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Abstract Inspired by the theoretical results on optimal preconditioning stated by Ng,
R.Chan, and Tang in the framework of Reflective boundary conditions (BCs), in this
paper we present analogous results for Anti-Reflective BCs, where an additional tech-
nical difficulty is represented by the non orthogonal character of the Anti-Reflective
transform and indeed the technique of Ng, R.Chan, and Tang can not be used. Nev-
ertheless, in both cases, the optimal preconditioner is the blurring matrix associated
to the symmetrized Point Spread Function (PSF). The geometrical idea on which
our proof is based is very simple and general, so it may be useful in the future to
prove theoretical results for new proposed boundary conditions. Computational re-
sults show that the preconditioning strategy is effective and it is able to give rise to a
meaningful acceleration both for slightly and highly non-symmetric PSFs.

Keywords Image deblurring problem · preconditioning

Mathematics Subject Classification (2000) MSC 65F10

1 Introduction

Image deblurring problems [4,11,12,13] represents an important and deeply studied
example belonging to the wide area of inverse problems. In its simplest form, the
deblurring problem consists in finding the true image of an unknown object, having
only the detected image, which is affected by blur and noise. In this paper we deal
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2 Pietro Dell’Acqua et al.

with the classical image restoration problem of blurred and noisy images in the case
of a space invariant blurring: under such assumption, the image formation process is
modelled according to the following integral equation with space invariant kernel

g(x) =
∫

h(x− x̃) f (x̃)dx̃+η(x), x ∈ R2, (1.1)

where f denotes the true physical object to be restored, g is the recorded blurred and
noisy image, η takes into account unknown errors in the collected data, e.g. mea-
surement errors and noise. We consider a standard 2D generalization of the rectangle
quadrature formula on an equispaced grid, ordered row-wise from the top-left corner
to the bottom-right one, for the discretization of (1.1). Thus, we obtain the relations

gi = ∑
j∈Z2

hi− j f j +ηi, i ∈ Z2, (1.2)

in which an infinite and a shift-invariant matrix Ã∞ = [hi− j](i, j)=((i1,i2),( j1, j2)), i.e., a
two-level Toeplitz matrix, is involved.

Though (1.2) relies in an infinite summation since the true image scene does not
have a finite boundary, the data gi are clearly collected only at a finite number of
values, so representing only a finite region of such an infinite scene. The blurring
operator typically shows also a finite support, so that it is completely described by a
Point Spread Function (PSF) mask such as

hPSF = [hi1,i2 ]i1=−q1,...,q1,i2=−q2,...,q2
(1.3)

where hi1,i2 ≥ 0 for any i1, i2 and ∑
q
i=−q hi = 1, i=(i1, i2), q=(q1,q2) and the normal-

ization is according to a suitable conservation law. Therefore, relations (1.2) imply

gi =
q

∑
s=−q

hs fi−s +ηi, i1 = 1, . . . ,n1, i2 = 1, . . . ,n2, (1.4)

where the range of collected data identifies the so called Field of View (FOV).
As in (1.2), we are assuming that all the involved data in (1.5) are reshaped in a

row-wise ordering, so that the arising linear system is

Ã f̃ = g−η (1.5)

where Ã ∈ RN(n)×N(n+2q) is a finite principal sub-matrix of Ã∞, with main diagonal
containing h0,0, f̃ ∈RN(n+2q), g,η ∈RN(n) and with N(m) =m1m2, for any two-index
m = (m1,m2).

According to (1.4), the problem is undetermined since the number of unknowns
involved in the convolution exceeds the number of recorded data. Thus, Boundary
conditions (BCs) are introduced to artificially describe the scene outside the FOV: the
values of unknowns outside the FOV are fixed or are defined as linear combinations
of the unknowns inside the FOV. In such a way (1.5) is reduced to a square linear
system

An f = g−η (1.6)
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with An ∈ RN(n)×N(n), n = (n1,n2), N(n) = n1n2 and f ,g,η ∈ RN(n).
Though the choice of the BCs does not affect the global spectral behavior of the
matrix, it may have a valuable impact both with respect to the accuracy of the restored
image (especially close to the boundaries where ringing effects can appear) and to
the computational costs for recovering f from the blurred datum, with or without
noise. Notice also that, typically, the matrix A is very ill-conditioned and there is a
significant intersection between the subspace related to small eigen/singular values
and the high frequency subspace.

The paper is organized as follows. In Section 2 we underline the importance of
boundary conditions and we summarize the structural and spectral properties of ma-
trices arising in the case of Reflective and Anti-Reflective BCs. Section 3 is devoted
to the presentation of theoretical results relative to the explicit construction of the
optimal preconditioner for the restoration problem with Anti-Reflective BCs. In Sec-
tion 4 we report computational results with respect to two deblurring problems, the
former having a slightly non-symmetric PSF and the latter having an highly non-
symmetric PSF, using the proposed preconditioning (combined with Tikhonov filter-
ing) for Landweber method. Finally, some conclusions and perspectives are drown in
Section 5.

