.695 2.653 2.656
Ga(3)-Ga(3) 2.475 2.379 2.437
Ga(3)-Te(2) 2.727 2.690 2.686
Ga(3)-Te(3) 2.710 2.674 2.678

Table 3.16.: Interatomic distances [Å] in a 240-atom supercell of monoclinic GaTe optimized
with GTH pseudopotentials and with pseudopotentials including NLCC for Ga. Experimental
values from Ref. [228] are reported in the last column. The atoms independent by symmetry
are labeled according to Ref. [228] (cfr. Figure 3.57).

12-atom unit cell of crystalline GaTe, with the same pseudopotentials, a plane waves expan-

sion of KS orbitals with an energy cut-oU of 80 Ry and a k-point 8× 8× 8 mesh using the

quantum espresso package [229]. It can be seen that the Ga-Te distances are in good agree-

ment with the experimental data, while the Ga-Ga distances are slightly underestimated in

the GTH calculations and slightly overestimated in the TM-NLCC calculations. The agree-

ment with experiments for crystalline GaTe seems, however, marginally better for the GTH
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(a) (b)

Figure 3.57.: Monoclinic crystal structure of GaTe. (a) The atoms independent by symmetry
are labeled according to Ref. [228]. (b) Representation of the 240-atoms supercell of mono-
clinic GaTe used in the simulations. Ga and Te atoms are depicted by red and black spheres,
respectively.

pseudopotentials without NLCC. Hereafter, only the analysis of the 299-atom model obtained

with the CP2K code and the GTH pseudopotentials without NLCC will be reported.

Structural properties

To investigate the structural properties of amorphous Ga4Sb6Te3, we Vrstly computed the

total and partial pair correlation functions (PCF) shown in Figure 3.58a. The correlation func-

tions are averaged over a trajectory 45 ps long at 300 K. Table 3.17a shows the average coordi-

nation numbers for the diUerent species obtained by integrating the pair correlation function

up to the position of the Vrst minimum chosen as cut-oU for the bonding distance or to slightly

lower values (see Figure 3.58a). As can be seen from Figure 3.59, which shows the dependence

of the coordination numbers on the cut-oU distance, no signiVcant changes arise in the coor-

dination number if the cut-oU distance is taken within a small range around the Vrst minimum

position of the PCF. The abundance of the diUerent types of bonds in the structure is listed in
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Figure 3.58.: (a) Total and partial pair correlation functions of a-Ga4Sb6Te3 at 300 K averaged
over a simulation 45 ps long. The vertical dashed lines are the cut-oU radii used to deVne the
coordination numbers (2.70 , 3.10 , 3.00 , 3.20 , 3.20 and 3.20 for the Ga-Ga, Ga-Sb, Ga-Te,
Sb-Te, Sb-Sb and Te-Te bonds, respectively). (b) Distributions of the coordination numbers.
The contribution from the diUerent atom pairs are represented with diUerent colours.

Table 3.17b. As can be seen from PCFs and from coordination numbers, in the system there

is a predominance of Ga-Sb and Ga-Te bonds, and just very few Sb-Te bonds. Thus, as previ-

ously found for InSbTe alloys (see Section 3.2.1), amorphous Ga4Sb6Te3 can be considered a

mixture of the GaSb and GaTe binary compounds, in spite of the fact that the composition of

this ternary alloy lies on the GaSb-Sb2Te3 pseudobinary tie-lie. A very high concentration of

Sb-Sb homopolar bonds was found and some Ga-Ga bonds are present as in crystalline GaTe.

The distribution of coordination numbers and the distribution of coordination environments

are reported in Figure 3.58b and Table 3.18. Gallium atoms are mainly four-fold coordinated

with only a minor fraction of three-fold coordinated atoms. Some four-fold coordinated Ga

atoms formGa-Ga dimers displaying diUerent environments of type GaX3, in particular GaSbTe2

is one of the most abundant. The majority of Sb atoms is, instead, three-fold coordinated

where more than one half of the neighbours are Sb atoms forming homopolar bonds and
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Figure 3.59.: Partial coordination numbers as a function of the cut-oU distance on the bond-
ing length in the 299-atom model of a-Ga4Sb6Te3.

Average coordination numbers

with Ga with Sb with Te total

Ga 0.37 (0.37) 1.76 (1.83) 1.67 (1.77) 3.80 (3.97)
Sb 1.16 (1.22) 1.89 (1.92) 0.19 (0.19) 3.25 (3.33)
Te 2.23 (2.36) 0.38 (0.39) 0.00 (0.00) 2.61 (2.75)

(a)

Types of bonds (%)

with Ga with Sb with Te

Ga 3.4 33.2 31.4
Sb 26.6 5.4
Te 0.0

(b)

Table 3.17.: Partial average coordination numbers (a) and percentage of the diUerent types
of bonds (b) in the 299-atom model of a-Ga4Sb6Te3 calculated by using the cut-oU distances
given in Figure 3.58a. The values in parenthesis refer to the cut-oU chosen as the minima of
the pair correlation functions.

about the 17 % of three-fold coordinated Sb has an Sb3 environment. Tellurium atoms are

mainly three-fold coordinated.

Information on the local bonding geometry is gained from the bond angle distribution func-

tions shown in Figure 3.60. The total bond angle distribution is peaked at about 100◦ as a
result of the contribution of Sb atoms which form bond angles of about 90◦ and In atoms

with bond angles of about 110◦. All these structural information point to many similarities

between the amorphous Ga4Sb6Te3 and the two compounds GaSb and GaTe. The majority of
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Local environments

2 3 4
Ga: − 5.4% 93.5%

Sb2Te: 2.2% Sb2Te2: 27.2%
GaSbTe2: 16.3%
SbTe3: 14.1%
Sb3Te: 14.1%
GaSb2Te: 6.5 %

Sb4: 4.3%
GaSb3: 3.3%
Te4: 3.3%

Ga2Sb2: 2.2%

Sb: − 71.7% 27.5%

GaSb2: 28.3% Ga3Sb: 9.4%
Sb3: 17.4% Ga2Sb2: 8.7%

Ga2Sb: 10.9% GaSb3: 5.1%
GaSbTe: 7.2% Sb4: 2.2%
Sb2Te: 3.6%
SbTe2: 2.2%

Te: 29.0% 71.0%

Ga2: 14.5% Ga3: 50.7%
GaSb: 13.0% Ga2Sb: 17.4%

GaSb2: 2.9%

Table 3.18.:Distribution of Ga, Sb and Te coordination environments for atoms with diUerent
coordination numbers given in the Vrst line for a-Ga4Sb6Te3 (299 atoms). Only environments
in a fraction larger than 2 % are reported.
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Figure 3.60.: (a) Total distribution of the bond angles in the 299-atom a-Ga4Sb6Te3 model and
distributions resolved for diUerent atomic species and (b) bond angles distributions resolved
for coordination number (left panels) and for diUerent triplets (right panels).

the Ga atoms in the amorphous phase of the ternary compound displays, in fact, a tetrahedral

coordination as in both the binary crystals. This can be seen in the projection of the bond

angle distributions on atoms with diUerent coordination number (Figure 3.60b). By resolv-

ing the distribution for the contributions of diUerent triplets of atomic species (Figure 3.60b,

right panel) one Vnds that SbGaSb and SbGaTe triplets form angles of about 110◦, typical
of tetrahedral structures, like in zincblende-GaSb and in monoclinic GaTe. The TeGaTe and
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GaGaTe triplets show a broader distribution in agreement with the spread of bonding angles

in the range 100◦− 120◦ of crystalline GaTe. Antimony atoms show, instead, two diUerent

geometries for three-fold and four-fold coordination. Three-fold coordinated Sb atoms have

bond angles compatible with a pyramidal geometry as in elemental metallic Sb. Three-fold

coordinated Sb atoms form, in fact, a high fraction of homopolar bonds, indicating a par-

tial segregation of Sb (see below). Four-fold coordinated Sb are tetrahedral. The bond angle

distribution of Te atoms has a bimodal shape with a peak at about 100◦ as can be found in

crystalline GaTe, and a peak at smaller bond angles (∼ 80◦) which is due to GaTeGa triplets

and originates from the presence of edge-sharing tetrahedra with Te atoms at the vertices and

Ga atoms at the center. A graphic representation of the most common local environments in

a-Ga4Sb6Te3 is given in Figure 3.61 reporting the isosurfaces of the Wannier functions (WFs)

which provide a simple description of the diUerent bondings. We clearly identify four WFs

along the four bonds in sp3 hybridization of four-fold coordinated Sb, while three-fold coor-

dinated Sb atoms show three p-type σ-bonds with the spherical s-like WF on the central Sb

atom, typical of a pyramidal-like bonding geometry. For all the WFs calculations discussed

here the CPMD code [211] was used.

(a) (b) (c) (d)

Figure 3.61.: Isosurfaces of Wannier functions for (a) Ga in a tetrahedral site, (b) and (c)
three-fold coordinated Sb in a pyramidal-like bonding geometry and (d) four-fold coordinated
Sb in a tetrahedral environment. Atoms of Ga are depicted by red spheres, Sb by cyan spheres
and Te by black spheres. Isosurfaces with diUerent colours (red and blue) have diUerent sign.
Wannier functions with spherical isosurfaces in (b) and (c) are s-like lone pairs.

