
Fundamenta Informaticae XX (2014) 1–18 1

DOI 10.3233/FI-2012-0000

IOS Press

Constant-Space P Systems with Active Membranes

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,

Antonio E. Porreca, Claudio Zandron
Dipartimento di Informatica, Sistemistica e Comunicazione

Università degli Studi di Milano-Bicocca

Viale Sarca 336/14, 20126 Milano, Italy

{leporati, luca.manzoni,mauri, porreca, zandron}@disco.unimib.it

Abstract. We show that a constant amount of space is sufficient to simulate a polynomial-space
bounded Turing machine by P systems with active membranes. We thus obtain a new characterisa-
tion of PSPACE, which raises interesting questions about the definition of space complexity for P
systems. We then propose an alternative definition, where the size of the alphabet and the number
of membrane labels of each P system are also taken into account. Finally we prove that, when less
than a logarithmic number of membrane labels is available, moving the input objects around the
membrane structure without rewriting them is not enough to even distinguish inputs of the same
length.

1. Introduction

This paper continues the recent investigations by our research group on the computational power of
P systems with active membranes, by looking at the problems that they are able to solve while working
in constant space. It is already known that a super-polynomial amount of space is needed to solve
problems outside PSPACE [7]; on the other hand, it has recently been shown [2] that logarithmic space
suffices to simulate a polynomial-space bounded deterministic Turing machine. Here we show that a
constant amount of space is sufficient and, trivially, necessary to solve all problems in PSPACE.

This result challenges our intuition about the space complexity of P systems. How could we possibly
store, for example, the position of a Turing machine head when we can only use less than a logarithmic
number of bits of information? We discuss the implications of this result and how the current definition
of space complexity in P systems can be changed in order to better represent our intuition about the
notion of “space”. With the new definition all the known results involving at least a polynomial amount

2 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes

of space, according to the old definition, still hold. Only in the case of P systems with severely tight
bounds on the amount of space used during computations the new definition makes a difference.

Finally, we show a result highlighting the importance of rewriting rules for P systems with a sub-
logarithmic number of membrane labels. In fact, when the input objects can only be moved without
rewriting them, and less than a logarithmic number of membrane labels are present, there is not even the
possibility to determine if two inputs are distinct, unless the ordering of the symbols is not taken into
account.

The paper is organised as follows. The basic notions used in the rest of the paper are presented in
Section 2. The main result, that is, the simulation of a Turing machine working in polynomial space, is
described in Section 3. The current definition of space complexity for P systems is then discussed, and
an alternative definition is proposed in Section 4. In Section 5 we examine the limitations arising when
only moving input objects but not rewriting them is possible. Finally, in Section 6 we present a brief
summary of the results and some possible directions for future research.

2. Basic Notions

For a comprehensive introduction to P systems we refer the reader to The Oxford Handbook of Mem-
brane Computing [5]. Here we start by recalling the basic definitions related to P systems with active
membranes with an input alphabet [8].

Definition 2.1. A P system with (elementary) active membranes having initial degree d ≥ 1 is a tuple
Π = (Γ,∆,Λ, µ, wh1 , . . . , whd , R), where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;

• ∆ is another alphabet, disjoint from Γ, called the input alphabet;

• Λ is a finite set of labels for the membranes;

• µ is a membrane structure (i.e., a rooted unordered tree, usually represented by nested brackets)
consisting of d membranes labelled by elements of Λ in a one-to-one way;

• wh1 , . . . , whd , with h1, . . . , hd ∈ Λ, are strings over Γ describing the initial multisets of objects
placed in the d regions of µ;

• R is a finite set of rules over Γ ∪∆.

Each membrane possesses, besides its label and position in µ, another attribute called electrical
charge, which can be either neutral (0), positive (+) or negative (−) and is always neutral before the
beginning of the computation.

A description of the available kinds of rule follows. This description differs from the original defini-
tion [4] only in that new input objects may not be created during the computation.

• Object evolution rules, of the form [a→ w]αh

They can be applied inside a membrane labelled by h, having charge α and containing an occur-
rence of the object a; the object a is rewritten into the multiset w (i.e., a is removed from the

A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes 3

multiset in h and replaced by the objects in w). At most one input object b ∈ ∆ may appear in w,
and only if it also appears on the left-hand side of the rule (i.e., if b = a).

• Send-in communication rules, of the form a []αh → [b]βh

They can be applied to a membrane labelled by h, having charge α and such that the external region
contains an occurrence of the object a; the object a is sent into h becoming b and, simultaneously,
the charge of h is changed to β. If b ∈ ∆ then a = b must hold.

• Send-out communication rules, of the form [a]αh → []βh b

They can be applied to a membrane labelled by h, having charge α and containing an occurrence of
the object a; the object a is sent out from h to the outside region becoming b and, simultaneously,
the charge of h is changed to β. If b ∈ ∆ then a = b must hold.