2 The role of boundary conditions in the restoration problem

Hereafter we summarize the relevant properties of two recently proposed type of BCs,
i.e., the Reflective [17] and Anti-Reflective BCs [20], with respect both to structural
and spectral properties of the resulting matrices. Indeed, the use of classical periodic
BCs enforces a circulant structure and the spectral decomposition can be computed
efficiently with the fast Fourier transform (FFT) [6], but these computational facil-
ities are coupled with significant ringing effects [4], whenever a significant discon-
tinuity is introduced into the image. Thus, the target is to obtain the best possible
approximation properties, keeping unaltered the fact that the arising matrix shows an
exploitable structure. Reflective and Anti-Reflective BCs more carefully describe the
scene outside the FOV and give rise to exploitable structures. Clearly, several other
methods deal with this topic in the literature, e.g. local mean value [19] or extrapo-
lation techniques (see [14] and references therein). Nevertheless, the penalty of their
good approximation properties could lie in a linear algebra problem more difficult
to cope with. Hereafter, as more natural in the applications, we will use a two-index
notation: we denote by F = [ fi1,i2 ]i1=1,...,n1,i2=1,...,n2

the true image inside the FOV
and by G = [gi1,i2 ]i1=1,...,n1,i2=1,...,n2

the recorded image.

2.1 Reflective boundary conditions

In [17] Ng et al. analyze the use of Reflective BCs, both from the model and the
linear algebra point of view. The improvement with respect to Periodic BCs amounts
to the preserved continuity of the image. In reality, the scene outside the FOV is
assumed to be a reflection of the scene inside the FOV. For example, with a boundary
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at x1 = 0 and x2 = 0 the reflective condition is given by f (±x1,±x2) = f (x1,x2).
More precisely, along the borders, the BCs impose

fi1,1−i2 = fi1,i2 , fi1,n2+i2 = fi1,n2+1−i2 ,for any i1 = 1, . . . ,n1, i2 = 1, . . . ,q2
f1−i1,i2 = fi1,i2 , fn1+i1,i2 = fn1+1−i1,i2 ,for any i1 = 1, . . . ,q1, i2 = 1, . . . ,n2,

and, at the corners, for every i1 = 1, . . . ,q1, i2 = 1, . . . ,q2 the use of BCs leads to

f1−i1,1−i2 = fi1,i2 , fn1+i1,n2+i2 = fn1+1−i1,n2+1−i2 ,
f1−i1,n2+i2 = fi1,n2+1−i2 , fn1+i1,1−i2 = fn1+1−i1,i2 ,

i.e., a double reflection, first with respect to one axis and after with respect to the
other, no matter about the order.

As a consequence the rectangular matrix Ã is reduced to a square Toeplitz-plus-
Hankel block matrix with Toeplitz-plus-Hankel blocks, i.e., An shows the two-level
Toeplitz-plus-Hankel structure. Moreover, if the blurring operator satisfies the strong
symmetry condition, i.e., it is symmetric with respect to each direction, formally

h|i| = hi for any i =−q, . . . ,q. (2.1)

then the matrix An belongs to DCT-III matrix algebra and its spectral decomposition
can be computed very efficiently using the fast discrete cosine transform (DCT-III)
[21]. More in detail, let Cn = {An ∈ RN(n)×N(n),n = (n1,n2),N(n) = n1n2 | An =
RnΛnRT

n } be the two-level DCT-III matrix algebra, i.e., the algebra of matrices that
are simultaneously diagonalized by the orthogonal transform

Rn = Rn1 ⊗Rn2 , Rm =

[√
2−δt,1

m
cos
{
(s−1)(t−1/2)π

m

}]m

s,t=1

, (2.2)

with δs,t denoting the Kronecker symbol.
The explicit matrix structure is An = Toeplitz(V )+Hankel(σ(V ),Jσ(V )), with V =
[V0 V1 . . . Vq1 0 . . .0] and where each Vi1 , i1 = 1, . . . ,q1 is the unilevel DCT-III matrix
associated to the ith1 row of the PSF mask, i.e., Vi1 = Toeplitz(vi1)+Hankel(σ(vi1),
Jσ(vi1)), with vi1 = [hi1,0, . . . ,hi1,q2 ,0, . . . ,0]. Here, σ denotes the shift operator such
that σ(vi1) = [hi1,1, . . . ,hi1,q2 ,0, . . . ,0] and J denotes the usual flip matrix; at the block
level the same operations are intended in block-wise sense.

Not only the structural characterization, but also the spectral description is com-
pletely known: let f be the bivariate generating function associated to the PSF mask
(1.3), that is

f (x1,x2) = h0,0 +2
q1

∑
s1=1

hs1,0 cos(s1x1)+2
q2

∑
s2=1

h0,s2 cos(s2x2)

+4
q1

∑
s1=1

q2

∑
s2=1

hs1,s2 cos(s1x1)cos(s2x2), (2.3)

then the eigenvalues of the corresponding matrix An ∈ Cn are given by

λs(An) = f
(

x[n1]
s1 ,x[n2]

s2

)
, s = (s1,s2), x[m]

r =
(r−1)π

m
,
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where s1 = 1, . . . ,n1, s2 = 1, . . . ,n2, and where the two-index notation highlights the
tensorial structure of the corresponding eigenvectors. Finally, note that standard op-
erations like matrix-vector products, resolution of linear systems and eigenvalues
evaluations can be performed by means of FCT-III [17] within O(n1n2 log(n1n2))
arithmetic operations (ops).

2.2 Anti-Reflective boundary conditions

More recently, Anti-Reflective boundary conditions (AR-BCs) have been proposed
in [20] and studied [1,2,3,8,10,9,18,22]. The improvement relies in the fact that not
only the continuity of the image, but also of the normal derivative, are guaranteed
at the boundary. This higher regularity, not shared with Dirichlet or periodic BCs,
and only partially shared with reflective BCs, significantly reduces typical ringing
artifacts in the restored image.

