Fixed point indices of central configurations

D.L. Ferrario

December 19, 2014

Abstract

Central configurations of n point particles in $E \cong \mathbb{R}^d$ with respect to a potential function U are shown to be the same as the fixed points of the normalized gradient map $F = -\nabla_M U/||\nabla_M U||_M$, which is an SO(d)-equivariant self-map defined on the intertia ellipsoid. We show that the SO(d)-orbits of fixed points of F are all fixed points of the map induced on the quotient by SO(d), and give a formula relating their indices (as fixed points) with their Morse indices (as critical points). At the end, we give an example of a non-planar relative equilibrium which is not a rotating central configuration. MSC Subject Class: 55M20, 37C25, 70F10.

Keywords: Central configurations, relative equilibria, n-body problem.

1 Central configurations

Let $E = \mathbb{R}^d$ be the *d*-dimensional Euclidean space, and $X = E^n \setminus \Delta$ the configuration space of E, defined as the space of all *n*-tuples of distinct points $q = (q_1, \ldots, q_n) \in E^n$ such that $q \notin \Delta$, where Δ is the collision set

$$\Delta = \bigcup_{i < j} \{ \boldsymbol{q} \in E^n : \boldsymbol{q}_i = \boldsymbol{q}_j \} \; .$$

Let $U: X \to \mathbb{R}$ be a regular potential function. For example, the graviational potential

(1.1)
$$U(\boldsymbol{q}) = \sum_{i < j} \frac{m_i m_j}{\|\boldsymbol{q}_i - \boldsymbol{q}_j\|^{\alpha}},$$

or more general potentials (charged particles, ...).

Given *n* real non-zero numbers m_1, \ldots, m_n (representing the masses of the *n* interacting point particles), let $\langle -, - \rangle_M$ denote the mass-metric on E^n , defined as $\langle \boldsymbol{v}, \boldsymbol{w} \rangle_M = \sum_{j=1}^n m_j \boldsymbol{v}_j \cdot \boldsymbol{w}_j$, where $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{dn}$ are two vectors tangent to E^n , and \cdot denotes the standard scalar product in *E*. If the masses are positive, then the mass-metric is a non-degenerate scalar product on E^n , which yields both the kinetic quadratic form (on the tangent bundle) $2K = \|\dot{\boldsymbol{q}}\|_M^2 = \sum_i m_i \|\dot{\boldsymbol{q}}_i\|^2$ and the inertia form $I = \|\boldsymbol{q}\|_M^2 = \sum_i m_i \|\boldsymbol{q}_i\|^2$.

Given such m_i , let ∇_M denote the gradient of U with respect to the bilinear product $\langle -, - \rangle_M$. Let us recall that if $dU(\mathbf{q})$ denotes the differential of U evaluated in \mathbf{q} , then for each tangent vector $\mathbf{v} \in T_{\mathbf{q}}E^n$, $dU(\mathbf{q})[\mathbf{v}] = \langle \nabla_M U(\mathbf{q}), \mathbf{v} \rangle_M$, and therefore

$$dU(\boldsymbol{q})[\boldsymbol{v}] = \sum_{j} \frac{\partial U}{\partial \boldsymbol{q}_{j}} \cdot \boldsymbol{v}_{j} = \sum_{j} m_{j} \left(m_{j}^{-1} \frac{\partial U}{\partial \boldsymbol{q}_{j}} \right) \cdot \boldsymbol{v}_{j},$$

from which it follows that in standard coordinates $(\nabla_M U)_j = m_j^{-1} \frac{\partial U}{\partial q_j}$.

Given the mass-metric gradient $\nabla_M U$, the corresponding Newton equations are

(1.2)
$$\frac{d^2 \boldsymbol{q}}{dt^2} = \nabla_M U(\boldsymbol{q})$$

(1.3) Definition. A configuration $q \in X$ is a central configuration iff there exists $\lambda \in \mathbb{R}$ such that $\nabla_M U(q) = \lambda q$.

(1.4) Remark. If U is homogeneous, this is equivalent to: \mathbf{q} is a central configuration iff there is a real-valued function $\phi(t)$ such that $\varphi(t)\mathbf{q}$ is a solution of $(1.2)^1$. If U is homogeneous, the set of central configurations is a cone in X.

(1.5) Remark. Furthermore, if U is invariant with respect to the group of all translations of E, then central configurations belong to the subspace

$$Y = \{ \boldsymbol{q} \in X : \sum_{j} m_{j} \boldsymbol{q}_{j} = 0 \} \subset X \subset E^{n},$$

and $\forall \boldsymbol{q} \in X \implies \nabla_M U(\boldsymbol{q}) \in \overline{Y} \subset E^n$, where \overline{Y} is the closure of Y in E^n . Therefore, if U is translation-invariant, the set of central configurations is a subset of Y. Sometimes central configurations are defined with the equation $\nabla_M U(\boldsymbol{q}) = \lambda(\boldsymbol{q} - \boldsymbol{c})$, where \boldsymbol{c} is the center of mass $\boldsymbol{c} = (\sum_j m_j)^{-1} \sum_j m_j \boldsymbol{q}_j$ of the configuration \boldsymbol{q} . This equation is invariant with respect to translations (if U is so).

