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Abstract

Since subdivision schemes featured by high smoothness and conic precision are strongly required in many
application contexts, in this work we define the building blocks to obtain new families of non-stationary
subdivision schemes enjoying such properties. To this purpose, we firstly derive a non-stationary extension
of the Lane-Riesenfeld algorithm, and we exploit the resulting class of schemes to design a non-stationary
family of alternating primal/dual subdivision schemes, all featured by reproduction of {1, x, etx, e−tx}, t ∈
[0, π) ∪ iR+. Then, we focus our attention on interpolatory subdivision schemes with conic precision, that
can be obtained as a byproduct of the above classes. In particular, we present a novel construction of a
family of non-stationary interpolatory 2n-point schemes which generalizes the well-known Dubuc-Deslauriers
family in such a way the n-th (n ≥ 2) family member reproduces Π2n−3 ∪ {etx, e−tx}, t ∈ [0, π) ∪ iR+, and
keeps the original smoothness of its stationary counterpart unchanged.

Keywords: Non-stationary subdivision; Exponential polynomial generation; Conic reproduction;
Smoothness; Interpolation.

1. Introduction

Subdivision schemes are efficient tools for generating smooth curves and surfaces as the limit of an iter-
ative algorithm based on simple refinement rules. More precisely, in the univariate case, for any given set

of initial control points P(0) := {P
(0)
i , i ∈ Z}, a linear subdivision scheme recursively produces denser sets

of control points P(k+1), for all k ∈ N0 := N ∪ {0}, by computing local linear combinations of points from
the previous level. If the same refinement rules are used at all levels of refinement, then the scheme is called
stationary, otherwise non-stationary.

In the stationary context, the Lane-Riesenfeld algorithm [17] defines the symbols associated to the family
of B-spline schemes of order ℓ, with ℓ ∈ N. In literature, the use of these symbols as ‘building blocks’ to
define both interpolatory schemes [7] and subdivision schemes with enhanced reproduction capabilities [14]
has been recently shown. In fact, Conti and Romani observed that ℓ-point (with ℓ even) Dubuc-Deslauriers

schemes [11] are characterized by a symbol containing the factor (z+1)ℓ

2ℓ−1 , while Hormann and Sabin noticed
that the same factor (with ℓ ∈ N) is also contained in the symbol of the family of subdivision schemes with
cubic precision. The latter family is indeed defined by the product of the symbol of the Lane-Riesenfeld’s
family with a degree-2 polynomial, that they called kernel, tailored to increase the degree of polynomial re-
production of B-spline schemes from one to three. Moreover, in [10] it has been also recently illustrated that
the first member of the Lane-Riesenfeld’s family and that of the Hormann-Sabin’s family can be combined
together to give rise to a recursive formula defining the interpolatory 2n-point Dubuc-Deslauriers schemes
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for all n ≥ 3.
These observations prompted us to study the generalization of these two fundamental classes of schemes
to the non-stationary setting. Our first contribution in this direction consists in the proposal of a level-
dependent extension of the Lane-Riesenfeld algorithm, aimed at providing the symbols of normalized ex-
ponential B-splines. These symbols, together with a non-stationary version of Hormann-Sabin’s kernels,
are successively used as ‘building blocks’ to define a family of alternating primal/dual subdivision schemes
reproducing conics. The first member of the resulting family, combined with the first one of the novel
Lane-Riesenfeld’s family, is shown to originate a three-term recurrence formula defining the symbols of the
non-stationary interpolatory 2n-point schemes reproducing the space span{1, x, ..., x2n−3, etx, e−tx}, where
t ∈ [0, π) ∪ iR+ and n ∈ N, n ≥ 3. We highlight the fact that, non-stationary subdivision schemes enjoying
properties like interpolation, conic precision and arbitrarily high smoothness, are considered wished tools
both in geometric modelling and image segmentation. As to the latter, we recall that one of the most
used tools for efficient image segmentation are active contours (snakes), i.e. 2D curves evolving through the
image, capable of perfectly outlining elliptic objects and offering user-friendly models, versatile enough to
provide a close smooth approximation of any closed polyline in the plane [9].

