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Abstract. To better support software maintenance and evolution, it is
important to evaluate the quality of a system, identifying defects, code
smells and anti patterns as hints pointing to subsystems that require
improvement. In this paper we analyze the possible dependencies ex-
isting among code smells and between code smells and micro patterns
– structural characteristics capturing common programming techniques.
Knowledge of possible relations could improve the detection techniques
of code smells and provide hints on how to improve the quality of a sys-
tem. We discover these relations in an experiment employing machine
learning techniques.
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1 Introduction

Many works have been published on the role of metrics in design quality eval-
uation, concerning different aspects and perspectives [1, 2, 3]. Some of these
metrics, like those described in the work of Lanza and Marinescu [4], are also
commonly used for code smells detection.

Code smells are characteristics of the software that may indicate an im-
plementation or design problem which further makes code maintenance more
difficult. An initial set of smells has been defined by Fowler [5], other have been
identified later and new ones can be discovered.

Several factors coming from various data sources are useful as inputs for
detection algorithms. Most of them are based on the composition of selected of
metrics, either standard object-oriented metrics or defined ad hoc. Use of metrics
raises the issue of calibrating the detectors by defining appropriate thresholds. It
is important to notice that code smells are by nature subjective: their reception,
evaluation and interpretation differ, depending on the sensitivity of the detection
tool. This observation significantly affects the results of the detection process.

Metrics are the primary source of information about code quality. However,
there are code smells that cannot be correctly captured only with metrics and
require more data for making an accurate diagnosis. For example, specific code
properties can be extracted only by analysis of the code structure, which is
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not subject to measurement, but rather factual constatation. Moreover, some
symptoms are misleading when interpreted in isolation and should be analyzed
with additional data, e.g. knowledge of other code smells that have already been
identified.

The structural information about the code can be represented by micro pat-
terns, proposed as a method of capturing some very common programming tech-
niques. They can be thought of as class-level traceable patterns that can be
automatically and unambiguously recognized. The existence of micro patterns
can provide hints on good or bad programming practices. Some micro patterns
directly correspond to critical classes that need to be refactored or to some
object-oriented anti patterns.

Several empirical studies that correlate code smells with other software prop-
erties have been presented in the literature [8, 9]. However, to the best of our
knowledge, no study had previously considered relations of code smells and micro
patterns.

The aim of this paper is to identify and examine, on experimental basis,
dependencies between micro patterns and code smells and among various code
smells. We analyze if the presence of specific micro patterns is correlated with
the presence of a particular code smell and if micro patterns can be used for
more accurate code smells detection; we also discover relations existing between
different code smells.

With this objectives, we:

– analyze the results obtained with the detection of micro patterns and code
smells on different systems;

– manually analyze the relations discovered between them;
– discover statistical dependencies among certain code smells and micro pat-

terns, using data mining algorithms.

We focus our analysis on software systems written in Java due to its preava-
lence and popularity.

The contributions of this work are organized as follows:

– identification of code smells and micro patterns using two tools (inFusion
and PMD) on five versions of GanttProject and one of JHotDraw systems;
(Section 2);

– analysis of the detection results aimed to discover interesting relations between
micro patterns and code smells through manual inspection and the use of
machine learning techniques (Section 5);

– analysis of the detection results, in attempt to discover interesting correlations
between different code smells (Section 4).

2 Code Smells and Micro Patterns Detection

Code smells were introduced by Fowler and Beck [5] as generic, high level charac-
teristics that can point to common flaws at the implementation and design level.
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Unlike plain software metrics, they reflect intuitive perception of code quality,
which makes them attractive for developers. However, their ambiguity and in-
ternal subjectivity make them very difficult to express them in a formal way and
define appropriate and accurate detection algorithms for them.

For example, the Large Class code smell is featured by a class that “does too
much” [5]. This description is intentionally vague and makes no references to the
size, complexity or any other metric. Interpretation of it belongs to individual
programmers, who make the evaluation based on their intuition and experience.
Therefore, it is difficult to transform this notion into a detection rule.

Several tools for detecting various code smells have been developed (e.g.
CodeWizard [10], JDeodorant [11], iPlasma [12, 4], CheckStyle [13], Stench Blos-
som [14]). In our research we decided to use InFusion and PMD, based on our
previous experience.

These tools adopt slightly different strategies for detecting code smells. In-
Fusion uses both rules and metrics, as described in the book of Lanza and Mari-
nescu [4], and is capable of detecting several code smells. PMD, in contrast,
detects only few smells, based on metrics aggregation only. PMD also allows for
user-defined thresholds for metrics used in detection rules.