• Dissolution rules, of the form [a]αh → b

They can be applied to a membrane labelled by h, having charge α and containing an occurrence
of the object a; the membrane h is dissolved and its contents are left in the surrounding region
unaltered, except that an occurrence of a becomes b. If b ∈ ∆ then a = b must hold.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh

They can be applied to a membrane labelled by h, having charge α, containing an occurrence of the
object a but having no other membrane inside (an elementary membrane); the membrane is divided
into two membranes having label h and charges β and γ; the object a is replaced, respectively, by b
and c while the other objects in the initial multiset are copied to both membranes. If b ∈ ∆ (resp.,
c ∈ ∆) then a = b and c /∈ ∆ (resp., a = c and b /∈ ∆) must hold.

Each instantaneous configuration of a P system with active membranes is described by the current mem-
brane structure, including the electrical charges, together with the multisets located in the corresponding
regions. A computation step changes the current configuration according to the following set of princi-
ples:

• Each object and membrane can be subject to at most one rule per step, except for object evolution
rules (inside each membrane several evolution rules can be applied simultaneously).

• The application of rules is maximally parallel: each object appearing on the left-hand side of
evolution, communication, dissolution or elementary division rules must be subject to exactly one
of them (unless the current charge of the membrane prohibits it). The same principle applies to
each membrane that can be involved in communication, dissolution, or elementary division rules.
In other words, the only objects and membranes that do not evolve are those associated with no
rule, or only to rules that are not applicable due to the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeterministic choice is per-
formed; this implies that, in general, multiple possible configurations can be reached after a com-
putation step.

• In each computation step, all the chosen rules are applied simultaneously (in an atomic way).
However, in order to clarify the operational semantics, each computation step is conventionally

4 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes

described as a sequence of micro-steps as follows. First, all evolution rules are applied inside the
elementary membranes, followed by all communication, dissolution and division rules involving
the membranes themselves; this process is then repeated to the membranes containing them, and
so on towards the root (outermost membrane). In other words, the membranes evolve only after
their internal configuration has been updated. For instance, before a membrane division occurs,
all chosen object evolution rules must be applied inside it; this way, the objects that are duplicated
during the division are already the final ones.

• The outermost membrane cannot be divided or dissolved, and any object sent out from it cannot
re-enter the system again.

A halting computation of the P system Π is a finite sequence of configurations ~C = (C0, . . . , Ck),
where C0 is the initial configuration, every Ci+1 is reachable from Ci via a single computation step, and
no rules of Π are applicable in Ck. A non-halting computation ~C = (Ci : i ∈ N) consists of infinitely
many configurations, again starting from the initial one and generated by successive computation steps,
where the applicable rules are never exhausted.

P systems can be used as language recognisers by employing two distinguished objects yes and no;
exactly one of these must be sent out from the outermost membrane, and only in the last step of each
computation, in order to signal acceptance or rejection, respectively; we also assume that all computa-
tions are halting. If all computations starting from the same initial configuration are accepting, or all
are rejecting, the P system is said to be confluent. If this is not necessarily the case, then we have a
non-confluent P system, and the overall result is established as for nondeterministic Turing machines: it
is acceptance iff an accepting computation exists. Unless otherwise specified, the P systems in this paper
are to be considered confluent.

In order to solve decision problems (i.e., decide languages), we use families of recogniser P sys-
tems Π = {Πx : x ∈ Σ?}. Each input x is associated with a P system Πx that decides the membership
of x in the language L ⊆ Σ? by accepting or rejecting. The mapping x 7→ Πx must be efficiently
computable for each input length, as discussed in detail in [3].

Definition 2.2. Let E , F be classes of functions over strings. A family of P systems Π = {Πx : x ∈ Σ?}
is said to be (E ,F)-uniform if the mapping x 7→ Πx can be described by two functions F ∈ F (for
“family”) and E ∈ E (for “encoding”) as follows:

• F (1n) = Πn, where n is the length of the input x and Πn is a common P system for all inputs of
length n, with a distinguished input membrane.

• E(x) = wx, where wx is a multiset encoding the specific input x.

• Finally, Πx is simply Πn with wx added to the multiset placed inside its input membrane.

In particular, a family Π is said to be (L,L)-uniform if the functions E and F can be computed by a
deterministic Turing machine in logarithmic space.

Any explicit encoding of Πx is allowed as output of the construction, as long as the number of
membranes and objects represented by it does not exceed the length of the whole description, and the
rules are listed one by one. This restriction is enforced in order to mimic a (hypothetical) realistic process
of construction of the P systems, where membranes and objects are presumably placed in a constant

A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes 5

amount during each construction step, and require actual physical space proportional to their number;
see also [3] for further details on the encoding of P systems.

Finally, we describe how space complexity for families of recogniser P systems is measured, and the
related complexity classes [6, 8].

Definition 2.3. Let C be a configuration of a recogniser P system Π. The size |C| of C is defined as the
sum of the number of membranes in the current membrane structure and the total number of objects
from Γ (i.e, the non-input objects) they contain. If ~C = (C0, . . . , Ck) is a computation of Π, then the
space required by ~C is defined as

|~C| = max{|C0|, . . . , |Ck|}.

The space required by Π itself is then obtained by computing the space required by all computations
of Π and taking the supremum:

|Π| = sup{|~C| : ~C is a computation of Π}.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recogniser P systems, and let s : N→ N. We say that Π
operates within space bound s iff |Πx| ≤ s(|x|) for each x ∈ Σ?.