The remainder of the paper is organized as follows. In Section 2 we start by presenting all the fundamental
notions about stationary and non-stationary subdivision schemes that are necessary to the development of
the subsequent results. Section 3 is devoted to the stationary context. After recalling the basic formulations
of the Lane-Riesenfeld algorithm and the Hormann-Sabin’s family, we review the existing different formu-
lations of the family of 2n-point interpolatory Dubuc-Deslauriers schemes, and we show how to obtain its
symbol exploiting the Lane-Riesenfeld’s and Hormann-Sabin’s families as building blocks. All remaining
sections deal with the non-stationary setting and present original results. In particular, after presenting our
extension of the Lane-Riesenfeld algorithm (Section 4), we construct a family of alternating primal/dual
non-stationary subdivision schemes reproducing conics, which generalizes the well-known Hormann-Sabin’s
family (Section 5). Finally, in Section 6 we exploit a suitable perturbation of the symbols of the well-
known Dubuc-Deslauriers schemes to define non-stationary interpolatory 2n-point schemes which achieve
the property of conic precision, without affecting the smoothness order of the original proposal.

2. Background notions

2.1. The stationary case

Let ai, i ∈ Z, be the coefficients appearing in the linear combination that defines at each iteration the
new-level points. Then, for each k ∈ N0, the refinement rules are

P
(k+1)
2i+h =

∑

j∈Z

a2j+h P
(k)
i−j , h = 0, 1. (2.1)

The set of coefficients {ai ∈ R, i ∈ Z} appearing in (2.1) is called subdivision mask and is denoted by a. The
subdivision scheme with mask a is denoted by Sa and can be equivalently seen as the repeated application
of the subdivision matrix M = {M(i, j) = ai−2j : i, j ∈ Z} to the initial data P(0).
Applying the z-transform, we can associate the mask a to the Laurent series

A(z) =
∑

i∈Z

aiz
i, z ∈ C \ {0}, (2.2)

which is called the symbol of the subdivision scheme. Since only a finite number of coefficients ai are non-
zero, the Laurent series A(z) is indeed a Laurent polynomial.
The symbol A(z) has been shown to be a convenient tool to investigate both convergence/smoothness and
generation/reproduction properties of the subdivision scheme Sa.
We recall that a subdivision scheme is said to be convergent if, for any initial data P(0) ∈ ℓ∞(Z), there exists

a function F ∈ C0(R) such that for any compact set Ω in R, limk→+∞ supi∈Z∩2kΩ |P
(k)
i −F(2−ki)| = 0, and F

is not identically 0 for some initial data P(0). In particular, for any convergent subdivision scheme, we denote
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by Φ the limit function obtained from the initial sequence δ = {δi,0 : i ∈ Z} where δi,0 =

{

1, if i = 0,
0, otherwise.

Φ is usually called the basic limit function of the subdivision scheme.
Existing results on polynomial generation and reproduction properties of a stationary subdivision scheme are
restricted to the class of non-singular schemes, i.e the ones that generate the zero function if and only if P(0) is
the zero sequence. In particular, in [6, Theorem 4.3], it was recently shown that for any convergent and non-
singular subdivision scheme Sa, the polynomial generation and reproduction properties can be easily studied
by looking at the values assumed by the symbol and its derivatives at z = ±1. More precisely, polynomial
generation is guaranteed by the correct behaviour of the symbol A(z) and its derivatives at z = −1, and if
A(z) and its derivatives also behave correctly at z = 1, then the scheme reproduces polynomials.

2.2. The non-stationary case

Since the refinement rules are not the same at all levels of refinement, the mask at the k-th level is

defined as the sequence a(k) = {a
(k)
i ∈ R, i ∈ Z}, and the associated k-level symbol is

A(k)(z) =
∑

i∈Z

a
(k)
i zi, z ∈ C \ {0}. (2.3)

The resulting subdivision scheme is either denoted by {S
a
(k) , k ∈ N0} or by {A(k)(z), k ∈ N0}, and can be

seen as the successive application of the level-dependent matrices M (k) = {M (k)(i, j) = a
(k)
i−2j : i, j ∈ Z},

k ∈ N0, to the initial data P(0).
The notion of convergence is analogous to the one seen in the stationary case, but, differently from the
stationary case, one could start the subdivision process with a mask at level m ∈ N0, and get a family of
subdivision schemes based on the masks {a(m+k), k ∈ N0}, m ∈ N0. For any convergent, non-stationary
subdivision scheme, we can thus define basic limit functions Φ(m), m ∈ N0 as

Φ(m) = lim
k→+∞

S
a
(m+k) S

a
(m+k−1) · · · S

a
(m) δ, m ∈ N0.