The percentage of tetrahedra in a-Ga4Sb6Te3 has been quantiVed by computing the q order

parameter introduced in Ref. [207] as a measure of the tetrahedricity of the atomic environ-

ments and deVned by equation (3.7). As discussed before, the q order parameter can discrimi-

nate between diUerent atomic geometries (see equation 3.7 and the related discussion in Sec-

tion 3.1.2) [71]. The distribution of the q order parameter for three and four-fold coordinated

atoms of the three atomic species is shown in Figure 3.62. It can be seen that both four-fold

coordinated Ga and Sb atoms are mainly in a tetrahedral environments. As shown by the q
parameter distribution resolved for four-fold coordinated Ga atoms which form at least one
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Figure 3.62.: Distribution of the local order parameter q for tetrahedricity (see text) for a-
Ga4Sb6Te3. The order parameters for the Ga, Sb and Te species are resolved for atoms with
diUerent coordination numbers. Vertical lines indicate the values of q for ideal geometries in
defective octahedral sites with Nc coordination, tetrahedral and three-fold coordinated planar
sites. The distribution is further resolved for four-fold coordinated Ga atoms with or without
homopolar bonds in the lower left panels.

Ga-Ga bond (homopolar Ga), Ga atoms without homopolar bonds have a higher degree of

tetrahedricity as the corresponding peak of the q-distribution is closer to one. The fraction of

atoms in tetrahedral coordination is obtained by integrating the q-distribution for four-fold

coordinated atoms from 0.8 to 1. This threshold in the q parameter was shown to be a good

choice to identify the tetrahedra in the GeSbTe, InGeTe2 and InSbTe alloys [74, 199, 214]. We

obtained a fraction of tetrahedral Ga atoms of about 82.6 % (76 atoms among 92) and a fraction

of about 21.0 % (29 atoms among 138) of tetrahedral Sb atoms. To quantify by a diUerent mean

the complementary fraction of Sb in pyramidal-like geometry, we calculated the partial pair

correlation function between Sb atoms and the centers of the Wannier functions as already

done for InSbTe alloys (see Sections 3.1 and 3.2.1). The pair correlation function for Sb-WF

was resolved into the contributions from three-fold coordinated and four-coordinated atoms
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Figure 3.63.: (a) Pair correlation function g(r) of three-fold and four-fold coordinated Sb
atoms and (b) of three-fold cooordinated Ga atoms with the centers of the Wannier functions
in a-Ga4Sb6Te3. The dashed line is the running integral of 4πr2g(r)ρ where ρ is the number
density of Wannier centers (right scale).

in Figure 3.63a. The pair correlation function for four-fold coordinated Sb atoms shows a very

small peak for short distances, while this Vrst peak is much more evident for three-fold coor-

dinated Sb atoms. By integrating the pair correlation function of four-fold coordinated atoms

up to the position of the Vrst minimum (0.7 Å) we obtain that 3 % of all the Sb atoms are in

a defective-octahedral environment with four neighbours and the remaining four-fold coor-

dinated Sb atoms are tetrahedrally coordinated (24 % of the total number of Ga). The whole

fraction of three-fold coordinated Sb (72 %) is in a pyramidal-like bonding geometry.

As already found for In atoms in InSbTe alloys, the q parameter distribution for three-fold

coordinated Ga atoms evidences the presence of planar Ga atoms with an sp2 hybridization.

To quantify the planar structures in the model, we computed the pair correlation functions

between three-fold coordinated Ga atoms with the centers of the WFs. As can be seen from

Figure 3.63b, no peak is present at small distances indicating that all the three-fold coordi-

nated Ga atoms are in a sp2 hybridization with no s-like WFs.

The medium range order has been studied by analysing the distribution of the rings length

reported in Figure 3.64 and computed according to Ref. [212]. The abundance of the diUerent

types of rings is reported in Table 3.19. There is a predominance of Vve- and six-membered
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Figure 3.64.: Ring distribution function of a-Ga4Sb6Te3 computed according to Ref. [212].

rings that are typical of a mostly tetrahedral network. Five-membered rings of type GaGaTe-

GaTe are present in the monoclinic phase of GaTe and appear also in a-Ga4Sb6Te3. Due to

the large amount of Sb, the most common Vve-membered rings in a-Ga4Sb6Te3 contain ho-

mopolar Sb-Sb bonds (GaTeGaSbSb, GaSbSbSbSb and GaSbGaSbSb). All the four-membered

rings of type ABAB are due to the presence of edge-sharing Ga tetrahedra, where A stands

for Ga and B for Sb or Te. The most abundant six-membered ring is of the type ABABAB

which is the building block of both crystalline GaSb and crystalline GaTe. In the latter crystal,

AABAAB rings are also present. A large fraction of Sb-Sb bonds is present in six-membered

rings as well, with up to 13 % of six-membered rings of the type GaSbSbSbSbSb. This feature

indicates a somehow partial segregation of Sb as crystalline Sb is also made of a network of

six-membered rings. In fact, the composition Ga4Sb6Te3 once seen as a mixture of GaSb and

GaTe binaries would ideally contain a fraction of 5/6 of Sb atoms in an elemental state. To

quantify the segregation of antimony, we identiVed clusters of Sb atoms bound continuously

to other Sb atoms via linear chains, branched chains or rings. The distribution of the size of

these clusters is shown in Figure 3.65a. Actually, in the model of a-Ga4Sb6Te3 only 4 % of Sb

atoms (5 atoms over 138) form only heteropolar bonds while 17 % of Sb atoms (23 atoms over

138) forms Sb-Sb dimers and chains 4-, 5- and 6-atoms long. The majority (80 %) of the Sb

atoms belong to two clusters of 13 and 97 Sb atoms. The 13-atoms cluster is constituted by a

9-atom long branched chain, while the biggest cluster presents Vve- and six-membered rings.
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Rings statistics

4-membered

GaTeGaTe 42% 10
ABAB 83% 20GaSbGaTe 33% 8

GaSbGaSb 8% 2

GaSbSbSb 8% 2
ABBB 13% 3

GaSbSbTe 4% 1

SbSbSbSb 4% 1 BBBB 4% 1

5-membered

GaTeGaSbSb 30% 25

ABABB 55% 46
GaSbGaSbSb 13% 11
GaTeGaSbTe 7% 6
GaSbGaSbTe 5% 4

GaSbSbSbSb 17% 14
ABBBB 23% 19

GaSbSbSbTe 6% 5

GaGaSbGaTe 7% 6
AABAB 11% 9GaGaTeGaTe 2% 2

GaGaSbGaSb 1% 1

SbSbSbSbSb 5% 4
BBBBB 6% 5

SbSbSbSbTe 1% 1

GaGaSbSbSb 4% 3
AABBB 5% 4

GaGaSbSbTe 1% 1

6-membered

GaSbGaSbGaTe 13% 7

ABABAB 35% 19
GaSbGaTeGaTe 13% 7
GaTeGaTeGaTe 5% 3
GaSbGaSbGaSb 4% 2

GaSbGaSbSbSb 9% 5

ABABBB 29% 16
GaTeGaSbSbTe 9% 5
GaTeGaSbSbSb 5% 3
GaSbGaSbSbTe 4% 2
GaSbGaTeSbTe 2% 1

GaSbSbSbSbSb 13% 7 ABBBBB 13% 7

GaGaSbGaSbSb 4% 2
AABABB 7% 4

GaGaTeGaSbSb 4% 2

GaGaTeGaGaTe 4% 2
AABAAB 5% 3

GaGaSbGaGaTe 2% 1

GaSbSbGaSbSb 4% 2 ABBABB 4% 2

GaGaGaSbGaTe 2% 1 AAABAB 2% 1

GaGaGaSbSbSb 2% 1 AAABBB 2% 1

GaGaSbSbSbSb 2% 1 AABBBB 2% 1

SbSbSbSbSbSb 2% 1 BBBBBB 2% 1

Table 3.19.: Abundance of the diUerent types of rings of diUerent size in the 299-atom model
of a-Ga4Sb6Te3. The absolute number of rings is also given in the second column. The type of
the rings is indicated by A and B letters where A stands for Ga and B for Sb or Te.

The volume occupied by the 97-atom cluster was identiVed by computing the Voronoi poly-

hedra centered on each Sb atom of the cluster (Figure 3.65b). Nanoscale segregation of Sb has

been found also in DFT models of amorphous GaSb7 [230] close to to the eutectic composition

of the GaSb alloy.
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Figure 3.65.: (a) Distribution of the size of the cluster of connected Sb-Sb bonds in the 299-
atom a-Ga4Sb6Te3 model. The horizontal scale indicates the number of atoms each cluster is
made of. (b) Snapshot of the 97-atom Sb-cluster. The atoms of the cluster are shown as cyan
spheres. The shape of the cluster is depicted by the blue transparent surfaces of the Voronoi
poliedra built around the Sb atoms of the cluster. Four 299-atoms supercells are shown but
the periodic boundary conditions are not applied to the atoms of the Sb cluster to highlight
its shape and connectivity.
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Electronic properties

We analyzed the electronic properties of the amorphous model by using the hybrid HSE06

functional of Ref. [154] to better estimate the band gap. A geometry optimization with the

HSE06 functional is computationally too demanding therefore, since the HSE06 functional is

built on the PBE functional, we Vrstly relaxed the model with the PBE functional which yields

a geometry very close to the structure relaxed with the BLYP functional. The electronic den-

sity of states (DOS) is also very similar for PBE and BLYP (Figure 3.66). The electronic DOS
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Figure 3.66.: Electronic density of states for the 299-atoms model of a-Ga4Sb6Te3 calculated
with the BLYP functional (continuous black line) and with the PBE functional (dashed red
line). The DOSs were computed on structures relaxed with the BLYP functional and with
the PBE functional, respectively. The KS energies are broadened by Gaussian functions of
27 meV width. The DOSs are aligned with respect to the energy of the highest occupied
orbital corresponding to zero. b) A zooming of the DOS of panel a) close to the band gap.

