
Theoretical Computer Science 530 (2014) 66–79
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Complexity insights of the Minimum Duplication problem

Guillaume Blin a, Paola Bonizzoni b, Riccardo Dondi c, Romeo Rizzi d,
Florian Sikora e,∗
a Université Paris-Est, LIGM, UMR 8049, France
b DISCo, Universitá degli Studi di Milano–Bicocca, Milano, Italy
c Dipartimento di Scienze Umane e Sociali, Universitá degli Studi di Bergamo, Bergamo, Italy
d Department of Computer Science, University of Verona, Verona, Italy
e PSL, Université Paris–Dauphine, LAMSADE, UMR 7243, Paris, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 March 2013
Received in revised form 29 January 2014
Accepted 18 February 2014
Communicated by M. Crochemore

Keywords:
Minimum Duplication problem
Comparative genomics
Computational complexity
APX-hardness
Randomized algorithm

The Minimum Duplication problem is a well-known problem in phylogenetics and
comparative genomics. Given a set of gene trees, the Minimum Duplication problem asks
for a species tree that induces the minimum number of gene duplications in the input
gene trees. Recently, a variant of the Minimum Duplication problem, called Minimum

Duplication Bipartite, has been introduced, where the goal is to find all pre-duplications,
that is duplications that in the evolution precede the first speciation with respect to a
species tree. In this paper, we investigate the complexity of both Minimum Duplication

and Minimum Duplication Bipartite. First of all, we prove that the Minimum Duplication

problem is APX-hard, even when the input consists of five uniquely leaf-labeled gene trees
(improving upon known results on the complexity of the problem). Then, we show that
the Minimum Duplication Bipartite problem can be solved efficiently with a randomized
algorithm when the input gene trees have bounded depth. An extended abstract of this
paper appeared in SOFSEM 2012 [1].

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The evolutionary history of the genomes of eukaryotes is the result of a series of evolutionary events, called speciations,
that produce new species starting from a common ancestor. This evolutionary history has been deeply studied in com-
putational biology, and it is usually represented using a phylogenetic tree called species tree [2]. A species tree is a rooted
binary tree whose leaves are uniquely labeled by a set Λ representing the extant species, where the common ancestor
of the contemporary species is associated with the root of the tree. The internal nodes represent hypothetical ancestral
species (and the associated speciations). Speciations are not the only events that influence the evolution. Indeed, there are
other events, such as gene duplications, gene losses and lateral gene transfers that, although not leading to new species,
are fundamental in the evolution. In this paper we focus on gene duplications which are known to be essential for the
evolution of many eukaryotes groups, such as vertebrates, insects and plants [3]. A gene duplication can be described as the
genomic event that causes a gene inside a genome to be copied, resulting in two copies of the same gene that can evolve
independently. Genes of extant species are called homologous if they evolved from a common ancestor through speciations
and duplications events [4]. The evolution of homologous genes, with regards to the extant species, is usually represented

* Corresponding author.
E-mail addresses: gblin@univ-mlv.fr (G. Blin), bonizzoni@disco.unimib.it (P. Bonizzoni), riccardo.dondi@unibg.it (R. Dondi), Romeo.Rizzi@univr.it

(R. Rizzi), florian.sikora@dauphine.fr (F. Sikora).
http://dx.doi.org/10.1016/j.tcs.2014.02.025
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.02.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:gblin@univ-mlv.fr
mailto:bonizzoni@disco.unimib.it
mailto:riccardo.dondi@unibg.it
mailto:Romeo.Rizzi@univr.it
mailto:florian.sikora@dauphine.fr
http://dx.doi.org/10.1016/j.tcs.2014.02.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.02.025&domain=pdf

G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79 67
Fig. 1. (a) A gene tree T . (b) A species tree S where M is the lca mapping from T to S; each gene in {g2, g4, g5} is mapped by function f in the species
that gene belongs to. Nodes of S are labeled with s’s. (c) A reconciled tree for T and S based on the a priori duplication of gene g1 into genes h and g3.

using another special kind of phylogenetic tree, called gene tree. A gene tree is a rooted binary tree whose leaves are (not
necessarily uniquely) labelled by elements of the set Λ. Despite the fact that biologically speaking leaves in the gene tree
represent genes, for simplification, the gene tree is labelled according to the species from which the corresponding gene
was sampled. Therefore, leaves similarly labelled represent duplicated genes that evolved independently and appear in a
common extant species. As in the species tree, the root and the internal nodes respectively represent the common ancestor
and ancestral genes explaining their evolution.

With regards to the set of labels Λ, gene and species trees are said to be comparable. Nevertheless, due to complex
evolutionary processes, such as gene duplications and losses, comparable gene trees and species trees very often present
incompatibilities. An interesting problem is then to reconcile the gene trees and species trees with hypothetical gene du-
plications. For example, in Fig. 1, given a comparable gene tree and species tree inducing incompatibilities, one can infer a
reconciled tree based on the a priori duplication of gene g1 into genes h and g3 (h is a hypothetical ancestor of genes g2,
g4), which afterwards both speciate according to the topology of the species tree.

Reconciliation is a widely-investigated problem, and different approaches have been proposed in the past based on the
duplication-loss model [5–14] and also extended to consider later gene transfer [15–19]. Some approaches are based on a
probabilistic model that aims to infer how a gene tree evolves within a given species tree [5,6,17].

Based on the principle of parsimony, one is interested in finding the minimum number of gene evolutionary events that
can explain all the incompatibilities. Notice that, while we focus on minimizing duplications, other possible costs have been
considered, for example the minimization of losses or the minimization of duplications and losses [12,9,20].

This last can be inferred by the so-called lowest common ancestor mapping (lca mapping), denoted by M. M maps
each ancestral gene g of the gene tree to the most recent common ancestor of the extant species from which all the
descendants of g were sampled. Given M, a gene in the gene tree is a gene duplication if it has a descendant with the
same M mapping. Then, the reconciliation cost is defined as the number of gene duplications in the gene tree induced by
the species tree. Computing a specie tree inducing the minimum cost for this distance has been widely investigated under
the name of the Minimum Duplication problem [21,12,20,22] (defined formally afterwards).

1.1. Known results

The Minimum Duplication problem is known to be NP-hard [12]. Recently, the Minimum Duplication problem has been
related to the Minimum Triplets Consistency problem [22], a problem known to be W[2]-hard [23] and not approximable
within factor O (log n) [23]. These results coupled with the reduction provided in [22] implies that the Minimum Duplication

problem is NP-hard, W[2]-hard (despite of [21]) and cannot be approximated within factor O (2log1−ε n), even in the specific
case of a forest composed of uniquely leaf-labelled gene trees with three leaves [22,24] (notice that if the forest consists of
a constant number of uniquely leaf-labelled gene trees with three leaves, then the problem is trivially in P).

Therefore, different heuristics and Integer Linear Programs have been developed [25,26,9,27].
Recently, the Minimum Duplication Bipartite problem has been introduced to tackle the Minimum Duplication problem

[28]. The Minimum Duplication Bipartite problem aims to find all the pre-duplications, that is duplications that in the
evolution precede the first speciation with respect to a species tree (see Fig. 2 for an example). Roughly, this means that
only the first level of the species tree is considered. Indeed, one is interested in knowing if a given species belongs to
the subtree of S rooted at the left child of the root or at the right one. Therefore, one can view the species tree as a
bipartition (Λ1,Λ2) of the set of species Λ. Solving the Minimum Duplication Bipartite problem recursively produces a
natural greedy heuristic for the Minimum Duplication problem. The Minimum Duplication Bipartite problem was shown
to be 2-approximable [28], but its complexity remains open.

In this contribution, we provide results for both the Minimum Duplication problem and the Minimum Duplication

Bipartite problem. First of all, we prove that the Minimum Duplication problem is APX-hard, even when the input consists
of five uniquely leaf-labelled gene trees (that is for a constant number of gene trees). Then, we show that the Minimum

Duplication Bipartite problem can be solved efficiently with a randomized algorithm when the input gene trees have
bounded depth.