In Table 2 we report the detected code smells with their respective acronyms
and the detection tool we used for them.

As the codebase for analysis we chose two open-source projects: GanttPro-
ject (5 versions) and JHotDraw (1 version). They are systems of medium size,
composed of 393-549 classes for GanttProject and 800 classes for JHotDraw.
We collected data both automatically and manually. First, we detected micro
patterns and code smells using respective detectors. Next, we manually verified
co-existence of both structures in the code. The obtained data was then pro-
cessed separately for discovering code smell dependencies and code smell-micro
pattern relations.

In Table 3 we briefly report the numbers of smell-crippled classes in the ana-
lyzed systems. The detailed description of the smells and their typical symptoms
are given by Fowler [5].

Micro patterns [6] were proposed in order to capture very common, recurring
programming techniques based on the static analysis of the program’s code.
Currently, 27 micro patterns are identified, subdivided into eight categories. The
original paper contains a complete description and discussion on their relevance.
The identified micro patterns instances can help to identify classes of particular
interest within the system, e.g. classes similar to class-level antipatterns. For
example, the Data manager micro pattern represents a class with only setters or
getters. Detection of such instances allows for the identification of classes whose
sole objective is to provide a repository for data along with basic manipulation
routines.

To best of our knowledge, currently there are two tools for detecting micro
patterns: a prototype software developed by Gil and Maman based on the byte
code analysis [6], and the Micro Structures Detector of MARPLE (Metrics and
Architecture Reconstruction PLugin for Eclipse) [15, 16], based on source code
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Table 1. GanttProject and JHotDraw: size of releases

GanttProject version JHD

1.10 1.10.1 1.10.2 1.10.3 1.11.1 7.0.9

Packages 27 27 27 28 33 94
Classes 393 395 396 402 549 800
Methods 1913 1921 1924 1937 2724 5573

Table 2. Code smells legend

Name Acronym Detected by

G
a
n
tt

P
ro

je
ct

&
J
H

o
tD

ra
w Brain Method BM InFusion

Intensive Coupling IC InFusion
Dispersed Coupling DC InFusion
Significant Duplication SD InFusion
God Class GC InFusion
Data Class DaC InFusion
Feature Envy FE InFusion
Speculative Generality SG InFusion
Long Method LM PMD
Large Class LC PMD
Long Parameter List LPL PMD

J
H

o
tD

ra
w Brain Class BC InFusion

Refused Bequest RB InFusion
Missing Template Method MTM InFusion
Shotgun Surgery SS InFusion

analysis. In our analysis we used the latter one. In Table 4 we report the micro
patterns instances detected in the analyzed systems.

3 Mining association rules

Association rules mining is a method of discovering relations between variables
in large data sets. They are best suited to find statistically-supported dependen-
cies within sets of objects (called itemsets). The generated rules indicate that
a subset of condition attributes is likely to be related with decision attributes,
and are described by two main parameters. Support is defined as the fraction
of transactions in entire data set which contain the considered itemset X. Con-
fidence is the estimation of the accuracy of the rule [17], or the percentage of
times the rule will correctly describe new data, when it will be applied to new
cases; it can be interpreted as a measure of trust in the discovered rule.

In this work we decided to employ Apriori and Predictive APriori [17] algo-
rithm, implemented in the Weka tool.



Code Smells and Micro Patterns Dependencies 5

Table 3. Code smells in GanttProject and JHotDraw detected by InFusion and PMD

GanttProject JHD

Smell 1.10.0 1.10.1 1.10.2 1.10.3 1.11.1 7.0.9

Brain Method 35 35 35 34 24 63
Intensive Coupling 27 27 27 28 29 41
Dispersed Coupling 0 0 0 5 1 0
Significant Duplication 48 46 44 42 18 392
Brain Class 0 0 0 0 0 8
God Class 11 11 11 11 13 14
Data Class 38 39 39 39 50 11
Feature Envy 7 8 8 8 8 24
Refused Bequest 0 0 0 0 0 7
Shotgun Surgery 0 0 0 0 0 10
Missing Template Method 0 0 0 0 0 21
Speculative Generality 8 9 9 9 8 0
Long Method 47 47 45 46 55 132
Large Class 9 10 9 9 12 32
Long Parameter List 67 66 65 65 81 186