of a-Ga4Sb6Te3 from Kohn-Sham (KS) energies at the Γ-point with the HSE06 functional and

the geometry optimized at the DFT-PBE level of theory is reported in Figure 3.67. The pro-

jections of the DOS on the three atomic species are also reported in Figure 3.67. To quantify

the localization of the KS orbitals, the value of the Inverse Participation Ratio (IPR), deVned

for the i-th KS state by equation (3.8), is provided for each state in Figure 3.67. The higher

the IPR value the higher is the localization of the state. The zoom of the DOS in Figure 3.67b

shows the presence of two localized states in the band gap at ∼ 0.15 eV above the top of the

valence band. Both states are localized on small clusters of Sb atoms and some surrounding

tetrahedral Ga atoms as illustrated in Figure 3.68. By neglecting these very localized states

near the edge of the valence band, a-Ga4Sb6Te3 turns out to be a semiconductor with a band
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Figure 3.67.: Electronic density of states (HSE hybrid functional [154]) for the 299-atoms
model of a-Ga4Sb6Te3. The KS energies are broadened by Gaussian functions of 27 meVwidth.
The zero of energy corresponds to the highest occupied orbital. The Inverse Participation
Ratio (IPR) is given on the right scale (blue spikes, see text for deVnition). b) A zooming of the
DOS of panel a) close to the band gap. c) Projections on atomic sand p pseudo wavefunctions
of the DOS of panel a). The contribution from d pseudo wavefunctions is negligible on the
scale of the Vgure and it is omitted.
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Figure 3.68.: Snapshots of the most localized Kohn-Sham states close to the band gap of the
299-atoms model of a-Ga4Sb6Te3. Semitransparent red and blue surfaces render an isosur-
faces with a value of +0.022398a.u. and −0.022398a.u. , respectively. The whole bonding
network is displayed by thin lines. The states are mostly localized on the Ga, Sb and Te atoms
highlighted with red, cyan and black spheres, respectively.



3.3 Ga4Sb6Te3 159

gap of 0.76 eV. Note that the edge of the valence band is mostly due to Sb and Te p states while

the edge of the conduction band has also a similar contribution from p states of Ga.

We also computed the ionic charges from the total electronic charge density according to

Bader [231] (Figure 3.69) by using the scheme of Ref. [213] and adding to the valence charge

density the core charges localized on the atoms. Ga and Sb atoms shows a very broad distri-

bution of the Bader charges due to the presence of homopolar bonds. Many Sb atoms have

nearly zero charge due to the very large fraction of Sb-Sb bonds. Sb atoms have an ampho-

teric character as they are more positively charged when bound mostly to Te and negatively

charged when bound to Ga.
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Figure 3.69.: Bader ionic charges (atomic units) of a-Ga4Sb6Te3 for each atom of the diUerent
species of the 299-atoms model.

Vibrational properties

We computed the phonon frequencies of the amorphous model with the BLYP functional by

diagonalizing the dynamical matrix obtained in turn from the variation of atomic forces due to

Vnite atomic displacements 0.0053 Å large. Only phonons with the periodicity of our supercell

(Γ-point phonons) were considered. The phononic DOS and its projection on the diUerent

atomic species are reported in Figure 3.70. In order to analyse the localization properties of the

vibrational modes, we computed the phononic inverse participation ratio for each phononic

state j deVned by the equation (3.9). The plot of the IPR in Figure 3.70 shows the presence of

very localized phononic states above 170 cm−1 that mainly involve Ga atoms. As found for

other phase change alloys as InSbTe, InGeTe and GeSbTe [72, 199, 214], the strongly localized



160 Atomistic simulations of InSbTe and GaSbTe alloys

IP
R

D
O

S
 [arb. units] 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0  50  100  150  200  250
 

 

 

 

 

D
O

S
 [a

rb
. u

ni
ts

]

ω [cm−1]

Ga

Sb

Te

total

 

 

 

 

 

 

 

 

 

 

 

 0  50  100  150  200  250

Figure 3.70.: Theoretical phonon DOS of the 299-atoms model of a-Ga4Sb6Te3. a) The
phonon IPR (blue spikes, see text for deVnition) is superimposed to the DOS. b) Projections
on diUerent species (Sb, Te and Ga) of the phonon DOS of panels a).

high energy modes are due to vibrations of atoms in a tetrahedral environment; in particular,

the modes in the range 230−260cm−1 are due to vibrations of Ga-Ga homopolar bonds.

Summary

In conclusion, our atomistic simulations on the a-Ga4Sb6Te3 alloy have pointed out that in

spite of the fact that the Ga4Sb6Te3 composition lies on the GaSb-Sb2Te3 pseudobinary tie-lie,

very few Sb-Te bonds are present in the amorphous models which appear instead as a mixture

of the two binary tetrahedral-like compounds GaTe and GaSb and elemental Sb (Ga4Sb6Te3 =

(GaSb)1(GaTe)3-Sb5). Gallium atoms are in fact mostly in a tetrahedral environment, forming

also Ga-Ga dimers typical of the crystal structure of GaTe. Antimony presents instead two

diUerent types of local environments, pyramidal-like for three-fold coordinated atoms and

tetrahedral-like for four-fold coordinated atoms. The high concentration of Sb with respect

to the pseudobinary GaSb−GaTe leads to a partial segregation of Sb forming clusters with

structures that recall the metallic phase of crystalline Sb. These features are similar to those

found in amorphous models of In3Sb1Te2 (see Section 3.2.1) which show as well very few

Sb-Te bonds and local structures similar to those present in the binary compounds InTe and

InSb.



4. Simulations of resistance drift in

amorphous GeTe

The resistance drift, as discussed in Section 1.4, is a phenomenon that occurs in the amor-

phous phase of chalcogenide materials resulting in an increase of the electrical resistivity with

time that aUects the reliability of PCM devices and hinders the realization of multilevel cells.

The metastable amorphous phase is, in fact, subject to aging which leads to an increase in the

resistance. The drift phenomenon is ubiquitous in chalcogenide alloys investigated for PCM

applications. Since in PCM the amorphous phase is under compressive stress due to the em-

bedding in the denser crystalline matrix, it was proposed that the drift arises from stress relief

upon time leading to an increase in the band gap [126]. This scenario seemed to be conVrmed

by the measurement of a lower drift in eventually stress-free GST nanowires [12]. However,

since later measurements of both PCM and stress-free, as-deposited amorphous GST Vlms

gave the same drift exponent [128], an alternative scenario seemed more viable in which the

drift was actually resulting from relaxations of local defective structures of the amorphous

phase toward a more stable conVguration [127]. This aging process would not lead to a more

crystalline-like material, but to a less defective, more ideal glass. In fact, the crystal actually

displays a lower resistivity than the amorphous while the drift leads to an increase of resis-

tance over time.

As discussed in Section 1.4.3 optical ellipsometry measurements of GST upon drift have in-

deed shown a widening of the band gap and a reduction of Urbach tails [137]. Extended

Urbach tails and a large density of deep defect states in the gap have actually been detected

in amorphous GeTe by modulated photocurrent experiments [118]. Widening of the band gap

and reduction of Urbach tails both concur to increase the resistivity of the amorphous phase

[121] as both these eUects lead to an increase of the activation energy for carriers generation

(see Section 1.4). In fact, the conductivity of the amorphous phase is believed to be due to car-

riers injected in valence (holes) or conduction (electrons) bands from states inside the mobility

gap by the electric Veld according to the Poole-Frenkel mechanism [121] (see Section 1.4.2).

The role of deep defect states in the conduction mechanism and then in the drift phenomenon

is instead more controversial [139].

The structural, atomistic origin of the localized states inside the mobility gap either in Urbach

tails or deep in the gap is, however, unknown. The Vrst result linking structural features of

the amorphous phase with the resistance drift came recently from Ge K-edge x-ray absorp-
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tion near-edge structure (XANES) spectra of Ge2Sb2Te5 [140]. It was shown that the drift is

correlated with the reduction of a step-like feature in the pre-edge XANES spectra [140] pre-

viously ascribed to the presence of tetrahedrally coordinated Ge from [141]. The results seem

thus to suggest that the drift is correlated with a reduction of Ge in tetrahedral sites. How the

conversion of tetrahedral sites into defective octahedral/pyramidal sites would aUect the elec-

tronic states of the amorphous is still an open issue which has to be addressed by electronic

structure calculations.

In order to study the atomistic origin of drift and to provide a link between electronic states

and the speciVc structural features whose relaxation leads to an increase of the resistance,

large models (1728 atoms) of amorphous GeTe were generated through molecular dynam-

ics simulations based on the Neural Network (NN) potential (see Section 2.7). The electronic

properties were then analysed at the DFT level. We discuss Vrst the structure of the amor-

phous models, then their electronic properties and Vnally the simulations that we performed

to mimic the drift which provided a microscopic insight on the nature of the structural relax-

ation leading to the increase of the resistance.