Definition 2.4. The class of languages decidable by (L,L)-uniform families of confluent recogniser
P systems with active membranes within space bound f is denoted by (L,L)-MCSPACEAM(f(n)). In
particular, the class of languages decidable in constant space is denoted by (L,L)-MCSPACEAM(O(1)).

3. Simulating Polynomial-Space Turing Machines

Let M be a single-tape, deterministic Turing machine working in polynomial space p(n). Let Q be
the set of states of M , including the initial state s, and let Q′ (Q be the set of non-final states. Let
Σ = {a, b} denote the tape alphabet, and δ : Q×Σ→ Q×Σ×{−1, 0, 1} the partial transition function
of M , which we assume to be undefined on (q, σ) if and only if q is a final state. We describe a uniform
family of P systems Π = {Πx : x ∈ Σ?} simulating M in constant space.

The idea behind the simulation is to use the input objects of Πx as a way to store the contents of
the tape of M . Since by rewriting more than a constant number of input symbols the amount of space
would be non-constant, the only way to use such symbols to store the state of the tape is to track their
position inside the membrane structure. For simplicity, we will use a tape alphabet consisting of just two
symbols, a and b; however, the construction presented here immediately generalises to alphabets of any
size.

The simulation relies on two main ideas in order to store and retrieve the contents of the tape of M .
The first idea is that, apart from during a short initialisation procedure, the only relevant part of an input
object σj (with σ ∈ Σ and 0 ≤ j < p(n)) is its subscript, that is, the position j on the tape. We will then
have two membranes, named a and b, in which the input objects will be distributed. The interpretation
of the fact that an object σj is in membrane a will be that the j-th cell of the tape contains the symbol
a. Notice that σ = a is not required, since this information is not used after the initialisation phase of
the simulation. The second idea is that it is possible to “read” a subscript of an input object σj without
rewriting it and by using only a constant number of additional objects and membranes, as follows. The
input object σj can use an evolution rule to generate a timer that, after j time steps, changes the charge

6 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes

of a membrane. Any other object that was counting together with the timer is able to observe the charge
of the membrane, and thus obtain the value j of the subscript of σj . The two ideas intuitively presented
here, to be formalised in the construction below, allow us to store and retrieve the contents of the tape
of M using only a constant number of additional objects and membranes by “moving around” the input
objects.

The simulation is divided into three phases. The first one is the initialisation, in which the input ob-
jects are distributed across the membranes of Πx. The second phase is the simulation of one computation
step of M ; this requires the third phase, where the configuration of Πx is reset in order to simulate the
next step of M .

3.1. Membrane structure

For any x ∈ Σ?, the membrane structure of Πx (namely, Πn = F (1n), where n = |x|), consists of six
membranes:

0

T

0

I

0

R

0

a

0

b

0

e

Each of these membranes has a specific semantics:

• T is a “temporary storage”. It will contain objects which are not needed during a given phase of
the computation. When that phase of computation terminates, the temporary storage is emptied
and all the objects contained in it are moved to one of the other membranes. T also serves as the
input membrane of Πn.

• I is used only during the initialisation phase, acting as a container for the “dispatching machinery”
that moves the input objects to the correct membranes.

• R is a membrane used to check the subscript of a specific input object σj : when required, such
object generates a timer that changes the charge of this membrane after j time steps.

• Membrane a (resp. b) contains all input objects σj such that, in the currently simulated step of the
Turing machine M , the j-th cell of the tape contains the symbol a (resp. b).

• e is the external (skin) membrane, containing all the other membranes.

If the tape alphabet of M contains more than two symbols, further membranes are added inside e, one
for each symbol.

3.2. Initialisation

The initial configuration of Πx contains all the input objects σ0, σ1, . . . , σp(n)−1 representing x (padded
to length p(n), the length of the tape of M) in membrane T, and one auxiliary object move in mem-
brane e. The initialisation procedure moves each input object aj (resp., bj) to membrane a (resp., b) and
generates an object s0,a, where s is the initial state of M , 0 indicates the position of the read/write head

A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes 7

on the tape, and a indicates the fact that Πx will check whether the symbol on the tape ofM at position 0
is a. The configuration of Πx thus obtained corresponds to the initial configuration of M . An example
of the movement of one object to the correct membrane during the initialisation phase is shown in Fig. 1.

The following set of rules uses the object move to transport an input object outside of membrane T
or, if the membrane is empty, to start the simulation of the first step of M .

move []0T → [move]−T
[move→ move′]−T

[move′]0T → []0T open

[ai]
−
T → []0T ai 0 ≤ i < p(n)

[bi]
−
T → []0T bi 0 ≤ i < p(n)

[move′]−T → []0T q0,a

The next set of rules is used to move an input object from membrane e to I:

open []0I → [open]+I

[open]0I → []−I wait

ai []+I → [ai]
0
I 0 ≤ i < p(n)

bi []+I → [bi]
0
I 0 ≤ i < p(n)

The following rules move an input object ai (resp., bi) to membrane a (resp., b); here ε denotes the empty
multiset.

