Fixed point indices of central configurations

D.L. Ferrario

December 19, 2014

Abstract

Central configurations of n point particles in $E \cong \mathbb{R}^{d}$ with respect to a potential function U are shown to be the same as the fixed points of the normalized gradient map $F=-\nabla_{M} U /\left\|\nabla_{M} U\right\|_{M}$, which is an $S O(d)$-equivariant self-map defined on the intertia ellipsoid. We show that the $S O(d)$-orbits of fixed points of F are all fixed points of the map induced on the quotient by $S O(d)$, and give a formula relating their indices (as fixed points) with their Morse indices (as critical points). At the end, we give an example of a non-planar relative equilibrium which is not a rotating central configuration.

MSC Subject Class: 55M20, 37C25, 70F10.
Keywords: Central configurations, relative equilibria, n-body problem.

1 Central configurations

Let $E=\mathbb{R}^{d}$ be the d-dimensional Euclidean space, and $X=E^{n} \backslash \Delta$ the configuration space of E, defined as the space of all n-tuples of distinct points $\boldsymbol{q}=\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right) \in E^{n}$ such that $\boldsymbol{q} \notin \Delta$, where Δ is the collision set

$$
\Delta=\bigcup_{i<j}\left\{\boldsymbol{q} \in E^{n}: \boldsymbol{q}_{i}=\boldsymbol{q}_{j}\right\} .
$$

Let $U: X \rightarrow \mathbb{R}$ be a regular potential function. For example, the graviational potential

$$
\begin{equation*}
U(\boldsymbol{q})=\sum_{i<j} \frac{m_{i} m_{j}}{\left\|\boldsymbol{q}_{i}-\boldsymbol{q}_{j}\right\|^{\alpha}}, \tag{1.1}
\end{equation*}
$$

or more general potentials (charged particles, ...).
Given n real non-zero numbers m_{1}, \ldots, m_{n} (representing the masses of the n interacting point particles), let $\langle-,-\rangle_{M}$ denote the mass-metric on E^{n}, defined as $\langle\boldsymbol{v}, \boldsymbol{w}\rangle_{M}=\sum_{j=1}^{n} m_{j} \boldsymbol{v}_{j} \cdot \boldsymbol{w}_{j}$, where $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{d n}$ are two vectors tangent to E^{n}, and • denotes the standard scalar product in E. If the masses are positive, then the mass-metric is a non-degenerate scalar product
on E^{n}, which yields both the kinetic quadratic form (on the tangent bundle) $2 K=\|\dot{\boldsymbol{q}}\|_{M}^{2}=\sum_{i} m_{i}\left\|\dot{\boldsymbol{q}}_{i}\right\|^{2}$ and the inertia form $I=\|\boldsymbol{q}\|_{M}^{2}=\sum_{i} m_{i}\left\|\boldsymbol{q}_{i}\right\|^{2}$.

Given such m_{i}, let ∇_{M} denote the gradient of U with respect to the bilinear product $\langle-,-\rangle_{M}$. Let us recall that if $d U(\boldsymbol{q})$ denotes the differential of U evaluated in \boldsymbol{q}, then for each tangent vector $\boldsymbol{v} \in T_{\boldsymbol{q}} E^{n}, d U(\boldsymbol{q})[\boldsymbol{v}]=$ $\left\langle\nabla_{M} U(\boldsymbol{q}), \boldsymbol{v}\right\rangle_{M}$, and therefore

$$
d U(\boldsymbol{q})[\boldsymbol{v}]=\sum_{j} \frac{\partial U}{\partial \boldsymbol{q}_{j}} \cdot \boldsymbol{v}_{j}=\sum_{j} m_{j}\left(m_{j}^{-1} \frac{\partial U}{\partial \boldsymbol{q}_{j}}\right) \cdot \boldsymbol{v}_{j},
$$

from which it follows that in standard coordinates $\left(\nabla_{M} U\right)_{j}=m_{j}^{-1} \frac{\partial U}{\partial \boldsymbol{q}_{j}}$.
Given the mass-metric gradient $\nabla_{M} U$, the corresponding Newton equations are

$$
\begin{equation*}
\frac{d^{2} \boldsymbol{q}}{d t^{2}}=\nabla_{M} U(\boldsymbol{q}) \tag{1.2}
\end{equation*}
$$

(1.3) Definition. A configuration $\boldsymbol{q} \in X$ is a central configuration iff there exists $\lambda \in \mathbb{R}$ such that $\nabla_{M} U(\boldsymbol{q})=\lambda \boldsymbol{q}$.
(1.4) Remark. If U is homogeneous, this is equivalent to: \boldsymbol{q} is a central configuration iff there is a real-valued function $\phi(t)$ such that $\varphi(t) \boldsymbol{q}$ is a solution of (1.2) If U is homogeneous, the set of central configurations is a cone in X.
(1.5) Remark. Furthermore, if U is invariant with respect to the group of all translations of E, then central configurations belong to the subspace

$$
Y=\left\{\boldsymbol{q} \in X: \sum_{j} m_{j} \boldsymbol{q}_{j}=0\right\} \subset X \subset E^{n},
$$

