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Abstract

The paper discusses, illustrates and possibly contributes to overcome

two methodological problems which emerge in applying Social Network

Analysis (SNA) to the study of IO-based innovation flows matrices. The

first one has to do with the scale-effects these matrices suffer from. The

second one refers to the need of dichotomising the matrices. Through

an illustrative application to 6 OECD countries in the mid-’90s, the

paper shows that, as for the former problem, different relativisation

procedures can be and has been used, which either tend to alter the

actual meaning of standard SNA indicators, or do not properly take

into account the actual composition of countries’ final demand. As for

the latter problem, the paper shows that the choice of discrete cut-offs

is extremely sensitive, as comparative results actually change along

the continuous of the matrices values. In order to overcome the scale

problem, a new relativisation procedure is put forward which measures

innovation flows embodied in a unit value basket of final demand and

thus properly retains all the information provided by the original ma-

trix of intersectoral innovation (embodied) flows. In addressing the

problem of dichotomisation, the paper suggests, as a second best, to

work with density distributions which can make the choice of discrete

cut-off values less arbitrary.
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1 Introduction

Although it gained popularity in the early ’90s, the system analysis of the

innovation process has recently undergone an important transformation.

The need of complementing qualitative analyses of those institutions and

organizations which make up systems of innovation – national, sub-national,

super-national and regional – with rigorous quantitative measurements and

evaluations of their relationships, structure and performance, has spurred to

look for new and more suitable methodological tools.

Among these, as DeBresson (1996a) shew so brightly with his long research

career, the analysis of economic interdependence represents an extremely

powerful tool of investigation. Indeed, combining Input-Output (IO) analysis

with that of innovation activity, and building up intersectoral innovation

flows matrices, provides the researcher with a precious map trough which to

investigate the constitutive relationships of a system of innovation. What is

more, this map can be fruitfully explored by using network analysis. Sectors

and intersectoral flows can be in fact dealt with as the constitutive elements

of innovation networks whose properties can be investigated through Social

Network Analysis (SNA). As has been shown by a number of studies (see, for

instance, DeBresson, 1996a; Leoncini and Montresor, 2003b; Chang and Shih,

2005; Montresor and Vittucci Marzetti, 2008), several SNA indicators have

an immediate meaning in the system analysis of innovation. For example,

the density of the network identified by intersectoral innovation flow matrices

– defined as the ratio between the number of innovation flows of a certain

significance and the total number of possible flows – can be taken as a proxy

of the actual connectivity degree of a certain innovation system: the higher

the density, the more actually cohesive – i.e. “systemic” – the system is.

With respect to this research program, the present paper intends to

provide a methodological value added, by discussing two issues in applying

SNA to IO-based innovation flows matrices. The first issue is that of the

scale-effects these matrices suffer from. In absence of a proper relativisation,

matrices of absolute innovation flows are affected by the scale of the sectoral

innovative efforts of the correspondent innovation system. Indeed, by con-

struction, the most innovation-intensive systems turn out to be also the most

cohesive in terms of absolute innovation flows, so that a direct structural

comparison is misleading. In order to avoid this problem, different relativi-

sation procedures have been applied. However, their implications for the
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relative network analysis have not been sufficiently addressed: something this

paper intends to do, also by putting forward a new, alternative relativisation

procedure.

The second problem in applying SNA to innovation flows matrices has to

do with the need of dichotomising the matrices, once made them relative,

in order to apply a good part of the most significant SNA indicators. A

need which involves the choice of a cut-off value – with respect to which

the actual innovation flows are compared in order to turn the relative cells

into “1s”, if greater, or “0s”, if lower – which the results of the analysis

crucially depend on. In this last respect, the paper intends to provide an

illustrative application of the great sensitivity of the results of SNA from the

selected threshold values: a problem which can be partially accommodated

by working with density distributions and possibly overcome by looking at

new network analysis techniques.

The structure of the paper is the following. Section 2 sketches the the-

oretical background of the paper. Section 3 discusses the scale and the

dichotomisation issue and the problem of obtaining proper intersectoral inno-

vation flows to work with. Section 3.1 critically reviews previously proposed

relativisation procedures and compares them with some new methodological

proposals, while Section 3.2 does the same with respect to dichotimisation by

suggesting to work with density distributions. Section 4 sets these procedures

at work in an application carried out by comparing the technological sys-

tems of 6 structurally different OECD countries (Japan, Korea, Netherlands,

Poland, Spain, USA) in the middle ’90s, and tries to get signs of systematic

vs. occasional differences. Section 5 concludes.

2 Theoretical background: investigating

technological systems through SNA of

innovation matrices

The methodological issues this paper addresses are typically faced in com-

paring the technological systems of two or more countries (or sectors) by

looking at their intersectoral innovation flows.1

1More in general, the same issue is relevant whenever two or more countries are

compared on the basis of a certain intersectoral matrix which distributes the sectoral

values of a certain variable along their subsystem structure. The comparative analysis of
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This research program, which has recently attracted a number of studies

(see, for instance, DeBresson, 1996a; Leoncini and Montresor, 2003b; Chang

and Shih, 2005), draws on the following 4 theoretical points.

(i) The innovation process does not occur among (atomistic) economic

agents acting in isolation. Rather, it is innervated and shaped by a set of

relationships through which innovative institutions and organisations (e.g.

firms, research labs, universities, patent offices, and the like) interact, learn

and originate different kinds of what have been called Systems of Innovation

(SI) (e.g. Lundvall, 1992; Edquist, 1997; Edquist and McKelvey, 2000).

