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Abstract

We show that the permutation module over C afforded by the action of Sp2m(2 f ) on its natural module is
isomorphic to the permutation module over C afforded by the action of Sp2m(2 f ) on the union of the right
cosets of O+

2m(2 f ) and O−2m(2 f ).
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1. Introduction

That a given finite group can have rather different permutation representations
affording the same permutation character was shown by Helmut Wielandt in 1979. For
instance, the actions of the projective general linear group PGLd(q) on the projective
points and on the projective hyperplanes afford the same permutation character, but
these actions are not equivalent when d ≥ 3. A more interesting example is offered by
the Mathieu group M23. Here we have two primitive permutation representations of
degree 253 affording the same permutation character, but with nonisomorphic point
stabilisers (see [3, page 71]).

Establishing which properties are shared by permutation representations of a finite
group G with the same permutation character has been the subject of considerable
interest. For instance, it was conjectured by Wielandt [14] that, if G admits two
permutation representations on Ω1 and Ω2 that afford the same permutation character,
and if G acts primitively on Ω1, then G acts primitively on Ω2. This conjecture was
first reduced to the case where G is almost simple by Förster and Kovács [5] and then
solved (in the negative) by Guralnick and Saxl [7]. Some more recent investigations
on primitive permutation representations and their permutation characters can be found
in [13].

In this paper we construct two considerably different permutation representations of
the symplectic group that afford the same permutation character. We let q be a power of
2, G be the finite symplectic group Sp2m(q), V be the 2m-dimensional natural module
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for Sp2m(q) over the field Fq of q elements, and π be the complex permutation character
for the action (by matrix multiplication) of G on V . Since q is even, the orthogonal
groups O+

2m(q) and O−2m(q) are maximal subgroups of G (see [4]). For ε ∈ {+, −}, we let
Ωε denote the set of right cosets of Oε

2m(q) in G, and we let πε denote the permutation
character for the action of G on Ωε.

T 1.1. The CG-modules CV and CΩ+ ⊕ CΩ− are isomorphic. That is, π =

π+ + π−.

We find this behaviour quite peculiar considering that the G-sets V and Ω+ ∪Ω−

are rather different. For instance, G has two orbits of size 1 and q2m − 1 on V , and has
two orbits of size qm(qm + 1)/2 and qm(qm − 1)/2 on Ω+ ∪Ω−. Moreover, the action
of G on both Ω+ and Ω− is primitive, but the action of G on V \ {0} is not when q > 2.

2. Proof of Theorem 1.1

Inglis [8, Theorem 1] shows that the orbitals of the two orthogonal subgroups are
self-paired, hence the characters π+ and π− are multiplicity-free (see [1, Section 2.7]).
We will use this fact in our proof of Theorem 1.1.

P  T 1.1. Let 1 denote the principal character of G. Observe that π =

1 + π0, where π0 is the permutation character for the transitive action of G on V \ {0}.
In particular, for v ∈ V \ {0}, we have π0 = 1G

Gv
, where Gv is the stabiliser of v in G.

Frobenius reciprocity implies that 〈π0, π0〉 = 〈π0|Gv , 1〉, and this equals the number of
orbits of Gv on V \ {0}. We claim that Gv has 2q − 1 orbits on V \ {0}. More precisely
we show that, given w ∈ v⊥ \ 〈v〉 and w′ ∈ V \ v⊥, the elements λv (for λ ∈ Fq \ {0}), w,
and λw′ (for λ ∈ Fq \ {0}) are representatives for the orbits of Gv on V \ {0}. Since Gv

fixes v and preserves the bilinear form ( , ), these elements are in distinct Gv-orbits. Let
u ∈ V \ {0}. If u ∈ 〈v〉, then u = λv for some λ , 0, and hence there is nothing to prove.
Let w0 = w if (v, u) = 0, and let w0 = ((v, u)/(v, w′))w′ if (v, u) , 0. By construction,
the 2-spaces 〈v, u〉 and 〈v, w0〉 are isometric and admit an isometry f such that v f = v
and u f = w0. By Witt’s lemma [9, Proposition 2.1.6], f extends to an isometry g of V .
Thus g ∈Gv and ug = w0, which proves our claim. Therefore,

〈π0, π0〉 = 2q − 1. (2.1)

Next we need to refine the information in (2.1). Let P be the stabiliser of the
1-subspace 〈v〉 in G. Then P is a maximal parabolic subgroup of G and P/Gv is cyclic
of order q − 1. Write η = 1P

Gv
and observe that η =

∑
ζ∈Irr(P/Gv) ζ, where by an abuse of

terminology we identify the characters of P/Gv with the characters of P containing Gv

in the kernel. Thus
π0 = 1G

Gv
= (1P

Gv
)G

P = ηG
P =

∑
ζ∈Irr(P/Gv)

ζG
P .