[ai → ai gotoa]
0
I 0 ≤ i < p(n) (1)

[bi → bi gotob]
0
I 0 ≤ i < p(n) (2)

[gotoa]
0
I → []0I gotoa

[gotob]
0
I → []0I gotob

[ai]
−
I → []0I ai 0 ≤ i < p(n)

[bi]
−
I → []0I bi 0 ≤ i < p(n)

gotoa []0a → [gotoa]
+
a

gotob []0b → [gotob]
+
b

[gotoa → ε]+a

[gotob → ε]+b

ai []+a → [ai]
0
a 0 ≤ i < p(n)

bi []+b → [bi]
0
b 0 ≤ i < p(n) (3)

Finally, the auxiliary object in membrane e has to wait for three steps before moving another input object
outside of membrane T:

[wait→ wait′]0e

8 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes

a0 b1 b2 a3

0

T

0

I

0

R

move

0

a

0

b

0

e

a0 b1 b2 a3 move

−

T

0

I

0

R
0

a

0

b

0

e

a0 b2 a3 move′
0

T

0

I

0

R

b1

0

a

0

b

0

e

a0 b2 a3

0

T

0

I

0

R

b1 open

0

a

0

b

0

e

a0 b2 a3

0

T

open

+

I

0

R

b1

0

a

0

b

0

e

a0 b2 a3

0

T

open b1

0

I

0

R
0

a

0

b

0

e

a0 b2 a3

0

T

gotob b1

−

I

0

R

wait

0

a

0

b

0

e

a0 b2 a3

0

T

gotob

0

I

0

R

wait′ b1

0

a

0

b

0

e

a0 b2 a3

0

T

0

I

0

R

wait′′ b1 gotob

0

a

+

b

0

e

a0 b2 a3

0

T

0

I

0

R

wait′′′ b1

0

a

gotob

+

b

0

e

a0 b2 a3

0

T

0

I

0

R

move

0

a

b1

0

b

0

e

Figure 1. The movement of an input symbol to the correct membrane during the initialisation phase. Configura-
tions are listed row by row, and each row is read from left to right.

A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes 9

0

T

0

I

0

R

s0,a

a0 a3

0

a

b1 b2

0

b

0

e

Figure 2. The initial configuration of M , assuming the contents of the tape are abba, as encoded by Πx.

[wait′ → wait′′]0e

[wait′′ → wait′′′]0e

[wait′′′ → move]0e

After the initialisation phase, all the input objects of the form ai (resp., bi) are located in membrane a
(resp., b). The initial configuration of M is thus encoded in a configuration of Πx, as shown in Fig. 2,
and the simulation can start.

3.3. Simulation of a Step of the Turing Machine

To simulate a computation step of M we first define how its (generic) configuration is encoded as a
configuration of Πx. Let σ0, . . . , σp(n)−1, with σj ∈ {a, b}, be the initial contents of the tape of M .
Fig. 2 shows the encoding of the initial configuration of M as a configuration of Πx. Note that, in this
configuration, all input objects σj such that σ = a (resp., σ = b) are located inside membrane a (resp,
b). As stated above, this correspondence is lost when representing a generic (non-initial) configuration
of M . In fact, let c0, c1, . . . , cp(n)−1 be the contents of the tape of M at the current time step. Then the
P system contains, in membrane a, all input objects σj such that cj = a and, in membrane b, all the
objects σj such that cj = b. Notice that this allows a complete reconstruction of the contents of the tape
ofM . The state q and the position i of the tape head are encoded in an object qi,τ occurring in membrane
e, where τ ∈ {a, b} indicates that the P system will check if the symbol in position i of the tape is τ .

The simulation proceeds as follows:

• The object qi,τ makes an object σj move from membrane τ , i.e., either a or b, to membrane R.

• In membrane R the object σj produces a timer that counts from j to 0, while qi,τ counts from i to 0.
When the former timer stops, it changes the charge of R, which is then immediately changed again
by the object σj while leaving from R. When this happens, the latter timer is able to determine if
i = j. In that case, the symbol on the tape of M in position i is actually τ , and it is possible to
perform a step of the simulated machine. In the other case, i.e., i 6= j, the object σj is moved into
membrane T and the execution returns to the previous step.

• When membrane τ is empty, or the correct input object was found in the previous step, it is
necessary to move back the objects from T to membrane τ . The search for the input object having
subscript i will then proceed in membrane b (when τ = a) or a (when τ = b).

10 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes

0

T

0

I

0

R

q2,a

a0 b2

0

a

b1 a3

0

b

0

e

0

T

0

I

q2,a

0

R

a0 b2

0

a

b1 a3

0

b

0

e

0

T

0

I

+

R

q′2,a
a0 b2

0

a

b1 a3

0

b

0

e

Figure 3. The symbol q2,a changes the charge of membrane R before starting the next phase of the simulation
(continues in Fig 4).

We will now detail the rules necessary to formally define the previous algorithm. In order not to make
the presentation unnecessarily long, in the following description we are going to write only half of the
rules, those involving a. The missing half is obtained by swapping a with b.