The key idea is simply to assume that the scene outside the FOV is the anti-
reflection of the scene inside the FOV. For example, with a boundary at x1 = 0 the
anti-reflective condition imposes f (−x1,x2)− f (x∗1,x2) = −( f (x1,x2)− f (x∗1,x2)),
for any x2, where x∗1 is the center of the one-dimensional anti-reflection, i.e.,

f (−x1,x2) = 2 f (x∗1,x2)− f (x1,x2), for any x2.

Notice that, in order to preserve a tensorial structure, a double anti-reflection, first
with respect to one axis and after with respect to the other, is considered at the corners,
so that the BCs impose

f (−x1,−x2) = 4 f (x∗1,x
∗
2)−2 f (x∗1,x2)−2 f (x1,x∗2)+ f (x1,x2),

where (x∗1,x
∗
2) is the center of the two-dimensional anti-reflection. More specifically,

by choosing as center of the anti-reflection the first available data, along the borders,
the BCs impose

f1−i1,i2=2 f1,i2− fi1+1,i2 , fn1+i1,i2=2 fn1,i2− fn1−i1,i2 ,i1 = 1, . . . ,q1, i2 = 1, . . . ,n2,
fi1,1−i2=2 fi1,1− fi1,i2+1, fi1,n2+i2=2 fi1,n2− fi1,n2−i2 ,i1 = 1, . . . ,n1, i2 = 1, . . . ,q2.

At the corners, for any i1 = 1, . . . ,q1 and i2 = 1, . . . ,q2, we find

f1−i1,1−i2 = 4 f1,1−2 f1,i2+1−2 fi1+1,1 + fi1+1,i2+1,
f1−i1,n2+i2 = 4 f1,n2 −2 f1,n2−i2 −2 fi1+1,n2 + fi1+1,n2−i2 ,
fn1+i1,1−i2 = 4 fn1,1−2 fn1,i2+1−2 fn1−i1,1 + fn1−i1,i2+1,

fn1+i1,n2+i2 = 4 fn1,n2 −2 fn1,n1−i2 −2 fn1−i1,n2 + fn1−i1,n2−i2 .

As a matter of fact, the rectangular matrix Ã is reduced to a square Toeplitz-plus-
Hankel block matrix with Toeplitz-plus-Hankel blocks, plus an additional structured
low rank matrix. More details on this structure in the general case are reported in
Section 3. Hereafter, we observe that again under the assumption of strong symmetry
of the PSF and of a mild finite support condition (more precisely hi = 0 if |i j| ≥ n−2,
for some j ∈ {1,2}), the linear system An f = g is such that An belongs to the A R2D

n
commutative matrix algebra [2].
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This new algebra shares some properties with the τ (or DST-I) algebra [5]. Going
inside the definition, a matrix An ∈A R2D

n has the following block structure

An =



H̃0 +Z1 0T 0
H̃1 +Z2 0

...
...

H̃q1−1 +Zq1 0
H̃q1 τ(H̃0, . . . , H̃q1) H̃q1
0 H̃q1−1 +Zq1
...

...
0 H̃1 +Z2
0 0T H̃0 +Z1


, (2.4)

where τ(H̃0, . . . , H̃q1) is a block τ matrix with respect to the A R1D blocks H̃i1 , i1 =
1, . . . ,q1 and Zk = 2∑

q1
t=k H̃t for k = 1, . . . ,q1. In particular, the A R1D block H̃i1 is

associated to ith1 row of the PSF, i.e., h[1D]
i1

= [hi1,i2 ]i2=−q2,...,q2 and it is defined as

H̃i1 =



hi1,0 + zi1,1 0T 0
hi1,1 + zi1,2 0

...
...

hi1,q2−1 + zi1,q2 0
hi1,q2 τ(hi1,0, . . . ,hi1,q2) hi1,q2

0 hi1,q2−1 + zi1,q2
...

...
0 hi1,1 + zi1,2
0 0T hi1,0 + zi1,1


, (2.5)

where zi1,k = 2∑
q2
t=k hi1,t for k = 1, . . . ,q2 and τ(hi1,0, . . . ,hi1,q2) is the unilevel τ ma-

trix associated to the one-dimensional PSF h[1D]
i1

previously defined. Notice that the
rank-1 correction given by the elements zi1,k pertains to the contribution of the anti-
reflection centers with respect to the vertical borders, while the low rank correction
given by the matrices Zk pertains to the contribution of the anti-reflection centers with
respect to the horizontal borders.

Favorable computational properties are guaranteed also by virtue of the τ struc-
ture, so that, firstly we briefly summarize the relevant properties of the two-level τ

algebra [5]. Let Tn = {An ∈ RN(n)×N(n),n = (n1,n2),N(n) = n1n2 | An = QnΛnQn}
be the two-level τ matrix algebra, i.e., the algebra of matrices that are simultaneously
diagonalized by the symmetric orthogonal transform

Qn = Qn1 ⊗Qn2 , Qm =

[√
2

m+1
sin
{

stπ
m+1

}]m

s,t=1

. (2.6)