Since every character of G is real-valued [6], we must have

(ζ)G
P = ζG

P = ζG
P ,
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where x denotes the complex conjugate of x ∈ C. Let S be a set of representatives, up
to complex conjugation, of the nontrivial characters of Irr(P/Gv). Since |P/Gv| = q − 1
is odd, we see that |S| = q/2 − 1. We have

π0 = 1G
P + 2

∑
ζ∈S

ζG
P .

If we write π′ =
∑
ζ∈S ζ

G
P , then π0 = 1G

P + 2π′.
Since 1G

P is the permutation character of the rank-three action of G on the one-
dimensional subspaces of V , we have 1G

P = 1 + χ+ + χ− for some distinct nontrivial
irreducible characters χ+ and χ− of G. Let Γ be the graph with vertex set the
1-subspaces of V and edge sets {〈v〉, 〈w〉} whenever v ⊥ w. Observe that Γ is strongly
regular with parameters(q2m − 1

q − 1
,

q2m−1 − q
q − 1

,
q2m−2 − 1

q − 1
− 2,

q2m−2 − 1
q − 1

)
.

Hence the eigenvalues of Γ have multiplicity

1
2

(q2m − q
q − 1

− qm
)

and
1
2

(q2m − q
q − 1

+ qm
)

(see [2, page 27]).
Interchanging the roles of χ+ and χ− if necessary, we may assume that χ−(1) <

χ+(1). The above direct computation proves that

χ−(1) =
1
2

(q2m − q
q − 1

− qm
)

and χ+(1) =
1
2

(q2m − q
q − 1

+ qm
)

(2.2)

(compare [10, Section 1]).
Fix ζ ∈ S. We claim that ζG

P is irreducible. From Mackey’s irreducibility
criterion [11, Proposition 23, Section 7.3], we need to show that for every s ∈G \ P, we
have ζsPs−1∩P , ζ

s, where ζ s is the character of sPs−1 ∩ P defined by (ζ s)(x) = ζ(s−1xs)
and, as usual, ζsPs−1∩P is the restriction of ζ to sPs−1 ∩ P. Fix a monomorphism ψ from
P/P′ into C∗. Since ζ is a class function of P, we need to consider only elements s in
distinct (P, P)-double cosets. These correspond to the P-orbits 〈v〉, v⊥ \ 〈v〉 and V \ v⊥.
Let H = 〈v, u〉 be a hyperbolic plane and choose s ∈G such that

vs = u, us = u and sH⊥ = 1H⊥ .

A calculation shows that ζ s(x) = ψ(µ−1) = ζ(x), where vx = µv. Since q − 1 is odd,
we have ζ(x) , ζ s(x) when µ , 1. Therefore ζ , ζ s. Finally, choose s ∈G such that
(v, u, w, z)s = (w, z, v, u), where H = 〈v, u〉 ⊥ 〈w, z〉 is an orthogonal sum of hyperbolic
planes and sH⊥ = 1H⊥ . Another calculation shows that ζ s(x) = ψ(λ) and ζ(x) = ψ(µ),
where vx = µv and wx = λ. If µ , λ, then ζ s(x) , ζ(x) and hence ζ s , ζ. Our claim is
now proved.
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Write π′ =
∑`

i=1 miχi as a linear combination of the distinct irreducible constituents
of π′. Observe that, by the previous paragraph, each χi is of the form ζG

P , for some
ζ ∈ S. Therefore χi has degree |G : P| for each i and, in particular, 1, χ+ and χ− are not
irreducible constituents of π′.

The number of irreducible constituents of π0 is

1 + 1 + 1 + 2(m1 + · · · + m`) = 3 + 2|S| = 3 + 2
(q
2
− 1

)
= q + 1,

and by (2.1),
3 + 4m2

1 + · · · + 4m2
` = 2q − 1.