(1.6) Definition. A configuration $q \in X$ is a relative equilibrium iff there is a one-parameter group of rotations $\varphi^t \colon E \to E$ (around the origin, without loss of generality) such that

$$\varphi^t(\boldsymbol{q}) = (\varphi^t(\boldsymbol{q}_1), \varphi^t(\boldsymbol{q}_2), \dots, \varphi^t(\boldsymbol{q}_n))$$

satisfies the equations of motion (1.2).²

¹Cf. [8], p. 61.

²Cf. [17], p. 47.

One-parameter subgrups of SO(N) are of the form $\varphi^t(q_1) = e^{t\Omega}q_1$, with Ω skew-symmetric $N \times N$ (non-zero) matrix.³ If U is invariant with respect to the above-mentioned one-parameter group of rotations $\varphi^t = e^{t\Omega}$, a relative equilibrium satisfies the equation

$$\Omega^2 \boldsymbol{q} = \nabla_M U(\boldsymbol{q}) \; .$$

If follows that if $\dim(E) = 2$, then $\Omega = \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix}$ with $\omega \in \mathbb{R}$, $\omega \neq 0$, and therefore such a relative equilibrium configuration is a central configuration, $-\omega^2 q = \nabla_M U(q)$. Conversely, planar central configurations with U(q) > 0(if U is homogeneous of negative degree) yield relative equilibria, with a suitable (angular speed) ω .

If dim(E) = 3, then since the non-zero 3×3 skew-symmetric matrix Ω has rank 2, E can be written as ker $\Omega \oplus E'$, where ker Ω is the fixed direction of the rotations $\varphi^t = e^{t\Omega}$, and E' is the orthogonal complement of ker Ω . In a suitable reference, $\Omega = \begin{bmatrix} 0 & -\omega & 0 \\ \omega & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. For further reference, let

denote the orthogonal projection.

If U is the homogeneous Newtonian potential of (1.1) with $\alpha > 0$ and $m_i > 0$, then it is easy to see that relative equilibrium configurations must belong to the plane E'. This is not true in general: it is possible to find examples of relative equilibria which are not planar - see (4.1) (and hence they are not central configurations). For more on equilibrium (and homographic) solutions: [19] (§369–§382bis at pp. 284–306), [4], [2].

Recent and non recent relevant literature on central configurations: [14], [7], [16, 17], [10, 11, 12], [8], [20], [1], [6], [3].

From now on, unless otherwise stated, assume that U is invariant with respect to all isometries in E, all masses $m_i > 0$ are positive, and U is homogeneous of negative degree $-\alpha$.

The potential U is invariant with respect to a suitable subgroup of $\Sigma_n \times$ O(E), where Σ_n is the symmetric group on n elements and O(E) denotes the orthogonal group on the euclidean space E. For example, if all masses are equal and U is defined as in (1.1), then $G = \Sigma_n \times O(E)$; if all masses are distinct, then $G = \{1\} \times O(E)$.

The following proposition is a well-known characterization of the set of CC, which we will generalize to relative equilibria in (1.9).

(1.8) Let $S \subset Y$ denote the inertia ellipsoid, defined as $S = \{q \in Y :$ $\|\boldsymbol{q}\|_{M}^{2} = 1$. A point $\boldsymbol{q} \in S$ is a central configuration if and only if it is a critical point of the restriction of U to S.

³Cf. [18], p. 401.

Proof. Critical points of $U|_S$ are points $\boldsymbol{q} \in Y$ such that ker $dU \supset T_{\boldsymbol{q}}S$. With respect to the (non-degenerate) bilinear form $\langle -, -\rangle_M$, this can be written as $\nabla_M U(\boldsymbol{q}) = \lambda \nabla_M (\|\boldsymbol{q}\|_M^2) = 2\lambda \boldsymbol{q}$. q.e.d.

(1.9) Assume $\dim(E) = 3$. Let C be the vertical cylinder defined as

$$C = \{ \boldsymbol{q} \in Y : \langle P \boldsymbol{q}, \boldsymbol{q} \rangle_M = c \}$$

where P is the projection of E to E' as in (1.7) and $c = \langle P \overline{q}, \overline{q} \rangle_M$. A configuration $\overline{q} \in Y$ is a relative equilibrium configuration rotating by $e^{t\Omega}$ if and only if it is a critical point of U restricted to $C \subset X$ and $U(\overline{q}) > 0$.