With the same notation as the DCT-III algebra case, the explicit structure of the matrix
is two level Toeplitz-plus-Hankel. More precisely, An =Toeplitz(V )−Hankel(σ2(V ),
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Jσ2(V )) with V = [V0 V1 . . . Vq1 0 . . .0], where each Vi1 , i1 = 1, . . . ,q1 is a the
unilevel τ matrix associated to the ith1 row of the PSF mask, i.e., Vi1 =Toeplitz(vi1)−
Hankel(σ2(vi1),Jσ2(vi1)) with vi1 = [hi1,0, . . . ,hi1,q2 ,0, . . . ,0]. Here, we denote by σ2

the double shift operator such that σ2(vi1) = [hi1,2, . . . ,hi1,q2 ,0, . . . ,0]; at the block
level the same operations are intended in block-wise sense. The spectral character-
ization is also completely known since for any An ∈ Tn the related eigenvalues are
given by

λs(An) = f
(

x[n1]
s1 ,x[n2]

s2

)
,s = (s1,s2), x[m]

r =
rπ

m+1
,

where s1 = 1, . . . ,n1, s2 = 1, . . . ,n2, and f is the bivariate generating function associ-
ated to the PSF defined in (2.3).

As in the DCT-III case, standard operations like matrix-vector products, resolu-
tion of linear systems and eigenvalues evaluations can be performed by means of
FST-I within O(n1n2 log(n1n2)) (ops). Now, with respect to the A R2D

n matrix alge-
bra, a complete spectral characterization is given in [2,3]. Of considerable importance
is the existence of a transform Tn that simultaneously diagonalizes all the matrices be-
longing to A R2D

n , although the orthogonality property is partially lost.

Theorem 2.1 [3] Any matrix An ∈ A R2D
n , n = (n1,n2), can be diagonalized by Tn,

i.e.,
An = TnΛnT̃n, T̃n = T−1

n

where Tn = Tn1 ⊗Tn2 , T̃n = T̃n1 ⊗ T̃n2 , with

Tm =


α−1

m 0T 0

α−1
m p Qm−2 α−1

m Jp

0 0T α−1
m

 and T̃m =


αm 0T 0

−Qm−2 p Qm−2 −Qm−2Jp

0 0T αm


The entries of the vector p∈Rm−2 are defined as p j = 1− j/(m−1), j = 1, . . . ,m−2,
J ∈Rm−2×m−2 is the flip matrix, and αm is a normalizing factor chosen such that the
Euclidean norm of the first and last column of Tm will be equal to 1.

Theorem 2.2 [2] Let An ∈A R2D
n , n = (n1,n2), the matrix related to the PSF hPSF =

[hi1,i2 ]i1=−q1,...,q1,i2=−q2,...,q2 . Then, the eigenvalues of An are given by

– 1 with algebraic multiplicity 4,
– the n2−2 eigenvalues of the unilevel τ matrix related to the one-dimensional PSF

h{r} = [∑
q1
i1=−q1

hi1,−q2 , . . . ,∑
q1
i1=−q1

hi1,q2 ], each one with algebraic multiplicity 2,
– the n1−2 eigenvalues of the unilevel τ matrix related to the one-dimensional PSF

h{c} = [∑
q2
i2=−q2

h−q1,i2 , . . . ,∑
q2
i2=−q2

hq1,i2 ], each one with algebraic multiplicity 2,
– the (n1 − 2)(n2 − 2) eigenvalues of the two-level τ matrix related to the two-

dimensional PSF hPSF .

It’s worthwhile noticing that the three sets of multiple eigenvalues are related
to the type of low rank correction imposed by the BCs through the centers of the
anti-reflections. More precisely, the eigenvalues of τn2−2(h{r}) and of τn1−2(h{c})
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take into account the condensed PSF information considered along the horizontal
and vertical borders respectively, while the eigenvalue equal to 1 takes into account
the condensed information of the whole PSF at the four corners. In addition, the
spectral characterization can be completely described again in terms of the generating
function associated to the PSF defined in (2.3), simply by extending to 0 the standard
τ evaluation grid, i.e., it holds

λs(An) = f
(

x[n1]
s1 ,x[n2]

s2

)
,s = (s1,s2),s j = 0, . . . ,n j, x[m]

r =
rπ

m+1
,

where the 0−index refers to the first/last columns of the matrix Tm [2]. See [1,3]
for some algorithms related to standard operations like matrix-vector products, res-
olution of linear systems and eigenvalues evaluations with a computational cost of
O(n1n2 log(n1n2)) ops. In fact, the computational cost of the inverse transform is
comparable with the direct transform one and the very true penalty seems to be the
loss of orthogonality due to the first/last column of the matrix Tm.

We stress that the latter complete spectral characterization and the related fast
algorithms for computing the eigenvalues are essential for the fast implementation of
the regularization algorithms used in the numerical section.

3 Optimal preconditioning

In this section we consider in more detail the matrices arising when Anti-Reflective
BCs are applied in the case of a non-symmetric PSF, the aim being to define the cor-
responding optimal preconditioner in the A R2D

n algebra.
More precisely, let A = A(h) be the Anti-Reflective matrix generated by the generic
PSF hPSF = [hi1,i2 ]i1=−q1,...,q1,i2=−q2,...,q2

and let P = P(s) ∈ A R2D
n be the Anti-

Reflective matrix generated by the symmetrized PSF sPSF = [si1,i2 ]i1=−q1,...,q1,i2=−q2,...,q2
.