68 G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79
Fig. 2. A set F = (T1, T2) of gene trees and the species tree S which is a bipartition ({1,2,3,4,5}, {6,7,8,9}). For sake of clarity, we have labelled the
leafs of T1 and T2 with the species of S . The only node with a pre-duplication is the root of T1, since this node and its two children are mapped by M
(via the dashed lines) to the root of S . Still for sake of clarity, the mapping is not drawn for all nodes of T1 and T2.

2. Preliminaries

In this section we introduce some preliminary definitions and properties that will be useful in the rest of the paper.
Consider a binary tree U , we denote by Λ(U) the set of its leaves. Given an internal node x of U , we denote by U (x) the
subtree of U rooted at node x, and by Λ(U (x)) the set of leaf labels of U (x). When there is no ambiguity on the tree
considered, we denote ζ(x) = Λ(U (x)); ζ(x) is called the cluster of x. Given a tree U , we denote by lcaT (u, v) the lowest
common ancestor of two nodes u and v in a tree T .

Given a gene tree T and a species tree S , leaf-labelled by a set Λ, we define a mapping M (also called least common
ancestor mapping) from the nodes of T to the nodes of S , defined as follows. M(x) = y where y is the node of S having
minimum cluster such that ζ(x) ⊆ ζ(y).

For example, in Fig. 1, according to M, g3 is mapped to s1, since s1 is the most recent common ancestor of s4 and
s5 from which were sampled (represented as a function f) respectively the descendant g4 and g5 of g3. Observe that,
considering M, any leaf of the gene tree is mapped to the unique leaf of S similarly labelled (according to Λ). Given M,
a node x in a gene tree T is a duplication if M(x) = M(x′), where x′ is a child of x in T . The duplication cost d(T , S) is
defined as the number of duplications induced in T . Given a forest F = {T1, T2, . . . , Tk}, the duplication cost of F with
respect to S , denoted by d(F , S) is defined as d(F , S) = ∑k

i=1 d(Ti, S). The Minimum Duplication problem [21,12,20,22], is
defined as follows:

A variant of the problem has been introduced in [28], where the goal is to compute the number of duplications induced
by nodes of the gene trees mapped in the root of the species tree. Given a gene tree T and a species tree S , a node of T is
a pre-duplication if x and one of its children are both mapped in the root of S . Formally, the Minimum Duplication Bipartite

problem is defined as follows:

2.1. Properties of the lca mapping

Let us introduce some fundamental properties that will be used in the rest of this paper. In the following, for ease, given
a binary tree T = (V , E) and a vertex v ∈ V , let us denote by v L (resp. v R) the left (resp. right) child of v , and by ζv the
cluster of v i.e. the set of all leaves belonging to the subtree rooted in v . Moreover, for ease, ϑT will denote the root of the
tree T .

G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79 69
Fig. 3. Illustration of Property 2 where (a) ζ(v) \ ζ(v ′) ⊆ ζ(w), (b) ζ(w)� ζ(v) and (c) ζ(w) ∩ ζ(v ′) �= ∅.

Property 1. Let T , T ′ be two gene trees labelled by the same sets of leaves Λ. Consider the bipartitions b1 = (ζ(ϑ L
T), ζ(ϑ R

T)), b2 =
(ζ(ϑ L

T ′), ζ(ϑ R
T ′)) of Λ. Then either b1 and b2 are identical or any species tree S induces at least one duplication in the root of one of

{T , T ′}.

Proof. The property follows easily from the observation that in any bipartition of the leaves Λ one of the set contains a
leaf of ζ(ϑ L

T) and a leaf of ζ(ϑ R
T), or a leaf of ζ(ϑ L

T ′) and a leaf of ζ(ϑ R
T ′). �

Property 2. Let T = (V T , ET) be a gene tree and S = (V S , E S) be a species tree. Let v be a vertex of V T such that v has at
least one child v ′ , which is not a leaf. If there exists a vertex w of V S such that (a) ζ(v) \ ζ(v ′) ⊆ ζ(w), (b) ζ(w) � ζ(v) and
(c) ζ(w) ∩ ζ(v ′) �= ∅, then v is duplicated.

Proof. Let us consider the vertex w in S . Notice that, since (a) ζ(v)\ζ(v ′) ⊆ ζ(w), (b) ζ(w) � ζ(v) and (c) ζ(w) ∩ ζ(v ′) �= ∅,
then there exists at least a label l, such that l ∈ ζ(v ′) \ ζ(w) (otherwise ζ(w) would contain ζ(v)). Furthermore, as ζ(w) ∩
ζ(v ′) �= ∅, it follows that v ′ and v are mapped to vertices of S that are on the path from w to ϑS . Let w ′ be the vertex of
S where v ′ is mapped (i.e. M(v ′) = w ′). Note that w ′ is defined such that ζ(v ′) ⊆ ζ(w ′) and �z such that ζ(v ′) ⊆ ζ(z) and
|ζ(z)| < |ζ(w ′)|. Since w ′ is an ancestor of w , it follows that ζ(v) ⊆ ζ(w ′). Hence, v is mapped to w ′ (i.e. M(v) = w ′). As
a consequence v is duplicated (see Fig. 3). �
3. On a tight inapproximability

We present a reduction from Minimum Vertex Cover on cubic graphs (MVCC) to the restriction of the Minimum Du-

plication problem – denoted Min-5-Dup – where F consists of five gene trees, that is F = {T1, T2, T3, T4, T5}. The MVCC

problem is defined as follows:

In a first step (see Section 3.1), starting from a cubic graph G = (V G , EG), we construct an associated input F =
{T1, . . . , T5} of Min-5-Dup. Then in Section 3.2, we prove that (1) any species tree S such that d(F , S) < q = 6|V G | +
3|EG |+ 1 must induce duplications in the spine (the definition of spine is given afterwards) of trees T1, . . . , T4, and (2) that
our construction is indeed an L-reduction.

3.1. Extra definitions and construction

In order to define formally the gene trees, let us first define the central notion of comb graph. We will consider a specific
subclass of comb graphs corresponding to a binary tree where all the internal nodes lie on a single simple (i.e. with no
repeated vertices) path. We will nevertheless use the term comb graph in the following to denote those lasts. Given a
sequence L = 〈l1, . . . , lk〉 of k labels, let C(L) denote the comb graph whose leaves are labelled according to a postorder
traversal using L (i.e. lx ∈ L, 1 � x � k − 2, is the label of the unique leaf of depth x, and lk−1, lk are both at level k − 1). For
example, in Fig. 1, the gene tree (a) corresponds to the comb graph C(〈g2, g4, g5〉).

Let us now define some operations on trees. Let T1�T2 be a tree obtained from two trees T1 and T2, by connecting the
roots of T1 and T2 to a new vertex v which becomes the root of T1�T2. The insertion of T2 in the edge e of T1 denotes

70 G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79
Fig. 4. The trees T vi , T 1
ex

and T 2
ex

for vi ∈ V G such that ex = {vi , v j}, e y = {vi , v j′ } and ez = {vi , v j′′ } and i < j, i > j′ and i < j′′ .

the operation that leads to a tree obtained from T1 by replacing the edge e = {v, v ′} in T1 by two edges {v, w} and {w, v ′}
and connecting the root of T2 to the new vertex w . Given a binary tree T = (V , E), with leaves labelled by Λ and Λ′ ⊆ Λ,
we define the restriction of T to Λ′ , denoted T |Λ′ , as the subtree obtained from T by retaining only leaves with a label
belonging to Λ′ and by contracting all the internal vertices of degree 2.