4.1. Structural properties of a-GeTe

We Vrstly generated twomodels of a-GeTe by quenching from the melt at Vxed density from

1000 to 300 K in 100 ps (Figure 4.1) with the NN potential (see Section 2.7). The simulations

were performed with the NN code RuNNer [232] by using the DL_POLY code as MD driver

[233]. Time step was set to 2 fs and temperature was enforced by a stochastic thermostat

[234]. In one model (model 1) the density was equal to the theoretical equilibrium density of

0.03351 atoms/Å3, while in the second model (model 2), a higher density of 0.03565 atoms/Å3

was chosen aiming at generating a larger concentration of defect states in the gap according

to the suggestion of Ref. [132]. This second model was then rescaled at the former density of

0.03351 atoms/Å3. The two models were then equilibrated at 300 K. The structural properties

of our models were analysed by averaging over the last 200 ps of the trajectory at 300 K and

very similar pair correlation functions (PCF) were obtained (Figure 4.2) By integrating the

pair correlation functions up to a cut-oU distance (see Figure 4.2), the partial coordination

numbers of Table 4.1a were obtained. Model 2 shows a slightly larger fraction of homopolar

bonds with respect to model 1. The distribution of the coordination numbers is reported in Fig-

ure 4.3 showing a prevalence of four-fold coordinated Ge atoms and of three-fold coordinated
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Figure 4.1.: Evolution of the temperature during the quench of 1728-atom models of amor-
phous GeTe at the density of 0.03351 atoms/Å3. The systems have been cooled down from
1000 to 300 K in about 100 ps through classical molecular dynamics simulations by using a
Neural-Network potential.

Average coordination numbers

with Ge with Te total

Ge 1.16 (1.19) 3.19 (3.09) 4.35 (4.29)
Te 3.19 (3.09) 0.09 (0.11) 3.28 (3.20)

(a)

Types of bonds (%)

with Ge with Te

Ge 15.2 (15.9) 83.7 (82.6)
Te 1.1 (1.5)

(b)

Table 4.1.: Partial average coordination numbers (a) and percentage of the diUerent types of
bonds (b) of model 1 and, in parentheses, of model 2 of a-GeTe. The data were calculated by
using the cut-oU distances listed above in the text.

Te atoms. The bond angles distribution in Figure 4.4 computed according to equation (3.5),

shows the presence of both tetrahedral and octahedral structures for Ge atoms, in agreement

with previous calculations on GeTe and GST amorphous models [67–72]. The distribution of

bond angles formed by Ge atoms in both models presents, in fact, peaks at about 90◦ and
180◦, typical of defective octahedral environments, (see Figure 1.15) and a shoulder at about

110◦ indicating the presence of tetrahedrally coordinated Ge atoms. The concentration of
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Figure 4.2.: Total and partial correlation functions of the 1728-atom models of a-GeTe gener-
ated with NN-MD simulations by quenching from the melt in 100 ps. Model 1 was generated
at the theoretical density of 0.03351 atoms/Å3, while model 2 was generated at a higher den-
sity (0.03565 atoms/Å3) and then rescaled at the theoretical density. The dashed vertical lines
indicate the bonding cut-oU distances used in the other structural analysis which are 3.20 Å,
3.20 Å and 3.22 Å for Ge-Ge, Te-Te and Ge-Te pair, respectively. The data were obtained by
averaging over a 200 ps long trajectory at 300 K.
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Figure 4.4.: Calculated bond angles distribution for the two models of a-GeTe. The total
distribution (continuous grey line) was also resolved into two contribution form Ge species
(red dashed line) and Te species (black dot-dashed line).

tetrahedral Ge atoms can be estimated from the calculation of the q order parameter, deVned

by equation (3.7), reported in Figure 4.5. The distribution for four-fold coordinated Ge atoms

shows a clear bimodal shape for both the models with two peaks corresponding to defective

octahedral-like geometries for q= 0.625and to tetrahedral geometries for q= 1. By resolving
the distribution of four-fold coordinated Ge atoms for atoms with (homopolar Ge) and with-

out (heteropolar Ge) homopolar Ge-Ge bonds, it can be seen that homopolar bonds favour a

tetrahedral coordination, as found in other previous works on GST and GeTe [67–69, 71, 72].

By integrating the q distribution of four-fold coordinated Ge atoms in the range 0.8−1, the
concentration of tetrahedral Ge atoms can be obtained. This procedure for the estimation of

the fraction of tetrahedra was already applied to Ge-based phase change alloys in previous

theoretical works [71, 72] giving reliable results. We obtained a concentration of tetrahedral

Ge atoms of 24 % for the model 1 and of 28 % for model 2 after density rescaling. Before the

rescaling the fraction of tetrahedra in model 2 is only 17 %, consistently with the fact that

pressure favours octahedra with respect to tetrahedra.

The two models were then relaxed at the DFT-PBE level by solving the Kohn-Sham (KS) equa-

tion with the Quickstep scheme as implemented in the CP2K suite of programs [157, 191]. In

this approach the KS orbitals are expanded in Gaussian type orbitals (GTOs) and the charge

density is represented with an auxiliary plane waves basis with a cut-oU of 100 Ry to eX-

ciently solve the Poisson equation. Gaussian-type pseudopotentials [158, 159] with four and
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Figure 4.5.: Distribution of the local order parameter q for tetrahedricity (see text) for Ge
atoms in the two models of a-GeTe. The distributions for Ge atomic species are resolved for
diUerent coordination numbers. Vertical lines indicate the values of q for ideal geometries
in defective octahedral sites with Nc coordination and tetrahedral sites. The distributions for
four-fold coordinated Ge atoms are further resolved for atoms with and without homopolar
bonds (lower panels).

six valence electrons were adopted for Ge and Te. The KS orbitals were expanded in a Triple-

Zeta-Valence plus Polarization (TZVP) GTOs. Brillouin zone integration was restricted to the

supercell Γ point.

The ab-initio relaxation of the two models does not induce relevant changes in the structure.

The comparison of the pair correlation functions of the systems before and after the relaxation

is shown in Figure 4.6. The pair correlation functions of the models before the relaxation were

calculated by averaging on a trajectory at 300 K according to equations (3.1) and (3.2), while

for the relaxed models the PCF were computed from the optimized positions at the DFT-PBE

level and the harmonic phonons calculated with the NN potential. In this case, the thermal

average of equation (3.1) was restricted to the harmonic approximation by replacing the δ
function with a Gaussian function of variance σ [235] deVned as

σ2 =
〈

[d · (uI −uJ)]
2
〉

(4.1)
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Figure 4.6.: Total and partial correlation functions of the two models of a-GeTe before and
after an ab-initio relaxation. Correlation functions before the relaxation were calculated by
averaging on a 200 ps long trajectory at 300 K, while correlation functions after the relaxation
were computed with harmonic phonons (see text).

where uI is the displacement of the I -th atom with respect to the equilibrium position RI , and

d is a unitary vector along the direction of RI−RJ. The thermal average 〈..〉 is then computed

from harmonic phonons as

〈uIuJ〉= ∑
n

~

ωn

e(n, I)√
MI

e( j,J)√
MJ

[

nB(ωn)+
1
2

]

, (4.2)

where MI is the mass of I -th atom, ωn and e(n, I) are frequencies and eigenvector of the n-th
harmonic phonon. The temperature dependence is introduced by the Bose factor nB(ωn)+

1
2

whose classical limit is kBT/(~ωn). Since the NN potential reproduces well the phonon den-

sity of states of a-GeTe [236] we did not compute phonons by DFT in our large (1728 atoms)

cell.

Table 4.2a and Table 4.2b report the partial coordination numbers and the abundance of the

diUerent bond types in the structures after the ab-initio relaxation. The data were obtained by

integrating the pair correlation functions obtained from harmonic phonons up to the cut-oU

distances of Figure 4.2. The fraction of tetrahedral Ge atoms of the DFT-PBE relaxed models

obtained from the q parameter integration turned out to be 31 % for model 1 and 29 % for

model 2.

The rings distribution in the two models of a-GeTe, that gives information on the medium-

range order, was computed according to Ref. [212]. The results in Figure 4.7 show a predom-
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Average coordination numbers

with Ge with Te total

Ge 1.02 (1.07) 3.15 (3.10) 4.16 (4.17)
Te 3.15 (3.10) 0.07 (0.09) 3.22 (3.19)

(a)

Types of bonds (%)

with Ge with Te

Ge 13.8 (14.5) 85.2 (84.3)
Te 1.0 (1.2)

(b)

Table 4.2.: Partial average coordination numbers (a) and percentage of the diUerent types of
bonds (b) of model 1 and, in parentheses, of model 2 of a-GeTe after the DFT-PBE relaxation.
The data were calculated by integrating the partial pair correlation functions obtained from
harmonic phonons up to the cut-oU distances given in Figure 4.2.
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Figure 4.7.: Rings distribution function of the two models of a-GeTe computed according to
Ref. [212].

inance of four-membered rings and a high fraction of Vve-membered rings. Four-membered

rings are the building blocks of the cubic rocksalt crystal.

The structural properties of our models of a-GeTe are overall very similar to models generated

previously either with the NN potential [14] or by fully DFT simulations [73].
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4.2. Electronic structure of a-GeTe

In order to analyse the electronic properties of the models, the electronic DOS was com-

puted from KS orbitals at the supercell Γ-point broadened with a Gaussian function with

variance of 27 meV. In order to study the Urbach tails and the defect states in the gap, the

Kohn-Sham energies have been computed with the exchange-correlation potential proposed

by Engel and Vosko (EV) [237] that it is known to better reproduce the band gap with respect

to PBE-GGA functionals and it is less computationally demanding than the hybrid functionals

used previously to study electronic states in small models of InSbTe and GaSbTe alloys. The KS

energies are obtained by diagonalizing the Kohn-Sham Hamiltonian with the self-consistent

density at the PBE level. The energetics and the structural properties are in fact much better

described by the PBE than by the EV functional. We veriVed that the individual KS states are

very similar in PBE and EV calculations, but for the fact that the larger gap in EV enhances

the localization of defect states in the gap and at the band edges (see Appendix B).