and $\forall \boldsymbol{q} \in X \Longrightarrow \nabla_{M} U(\boldsymbol{q}) \in \bar{Y} \subset E^{n}$, where \bar{Y} is the closure of Y in E^{n}. Therefore, if U is translation-invariant, the set of central configurations is a subset of Y. Sometimes central configurations are defined with the equation $\nabla_{M} U(\boldsymbol{q})=\lambda(\boldsymbol{q}-\boldsymbol{c})$, where \boldsymbol{c} is the center of mass $\boldsymbol{c}=\left(\sum_{j} m_{j}\right)^{-1} \sum_{j} m_{j} \boldsymbol{q}_{j}$ of the configuration \boldsymbol{q}. This equation is invariant with respect to translations (if U is so).
(1.6) Definition. A configuration $\boldsymbol{q} \in X$ is a relative equilibrium iff there is a one-parameter group of rotations $\varphi^{t}: E \rightarrow E$ (around the origin, without loss of generality) such that

$$
\varphi^{t}(\boldsymbol{q})=\left(\varphi^{t}\left(\boldsymbol{q}_{1}\right), \varphi^{t}\left(\boldsymbol{q}_{2}\right), \ldots, \varphi^{t}\left(\boldsymbol{q}_{n}\right)\right)
$$

satisfies the equations of motion $(1.2)^{2}$

[^0]One-parameter subgrups of $S O(N)$ are of the form $\varphi^{t}\left(\boldsymbol{q}_{1}\right)=e^{t \Omega} \boldsymbol{q}_{1}$, with Ω skew-symmetric $N \times N$ (non-zero) matrix ${ }^{3}$ If U is invariant with respect to the above-mentioned one-parameter group of rotations $\varphi^{t}=e^{t \Omega}$, a relative equilibrium satisfies the equation

$$
\Omega^{2} \boldsymbol{q}=\nabla_{M} U(\boldsymbol{q})
$$

If follows that if $\operatorname{dim}(E)=2$, then $\Omega=\left[\begin{array}{cc}0 & -\omega \\ \omega & 0\end{array}\right]$ with $\omega \in \mathbb{R}, \omega \neq 0$, and therefore such a relative equilibrium configuration is a central configuration, $-\omega^{2} \boldsymbol{q}=\nabla_{M} U(\boldsymbol{q})$. Conversely, planar central configurations with $U(\boldsymbol{q})>0$ (if U is homogeneous of negative degree) yield relative equilibria, with a suitable (angular speed) ω.

If $\operatorname{dim}(E)=3$, then since the non-zero 3×3 skew-symmetric matrix Ω has rank $2, E$ can be written as $\operatorname{ker} \Omega \oplus E^{\prime}$, where $\operatorname{ker} \Omega$ is the fixed direction of the rotations $\varphi^{t}=e^{t \Omega}$, and E^{\prime} is the orthogonal complement of $\operatorname{ker} \Omega$. In a suitable reference, $\Omega=\left[\begin{array}{ccc}0 & -\omega & 0 \\ \omega & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. For further reference, let

$$
\begin{equation*}
P: E \rightarrow E^{\prime} \tag{1.7}
\end{equation*}
$$

denote the orthogonal projection.
If U is the homogeneous Newtonian potential of (1.1) with $\alpha>0$ and $m_{j}>0$, then it is easy to see that relative equilibrium configurations must belong to the plane E^{\prime}. This is not true in general: it is possible to find examples of relative equilibria which are not planar - see (4.1) (and hence they are not central configurations). For more on equilibrium (and homographic) solutions: [19] (§369-§382bis at pp. 284-306), [4], 2].

Recent and non recent relevant literature on central configurations: [14], [7], [16, 17], [10, 11, 12], [8], 20], [1], [6], [3].

From now on, unless otherwise stated, assume that U is invariant with respect to all isometries in E, all masses $m_{j}>0$ are positive, and U is homogeneous of negative degree $-\alpha$.

The potential U is invariant with respect to a suitable subgroup of $\Sigma_{n} \times$ $O(E)$, where Σ_{n} is the symmetric group on n elements and $O(E)$ denotes the orthogonal group on the euclidean space E. For example, if all masses are equal and U is defined as in (1.1), then $G=\Sigma_{n} \times O(E)$; if all masses are distinct, then $G=\{1\} \times O(E)$.

The following proposition is a well-known characterization of the set of CC , which we will generalize to relative equilibria in (1.9).
(1.8) Let $S \subset Y$ denote the inertia ellipsoid, defined as $S=\{\boldsymbol{q} \in Y$: $\left.\|\boldsymbol{q}\|_{M}^{2}=1\right\}$. A point $\boldsymbol{q} \in S$ is a central configuration if and only if it is a critical point of the restriction of U to S.

[^1]Proof. Critical points of $\left.U\right|_{S}$ are points $\boldsymbol{q} \in Y$ such that $\operatorname{ker} d U \supset T_{\boldsymbol{q}} S$. With respect to the (non-degenerate) bilinear form $\langle-,-\rangle_{M}$, this can be written as $\nabla_{M} U(\boldsymbol{q})=\lambda \nabla_{M}\left(\|\boldsymbol{q}\|_{M}^{2}\right)=2 \lambda \boldsymbol{q}$. q.e.d.
(1.9) Assume $\operatorname{dim}(E)=3$. Let C be the vertical cylinder defined as

$$
C=\left\{\boldsymbol{q} \in Y:\langle P \boldsymbol{q}, \boldsymbol{q}\rangle_{M}=c,\right\}
$$

where P is the projection of E to E^{\prime} as in (1.7) and $c=\langle P \overline{\boldsymbol{q}}, \overline{\boldsymbol{q}}\rangle_{M}$. A configuration $\overline{\boldsymbol{q}} \in Y$ is a relative equilibrium configuration rotating by $e^{t \Omega}$ if and only if it is a critical point of U restricted to $C \subset X$ and $U(\overline{\boldsymbol{q}})>0$.
Proof. The configuration \boldsymbol{q} is a relative equilibrium configuration if and only if $\Omega^{2} \boldsymbol{q}=\nabla_{M} U(\boldsymbol{q})$; since $\Omega^{2}=-\omega^{2} P$ for an $\omega \neq 0$, this is equivalent to