(ii) Not only are innovative relationships institutional and affected by

the topographical, geographical space in which they operate (think of a firm

localised close to a research lab), but they are also technical and economic in

their nature, that is also affected by a techno-economic kind of space, which

is the matching of: “an abstract economic space of supply and demand of

different goods (as represented by input-output matrices) and [a] technical

space (as represented by the techno-functional classification of patents)”

(DeBresson, 1996b, p.151). Indeed, a firm in the motor-vehicles sector is

closer to one in the mechanical, rather than in the textile sector, irrespectively

from their actual geographical distance. In order to retain both the spaces,

a broad notion of Technological System (TS) is required, which also retains

production kind of relationships (Leoncini, 1998; Leoncini and Montresor,

2003a), as from the following point.

(iii) The constitutive relationships of a TS can be proxied and mapped

by building up a suitable matrix of intersectoral innovation flows, namely, a

(n × n) matrix of R&D flows embodied in vertically integrated sectors such

as the following:

(1) R = r̂ q̂−1(I − A)−1 ŷ = r̂ B

where r̂, q̂, and ŷ are the diagonalised vectors of, respectively, sectoral

R&D expenditures, gross production and final demand, and (I − A)−1 is

the Leontief inverse matrix based on domestic input coefficients (A) (e.g.

Marengo and Sterlacchini, 1990).

The generic element of this matrix, Rij , measures the amount of R&D

invested by sector i, an thus approximately of its innovations, which is

deindustrialisation and tertiarisation processes is thus another potential field of application

for it (Montresor and Vittucci Marzetti, 2007).
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embodied in the production flows required to it by sector j in order to satisfy,

directly and indirectly, one unit of its final demand. Given the way it is

defined, such a matrix actually reflects the functioning of both the innovative

sub-system (proxied by R&D expenditure) and the production sub-system

(proxied by IO tables) of a TS. Furthermore, the resort to the operator B in

reclassifying R&D flows from pure sectors into vertically integrated sectors

(or subsystems) allows the same flows to retain also the market side of a TS

through the role of final demand.2

(iv) The structure of a TS and the different role of its constitutive sectors

can be analysed, especially in a cross-country comparative framework, by

applying to intersectoral innovation matrices suitable Social Network Analysis

(SNA) techniques and indicators (Leoncini, Maggioni, and Montresor, 1996;

Leoncini and Montresor, 2000a,b). Indeed, the economic sectors and the

intersectoral techno-economic flows of these matrices can be envisaged as,

respectively, the vertices (or nodes) and the arcs (or directed edges) of the

constitutive network of the correspondent TS. In particular, three SNA

indicators are particularly useful in comparing different TSs.3

The first one refers to the TS as a whole, and is the density (δ) of the

correspondent network of n sectors, defined as:

(2) δ(t) =

∑
i

∑
j(i6=j) dij(t)

n(n − 1)
with 0 ≤ δ(t) ≤ 1

where dij ∈ {0, 1} is the element of the so called “contingency matrix” D(t),

amounting to the dichotomic transformation – according to a certain cut-off t

– of the matrix R or, as we will argue in the next section, of a suitable relative

transformation of it (an issue on which we will return later). The techno-

economic interpretation of δ(t) with respect to a TS is quite immediate: the

larger (the smaller) is δ(t), the more (the less) dense is the network, the

more (the less) connected (i.e. systemic) is the correspondent TS.

Unlike the previous one, the second SNA indicator refers to each vertex

2The B operator was first proposed by Siniscalco (1982). Each row of it adds up

to 1 and shows “the shares of output of each sector which contribute to the different

subsystems”. Thus, B can be used to reclassify any physical or value magnitude from

sectors into subsystems. As noted by Rampa (1982), it is relative price invariant and

depends not only on strict technological factors, but also on the structure of final demand.
3As Montresor and Vittucci Marzetti (2008) show, the same kind of analysis can be

fruitfully employed also to detected and investigate different forms of innovation clusters

within the TSs.
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j of a network, and is given by its degree, or more precisely, indegree and

outdegree centrality. This indicator is nothing but the number of vertices

through which a certain node j is reached by (indegree) and reaches (outde-

gree) the other n − 1 vertices of the network. In a directed graph, such as

that correspondent to the intersectoral innovation matrices we are dealing

with, the indegree and outdegree centrality of a vertex j are distinct and

formally defined as follows:

(3) Cin
j (t) =

∑

i(i6=j)

dij(t) with 0 ≤ Cin
j (t) ≤ n − 1

(4) Cout
j (t) =

∑

j(j 6=i)

dij(t) with 0 ≤ Cout
j (t) ≤ n − 1

where, as before, t refers to a certain cut-off value. When dealing with TSs,

given that inward and outward arcs represent, respectively, intersectoral

innovative acquisitions and diffusions, the two measures of centrality can

help determining the degree of dependency or pervasiveness of the sectors in

a TS.

