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Abstract

In this work we apply a new approach to assess contributions from factor components to

income inequality. The new approach is based on the insight that most (synthetic) inequal-

ity indexes may be viewed as (weighted) averages of point inequality indexes, which measure

inequality between population subgroups identified by income. Assessing the contribution of

factor components to point inequality indexes is usually an easy task and, using these contri-

butions, it is straightforward to define contributions to the corresponding (synthetic) overall

inequality indexes as well. As we shall show through an analysis of income data from Eurostat’s

European Community Household Panel Survey (ECHP), the approach based on point inequality

indexes gives rise to readily interpretable results, which, we believe, is an advantage over other

methods that have been proposed in literature.

Keywords:point inequality index, synthetic inequality index, factor components, Gini in-

dex, Bonferroni index, Zenga index

1 Introduction

When Gini (1914) first proposed what later became the virtually most widely used inequality index,

he set out from the fact that the cumulative income share qi of the i less fortunate members of a

given population can never exceed the corresponding cumulative population share pi = i/N . Based

on this insight, Gini (1914) measured the degree of inequality suffered by the i poorest population

members through the ratio

Gi :=
pi − qi
pi

, i = 1, 2, . . . , N. (1)

and defined the nowadays widely used synthetic inequality index

G′ :=

∑N−1
i=1 Gi × pi∑N−1

i=1 pi

=

∑N−1
i=1 (pi − qi)∑N−1

i=1 pi

(2)

as weighted average of the first N −1 point inequality indexes Gi (note that GN = 0 in every income

distribution) with weights given by the cumulative population shares pi. It is well-known that G′

can be linked to the graph with the Lorenz curve (Lorenz 1905): in fact, the numerator in (2) equals
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N times the so called concentration area, while the denominator is equal to N times the area of the

triangle with vertices in (0, 0), ((N − 1)/N, 0) and (1, 1).1

Some years after Gini (1914), Bonferroni (1930) proposed another inequality index based on point

inequality indexes which compare the mean income
−
M i of the i poorest population members with

the mean income M of the whole population:

Vi :=
M −

−
M i

M
, i = 1, 2, . . . , N.

Differently from Gini, Bonferroni however attached the same weight to all point inequality indexes

Vi (except for VN which is zero in every income distribution) and defined the synthetic inequality

index named after him simply by

V ′ :=
1

N − 1

N−1∑
i=1

Vi.

As pointed out by De Vergottini (1940), the point inequality indexes Gi and Vi are the same

and thus the synthetic Gini and the Bonferroni indexes differ only because of the different weighting

schemes. This result prompted some criticism for Gini’s inequality index: why would one want to

attach larger weights to point inequality indexes that refer to comparisons between almost identical

population subgroups?2 Going one step further, one could however also ask: why to compare income

of almost identical population subgroups?

The inequality index I proposed by Zenga (2007a) provides an answer to both the above issues.

In fact, if all population members have different incomes, I is defined as the unweighted average of

the point inequality indexes

Ii :=

+

M i −
−
M i

+

M i

, i = 1, 2, . . . , N,

where
+

M i denotes the mean income of the N − i richest population members for i = 1, 2, . . . , N − 1,

and
+

MN is defined as the income of the richest population member. On the other hand, if there

1If no population member is allowed to have negative income and the whole population income is concentrated in

the hands of a single population member, then the Lorenz curve is given by the two line segments that join the points

(0, 0), ((N − 1)/N, 0) and (1, 1).
2As the subscript i increases, pi does increase as well and the population subgroup given by the i poorest population

members gets larger and larger until it includes all population members.
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are two or more population members that have the same income, the inequality index I does no

longer involve all point inequality indexes Ii, because Zenga (2007a), as opposed to Gini (1914) and

Bonferroni (1930), attaches the same point inequality index Ii to population members with the same

total income. Thus, in populations where the income variable takes on k (2 ≤ k ≤ N) different

values

y1 < y2 < · · · yj < · · · < yk

with respective frequencies n1, n2, . . . , nj, . . . , nk, the synthetic I index is defined by