$$
\nabla_{M} U(\boldsymbol{q})=-\omega^{2} P \boldsymbol{q}
$$

On the other hand, $\nabla_{M}\left(\langle P \boldsymbol{q}, \boldsymbol{q}\rangle_{M}\right)=2 P \boldsymbol{q}$, hence $\boldsymbol{q} \in C$ is a critical point of the restriction $\left.U\right|_{C}$ iff $\nabla_{M} U(\boldsymbol{q})=\lambda 2 P \boldsymbol{q}$. The proof follows since, by homogeneity,

$$
\left\langle\nabla_{M} U(\boldsymbol{q}), \boldsymbol{q}\right\rangle_{M}=-\alpha U(\boldsymbol{q})
$$

and $\langle P \boldsymbol{q}, \boldsymbol{q}\rangle_{M}=\|P \boldsymbol{q}\|_{M}^{2}$.
(1.10) Let K be a subgroup of the symmetry group G of U on Y. Then the inertia ellipsoid S is K-invariant, and critical points of the restriction of U to $S^{K}=\{\boldsymbol{q} \in S: K \boldsymbol{q}=\boldsymbol{q}\}$ are precisely the critical points of $\left.U\right|_{S}$ belonging to S^{K}. If the vertical cylinder C is K-invariant, then critical points of the restriction of U to $C^{K}=\{\boldsymbol{q} \in C: K \boldsymbol{q}=\boldsymbol{q}\}$ are precisely the critical points of $\left.U\right|_{C}$ belonging to C^{K}.

Proof. It is a consequence of Palais principle of Symmetric Criticality 9 . q.e.d.

2 Central configurations as (equivariant) fixed points.

In [5] a way to relate planar central configurations to projective classes of fixed points was introduced. We now generalize the results therein to arbitrary dimensions.

Consider a homogeneous potential U, as above with the further assumption that $\forall \boldsymbol{q}, U(\boldsymbol{q})>0$. From this it follows that $\nabla_{M} U(\boldsymbol{q}) \neq \mathbf{0}$ because $\left\langle\nabla_{M} U(\boldsymbol{q}), \boldsymbol{q}\right\rangle_{M}=-\alpha U(\boldsymbol{q})$.
(2.1) The map $F: S \rightarrow S$ defined as

$$
F(\boldsymbol{q})=-\frac{\nabla_{M} U(\boldsymbol{q})}{\left\|\nabla_{M} U(\boldsymbol{q})\right\|_{M}}
$$

is well-defined, and a configuration $\overline{\boldsymbol{q}} \in S$ is a central configuration if and only if it is a fixed point of F.

Proof. It follows from the assumption that $\forall \boldsymbol{q}, \nabla_{M} U(\boldsymbol{q}) \neq \mathbf{0}$, and therefore F is well-defined. A configuration \boldsymbol{q} is fixed by F if and only if there exists $\lambda=\left\|\nabla_{M} U(\boldsymbol{q})\right\|_{M}>0$ such that $\nabla_{M} U(\boldsymbol{q})=-\lambda \boldsymbol{q}$. Hence, if $F(\boldsymbol{q})=\boldsymbol{q}$ then \boldsymbol{q} is central. Conversely, by homogeneity of $U,\left\langle\nabla_{M} U(\boldsymbol{q}), \boldsymbol{q}\right\rangle_{M}=-\alpha U(\boldsymbol{q})$, and hence if $\boldsymbol{q} \in S$ is a central configuration then $\nabla_{M} U(\boldsymbol{q})=\lambda \boldsymbol{q} \Longrightarrow$ $\lambda=-\alpha U(\boldsymbol{q})<0$ and therefore $F(\boldsymbol{q})=\boldsymbol{q}$.
q.e.d.

Now, in general (and without the positivity assumption) the map F needs not being compactly fixed (see for example Robert's continuum [13] of central configurations with four unit masses and a fifth negative $-1 / 4$ mass in the origin $\frac{4}{4}$). In the graviational case (positive masses and Newtonian mutual attraction), the map F turns out to be compactly fixed [5] (see also Shub's estimates [15).
(2.2) Let G be the symmetry group of U on Y, as above. Then F is G equivariant. For each subgroup $K \subset G, F$ induces a self-map $\bar{F}: S / K \rightarrow$ S / K on the quotient space S / K.

Proof. For $g \in G, g S=S$, and for each g such that $U(g \boldsymbol{q})=U(\boldsymbol{q})$ the equality $\nabla_{M} U(g \boldsymbol{q})=g \nabla_{M} U(\boldsymbol{q})$ holds. In fact, since $U \circ g=U, d U \circ g=$ $d U$, and therefore for each vector \boldsymbol{v} one has $\left\langle\nabla_{M} U(\boldsymbol{q}), \boldsymbol{v}\right\rangle_{M}=d U(\boldsymbol{q})[\boldsymbol{v}]=$ $d U(g \boldsymbol{q})[g \boldsymbol{v}]=\left\langle\nabla_{M} U(g \boldsymbol{q}), g \boldsymbol{v}\right\rangle_{M}=\left\langle g^{-1} \nabla_{M} U(g \boldsymbol{q}), \boldsymbol{v}\right\rangle_{M}$. Thus F is G-equivariant, and hence K-equivariant for each subgroup $K \subset G$. q.e.d.