3.3.1. Reading the Symbol under the Tape Head

The first set of rules uses the object qi,a to change the charge of membrane R to +, as shown in Fig. 3.
Recall that Q′ denotes the set of non-final states of Q.

qi,a []0R → [qi,a]
0
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a]
0
R → []+R q′i,a for q ∈ Q′, 0 ≤ i < p(n)

The following rules move an input object from membrane a to membrane R and produce the object
qi,a,read, which indicates in its third subscript that the operation succeeded. On the other hand, if mem-
brane a was empty then the object qi,a,reset is produced, signalling that the clean-up operation must be
performed. This operation, described later, moves all the objects contained in membrane T back to mem-
brane a, and then switches the focus of the simulation from membrane a to membrane b, producing the
object qi,b.

q′i,a []0a → [q′i,a]
−
a for q ∈ Q′, 0 ≤ i < p(n)

[q′i,a → q′′i,a]
−
a for q ∈ Q′, 0 ≤ i < p(n)

[σj]
−
a → []0a σj for σ ∈ {a, b}, 0 ≤ j < p(n)

[q′′i,a]
0
a → []0a qi,a,read for q ∈ Q′, 0 ≤ i < p(n)

[q′′i,a]
−
a → []0a qi,a,reset for q ∈ Q′, 0 ≤ i < p(n) (4)

σj []+R → [σj]
0
R for σ ∈ {a, b}, 0 ≤ j < p(n)

A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes 11

0

T

0

I

+

R

a0 b2 q′2,a

−

a

b1 a3

0

b

0

e

0

T

0

I

+

R

b2
a0 q′′2,a

0

a

b1 a3

0

b

0

e

0

T

0

I

b2

0

R

q2,a,read

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 timer2 q2,a,read

+

R

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 timer1 q2,a,2

+

R

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 timer0 q2,a,1

+

R

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 q2,a,0

−

R

timer0
a0

0

a

b1 a3

0

b

0

e

0

T

0

I

q2,a,found

0

R

b2
a0

0

a

b1 a3

0

b

0

e

0

T

0

I

0

R

b2 q2,a,found

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

0

R

b2
a0

0

a

b1 a3 q2,a,found

+

b

0

e

0

T

0

I

0

R

a0

0

a

b1 a3 b2 q2,a,found

0

b

0

e

0

T

0

I

0

R

r3,a,reset

a0

0

a

b1 a3 b2

0

b

0

e

Figure 4. The symbol q2,a is used to discover that position 2 of the tape contains a. After that, a transition to
state r and a movement of the tape head to position 3 is performed.

12 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes

The next rules allow the P system to compare the position of the tape head of M (stored as a subscript of
the object qi,a,read) with the subscript j of the object σj which has left membrane a. To accomplish this,
the object σj in membrane R produces the object timerj . At the same time step in which timerj is pro-
duced, the object qi,a,read enters R, changing its charge to +. Both timerj and qi,a,read rewrite themselves
in the next steps, in order to count from j (resp., i) to 0. If i = j, the object timerj becomes timer0,
and at the very next step it leaves membrane R, setting its charge to negative. Simultaneously, ob-
ject qi,a,0 appears; by looking at the charge of R, it rewrites itself as qi,a,found, thus signalling that i = j.
If i < j, the object qi,a,0 appears while the charge of membrane R is still positive; it then rewrites itself
into qi,a,not-found, thus signalling that i 6= j. Finally, if i > j, when the charge of R becomes negative
(due to timer0 having been sent out) an object qi,a,k with k > 0 still occurs; it immediately rewrites itself
into qi,a,not-found as before.

An example of application of these rules is presented in Fig. 4, for the case i = j.

[σj → σj timerj]
0
R for σ ∈ {a, b}, 0 ≤ j < p(n) (5)

qi,a,read []0R → [qi,a,read]+R for q ∈ Q′, 0 ≤ i < p(n)

[timerj → timerj−1]+R for 1 ≤ j < p(n)

[qi,a,read → qi,a,i]
+
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,k → qi,a,k−1]+R for q ∈ Q′, 0 ≤ i < p(n), 1 ≤ k < p(n)

[timer0]+R → []−R timer0

[timer0 → ε]0e

[σj]
−
R → []0R σj for σ ∈ {a, b}, 0 ≤ j < p(n)

[qi,a,0 → qi,a,found]−R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,0 → qi,a,not-found]+R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,k → qi,a,not-found]−R for q ∈ Q′, 0 ≤ i < p(n), 1 ≤ k < p(n)

[qi,a,found]0R → []0R qi,a,found for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,not-found]0R → []0R qi,a,not-found for q ∈ Q′, 0 ≤ i < p(n) (6)

If i 6= j, the selected input object σj has to be moved to membrane T, with the help of object qi,a,not-found.
Then a new copy of object qi,a is produced, in order to repeat the process of candidate selection for the
symbol which is under the tape head of M :

qi,a,not-found []0T → [qi,a,not-found]+T for q ∈ Q′, 0 ≤ i < p(n)

σj []+T → [σj]
0
T for σ ∈ {a, b}, 0 ≤ j < p(n)

[qi,a,not-found]0T → []0T qi,a for q ∈ Q′, 0 ≤ i < p(n)

On the other hand, if i = j then the symbol under the tape head of M has been correctly identified.
Assume δ(q, a) = (r, τ, d), with r non-final; the following rules simulate the computation of the next
state r, the symbol τ to be written on the tape, and the movement d of the tape head:

qi,a,found []0τ → [qi,a,found]+τ for 0 ≤ i < p(n)

σi []+τ → [σi]
0
τ for σ ∈ {a, b}, 0 ≤ i < p(n)

A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes 13

[qi,a,found]0τ → []0τ ri+d,a,reset for 0 ≤ i < p(n) (7)

Notice that, in the caseM is a nondeterministic Turing machine, the simple repetition of rule (7) for each
(r, τ, d) ∈ δ(q, a) assures a non-deterministic simulation on a non-confluent P system.