Proof. The configuration \boldsymbol{q} is a relative equilibrium configuration if and only if $\Omega^2 \boldsymbol{q} = \nabla_M U(\boldsymbol{q})$; since $\Omega^2 = -\omega^2 P$ for an $\omega \neq 0$, this is equivalent to

$$\nabla_M U(\boldsymbol{q}) = -\omega^2 P \boldsymbol{q}.$$

On the other hand, $\nabla_M (\langle P \boldsymbol{q}, \boldsymbol{q} \rangle_M) = 2P \boldsymbol{q}$, hence $\boldsymbol{q} \in C$ is a critical point of the restriction $U|_C$ iff $\nabla_M U(\boldsymbol{q}) = \lambda 2P \boldsymbol{q}$. The proof follows since, by homogeneity,

$$\langle \nabla_M U(\boldsymbol{q}), \boldsymbol{q} \rangle_M = -\alpha U(\boldsymbol{q})$$

and $\langle P\boldsymbol{q}, \boldsymbol{q} \rangle_M = \|P\boldsymbol{q}\|_M^2$.

(1.10) Let K be a subgroup of the symmetry group G of U on Y. Then the inertia ellipsoid S is K-invariant, and critical points of the restriction of U to $S^{K} = \{ \boldsymbol{q} \in S : K\boldsymbol{q} = \boldsymbol{q} \}$ are precisely the critical points of $U|_{S}$ belonging to S^{K} . If the vertical cylinder C is K-invariant, then critical points of the restriction of U to $C^{K} = \{ \boldsymbol{q} \in C : K\boldsymbol{q} = \boldsymbol{q} \}$ are precisely the critical points of the structure of $U|_{S}$ belonging to $U|_{C}$ belonging to C^{K} .

Proof. It is a consequence of Palais principle of Symmetric Criticality [9]. q.e.d.

2 Central configurations as (equivariant) fixed points.

In [5] a way to relate planar central configurations to projective classes of fixed points was introduced. We now generalize the results therein to arbitrary dimensions.

Consider a homogeneous potential U, as above with the further assumption that $\forall \boldsymbol{q}, U(\boldsymbol{q}) > 0$. From this it follows that $\nabla_M U(\boldsymbol{q}) \neq \boldsymbol{0}$ because $\langle \nabla_M U(\boldsymbol{q}), \boldsymbol{q} \rangle_M = -\alpha U(\boldsymbol{q}).$

(2.1) The map $F: S \to S$ defined as

$$F(\boldsymbol{q}) = -\frac{\nabla_M U(\boldsymbol{q})}{\|\nabla_M U(\boldsymbol{q})\|_M}$$

is well-defined, and a configuration $\bar{q} \in S$ is a central configuration if and only if it is a fixed point of F.

q.e.d.

Proof. It follows from the assumption that $\forall \boldsymbol{q}, \nabla_M U(\boldsymbol{q}) \neq \boldsymbol{0}$, and therefore F is well-defined. A configuration \boldsymbol{q} is fixed by F if and only if there exists $\lambda = \|\nabla_M U(\boldsymbol{q})\|_M > 0$ such that $\nabla_M U(\boldsymbol{q}) = -\lambda \boldsymbol{q}$. Hence, if $F(\boldsymbol{q}) = \boldsymbol{q}$ then \boldsymbol{q} is central. Conversely, by homogeneity of $U, \langle \nabla_M U(\boldsymbol{q}), \boldsymbol{q} \rangle_M = -\alpha U(\boldsymbol{q}),$ and hence if $\boldsymbol{q} \in S$ is a central configuration then $\nabla_M U(\boldsymbol{q}) = \lambda \boldsymbol{q} \implies \lambda = -\alpha U(\boldsymbol{q}) < 0$ and therefore $F(\boldsymbol{q}) = \boldsymbol{q}$.

Now, in general (and without the positivity assumption) the map F needs not being compactly fixed (see for example Robert's continuum [13] of central configurations with four unit masses and a fifth negative -1/4 mass in the origin⁴). In the graviational case (positive masses and Newtonian mutual attraction), the map F turns out to be compactly fixed [5] (see also Shub's estimates [15]).

(2.2) Let G be the symmetry group of U on Y, as above. Then F is G-equivariant. For each subgroup $K \subset G$, F induces a self-map $\overline{F}: S/K \to S/K$ on the quotient space S/K.

Proof. For $g \in G$, gS = S, and for each g such that $U(g\mathbf{q}) = U(\mathbf{q})$ the equality $\nabla_M U(g\mathbf{q}) = g\nabla_M U(\mathbf{q})$ holds. In fact, since $U \circ g = U$, $dU \circ g = dU$, and therefore for each vector \mathbf{v} one has $\langle \nabla_M U(\mathbf{q}), \mathbf{v} \rangle_M = dU(\mathbf{q})[\mathbf{v}] = dU(g\mathbf{q})[g\mathbf{v}] = \langle \nabla_M U(g\mathbf{q}), g\mathbf{v} \rangle_M = \langle g^{-1} \nabla_M U(g\mathbf{q}), \mathbf{v} \rangle_M$. Thus F is G-equivariant, and hence K-equivariant for each subgroup $K \subset G$. q.e.d.