The last SNA indicator we consider refers to the TS as a whole again,

and is given by the degree centralisation, or more precisely, indegree and

outdegree centralisation of the correspondent network, defined as:

(5) H in(t) =

∑
j(C

in
j∗ (t) − Cin

j (t))

(n − 1)2
with 0 ≤ H in(t) ≤ 1

(6) Hout(t) =

∑
j(C

out
j∗ (t) − Cout

j (t))

(n − 1)2
with 0 ≤ Hout(t) ≤ 1

where Cin
j∗ and Cout

j∗ are, respectively, the indegree and outdegree centrality

of the most central vertex j∗.

As low values of the centralisation identifies a network with similar

(centrality) positions, the correspondent TS can be deemed one in which its

sectoral partitions are “evenly distributed”. Conversely, large centralisation

values refer to TSs with highly “hierarchic” sectoral partitions (Leoncini and

Montresor, 2000b).
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3 “Scale” and “cut-off” in comparing different

TSs: two delicate issues

Although the interpretative power of a network (intersectoral) analysis of

different TSs is quite high, this can be obtained only by dealing satisfactorily

with two crucial methodological problems.

3.1 Getting rid of scale effects: alternative relativisation

procedures

The first problem refers to the choice of the proper “relative” intersectoral

innovation flows matrix to which the network analysis should be then applied.

Indeed, although the need of transforming the absolute values of the R

matrices – through which the correspondent TSs are compared – into relatives

ones might appear intuitive, the actual way such relative matrices are obtained

is far from innocuous: conversely, as we intend to show with this paper, the

results of a network intersectoral analysis of the TSs are quite sensitive to it.

First of all, given the way R is defined in Equation 1, it is straightforward

that applying the SNA indicators directly to the R matrices of a certain num-

ber, z, TSs to be compared – even when expressing the correspondent vectors

of R&D expenditure in PPP terms – will end out by yielding misleading

results. Should country 1 be much larger (in economic terms) than country

2, and thus have a larger scale of R&D activities across all the considered

sectors, the density analysis would show, a fortiori, higher values for the

former than for the latter country with respect to all the cut-offs. However,

concluding that TS1 is more connected than TS2 would be, in this case, not

guaranteed: although less consistent, and thus systematically excluded from

the dichotomisation, the embodied sectoral R&D flows of the latter might

be more consistent in relation to the overall scale of the economic activity of

the system they refer to, but by using absolute R&D flows we are unable to

capture it.

In order to get rid of scale effects, and make density and the other

SNA indicators more robust in informing about the relational structure of

the compared TSs, we need to normalise the absolute intersectoral flows

of R in some way. But with respect to what? Indeed, scale differences

across different TSs could be traced at different levels. Not only could the

scale of R&D activities of different TSs be systematically different, but
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two TSs could have similar R&D scales and, still, systematically different

demand volumes – spurring differently the intersectoral innovation flows

in a sub-system framework – or different production volumes – conveying

differently the intersectoral innovation flows embodied in them. What is

more, considering that TSs have also a sectoral dimension, along with a

national one (Malerba, 2004), there could be systematic scale differences

across different subsystems. In the light of these considerations, rather

than one relativisation procedure only, different ways of getting normalised

intersectoral flows should be considered. As we will show in the following,

these different procedures yield different results, so that their choice should

be based on an accurate evaluation of their pros and cons and, above all, of

their rationale.

Although the outcome is always represented by some kind of relative

matrix, different relativisation procedures can be accomplished, depending

on the scale of operation one wants to get rid of and on the national or

sector/subsystem focus of the analysis.

3.1.1 Unit value matrix

A first possible relativisation procedure is that proposed by Chang and Shih

(2005), who suggest to compare the intersectoral structure of different TSs

by resorting to a unit value matrix (Runit) defined as follows:4

(7) Runit = r̂ q̂−1(I − A)−1

Let us observe that using this matrix amounts to dividing each column of the

original matrix R by the final demand level of the correspondent subsystem,

that is:

(8) Runit = R ŷ−1

Accordingly, we can conclude that the different subsystems of each TS

are in this way scaled down to the same unit final output, irrespectively from

4Although Chang and Shih (2005) convert all the values in US dollars, this does not

prove strictly necessary. Indeed, denoting with E the nominal exchange rate of the home

currency to the US dollar, we have that the matrix obtained by using E (Runit

E ) is equivalent

to that without (Runit):

R
unit = r̂ q̂

−1(I − A)−1 = E
−1

r̂ q̂
−1

E
`
I − E

−1
A E

´−1

= R
unit

E
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the ratios between the original operational scales of the different subsystems,

which could be different in different TSs.

In the light of this latter fact, the use of Runit entails a focus on the

individual subsystems of each TS. Therefore, this procedure might be justified

when one is interested in the TS conceived as a distinguishable “constellation”

of individual subsystems. On the other hand, let us observe that Runit, while

it gets rid of the differences in countries’ overall GDP – which is desirable

– it also neutralises countries’ differences in its structure – which is not as

desirable.5

3.1.2 Unit basket of final demand

In order to retain the different structure of the final demand in the compared

TSs, while still getting rid of overall scale differences, we suggest to resort to

a different relativisation procedure, and work out the following matrix:

(9) Rbasket =
1

i′ y
R

where i′ is a unit row vector.

The matrix Rbasket calculates the innovation flows embodied in the

intermediate production ones “activated” by a unit basket of final demand.

Thus, while it still scales down the different subsystems to a comparable

cross-country level, it leaves unaltered the operational scale ratios between

the different subsystems of each TS. Just to give an example, in the case of

a fictitious economy made up of three sectors, whose final demand vector is

y = (1500, 2500, 1000), the correspondent unit basket of final demand will

be (0.3, 0.5, 0.2), unlike (1, 1, 1) as for Runit.