Let U be a homogeneous potential with the following property: for each orthogonal projection $p: E \rightarrow P$ on a plane P, for each $\boldsymbol{q} \in S$ there exists $j \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
p\left(\frac{\partial U}{\partial \boldsymbol{q}_{j}}(\boldsymbol{q})\right) \cdot p\left(\boldsymbol{q}_{j}\right) \leq 0 . \tag{2.3}
\end{equation*}
$$

Moreover, if there exists $i \in\{1, \ldots, n\}$ such that $p\left(\boldsymbol{q}_{i}\right) \neq 0$, then the j of (2.3) is such that $p\left(\boldsymbol{q}_{j}\right) \neq 0$.

It is easy to see that the Newtonian potential (1.1) (with positive masses and homogeneity $-\alpha$) satisfies Property (2.3) let j be the index maximizing

[^2]$\left\|p\left(\boldsymbol{q}_{k}\right)\right\|^{2}$ for $k=1, \ldots, n$; then
\[

$$
\begin{aligned}
p\left(\alpha \sum_{k \neq j} \frac{m_{j} m_{k}\left(\boldsymbol{q}_{k}-\boldsymbol{q}_{j}\right)}{\left\|\boldsymbol{q}_{k}-\boldsymbol{q}_{j}\right\|^{\alpha+2}}\right) \cdot p\left(\boldsymbol{q}_{j}\right) & =\alpha\left(\sum_{k \neq j} \frac{m_{j} m_{k}\left(p\left(\boldsymbol{q}_{k}\right)-p\left(\boldsymbol{q}_{j}\right)\right)}{\left\|\boldsymbol{q}_{k}-\boldsymbol{q}_{j}\right\|^{\alpha+2}}\right) \cdot p\left(\boldsymbol{q}_{j}\right) \\
& =\alpha \sum_{k \neq j} \frac{m_{j} m_{k}\left(p\left(\boldsymbol{q}_{k}\right) \cdot p\left(\boldsymbol{q}_{j}\right)-\| p\left(\boldsymbol{q}_{j}\right)^{2}\right) \|}{\left\|\boldsymbol{q}_{k}-\boldsymbol{q}_{j}\right\|^{\alpha+2}} \\
& \leq \sum_{k \neq j} \frac{m_{j} m_{k}\left(\left\|p\left(\boldsymbol{q}_{k}\right)\right\|\left\|p\left(\boldsymbol{q}_{j}\right)\right\|-\| p\left(\boldsymbol{q}_{j}\right)^{2}\right) \|}{\left\|\boldsymbol{q}_{k}-\boldsymbol{q}_{j}\right\|^{\alpha+2}} \\
& \leq 0
\end{aligned}
$$
\]

It is trivial to see that if U satisties (2.3), then the map $F: S \rightarrow S$ defined in (2.1) satisfies the following property: for each orthogonal projection $p: E \rightarrow$ P on a plane P, for each $\boldsymbol{q} \in S$, there exists $j \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
p\left(F_{j}(\boldsymbol{q})\right) \cdot p\left(\boldsymbol{q}_{j}\right) \geq 0 . \tag{2.4}
\end{equation*}
$$

(2.5) Theorem. Suppose that $G \supset S O(E)$, where as above G is the symmetry group of U on Y, and $S O(E)=S O(d)$ (the group of rotations in E) acting diagonally on Y. Let $\bar{F}: S / S O(d) \rightarrow S / S O(d)$ be the map induced on the quotient space by (2.2). Assume that all masses are positive, $U>0$ and (2.4) holds. Then, if $\pi: S \rightarrow S / S O(d)$ denotes the projection on the quotient,

$$
\pi(\operatorname{Fix}(F))=\operatorname{Fix}(\bar{F}) .
$$

Proof. If $\boldsymbol{q} \in \operatorname{Fix}(F) \subset S$ is fixed by F, then $\bar{F}(\pi(\boldsymbol{q}))=\pi F(\boldsymbol{q})=\pi(\boldsymbol{q}) \Longrightarrow$ $\pi(\boldsymbol{q}) \in \operatorname{Fix}(\bar{F})$, hence $\pi(\operatorname{Fix}(F)) \subset \operatorname{Fix}(\bar{F})$. On the other hand, let $\pi(\boldsymbol{q}) \in$ Fix (\bar{F}). Then there exists a rotation $g \in S O(E)$ such that $F(\boldsymbol{q})=g \boldsymbol{q}$. Without loss of generality, we can assume that $g=e^{\Omega}$, where Ω is an antisymmetric $d \times d$ matrix, with $k(2 \times 2)$-blocks on the diagonal $\left[\begin{array}{cc}0 & -\theta_{i} \\ \theta_{i} & 0\end{array}\right]$, with $\theta_{i} \in[-\pi, \pi]$ for each $i=1, \ldots, k$, and, if d is odd, a one-dimensional diagonal zero entry ($d=2 k$ or $d=2 k+1$). We can also assume that only the first (say, $l \leq k$) blocks have $\theta_{i} \neq 0$, hence Ω has l non-zero (2×2) diagonal blocks and is zero outside. Note that for each $\boldsymbol{x} \in E$, the quadratic form $\left(e^{\Omega} \boldsymbol{x}\right) \cdot(\Omega \boldsymbol{x})$ on E can be written with l non-singular positive-defined blocks

$$
\theta_{i}\left[\begin{array}{cc}
\sin \theta_{i} & -\cos \theta_{i} \\
\cos \theta_{i} & \sin \theta_{i}
\end{array}\right] \sim \theta_{i}\left[\begin{array}{cc}
\sin \theta_{i} & 0 \\
0 & \sin \theta_{i}
\end{array}\right]
$$