I :=
1

N

k∑
j=1

INj
× nj

where Nj :=
∑j

j′=1 nj′ .
3

Despite the fact that the inequality index I has been introduced in the literature since a relatively

short time, several research papers have already been published about it and its underlying point

inequality indexes Ii. To cite a few, there are Zenga (2007b), Zenga (2008) and Greselin et al. (2013)

which illustrate some applications to real income distributions; Polisicchio (2008), Polisicchio and

Porro (2008), Porro (2008) and Porro (2011) which deal with properties of the curve defined by the

point inequality indexes Ii and its relation with the Lorenz curve; and Greselin and Pasquazzi (2009),

Greselin et al. (2010), Langel and Tillé (2012), Antal et al. (2011) and Greselin et al. (2014) which

analyze inferential problems related to the I index. As for decomposition rules, Radaelli (2008)

proposes a subgroups decomposition for the point inequality indexes Ii and the synthetic I index

that has been applied to real income data in Radaelli (2007), Radaelli (2008b) and Greselin et al.

(2009) and that has been compared with a subgroups decomposition rule for Gini’s index in Radaelli

(2010). The factor components decomposition rule we are going to describe below and to apply in

the following sections has been originally proposed in Zenga et al. (2012) and has been extended to

the Gini and Bonferroni indexes in Zenga (2013).

To view the synthetic Gini, Bonferroni and Zenga indexes as averages of point inequality indexes

does not only suggest straightforward interpretations for their meaning, but does also suggest a

straightforward method to measure the contributions from factor components to inequality. In fact,

3In large populations where only a few population members have equal incomes there is no practical difference

between the value of I and of I ′ := 1
N

∑N
i=1 Ii (see the example in Zenga et al. (2012).
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if total income Y is given by the sum

X1 +X2 + · · ·+Xs + · · ·+Xc

of the incomes from c factor components, then the contribution from factor component Xs to the

point inequality index Vi = Gi is simply given by

Ci(Xs) :=
M(Xs)−

−
M i(Xs)

M(Y )
,

where M(·) and
−
M i(·) denote the means of the variable between parentheses in the whole population

and among the i population members with smallest total income Y , respectively. Similarly, the

contribution to the point inequality index Ii is given by

Bi(Xs) :=

+

M i(Xs)−
−
M i(Xs)

+

M i(Y )

,

where the meaning of
+

M i(·) is analogous to that of
−
M i(·). Now, since

c∑
s=1

Ci(Xs) = Gi = Vi, i = 1, 2, . . . , N, (3)

and
c∑

s=1

Ii(Xs) = Ii, i = 1, 2, . . . , N,

the contributions from factor component Xs to G′, V ′ and I can be simply defined by

G′(Xs) :=

∑N−1
i=1 Ci(Xs)× pi∑N−1

i=1 pi
,

V ′(Xs) :=
1

N − 1

N−1∑
i=1

Ci(Xs),

and

I(Xs) :=
1

N

k∑
j=1

BNj
(Xs)× nj,

respectively. However, due to the fact that population members with the same total income Y might

have different incomes from some factor components, the definitions of Ci(Xs) and Bi(Xs) might not

be unique at subscript values i different from N1, N2, . . . , Nk and this non-uniqueness problem might
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also affect G′(Xs) and V ′(Xs).
4 One possible solution is to replace the non-unique contributions

Ci(Xs) by their average value over all possible values that can be attained by changing the order of

the population members with the same total income Y . This solution does obviously preserve the

sums in (3), and thus it makes sure that G′(Xs) and V ′(Xs) are uniquely defined as well. However,

if there are many population members with the same total income Y , it could be computationally

quite burdensome and thus we shall adopt a different solution in the present work: we simply apply

slight modifications to the definitions of G′ and V ′ in order to make sure that they involve only point

inequality indexes Gi = Vi at the subscript values i = N1, N2, . . . , Nk where the contributions Ci(Xs)

are uniquely defined. As we shall see, the resulting inequality indexes as well as the relevant point

inequality indexes and contributions will then depend only on the joint distribution function of total

income Y and the factor components Xs, which makes their computation an easy task. In place of

G′ we shall consider5

G :=

∑k
j=1GNj

× gj∑k
j=1 gj

,

where

gj := Nj ×
nj + nj+1

2N2
, j = 1, 2, . . . , k − 1,

and

gk := Nk ×
nk

2N2
,

and in place of V ′, we shall consider6

V :=
1

N

k∑
j=1

VNj
× nj.