3.1.3 Normalised R

Although the previous relativisation removes cross-country differences con-

nected with the “size” of their economy, their relative ranking in terms of

aggregate R&D/GDP ratios still affects the network analysis which is based

on it.

If one is interested in focusing on the purely relational characteristics of

the different TSs, that is, on how embodied innovation flows are distributed

5It is also worth noting that such method tends to underestimate the weight of the

R&D efforts of the less developed countries, unless a PPP correction is introduced.
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among the different subsystems within each TS, irrespectively from the value

of such flows as a proportion of the overall size of the system, he needs

to move to a different relativisation. In this case, a possible relativisation

procedure we suggest could be the simple normalisation to one of the R

matrices, that is:

(10) Rnorm =
1

i′ R i
R =

1

i′ r
R

Indeed, the ratio between each element of Rbasket (rbasket
ij ) and the corre-

spondent element of Rnorm (rnorm
ij ) is constant and equal to the country’s

aggregate R&D/GDP ratio:

(11)
rbasket
ij

rnorm
ij

=
rij

i′ y
/

rij

i′ r
=

i′ r

i′ y
(i, j = 1, 2, . . . , n)

3.1.4 Matrix C

A last possible method to relativise the matrix R is that of normalising the

subsystem innovative acquisitions, that is of dividing each cell of the original

matrix by the sum of the correspondent column, thus building up a matrix

C defined as follows:

(12) C = R (î′ R)−1

where the hat symbol is used to denote diagonalisation.6

This matrix, put forward by Leoncini, Maggioni, and Montresor (1996),

has been used by Leoncini and Montresor (2000b, 2003b, 2005) and, more

recently, by Montresor and Vittucci Marzetti (2008) for is “mixed” properties.

On the one hand, like Rnorm, C emphasises “pure” relational aspects. On the

other hand, unlike Rnorm, but like Runit, the focus is kept on the individual

subsystems of each TS.

3.1.5 A synthesis

In brief, the four relativisation procedures described above combine two

different levels of analysis:

6It is worth noting that, given the way R is defined, dividing its cells by the sum by

row simply returns the operator B; in formal terms:

(13) (cRi)−1
R = ( dr̂ B i)−1

r̂ B = (ĉr i)−1
r̂ B = r̂

−1
r̂ B = B
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Table 1: Rationale of the relativisation procedures

Focus of the analysis

System Subsystem

Relativisation dimension
Economic Rbasket Runit

Technological Rnorm C

(i) the first level concerns the dimension along which one might want to get

rid of scale effects, that is, economic activity (proxied by the volume of

final demand) or technological activity (proxied by R&D expenditure);

(ii) the second dimension refers instead to the focus of the analysis one

wants to carry out through relative matrices, that is, system-focus or

subsystem-focus (see Table 1)

On principle, Rbasket and Rnorm appear more consistent with the inner

logic of the TS analysis. However, looking the TS as an “artificial constella-

tion” of subsystems might be preferable when one is interested in recovering,

also and above all, their different centrality in different TSs. As we will

argue in the following, the choice of one of the four procedures should be

inspired by the research questions one intends to address. Thus, there is no

one absolute best, or worst, procedure among them.

3.2 Getting dichotomic matrices: density distributions and

cut-off values

The second problem is possibly more well-known than the former, and due

to the fact that the SNA indicators described in Section 2 require us to work

with dichotomic matrices, that is matrices made up of 1s and 0s depending

on the values of the retained matrices of intersectoral innovation flows being,

respectively, larger and smaller than a certain cut-off value t. Indeed, as one

can easily figure out, and as we will show in our application, the results are

sensitive to the choice of the relevant cut-off value and thus in principle not

robust, at least in absolute terms.

Of course, in order to solve this problem in toto, one could avoid using

binary data at all, and applying SNA indicators directly to one of the four

relative versions of the matrix R presented in Section 3.1. In this last respect,

several progresses have been made in the SNA literature in recent years,

such as: the use of weighted adjacency matrices to analyse complex networks
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(Onnela, Saramaki, Kertész, and Kaski, 2005; Barthélemy, Barrat, Pastor-

Satorras, and Vespignani, 2005), where the node degree is substituted by the

node strength and suitable generalizations of some of the indicators used in

SNA – e.g. clustering coefficient (e.g. Saramäki, Kivelä, Onnela, Kaski, and

Kertész, 2007; Fagiolo, 2006) and betweenness centrality (Newman, 2005)

– have been provided;7 or the recent temptative extensions of generalized

blockmodeling (Doreian, Batagelj, and Ferligoj, 2005) to valued networks

(e.g. Ziberna, 2007).

These and other methods of treating the value matrices, such as R, in

SNA are for sure extremely useful in carrying out, on the basis of them,

quantitative, “univariate” analyses of the impact that intersectoral innovation

diffusion has on the economic performance of the investigated TSs. Typically,

in building up intersectoral R&D stocks from what are called intersectoral

R&D spillovers, and in estimating econometrically their impact on a certain

productivity and/or productivity growth measure (e.g. Mohnen, 1997; van

Meijl, 1997; Hanel, 2000; Dietzenbacher and Los, 2002).