on the diagonal, and hence it is non-negative. Moreover, if one writes $\boldsymbol{x} \in$ $E \cong \mathbb{R}^{d}$ as $\left(\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \ldots, \boldsymbol{z}_{l}, x_{2 l+1}, \ldots, x_{d}\right)$, with $\boldsymbol{z}_{i} \in \mathbb{R}^{2}$ for $i=1, \ldots, l$ and $x_{i} \in \mathbb{R}$, then

$$
\begin{equation*}
\left(e^{\Omega} \boldsymbol{x}\right) \cdot(\Omega \boldsymbol{x})=\sum_{i=1}^{l} \theta_{i} \sin \theta_{i}\left\|\boldsymbol{z}_{i}\right\|^{2} . \tag{2.6}
\end{equation*}
$$

Let $p_{i}: E \rightarrow \mathbb{R}^{2}$ denote the projection $\boldsymbol{x} \mapsto \boldsymbol{z}_{i}$, for $i=1, \ldots, l$.
Since $F\left(e^{t \Omega} \boldsymbol{q}\right)$ does not depend on $t \in \mathbb{R}$,

$$
\begin{aligned}
0 & =\left.\frac{d}{d t}\left\|F\left(e^{t \Omega} \boldsymbol{q}\right)\right\|_{M}^{2}\right|_{t=0} \\
& =2\langle F(\boldsymbol{q}), \Omega \boldsymbol{q}\rangle_{M} \\
& =2\left\langle e^{\Omega} \boldsymbol{q}, \Omega \boldsymbol{q}\right\rangle_{M}= \\
& =2 \sum_{j=1}^{n} m_{j}\left(e^{\Omega} \boldsymbol{q}_{j}\right) \cdot\left(\Omega \boldsymbol{q}_{j}\right)
\end{aligned}
$$

For each $j=1, \ldots, n$ the inequality $m_{j}>0$ holds, and for each $\boldsymbol{x} \in E$ the inequality $\left(e^{\Omega} \boldsymbol{x}\right) \cdot(\Omega \boldsymbol{x}) \geq 0$ holds: it follows that for each $j,\left(e^{\Omega} \boldsymbol{q}_{j}\right) \cdot\left(\Omega \boldsymbol{q}_{j}\right)=0$. By (2.6), this implies that, given j, for each $i=1, \ldots, l$ either $p_{i}\left(\boldsymbol{q}_{j}\right)=0$ or $\theta_{i} \in\{\pi,-\pi\}$ (since $\theta_{i} \neq 0$ for $i=1, \ldots, l$). If $p_{i}\left(\boldsymbol{q}_{j}\right)=0$ for each j, then actually $g \boldsymbol{q}=\boldsymbol{q}$, and therefore $\pi(\boldsymbol{q}) \in \pi(\operatorname{Fix}(F))$. So, without loss of generality one can assume that for each $i=1, \ldots, l$ there exists j such that $p_{i}\left(\boldsymbol{q}_{j}\right) \neq 0$. Suppose that $l \geq 1$, and therefore $\theta_{1}= \pm \pi$. By property (2.4) there exists \bar{j} such that $p_{1}\left(F_{\bar{j}}(\boldsymbol{q})\right) \cdot p_{1}\left(\boldsymbol{q}_{\bar{j}}\right) \geq 0$ and $p_{1}\left(\boldsymbol{q}_{\bar{j}}\right) \neq 0$. But this would imply that

$$
F(\boldsymbol{q})=g \boldsymbol{q}=e^{\Omega} \boldsymbol{q} \Longrightarrow-p_{1}\left(\boldsymbol{q}_{\bar{j}}\right) \cdot p_{1}\left(\boldsymbol{q}_{\bar{j}}\right) \geq 0 \Longrightarrow p_{1}\left(\boldsymbol{q}_{\bar{j}}\right)=0,
$$

which is not possible. Therefore, if condition (2.4) holds, $l=0$, and $g \boldsymbol{q}=\boldsymbol{q}$. The conclusion follows.
q.e.d.

3 Projective fixed points and Morse indices

In this section, we finally prove the equation relating fixed point and Morse indices of central configurations.
(3.1) If U is homogeneous of degree $-\alpha$, then for each central configuration \boldsymbol{q}, up to a linear change of coordinates

$$
-\alpha U(\boldsymbol{q})\left(I-F^{\prime}(\boldsymbol{q})\right)=D^{2} \tilde{U}(\boldsymbol{q}),
$$

where $F: S \rightarrow S$ is the function of $\left[(2.1)\right.$, defined as $F(\boldsymbol{q})=-\frac{\nabla_{M} U(\boldsymbol{q})}{\left\|\nabla_{M} U(\boldsymbol{q})\right\|_{M}}$, and $D^{2} \tilde{U}(\boldsymbol{q})$ is the Hessian of the restriction \tilde{U} of U to S, evalued at \boldsymbol{q}.