The total and projected DOSs on the diUerent atomic species are reported in Figure 4.8 where
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Figure 4.8.: Electronic density of states (Engel-Vosko functional [237]) for the two models of
a-GeTe. The KS energies are broadened by Gaussian functions of 27 meV width. The zero of
energy corresponds to the top of the valence band. The Inverse Participation Ratio (IPR) is
given on the right scale (blue spikes, see text for deVnition). c)-d) A zooming of the DOS of
panel a)-b) close to the band gap. e)-f) Projections on atomic sand p pseudo wavefunctions of
the DOS of panels a)-b). The contribution from d pseudo wavefunctions is negligible on the
scale of the Vgure and is omitted.
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Figure 4.9.: Upper panels: electronic density of states (DOS) around the band gap of a-GeTe
models and inverse participation ratio values (IPR, see text). Lower panels: projection of the
totals DOS on diUerent types of atoms: tetrahedral Ge atoms, atoms forming four- and Vve-
membered rings. All the projected DOS are normalized with respect to the total DOS. The
vertical dashed line indicates the highest occupied KS state which coincides with the zero of
energy. The DOS was computed from KS orbitals at the supercell Γ-point broadened with a
Gaussian function with variance of 27 meV.

also the IPR value of each electronic state is shown as a measure of the localization (see equa-

tion (3.8) for deVnition). A broad distribution of defect states was found around a pseudogap in

the DOS with localization (IPR) decreasing toward the band edges. The number of deep states

is larger in the model generated at higher density (model 2). The concentration of defect states

in the gap might be overestimated due to the use of the NN potential for the generation of the

amorphous models which, albeit very good, is still an approximation to the real DFT-PBE po-

tential energy surface. Still we can gain important information on the nature of defect states

in the gap thanks to the good statistics provided by the large size of the simulation cell.

In attempting to Vnd a correlation between the localized states and several possible structural

features, we projected the total DOS on diUerent types of atoms such as tetrahedral Ge atoms,

atoms in four- and Vve-membered rings and Ge atoms that form chain of homopolar Ge-Ge

bonds. In order to identify which of these structures contribute to the DOS in the region

around the band gap, we plotted the projected DOS on diUerent types of atoms divided by the

total DOS. Tetrahedral Ge atoms and atoms in rings of diUerent lengths (Figure 4.9) seem not
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Figure 4.10.: Upper panels: electronic density of states (DOS) around the band gap of a-GeTe
models and inverse participation ratio values (IPR, see text). Lower panels: projection of the
totals DOS on Ge atoms belonging to chains of Ge-Ge homopolar bonds of diUerent lengths.
All the projected DOS are normalized with respect to the total DOS. The vertical dashed line
indicates the highest occupied KS state which coincide with the zero of energy. The DOS was
computed from KS orbitals at the supercell Γ-point broadened with a Gaussian function with
variance of 27 meV.

to give any particular contribution to the electronic states near the valence band edge, while

a clear correlation was found instead with chains of Ge-Ge homopolar bonds. Figure 4.10 re-

ports the DOS projected on atoms belonging to Ge-Ge chains of diUerent length showing an

increase of the contribution to the total DOS of Ge atoms in chains of four or more Ge atoms

in the region around the valence band edge. A Ge atom is considered part of a chain if it is

bound to at least an other Ge atom of the chain within a cut-oU distance of 3.00 Å. Thus also

branched chains and dimers are taken into account. The fraction of Ge atoms forming long

chains of four or more atoms is of 43 % in model 1 and 48 % in model 2. Figure 4.11 shows the

two most localized Kohn-Sham states of model 2 which are localized on chains of Ge atoms

Vve- and seven-atom long and on other atoms in the neighbourhood of the chain. Note that

Ge-Ge chains are also found in models of amorphous GeTe generated by quenching from the

melt in DFT-PBE simulations [73] and they are not an artifact of the NN potential. The length

of such chains is limited below nine atoms by the size of the DFT simulation cell containing

216 atoms. Still the fraction of Ge atoms in chains with four or more Ge atoms is 30 % in the
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(a) LUMO +7 (b) LUMO +10

Figure 4.11.: Visualization of the two most localized Kohn-Sham states with IPR values of (a)
0.0080 and (b) 0.0083 inside the band gap of the a-GeTe model 2 after quenching from the melt.
The two states are at energy 0.08 eV and 0.15 eV, respectively. Semitransparent red and blue
surfaces render an isosurface with a value of+0.012357a.u. and−0.012357a.u., respectively.
The states are mostly localized on the Ge atoms of Ge-Ge chains highlighted with red spheres,
while Te atoms are depicted with black spheres.

216-atom cell. We remark that the chains of Ge-Ge bonds are not isolated from the rest of the

amorphous network as Ge atoms belonging to the chains are mostly four-fold coordinated

and bonded with Ge atoms and Te atoms as well.
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4.3. Structural relaxation and resistance drift

To accelerate the structural relaxations that are supposed to lead to the drift in the electrical

resistance, we annealed the two models at 500 K for 1.5 ns in NN-MD simulations and we then

optimized the geometry of the resulting model at the DFT-PBE level. The electronic DOS were

calculated again with the EV functional The alignment of the DOSs of the two models before

and after annealing with respect to lowest energy state at about -14 eV (Figure 4.12), gives

and alignment also of the lower edges of the p-like bands at about -4.5 eV. From Figure 4.12 it
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Figure 4.12.: Electronic density of states (DOS) of the two models before (dashed blue line)
and after (continuous red line) annealing in the full energy range. The Engel-Vosko functional
was used. The same plots for the PBE functional are shown in Figure B.1 of Appendix B. The
DOS before and after annealing are aligned at the lowest energy states at about -14 eV which
also leads to an alignment of the lower edges of the p-like bands at about -4.5 eV. The vertical
dashed line indicates the highest occupied Kohn-Sham (KS) state which coincides with the
zero of energy before annealing. The DOS was computed from KS orbitals at the supercell
Γ-point broadened with a Gaussian function with variance of 27 meV.

can be seen that the position of the highest occupied orbital (HOMO) and of the valence band

edge shift towards lower energies after annealing for both models. The redshift of the valence

band edge is more evident for the model generated under compressive stress (model 2) which

presented a higher number of in-gap defect states before annealing. As shown by the calcu-

lated IPR of each electronic state in Figure 4.13, the annealing procedure led to a decrease of

the number of in-gap states, in particular in model 2, and to an increase of the localization.

The remaining defect states in the band gap are still localized on long chains of homopolar

Ge atoms, as demonstrated by the projected DOS in Figure 4.13. Due to the reduction of the

Urbach tails, the band gap of a-GeTe widens after the annealing procedure.

Figure 4.14 reports the comparison between the pair correlation functions before and after

the annealing of the two models of a-GeTe. The curves were obtained from the relaxed atomic
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Figure 4.13.: Projection of the electronic density of states (DOS) on Ge atoms belonging to Ge
chains of diUerent lengths normalized to the total DOS (model 1 and model 2 in the left and
right panels), total DOS and the Inverse Participation Ratio (IPR, see text) for the two models
of a-GeTe before annealing (upper panels) and after annealing at 500 K (lower panels). The
Engel-Vosko functional was used, the corresponding plots for the PBE functionals are given
in Figure B.2 of Appendix B. The DOS before and after annealing are aligned at the lowest
energy states at about -14 eV as shown in Figure 4.12 which also leads to an alignment of the
lower edges of the p-like bands at about -4.5 eV. The vertical dashed line indicates the highest
occupied KS state which coincide with the zero of energy before annealing. The DOS was
computed from KS orbitals at the supercell Γ-point broadened with a Gaussian function with
variance of 27 meV.



4.3 Structural relaxation and resistance drift 175

g i
j(r

)

total

GeGe

TeTe

GeTe

model 1
before annealing

after annealing

 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 3
 4
 5
 6

 0  2  4  6

total

GeGe

TeTe

GeTe

r [Å]

model 2
before annealing

after annealing

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 2 4 6 8

Figure 4.14.: Partial pair correlation functions of a-GeTe before and after annealing simu-
lations computed for model 1 and model 2 optimized at the DFT-PBE level with harmonic
phonons (see text). Vertical lines are the cut-oU used to deVne the bonds. The shoulder at
about 3.2 Å in gGeTe(r) is due to partial crystallization.

positions at the DFT-PBE level and harmonic phonons as described above. The plots clearly

show a decrease of Ge-Ge homopolar bonds. The radial distribution of Ge-Te and Te-Te pairs

remain almost unchanged, but for a shoulder at about 3.2 Å in the Ge-Te pair correlation

function due to partial crystallization of the models. In fact, the annealing the a-GeTe at 500 K

also induced the formation of small crystallites, similarly to what was observed in previous

simulations of the homogeneous crystallization [87]. In the two models after annealing, an

overall fraction of crystalline atoms of about 10 % and 13 % was found for model 1 and model

2, respectively. Although a fraction of our models crystallized after annealing, a reduction of

atoms belonging to longer chains (at least four Ge atoms) was still observed also by consid-

ering the subset of atoms that do not crystallize as shown in Table 4.3. Overall, the length of

Ge chains reduces after annealing, the number of long chains decreases, while shorter chains

increase in number (Figure 4.15).