We are now ready to define the gene trees T1, . . . , T5. Roughly, we will associate with each vertex v ∈ V G , a specific tree
T v and with each edge e ∈ EG , two trees T 1

e , T 2
e . These trees will be then combined to build the gene trees T1, . . . , T5. For

ease, let us consider the following order on the edges of EG , 〈e1, e2, . . . , e|EG |〉: ∀ex = {vi, v j}, e y = {vh, vk} it holds x < y,
where i < j and h < k, either if (i < h) or (i = h and j < k). Set q = 6|V G | + 3|EG |. According to this order, we define the
following sequences of labels:

• M1 = 〈m1
1,m1

2, . . . ,m1|EG |〉
• M2 = 〈m2

1,m2
2, . . . ,m2|EG |〉

• L = 〈l11, l21, l12, l22, . . . , l1|EG |, l2|EG |〉
• L f = 〈 f |V G |+1, f 1|V G |, . . . , f q

|V G |, f |V G |, . . . , f 1
1 , . . . , f q

1 , f1〉

The sequences M1, M2, L encode the edges of the cubic graph G and belong to the subtrees (defined later) encoding the
vertices and the edges of G . The labels are grouped as in the definition given above, since three labels m1

x , m1
y , m1

z belong

to the same subtree of T vi , three labels m2
x , m2

y , m2
z belong to the same subtree of T vi and three labels of L belong to the

same subtree of T vi (see Fig. 4).
The sequence L f consists of labels associated with leaves connected to the spine of T5 (a similar sequence is used for

T1, . . . , T4). This set is introduced to separate the subtrees encoding different vertices and edges of G (see Fig. 5).
Moreover, for ease of notation we denote the following subsequence of labels of L f :

• Li
f = 〈 f 1

i , . . . , f q
i 〉, with 1 � i � |V G |.

The subsequence Li
f is used to define those labels of T5 associated with a single index i, 1 � i � |V G | (see Fig. 5).

Roughly, any edge ex is represented by the four labels {m1
x ,m2

x , l1x , l2x}. First of all, for any edge ex ∈ EG , let us build the
two trees T 1

ex
= C(〈l1x ,m2

x , l2x〉) and T 2
ex

= C(〈l2x ,m2
x , l1x〉). Moreover, recall that G is cubic, therefore, any vertex has degree

three. Then, for any vi ∈ V G such that ex = {vi, v j}, e y = {vi, v j′ }, ez = {vi, v j′′ } ∈ EG , with j < j′ < j′′ , we build a tree

T vi = (
C
(〈

m1
x ,m1

y,m1
z

〉)�C
(〈

lkx, lk
′

y , lk
′′

z

〉))�C
(〈

m2
x ,m2

y,m2
z

〉)
where k (resp. k′ , k′′) is set to 1 if i < j (resp. i < j′ , i < j′′); 2 otherwise (see Fig. 4).

Now, we build the gene trees T1 to T5. We start from a comb graph where subtrees representing vertices and edges will
be inserted in. Let T5 be obtained from C(L f) by inserting the subtree C(M1)�C(M2) in the edge connecting f1 and its
parent (see Fig. 5).

Regarding the construction of T1 to T4, let us assume that we are also provided a 4-coloring λ : V G → {1,2,3,4} of G
(for example, by applying the polynomial-time greedy Welsh–Powell algorithm [29]). Let any Ti , 1 � i � 4, be first defined
as the following comb graph: Ti = C(〈 f1, f2, . . . , f |V G |+1, f 1|V G |, . . . , f q

|V G |, f 1|V G |−1, . . . , f q
1 〉). We then insert, for each vi ∈ V G ,

the tree T vi in the edge connecting the parents of f i and f i+1 in the gene tree Tx where x = λ(vi) (see Fig. 5). Moreover,
for each ex = {vi, v j} ∈ EG (ordered from e1 to e|EG |), the tree T 1

ex
is inserted in the edge connecting the parent of f i and

its other child in the gene tree Tx where x = min{1,2,3,4} \ {λ(vi), λ(v j)} (i.e. the gene tree having the smallest index and
not containing either T vi , nor T v j). Finally, for each ex = {vi, v j} ∈ EG , the tree T 2

ex
is inserted in the edge connecting the

parent of f i and its other child in the gene tree Tx where x = max{1,2,3,4} \ {λ(vi), λ(v j)} (i.e. the gene tree having the
biggest index and not containing neither T vi , nor T v j). A sketch of this construction is given in Fig. 5.

Let P x be the set of internal vertices in Tx , 1 � x � 4, belonging to the path from the root of Tx to the parent px|V G |+1 of
f |V G |+1. We define the spine of any gene tree Tx , 1 � x � 4, as P x \ {px|V G |+1}.

Recall that given a gene tree T and a species tree S , a vertex v of T is duplicated with respect to S if M(v) = M(v ′)
where v ′ is a descendant of v in T (i.e. v ′ belongs to T v).

G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79 71
Fig. 5. Gene trees T1 to T5 obtained from the cubic graph G where L f = 〈 f5, f 1
4 , . . . , f q

4 , . . . , f 1
1 , . . . , f q

1 , f1〉 and ∀1 � i � 4, λ(vi) = i. Each tree Ti ,
1 � i � 4, is obtained by inserting tree T v j , T x

j,h in the comb graph C(〈 f1, . . . , f5〉). Notice that T5 contains a comb graph C(〈 f5, . . . , f1〉).

3.2. Correctness of the reduction

Before giving the details of the proofs, we will give an overview of the reduction. First of all, we will prove in Lemma 1,
that all the gene trees in F are uniquely leaf-labelled. Then, we will prove (Lemma 2) that we can restrict ourselves to
solutions, i.e. species trees, that contain an isomorphic copy of T5, thus inducing duplications in each internal node of the
spine of T1, . . . , T4. Then, applying the result of Lemma 3, we are able to relate the duplications of subtrees T v , v ∈ V G ,
with the corresponding vertices in the vertex cover of the graph G .

First of all, let us prove that, by construction, all the gene trees T1, . . . , T5 are uniquely leaf-labelled.

Lemma 1. The trees T1, . . . , T5 are uniquely leaf-labelled trees.

Proof. It is easy to see that T5 is uniquely leaf-labelled by construction. Indeed, each of the three comb graphs C(L f),
C(M1), C(M2) used to build T5 is uniquely leaf-labelled. Moreover, the trees C(L f), C(M1), C(M2) have pairwise disjoint
sets of leaves.

Now, consider the gene trees T1, T2, T3 and T4. First, remark that each tree T v , with v ∈ V G , is uniquely leaf-labelled
and so do the trees T 1

ex
and T 2

ex
(see Fig. 4). Then, consider the relative placement of T v , T 1

ex
and T 2

ex
in the gene trees.

More precisely, by construction, we have to ensure that a tree T v , where v ∈ V G is incident to the three edges ex = {v, v ′},
e y = {v, v ′′} and ez = {v, v ′′′}, does not belong to the same gene tree of {T v ′ , T v ′′ , T v ′′′ } and of {T 1

ex
, T 2

ex
, T 1

e y
, T 2

e y
, T 1

ez
, T 2

ez
}.

This is indeed true since all those trees are associated with the gene trees considering their corresponding colors in the
4-coloring of G which ensures that (a) T v , T v ′ , T v ′′ and T v ′′′ belong to four different trees, (b) {T 1

ex
, T 2

ex
} are inserted in the

trees where {T v , T v ′ } is not present (a similar property holds for {T 1
e y

, T 2
e y

}, and {T 1
ez

, T 2
ez

}). Moreover, the trees T 1
ex

and T 2
ex

do not belong to the same gene tree (which is the case by construction), and this concludes the proof. �
Let us now prove that we are interested only in solutions that induces a duplication in each node on the spine of Tx ,

x ∈ {1, . . . ,4}.
First, let us consider the following order induced by the lca mapping M. Consider three vertices v , v ′ , v ′′ of a tree

T and the following ordering of their lowest common ancestors: we write lcaT (v, v ′) > lcaT (v ′, v ′′) (lcaT (v, v ′) �
lcaT (v ′, v ′′) respectively) when the depth of the lca of v ′ , v ′′ is greater (greater or equal respectively) than the one of
v , v ′ .

Lemma 2. Let S be a solution of Min-5-Dup for the instance F = {T1, . . . , T5}. Then, either d(F , S) � 6|V G | + 3|EG | + 1 or all the
vertices on the spines of the gene trees T1 , T2 , T3 , T4 are duplicated.