Proof. After a linear change of coordinates in X, we can assume $m_{i}=1$ for each i and $\boldsymbol{q}=(1,0, \ldots, 0)=(1, \mathbf{0})$ (rescale \boldsymbol{q} by a diagonal matrix with suitable m_{j} on its diagonal, and apply a rotation - this leaves U homogeneous of the same degree). Given suitable linear coordinates $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ in $Y \cong \mathbb{R}^{l+1}$, the ellipsoid S has equation $\|\boldsymbol{x}\|^{2}=1$, and $F(\boldsymbol{x})=-\frac{\frac{d U}{d \boldsymbol{x}}}{\left\|\frac{d U}{d \boldsymbol{x}}\right\|}$,
where $\frac{d U}{d \boldsymbol{x}}=\nabla U$ in the \boldsymbol{x}-coordinates. Therefore, if $\boldsymbol{u}=\left(u_{1}, \ldots, u_{l}\right) \mapsto$ $\left(\sqrt{1-\|\boldsymbol{u}\|}, u_{1}, \ldots, u_{l}\right) \in S$ is a local chart around the central configuration $\boldsymbol{q} \sim(1, \mathbf{0})$,

$$
\begin{align*}
\frac{\partial F_{\alpha}}{\partial u_{\beta}}(\mathbf{0}) & =\frac{\partial^{2} U}{\partial x_{\alpha} \partial x_{\beta}}(\boldsymbol{q})\|\nabla U(\boldsymbol{q})\|^{-1} \\
D_{\alpha \beta}^{2} \tilde{U}(\boldsymbol{q}) & =\frac{\partial^{2} U}{\partial x_{\alpha} \partial x_{\beta}}(\boldsymbol{q})-\delta_{\alpha \beta} \frac{\partial U}{\partial x_{0}} . \tag{3.2}
\end{align*}
$$

Now, $\frac{\partial U}{\partial x_{0}}=\langle\nabla U, \boldsymbol{q}\rangle=-\alpha U(\boldsymbol{q})$, and since \boldsymbol{q} is a central configuration, it is a fixed point of F and therefore

$$
F(\boldsymbol{q})=\boldsymbol{q} \Longrightarrow \frac{\partial U}{\partial x_{\alpha}}=0, \quad \text { for } \alpha=1, \ldots, l
$$

and

$$
\begin{equation*}
\frac{\partial U}{\partial x_{0}}(\boldsymbol{q})=-\|\nabla U(\boldsymbol{q})\|=-\alpha U(\boldsymbol{q}) \tag{3.3}
\end{equation*}
$$

From (3.3) and (3.2) it follows that for $\alpha, \beta=1, \ldots, l$,

$$
\begin{align*}
D_{\alpha \beta}^{2} \tilde{U}(\boldsymbol{q})+\delta_{\alpha \beta} \frac{\partial U}{\partial x_{0}} & =\frac{\partial^{2} U}{\partial x_{\alpha} \partial x_{\beta}}(\boldsymbol{q})=\frac{\partial F_{\alpha}}{\partial u_{\beta}}(\mathbf{0})\|\nabla U(\boldsymbol{q})\| \tag{3.4}\\
\Longrightarrow D^{2} \tilde{U}(\boldsymbol{q}) & =-\alpha U(\boldsymbol{q}) I+\alpha U(\boldsymbol{q}) F^{\prime}(\boldsymbol{q})
\end{align*}
$$

q.e.d.
(3.5) Corollary. Assume the hypotheses of Theorem (2.5) hold. Then for each non-degenerate projective class of central configurations $\boldsymbol{q} \in \operatorname{Fix}(\bar{F})$ in the maximal isotropy stratum of $\bar{S}=S / S O(d)$, the fixed point index $\operatorname{ind}(\boldsymbol{q}, \bar{F})$ and the Morse index $\mu_{\tilde{U}}(\boldsymbol{q})$ of \tilde{U} at \boldsymbol{q} are related by the equality

$$
\operatorname{ind}(\boldsymbol{q}, \bar{F})=(-1)^{\mu_{\tilde{U}}(\boldsymbol{q})+\epsilon}
$$

where $\epsilon=\operatorname{dim} S-d(d-1) / 2+\operatorname{dim}(S)=d(n-1)-1-d(d-1) / 2$.
Proof. Since \tilde{U} is $S O(d)$-invariant (with diagonal action), and the $S O(d)$ orbits in S with maximal isotropy type have dimension $d(d-1) / 2$, the Hessian $D^{2} \tilde{U}$ has $d(d-1) / 2$-dimensional kernel, if \boldsymbol{q} is non-degenerate. By proposition (3.1), if follows that F^{\prime} has a $d(d-1) / 2$-multiple eigenvalue 1 , and $\operatorname{ind}(\boldsymbol{q}, \bar{F})=(-1)^{c}$, where c is the number of negative eigenvalues of $-D^{2} \tilde{U}$, i.e. the number of positive eigenvalues of $D^{2} \tilde{U}$, which is equal to $\mu_{-\tilde{U}}(\boldsymbol{q})=\operatorname{dim}(S-d(d-1) / 2)-\mu_{\tilde{U}}(\boldsymbol{q})$. q.e.d.
(3.6) Corollary. Let U be the Newton potential in (1.1), with positive masses, $\alpha>0$, and $\operatorname{dim}(E)=2$. Then $X=\mathbb{C}^{n} \backslash \Delta$, and $S / S O(2) \approx$ $\mathbb{P}^{n-2}(\mathbb{C})_{0} \subset \mathbb{P}^{n-2}(\mathbb{C})$, where $\mathbb{P}^{n-2}(\mathbb{C})_{0}$ is the subset of $\mathbb{P}^{n-1}(\mathbb{C})$ defined in projective coordinates as $\mathbb{P}^{n-2}(\mathbb{C})_{0} \cong\left\{\left[z_{1}: \ldots, z_{n}\right] \in \mathbb{P}^{n}: \sum_{j} m_{j} z_{j}=\right.$ $\left.0, \forall i, j, z_{i} \neq z_{j}\right\}$. Then for each non-degenerate projective class of central configurations $q \in \operatorname{Fix}(\bar{F})$, with $\bar{F}: \mathbb{P}_{0}^{n-2}(\mathbb{C}) \rightarrow \mathbb{P}^{n-2}(\mathbb{C})$,

$$
\operatorname{ind}(\boldsymbol{q}, \bar{F})=(-1)^{\mu_{\bar{U}}(\boldsymbol{q})}
$$

Proof. If $d=2$, then $d(n-1)-1-d(d-1) / 2=2(n-2)$.