On the other hand, the same techniques are not superior to the standard

ones when the aim of the research is that of identifying and mapping the re-

lational structure of the TSs under analysis. An empirical application which,

although possibly more qualitative, is not less relevant than the previous ones.

The endogenous identification of innovation clusters (Montresor and Vit-

tucci Marzetti, 2008), if not even of “reduced” systems of innovation (OECD,

1999, 2001), within nation-wide TSs, typically carried out by investigating

the graphs generated by the R matrices, is the most policy-relevant example

of such a kind of empirical application: indeed, it turns out to be crucial in

detecting in which part of the techno-economic space a certain R&D and/or

innovation policy should be applied and have the most pervasive effects.

In this and similar other applications, the resort to dichotomic matrices

allows to obtain important information even by making economies of more

sophisticated SNA techniques. The best one can do in these cases is to avoid

choosing the cutoffs in a purely arbitrary way, and rather base their choice

on comparisons and at least partial sensitivity analyses.

One way of proceeding according to this rationale has been suggested

by Leoncini and Montresor (2000b), who started working with more cut-off

7Recent empirical applications of this complex weighted-network analysis are Fagiolo,

Schiavo, and Reyes (2008); De Montis, Barthélemy, Chessa, and Vespignani (2007).
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values through a two-step procedure: (i) for each of the z TSs to be compared,

building up a density distribution d(tz∗) using as cut-off values the ordered

distribution, tz∗ , of the n× (n − 1) cells of a proper reference matrix, that is

of a reference TS, z∗; (ii) by comparing the z density distributions, extracting

“heuristically” some cut-off values out of the distribution tz∗ , with respect to

which carrying out the rest of the network analysis and checking for their

robustness. In a recent paper, Montresor and Vittucci Marzetti (2008) refined

this procedure by suggesting to run step (i) with respect to a “super-vector”

of cut-offs (tZ), whose Z elements are obtained by ordering the cells of all

the z matrices to be compared (Z = (n × (n − 1)) × z).

As we will see, while the application of this technique clearly shows the

dependence of the SNA results from the selected cut-offs, on the other hand,

it at least signals, when they exist, subsets of cut-off values with respect to

which they could be retained relatively robust.

4 An application to six OECD technological

systems for the middle ’90s

In order to grasp the implications of the two methodological issues debated

above, in the following we present the results of an empirical application

carrying out by comparing, on a relational basis, six OECD TSs for the middle

’90s. Although only apparently descriptive, this application is, in the spirit of

evolutionary economics, functional to what Nelson and Winter (1982) called

“appreciative theorising”, that is to the identification of observed phenomena

for which the researcher is then asked to find explanations and causal links.

In this case, the phenomena we want to shed light on is the actual system

nature of six TSs and the different role that different economic sectors have

on them (Leoncini and Montresor, 2003b): phenomena that the analysis

of the productivity growth impact of R&D spillovers and of other research

strands instead inspired by “formal theorising” should take into account.

From an operational point of view, by using IO data taken from the

OECD Input-Output Database (2005) and crossing them with data on sectoral

R&D expenditure (OECD ANBERD Database, 2005), we have worked out

the R matrix (Equation (1)) with respect to 6 OECD countries, chosen

out of 15 available, by crossing the criterion of data availability with that

of having sufficient heterogeneity among the correspondent TSs, as docu-
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mented by other qualitative studies (e.g Nelson, 1993), that is: Japan, Korea,

Netherlands, Poland, Spain and the USA.8

With respect to these TSs (i.e. R matrices), the four relativisation

procedures have been used to obtained four different benchmarks, with

respect to which we have then applied the dichotomisation method discussed

in Section 3.1. In other words, for each relativisation procedure, each TS

has been transformed into a series of 1440 dichotomised matrices (D(t)), one

for each element of the “super-vector” of cut-offs (tZ)9, and with respect

to these matrices the TS distributions obtained by applying the network

indicators discussed in Section 2 have been worked out.

In so doing, it is therefore possible to analyse how the different network

indicators are distributed for each relativisation procedure.

4.1 Density distributions

To start with, let us consider how the relative distribution of the six TSs

changes in moving from one relativisation method to the other when their

densities (Equation (2)) are considered (Figure 1). By applying the first

method (Section 3.1.1), Japan appears the densest TS all along the range of

cut-off, followed by the USA, Korea and, at a distant, Netherlands, Spain

and Poland (Figure 1(a)). There is practically no inversion in this ranking

and one can therefore conclude that, no matter which is the chosen cut-off,

Japan is at least as dense as all the other countries in the sample, thus, the

most connected TS among the chosen ones. On the contrary, Poland is the

least connected TS. At first sight, this was the picture one could expect by

thinking of what we know about these TSs in qualitative and quantitative

terms (Leoncini and Montresor, 2003b; OECD, 2003). Working with this

first relativisation procedure, therefore, one could confidentially investigate

the impact of the cohesiveness of these TSs on their performance without

having to bother too much with the selected cut-off.