Table 4. Micro patterns detected in the analyzed systems

GanttProject JHD

Micro pattern 1.10.0 1.10.1 1.10.2 1.10.3 1.11.1 7.0.9

Overrider 77 76 76 78 123 111
Sink 207 196 209 213 315 386
Function pointer 31 32 32 34 42 34
Function object 37 38 38 38 49 57
Immutable 68 68 24 24 33 104
Outline 5 5 68 70 36 12
Data manager 21 20 5 5 108 7
Compound box 17 17 22 22 10 21
State machine 13 13 17 17 24 14
Record 5 5 14 15 19 14
Extender 22 21 5 5 7 19
Trait 1 1 1 1 2 2

4 Code Smells associations

Distinct code smells correspond to different anomalies. However, some of them
exhibit certain similarities, share common features or source flaws. Code smells
can indicate other smells or – on the contrary – exclude them. Fowler observed
an obvious relation existing between Duplicated Code and Large Class smells:
“When a class has too many instance variables, duplicated code cannot be far
behind”. Similarily, an object identified as a Large Class instance cannot be
simultaneously a Lazy Class. Other dependencies are easy to notice based on the



6 Francesca Arcelli Fontana et al.

Table 5. Best CS→CS rules found

Conditions Consequence Confidence

Brain Method, Long Parameter
List

Long Method 1.00

Brain Method, LargeClass Long Method 1.00

Brain Method Long Method 0.97

Brain Method, Significant Duplica-
tion

Long Method 0.96

Brain Method Significant Du plication 0.82

Brain Method, Long Method Significant Duplication 0.81

Brain Method Significant Duplication, Long Method 0.79

Large Class Significant Duplication 0.78

Long Method Significant Duplication 0.76

God Class Siignificant Duplication 0.93

descriptions of the code smells. The importance of the knowledge about relations
betwen code smells for the detection process has been suggested by Walter and
Pietrzak [7]. They identified and exemplified several types of relations. However,
there is still a need for an experimental-based, quantitative analysis on this topic.

In this subsection we present results on discovery and examination of associ-
ations between collocated smells. By collocated smells we mean code smells that
co-exist in a single structural entity of a program: a class or a method, depending
on the granularity level of the smells.

In Table 5 we report the discovered rules with highest confidence, provided
that support ratio is greater than 0.03.

In most cases, the disovered rules represent the aggregate support relations
(i.e. several code smells imply the presence of another smell), but there are also
instances of a plain (e.g. Brain Method implies Long Method) and a mutual
(or even circular) support (e.g. Significant Duplication accompanied by God
Class implies Large Class presence, and Significant Duplication with Large Class
implies God Class smell) .

Noticeably, a few code smells (Brain Method, Long Method and Significant
Duplication) are present in most generated rules, both as condition and decision
attributes. If we consider also rules with the support ratio lower than 0.03,
we get even more highly-confident rules that feature the same code smells. It
is evident then that they tend to go together in clique-like patterns. Most of
them describe considerable violations of design principles, related mainly to the
excessive complexity of the classes and methods. Therefore, their co-existence is
not surprising.
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Table 6. Best MP→CS rules found

System Conditions Consequence Confidence

JHotDraw

Data manager, Extender Significant Duplication 0.72
Trait Long Parameter List 0.83
Outline Significant Duplication 0.76
Sink Significant Duplication 0.62

GanttProject 10.0
Data manager, Extender, Im-
mutable

Data Class 0.67

Compound box, Function ob-
ject

Data Class 0.62

GanttProject 10.1
Data manager, Extender, Im-
mutable

Data Class 0.67

Compound box, Function ob-
ject

Data Class 0.62

GanttProject 10.2
Data manager, Extender, Im-
mutable

Data Class 0.67

Compound box, Function ob-
ject

Data Class 0.62

GanttProject 10.3 Compound box, Function ob-
ject

Data Class 0.62

GanttProject 11.1 Data manager, Immutable,
Sink

Data Class 0.59

5 Micro patterns and Code Smells dependencies

There is a significant difference between code smells and micro patterns. Code
smells are vague, ambiguous and subjective, whereas the micro patterns are
lower-lever and can be automatically detected in an easy way. Therefore, the
dependencies between micro patterns and code smells can provide different data
than code smells relations, so they deserve separate investigation.

Below we present results of the analysis we performed on the relations be-
tween micro patterns and code smells. In Table 7 we report the results for Gantt-
Project 1.10.2 (for brevity, we do not include the tables for other versions of
GanttProject).

By a match we mean a class that contains both a smell and a micro pattern.
Tables 7 and 8 report, for each code smell, the micro pattern combination and
the number of smell instances in classes containing the given micro pattern.

Then we computed the percentage of the matches. In Table 8 we report the
same analysis for JHotDraw. As we can notice, this project is crippled with a
larger number of different smells, as in GanttProject some code smells have not
been detected.