Since the contributions Ci(Xs) are uniquely defined at i = N1, N2, . . . , Nk, it follows that the corre-

sponding contributions Gi(Xs) and Vi(Xs), and moreover the contributions to the synthetic inequality

indexes G and V defined by

G(Xs) :=

∑k
j=1CNj

× gj∑k
j=1 gj

4I(Xs) is not affected by this problem, because it depends only on the contributions Bi(Xs) at i = N1, N2, . . . , Nk.
5It is not difficult to show that the numerator in the definition of G equals N times the concentration area, while

the denominator is always equal to N/2, i.e. N times the area of the triangle with vertices in (0, 0), (1, 0) and (1, 1).
6Note that V ≤ V ′, since V1 > V2 > · · · > VN , and since in the definition of V the point inequality indexes Vi are

replaced by VNj
for Nj−1 < i ≤ Nj , j = 1, 2, . . . , k.
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and

V (Xs) :=
1

N

k∑
j=1

CNj
× nj,

respectively, are uniquely defined as well.

Dividing the absolute contributions Ci(Xs) and Bi(Xs) by their respective point inequality indexes

yields relative contributions with a very neat interpretation. In fact,

ωi(Xs) :=
Ci(Xs)

Vi
=
Ci(Xs)

Gi

=
M(Xs)−

−
M i(Xs)

M(Y )−
−
M i(Y )

means that ωi(Xs)×100% of the difference between the mean population income and the mean income

of the i poorest population members is due to factor component Xs, and an analogous interpretation

can be attached to

βi(Xs) :=
Bi(Xs)

Ii

=

+

M i(Xs)−
−
M i(Xs)

+

M i(Y )−
−
M i(Y )

.

Actually the interpretations of ωi and βi for i = 1, 2, . . . , N − 1 can also be interchanged since, as

pointed out by Zenga (2013), their values are always the same. This perhaps unexpected result

follows immediately from the fact that

N − i
N

(
+

M i(·)−
−
M i(·)

)
= M(·)−

−
M i(·), i = 1, 2, , . . . , N − 1.

As for ωN and βN , it is worth noting that ωN is always zero, while βN 6= 0 in general.

Dividing G(Xs), V (Xs) and I(Xs) by their respective synthetic inequality indexes yields relative

contributions to overall inequality in the distribution of Y as measured by G, V and I:

λ(Xs) :=
G(Xs)

G

=

∑k
j=1CNj

(Xs)× gj∑k
j=1CNj

× gj

=

∑k
j=1 ωNj

(Xs)×GNj
× gj∑k

j=1GNj
× gj

,

(4)
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ω(Xs) :=
V (Xs)

V

=

∑k
j=1CNj

(Xs)× nj∑k
j=1 VNj

× nj

=

∑k
j=1 ωNj

(Xs)× VNj
× nj∑k

j=1 VNj
× nj

,

(5)

and

β(Xs) :=
B(Xs)

I

=

∑k
j=1BNj

(Xs)× nj∑k
j=1 INj

× nj

=

∑k
j=1 βNj

(Xs)× INj
× nj∑k

j=1 INj
× nj

.

(6)

Since ωi = βi except for i = N , it turns out that differences among the relative contributions λ(Xs),

ω(Xs) and β(Xs) are roughly speaking only due to the different weighting schemes in (4), (5) and

(6).