Proof. Consider any species tree S and two leaves f i , f i+1 of T5, for a given 1 � i � n. Let w j
i (resp. w j

i+1) be the parent of
f i (resp. f i+1) in the gene tree T j , with j ∈ {1,2,3,4}. Let xi (resp. xi+1) denote the parent in T5 of f i (resp. f i+1). Similarly,
let xz

i denote the parent in T5 of f z
i .

In what follows, we consider a label f z
i , with 1 � z � q, and we prove that, considering the previously mentioned

mapping, either all the internal vertices on the path from xi to xi+1 in T5 are duplicated (hence d(F , S) � q = 6|V G | +
3|EG |+ 1) or all the internal vertices on the path from w j

i (included) to w j
i+1 (not included) are duplicated in T j , 1 � j � 4.

To do so, we will consider a case by case analysis based on the possible mappings of f i , f i+1 and f z in S .
i

72 G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79
Fig. 6. Illustration of Lemma 2, when for each f z
i ∈ Li

f , lcaS (f i , f z
i) > lcaS (f i+1, f z

i). Vertices xi+1, . . . , xz+1
i of T5 are duplicated.

Fig. 7. Illustration of Lemma 2 when there exists at least one f z
i such that lcaS (f i , f z

i) > lcaS (f i+1, f i). In case (a) the vertices of T j , 1 � j � 4, between

w j
i and wi+1 j are duplicated. In case (b), since vertex w j

i+1 is not mapped in z1, then all the vertices between xi+1 and xz+1
i in T5 are duplicated.

More precisely, we have the following possible cases: either for each f z
i ∈ Li

f , lcaS (f i, f z
i) � lcaS (f i+1, f z

i) (Case 1) or

there exists an f z
i ∈ Li

f such that lcaS(f i, f z
i) < lcaS (f i+1, f z

i) (Case 2). For Case 1, we have two possible subcases: for

each f z
i ∈ Li

f , lcaS(f i, f z
i) � lcaS(f i+1, f z

i) (Case 1.a) or there exists an f z
i such that lcaS (f i, f z

i) � lcaS (f i+1, f z
i) (Case

1.b).
Consider the subtree of S ′ = S|({ f i} ∪ { f i+1} ∪ (

⋃
z{ f z

i })). Intuitively, there exists a vertex x of S ′ such that ζ(x) =
({ f i} ∪ (

⋃
z{ f z

i })), hence f i+1 /∈ ζ(x) (Case 2) or not (Case 1). Case 1 can have two possible subcases: there exists a vertex
y of S ′ such that ζ(y) = ({ f i+1} ∪ (

⋃
z{ f z

i })) (Case 1.a) or not (Case 1.b), in which case there is a vertex w of S ′ such that
f i, f i+i ∈ ζ(w), and f z

i /∈ ζ(w), for some z.
(Case 1) Assume that for each f z

i ∈ Li
f , lcaS(f i, f z

i) � lcaS (f i+1, f z
i). Notice that there exists two possible cases:

lcaS (f i, f z
i) > lcaS(f i+1, f z

i), for each f z
i (Case 1.a, see Fig. 6), or there exists at least one f z

i such that lcaS (f i, f z
i) >

lcaS (f i+1, f i) (Case 1.b, see Fig. 7).
(Case 1.a) In this case lcaS (f i, f z

i) > lcaS (f i+1, f z
i), for each f z

i . Property 2 applies to each internal vertex between xi ,

xi+1 excluding xi with v = xz
i , v ′ = xz+1

i , x = f z+1
i and l = f i (see Fig. 6). Hence d(F , S) � q = 6|V G | + 3|EG | + 1 since each

x j
i with 1 � j � q − 1 and xi+1 are duplicated.

(Case 1.b) In this case for some f i
z , it holds that lcaS (f i, f z

i) > lcaS (f i+1, f i). Let us consider the leaves in ζ(w j
i) \

ζ(w j
i+1) and let S j

i be the set of internal vertices of T j , 1 � j � 4, between w j
i+1 and w j

i . Property 2 applies to the vertex

w j
i , as lcaS(f i+1, f i) contains f i, f z

i but not f i+1, which is contained in both ζ(w j
i+1) and ζ(w j

i). Hence w j
i is duplicated

(see Fig. 7a). Now, we have to consider the vertices between w j
i and w j

i+1.

Consider the lowest vertex s j
i ∈ S j

i not duplicated and denote by t j
i its child which is not on the spine of T j , 1 � j � 4.

Let z1 be the vertex of S where s j
i is mapped (i.e. M(s j

i) = z1), and notice that z1 � lcaS (f z
i , f i). Since s j

i is not duplicated,

then the cluster of one of the children of z1 contains ζ(t j
), while the other contains { f z, f i, f i+1}, for each 1 � z � q. But
i i

G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79 73
Fig. 8. Illustration of Lemma 2 when lcaS (f i , f z
i) < lcaS (f i+1, f z

i). In case a) the vertices of T j , 1 � j � 4, between w j
i and wi+1 j are duplicated. In

case b), due to the leaf label m2
e in S , vertex w j

i+1 is not mapped in z1, and all the vertices between xi+1 and xz+1
i in T5 are duplicated.

then, since there exists an m2
e ∈ ζ(s j

i), it follows that Property 2 applies to each internal vertex between xi , xi+1 excluding

xi with v = xz
i , v ′ = xz+1

i , x = f z+1
i and l = m2

e i, for all 1 � z � q (see Fig. 7b). Hence d(F , S) � q = 6|V G | + 3|EG | + 1 since

each x j
i with 1 � j � q − 1 and xi+1 are duplicated.

(Case 2) Now, let us consider the case lcaS (f i, f z
i) < lcaS (f i+1, f z

i). Property 2 applies to the vertex w j
i , as ζ(w j

i) =
ζ(s j

i) \ { f i}, while lcaT (f i, f z
i) contains f i , but not f i+1. Hence w j

i is duplicated (see Fig. 8a). Now, we have to consider

the vertices between w j
i and w j

i+1.

Consider the lowest vertex s j
i ∈ S j

i not duplicated and denote by t j
i its child which is not on the spine of T j , 1 � j � 4.

Let z1 be the vertex of S where s j
i is mapped (i.e. M(s j

i) = z1), and notice that z1 � lcaS(f z
i , f i+1). Since s j

i is not

duplicated, then the cluster of one of the children of z1 contains ζ(t j
i), while the other contains { f z

i , f i, f i+1}, for each

1 � z � q. But then, since there exists an m2
e ∈ ζ(s j

i), it follows that Property 2 applies to each internal vertex between

xi , xi+1 (excluding xi), with v = xz
i , v ′ = xz+1

i , x = f z+1
i and l = m2

e , for all 1 � z � q (see Fig. 8b). Hence d(F , S) � q =
6|V G | + 3|EG | + 1 since each x j

i with 1 � j � q − 1 and xi+1 are duplicated.
Since we have shown that for each pair of leaves f i , f i+1, either d(F , S) � 6|V G | + 3|EG | + 1, or all the internal nodes

between wx
i (included) and wx

i+1 (not included) are duplicated, it follows that we have proved the lemma. �
While in the previous lemma we have focused on the duplications induced by vertices of the spine of the gene trees

T1, . . . , T4, in what follows, we will focus on the duplications induced in the subtrees representing the vertices and edges
(i.e. T v , T 1

e , T 2
e).

Lemma 3. Let S be a solution of Min-5-Dup over instance F = {T1, . . . , T5} and let T 1
ex

, T 2
ex

, T vi , T v j be four subtrees of T1, . . . , T4 ,

s.t. ex = {vi, v j} ∈ EG and i < j. Then (1) the root of at least one of T 1
ex

, T 2
ex

is duplicated with respect to S; (2) the roots of at least two

of T 1
ex

, T 2
ex

, T vi , T v j are duplicated with respect to S.