In the following we denote by Φ the basic limit function obtained with m = 0.
The study of generation and reproduction properties of a non-stationary, convergent and non-singular sub-
division scheme requires us to introduce a generalization of the well-known space of polynomials, given by
the space of exponential polynomials

EPR,T = span{xsetℓx, s = 0, . . . rℓ − 1, ℓ = 1, . . . , N}, (2.4)

with R = {rℓ ∈ N, ℓ = 1, . . . , N} and T = {tℓ ∈ R ∪ iR, ℓ = 1, . . . , N}.
The following definition characterizes the notions of generation and reproduction of a space of exponential

polynomials EPR,T .

Definition 2.1 (EPR,T -Generation and Reproduction). The non-stationary subdivision scheme associated
with the symbols {A(k)(z), k ∈ N0} is said to generate EPR,T if it is convergent and for f ∈ EPR,T there

exists an initial sequence f (0) := {f̃(t
(0)
i ), i ∈ Z}, f̃ ∈ EPR,T such that lim

k→+∞
S
a
(k)S

a
(k−1) · · · S

a
(0)f (0) = f .

Moreover, it is said to reproduce EPR,T if it is convergent and for f ∈ EPR,T and for the initial sequence

f (0) := {f(t
(0)
i ), i ∈ Z}, lim

k→+∞
S
a
(k)S

a
(k−1) · · · S

a
(0) f (0) = f .

For later use we also recall some results proven in [4, 8].

Proposition 2.2. Let ζ
(k)
ℓ = e

−t
ℓ

2k+1 with tℓ ∈ T . If

dsA(k)
(

− ζ
(k)
ℓ

)

dzs
= 0, ℓ = 1, . . . , N, s = 0, . . . , rℓ − 1, rℓ ∈ R, (2.5)
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then the subdivision scheme {S
a
(k) , k ∈ N0} generates the space of exponential polynomials EPR,T in (2.4).

Moreover, if there exists a parameter shift τ ∈ R such that

A(k)
(

ζ
(k)
ℓ

)

= 2
(

ζ
(k)
ℓ

)τ
, ℓ = 1, . . . , N, (2.6)

dsA(k)
(

ζ
(k)
ℓ

)

dzs
= 2(ζ

(k)
ℓ )τ−s

s−1
∏

q=0

(

τ − q
)

, ℓ = 1, . . . , N, s = 1, . . . , rℓ − 1, rℓ ∈ R, (2.7)

are satisfied together with (2.5), then the non-stationary scheme reproduces EPR,T .

We further recall that if, for some ℓ ∈ {1, ..., N}, we have ζ
(k)
ℓ = 1 and rℓ ≥ 2, then we can conveniently

compute τ = 1
2

dA(k)(1)
dz

. If τ ∈ Z, the subdivision scheme with k-level symbol A(k)(z) is said primal, whereas

if τ ∈ Z

2 it is called dual. Additionally, when N = 1, t1 = 0 (i.e. ζ
(k)
1 = 1) and r1 = g + 1 where g ∈ N0,

then (2.5)-(2.6) are nothing but the conditions for generation of degree g polynomials and reproduction of
constants. They coincide with the sum rules of order g + 1, which can be equivalently written as

A(k)(1) = 2 and max
s=0,...,g

∣

∣

∣

∣

dsA(k)(−1)

dzs

∣

∣

∣

∣

= 0. (2.8)

Differently, a non-stationary subdivision scheme is said to satisfy the approximate sum rules of order g +1,
g ∈ N0, if the sequences

µk :=
∣

∣

∣
A(k)(1)− 2

∣

∣

∣
and δk := max

s=0,...,g
2−ks

∣

∣

∣

∣

dsA(k)(−1)

dzs

∣

∣

∣

∣

satisfy
∞
∑

k=0

µk < +∞ and

∞
∑

k=0

2kg δk < +∞, (2.9)

as recently shown in [3, Definition 5]. Therefore, sum rules are a special case of approximate sum rules,
obtained when µk = δk = 0.
Finally, we conclude by recalling that a stationary subdivision scheme Sa and a non-stationary one {S

a
(k) , k ∈

N0}, are termed asymptotically similar (see [3, Definition 6] and [5]) if their masks satisfy

lim
k→+∞

a(k) = a. (2.10)

This definition allows us to check convergence and smoothness of a non-stationary scheme by comparison
with a stationary one whose convergence, regularity and polynomial generation properties are known. More
precisely, in [3, Theorem 4] the following result was given.

Proposition 2.3. If a non-stationary subdivision scheme {S
a
(k) , k ∈ N0} satisfies approximate sum rules

of order g + 1, g ∈ N0, and is asymptotically similar to a convergent stationary subdivision scheme Sa with
a stable basic limit function in Cg(R), then the basic limit function of {S

a
(k) , k ∈ N0} is also of class Cg.

From Proposition 2.3 the following result follows straightforwardly.