As pointed out in Zenga et al. (2012), it is instructive to compare the relative contributions

ωi(Xs) and βi(Xs) and their weighted averages λ(Xs), ω(Xs) and β(Xs) with the share γ(Xs) of

factor component Xs on total population income. In fact, in the hypothetical case, the so-called

scale transformation hypothesis, where Xs = γ(Xs)× Y for all population members, one would have

−
M i(Xs) = γ(Xs)

−
M i(Y ) and

+

M i(Xs) = γ(Xs)
+

M i(Y )

for all i = 1, 2, . . . , N , so that

ωi(Xs) = βi(Xs) = γ(Xs), i = 1, 2, . . . , N − 1, βN = γ(Xs)

and therefore

λ(Xs) = ω(Xs) = β(Xs) = γ(Xs).

In real income distributions one should obviously expect that Xs 6= γ(Xs)× Y for most population

members, but since the deviations Xs − γ(Xs) × Y must sum to zero, the scale transformation

hypothesis provides a useful benchmark against which to compare the actual distribution of factor

components. For illustrative purposes we shall next describe two types of deviations from the scale

transformation hypothesis that are helpful for the interpretation of the relative contributions.
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First, we shall consider the case where Xs < γ(Xs) × Y for population members with low total

income Y , say Y < yj∗ , and Xs ≥ γ(Xs)×Y for population members with Y ≥ yj∗ . It is not difficult

to show that in this case

−
M i(Xs) < γ(Xs)

−
M i(Y ) and

+

M i(Xs) > γ(Xs)
+

M i(Y )

for i = 1, 2, . . . , N , so that

ωi(Xs) = βi(Xs) > γ(Xs), i = 1, 2, . . . , N − 1, βN > γ(Xs)

and therefore

λ(Xs) > γ(Xs), ω(Xs) > γ(Xs) and β(Xs) > γ(Xs).

Factor components such that λ(Xs), ω(Xs) and/or β(Xs) exceed γ(Xs) should thus be regarded as

having an exacerbating impact on inequality.

The second case is opposite to the first one. It occurs when Xs > γ(Xs) × Y for population

members such that Y < yj∗ , and Xs ≤ γ(Xs) × Y for population members with Y ≥ yj∗ . In this

case,
−
M i(Xs) > γ(Xs)

−
M i(Y ) and

+

M i(Xs) < γ(Xs)
+

M i(Y )

for i = 1, 2, . . . , N , so that

ωi(Xs) = βi(Xs) < γ(Xs), i = 1, 2, . . . , N − 1, βN < γ(Xs)

and therefore

λ(Xs) < γ(Xs), ω(Xs) < γ(Xs), and β(Xs) < γ(Xs).

In view of the latter inequalities, one should regard factor components such that λ(Xs), ω(Xs) and/or

β(Xs) are smaller than γ(Xs) as having a mitigating impact on inequality.

As the above discussion shows, the approach based on point inequality indexes gives rise to

meaningful and readily interpretable results, which, we believe, is its main advantage over other

methods that have been proposed in the literature (see e.g. Rao 1969, Fei et al. 1978, Shorrocks

1982, Shorrocks 1983, Lerman and Yitzhaki 1984, Lerman and Yitzhaki 1985, Radaelli and Zenga

2005). In the following sections we shall apply this approach to data from the 2001 wave of the

European Community Household Panel (henceforth ECHP) in order to assess its outcome on real

data.
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The rest of this work is thus organized as follows. In Section 2 we shall provide some general

information about the ECHP and about the income data therein. We shall define four income

components whose contributions to inequality as measured by the point and synthetic inequality

indexes G, V and I will be assessed in Section 3. Conclusions and final remarks end this work in

Section 4.

2 ECHP income data

The European Community Household Panel (ECHP) is a multi-purpose annual longitudinal survey

covering the time span between 1994 and 2001. Its aim is to provide comparable information from

EU countries. It is centrally designed and coordinated by EuroStat and covers topics such as demo-

graphics, labor force behavior, income, health, education and training, housing, migration, etc.. The

objective of the ECHP is to represent the population of the EU at individual and household level.