We are looking for the optimal preconditioner P∗ = P∗(s∗) in the sense that

P∗ = arg
P∈A R2D

n

min‖A−P‖2
F , s̄ = arg

s
min‖A( f )−P(s)‖2

F , (3.1)

where ‖·‖F is the Frobenius norm, defined as ‖A‖F =
√

∑
i, j

∣∣ai, j
∣∣2. Indeed, an anal-

ogous result is know in [17] with respect to Reflective BCs: given a generic PSF
hPSF = [hi1,i2 ], the optimal preconditioner in the DCT-III matrix algebra is generated
by the strongly symmetric PSF sPSF = [si1,i2 ], given by

s±i1,±i2 =
h−i1,−i2 +h−i1,i2 +hi1,−i2 +hi1,i2

4
. (3.2)

Our interest is clearly motivated by the computational facilities proper of A R2D
n

algebra, coupled with its better approximation properties. We preliminary consider
the one-dimensional case in order to introduce the key idea in the proof with a simpler
notation. Moreover, the proof argument of the two-dimensional case is also strongly
connected to the one-dimensional one.
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3.1 One-dimensional case

Let us consider a generic PSF hPSF = [hi]i=−q,...,q. As introduced in Section 2.2, the
idea is to apply an anti-reflection with respect to the border points f1 and fn. Thus,
we impose

f1−i = 2 f1− f1+i, fn+i = 2 fn− fn−i, i = 1, . . . ,q.

The resulting matrix shows a more involved structure with respect to the Reflective
BCs, i.e., it is Toeplitz + Hankel plus a structured low rank correction matrix, as
follows

A =



v0 uT 0
v1
...

vq B wq
...

w1
0 −(Ju)T w0


(3.3)

with

uT = [h−1−h1, . . . ,h−q−hq,0, . . . ,0] , − (Ju)T = [0, . . . ,0,hq−h−q, . . . ,h1−h−1] ,

vk = hk +2
q

∑
j=k+1

h j, wk = h−k +2
q

∑
j=k+1

h− j,

B = T ([h−q, . . . ,hq])−HTL([h2, . . . ,hq])−HBR([h−2, . . . ,h−q]),

where T ([h−q, . . . ,hq]) is the Toeplitz matrix associated to the PSF hPSF , while HTL([h2,
. . . ,hq]) and HBR([h−2, . . . ,h−q]) are respectively the top-left Hankel and the bottom-
right Hankel matrices

HTL =



h2 h3 · · · hq 0 · · · 0

h3 hq 0
...

... hq 0
hq 0
0
...

...
0 · · · . . . 0


, HBR =



0 · · · · · · 0
...

...
0

0 h−q

0 h−q
...

... 0 h−q h−3
0 · · · 0 h−q · · · h−3 h−2


.

On the other hand, the Anti-Reflective matrix P ∈ A R1D generated by a strongly
symmetric PSF sPSF = [sq, . . . ,s1,s0,s1, . . . ,sq], among which the minimizer P∗ in
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(3.1) will be searched, is clearly given by

P =



r0 0T 0
r1
...

rq τ(s) rq
...

r1
0 0T r0


where rk = sk + 2

q
∑

j=k+1
s j and τ(s) is the τ (or DST-I) matrix generated by the PSF

sPSF .
The optimality of the Anti-Reflective matrix generated by the symmetrized PSF

defined as
s±i =

h−i +hi

2
. (3.4)

can be proved analogously as in [17] with respect to the internal part CI =B−τ(s) and
by invoking a non-overlapping splitting argument in order to deal with the external
border CB. In fact, we have

‖C‖2
F = ‖CI‖2

F +‖CB‖2
F

and it easy to show that the minimizer found for the first term is the same than for the
second one.

Notice that ‖uT‖2 and ‖−(Ju)T‖2 are constant terms in the minimization process.
So, as naturally expected, the obtained minimum value will be greater, the greater is
the loss of symmetry in the PSF. Moreover, with the choice (3.4), the first and last
column in CB share the same norm, i.e., again the most favourable situation. It is worth
stressing that the minimization process of the second term CB allows to highlight as
the tuning of each minimization parameter can be performed just by considering two
proper corresponding entries in the matrix, i.e.,

(rp− vp)+(rp−wp) = 0, p = 0, . . . ,q

where vp and wp are linear combination of the same coefficients with positive and
negative indices, respectively. Taking this fact in mind, we can now consider a more
geometrical approach to the proof, that allows to greatly simplify also the proof with
respect to the minimization of the internal part and can be applied to any type of BCs
based on the fact that the values of unknowns outside the FOV are fixed or are defined
as linear combinations of the unknowns inside the FOV.

Theorem 3.1 Let A = A(h) be the Anti-Reflective matrix generated by the generic
PSF hPSF = [hi]i=−q,...,q. The optimal preconditioner in the A R1D

n algebra is the
matrix associated with the symmetrized PSF sPSF = [sq, . . . ,s1,s0,s1, . . . ,sq], with

si =
h−i +hi

2
. (3.5)
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R

R

Q*

s

Fig. 3.1 A point R, its swapped point RS, the optimal approximation of both Q∗.

Proof Preliminarily, as shown in Figure 3.1, we simply observe that if we consider
in the Cartesian plane a point R = (Rx,Ry), its optimal approximation Q∗, among the
points Q = (Qx,Qy) such that Qx = Qy, is obtained as the intersection between the
line y = x, with the perpendicular line that pass through R, that is{

y−Ry =−(x−Rx)
y = x

hence Q∗x = Q∗y = (Rx +Ry)/2. The same holds true if we consider the swapped point
RS = (Ry,Rx), since they share the same distance, i.e., d(R,Q∗) = d(RS,Q∗).