4 An example of non-planar relative equilibrium

(4.1) Example (Non-central and non-planar equilibrium solution). In $E \cong$ \mathbb{R}^{3}, let R_{x}, R_{y} and R_{z} denote rotations of angle π around the three coordinate axes. Fix three non-zero constants c_{1}, c_{2}, c_{3}. Consider the problem with 6 bodies in E, symmetric with respect to the group K with non-trivial elements of $\Sigma_{6} \times S O(3)$

$$
\left((34)(56), R_{x}\right),\left((12)(56), R_{y}\right),\left((12)(34), R_{z}\right) .
$$

Assume $m_{j}=1$, for $j=1, \ldots, 6$, and let U be the potential defined on E^{6} by

$$
U(\boldsymbol{q})=\sum_{i<j} \frac{1-\gamma_{i} \gamma_{j}}{\left\|\boldsymbol{q}_{i}-\boldsymbol{q}_{j}\right\|}
$$

where

$$
\gamma_{1}=\gamma_{2}=c_{1}, \quad \gamma_{3}=\gamma_{4}=c_{2}, \quad \gamma_{5}=\gamma_{6}=c_{3}
$$

Now, U is invariant with respect to K, and the vertical cylinder is K invariant: it follows from (1.9) that critical points of the restriction of U to C^{K} are equilibrium configurations.

In other words, three pairs of bodies of unit masses, each pair charged with charge c_{j}, are constrained each pair to belong to one of the coordinate axes and to be symmetric with respect to the origin.

The space $X^{K}=Y^{K}$ has dimension 3 , and can be parametrized by (x, y, z), where x, y and z are (respectively) the coordinates along the corresponding axis of particles 1,3 and 5 . The generic configuration $\boldsymbol{q} \in X^{K}$ can be written as

$$
\begin{array}{ll}
\boldsymbol{q}_{1}=(x, 0,0) & \boldsymbol{q}_{2}=(-x, 0,0) \\
\boldsymbol{q}_{3}=(0, y, 0) & \boldsymbol{q}_{4}=(0,-y, 0) \\
\boldsymbol{q}_{5}=(0,0, z) & \boldsymbol{q}_{6}=(0,0,-z),
\end{array}
$$

and the potential U restricted to X^{K} in such coordinates is
$U(x, y, z)=\frac{1-c_{1}^{2}}{2|x|}+\frac{1-c_{2}^{2}}{2|y|}+\frac{1-c_{3}^{2}}{2|z|}+4 \frac{1-c_{1} c_{2}}{\sqrt{x^{2}+y^{2}}}+4 \frac{1-c_{1} c_{3}}{\sqrt{x^{2}+z^{2}}}+4 \frac{1-c_{2} c_{3}}{\sqrt{y^{2}+z^{2}}}$.

The vertical cylinder $C^{K} \subset X^{K}$ is

$$
\begin{aligned}
C^{K} & =\left\{\boldsymbol{q} \in X^{K}:\langle P \boldsymbol{q}, \boldsymbol{q}\rangle_{M}=2\right\} \\
& =\left\{(x, y, z) \in X^{K}: 2 x^{2}+2 y^{2}=2\right\} .
\end{aligned}
$$

Hence an equilibrium solution is a critical point of $U(\cos t, \sin t, z)$ with positive value $U>0$. Now, assume

$$
\begin{equation*}
c_{1}>1, \quad c_{2}<-1, \quad c_{3}<-1 . \tag{4.2}
\end{equation*}
$$

Then $1-c_{1}^{2}<0,1-c_{2}^{2}<0,1-c_{3}^{2}<0,1-c_{2} c_{3}<0$; moreover, $1-c_{1} c_{2}>0$ and $1-c_{1} c_{3}>0$. The restricted potential U is defined as
$U(t, z)=\frac{1-c_{1}^{2}}{2|\cos t|}+\frac{1-c_{2}^{2}}{2|\sin t|}+\frac{1-c_{3}^{2}}{2 z}+4\left(1-c_{1} c_{2}\right)+4 \frac{1-c_{1} c_{3}}{\sqrt{\cos ^{2} t+z^{2}}}+4 \frac{1-c_{2} c_{3}}{\sqrt{\sin ^{2} t+z^{2}}}$,
and is defined on the strip $(t, z) \in T=(0, \pi / 2) \times(0,+\infty)$.
If

$$
\begin{equation*}
1-c_{1}^{2}+8\left(1-c_{1} c_{3}\right)<0, \tag{4.3}
\end{equation*}
$$

then for each (t, z)

$$
\begin{aligned}
\frac{1-c_{1}^{2}}{2|\cos t|}+4 \frac{1-c_{1} c_{3}}{\sqrt{\cos ^{2} t+z^{2}}} & <\frac{1-c_{1}^{2}}{2|\cos t|}+4 \frac{1-c_{1} c_{3}}{|\cos t|} \\
& =\frac{1}{2|\cos t|}\left(1-c_{1}^{2}+8\left(1-c_{1} c_{3}\right)\right)<0
\end{aligned}
$$

and hence $U(t, z)<4\left(1-c_{1} c_{2}\right)$ for each $(t, z) \in T$ and $U \rightarrow-\infty$ on the boundary of T.