More information about this survey may be found in the accompanying documentation (see ECHP

1996a, ECHP 1996b and ECHP 2003).

In the present work we analyze data about household income from the Users’ Database (UDB)

referring to the 2001 wave of the ECHP. Information on income is collected very detailed in the

ECHP questionnaire. Some of the income components are collected at household level, while others

are collected for each individual in sample households. In order to have complete information at both

household and individual level, household income components are shared among its members aged

over 16 and personal income components are aggregated for the whole household. To be specific,

income components collected at household level are: property and rental income, social assistance

and housing allowances. All other income components are collected individually among persons aged

over 16 who reside in sample households. As for taxes, some of the income components are collected

net and others gross of taxes. To allow for the computation of comparable net values, the survey

provides net/gross ratios (variable HI020 in the Household-file of the UDB7) for each household.

Below we shall apply the formulae of Section 1 to evaluate the contributions from several income

factor components to inequality in the distribution of total net household income (variable HI100 ).

7Except for the country-specific informations provided in Table 2 in the next Section, all other variables listed in

this work are included in the Household-file
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To avoid excessive scattering of the contributions among a large number of income factor components,

we shall aggregate the latter into four main components:

• Wage and salary income (X1 :=variable HI111 ). This income factor component includes

wages and salary payments and any other form of pay for work as an employee or apprentice.

• Self-employment income (X2 :=variable HI112 ). This includes any income from self-

employment such as own business, professional practice or farm, working as free-lance or sub-

contractor, providing services or selling goods on own account.

• Other income components (X3 :=the sum of variables HI121, HI122, HI123 and HI140 ).

This includes capital income (variable HI121 ), income from property and rents (variable

HI122 ), private transfers (variable HI123 ) and adjustments for within household non-response

(variable HI140 ).

• Social transfers (X4 :=variable HI130 ). This includes unemployment related benefits, pen-

sion or benefit relating to old-age or retirement, survivor’s pension or benefits for widows or

orphans, family related benefits, benefits relating to sickness or invalidity, education related

allowances and any other social benefits.

Except for the samples from France and Finland, the variables HIxxx in the UDB contain amounts

of income net of taxes. For households where these variables are filled,8 the reported net values are

consistent in the sense that

net household income (Y :=HI100 ) :=

:= wage and salary income (X1 :=HI111 )+

+ self employment income (X2 :=HI112 )+

+ other income components

(X3 :=HI121+HI122+HI123+HI140 )+

+ social transfers income (X4 :=HI130 ).

8The variables referring to the income components are always filled if the net household income variable HI100 is

filled. However, for all countries except for Luxembourg, there are some (very few) households where the value of the

net household income variable is missing.
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For households belonging to the samples from France and Finland, the variables HI111, HI112,

HI130, HI121, HI122 and HI123 report gross values, which must be converted into net values through

multiplication by variable HI020 (the household net/gross ratio), while all other variables HIxxx do

still contain net values. Thus, for the households included in the samples from France and Finland,

net household income (Y :=HI100 ) :=

:= wage and salary income (X1 :=HI111 )+

+ self employment income (X2 :=HI020×HI112 )+

+ other income components

(X3 :=HI020×(HI121+HI122+HI123 )+HI140 )

+ social transfers income (X4 :=HI020×HI130 ).

2.1 Estimation from survey data

As virtually every modern survey, the ECHP provides weights for the computation of estimates for

population statistics. Following the suggestion in [7], we used the cross-sectional household weights

provided in the household file of the UDB (variable HG004 ) in the computation of all estimates

concerning the household populations in the various countries. In the ECHP each household with

completed household interview has his own non negative cross-sectional household weight HG004,

and these weights are scaled in such way that their sum over all interviewed households equals

the number N∗ of interviewed households in each country. Since we are however concerned with

the distribution of income and since we excluded from the analysis the households for which the

total net household income variable (variable HI100 ) is not filled, we rescaled the cross-sectional

household weights (variable HG004 ) to make sure that in each country their sum equals the number

N of households for which the net household income variable is filled. Table 2 reports N∗, N and the

ratio θ between the sum of the original cross-sectional household weights provided by the ECHP for

households where the total net income variable HI100 is not filled and N∗ in the denominator. Note

that while (N∗ −N)/N∗ is even larger than 10% in Sweden, θ does not exceed 2% in any country.