We mention that the fraction of crystalline atoms was found from the local order parameter

Q6 for crystallinity introduced in Refs. [238, 239]. For the i-th atom, the Q6(i) parameter is

deVned by

Q6(i) =
Nb(i)

∑
j=1

∑6
m=−6q6m(i)q∗6m( j)

(∑6
m=−6 |q6m(i)|2)1/2(∑6

m=−6 |q6m( j)|2)1/2
,

q6m(i) =
1

Nb(i)

Nb(i)

∑
j=1

Y6m(r̂i j ) (4.3)
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Ge-Ge structures in a-GeTe

Ge-Ge bonds (%) Ge in chains (≥ 4) (%)

model 1 13.9 43.2
model 1 annealed 10.2 34.3

model 2 14.5 48.5
model 2 annealed 10.3 31.6
model 2 metadyn. 12.6 39.6

Table 4.3.: Fraction of Ge-Ge bonds (%) over the total number of bonds and fraction of Ge
atoms in Ge-Ge chains with four or more Ge atoms for the two models of a-GeTe (model 1 and
model 2) before and after annealing at 500 K and for model 2 after a metadynamics simulation.
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Figure 4.15.: Distribution of the number of Ge-Ge chains as a function of the number of
atoms in the (also branched) chain for the two models of a-GeTe before and after annealing.
The Ge atoms are considered bonded when their distance is shorter than 3.0 Å as assigned
from the Ge-Ge pair correlation function of the amorphous phase (cf. Figure 4.2). A chain of
homopolar Ge-Ge bonds is shown in the inset. Long chains are indicated by arrows.
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Figure 4.16.: Distribution of the order parameter for crystallinity Q6 for a snapshot of a
crystalline and amorphous models (4096-atom large) in a 300 K simulation at their theoretical
equilibrium densities and two snapshots of previous simulations at 675 K in which a fraction
(χ = 0.5 and χ = 0.94) of atoms is crystallized (from Ref. [87]).

whereY6m(r̂i j ) are the spherical harmonics of the polar angles deVned by the versor r̂i j which

links atoms i and j . The index j runs over the Nb(i) neighbouring atoms which include the

third coordination shell of crystalline GeTe at its theoretical equilibrium density (5.3 Å cut-

oU). We deVne as crystalline an atom with Q6 > 4.5. These choices ensure that atoms at the

interface between the crystalline nuclei and the disordered phase are also considered as crys-

talline as shown in Figure 4.16.

In order to obtain an independent, compelling demonstration that the removal of Ge-Ge

chains leads to a reduction of gap states we performed NN metadynamics simulations [177].

This technique, described in Section 2.8 allows breaking the Ge-Ge bonds in an aUordable

simulation time even at lower temperatures where crystal nucleation does not occur. This

method has been applied to study several chemical reactions and structural transformations at

surfaces, in the gas phase and in the bulk [179, 240]. The method is based on a coarse-grained,

non-Markovian dynamics in the manifold spanned by few reaction coordinates named col-

lective variables, biased by a history-dependent potential, which drives the system towards

the lowest saddle point. In our case, we chose two collective variables deVned by the partial

coordination numbers Ge-Ge and Ge-Te for atoms in Ge-Ge chains. We performed a chain

of subsequent simulations by changing the subset of atoms included in the deVnition of the

collective variables in order to progressively remove diUerent Ge-Ge chains. The isotropic

Gaussian functions of height 0.124 eV and width of 50 meV was added every 100 MD steps.

After a well-tempered [179, 240] metadynamics simulation 4 ps long at 300 K, the geometry

of the resulting model was optimized at the DFT-PBE level. The Vnal conVguration was about

10.8 eV (1728-atom) lower in energy than the initial one optimized at DFT-PBE level before
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Figure 4.17.: Partial pair correlation functions of a-GeTe before and after metadynamics sim-
ulations (model 2) computed for the model optimized at the DFT-PBE level and with harmonic
phonons (see text). Vertical lines are the cut-oU distances used to deVne the bonds.

the metadynamics was applied (model 2). In the Vnal state after metadynamics, a sizable frac-

tion of long Ge-Ge chains were indeed removed as shown in Table 4.3 and no crystallites were

formed. The reduction of homopolar Ge-Ge bonds can be seen also from the comparison of

the pair and correlation functions before and after the metadynamics run (Figure 4.17). The

distribution of the homopolar Ge chain lengths before and after metadynamics is shown in

Figure 4.18. The number of long chains clearly reduces after metadynamics simulations, while

the number of short chains increases. Overall, the number of Ge atoms involved in homopolar

chains of four or more Ge atoms decreases after the metadynamics run as shown in Table 4.3.

The electronic DOS of model 2 after metadynamics was calculated with the EV functional

on the relaxed structure at DFT-PBE level. The results, compared with the electronic proper-

ties of model 2 before metadynamics are reported in Figure 4.19. A shift of the HOMO state

towards lower energies occurred after metadynamics simulations, although it is less evident

with respect to the annealed models. A zooming of the gap region of model 2 before and after

metadynamics is provided in Figure 4.20 where a shift of the valence band edge towards lower

energy and a gap widening due to the reduction of Urbach tails is visible for the model after

metadynamics simulations. From the calculation of the IPR (Figure 4.20) it is possible to see

that the decrease in the number of Ge-Ge chains obtained from metadynamics clearly reduces

the states in the gap and enhances their localization. The remaining states in the gap are

still localized mostly on Ge-Ge chains. The removal of Ge-Ge chains thus leads to an overall

widening of the band gap and reduction of Urbach tail which can explain the drift in electrical

resistance.

After the annealing process the concentration of tetrahedral Ge atoms decreases from 31 %
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Figure 4.18.: Distribution of the number of Ge-Ge chains as a function of the number of
atoms in the (also branched) chain for the model 2 of a-GeTe before and after metadynamics.
The Ge atoms are considered bonded when their distance is shorter than 3.0 Å as assigned
from the Ge-Ge pair correlation function of the amorphous phase (cf. Figure 4.2 and 4.17).

D
O

S
 [a

rb
. u

ni
ts

]

Energy [eV]

model 2 after metadyn.
before metadyn.

 

 

 

 

 

 

−10 −5 0

Figure 4.19.: Electronic density of states (DOS) of model 2 of a-GeTe before (dashed line) and
after (continuous line) metadynamics simulations in the full energy range. The Engel-Vosko
functional was used. The DOS before and after annealing are aligned at the lowest energy
states at about -14 eV which also leads to an alignment of the lower edges of the p-like bands
at about -4.5 eV. The vertical dashed line indicates the highest occupied Kohn-Sham (KS) state
which coincides with the zero of energy before annealing. The DOS was computed from KS
orbitals at the supercell Γ-point broadened with a Gaussian function with variance of 27 meV.

to 25 % in model 1 and from 29 % to 26 % in model 2. After metadynamics simulations, the

fraction of tetrahedral Ge atoms only slightly reduces from 29 % to 28 %. Possibly due to the

still small size of our simulation cell, we have thus not found a clear correlation between a

reduction of tetrahedra and a reduction of states in the gap. However, since Ge-Ge homopo-

lar bonds favour a tetrahedral coordination for germanium (see Figure 4.5), the reduction of

homopolar bonds is probably linked to the reduction of tetrahedral structures. Our results are
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Figure 4.20.: Upper panel: electronic density of states (DOS) close to the band gap of model 2
of a-GeTe before (dashed line) and after (continuous line) metadynamics simulations (zooming
of Figure 4.19). Lower panels: inverse participation ratio (IPR) superimposed to the DOS for
the model before and after metadynamics simulations and projection of the electronic DOS
on Ge atoms belonging to Ge chains of diUerent lengths normalized to the total DOS for
the model after metadynamics simulations; the corresponding plot before metadynamics is
shown in the upper right panel of Figure 4.13. The Engel-Vosko functional was used, the
corresponding plots for the PBE functional are given in Figure B.3 in Appendix B. The DOS are
aligned with respect to the lowest energy states of the model before and after metadynamics.
The zero of the energy corresponds to the highest occupied orbital (HOMO) of the model
before metadynamics. The dashed vertical lines indicate the position of the HOMO state for
the two models. The DOS were computed from KS orbitals at the supercell Γ-point broadened
with a Gaussian function with variance of 27 meV.
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thus in agreement with recent XANES measurements showing a decrease of the fraction of

tetrahedra in aged GST models [140, 141].

It is interesting to note that the same structural features (Ge-Ge chains), identiVed here as

the source of the resistance drift in the amorphous phase below the glass transition Tg, have

also been shown to be involved in the dynamics of the supercooled liquid above Tg [89].

As discussed in Section 1.2.2, recent NN-MD simulations on large GeTe models have shown

the emergence of dynamical heterogeneities in supercooled liquid GeTe, responsible for the

breakdown of the Stokes-Einstein relation between viscosity and diUusivity [89] (see Sec-

tion 1.2.1). Such a feature is actually the ultimate source of the high crystallization speed of

phase change chalcogenides exploited in PCM [79]. The NN-MD simulations revealed that dy-

namical heterogeneities in supercooled liquid GeTe originate from structural heterogeneities

in the form of chains of homopolar bonds. The outcomes reported here further demonstrate at

the atomistic level a connection between the fragility of the supercooled liquid and the extent

of structural relaxations in the glass. This connection has been recently discussed for GeAsSe

alloys in Ref. [90] on the basis of the Adam-Gibbs model of the fragility. The Adam-Gibbs

theory states that the viscosity η of a liquid is related to the conVgurational entropy Sc by the

relation

η = η0e
C

TSc (4.4)

where C is a constant. The plot of Figure 4.21 represents the behaviour of the conVgurational

entropy with respect to temperature extrapolated for temperatures below Tg for three hypo-

thetical glasses with diUerent fragility. The conVgurational entropy Sc(T) scaled to its value

at Tg Sc(Tg), is reported sketched as a function of temperature in Figure 4.21. The dashed hor-

Figure 4.21.: Schematic representation of the ratio between the conVgurational entropy Sc

at temperatures Tg and T for three hypothetical glass formers with fragility ranging from 16
to 200. In panel a) the ratio Sc(Tg)/Sc(T) mimic a modiVed Vogel-Tamman-Fulcher equation
(1.1). The reciprocal quantity in panel b) highlights the driving force for structural relaxations
below Tg. From Ref. [90].