Proof. (1) The proof follows from Property 1, since the roots of T 1
ex

, T 2
ex

induces two different bipartitions of the sets
{m2

x , l1x , l2x}.
(2) Now, let us prove the second part of the lemma. We have shown that any species tree S induces a duplication in

the root of at least one of T 1
ex

, T 2
ex

. If S induces a duplication in the roots of both T 1
ex

and T 2
ex

, then the lemma holds.
Hence assume that S induces a duplication in exactly one of T 1

ex
, T 2

ex
, w.l.o.g. T 1

ex
. Thus, assume that S does not induce a

duplication in the root of T 2
ex

.
Let us define Lx = {m1

x ,m2
x , l1x , l2x} and consider T vi |Lx , T v j |Lx . The roots of T vi |Lx and T v j |Lx induce, by construction, the

following bipartitions B(vi) = ({m1
x , l1x}; {m2

x}) and B(v j) = ({m1
x , l2x}; {m2

x}).
Let v be the vertex of S , which is the lowest common ancestor of {m2

x , l1x , l2x}. Since we have assumed that the root of T 2
ex

is not duplicated, it follows that the subtree rooted at v restricted to {m2
x , l1x , l2x} must induce the bipartition ({m2

x , l1x}; {l2x})
(as defined in T 2

ex
). Now, assume that both the root of T vi and the root of T v j are mapped to v and consider where the

leaf m1
x is possibly placed in the subtree S(v). If m1

x is in the same set of the bipartition with l2x , then the root of T vi is

74 G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79
Fig. 9. Illustration of the first part of Lemma 3. Case (a) shows that, when the leaf labeled by m1,x is placed in the same set of the bipartition with l2x ,
the root of T vi is duplicated. Case (b) shows that, when the leaf labeled by m1,x is placed in the same set of the bipartition with l1x , the root of T v j is
duplicated.

Fig. 10. Illustration of the second part of Lemma 3. Case (a) shows that, when the root of T vi is mapped to a descendant v ′ of v , the root of T v j is
duplicated. Case (b) shows that, when the root of T vi is mapped to an ancestor v ′′ of v , the root of T v j is duplicated.

duplicated (as B(vi) = ({m1
x , l1x}; {m2

x}), see Fig. 9a). If m1
x is in the same set of the bipartition with l1x and m2

x , then the root
of T v j is duplicated, (as B(v j) = ({m1

x , l2x}; {m2
x}), see Fig. 9b).

Assume now that the root of T vi or the root of T v j , w.l.o.g. ϑT vi
, is not mapped to v . Then, ϑT vi

is either mapped to

a descendant v ′ of v on the path from v to lcaS (m2
x , l1x) or to an ancestor v ′′ of v . If ϑT vi

is mapped to v ′ then m1
x is

also a descendant of v ′ leading to a duplication of the root of T v j (see Fig. 10a). If ϑT vi
is mapped to v ′′ , then v ′′ induces

the bipartition ({l2x ,m2
x , l1x} ∪ X; {m1

x} ∪ Y), for some sets X, Y ⊂ Λ, leading to a duplication of the root of T v j (see Fig. 10b).
A similar proof can be derived if ϑT v j

, is not mapped to v . �
Applying Lemmas 2 and 3, we can prove the following fundamental result.

Lemma 4. Let G = (V G , EG) be an instance of MVCC and let F = {T1, . . . , T5} be the corresponding instance of Min-5-Dup. Then,
starting from a cover V ′

G of G, we can compute in polynomial time a solution S of Min-5-Dup for F = {T1, . . . , T5} s.t. d(F , S) �
5|V G |+3|EG |+|V ′

G |; starting from a solution S of Min-5-Dup for F s.t. d(F , S) � 5|V G |+3|EG |+ p, we can compute in polynomial
time a cover of G of size at most p.

Proof. First, consider a cover V ′
G of G = (V G , EG), we define a solution S to Min-5-Dup of cost at most 5|V G |+ 3|EG |+ |V ′

G |
(see Fig. 11 for an example). Define first S ′ as a tree isomorphic to T5. S is obtained by inserting some subtrees in S ′ . More
precisely, consider the subtree of S ′ having as leaf set M1 ∪ M2. Let x be the root of this subtree, with children xl , xr . Define
the following comb graphs K1 and K2 (the order of the leaves in the two comb graphs is induced by the order on the
corresponding edges of the graph G , and if two leaves l1x , l2x belong to the same comb graph, then l1x < l2x). Let ex = {vi, v j},
e y = {vi, vh}, ez = {vi, vk} be the three edge incident on vi . Assume that vi is the a-th (b-th, c-th respectively) vertex in
{vi, v j} ({vi, vh}, {vi, vk} respectively), where a,b, c ∈ {1,2}. This means that by construction the subtree T (vi) contains the
leaves lax , lby , lcz . Then K1 is a comb graph on the set L1 defined as follows:

L1 = {
lax, lby, lcz: vi ∈ (

V G \ V ′
G

)}
The comb graph K2 is on the set L2 = L \ L1.

G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79 75
Fig. 11. A solution S for the instance of Fig. 5, where the vertex cover V ′
G = {v1, v2, v3}. The labels l23, l25, l26 belongs to the tree T (v4) (and notice that v4

is the only vertex not in V ′
G).

The two comb graphs K1 and K2 are inserted in the edges {x, xl} and {x, xr} (respectively). Next, we will show the
duplication induced by S into the subtrees T 1

ex
, T 2

ex
and T vi .

First, assume that vi ∈ (V G \ V ′
G). Then the corresponding subtree T (vi) does not contain duplications as it is isomorphic

to S|Λ(T (vi)).
Assume that vi ∈ V ′

G . Then by construction the subtree T (vi)|{m1
x ,m1

y,m1
z } (T (vi)|{m2

x ,m2
y,m2

z }, T (vi)|{lax, lby, lcz} respec-

tively) is isomorphic to the subtree S|{m1
x ,m1

y,m1
z } (S|{m2

x ,m2
y,m2

z }, S|{lax, lby, lcz} respectively). A duplication is induced in the

root of T (vi) as lax, lby, lcz ∈ L2 (hence in Λ(K2)) while m1
x ,m1

y,m1
z ∈ L1 (hence in Λ(K1)).

Now, consider the subtrees T 1
ex

, T 2
ex

associated with the edge ex = {vi, v j}. If both vi, v j ∈ V ′
G , then all the leaves l1x , l2x ,m2

x

belongs to L2 (hence to Λ(K2)). Since we assume that l1x < l2x in the order of leaves of K2, it follows that no duplication is
induced in T 1

ex
, and a duplication is induced in the root of T 2

ex
. Assume that exactly one of vi, v j belongs to V ′

G (w.l.o.g.
vi ∈ V ′

G). Then the leaves l1x ,m2
x belongs to L2 (hence to Λ(K2)), while l2x ∈ L1. It follows that no duplication is induced

in T 1
ex

, and a duplication is induced in the root of T 2
ex

.
Hence duplications are induced in: (1) the root of exactly one of the subtrees T 1

ex
, T 2

ex
; (2) the root of each subtree T vi ,

where vi ∈ V ′
G . Since all the nodes on the spine of each Tx are duplicated, it follows that S induces 5|V G | + 3|EG | + |V ′

G |
duplications.

Now, consider a species tree S inducing at most 5|V G | + 3|EG | + p duplications. By Lemma 2, we can assume that S
induces a duplication in the spine of each tree Tx , with x ∈ {1, . . . ,4}. Now, we compute a vertex cover V ′

G of G of size p as
follows. For each subtree T vi such that a duplication is induced in the root of T (vi), add the corresponding vertex vi to V ′

G .
If, for some edge {vi, v j}, a duplication is not induced in the root of subtrees T vi , T v j , then add one of vi , v j to V ′

G . By
construction and by Lemma 3, for each edge {vi, v j} ∈ EG , at least one of vi , v j belongs to V ′

G . Since all the nodes on the
spine of each Tx is duplicated (hence a total of 5|V G | + 2|EG | duplications), it follows that |V ′

G | = p′ � p, hence the lemma
holds. �

Lemma 4 concludes the reduction.