In order to account for the rescaled cross-sectional household weights in the estimates provided

in the next section, we used plug-in estimators: since all population statistics introduced in Sec-

tion 1 depend only on the joint population distribution function for total income Y and the factor
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Table 1: Sample sizes in the 2001 wave of the ECHP

Country N∗ N (N∗ −N)/N∗ θ

Ireland 1760 1757 0.002 0.001

Denmark 2283 2279 0.002 0.001

Belgium 2362 2342 0.008 0.010

Luxembourg 2428 2428 0.000 0.000

Austria 2544 2535 0.004 0.002

Finland 3115 3106 0.003 0.002

Greece 3916 3895 0.005 0.006

Portugal 4614 4588 0.006 0.005

UK 4819 4779 0.008 0.009

Netherlands 4851 4824 0.006 0.005

Spain 4966 4950 0.003 0.003

Sweden 5680 5085 0.105 0.020

France 5345 5247 0.018 0.015

Italy 5606 5525 0.014 0.012

Germany 5563 5559 0.001 0.003

components Xs, we simply replaced the frequencies nj by the sums hj of the rescaled cross-sectional

households weights of sample households with total income Y = yj, and the cumulated frequencies

Nj by the corresponding cumulated sums Hj :=
∑j

j′=1 hj. Note that in this way the point inequality

indexes Gi, Vi and Ii and their corresponding contributions might correspond to non integer values

i with range between 0 and N . To free the notation from its dependence on different values of N in

different countries we shall henceforth report subscript values p between 0 and 1 in place of i. For

example, we shall indicate by Gp, 0 < p < 1, the point inequality index GHj
at the smallest (possibly

non integer) cumulated weight H1, H2, . . . , Hj, . . . , Hk such that N × p ≤ Hj.
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3 Inequality in the distribution of net total household in-

come in EU countries

In this Section we analyze the contributions from factor components to inequality in the distribution

of total net household income in the countries included in the 2001 wave of the ECHP. All estimates

account for the rescaled cross-sectional household weights as defined in the previous section. Table

2 reports for each country the population size pop, the number of households hh and the average

household size pop/hh as from the Country-file included in the UDB provided by EuroStat. Along

with those statistics, Table 2 reports also the sample sizes N (as defined in Section 2), the estimates

Median(Y ) and M(Y ) (in Euro) for the median and the mean, respectively, of the distributions

of total net household income, and finally the estimates G, V and I for the inequality indexes of

Gini, Bonferroni and Zenga, respectively. The countries are ordered according to G from Denmark

(G = 0.302) to Portugal (G = 0.402).

Next, we shall now proceed to analyze how the four factor components defined in Section 2 affect

inequality. The following analysis will be based on the results reported in Table 3.

• Wage and salary income , with shares γ(X1) between 0.482 in Greece and 0.680 in Denmark,

accounts for the largest share on total income Y in all 15 countries. To understand how this

factor component affects inequality, we first observe that the contributions λ(X1), ω(X1) and

β(X1) are clearly larger than γ(X1). Wage and salary income does thus contribute more to

overall inequality than it would do under the scale transformation hypothesis. To assess the

impact on inequality at different levels p of the income distribution, we shall next examine the

relative contributions βp(X1): we find that βp(X1) > γ(X1) for all countries for all values of

p reported in Table 3, and that the trend of βp(X1) is quite similar in all countries: βp(X1)

tends to increase for 0 < p ≤ 0.25 and to decrease for p > 0.75. For the interpretation

of the relative contributions, recall that βp(X1) is the ratio between
+

Mp(X1) −
−
Mp(X1) and

+

Mp(Y )−
−
Mp(Y ). In Italy, for example, β0.50(X1) = 0.661 indicates that the difference between

the means of wage and salary income among the households belonging to the lower half of the

income distribution an those belonging to the upper half is equal to 0.661 times the difference

between the corresponding means of total income Y .
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Table 2: General information about countries included in the 2001 wave of the ECHP