Clearly, due to linearity of obtained expression, this result can be extended also
in the case of any linear combination of coordinates. Thus, by explicitly exploiting
the structure of A and P, we define as x-coordinate of a point the entry with negative
index and as y-coordinate of the same point the corresponding entry with positive
index. For the sake of simplicity we report an example for q = 3, in which we put in
evidence the x or y coordinate definition,

C = A−P =



ω
y
0 νx

1 νx
2 νx

3
ω

y
1 ζ

y
0 ζ x

2 θ x
2 θ x

3
ω

y
2 ζ

y
1 θ0 θ x

1 θ x
2 θ x

3
ω

y
3 θ

y
2 θ

y
1 θ0 θ x

1 θ x
2 ωx

3
θ

y
3 θ

y
2 θ

y
1 θ0 ζ x

1 ωx
2

θ
y
3 θ

y
2 ζ

y
2 ζ x

0 ωx
1

ν
y
3 ν

y
2 ν

y
1 ωx

0


−



ω̂
y
0 0 0 0

ω̂
y
1 ζ̂

y
0 ζ̂ x

2 θ̂ x
2 θ̂ x

3
ω̂

y
2 ζ̂

y
1 θ̂0 θ̂ x

1 θ̂ x
2 θ̂ x

3
ω̂

y
3 θ̂

y
2 θ̂

y
1 θ̂0 θ̂ x

1 θ̂ x
2 ω̂x

3
θ̂

y
3 θ̂

y
2 θ̂

y
1 θ̂0 ζ̂ x

1 ω̂x
2

θ̂
y
3 θ̂

y
2 ζ̂

y
2 ζ̂ x

0 ω̂x
1

0 0 0 ω̂x
0


,

Here, we set the points

Θi = (θ x
i ,θ

y
i ) = (h−i,hi)

Ωi = (ωx
i ,ω

y
i ) = (h−i +2

q

∑
j=i+1

h− j,hi +2
q

∑
j=i+1

h j) = (θ x
i +2

q

∑
j=i+1

θ
x
j ,θ

y
i +2

q

∑
j=i+1

θ
y
j )

Ni = (νx
i ,ν

y
i ) = (h−i−hi,hi−h−i) = (θ x

i −θ
Sx
i ,θ y

i −θ
Sy
i )

and

Z0 = (ζ x
0 ,ζ

y
0 ) = (h0−h−2,h0−h2) = (θ x

0 −θ
x
2 ,θ

y
0 −θ

y
2 )

Z1 = (ζ x
1 ,ζ

y
1 ) = (h−1−h−3,h1−h3) = (θ x

1 −θ
x
3 ,θ

y
1 −θ

y
3 )

Z2 = (ζ x
2 ,ζ

y
2 ) = (h−1−h3,h1−h−3) = (θ x

1 −θ
Sx
3 ,θ y

1 −θ
Sy
3 )
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related to the Hankel corrections. The points Θ̂i, Ω̂i, Ẑi related to the matrix P are de-
fined in a similar manner, taking into account the strong symmetry property, i.e. they
have the same x and y coordinates. More in general, the key idea is to transform the
original minimization problem in the equivalent problem of minimizing the quantity

c0d(Θ0,Θ̂0)
2 + . . .+ cqd(Θq,Θ̂q)

2 +d(Z0, Ẑ0)
2 + . . .+d(Zm, Ẑm)

2

+d(Ω0,Ω̂0)
2 + . . .+d(Ωq,Ω̂q)

2 +d(N1,0)2 + . . .+d(Nq,0)2,
(3.6)

where c j are some constants taking into account the number of constant Toeplitz
entries. Now, by referring to the initial geometrical observation, we start from points
pertaining to the Toeplitz part, that can be minimized separately, and we obtain the
minimizer (3.5). It is also an easy check to prove the same claim with respect to any
other terms, by invoking the quoted linearity argument.

3.2 Two-dimensional case

Let hPSF = [hi1,i2 ]i1=−q1,...,q1,i2=−q2,...,q2
be a generic PSF. As introduced in Section

2.2, the idea is to apply an anti-reflection with respect to the border points f1,i2 , fi1,1
and fn1,i2 , fi1,n2 , i1 = 1, . . . ,n1, i2 = 1, . . . ,n2, and a double anti-reflection at the cor-
ners in order to preserve the tensorial structure. The resulting matrix shows a more
involved structure, i.e., it is block Toeplitz + Hankel with Toeplitz + Hankel blocks
plus a structured low rank correction matrix, as follows

A =



V0 U 0
V1
...

Vq1 B Wq1
...

W1
0 −JU W0


, (3.7)

with

U =
[
Ĥ−1− Ĥ1, . . . , Ĥ−q1 − Ĥq1 ,0, . . . ,0

]
, − JU =

[
0, . . . ,0, Ĥq1 − Ĥ−q1 , . . . , Ĥ1− Ĥ−1

]
,

Vj = Ĥ j +2
q1

∑
i= j+1

Ĥi, Wj = Ĥ− j +2
q1

∑
i= j+1

Ĥ−i,

B = T (Ĥ−q1 , . . . , Ĥq1)−HTL(Ĥ2, . . . , Ĥq1)−HBR(Ĥ−2, . . . , Ĥ−q1).

where T indicates the block Toeplitz matrix, while HTL and HBR are respectively the
top-left block Hankel matrix and the bottom-right block Hankel matrix as just previ-
ously depicted in the unilevel setting and where the block Ĥ j is defined, according to
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(3.3), as

Ĥ j =



v j,0 uT
j 0

v j,1
...

v j,q2 B j w j,q2
...

w j,1
0 −(Ju j)

T w j,0


, (3.8)

with B j = T (h j,−q2 , . . . ,h j,q2)−HTL(h j,2, . . . ,h j,q2)−HBR(h j,−2, . . . ,h j,−q2).
Refer to (2.4) and (2.5) for the structure of the matrix P related to a strongly

symmetric PSF in which the minimizer P∗, see (3.1), will be searched.