However, when the structure of the final demand is considered, that is,

by applying the second relativisation method (Section 3.1.2), the ranking

8Although matrix inversions have been carried out for each country at the maximum

level of disaggregation in order to reduce the distortions introduced by sectoral aggregation,

the blanks in the series of the latter dataset have forced us to limit our empirical application

to 16 sectors only (see Appendix A for details).
9As we have said, the Z elements of tZ are obtained by ordering the cells of all the 6

relativised matrices, so that Z = (15 × 16) × 6 = 1440.
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(a) Unit value matrices (b) Unit basket of final demand matrices

(c) Normalised R (d) Matrices C

Figure 1: Density distributions for the different relativisation methods

of the densest TSs becomes more blurred, and the sensitivity to the cut-off

value increases. General results can still be appreciated, such as the fact that

Korea jumps to the role of the densest TS over a quite wide range of cut-off

values (Figure 1(b)). Thus, taking into account the proportion in which

the different subsystems are actually operated within each country, that is,

retaining also the market sub-system in the TS characterisation, does make

difference. The substantial improvement of Korea’s position with the second

method might also be partly due to the underestimation of the contribution

of R&D efforts for developing countries introduced by the former method if

no PPP correction is used. And this bias should be taken into account when
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economic systems with different levels of development are compared.10

By looking at the previous density distributions, one is also legitimated

to suspect that the low ranking of Poland and Spain, although after having

discounted the different scale of their economy, is still due to the low ag-

gregate R&D/GDP ratios compared to the others. Discounting this further

aggregate factor, and confronting the different TSs on the ground of their

“pure” relational aspects, is however possible. The density distributions of

Figure 1(c), obtained by working with normalised R matrices (Section 3.1.3),

actually show that this can radically change the overall picture. Indeed,

quite surprisingly, now Poland and Spain rank, respectively, first and second

all along the range, while the least connected TS becomes Netherlands. This

means that the former two TSs, once discounted for their relatively low level

of aggregate R&D expenditure, turn out to be in fact highly connected. On

the contrary, in the Netherlands, also neglecting the quite low R&D/GDP

ratio characterising such country with respect to Japan, Korea and the USA,

the TS turns out to be only weakly connected, so to say “structurally”.

This is an extremely important result in the system analysis of innovation.

As has been also shown in other intersectoral analyses (e.g. Montresor and

Vittucci Marzetti, 2008), working with standard innovation related variables,

such as sectoral or total R&D intensity, even by retaining and cumulating

the role of intersectoral spillovers, might not provide a complete picture of a

TS: although intensively low, extensively its innovativeness could be high, a

result which could affect the application of industrial and innovation policies.

As for as Rnorm is concerned, it is worth emphasising that, although

the sum of its elements is equal to one by definition, that of the elements

out of the main diagonal can range from 0 to 1. Thus, the TS density

distributions worked out from this matrix actually results from: on the

one side, the weight of the intersectoral embodied innovation flows on the

intrasectoral ones; on the other side, the distribution of such intersectoral

flows among the different sectors. As shown by Figure 2, for all the six

analysed countries but Japan, the ranking in terms of weight of intersectoral

innovation flows over intrasectoral ones corresponds to that derived from the

analysis of countries’ density distributions.11 Japan is instead an exception

10For the delicate issue of R&D data on PPP see also Dougherty, Inklaar, McGuckin,

and van Ark (2007).
11In passing, let us note that intersectoral embodied flows are quite low compared to the

intrasectoral ones, amounting on average for the six countries to 18% of the total flows,
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Figure 2: Weight of intersectoral flows on total embodied innovation flows

(a) Japan (b) Spain

Figure 3: Distributions of intersectoral flows in normalised R

suggesting that, although intersectoral flows are quite high in absolute terms

(23.4% of the total), they are apparently more polarised in relative terms,

thus leading to the low ranking of the correspondent TS in Figure 1(c). The

simple comparison of the distribution of the extradiagonal values for Japan

and Spain confirms, in terms of basic indicators, this result (Figure 3).

The density analysis is concluded by Figure 1(d), which shows the den-

sity distributions obtained by using the matrix C of normalised subsystem

innovative acquisitions (Section 3.1.4). This time, instead of being relativised

with respect to the total innovation flows of the correspondent TS, the inward

with a coefficient of variation of 32.6%.
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Figure 4: Distributions of the weights of intersectoral innovative acquisitions

on total subsystem acquisitions

flows of each subsystem are normalised with respect to its own total acqui-

sitions. Thus, each subsystem is treated in relative isolation. Accordingly,

what can in fact affect the density distributions of each TS as a whole is not

as much the ratio between its intrasectoral and intersectoral total embodied

innovation flows, as in the former method. But rather the weight of the

innovative acquisitions each subsystem gets from the other sectors on the

total inward flows of the subsystem itself.

Figure 4 reports the box-plots of the distributions of these weights for the

different TSs and shows that the TS density distributions of Figure 1(d) can

be partly explained by the distribution of such weights. For example, the most

(least) structurally dense TS, that is Poland (Netherlands), actually shows

the highest (lowest) ordered statistics when compared with the others.12

By using C, the general picture provided by Figure 1(c) gets somewhat

confirmed, but the TS density distributions become more similar. When

using this relativisation procedure, therefore, one has to be aware of the fact

12However, it is worth noting that, assuming normality – not rejected at the 10%

significance level (5% for Netherlands) by the Kolmogorov-Smirnov test – and variance

homogeneity across the different groups – not rejected by the Levene statistic (F(5,90)=.244,

p-value = .942) –, the ANOVA test does not reject the null hypothesis of mean equality of

these weights across the different TSs (F(5,90) = .354, p-value = .88), and this result does