Country pop× 10−3 hh× 10−3 Pop/hh N Median(Y )a M(Y )a G V I

Denmark 5.368 2.456 2.19 2279 33561 34597 0.302 0.435 0.646

Netherlands 15.773 6.889 2.29 4824 22331 24788 0.303 0.428 0.643

Luxembourg 0.433 0.172 2.52 2428 38333 44729 0.304 0.414 0.631

Austria 7.986 3.3 2.42 2535 25058 28543 0.328 0.456 0.672

France 57.949 24.523 2.36 5247 24408 28053 0.329 0.457 0.674

Sweden 8.663 4.576 1.89 5085 20389 23651 0.331 0.459 0.677

Germany 81.569 37.711 2.16 5559 24554 28486 0.336 0.460 0.679

Italy 57.388 21.967 2.61 5525 18179 21210 0.342 0.471 0.688

Finland 5.12 2.381 2.15 3106 21067 24801 0.350 0.481 0.697

Belgium 10.263 4.278 2.4 2342 25558 30374 0.354 0.472 0.694

United Kingdom 59.063 25.564 2.31 4779 26893 32151 0.369 0.499 0.717

Greece 10.354 3.993 2.59 3895 12208 14853 0.382 0.517 0.734

Ireland 3.839 1.291 2.97 1757 25457 30685 0.388 0.524 0.740

Spain 39.137 13.281 2.95 4950 16810 21453 0.399 0.526 0.745

Portugal 10.024 3.391 2.96 4588 12362 15661 0.402 0.530 0.749

a The estimates for the median and the mean of the household income distributions are expressed

in Euros. They have been obtained using the fixed conversion rates for Germany, Denmark,

Netherlands, Luxembourg, France, UK, Ireland, Italy, Greece, Spain, Portugal and Austria and

using the conversion rates for the year 2001 as given in the Country-file of the ECHP for Belgium,

Finland and Sweden.

• Self-employment income . The share γ(X2) of self-employment income on total population

income may vary a lot from country to country. In fact, it ranges from as low as γ(X2) = 0.018 in

Sweden, to γ(X2) = 0.210 in Greece. Apart from Greece, the list of countries with shares γ(X2)

well above 0.1 includes Italy (γ(X2) = 0.162), Spain (γ(X2) = 0.145), Ireland (γ(X2) = 0.137)

and Portugal (γ(X2) = 0.124). The contributions λ(X2), ω(X2) and β(X2) do clearly exceed

γ(X2) in all countries except for Sweden, indicating that also this factor component exacerbates

overall inequality in the distribution of total income Y . The relative contributions βp(X2) are,

except for Sweden, clearly larger than γ(X2) at all levels of p reported in Table 3, and they tend

to increase as p gets larger. In many countries the increasing trend is quite marked starting
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from p = 0.5.

• Other income components . The share of income from this factor component is about

γ(X3) = 0.050 in all countries except for Belgium and the United Kingdom, where γ(X3) =

0.108 and γ(X3) = 0.132, respectively. The contributions λ(X3), ω(X3) and β(X3) do slightly

exceed γ(X3) in most countries, indicating that, like the former two factor components, the

other income components tend to exacerbate inequality as well. The largest contributions

λ(X3), ω(X3) and β(X3) are observed in those countries where the share γ(X3) is also largest,

i.e. Belgium and the United Kingdom. Inspection of the relative contributions βp reveals an

increasing trend in most countries. In some countries like Belgium, Finland, Sweden and the

United Kingdom the increasing trend is quite marked in the final part of the income distribution

(i.e. for p ≥ 0.75).