Theorem 3.2 Let A = A(h) be the Anti-Reflective matrix generated by the generic
PSF hPSF = [hi1,i2 ]i1=−q1,...,q1,i2=−q2,...,q2

.

The optimal preconditioner in the A R2D
n algebra is the matrix associated with the

symmetrized PSF sPSF = [si1,i2 ]i1=−q1,...,q1,i2=−q2,...,q2
, with

s±i1,±i2 =
h−i1,−i2 +h−i1,i2 +hi1,−i2 +hi1,i2

4
. (3.9)

Proof The proof can be done by extending the geometrical approach just consid-
ered in the one-dimensional case: we simply observe that if we consider in the 4-
dimensional space a point R = (Rx,Ry,Rz,Rw), its optimal approximation Q∗ among
the points Q = (Qx,Qy,Qz,Qw) belonging to the line L

x = t
y = t
z = t
w = t

is obtained by minimizing the distance

d2(L ,R) = 4t2−2t(Rx +Ry +Rz +Rw)+R2
x +R2

y +R2
z +R2

w.

This is a trinomial of the form αt2 +β t + γ , with α > 0 and we find the minimum by
using the formula for computing the abscissa of the vertex of a parabola

t∗ =− β

2α
=

Rx +Ry +Rz +Rw

4
.

Hence the point Q∗ is defined as Q∗x = Q∗y = Q∗z = Q∗w = t∗. The same holds true if
we consider any swapped point RS, not unique but depending on the permutation at
hand, since they share the same distance, i.e., d(R,Q∗) = d(RS,Q∗). Again, thanks
to the linearity of obtained expression, this result can be extended also in the case of
any linear combination of coordinates.
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Thus, by explicitly exploiting the structure of the matrices A and P, we define
a point by referring to the entry with positive and negative two-index. For instance,
points pertaining to the Toeplitz part are defined as

Θi1,i2 = (θ x
i1,i2 ,θ

y
i1,i2

,θ z
i1,i2 ,θ

w
i1,i2) = (h−i1,−i2 ,h−i1,i2 ,hi1,−i2 ,hi1,i2),

Θ̂i1,i2 = (θ̂ x
i1,i2 , θ̂

y
i1,i2

, θ̂ z
i1,i2 , θ̂

w
i1,i2) = (s−i1,−i2 ,s−i1,i2 ,si1,−i2 ,si1,i2),

respectively.
As in the unilevel setting, the original minimization problem is transformed in

the equivalent problem of minimizing the sum of squared distances analogously as in
(3.6). We start again from points pertaining to the Toeplitz part, that can be minimized
separately, and we obtain the minimizer (3.9). It is also an easy check to prove the
same claim with respect to any other couple of points pertaining to Hankel or low
rank corrections, by invoking the quoted linearity argument.

It is worth stressing that this proof idea is very powerful in its generality. It can
be applied to any type of BCs based on the fact that the values of unknowns outside
the FOV are defined as linear combinations of the unknowns inside the FOV, so that
it may be useful in the future to prove theoretical results for new proposed BCs.

4 Computational results

A well-known iterative method for solving the image deblurring problem is Landwe-
ber method [15], whose (k+1)-th iteration step is defined by

xk+1 = xk + τAH(g−Axk), (4.1)

where A is the blurring matrix, g is the recorded image and τ is the descent parameter
(we set it equal to one). As one can observe experimentally, the restorations seem to
converge in the initial iterations, before they become worse and finally diverge; this
phenomenon is called semiconvergence. Hence Landweber method is a regularization
method, where the number of steps k is the regularization parameter. Moreover it has
good stability properties, but it is usually very slow to converge to the sought solution.
Therefore it is a good candidate for testing the proposed preconditioning technique.
Thus we introduce the preconditioned Landweber method

xk+1 = xk + τDAH(g−Axk), (4.2)

where D is the preconditioner. In order to build it, we compute the eigenvalues λ j
of the blurring matrix associated to the PSF and to periodic BCs (via FFT) or to the
symmetrized PSF and to Reflective BCs (via FCT) or to the symmetrized PSF and
to Anti-Reflective BCs (via FST, see Theorem 2.1 and Theorem 2.2 and comments
below), then we apply the Tikhonov Filter

d j =
1∣∣λ j
∣∣2 +α

(4.3)
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to determine the eigenvalues d j of D; finally the PSF related to D can be obtained via
IFFT or IFCT or IFST (the inverses of the previous transforms, namely inverse FFT,
inverse FCT, inverse FST)). In numerical experiments we have set the parameter α

manually, so that we have reached excellent performances both in terms of quality of
the restorations and in acceleration of the method.

Actually in our implementation, which is partially based on the Matlab Toolbox
RestoreTools [16], we have never worked with AH , but always with A′, that is the
matrix related to the PSF rotated by 180 degrees. This approach is known in litera-
ture as reblurring strategy [10]. The reason behind this choice resides in one of the
main problems of Anti-Reflective algebra A R, i.e. the fact that it is not closed under
transposition. We stress that AH and A′ are the same thing in case of periodic and zero
boundary conditions, but they are different for Reflective and Anti-Reflective ones.