Theorem 1. The Minimum Duplication problem is APX-hard, even when the input consists of five uniquely leaf-labelled gene trees.

Proof. First, notice that in a cubic graph G = (V G , EG), |EG | = 3
2 |V G |, and a vertex cover V ′

G of G has size at least |V G |
4 .

Hence by Lemma 4 it follows that we have designed an L-reduction from MVCC to Min-5-Dup. Since MVCC is APX-hard
[30], provided our L-reduction, we can conclude that Min-5-Dup is APX-hard. �

4. A randomized approach

In this section, we investigate the complexity of the Minimum Duplication Bipartite problem and show that it can be
solved efficiently by a randomized algorithm when the input gene trees have bounded depth. A randomized algorithm can
be seen simply as an algorithm that is allowed to do some random decisions as it processes the input. Whereas defining
a randomized algorithm is quite easy, analyzing its performance is more complicated. Indeed, first, one has to compute
the probability of success of the randomized algorithm (i.e. probability to end up with an optimal solution). Then, one
can amplify the probability of success simply by repeatedly running the algorithm, with independent random choices, and

76 G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79
taking the best solution founded. If one, moreover, prove that the overall running time required to get a high probability of
success is polynomial in the size of the input, then it implies that the problem is randomized polynomial (in RP-class). For
further details on randomized algorithms, the reader should consider the book of Kleinberg and Tardos [31].

In order to prove that the Minimum Duplication Bipartite problem is randomized polynomial, we first provide a ran-
domized algorithm for a variant of the Minimum Cut problem, called Minimum Cut in Colored Graph. Then, we will prove
that the Minimum Duplication Bipartite problem can be translated into a Minimum Cut in Colored Hypergraph problem
that can be solved efficiently applying our randomized algorithm on hypergraphs with bounded hyperedges degree. It is
of importance to note that, as far as we know, this is the first attempt of solving by randomization the minimum cut in
colored hypergraph. Providing a randomized algorithm for general hypergraphs with unbounded hyperedges degree is still
open.

Let us first introduce the Minimum Cut in Colored Graph problem:

For ease, let col : E → C be a function returning the color of a given edge and mul(c) = |{e: e ∈ E and col(e) = c}| be a
function returning the multiplicity of a given color. Moreover, for sake, given a graph G = (V , E), let col(G) = ⋃

e∈E col(e)
denote the set of colors used in G . Let us now describe an algorithm inspired by the folklore Contraction Algorithm [31]
used for solving the classical Minimum Cut problem (i.e. minimizing the number of edges having one end in A and the
other in B) on uncolored graph by randomized algorithm.

As in [31], our Colored Contraction Algorithm uses a connected multigraph G = (V , E) – that is an undirected graph
that is allowed to have more than one edge between the same pair of vertices – which is moreover colored. The algorithm
starts by choosing, uniformly at random, a color c ∈ col(G) and contracting any edge e ∈ E such that col(e) = c (and
thus all such edges). Contracting an edge {u, v} ∈ E will produce a new graph G ′ = (V ′, E ′) in which u and v are identified
as a single new vertex w whereas all other vertices are keeping their original identity (i.e. V ′ = {V ∪ {w}} \ {u, v}). In G ′ ,
E ′ = {E ∪{{w, v ′′}: v ′ ∈ {u, v}, {v ′, v ′′} ∈ E}} \ {{v ′, v ′′}: v ′ ∈ {u, v}, v ′′ ∈ V }. Roughly, E ′ is a copy of E where any edge {u, v}
has been removed whereas any other edge has been preserved, but if one of its ends was equal to u or v , then this end
is updated to be equal to the new node w . Note that the contraction operation may end up in a multigraph even when
starting from a classical graph G . In this process, contracting all the edges that have the selected color c roughly corresponds
to a sequence of mul(c) contractions, each reducing the number of vertices by one. Colored Contraction Algorithm then
continues recursively on G ′ , by choosing, uniformly at random, a color c ∈ col(G ′) and contracting any edge e ∈ E such
that col(e) = c. As these recursive calls proceed, the vertices of V ′ should be viewed as supervertices: each supervertex w
corresponds to the subset S(w) ⊆ V that has been “swallowed up” in the contractions that produced w . The algorithm ends
when it reaches a graph G ′ with only two super-vertices v A and v B . We output (A = S(v A), B = S(v B)) as the colored-cut
found by the algorithm.

Let us now analyze the performance of the Colored Contraction Algorithm – which cannot be derived directly from
the one of the original Contraction Algorithm. Since the algorithm is making random choices, there is some probability
that it will succeed in finding a minimum colored-cut (and some probability that it would not). In order to prove that this
algorithm is worthwhile, we will prove that the probability of success is only polynomially small; inducing that, by running
the algorithm a polynomial number of times and returning the best colored-cut found in any run, one would be able to
produce an optimal colored-cut with high probability.

Theorem 2. The Colored Contraction Algorithm returns an optimal colored-cut G with probability at least (|V |2k)−1 where
k = maxc∈Cmul(c)

Proof. Let us assume that the optimal minimum colored-cut (A, B) of G is of size opt; that is the set of edges having one
end in A and the other end in B (referred afterwards as the cut-set) is colored using opt colors of C . Note that unlike
the classical minimum cut problem, the goal here is to minimize the number of colors in the cut-set itself. Moreover, let
Gopt = G[A ∪ B, {(u, v): (u, v) ∈ E and u ∈ A, v ∈ B}] correspond to the bipartite graph representing the cut-set of (A, B).
In order to compute a lower bound on the probability that the Colored Contraction Algorithm returns the minimum
colored-cut (A, B), we first notice some important properties.

First, remark that any vertex v ∈ V cannot have a degree less than opt. Indeed, otherwise, ({v}, V \ {v}) would corre-
spond to a colored-cut inducing at most opt – 1 colors, contradicting our hypothesis that (A, B) is an optimal minimum
colored-cut of G . Therefore, any vertex of G is of degree at least opt; inducing the following lower bound on E: |E|� opt|V |

2 .
We know moreover that, since each color of C can be used at most k = maxc∈Cmul(c) times in E , we have that |E|� k · |C|.
This leads to the following inequalities.

G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79 77
|V | · opt � 2 · |E|� 2k · |C| (1)

Let us now evaluate the probability Pr[F j] that the Colored Contraction Algorithm fails at the jth step of the recursion
(that is when already j − 1 contractions have been done). Considering what could go wrong in the jth step of the Colored

Contraction Algorithm, one can check that the unique issue would be that the uniformly at random choice of a color c
unfortunately select one color of the set of opt colors used by the cut-set – which will be then contracted inducing that
the algorithm would not be able to find the optimal colored-cut (A, B) since at least a node of A and a node of B would
be both contracted into the same supervertex. Hence the probability that an edge of the current graph G ′ is both in the
optimal cut-set and contracted is at most opt

|C′ | , since there are at most opt edges to be chosen among |C′| edges, where
C′ = col(G ′). According to inequality (1), considering that the graph at jth step is G ′ and C′ = col(G ′)

Pr[F j]� opt

|C′| �
2k · |C′|
|V ′| · |C′| = 2k

|V ′| (2)

The colored-cut (A, B) will actually be returned by the algorithm if no edge of the cut-set is contracted in any of at
most |V | − 2 iterations. If we write S j for the event that an edge of the cut-set has not been contracted until the jth step,
then, according to inequality (2), Pr[S j] � 1 − Pr[F j] = 1 − 2k

|V ′| where the graph at jth step is G ′ = (V ′, E ′). For ease, let us
consider the sequence of color choices as being Sc = (c1, c2, . . .) and λ j = ∑

i< j and ci∈Sc
mul(ci). On the whole probability

that the Colored Contraction Algorithm returns the optimal colored-cut (A, B) is thus at least