182 Simulations of resistance drift in amorphous GeTe

izontal line is the value of the frozen conVgurational entropy of a glass cooled down to Tg,

while the solid lines represent the equilibrium entropy of the corresponding liquids cooled

inVnitely slowly.

Below Tg, the diUerence between Sc(Tg) and Sc(T) is the driving force for structural relax-

ations. This model predicts that a larger fragility of the supercooled liquid would correlate

with a larger propensity for structural relaxations as the temperature drops below Tg.

Our NN simulations on amorphous GeTe demonstrate indeed that the same structural features

responsible for the high mobility close to Tg, typical of fragile liquids, are also responsible for

the structural relaxations in the glass that generate the drift in the electrical resistance. These

results suggest that, in the search of better performing materials for PCM, a compromise must

be reached between the requests of minimization of the resistance drift and of maximization

of the crystallization speed in the SET operation. These two properties in fact originate from

the same structural features that control both the mobility in the supercooled liquid (where

crystallization takes place) and the structural relaxations in the glass responsible for the re-

sistance drift.



Conclusions

In this thesis, we presented a study of the structural and electronic properties of diUerent

phase change alloys proposed for PCM applications. In particular, we addressed two diUerent

problems by means of atomistic simulations: i) the structural analysis of InSbTe and GaSbTe

alloys, in order to Vnd a correlation between the structural features of the amorphous phase

and the high crystallization temperature and ii) the study of the drift phenomenon in amor-

phous models of GeTe aiming at uncovering the atomistic origin of this process.

Concerning the Vrst issue, the amorphous phase of alloys with composition In3Sb1Te2, In13Sb11Te3

and Ga4Sb6Te3 have been studied by Density Functional (DFT) molecular dynamics simula-

tions. These alloys have been proposed for high temperature applications because of their

high crystallization temperature that ensures a good thermal stability of the amorphous phase

at temperatures above 100 ◦C. Preliminary simulations on the InSb binary system were ini-

tially performed by generating 216-atom models of the amorphous phase by quenching from

the melt with both the PBE and the BLYP exchange and correlation functionals. The struc-

tural properties of a-InSb turned out to be strongly dependent on the choice of the functional.

In particular, the model generated with the BLYP functional has a mainly tetrahedral coor-

dination, similar to crystalline InSb in the zincblende phase, while with the PBE functional

a mainly octahedral-like structure is obtained. By comparing the results with experimental

diUraction data available for a-InSb, the BLYP functional well reproduces the experimental

pair correlation functions with an error on the bond lengths less than 1 %, while PBE func-

tional overestimate the bond lengths by about 5 %. These results seem to indicate that the PBE

functional does not reproduce well the structure of this system because of a close competition

between tetrahedral and octahedral structures. In fact, the zincblende crystal of InSb, stable

at normal pressure, transforms into a cubic rocksalt structure under moderate pressure.

A competition between octahedral-like and tetrahedral structures is present also in the ternary

compound In3Sb1Te2. In3Sb1Te2 crystallizes in a cubic rocksalt phase with octahedral envi-

ronments, while the two binary compounds InSb and InTe of which the ternary alloy is made

of have a tetrahedral bonding geometry in the crystalline phase.

We generated models about 300 atoms large of amorphous In3Sb1Te2 by quenching from

the melt with either the PBE or the BLYP functional. Models obtained with the PBE func-

tional are mainly octahedral-like with a minority fraction of tetrahedral sites which increases

by decreasing the density. The model obtained with the BLYP functional is instead mainly

tetrahedral. In view of the results obtained on the binary InSb compound we must consider
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more reliable the models obtained with the BLYP functional. Unfortunately, no experimental

data on the structure of amorphous InSbTe alloys are available yet. The amorphous phase of

In3Sb1Te2 turns out to be a nanoscale mixture of InTe and InSb binary systems with very few

Sb-Te bonds.

A similar competition between octahedra and tetrahedra is present in the Ga4Sb6Te3 alloy.

The Ga4Sb6Te3 composition actually lies on the pseudo-binary GaSb-Sb2Te3 tie-line. The

ternary system crystallizes in a rhombohedral structure which has not been fully resolved

experimentally, but which is believed to present octahedral environments similarly to the

Sb2Te3 crystal. The GaSb binary compound crystallizes instead in a zincblende (tetrahedral-

like) geometry. In spite of this, the models of the amorphous phase of Ga4Sb6Te3 that we

generated from the melt (with the BLYP functional) show very few Sb-Te bonds. The amor-

phous network should actually be better seen as a nanoscale mixture of the two binaries GaSb

and GaTe which both have a tetrahedral-like bonding geometry. In fact, the bonding in amor-

phous Ga4Sb6Te3 turns out to be mostly tetrahedral as well. A partial, nanoscale segregation

of Sb is also found at this composition.

The predominance of tetrahedral structures in a-In3Sb1Te2 and a-Ga4Sb6Te3, which are absent

in the ternary crystals, might hinder the crystallization process concurring in the enhance-

ment of the thermal stability of the amorphous phase with respect, for instance, to Ge2Sb2Te5

where the crystal and the amorphous are both mostly octahedral-like.

Regarding the resistance drift, we studied the evolution in time of the electronic states of

models of a-GeTe. In-gap states and defect states close to the band edges (Urbach tails) ac-

tually control the conductivity of the amorphous phase. In order to have a suXciently good

statistics on the distribution of in-gap states, we generated large, 1728-atom models of a-GeTe

by quenching from the melt within classical molecular dynamics simulations by using a Neu-

ral Network potential. After a DFT relaxation, the models revealed several defect states in

the band gap and at band edges mainly localized on chains of homopolar Ge-Ge bonds. By

annealing the models at 500 K in order to accelerate the drift process, a reduction in the num-

ber of Ge-Ge bonds and of the length of Ge-Ge chains was found, resulting in a reduction

of the size of Urbach tails and in the number in-gap states. As a consequence, the band gap

widens, resulting in an increase of the resistance. These results allowed us to propose a drift

mechanism based on the removal of Ge-Ge bonds due to the structural relaxation process that

occurs during the aging of the amorphous phase. To further support this argument, we per-

formed metadynamics simulations in order to reduce the number of Ge-Ge bonds at 300 K in

an aUordable simulation time. The model obtained after metadynamics simulations presents

a lower fraction of Ge-Ge bonds, a smaller number of in-gap states and a larger band gap,

conVrming our proposed mechanism for the drift.

Actually, previous NN-MD simulations revealed that chains of homopolar Ge-Ge bonds are

present also in supercooled liquid GeTe and that they are responsible for the high atomic mo-

bility close to the glass transition temperature Tg which is the ultimate origin of the very high
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crystallization speed exploited in the device. Our results show that the same structural fea-

tures are responsible both for the high crystallization speed in the supercooled liquid above

Tg and for the structural relaxations leading to the resistance drift below Tg. In the search of

new materials for PCMs, a compromise should then be found between fast switching and low

drift coeXcients.





A. InSb

A.1. Test for PBE pseudopotentials

We started the analysis of InSb by testing the pseudopotentials for In and Sb. To this end we

computed the equation of state of crystalline InSb in the zincblende and rocksalt phases. We

used the general gradient approximation (GGA) Perdew-Burke-Ernzerhof PBE [151] exchange

and correlation functional and GTH [158, 159] pseudopotentials with Vve valence electrons

for Sb and with three or thirteen electrons for In used in the CP2K MD simulations. The

calculations were performed with the quantum-espresso suite of programs with a 16×16×
16 Monkhorst-Pack mesh [194] for the integration of the Brillouin zone and a plane-wave

cut-oU of 60 Ry in the case of three valence electrons for In and of 80 Ry when the semi-core

electrons are included in the valence.

The calculated equations of state of crystalline InSb are reported in Figure A.1, where the

energy-volume points has been Vtted with a Murnaghan function that express the energy E
as a function of the volume V as

E(V) = E0+
B0

B′0
V

[

(V0/V)B′0

B′0−1
+1

]

− B0V0

B′0−1
(A.1)

where E0 and V0 are the energy and volume at equilibrium, B0 is the bulk modulus at V0 and

B′0 is the Vrst derivative of the bulk modulus with respect to pressure at V0. The results of the

Vtting are listed in Table A.1 where a comparison with experimental data is also provided.

The inclusion of semicore d states of In does not change the structural properties sizably. The

error with respect to the experimental value on the lattice parameter is about 2 %.
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Figure A.1.: Equation of state of crystalline InSb in the zincblende (blue, circles) and in the
rocksalt (red, squares) phase. The data were obtained with the PBE functional and Vtted with
a Murnaghan function (equation A.1). Three (left panel) or thirteen (right panel) valence elec-
trons were considered for In.

c-InSb equation of state (PBE)

3 val. elec. 13 val. elec. exp.

E0 [eV] a [Å] B0 [GPa] E0 [eV] a [Å] B0 [GPa] a [Å] B0 [GPa]
Zincblende -205.213 6.622 34.6 -1682.49 6.652 36.3 6.47937(3) [183] 46.50 [183]
Rocksalt -204.521 6.195 42.5 -1681.83 6.193 43.8 6.12 [184] –

Table A.1.: Equation of state data of crystalline InSb in the zincblende and rocksalt phases
obtained from the Murnaghan Vtting of the energy-volume plot of Figure A.1 calculated with
PBE functional. E0 represents the total energy of the unit cell containing two atoms, a is the
lattice parameter andB0 the bulk modulus. Experimental values are also given for comparison.
The rocksalt phase can be experimentally recovered at normal conditions.