Let U be a homogeneous potential with the following property: for each orthogonal projection $p: E \to P$ on a plane P, for each $q \in S$ there exists $j \in \{1, \ldots, n\}$ such that

(2.3)
$$p(\frac{\partial U}{\partial q_j}(q)) \cdot p(q_j) \le 0$$

Moreover, if there exists $i \in \{1, ..., n\}$ such that $p(\mathbf{q}_i) \neq 0$, then the j of (2.3) is such that $p(\mathbf{q}_j) \neq 0$.

It is easy to see that the Newtonian potential (1.1) (with positive masses and homogeneity $-\alpha$) satisfies Property (2.3): let j be the index maximizing

⁴In the AMS review of [13], D. Saari states that a similar effect occurs for positive masses, but with two or more homogeneous potentials. More precisely, should the potential be a sum of homogeneous potentials, then there always is a continuum of different relative equilibria configurations.

 $||p(q_k)||^2$ for k = 1, ..., n; then

$$p\left(\alpha \sum_{k \neq j} \frac{m_j m_k (\boldsymbol{q}_k - \boldsymbol{q}_j)}{\|\boldsymbol{q}_k - \boldsymbol{q}_j\|^{\alpha + 2}}\right) \cdot p(\boldsymbol{q}_j) = \alpha \left(\sum_{k \neq j} \frac{m_j m_k (p(\boldsymbol{q}_k) - p(\boldsymbol{q}_j))}{\|\boldsymbol{q}_k - \boldsymbol{q}_j\|^{\alpha + 2}}\right) \cdot p(\boldsymbol{q}_j)$$
$$= \alpha \sum_{k \neq j} \frac{m_j m_k (p(\boldsymbol{q}_k) \cdot p(\boldsymbol{q}_j) - \|p(\boldsymbol{q}_j)^2)\|}{\|\boldsymbol{q}_k - \boldsymbol{q}_j\|^{\alpha + 2}}$$
$$\leq \sum_{k \neq j} \frac{m_j m_k (\|p(\boldsymbol{q}_k)\| \|p(\boldsymbol{q}_j)\| - \|p(\boldsymbol{q}_j)^2)\|}{\|\boldsymbol{q}_k - \boldsymbol{q}_j\|^{\alpha + 2}}$$
$$\leq 0$$

It is trivial to see that if U satisfies (2.3), then the map $F: S \to S$ defined in (2.1) satisfies the following property: for each orthogonal projection $p: E \to P$ on a plane P, for each $q \in S$, there exists $j \in \{1, \ldots, n\}$ such that

(2.4)
$$p(F_j(\boldsymbol{q})) \cdot p(\boldsymbol{q}_j) \ge 0$$

(2.5) Theorem. Suppose that $G \supset SO(E)$, where as above G is the symmetry group of U on Y, and SO(E) = SO(d) (the group of rotations in E) acting diagonally on Y. Let $\overline{F} \colon S/SO(d) \to S/SO(d)$ be the map induced on the quotient space by (2.2). Assume that all masses are positive, U > 0 and (2.4) holds. Then, if $\pi \colon S \to S/SO(d)$ denotes the projection on the quotient,

$$\pi(\operatorname{Fix}(F)) = \operatorname{Fix}(\overline{F})$$
.

Proof. If $\mathbf{q} \in \operatorname{Fix}(F) \subset S$ is fixed by F, then $\overline{F}(\pi(\mathbf{q})) = \pi F(\mathbf{q}) = \pi(\mathbf{q}) \Longrightarrow \pi(\mathbf{q}) \in \operatorname{Fix}(\overline{F})$, hence $\pi(\operatorname{Fix}(F)) \subset \operatorname{Fix}(\overline{F})$. On the other hand, let $\pi(\mathbf{q}) \in \operatorname{Fix}(\overline{F})$. Then there exists a rotation $g \in SO(E)$ such that $F(\mathbf{q}) = g\mathbf{q}$. Without loss of generality, we can assume that $g = e^{\Omega}$, where Ω is an antisymmetric $d \times d$ matrix, with $k (2 \times 2)$ -blocks on the diagonal $\begin{bmatrix} 0 & -\theta_i \\ \theta_i & 0 \end{bmatrix}$, with $\theta_i \in [-\pi, \pi]$ for each $i = 1, \ldots, k$, and, if d is odd, a one-dimensional diagonal zero entry (d = 2k or d = 2k + 1). We can also assume that only the first (say, $l \leq k$) blocks have $\theta_i \neq 0$, hence Ω has l non-zero (2×2) diagonal blocks and is zero outside. Note that for each $\mathbf{x} \in E$, the quadratic form $(e^{\Omega}\mathbf{x}) \cdot (\Omega\mathbf{x})$ on E can be written with l non-singular positive-defined blocks

$$\theta_i \begin{bmatrix} \sin \theta_i & -\cos \theta_i \\ \cos \theta_i & \sin \theta_i \end{bmatrix} \sim \theta_i \begin{bmatrix} \sin \theta_i & 0 \\ 0 & \sin \theta_i \end{bmatrix}$$

on the diagonal, and hence it is non-negative. Moreover, if one writes $\boldsymbol{x} \in E \cong \mathbb{R}^d$ as $(\boldsymbol{z}_1, \boldsymbol{z}_2, \ldots, \boldsymbol{z}_l, x_{2l+1}, \ldots, x_d)$, with $\boldsymbol{z}_i \in \mathbb{R}^2$ for $i = 1, \ldots, l$ and $x_i \in \mathbb{R}$, then