Notice that the last rule has a change in both the state and in the position of the head. The presence
of reset in the subscript indicates that the clean-up phase must be now executed, to move all objects from
membrane T back to membrane a. As stated above, the clean-up phase is also executed after applying
rule (4), this time however without any change of state and position of the tape head. This is an intended
behaviour, since in both cases, before continuing the simulation, we need to restore the configuration of
the P system by emptying membrane T. After that, the simulation will proceed with the object ri+d,b in
the former case, and with qi,b in the latter, as intended.

3.3.2. Clean-up

The following set of rules use the object qi,a,reset to move all the objects from membrane T to membrane
a. After that, the object is rewritten into qi,b.

qi,a,reset []0T → [qi,a,reset]
−
T for q ∈ Q′, 0 ≤ i < p(n)

[σj]
−
T → []0T σj for σ ∈ {a, b}, 0 ≤ j < p(n)

[qi,a,reset → q′i,a,reset]
−
T for q ∈ Q′, 0 ≤ i < p(n)

[q′i,a,reset]
0
T → []0T q

′
i,a,reset for q ∈ Q′, 0 ≤ i < p(n)

q′i,a,reset []0a → [q′i,a,reset]
+
a for q ∈ Q′, 0 ≤ i < p(n)

σj []+a → [σj]
0
a for σ ∈ {a, b}, 0 ≤ j < p(n)

[q′i,a,reset]
0
a → []0a qi,a,reset for q ∈ Q′, 0 ≤ i < p(n)

[q′i,a,reset]
−
T → []0T qi,b for q ∈ Q′, 0 ≤ i < p(n)

When all the input objects have been moved to either membrane a or membrane b, the P system can
proceed by checking whether the tape head is reading the symbol b in position i when the machine M is
in state q.

3.4. Halting

If δ(q, a) = (r, τ, d) and r is an accepting (resp., rejecting) state of the TM, then, when simulating the
last transition, instead of rule (7) one of the following rules is applied:

[qi,a,found]0τ → []0τ yes for 0 ≤ i < p(n), if r is accepting

[qi,a,found]0τ → []0τ no for 0 ≤ i < p(n), if r is rejecting

Finally, the object yes or no is sent out from the outermost membrane, as the last computation step, via
the rules

[yes]0e → []0e yes

[no]0e → []0e no

No further rule can then be applied, since the only remaining objects are the input objects located in
membranes T, a, and b, where they are not subject to any rule, as the membrane charges are neutral.

14 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes

3.5. Main Result

The simulation of one step of the Turing machine requires at most a polynomial number of steps of
the P system, since each of the different “phases” (initialisation, checking if the input symbol σj has a
subscript corresponding to the current position of the tape head, and moving the objects from membrane
T to either membrane a or b) requires at most polynomial time – actually O(p(n)), where p(n) is the
space required by the Turing machine – and it is repeated at most once for each cell of the tape, that is,
at most p(n) times.

Even if we have presented a simulation of a Turing machine having only two tape symbols, it is pos-
sible to extend the simulation to arbitrary alphabets by using one membrane for each symbol, similarly
to membranes a and b, and by adding the corresponding rules. Therefore, in the following theorem we
assume, without loss of generality, that a blank tape symbol t is also available.

Theorem 3.1. (L,L)-MCSPACEAM(O(1)) = PSPACE.

Proof:
Let L ∈ PSPACE, and let M be a Turing machine deciding L in space p(n). We can construct a family
of P systems Π = {Πx : x ∈ Σ?} such that L(Π) = L by letting F (1n) = Πn, where Πn is the P system
simulating M on inputs of length n, and

E(x0 · · ·xn−1) = x1,1 · · ·xn−1,n−1 tn · · · tp(n)−1,

i.e., by padding the input string x with p(n) − n blank symbols before indexing the result with the
positions of the symbols on the tape. Both F and E can be computed in logarithmic space by Tur-
ing machines, since they only require adding subscripts having a logarithmic number of bits to rules
or strings having a fixed structure, and the membrane structure is fixed for all Πn. Since the simu-
lation of M only requires a constant-bounded number of membranes (four plus the size of the alpha-
bet of M) and non-input objects (at most two in each configuration), the inclusion of PSPACE in
(L,L)-MCSPACEAM(O(1)) follows. The reverse inclusion was proved in [7]. ut

4. Rethinking the Definition of Space

The result of Theorem 3.1 shows that constant-space P systems with active membranes have the same
computational power of Turing machines working in polynomial space. This raises some questions about
the definition of space complexity for P systems adopted until now [6], in particular: does counting each
non-input object and each membrane as unitary space really capture an intuitive notion of the amount of
space used by a P system during a computation? Is it fair to allow a polynomial padding of the input
string when encoding it as a multiset?