For each version of the analyzed system we considered the relations existing
with higher percentage and maunally identified possible correlations, validated
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Table 7. Matches of micro patterns and code smells in GanttProject 1.10.2

BM IC DC SD GC DaC FE SG LM LC LPL

Overrider 0 0 0 3 0 7 0 0 2 0 7
Sink 10 18 0 12 11 24 7 3 22 9 37
Function pointer 0 0 0 0 0 0 0 0 0 0 2
Function object 0 0 0 2 1 14 0 0 0 0 7
Immutable 0 1 0 2 1 5 1 0 5 1 3
Outline 1 1 0 2 0 11 1 0 3 0 15
Data manager 0 0 0 0 0 0 0 0 1 0 1
Compound box 0 0 0 0 0 8 0 0 0 0 4
State machine 0 0 0 0 0 6 0 1 1 0 1
Record 0 0 0 0 0 0 0 0 1 0 1
Extender 0 0 0 0 0 2 0 0 0 0 1
Trait 0 0 0 0 0 0 0 0 0 0 0

Table 8. Matches of micro patterns and code smells in JHotDraw

BM IC DC SD BC GC DaC RB MTMSS FE SG LM LC LPL

Function obj 1 4 0 19 0 0 0 0 1 0 1 0 3 1 6
Overrider 6 7 0 22 0 1 1 0 1 0 2 0 12 0 19
Sink 33 30 0 146 8 14 7 6 18 4 17 0 67 31 79
Outline 1 3 0 7 1 1 1 1 5 0 0 0 1 2 3
Compound box 2 2 0 7 1 2 0 0 0 0 1 0 3 2 5
Extender 0 1 0 6 0 0 5 0 1 0 0 0 2 0 4
Function ptr 1 0 0 6 0 0 0 0 0 0 1 0 3 0 2
Record 1 0 0 2 0 0 0 0 0 0 1 0 1 1 3
Immutable 8 6 0 33 1 3 5 1 0 0 7 0 15 3 30
Trait 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
State machine 0 0 0 0 0 0 0 0 2 0 0 0 0 1 2
Data manager 0 1 0 4 0 0 0 0 0 0 0 0 1 0 1

next with associative algorithms. In Table 6 we report some of the correlations
we found by analyzing the codebase. For example, a couple of features {Data
manager, Extender} implies the presence of a Significant Duplication with an
accuracy of 71%.

With the performed analysis, we found that only the Data manager, Ex-
tender, Outline, Compound Box, Function Object and Sink micro patterns have
significant capability of revealing the presence of three code smells, namely Sig-
nificant Duplication, Data Class and Long Parameter List. Other correlations
do exist, but their accuracy is by far lower.

6 Concluding Remarks

In this paper we analyzed possible correlations existing among code smells and
between code smells and micro patterns.
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The knowledge of existing relations can be useful to improve the code smell
detection accuracy and improve the analysis on code quality evaluation. In par-
ticular, it is interesting to observe if some smells tend to go together or if detect-
ing one or more micro patterns implies the presence of one or more smells. In
this paper we found significant dependencies of certain smells related to the ex-
cessive size or complexity of the code. Correlations of micro patterns and smells
are less apparent, but they suggest that Data Class has a relation with the Data
manager, Extender, Immutable and Function Object micro patterns, while code
duplication if often co-located with Data manager, Extender, Outline and Sink.
It allows for stating that knowledge of the relations between code smells and mi-
cro patterns appears useful in source code assessment. However, further analysis
on larger codebases is still needed to confirm these outcomes.

As this experimentation had limited scope, several improvements can be
made. All the smells detected by InFusion and PMD describe exceeding the
upper limit of the validity interval for a given characteristic. On the other hand,
smells breaking the lower limit of the interval, which could reveal another set
of closely-related smells, are not detected by those tools. It seems reasonable
to extend the set of exploited detectors to enhance research and discover more
complex rules.

Another possible extension is related with the of subjectivity in code smell
detection with only one detector. In order to mitigate it, we could use several
detectors for a single smell, with a voting mechanism used for reconciling the
results. The approach should remove uncertainty of the smell presence in case of
contradictions between different tools. We plan to analyze also a wider range of
systems from different domains to manage other threats of validity of the study.

We are also interested in discovering other, more complex relations existing
among smells and among smells and the possible combinations of micro patterns.
Another research direction we consider is the analysis of the impact of refactoring
on different quality metrics values, with the aim to prioritize the smells to be
removed.
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