(2.6)
$$(e^{\Omega} \boldsymbol{x}) \cdot (\Omega \boldsymbol{x}) = \sum_{i=1}^{l} \theta_i \sin \theta_i \|\boldsymbol{z}_i\|^2 .$$

Let $p_i: E \to \mathbb{R}^2$ denote the projection $\boldsymbol{x} \mapsto \boldsymbol{z}_i$, for $i = 1, \dots, l$. Since $F(e^{t\Omega}\boldsymbol{q})$ does not depend on $t \in \mathbb{R}$,

$$0 = \frac{d}{dt} \|F(e^{t\Omega}\boldsymbol{q})\|_{M}^{2}|_{t=0}$$

= $2\langle F(\boldsymbol{q}), \Omega \boldsymbol{q} \rangle_{M}$
= $2\langle e^{\Omega}\boldsymbol{q}, \Omega \boldsymbol{q} \rangle_{M} =$
= $2\sum_{j=1}^{n} m_{j}(e^{\Omega}\boldsymbol{q}_{j}) \cdot (\Omega \boldsymbol{q}_{j})$

For each j = 1, ..., n the inequality $m_j > 0$ holds, and for each $\boldsymbol{x} \in E$ the inequality $(e^{\Omega}\boldsymbol{x}) \cdot (\Omega \boldsymbol{x}) \geq 0$ holds: it follows that for each j, $(e^{\Omega}\boldsymbol{q}_j) \cdot (\Omega \boldsymbol{q}_j) = 0$. By (2.6), this implies that, given j, for each i = 1, ..., l either $p_i(\boldsymbol{q}_j) = 0$ or $\theta_i \in \{\pi, -\pi\}$ (since $\theta_i \neq 0$ for i = 1, ..., l). If $p_i(\boldsymbol{q}_j) = 0$ for each j, then actually $g\boldsymbol{q} = \boldsymbol{q}$, and therefore $\pi(\boldsymbol{q}) \in \pi(\operatorname{Fix}(F))$. So, without loss of generality one can assume that for each i = 1, ..., l there exists j such that $p_i(\boldsymbol{q}_j) \neq 0$. Suppose that $l \geq 1$, and therefore $\theta_1 = \pm \pi$. By property (2.4) there exists \overline{j} such that $p_1(F_{\overline{j}}(\boldsymbol{q})) \cdot p_1(\boldsymbol{q}_{\overline{j}}) \geq 0$ and $p_1(\boldsymbol{q}_{\overline{j}}) \neq 0$. But this would imply that

$$F(\boldsymbol{q}) = g\boldsymbol{q} = e^{\Omega}\boldsymbol{q} \implies -p_1(\boldsymbol{q}_{\bar{j}}) \cdot p_1(\boldsymbol{q}_{\bar{j}}) \ge 0 \implies p_1(\boldsymbol{q}_{\bar{j}}) = 0 ,$$

which is not possible. Therefore, if condition (2.4) holds, l = 0, and gq = q. The conclusion follows. q.e.d.

3 Projective fixed points and Morse indices

In this section, we finally prove the equation relating fixed point and Morse indices of central configurations.

(3.1) If U is homogeneous of degree $-\alpha$, then for each central configuration q, up to a linear change of coordinates

$$-\alpha U(\boldsymbol{q})(I - F'(\boldsymbol{q})) = D^2 \tilde{U}(\boldsymbol{q}),$$

where $F: S \to S$ is the function of (2.1), defined as $F(\mathbf{q}) = -\frac{\nabla_M U(\mathbf{q})}{\|\nabla_M U(\mathbf{q})\|_M}$, and $D^2 \tilde{U}(\mathbf{q})$ is the Hessian of the restriction \tilde{U} of U to S, evalued at \mathbf{q} .