Pr[Success]�
λ1−1∏
i=0

(
1 − 2k

|V | − i

)
·
λ3−1∏
i=λ2

(
1 − 2k

|V | − i

)
· · ·

λ|Sc |−1∏
i=λ|Sc |−1

(
1 − 2k

|V | − i

)
(3)

�
λ1−1∏
i=0

(|V | − i − 2k

|V | − i

)
·
λ3−1∏
i=λ2

(|V | − i − 2k

|V | − i

)
· · ·

λ|Sc |−1∏
i=λ|Sc |−1

(|V | − i − 2k

|V | − i

)
(4)

�
λ|Sc |−1∏

i=0

(|V | − i − 2k

|V | − i

)
= ����|V | − 2k

|V | · · · |V | − 2k − 2k

����|V | − 2k
· · · |V | − (λ|Sc | − 1) − 2k

�������|V | − (λ|Sc | − 1)
(5)

�
∏λ|Sc |−1

i=2k |V | − i − 2k∏2k−1
i=0 |V | − i

� 1

|V |2k
= (|V |2k)−1 � (6)

Then according to Theorem 2, we know that a single run of the Colored Contraction Algorithm fails to find an optimal
colored-cut with probability at most (1 − (|V |2k)−1). One can then amplify the probability of success simply by repeatedly
running the algorithm, with independent random choices, and taking the best colored-cut found. It is known that the
function (1 − n−1)n converges monotonically from 1

4 up to 1
e as n increases from 2 [31]. Thus, if we run the algorithm

|V |2k times, then the probability that we fail to find an optimal colored-cut in any run is at most (1 − (|V |2k)−1)|V |2k � 1
e .

As usually done, it is easy to even reduce more the failure probability with further repetitions by running the algorithm
|V |2k ln |V | times which induces a probability of failure of at most e− ln |V | = 1

|V | . Overall, the running time required to get
a high probability of success is polynomial in |V | if k is bounded, since each run of the Colored Contraction Algorithm

takes polynomial time, and we run it a polynomial number of times.
Let us now demonstrate how this result can be used in order to solve the Minimum Duplication Bipartite problem.

Theorem 3. The Minimum Duplication Bipartite problem is randomized polynomial time solvable when the gene trees are of
bounded depth.

Proof. Remind that, given a binary tree T = (V , E) and a vertex v ∈ V , v L (resp. v R) denotes the left (resp. right) child of v
and by ζ(v) the cluster of v i.e. the set of all leaves belonging to the subtree rooted in v . Moreover, for ease, ϑT is denoting
the root of the tree T . Given a gene tree forest F = {T1 = (V 1, E1), T2 = (V 2, E2), . . .} built on Λ, considering the definition
of the Minimum Duplication Bipartite problem, one wants to define a bipartition (Λ1,Λ2) of Λ = ⋃

Ti∈F V i inducing the

minimum number of pre-duplications. In Ti , a node v of V i is a duplication with respect to (Λ1,Λ2), if ∃v ′ ∈ {v L, v R},
such that (Λ1 ∩ ζ(v ′) �= ∅) ∧ (Λ2 ∩ ζ(v ′) �= ∅) is true. In other words, v is a duplication if for one of its children – say v ′
– ζ(v ′) contains two leaves not belonging to the same part of the bipartition (Λ1,Λ2). Given F and a set of colors C ,
we define the following colored hypergraph GF = (V , E) associated to F . Let V = Λ = ⋃

T ∈F ζ(ϑT) and there are two
hyperedges, for any node vk of the tree Ti , αi

k = {ζ(v L
k): |ζ(v L

k)| � 2} and β i
k = {ζ(v R

k): |ζ(v R
k)| � 2} colored with color

col(αi
k) = col(β i

k) = ci
k ∈ C in E . An illustration of such construction is provided in Fig. 12. Then in GF , a colored-cut of

size k′ corresponds to a bipartition of the set Λ inducing k′ duplications. Indeed, if the hyperedge αi (resp. β i) belongs to
k k

78 G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79
Fig. 12. Illustration of the construction of GF and G ′ given F = (T1, T2). Considering the minimum colored-cut {1,2,3,4,5}, {6,7,8,9} of size 1, the only
induced duplication is represented as a star on T1.

the cut-set, then it induces a duplication for the corresponding vertex vk in Ti since there exist at least two leaves in ζ(v L
k)

(resp. ζ(v R
k)) belonging to different parts of the bipartition (Λ1,Λ2).

Thus, if one can find a minimum colored-cut in such hypergraphs, then one would be able to solve in polynomial time
the Minimum Duplication Bipartite problem. Just consider the Colored Contraction Algorithm presented previously in
this section. From any colored hypergraph GF = (V , E), one may build a colored graph G ′ = (V , E ′) where any hyperedge
e = {vi1, vi2, . . . , vik} colored with color c = col(e) has been replaced by a path vi1, vi2, . . . , vik colored with c in E ′ (i.e.
E ′ = {{vik, vik+1}: vik ∈ e, e ∈ E}). Notice that an edge e ∈ E ′ colored with c is cut if and only if a hyperedge colored
c of GF is cut. Once this colored graph has been obtained, one may apply the Colored Contraction Algorithm which
will produce a minimum colored-cut of G ′ which also induces a minimum colored cut in GF . Since this algorithm has a
complexity exponential in the maximum multiplicity of any color of the considered graph, when the size of each hyperedge
is bounded, so does the multiplicity of any color since the maximal size of a hyperedge corresponds to the maximal depth
of the input gene trees: leading to a randomized polynomial solution for the Minimum Duplication Bipartite problem. �
5. Conclusion

In this paper we have investigated the complexity of two variants of the Minimum Duplication problem. We have proved
that the Minimum Duplication problem is APX-hard, even when the input consists of five uniquely leaf-labelled gene trees.
Then, we have shown that the Minimum Duplication Bipartite problem can be solved efficiently by a randomized algorithm
when the input gene trees have bounded depth.

A natural open problem is the complexity of the Minimum Duplication Bipartite problem when the gene trees have un-
bounded depth. Furthermore, it would be interesting to deepen the analysis on the complexity of the Minimum Duplication

problem, when the input consists of less than five uniquely leaf-labelled gene trees.

Acknowledgements

The authors acknowledge partial funding from ANR Project BIRDS JCJC SIMI 2-2010, and also would like to thank the
anonymous reviewers for valuable arguments and remarks. Paola Bonizzoni and Riccardo Dondi have been supported by the
PRIN 2010/11 Grant “Automi e Linguaggi Formali: Aspetti Matematici e Applicativi”, Code H41J12000190001.

References

[1] G. Blin, P. Bonizzoni, R. Dondi, R. Rizzi, F. Sikora, Complexity insights of the minimum duplication problem, in: M. Bieliková, G. Friedrich, G. Gottlob,
S. Katzenbeisser, G. Turán (Eds.), SOFSEM, in: Lecture Notes in Comput. Sci., vol. 7147, Springer, 2012, pp. 153–164.

[2] J. Felsenstein, Phylogenies from molecular sequences: Inference and reliability, Annu. Rev. Genet. 22 (1988) 521–565.
[3] E.E. Eichler, D. Sankoff, Structural dynamics of eukaryotic chromosome evolution, Science 301 (5634) (2003) 521–565.
[4] W.M. Fitch, Homology – a personal view on some of the problems, Trends Genet. 16 (2000) 227–231.
[5] L. Arvestad, J. Lagergren, B. Sennblad, The gene evolution model and computing its associated probabilities, J. ACM 56 (2) (2009) 44.
[6] L. Arvestad, A.-C. Berglung, J. Lagergren, B. Sennblad, Gene tree reconstruction and orthology analysis based on an integrated model for duplications

and sequence evolution, in: D. Gusfield (Ed.), RECOMB 2004, ACM, New York, 2004, pp. 326–335.

http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A636F6E662F736F6673656D2F426C696E424452533132s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A636F6E662F736F6673656D2F426C696E424452533132s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib46656C73656E737465696E31393838s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib456963686C657232303033s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib466974636832303030s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A6A6F75726E616C732F6A61636D2F41727665737461644C533039s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib41525645535441442D5245434F4D423034s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib41525645535441442D5245434F4D423034s1

G. Blin et al. / Theoretical Computer Science 530 (2014) 66–79 79
[7] P. Bonizzoni, G. Della Vedova, R. Dondi, Reconciling a gene tree to a species tree under the duplication cost model, Theoret. Comput. Sci. 347 (2005)
36–53.