First of all, we observe that the constant number of non-input objects appearing in each configura-
tion of the simulation described in Section 3.5 actually encode Θ(log n) bits of information, since they
are taken from an alphabet Γ of polynomial size. For instance, the non-input objects qi,a have a sub-
script i ranging from 0 to p(n)− 1; according to the original definition of space (Definition 2.3), each
of these objects would only require unitary space, whereas the binary representation of the subscript i

A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes 15

requires log p(n) = Θ(log n) bits. It may be argued that this amount of information needs a propor-
tional amount of physical storage space. Similarly, each membrane label contains Θ(log |Λ|) bits of
information, which must also have a physical counterpart.1

The information stored in the positions of the objects within the membrane structure is also not taken
into account by Definition 2.3, although the number of configurations reachable during a computation
is exponential even for just two regions (the configurations correspond to the subsets of n distinct input
objects located in one of the two regions). However, the information on the location of the objects is part
of the system and it is not stored elsewhere, exactly as the information on the location of the tape head
in a Turing machine, which is not counted as space.

Due to the above considerations, we propose an alternative definition which we think might capture
in a more accurate way this intuition of space.

Definition 4.1. Let C be a configuration of a P system Π. The size |C| of C is defined as the number
of membranes in the current membrane structure multiplied by log |Λ|, plus the total number of objects
from Γ (i.e, the non-input objects) they contain multiplied by log |Γ|.

Adopting this stricter definition does not significantly change space complexity results involving
polynomial or larger upper bounds, i.e., the complexity classes PMCSPACEAM, EXPMCSPACEAM,
and larger ones [1] remain unchanged.

As for padding the input string, one may argue that this operation provides the P system with some
“free” storage, since input objects are not counted by Definition 2.3. The proof of Theorem 3.1 exploits
the ability to encode an input string of length n as a polynomially larger multiset in a substantial way,
as allowed by the most common uniformity conditions, including P and L-uniformity, but also weaker
ones such as AC0 or DLOGTIME-uniformity [8, 3].

According to the above discussion, the simulation described in this paper would require logarith-
mic space according to Definition 4.1. Furthermore, the space bounds of the previous simulation of
polynomial-space Turing machines by means of logarithmic-space P systems with active membranes de-
scribed in [2] also increase to Θ(log n log logn), since in that case each configuration of the P systems
contains Θ(log n) membranes with distinct labels and O(1) non-input objects. Both simulations would
be limited to linear-space Turing machines, rather than polynomial-space ones, if input padding were
disallowed.2

It remains to be established if the amount of space (as measured in Definition 4.1) can be freely
distributed between objects and labels while obtaining the same computing power, or if one of the two
elements produces strictly more powerful P systems than the other.

5. Computing without Rewriting Input Objects

In this section we are going to show that, if input objects are only moved around the membrane structure
(without rewriting them into other objects), then evolution rules involving the input objects, such as (1),
(2), and (5) from Section 3, are essential in order to perform a simulation of a Turing machine using

1Here we refer to the objects and membrane labels actually appearing during the course of the computation; if part of the
alphabet Γ or some labels from Λ never appear in a configuration, then the information contents might be smaller.
2Notice that deciding whether a deterministic Turing machine accepts its input in linear space remains PSPACE-complete,
although this time the padding is performed during the reduction to this problem.

16 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes

less than a logarithmic number of membrane labels. In fact, if only non-rewriting send-in, send-out, and
dissolution rules are applied to input symbols, and the number of membrane labels is o(log n), then it is
even impossible to correctly distinguish two input strings of the same length. This happens independently
of the space used by the P systems, as long as the function E encoding the input x ∈ Σ? as a multiset wx
is “simple”:

Definition 5.1. Let A be an alphabet containing Σ, and let

s : A? → {σi : σ ∈ A, i ∈ N}?

be the function defined by s(x0 · · ·xn−1) = x0,0 · · ·xn−1,n−1, i.e., the function subscripting each symbol
with its position in the string.

An encodingE of Σ? is “simple” if there exists a function g : N→ A? such thatE(x) = s(x ·g(|x|))
for all x ∈ Σ?, i.e., E(x) is the original input string x, concatenated with a string depending only on the
length of x, and indexed with the positions of its symbols.

Notice that the encoding employed in Theorem 3.1 is indeed simple.
When the encoding is simple and the input alphabet is at least binary, P systems with the limitations

described above accepting (resp., rejecting) a long enough string x also accept (resp., reject) another
string obtained by swapping two symbols of x.

Theorem 5.2. Let Π be a family of (E ,F)-uniform, possibly non-confluent recogniser P systems with
active membranes, where F is unrestricted, and E is a class of simple encodings. Suppose that the only
rules involving input symbols are send-in, send-out and membrane dissolution, that these rules never
rewrite the input symbols, and that the family uses o(log n) membrane labels. Then, there exists n0 ∈ N
such that, for each string x = x0 · · ·xn−1 ∈ Σ? with |x| = n ≥ n0, there exist i < j < n such that x
can be written as u ·xi ·v ·xj ·w with u, v, w ∈ Σ?, and x ∈ L(Π) if and only if u ·xj ·v ·xi ·w ∈ L(Π).

Proof:
Let Π be a family of P systems as defined in the statement of the theorem, let F ∈ F be its “family”
function, and let

F (1n) = Πn = (Γ,∆,Λ, µ, wh1 , . . . , whd , R).