Proof. After a linear change of coordinates in X, we can assume $m_i = 1$ for each *i* and $\boldsymbol{q} = (1, 0, ..., 0) = (1, \mathbf{0})$ (rescale \boldsymbol{q} by a diagonal matrix with suitable m_j on its diagonal, and apply a rotation - this leaves U homogeneous of the same degree). Given suitable linear coordinates $\boldsymbol{x} = (x_0, x_1, ..., x_k)$ in $Y \cong \mathbb{R}^{l+1}$, the ellipsoid S has equation $\|\boldsymbol{x}\|^2 = 1$, and $F(\boldsymbol{x}) = -\frac{\frac{dU}{dx}}{\|\frac{dU}{dx}\|}$,

where $\frac{dU}{dx} = \nabla U$ in the *x*-coordinates. Therefore, if $\boldsymbol{u} = (u_1, \ldots, u_l) \mapsto (\sqrt{1 - \|\boldsymbol{u}\|}, u_1, \ldots, u_l) \in S$ is a local chart around the central configuration $\boldsymbol{q} \sim (1, \mathbf{0}),$

(3.2)
$$\frac{\partial F_{\alpha}}{\partial u_{\beta}}(\mathbf{0}) = \frac{\partial^2 U}{\partial x_{\alpha} \partial x_{\beta}}(\mathbf{q}) \|\nabla U(\mathbf{q})\|^{-1}$$
$$D^2_{\alpha\beta} \tilde{U}(\mathbf{q}) = \frac{\partial^2 U}{\partial x_{\alpha} \partial x_{\beta}}(\mathbf{q}) - \delta_{\alpha\beta} \frac{\partial U}{\partial x_0} .$$

Now, $\frac{\partial U}{\partial x_0} = \langle \nabla U, \boldsymbol{q} \rangle = -\alpha U(\boldsymbol{q})$, and since \boldsymbol{q} is a central configuration, it is a fixed point of F and therefore

$$F(\boldsymbol{q}) = \boldsymbol{q} \implies \frac{\partial U}{\partial x_{\alpha}} = 0, \quad \text{for } \alpha = 1, \dots, l$$

and

where $\epsilon = \operatorname{dir}$

(3.3)
$$\frac{\partial U}{\partial x_0}(\boldsymbol{q}) = -\|\nabla U(\boldsymbol{q})\| = -\alpha U(\boldsymbol{q}) .$$

From (3.3) and (3.2) it follows that for $\alpha, \beta = 1, \ldots, l$,

(3.4)
$$D^{2}_{\alpha\beta}\tilde{U}(\boldsymbol{q}) + \delta_{\alpha\beta}\frac{\partial U}{\partial x_{0}} = \frac{\partial^{2}U}{\partial x_{\alpha}\partial x_{\beta}}(\boldsymbol{q}) = \frac{\partial F_{\alpha}}{\partial u_{\beta}}(\boldsymbol{0}) \|\nabla U(\boldsymbol{q})\|$$
$$\implies D^{2}\tilde{U}(\boldsymbol{q}) = -\alpha U(\boldsymbol{q})I + \alpha U(\boldsymbol{q})F'(\boldsymbol{q})$$

q.e.d.

(3.5) Corollary. Assume the hypotheses of Theorem (2.5) hold. Then for each non-degenerate projective class of central configurations $\mathbf{q} \in \operatorname{Fix}(\bar{F})$ in the maximal isotropy stratum of $\bar{S} = S/SO(d)$, the fixed point index $\operatorname{ind}(\mathbf{q}, \bar{F})$ and the Morse index $\mu_{\tilde{U}}(\mathbf{q})$ of \tilde{U} at \mathbf{q} are related by the equality

$$\operatorname{ind}(\boldsymbol{q}, \bar{F}) = (-1)^{\mu_{\tilde{U}}(\boldsymbol{q}) + \epsilon},$$

$$\ln S - d(d-1)/2 + \dim(S) = d(n-1) - 1 - d(d-1)/2.$$

Proof. Since \tilde{U} is SO(d)-invariant (with diagonal action), and the SO(d)-orbits in S with maximal isotropy type have dimension d(d-1)/2, the Hessian $D^2\tilde{U}$ has d(d-1)/2-dimensional kernel, if \boldsymbol{q} is non-degenerate. By proposition (3.1), if follows that F' has a d(d-1)/2-multiple eigenvalue 1, and $\operatorname{ind}(\boldsymbol{q},\bar{F}) = (-1)^c$, where c is the number of negative eigenvalues of $-D^2\tilde{U}$, i.e. the number of positive eigenvalues of $D^2\tilde{U}$, which is equal to $\mu_{-\tilde{U}}(\boldsymbol{q}) = \dim(S - d(d-1)/2) - \mu_{\tilde{U}}(\boldsymbol{q})$.

(3.6) Corollary. Let U be the Newton potential in (1.1), with positive masses, $\alpha > 0$, and dim(E) = 2. Then $X = \mathbb{C}^n \setminus \Delta$, and $S/SO(2) \approx \mathbb{P}^{n-2}(\mathbb{C})_0 \subset \mathbb{P}^{n-2}(\mathbb{C})$, where $\mathbb{P}^{n-2}(\mathbb{C})_0$ is the subset of $\mathbb{P}^{n-1}(\mathbb{C})$ defined in projective coordinates as $\mathbb{P}^{n-2}(\mathbb{C})_0 \cong \{[z_1 : \ldots, z_n] \in \mathbb{P}^n : \sum_j m_j z_j = 0, \forall i, j, z_i \neq z_j\}$. Then for each non-degenerate projective class of central configurations $q \in \operatorname{Fix}(\overline{F})$, with $\overline{F} : \mathbb{P}_0^{n-2}(\mathbb{C}) \to \mathbb{P}^{n-2}(\mathbb{C})$,

$$\operatorname{ind}(\boldsymbol{q}, \overline{F}) = (-1)^{\mu_{\overline{U}}(\boldsymbol{q})}$$

Proof. If d = 2, then d(n-1) - 1 - d(d-1)/2 = 2(n-2). q.e.d.