[8] W. Chang, O. Eulenstein, Reconciling gene trees with apparent polytomies, in: D. Chen, D.T. Lee (Eds.), COCOON 2006, in: Lecture Notes in Comput.
Sci., vol. 4112, Springer, Heidelberg, 2006, pp. 235–244.

[9] C. Chauve, N. El-Mabrouk, New perspectives on gene family evolution: losses in reconciliation and a link with supertrees, in: S. Batzoglou (Ed.),
RECOMB, in: Lecture Notes in Comput. Sci., vol. 5541, Springer, 2009, pp. 46–58.

[10] J. Cotton, R. Page, Rates and patterns of gene duplication and loss in the human genome, Proc. Roy. Soc. Lond. Ser. B 272 (2005) 277–283.
[11] D. Durand, B. Haldórsson, B. Vernot, A hybrid micro-macroevolutionary approach to gene tree reconstruction, J. Comput. Biol. 13 (2006) 320–335.
[12] B. Ma, M. Li, L. Zhang, From gene trees to species trees, SIAM J. Comput. 30 (3) (2000) 729–752.
[13] R. Page, Genetree: comparing gene and species phylogenies using reconciled trees, Bioinformatics 14 (1998) 819–820.
[14] R. Page, J. Cotton, Vertebrate phylogenomics: reconciled trees and gene duplications, in: Pacific Symposium on Biocomputing, 2002, pp. 536–547.
[15] J.-P. Doyon, C. Scornavacca, K. Gorbunov, G. Szolloso, V. Ranwez, V. Berry, An efficient algorithm for gene/species trees parsimonious reconciliation with

losses, duplications and transfers, J. Comput. Biol. 6398 (2010) 93–108.
[16] M. Hallett, J. Lagergren, A. Tofigh, Simultaneous identification of duplications and lateral transfers, in: RECOMB, ACM, 2004, pp. 347–356.
[17] A. Tofigh, M. Hallett, J. Lagergren, Simultaneous identification of duplications and lateral gene transfers, IEEE/ACM Trans. Comput. Biol. Bioinform. 8

(2011) 517–535.
[18] M.S. Bansal, E.J. Alm, M. Kellis, Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss, Bioinformatics

28 (12) (2012) 283–291.
[19] M.S. Bansal, E.J. Alm, M. Kellis, Reconciliation revisited: Handling multiple optima when reconciling with duplication, transfer, and loss, J. Comput. Biol.

20 (10) (2013) 738–754.
[20] M.T. Hallett, J. Lagergren, New algorithms for the duplication-loss model, in: RECOMB, ACM, 2000, pp. 138–146.
[21] U. Stege, Gene trees and species trees: the gene-duplication problem is fixed-parameter tractable, in: F.K.H.A. Dehne, A. Gupta, J.-R. Sack, R. Tamas-

sia (Eds.), 6th International Workshop on Algorithms and Data Structures (WADS’99), in: Lecture Notes in Comput. Sci., vol. 1663, Springer, 1999,
pp. 288–293.

[22] M.S. Bansal, R. Shamir, A note on the fixed parameter tractability of the gene-duplication problem, IEEE/ACM Trans. Comput. Biol. Bioinform. 8 (3)
(2011) 848–850.

[23] J. Byrka, S. Guillemot, J. Jansson, New results on optimizing rooted triplets consistency, Discrete Appl. Math. 158 (11) (2010) 1136–1147.
[24] A. Chester, R. Dondi, A. Wirth, Resolving rooted triplet inconsistency by dissolving multigraphs, in: T.-H.H. Chan, L.C. Lau, L. Trevisan (Eds.), TAMC, in:

Lecture Notes in Comput. Sci., vol. 7876, Springer, 2013, pp. 260–271.
[25] M.S. Bansal, J.G. Burleigh, O. Eulenstein, A. Wehe, Heuristics for the gene-duplication problem: a Θ(n)-speed-up for the local search, in: T.P. Speed,

H. Huang (Eds.), RECOMB, in: Lecture Notes in Comput. Sci., vol. 4453, Springer, 2007, pp. 238–252.
[26] M.S. Bansal, O. Eulenstein, A. Wehe, The gene-duplication problem: near-linear time algorithms for NNI-based local searches, IEEE/ACM Trans. Comput.

Biol. Bioinform. 6 (2) (2009) 221–231.
[27] W.-C. Chang, J.G. Burleigh, David F. Fernández-Baca, O. Eulenstein, An ILP solution for the gene duplication problem, BMC Bioinformatics 12 (Suppl. 1)

(2011) S14.
[28] A. Ouangraoua, K.M. Swenson, C. Chauve, An approximation algorithm for computing a Parsimonious first speciation in the gene duplication model,

in: E. Tannier (Ed.), RECOMB-CG, in: Lecture Notes in Comput. Sci., vol. 6398, Springer, Ottawa, Canada, 2010, pp. 290–301.
[29] D.J.A. Welsh, M.B. Powell, An upper bound for the chromatic number of a graph and its application to timetabling problems, Comput. J. 10 (1) (1967)

85–86.
[30] P. Alimonti, V. Kann, Some APX-completeness results for cubic graphs, Theoret. Comput. Sci. 237 (1–2) (2000) 123–134.
[31] J. Kleinberg, E. Tardos, Algorithm Design, Pearson Education, 2006.

http://refhub.elsevier.com/S0304-3975(14)00131-5/bib424F4E495A5A4F4E492D544353333437s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib424F4E495A5A4F4E492D544353333437s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib4348414E472D45554C454E535445494E3036s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib4348414E472D45554C454E535445494E3036s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A636F6E662F7265636F6D622F436861757665453039s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A636F6E662F7265636F6D622F436861757665453039s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib434F54544F4E2D5052534C42323732s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib445552414E442D4A434F4D5042494F4C3133s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib4D6132303030s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib504147452D42494F494E464F3134s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib50433032s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib444F594F4E3130s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib444F594F4E3130s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib484C543034s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib544F464947483131s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib544F464947483131s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A6A6F75726E616C732F62696F696E666F726D61746963732F42616E73616C414B3132s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A6A6F75726E616C732F62696F696E666F726D61746963732F42616E73616C414B3132s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A6A6F75726E616C732F6A63622F42616E73616C414B3133s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A6A6F75726E616C732F6A63622F42616E73616C414B3133s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A636F6E662F7265636F6D622F48616C6C6574744C3030s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib537465676531393939s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib537465676531393939s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib537465676531393939s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib42616E73616C32303130s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib42616E73616C32303130s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib4279726B6132303130s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A636F6E662F74616D632F4368657374657244573133s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A636F6E662F74616D632F4368657374657244573133s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A636F6E662F7265636F6D622F42616E73616C4245573037s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A636F6E662F7265636F6D622F42616E73616C4245573037s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A6A6F75726E616C732F746362622F42616E73616C45573039s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A6A6F75726E616C732F746362622F42616E73616C45573039s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A434242453131s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib44424C503A434242453131s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib4F75616E6772616F756132303130s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib4F75616E6772616F756132303130s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib57656C73683637s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib57656C73683637s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib414B3932s1
http://refhub.elsevier.com/S0304-3975(14)00131-5/bib4B6C65696E6265726732303036s1

	Complexity insights of the Minimum Duplication problem
	1 Introduction
	1.1 Known results

	2 Preliminaries
	2.1 Properties of the lca mapping

	3 On a tight inapproximability
	3.1 Extra deﬁnitions and construction
	3.2 Correctness of the reduction

	4 A randomized approach
	5 Conclusion
	Acknowledgements
	References