Assume that the objects in ∆ are subject, in R, only to rules of type send-in, send-out, and dissolution
not rewriting them. On the other hand, we impose no restriction on rules involving objects in Γ. Let us
consider the possible rules applicable to a fixed object a ∈ ∆ and respecting the imposed restrictions:

• There are at most 32|Λ| send-in rules of the form a []αh → [a]βh, since it is possible to choose the
label h ∈ Λ and the charges α, β ∈ {+, 0,−}.

• Similarly, there are at most 32|Λ| send-out rules of the form [a]αh → []βh a.

• The number of dissolution rules of the form [a]αh → a is at most 3|Λ|, since, contrarily to the last
two cases, there is no charge on the right-hand side of the rule.

A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes 17

Thus, there are 21|Λ| possible rules per input object and hence 221|Λ| possible sets of rules involving
each input object. Since the encoding of the input string is simple, each input object has the form σi for
some σ ∈ A; hence, for each position i in the input multiset there are

(
221|Λ|)|A| = 221|Λ||A| possible

sets of rules.
A necessary condition to distinguish two input objects a, b ∈ ∆ is that the set of rules involving b

cannot be simply obtained by replacing a with b in the set of rules involving a (i.e., their sets of rules
are not isomorphic); otherwise, replacing a with b in the input multiset would not change the result of
the computation of Πx. In particular, this holds for the first n input objects x0,0, . . . , xn−1,n−1, obtained
by indexing x = x0 · · ·xn−1 ∈ Σn. In order to be able to distinguish these n input objects it is thus
necessary that

221|Λ||Σ| ≥ n

that is, that the sets of rules associated with the first n objects are pairwise non-isomorphic. This means
that

|Λ| ≥ log n

21|Σ|

However, since |Λ| is o(log n), the inequality does not hold for large enough n. Instead, there exists n0

such that, for each n ≥ n0, there are two indistinguishable positions i and j with 0 ≤ i < j < n: for
each x = u · xi · v · xj · w ∈ Σn, either x and u · xj · v · xi · w are both accepted, or they are both
rejected. ut

6. Final Remarks

In this paper we have solved the problem of determining the computational power of recogniser P sys-
tems working in constant space, by showing that they can simulate polynomial-space bounded Turing
machines. The simulation is also efficient, in the sense that it is only polynomially slower than the
original machine.

The solution of this problem raised some interesting questions about the ability of the current def-
inition of space to capture our intuitions about the size of P systems. We have challenged the existing
definition by considering also the number of bits necessary to encode the non-input objects and the labels
of the membranes. While the new definition does not change any result involving an amount of space
which is polynomial or larger, it changes the current result and, according to the new definition, our
simulation requires logarithmic space.

Finally, we have shown that rewriting input objects, while not exploited in other simulations [2], is
essential when less than a logarithmic number of membrane labels is present. In fact, distinguishing two
inputs is not possible when the input objects are only moved around in the membrane structure, even
when no restrictions on the amount of space are present.

In the future we plan to investigate the relationship between the size of the set of objects Γ and the
set of membrane labels Λ. It would be interesting to understand if we can easily exchange the way the
information is distributed between the two sets according to the new definition of space (Definition 4.1).

18 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron / Constant-Space P Systems with Active Membranes

Acknowledgements

We would like to thank the anonymous referees for their comments, particularly those concerning the
discussion on the definition of space complexity in Section 4.

This work was partially supported by Università degli Studi di Milano-Bicocca, Fondo d’Ateneo (FA)
2013: “Complessità computazionale in modelli di calcolo bioispirati: Sistemi a membrane e sistemi a
reazioni”.

References
[1] Alhazov, A., Leporati, A., Mauri, G., Porreca, A. E., Zandron, C.: Space complexity equivalence of P systems

with active membranes and Turing machines, Theoretical Computer Science, 529, 2014, 69–81.

[2] Leporati, A., Mauri, G., Porreca, A. E., Zandron, C.: A gap in the space hierarchy of P systems with active
membranes, Journal of Automata, Languages and Combinatorics, 19(1–4), 2014, 173–184.

[3] Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions,
Natural Computing, 10(1), 2011, 613–632.

[4] Păun, Gh.: P systems with active membranes: Attacking NP-complete problems, Journal of Automata, Lan-
guages and Combinatorics, 6(1), 2001, 75–90.

[5] Păun, Gh., Rozenberg, G., Salomaa, A., Eds.: The Oxford Handbook of Membrane Computing, Oxford
University Press, 2010.

[6] Porreca, A. E., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complexity measure for P systems,
International Journal of Computers, Communications & Control, 4(3), 2009, 301–310.

[7] Porreca, A. E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes working in polynomial
space, International Journal of Foundations of Computer Science, 22(1), 2011, 65–73.

[8] Porreca, A. E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems with active membranes, in:
Membrane Computing, 13th International Conference, CMC 2012 (E. Csuhaj-Varjú, M. Gheorghe, G. Rozen-
berg, A. Salomaa, G. Vaszil, Eds.), vol. 7762 of Lecture Notes in Computer Science, Springer, 2013, 342–357.