4 An example of non-planar relative equilibrium

(4.1) Example (Non-central and non-planar equilibrium solution). In $E \cong \mathbb{R}^3$, let R_x , R_y and R_z denote rotations of angle π around the three coordinate axes. Fix three non-zero constants c_1, c_2, c_3 . Consider the problem with 6 bodies in E, symmetric with respect to the group K with non-trivial elements of $\Sigma_6 \times SO(3)$

$$((34)(56), R_x), ((12)(56), R_y), ((12)(34), R_z)$$
.

Assume $m_j = 1$, for j = 1, ..., 6, and let U be the potential defined on E^6 by

$$U(\boldsymbol{q}) = \sum_{i < j} \frac{1 - \gamma_i \gamma_j}{\|\boldsymbol{q}_i - \boldsymbol{q}_j\|}$$

where

$$\gamma_1 = \gamma_2 = c_1, \quad \gamma_3 = \gamma_4 = c_2, \quad \gamma_5 = \gamma_6 = c_3$$

Now, U is invariant with respect to K, and the vertical cylinder is K-invariant: it follows from (1.9) that critical points of the restriction of U to C^{K} are equilibrium configurations.

In other words, three pairs of bodies of unit masses, each pair charged with charge c_j , are constrained each pair to belong to one of the coordinate axes and to be symmetric with respect to the origin.

The space $X^K = Y^K$ has dimension 3, and can be parametrized by (x, y, z), where x, y and z are (respectively) the coordinates along the corresponding axis of particles 1, 3 and 5. The generic configuration $\boldsymbol{q} \in X^K$ can be written as

$$\begin{aligned} & \boldsymbol{q}_1 = (x,0,0) & \boldsymbol{q}_2 = (-x,0,0) \\ & \boldsymbol{q}_3 = (0,y,0) & \boldsymbol{q}_4 = (0,-y,0) \\ & \boldsymbol{q}_5 = (0,0,z) & \boldsymbol{q}_6 = (0,0,-z), \end{aligned}$$

and the potential U restricted to X^K in such coordinates is

$$U(x,y,z) = \frac{1-c_1^2}{2|x|} + \frac{1-c_2^2}{2|y|} + \frac{1-c_3^2}{2|z|} + 4\frac{1-c_1c_2}{\sqrt{x^2+y^2}} + 4\frac{1-c_1c_3}{\sqrt{x^2+z^2}} + 4\frac{1-c_2c_3}{\sqrt{y^2+z^2}} + 4\frac{1-$$

The vertical cylinder $C^K \subset X^K$ is

$$C^{K} = \{ \boldsymbol{q} \in X^{K} : \langle P \boldsymbol{q}, \boldsymbol{q} \rangle_{M} = 2 \}$$

= $\{ (x, y, z) \in X^{K} : 2x^{2} + 2y^{2} = 2 \}$.

Hence an equilibrium solution is a critical point of $U(\cos t, \sin t, z)$ with positive value U > 0. Now, assume

$$(4.2) c_1 > 1, c_2 < -1, c_3 < -1.$$

Then $1 - c_1^2 < 0$, $1 - c_2^2 < 0$, $1 - c_3^2 < 0$, $1 - c_2 c_3 < 0$; moreover, $1 - c_1 c_2 > 0$ and $1 - c_1 c_3 > 0$. The restricted potential U is defined as

$$U(t,z) = \frac{1-c_1^2}{2|\cos t|} + \frac{1-c_2^2}{2|\sin t|} + \frac{1-c_3^2}{2z} + 4(1-c_1c_2) + 4\frac{1-c_1c_3}{\sqrt{\cos^2 t + z^2}} + 4\frac{1-c_2c_3}{\sqrt{\sin^2 t + z^2}}$$

and is defined on the strip $(t, z) \in T = (0, \pi/2) \times (0, +\infty)$. If

(4.3)
$$1 - c_1^2 + 8(1 - c_1 c_3) < 0,$$

then for each (t, z)

$$\frac{1-c_1^2}{2|\cos t|} + 4\frac{1-c_1c_3}{\sqrt{\cos^2 t + z^2}} < \frac{1-c_1^2}{2|\cos t|} + 4\frac{1-c_1c_3}{|\cos t|}$$
$$= \frac{1}{2|\cos t|} \left(1-c_1^2 + 8(1-c_1c_3)\right) < 0$$

and hence $U(t,z) < 4(1-c_1c_2)$ for each $(t,z) \in T$ and $U \to -\infty$ on the boundary of T.