Multiplying the first equation by −2 and adding the second equation,

−3 + 4m1(m1 − 1) + · · · + 4m`(m` − 1) = −3.

It follows that m1 = · · · = m` = 1, and hence ` = q/2 − 1. This shows that π′ is
multiplicity-free.

Summing up,

π0 = 1 + χ+ + χ− + 2π′, 〈π′, π′〉 =
q
2
− 1, 〈1 + χ+ + χ−, π′〉 = 0. (2.3)

We now turn our attention to the characters π+ and π−. By Frobenius reciprocity, or
by [8, Theorem 1(i) and (ii)], we see that

〈π+, π+〉 = 〈π−, π−〉 =
q
2

+ 1. (2.4)

By [8, Lemma 2(iii) and (iv)], the orbits of O−2m(q) in its action on Ω+ are in one-
to-one correspondence with the elements in {α + α2 | α ∈ Fq}. In particular, we have
〈π+|O−2m(q), 1〉 = |{α + α2 | α ∈ Fq}| = q/2. Now Frobenius reciprocity implies that

〈π+, π−〉 =
q
2
. (2.5)

Next we show that
〈π0, π

+〉 = 〈π0, π
−〉 = q. (2.6)

Using Frobenius reciprocity, it suffices to show that the number of orbits of O±2m(q)
on V \ {0} is q. Fix ε ∈ {+, −} and let Qε be the quadratic form on V preserved by
Oε

2m(q). For λ ∈ Fq, we see from [9, Lemma 2.10.5(ii)] that Ωε
2m(q) is transitive on

Vε
λ = {v ∈ V \ {0} | Qε(v) = λ}. In particular, {Vε

λ | λ ∈ Fq} is the set of orbits of Ωε
2m(q)

on V \ {0}. Since Oε
2m(q) is the isometry group of Qε we see that {Vε

λ | λ ∈ Fq} is also
the set of orbits of Oε

2m(q) on V \ {0}, and (2.6) is now proved.
Since π+ is multiplicity-free, up to reordering, by (2.3) and (2.6), we may assume

that

π+ = 1 + aχ− + bχ+ +

t∑
i=1

χi + ρ,
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where a, b ∈ {0, 1}, 0 ≤ t ≤ q/2 − 1 and 〈π0, ρ〉 = 0. By (2.6), we have q − 2 ≥ 2t =

q − 1 − a − b ≥ q − 3. Hence 2t = q − 2 and {a, b} = {0, 1}. Since

π+(1) = |Ω+| =
qm(qm + 1)

2

and

π′(1) =

(q
2
− 1

)
|G : P| =

(q
2
− 1

)q2m − 1
q − 1

,

it follows by (2.2) that a = 0 and b = 1. By (2.4), we have π+ = 1 + χ+ + π′.
Now (2.3)–(2.6) imply immediately that π− = 1 + χ− + π′. This shows that

π+ + π− = (1 + χ+ + π′) + (1 + χ− + π′) = 1 + 1 + χ+ + χ− + 2π′ = 1 + π0 = π,

which completes the proof of Theorem 1.1. �

We note that the ‘q = 2’ case of Theorem 1.1 was first proved by Siemons and
Zalesskii in [12, Proposition 3.1]. This case is particularly easy to deal with
(considering that the action of G on both Ω+ and Ω− is 2-transitive) and its proof
depends only on Frobenius reciprocity. However, the general statement (valid for every
even q) of Theorem 1.1 was undoubtedly inspired by their observation. In fact, since
the submission of this paper, Zalesskii has informed the authors that he has obtained a
proof of Theorem 1.1 using some relatively sophisticated methods from the character
theory of the groups of Lie type.

Finally, we observe that Theorem 1.1 reproduces the following result as an
immediate corollary (see [4, Theorem 6]).

C 2.1. Every element of Sp2m(q) is conjugate to an element of O+
2m(q) or of

O−2m(q).

P. Let g ∈ Sp2m(q). Then

π(g) = (1 + π0)(g) = 1(g) + π0(g) ≥ 1(g) = 1

and therefore, since π = π+ + π− by Theorem 1.1, either π+(g) ≥ 1 or π−(g) ≥ 1; that is,
g fixes some point in Ω+ or in Ω−. In the first case g has a conjugate in O+

2m(q) and in
the second case g has a conjugate in O−2m(q). �
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