• Social transfers , with shares γ(X4) between 0.190 in Ireland, and 0.323 in Sweden, is the

second largest factor component in all considered countries. As expected, the relative contri-

butions λ(X4), ω(X4) and β(X4) are clearly smaller than γ(X4), confirming that this factor

component has an offsetting impact on inequality. In Belgium, Denmark, Ireland, Luxembourg

and the United Kingdom some of the relative contributions λ(X4), ω(X4) and/or β(X4) are

even negative. As for the relative contributions βp(X4), they are constantly smaller than γ(X4)

in all considered countries and they exhibit a decreasing trend in the initial part of the income

distribution up to p = 0.50, and are thereafter almost constant, except for Sweden, where

the decreasing trend holds on until p = 0.75, and for Denmark, where βp(X4) increases after

p = 0.500.

4 Conclusions

Existing literature about inequality index decomposition by factor components (Rao 1969, Fei et al

1978, Pyatt et al. 1980, Shorrocks 1982, Shorrocks 1983, Lerman and Yitzhaki 1984, Lerman and

Yitzhaki 1985, Radaelli and Zenga 2005) has mainly been focused on (synthetic) overall inequality

indexes. Only recently Zenga et al (2012) explored a new approach: given that the synthetic inequal-

ity index proposed in Zenga (2007) is defined as average value of point inequality indexes, the authors
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define first the contributions from factor components to the point inequality indexes, and then the

contributions to the synthetic inequality index simply as average values of the contributions to the

point inequality indexes. An interesting and attractive feature of this approach is that it allows for

a more detailed analysis of the sources of inequality because of the easy and straightforward link

between the contributions to the point inequality indexes and to the synthetic index. In addition to

the approach based on point inequality indexes, Zenga et al (2012) introduce also a useful bench-

mark situation, the so-called scale transformation hypothesis, against which to compare the actual

distribution of factor components in order to determine in which direction they do affect inequality

in distribution of total income. Under the scale transformation hypothesis it is assumed that for each

household the shares of income from the factor components equal their corresponding shares on total

population income. Factor components with contributions to inequality larger than their theoretical

value under the scale transformation hypothesis should be deemed to have an exacerbating impact

on inequality in the distribution of total income, while otherwise their impact should be considered

as inequality-offsetting.

In a later work (Zenga 2013) extended the approach based on point inequality indexes to other

two notable inequality indexes which are defined as average values of point inequality indexes: the

Gini and the Bonferroni indexes. In this latter work it is shown that for a given factor component,

the relative contributions to the point inequality indexes underlying the Gini, Bonferroni and Zenga

indexes are all the same, and thus that the relative contributions to these three synthetic indexes

are weighted averages, with different weights, of an unique set of relative contributions to point

inequality indexes. In a further work Arcagni and Zenga (2014) employed the approach based on

point inequality indexes to obtain a decomposition rule for the inequality index ξ proposed by Zenga

(1984) as well.

In the present work we applied the decomposition rules based on point inequality indexes for the

Gini, Bonferroni and Zenga indexes to household income data from the 2001 wave of the European

Community Household Panel. We considered four factor components: ”wage and salary income”,

”self-employment income”, ”other incomes” and ”social transfers”. The outcome shows that the

former two factor components exhibit larger contributions to the point and synthetic inequality

indexes than they would have under the scale transformation hypothesis and thus they should be

considered as inequality-exacerbating factor components. The observed contributions to the three

17



synthetic inequality indexes from the other income components, which include roughly speaking

capital income, income from property and rents and private transfers, do also exceed their theoretical

values under the scale transformation hypothesis in most countries, although to a lesser extent.

Detailed analysis of the contributions to the point inequality indexes in the latter countries shows

that the impact on inequality from the other income components gets larger as smaller population

shares of high-income households are compared with the rest of the household population. The

social transfers factor component, on the other hand, is in most countries the only factor component

with an offsetting impact on inequality in the sense that its contributions to the point and synthetic

inequality indexes are smaller than under the scale transformation hypothesis. It is worth noting that

the relative contributions tend to decrease in the initial part of the income distribution, where small

population shares of low-income households are compared with the rest of the household population.
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