not change with non parametric statistics (Kruskal Wallis test p-value = .794).
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that the dichotomisation problem becomes more relevant. Furthermore, it

has to be emphasised that, given the main subsystem focus of this method,

when one wants to derive features related to the overall TS, as something

different from the sum of its subsystems, relativising R matrices with such

procedure turns out to be not fully appropriate.13

4.2 Centralisation distributions

Not only do the relativisation procedures discussed above affect density, but

also the other network indicators. This is particularly true when their impact

on the indegree and outdegree centralisation (see Section 2) distributions is

considered. In particular, as shown by Figures 5 and 6, the relativisation

procedures affect the absolute and local maximums of these indicators as

well as the relative ranking of the TSs according to them.14

At the outset, it should be noted that, while the density distributions

are quite different – such as when one deals with TSs showing remarkable

differences in their aggregate R&D/GDP ratio – by applying one of the

first two relativisation methods (Figures 1(a) and 1(b)) the relative degree

centralisation distributions are not “centered”, and this can make cross-TS

comparisons in terms of centralisation very sensible to the cut-off which is

actually chosen (Figures 5(a), 5(b), 6(a) and 6(b)).

In this case, therefore, rather than comparing the TS centralisation at

the same cut-off, as for the density analysis, a sounder choice would be to

compare the absolute and local maximums of the indicator for the different

TSs. In other words, in the present case, centralisation would serve to answer

different research questions: irrespectively from the chosen threshold flow-size

(i.e. cut-off), which might be different in the different TS to be compared,

which is the maximum value of degree centralisation attained by each TS?

Which is the relative differences in such maximums? For which flow-size

difference with respect to such maximum is a certain TS equally hierarchical

from another one? Indeed, these are questions which deserve attention in

the system analysis of innovation, and which can be significantly addressed

13In this respect, Chang and Shih (2005) are right when they point out that this

relativisation procedure is “unable to produce a comparable base for displaying the

differences between [...] countries” (2005, p.157), although it has to be stressed that, as

seen before, such remark can be equally applied to their method too.
14Given the way it is defined, the degree centralisation, inward or outward, tends to 0

when the density of the correspondent network tends to 1 or 0.
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(a) Unit value matrices (b) Unit basket of final demand matrices

(c) Normalised R (d) Matrices C

Figure 5: Indegree centralisation distributions for the different relativisation

methods

even in the presence of a strong sensitiveness to the cut-off values.

Although this holds true for both Runit and Rbasket, which of the two is

actually chosen could be decided on the ground of their inner logic (Section

3.1.5): when the indicator refers to the TSs as a whole, as degree centralisation

does, and the latter are not simply seen as a constellation of individual

subsystems, the second method should be preferred (Figures 5(c) and 6(c)).

As far as the third relativisation procedure is concerned, that is Rnorm,

an interesting relationship with Rbasket should be noticed. Given that, for

each TS, the ratio between every element of Rbasket and the correspondent

element of Rnorm is constant and equal to country’s aggregate R&D/GDP
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(a) Unit value matrices (b) Unit basket of final demand matrices

(c) Normalised R (d) Matrices C

Figure 6: Outdegree centralisation distributions for the different relativisation

methods

ratio (Equation (11)), applying the latter procedure does not alter the

centralisation ranking of absolute and local maximums worked out with the

former, but simply “centralises” the TSs’s distributions. As this makes the

TSs more easily comparable (Figures 5(c) and 6(c)) in terms of centralisation,

and does not affect the centralisation values, when the latter are the focus

(irrespectively of the correspondent cut-off) Rnorm should thus be preferred.

Following the same line of reasoning, and with the same research question

in mind, one can argue that this method should be preferred also to the last

one (Figures 5(d) and 6(d)). Indeed, although by using the matrix C one

can still obtain “centralised” distributions, the main focus of the method on
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the individual subsystems should prevent its application when the analysis

is mainly concerned with the whole TSs.

A last comment should be spent on the TS centralisation distributions

when indegree rather than outdegree centralisation indicators are used. By

comparing Figure 5 and 6 it appears immediately that, in spite of the same

relativisation arguments, the TS rankings in the two cases are different.

Just to make an example, when outdegree centralisation is considered, the

Netherlands emerge for the highest values and this, apart from the low

density of this TS, seemingly reveals a high dependency on few key sectors

for innovation diffusion. Conversely, by looking at indegree centralisation,

it is Japan which stands out, revealing the presence in its TS of one or

more sectors which are dependent on the rest of the TS much more than the

average.

More in general, the different meaning of indegree and outdegree central-

isation should be clearly disentangled, whatever relativisation procedure is

adopted.

4.3 Centrality distributions

Given the close relationship with the correspondent centralisation indicators,

the impact of the alternative relativisation procedures on the last network

indicator presented in Section 2, that is, degree centrality, does not require

much further exploration. In order to provide an illustration, we have chosen

to focus on textiles (Sector 4), out of the 16 available subsystems we have

for each TS (Appendix A), and decided to accomplish the analysis only with

respect to the indegree centrality (Figure 7).

At the outset, we should notice that, although this sector is structurally

dependent in technological terms, as the majority of the applied innovation

studies reveal from the times of the famous Pavitt taxonomy (Pavitt, 1984),

its indegree centrality is quite different across the six TSs for a number

of cut-offs. What is more important, the relativisation procedure crucially

alters the centrality gap of the sector across the TSs, so that the relative

choice has to be carefully thought also in this last respect.