To test these different BCs and preconditioning techniques, we have taken into
account the Cameraman deblurring problem of Figure 4.1, in which the PSF is a
slightly non-symmetric portion of a Gaussian blur, and the Bridge deblurring problem
of Figure 4.4, in which the PSF is an highly non-symmetric portion of a Gaussian blur.
In both cases we have generated the blurred and noisy data g, adding about 0.1%
of white Gaussian noise. We have chosen to add a low level of noise to emphasize
the importance of boundary conditions, which play a leading role when the noise
is low, while they become less decisive when it grows up. Since we know the true
image f , to measure the quality of the deblurred images we compute the Relative
Restoration Error (RRE) ‖x− f‖F /‖ f‖F , where ‖·‖F is the Frobenius norm and x
is the computed restoration.

As we expected, from Table 4.1 and Table 4.2, we can notice that both Reflective
and Anti-Reflective boundary conditions outperform periodic ones, which give rise to
poor restorations (see first image of Figure 4.2 and Figure 4.5). Furthermore by means
of Anti-Reflective BCs (see third image of Figure 4.2 and Figure 4.5) we can gain
restorations of better quality compared with ones obtained employing Reflective BCs
(see second image of Figure 4.2 and Figure 4.5). From Tables 4.1-4.2 and Figures
4.3-4.6 we can see that all these considerations hold also for D-Landweber method
— i.e. Landweber method with preconditioning — which for a suitable choice of the
parameter α is able to reach restorations of the same quality of the classical Landwe-
ber method in much smaller number of steps. In particular the reduction in steps
for both Reflective and Anti-Reflective BCs is around 50 times for the Cameraman
deblurring problem and around 8 for the Bridge deblurring problem.

We stress that the iteration count reported in Table 4.2 in the Anti-Reflective row
does not have to deceive, because, as it can be seen from Figure 4.7, if we compare
the restorations gained by Landweber (preconditioned or not) at any given fixed iter-
ation, employing Reflective BCs or Anti-Reflective BCs, we see that the latter shows
always equal or better restoration quality. The same remark holds for the Cameraman
deblurring problem (see Table 4.1). In fact Figure 4.7 is very instructive because it
tells to the generic user two things: a) the curves for Reflective and Anti-Reflective
BCs are very flat, b) the approximation obtained when using Anti-Reflective BCs is
always better or equal to that obtained with Reflective BCs. The combined message
of the previous two items is that we can safely choose the Anti-Reflective BCs, even
when we are unable to estimate precisely the stopping criterion for deciding the op-
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timal iteration: we notice that this observation does not hold for the periodic BCs
where a small error in the evaluation of the optimal iteration leads to a substantial
deterioration of the quality of the resulting restored image.

In the end, from the results reported in this section we can say that our proposal
of the optimal preconditioner in the context of Anti-Reflective BCs is as effective as
the one introduced in [17] for Reflective BCs. Therefore the present work represents
a theoretical and numerical continuation and strengthening of that line of research.

Fig. 4.1 Cameraman deblurring problem: true image, PSF, blurred and noisy image.

Landweber D-Landweber
RRE IT RRE IT

Periodic 0.2147 46 0.2136 3
Reflective 0.1611 953 0.1611 19

Anti-Reflective 0.1582 1461 0.1582 25

Table 4.1 Results of the classical and preconditioned Landweber method related to the Cameraman de-
blurring problem, employing different BCs.

Fig. 4.2 Landweber restorations, employing periodic, reflective, anti-reflective BCs.
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Fig. 4.3 Preconditioned Landweber restorations, employing periodic, reflective, anti-reflective BCs.

Fig. 4.4 Bridge deblurring problem: true image, PSF, blurred and noisy image.

Landweber D-Landweber
RRE IT RRE IT

Periodic 0.2573 9 0.2561 2
Reflective 0.2195 1281 0.2195 146

Anti-Reflective 0.2114 12824 0.2114 1718

Table 4.2 Results of the classical and preconditioned Landweber method related to the Bridge deblurring
problem, employing different BCs.

Fig. 4.5 Landweber restorations, employing periodic, reflective, anti-reflective BCs.

5 Conclusions and Perspectives

Inspired by the theoretical results on optimal preconditioning stated in [17] in the
Reflective BCs environment, in this paper we have presented analogous results for
Anti-Reflective BCs. In both cases the optimal preconditioner is the blurring matrix
associated to the symmetrized PSF. We stress that our proof is based on a geometrical
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Fig. 4.6 Preconditioned Landweber restorations, employing periodic, reflective, anti-reflective BCs.

Fig. 4.7 Bridge deblurring problem: RRE trends of Landweber (on the left) and D-Landweber (on the
right) for different BCs.

idea, which allows to greatly simplify the used arguments, even when non orthogonal
transforms are involved. Moreover that idea is very powerful in its generality and it
may be useful in the future to prove theoretical results for new BCs.

Computational results have shown that the proposed preconditioning strategy is
effective and it is able to give rise to a meaningful acceleration both for slightly and
highly non-symmetric PSFs. On the other hand, symmetrization is efficient when we
have a PSF that is near to be symmetric and it becomes more and more ineffective as
the PSF departs from symmetry. In this case, other techniques [7], which can manage
directly non-symmetric structures, can gain better performances and in this direction
we see a substantial development in the near future.
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