Furthermore, for each $t \in(0, \pi / 2)$,

$$
\begin{aligned}
\frac{\partial U}{\partial z} & =\frac{c_{3}^{2}-1}{2 z^{2}}+4 z \frac{c_{2} c_{3}-1}{\left(z^{2}+\sin ^{2} t\right)^{3 / 2}}-4 z \frac{1-c_{1} c_{3}}{\left(z^{2}+\cos ^{2} t\right)^{3 / 2}} \\
& <\frac{c_{3}^{2}-1}{2 z^{2}}+4 \frac{c_{2} c_{3}-1}{z^{2}}-4 z \frac{1-c_{1} c_{3}}{\left(z^{2}+1\right)^{3 / 2}}
\end{aligned}
$$

It follows that if

$$
\begin{equation*}
c_{3}^{2}-1+8\left(c_{2} c_{3}-1\right)<8\left(1-c_{1} c_{3}\right), \tag{4.4}
\end{equation*}
$$

then for every $t \in(0, \pi / 2)$ there exists z_{0} such that $z>z_{0} \Longrightarrow \frac{\partial U}{\partial z}(t, z)<0$.
Thus, whenever both (4.3) and (4.4) hold, the restriction $U(t, z)$ attains its maximum in the interior of the strip T. Such a maximum $\left(t_{m}, z_{m}\right)$ corresponds to an equilibrium configuration if and only if $U\left(t_{m}, z_{m}\right)>0$, from (1.9). Note that if $t=\pi / 4$ and $z=1 / 2$ then

$$
U(\pi / 4, z)=\frac{\sqrt{2}}{2}\left(2-c_{1}^{2}-c_{2}^{2}\right)+4\left(1-c_{1} c_{2}\right)+1-c_{3}^{2}+\frac{4\left(2-c_{3}\left(c_{1}+c_{2}\right)\right)}{\sqrt{3 / 4}}
$$

which is positive, for example, if $c 1_{=} 20$ and $c_{2}=c_{3}=-2$. Such coefficients satisfy (4.2), (4.3) and (4.4), and therefore for such a choice of c_{i} there exist non-planar relative equilibrium configurations.

References

[1] Albouy, A. Symétrie des configurations centrales de quatre corps. C. R. Acad. Sci. Paris Sér. I Math. 320, 2 (1995), 217-220.
[2] Albouy, A., and Chenciner, A. Le problème des n corps et les distances mutuelles. Invent. Math. 131, 1 (1998), 151-184.
[3] Albouy, A., and Kaloshin, V. Finiteness of central configurations of five bodies in the plane. Ann. of Math. (2) 176, 1 (2012), 535-588.
[4] Betti, E. Sopra il moto di un sistema di un numero qualunque di punti che si attraggono o si respingono tra loro. Annali di Matematica Pura ed Applicata (1867-1897) 8, 1 (1877), 301-311.
[5] Ferrario, D. L. Planar central configurations as fixed points. J. Fixed Point Theory Appl. 2, 2 (2007), 277-291.
[6] Hampton, M., and Moeckel, R. Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 2 (2006), 289-312.
[7] Moeckel, R. On central configurations. Math. Z. 205, 4 (1990), 499-517.
[8] Pacella, F. Central configurations of the N-body problem via equivariant Morse theory. Arch. Rational Mech. Anal. 97, 1 (1987), 59-74.
[9] Palais, R. S. The principle of symmetric criticality. Comm. Math. Phys. 69, 1 (1979), 19-30.
[10] Palmore, J. I. Classifying relative equilibria. I. Bull. Amer. Math. Soc. 79 (1973), 904-908.
[11] Palmore, J. I. Classifying relative equilibria. II. Bull. Amer. Math. Soc. 81 (1975), 489-491.
[12] Palmore, J. I. Classifying relative equilibria. III. Lett. Math. Phys. 1, 1 (1975/76), 71-73.
[13] Roberts, G. E. A continuum of relative equilibria in the five-body problem. Phys. D 127, 3-4 (1999), 141-145.
[14] SaAri, D. G. Collisions, rings, and other Newtonian N-body problems, vol. 104 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2005.
[15] Shub, M. Appendix to Smale's paper: "Diagonals and relative equilibria". In Manifolds - Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197. Springer, Berlin, 1971, pp. 199-201.
[16] Smale, S. Topology and mechanics. I. Invent. Math. 10 (1970), 305331.
[17] Smale, S. Topology and mechanics. II. The planar n-body problem. Invent. Math. 11 (1970), 45-64.
[18] Spivak, M. A comprehensive introduction to differential geometry. Vol. I, second ed. Publish or Perish, Inc., Wilmington, Del., 1979.
[19] Wintner, A. The Analytical Foundations of Celestial Mechanics. Princeton Mathematical Series, v. 5. Princeton University Press, Princeton, N. J., 1941.
[20] XiA, Z. Central configurations with many small masses. J. Differential Equations 91, 1 (1991), 168-179.

[^0]: ${ }^{1}$ Cf. 8], p. 61 .
 ${ }^{2}$ Cf. 17, p. 47.

[^1]: ${ }^{3}$ Cf. 18, p. 401.

[^2]: ${ }^{4}$ In the AMS review of [13], D. Saari states that a similar effect occurs for positive masses, but with two or more homogeneous potentials. More precisely, should the potential be a sum of homogeneous potentials, then there always is a continuum of different relative equilibria configurations.