Furthermore, for each $t \in (0, \pi/2)$,

$$\frac{\partial U}{\partial z} = \frac{c_3^2 - 1}{2z^2} + 4z \frac{c_2 c_3 - 1}{(z^2 + \sin^2 t)^{3/2}} - 4z \frac{1 - c_1 c_3}{(z^2 + \cos^2 t)^{3/2}} < \frac{c_3^2 - 1}{2z^2} + 4 \frac{c_2 c_3 - 1}{z^2} - 4z \frac{1 - c_1 c_3}{(z^2 + 1)^{3/2}} .$$

It follows that if

Ċ

(4.4)
$$c_3^2 - 1 + 8(c_2c_3 - 1) < 8(1 - c_1c_3),$$

then for every $t \in (0, \pi/2)$ there exists z_0 such that $z > z_0 \implies \frac{\partial U}{\partial z}(t, z) < 0$.

Thus, whenever both (4.3) and (4.4) hold, the restriction U(t, z) attains its maximum in the interior of the strip T. Such a maximum (t_m, z_m) corresponds to an equilibrium configuration if and only if $U(t_m, z_m) > 0$, from (1.9). Note that if $t = \pi/4$ and z = 1/2 then

$$U(\pi/4, z) = \frac{\sqrt{2}}{2}(2 - c_1^2 - c_2^2) + 4(1 - c_1c_2) + 1 - c_3^2 + \frac{4(2 - c_3(c_1 + c_2))}{\sqrt{3/4}},$$

which is positive, for example, if $c_{1}=20$ and $c_{2}=c_{3}=-2$. Such coefficients satisfy (4.2), (4.3) and (4.4), and therefore for such a choice of c_{i} there exist non-planar relative equilibrium configurations.

References

- ALBOUY, A. Symétrie des configurations centrales de quatre corps. C. R. Acad. Sci. Paris Sér. I Math. 320, 2 (1995), 217–220.
- [2] ALBOUY, A., AND CHENCINER, A. Le problème des n corps et les distances mutuelles. *Invent. Math.* 131, 1 (1998), 151–184.
- [3] ALBOUY, A., AND KALOSHIN, V. Finiteness of central configurations of five bodies in the plane. Ann. of Math. (2) 176, 1 (2012), 535–588.
- [4] BETTI, E. Sopra il moto di un sistema di un numero qualunque di punti che si attraggono o si respingono tra loro. Annali di Matematica Pura ed Applicata (1867-1897) 8, 1 (1877), 301–311.
- [5] FERRARIO, D. L. Planar central configurations as fixed points. J. Fixed Point Theory Appl. 2, 2 (2007), 277–291.
- [6] HAMPTON, M., AND MOECKEL, R. Finiteness of relative equilibria of the four-body problem. *Invent. Math.* 163, 2 (2006), 289–312.
- [7] MOECKEL, R. On central configurations. Math. Z. 205, 4 (1990), 499–517.
- [8] PACELLA, F. Central configurations of the N-body problem via equivariant Morse theory. Arch. Rational Mech. Anal. 97, 1 (1987), 59–74.
- [9] PALAIS, R. S. The principle of symmetric criticality. Comm. Math. Phys. 69, 1 (1979), 19–30.
- [10] PALMORE, J. I. Classifying relative equilibria. I. Bull. Amer. Math. Soc. 79 (1973), 904–908.
- [11] PALMORE, J. I. Classifying relative equilibria. II. Bull. Amer. Math. Soc. 81 (1975), 489–491.
- [12] PALMORE, J. I. Classifying relative equilibria. III. Lett. Math. Phys. 1, 1 (1975/76), 71–73.
- [13] ROBERTS, G. E. A continuum of relative equilibria in the five-body problem. Phys. D 127, 3-4 (1999), 141–145.
- [14] SAARI, D. G. Collisions, rings, and other Newtonian N-body problems, vol. 104 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2005.

- [15] SHUB, M. Appendix to Smale's paper: "Diagonals and relative equilibria". In Manifolds – Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197. Springer, Berlin, 1971, pp. 199–201.
- [16] SMALE, S. Topology and mechanics. I. Invent. Math. 10 (1970), 305– 331.
- [17] SMALE, S. Topology and mechanics. II. The planar n-body problem. Invent. Math. 11 (1970), 45–64.
- [18] SPIVAK, M. A comprehensive introduction to differential geometry. Vol. I, second ed. Publish or Perish, Inc., Wilmington, Del., 1979.
- [19] WINTNER, A. The Analytical Foundations of Celestial Mechanics. Princeton Mathematical Series, v. 5. Princeton University Press, Princeton, N. J., 1941.
- [20] XIA, Z. Central configurations with many small masses. J. Differential Equations 91, 1 (1991), 168–179.