A.2. Test for BLYP pseudopotentials

In Section 3.1 it has been shown that the PBE exchange and correlation functional generate

mainly octahedral-like amorphous models of InSb, in contrast with the experimental data. A

new model with the GGA BLYP [152] exchange and correlation functional was then gener-

ated. In order to test the BLYP pseudopotentials for In and Sb, we repeated the calculation

of the equation of state of the zincblende and the rocksalt phase. We used GTH [158, 159]
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Figure A.2.: Calculated equation of state of crystalline InSb in the zincblende (blue, circles)
and in the rocksalt (red, squares) phase. The data were obtained with the BLYP functional
and Vtted with a Murnaghan function A.1. Three (left panel) or thirteen (right panel) valence
electrons were considered for In.

pseudopotentials with three or thirteen valence electrons for In and with Vve valence elec-

trons for Sb. The other details are the same of the PBE calculations in the previous section.

The BLYP equations of state of crystalline InSb are reported in Figure A.2, The parameters of

the corresponding Murnaghan Vt are listed in Table A.2. By including the semicore electrons

c-InSb equation of state (BLYP)

3 val. elec. 13 val. elec. exp.

E0 [eV] a [Å] B0 [GPa] E0 [eV] a [Å] B0 [GPa] a [Å] B0 [GPa]
Zincblende -204.029 6.575 34.9 -1676.38 6.764 29.9 6.47937(3) [183] 46.50 [183]
Rocksalt -202.933 6.210 35.7 -1675.47 6.364 33.0 6.12 [184] –

Table A.2.: Equation of state data of crystalline InSb in the zincblende and rocksalt phases
obtained from the Murnaghan Vtting of the energy-volume plot of Figure A.2 calculated with
BLYP functional (see Table A.1).

of In among valence electrons, one obtains worse results with respect to considering only

three valence electrons. Compared to PBE, the BLYP functional better describes the zincblende

structure giving an error of 1.5 % in the lattice constant with respect to experiments.
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A.3. EUect of the van der Waals interactions on the

structure of a-InSb

We generated an amorphous model of InSb by quenching from the melt from 1000 to

300 K in 100 ps through ab-initio molecular dynamics simulations at the Vxed density of

0.0273 atom/Å3 (5.355 g/cm3) by using the BLYP functional supplemented by the van der

Waals (vdW) interactions according to Grimme [202]. The density and the other parameters

used in the dynamics were the same employed for the model presented in Section 3.1. The
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Figure A.3.: Evolution of the temperature during the quench of a 216-atom model of amor-
phous InSb. The system has been cooled down from 1000 to 300 K in about 100 ps. The BLYP
functional and a TZVP basis set have been used supplemented by van der Waals interactions.

quenching protocol is shown in Figure A.3.

The partial and total pair correlation functions are compared in Figure A.4 with those ob-

tained for the BLYP model without vdW interactions. The total PCF is very similar between

the two models, but for a slight increase in the In-In and Sb-Sb bonds. This eUect can be

quantiVed by computing the partial pair correlation numbers (Table A.3a) of the system by

integrating the partial pair correlation functions up to the cut-oU distances of 3.20 Å, 3.20 Å

and 3.30 Å for In-In, Sb-Sb and In-Sb pairs, respectively. An increase of about 3 % of the In-In

and Sb-Sb homopolar bonds was found when the vdW interactions are considered. However,

the coordination numbers distributions of the two systems are very similar (Figure A.5). The

change in the fraction of homopolar bonds is, however, within the size of the Wuctuations we

expect due to the Vnite size of the simulation cell as it has been quantiVed for Ge-Ge bonds in

a-GeTe in Ref. [14].

The bond angle distribution functions and the distribution of the q order parameter are shown

in Figure A.6 and A.7 to be compared with the corresponding data for the BLYP model with-
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Figure A.4.: Total and partial correlation functions of 216-atom models of a-InSb generated
with (dashed blue line) and without (black continuous line) van der Waals interactions. The
models were obtained by quenching from the melt in 100 ps with the BLYP functional. The
dashed vertical lines indicate the bonding cut-oU distances used in the other structural anal-
ysis which are 3.20 Å, 3.20 Å and 3.30 Å for In-In, Sb-Sb and In-Sb pair, respectively. The data
were obtained by averaging over a 10 ps long trajectory at 300 K.

Average coordination numbers

with In with Sb total

In 1.19 (1.01) 2.53 (2.82) 3.72 (3.83)
Sb 2.53 (2.82) 1.16 (0.95) 3.69 (3.78)

(a)

Types of bonds (%)

with In with Sb

In 16.0 (13.2) 68.3 (74.2)
Sb 15.6 (12.6)

(b)

Table A.3.: (a) Partial average coordination numbers and (b) percentage of the diUerent types
of bonds in the BLYP a-InSb models generated with and, in parentheses, without van der
Waals interactions. The data were calculated by using the cut-oU distances given in Figure A.4.

out vdW correction. By integrating the distributions for four-fold coordinated In and Sb atoms

from 0.8 to 1.0 as discussed in Section 3.1, the fraction of tetrahedral In and Sb atoms turned

out to be about 66 % and 54 %, respectively, which are very close to the values of 68 % and

52 % obtained for In and Sb atoms, respectively, in the BLYP model of a-InSb generated with-

out vdW.

In summary, we can conclude that the inclusion of the vdW correction does not aUect sizably

the structure of the amorphous phase of InSb.
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Figure A.5.: Distribution of the coordination numbers of a-InSb models obtained with the
BLYP functional with or without van der Waals interactions. The contributions from the dif-
ferent atom pairs are indicated by diUerent colours.
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Figure A.6.: Bond angles distribution for the model of a-InSb obtained with the BLYP func-
tional and with van der Waals interactions. The total distribution (continuous grey line) was
also resolved into two contribution form In species (violet dashed line) and Sb species (blue
dot-dashed line).
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Figure A.7.: Distribution of the local order parameter q for tetrahedricity (see text) for the
model of amorphous InSb obtained from an MD quenching with the BLYP functional and van
der Waals interactions. The distributions for In, Sb and Te atomic species are resolved for
diUerent coordination numbers. Vertical lines indicate the values of q for ideal geometries in
defective octahedral sites with Nc coordination, tetrahedral and three-fold coordinated planar
sites. The distributions for four-fold coordinated In and Sb atoms are further resolved for
atoms with and without homopolar bonds (lower panels).





B. Resistance drift

The electronic properties of the models of a-GeTe, generated by quenching from the melt

through NN-MD simulations, were calculated on the relaxed structures at the DFT-PBE level

with the Engel-Vosko (EV) functional to better reproduce the band gap (see Section 4). Here

we report the same calculations of Section 4 performed with the PBE exchange and correlation

functional. The Kohn-Sham states are very similar in PBE and EV calculations. However, the

larger gap in the EV simulations leads to a stronger localization of defect states with respect

to PBE calculations.
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Figure B.1.: Electronic density of states (DOS) of the two models before (dashed blue line)
and after (continuous red line) annealing (upper panels) and for model 2 before and after
metadynamics (lower panel) in the full energy range. The PBE functional was used. The DOS
before and after annealing/metadynamics are aligned at the lowest energy states at about
-14 eV which also leads to an alignment of the lower edges of the p-like bands at about -
4.5 eV. The vertical dashed line indicates the highest occupied Kohn-Sham (KS) state which
coincides with the zero of energy before annealing/metadynamics. The DOS was computed
from KS orbitals at the supercell Γ-point broadened with a Gaussian function with variance
of 27 meV.
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Figure B.2.: Projection of the electronic density of states (DOS) on Ge atoms belonging to
Ge chains of diUerent lengths normalized to the total DOS (model 1 and model 2 in the left
and right panels), total DOS and the Inverse Participation Ratio (IPR, see text) for the two
models of a-GeTe before annealing (upper panels) and after annealing at 500 K (lower panels).
The PBE functional was used, the corresponding plots for the EV functional are given in
Figure 4.13. The DOS before and after annealing are aligned at the lowest energy states at
about -14 eV as shown in Figure B.1 which also leads to an alignment of the lower edges
of the p-like bands at about -4.5 eV. The vertical dashed line indicates the highest occupied
KS state which coincide with the zero of energy before annealing. The DOS was computed
from KS orbitals at the supercell Γ-point broadened with a Gaussian function with variance
of 27 meV.



Resistance drift 197

D
O

S
 [a

rb
. u

ni
ts

]

after metadyn.
before metadyn.

 

 

 

 

 

     before metadyn.

 

 

 

 

 

     
0

0.01

0.02

D
O

S
 [a

rb
. u

ni
ts

]

IP
R

after metadyn.

 

 

 

 

 

     
0

0.01

pD
O

S
/D

O
S

to
t

Energy [eV]

after metadyn.

Ge
Ge chain ≥ 4
Ge chain 3
Ge chain 2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

Figure B.3.: Upper panel: electronic density of states (DOS) close to the band gap of model 2
of a-GeTe before (dashed line) and after (continuous line) metadynamics simulations (zooming
of Figure B.1, lower panel). Lower panels: inverse participation ratio (IPR) superimposed to the
DOS for the model before and after metadynamics simulations and projection of the electronic
DOS on Ge atoms belonging to Ge chains of diUerent lengths normalized to the total DOS for
the model after metadynamics simulations; the corresponding plot before metadynamics is
shown in the upper right panel of Figure B.2. The PBE functional was used, the corresponding
plots for the EV functional are given in Figure 4.20. The DOS are aligned with respect to the
lowest energy states of the model before and after metadynamics. The zero of the energy
corresponds to the highest occupied orbital (HOMO) of the model before metadynamics. The
dashed vertical lines indicate the position of the HOMO state for the two models. The DOS
were computed from KS orbitals at the supercell Γ-point broadened with a Gaussian function
with variance of 27 meV.
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