Following the criteria set in Section 3.1, the relativisation methods more

suitable for the analysis of degree centrality should be the first (Runit) and

the last one (C). Indeed, we are now comparing a specific subsystem in

different TSs, thus, the relativisation procedure should be able to discount
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(a) Unit value matrices (b) Unit basket of final demand matrices

(c) Normalised R (d) Matrices C

Figure 7: Indegree centrality distributions of textiles for the different rela-

tivisation methods

for all the factors more related to the TS it belongs to, rather than to the

subsystem itself.15

In so doing, it is possible just to rescale the subsystem to the same

operational scale in all the TSs (Figure 7(a)) or normalising to one its

total embodied innovation inflows (Figure 7(d)). Once more, let us notice

that working with the C substantially increases the problem of the cut-off

sensitiveness, as the 6 centrality distributions largely overlap in continuous

switching and re-switching. On the other hand, working with Runit more

general result emerge. For example, quite interestingly, the American textile

15It has to be stressed that the situation would be different if one instead had to compare

two or more subsystems within the same TS in order to infer their relative position in it.
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sector is by far the most dependent in innovation terms by the other sectors

of the TS, while the least dependent among the 6 compared is the Polish

one, and this quite irrespectively from the selected cut-off. On the contrary,

the indegree centrality of the textile sector in Korea and in Japan actually

appears structurally similar all along the cut-offs, possibly suggesting a certain

socio-cultural characterisation of the relative sectoral system of innovation.

5 Conclusions

The paper has discussed two methodological issues which emerge in applying

SNA to IO-based innovation matrices which inform about the relational

nature of nation-wide TSs.

The first one is that of getting rid of scale effects, in order to be able

to compare different TSs from a structural point of view. In this last

respect the paper has argued, and showed in its empirical application, that

different relativisation procedures yield different results when the main

network indicators are applied. In particular, differences have to do with the

aspect the researcher is interested to focus on in comparing different TSs. For

example, by scaling the innovation matrices with respect to the Runit matrix,

and thus just discounting the different innovation intensity of the different

national subsystems, Japan actually appeared in the middle ’90s the densest

TS of the six compared, as suggested by other more qualitative studies

(e.g. Nelson, 1993; Leoncini and Montresor, 2000a). On the other hand,

however, by working with Rnorm, and thus focusing on purely relational

innovative aspects, Poland and Spain appear as the most systemic, though

less innovation intensive TSs.

The second issue the paper focuses on is that of dichotomising the original

value matrices in order to apply those tools of network analysis which cannot

be directly applied to value graphs and, in general, to carry out qualitative

analyses of the intersectoral maps and clusters which can be identified in

different TSs. When, such as in these cases, working with binary data is

unavoidable, the paper suggests to start the analysis from, and indeed base

it on, the distributions of SNA indicators for the compared TSs. Indeed, as

the empirical application has shown, this methodology enables the researcher

to understand when the sensitiveness of the results to the selected cut-off is

quite low, and then the correspondent outcome of a certain robustness. For
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example, when the dichotomisation is undertaken on the basis of Runit, the

different centrality that the textile sector has in two such different countries

as US and Poland is a result which does not depend on it. On the contrary,

in some other cases, working with distributions might suggest the researcher

not to work at the level of individual cut-offs, and rather concentrate on

the distribution extremes and extreme differentials across the TSs, as the

application has proved to be case with respect to the centralisation analysis.

Both these issues should be carefully retained, first of all, in innovation

analyses which, although of qualitative nature, have a lot of policy implica-

tions, such as the endogenous identification of innovation clusters (Montresor

and Vittucci Marzetti, 2008), if not even of “reduced” systems of innovation

(OECD, 1999, 2001). But the same holds true also for those, possibly more

quantitative analyses, which use the former ones as input, such as that of the

productivity and productivity growth impact of intersectoral R&D spillovers.

In concluding the paper, we would like to stress once more that, although

mainly intended to address the methodological issues encountered in the

comparative analysis of TSs through intersectoral innovation flows matrices,

the achieved results turn out to have a broader set of applications. Indeed,

they can be fruitfully applied each time one deals with value matrices

representing input and output flows which have to be somehow relativised in

order to remove “scale” effects, whatever they are, and then dichotomised

by fixing a certain threshold in order to be able to use the great majority of

network analysis tools. The analysis of intersectoral “knowledge flows” is

just an example of this kind of extensions.
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A Sector classification

Sector ISIC Rev.3 Code

1 Food products, beverages and tobacco 15-16

2 Textiles, textile products, leather and footwear 17-19

3 Wood, paper, printing, publishing 20-22

4 Coke, refined petroleum products and nuclear fuel 23

5 Chemicals (including pharmaceuticals) 24

6 Rubber and plastics products 25

7 Other non-metallic mineral products 26

8 Basic metals 27

9 Fabricated metal products (except machinery and equipment) 28

10 Machinery and equipment, nec 29

11 Electrical and optical instruments 30-33

12 Motor vehicles, trailers and semitrailers 34

13 Other transport equipment 35

14 Manufacturing, nec; recycling 36-37

15 Electricity, gas and water supply 40-41

16 Construction 45

B Country coverage

Country I-O and ANBERD data

Japan 1995

Korea 1995

Netherlands 1995

Poland 1995

United States 1997
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