Corollary 2.4. If a non-stationary subdivision scheme {S
a
(k) , k ∈ N0} satisfies approximate sum rules of

order g + 1, g ∈ N0, and is asymptotically similar to a convergent stationary subdivision scheme Sa with a
stable basic limit function of class Cℓ, ℓ ≤ g, then the non-stationary subdivision scheme {S

a
(k) , k ∈ N0}

has the same integer smoothness.
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3. The stationary setting: review of known results

3.1. Lane-Riesenfeld algorithm

Refine-and-Smooth algorithms are characterized by a refine step which introduces new points on the
initial control polygon, and a following smoothing step, which modifies the obtained points using simple local
averaging rules. More smoothing steps provide limit curves of wider support as well as of higher smoothness
[2]. One of the simplest Refine-and-Smooth algorithms is the well-known Lane-Riesenfeld algorithm, which
generates polynomial uniform B-splines of degree n+ 1 for all n ∈ N0 [17]. We remind that this algorithm
is defined using a smoothing operator described by a symbol of the form

S(z) =
z + 1

2
,

and a refine operator defined as

R(z) = 1 + S(z2)z−1 =
(z + 1)2

2z
,

which is well-known to reproduce Π1 [2].
The Lane-Riesenfeld algorithm is obtained by applying the smoothing operator S n times, after one appli-
cation of the refine operator R. This mechanism provides the symbol

An(z) = z−⌈
n

2 ⌉
(

S(z)
)n

R(z) =
(z + 1)n+2

2n+1z⌈
n

2 ⌉+1
, n ∈ N0, (3.1)

which is indeed the symbol of the degree-(n+ 1) polynomial B-spline. We notice that the schemes defined
by the symbol in (3.1) generate Πn+1 = span{1, x, x2, . . . , xn+1}, but reproduce only Π1.

3.2. Hormann-Sabin’s family

In order to increase the degree of polynomial reproduction of B-spline schemes from one to three, the
family of stationary subdivision schemes with cubic precision, hereinafter denoted by {Fn(z)}n≥2, was
proposed by Hormann and Sabin [14]. Its symbol can be written as

Fn(z) = An(z)Kn(z), n ∈ N\{1},

where An(z) =
(z + 1)n+2

2n+1z⌈
n

2 ⌉+1
and Kn(z) = −

n+ 2

8z
+

n+ 6

4
−

n+ 2

8
z.

(3.2)

We remind that the scheme with symbol F1(z) is the dual three-point scheme which reproduces quadratics
but not cubics, and hence it is not considered a member of the family. On the other hand, F2(z), F3(z)
and F4(z) are respectively the symbols of the Dubuc-Deslauriers interpolatory four-point scheme, the dual
four-point scheme and a relaxation of the interpolatory four-point scheme (see [14]).

3.3. The family of interpolatory 2n-point Dubuc-Deslauriers schemes

The interpolatory 2n-point (n ∈ N, n ≥ 1) Dubuc-Deslauriers scheme [11] is identified by the symbol
(see, e.g, [7, 13])

I2n(z) = A2n−2(z)
n−1
∑

ℓ=0

(−1)ℓ 2−2ℓ

(

n− 1 + ℓ

ℓ

)

(1− z)2ℓ

zℓ
where A2n−2(z) =

(z + 1)2n

22n−1zn
, (3.3)

which satisfies the interpolatory condition I2n(z) + I2n(−z) = 2 and reproduces Π2n−1.
In [10] it was recently proven that for all n ∈ N, n ≥ 2 the subdivision schemes with symbols {I2n(z)}n≥2

satisfy the two-term recurrence relation

I2n(z) = I2n−2(z) +
(−1)n−1

24(n−1)

(

2n− 3

n− 1

)(

z −
1

z

)2n−2(

z +
1

z

)

, (3.4)
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starting from

I2(z) =
(z + 1)2

2z
,

which is also the first member of the Lane-Riesenfeld’s family {A2n−2(z)}n≥1.
From (3.4) the following three-term recurrence relation

I2n(z) = I2n−2(z)− βn

(

z −
1

z

)2
(

I2n−2(z)− I2n−4(z)
)

where βn =
2n− 3

8(n− 1)
, (3.5)

defining the symbols of all interpolatory 2n-point Dubuc-Deslauriers schemes with n ≥ 3, can be also
easily worked out [10]. The last recurrence is clearly based on the knowledge of the first member of the
Lane-Riesenfeld’s family, I2(z), and the first one in Hormann-Sabin’s family, i.e.,

I4(z) = F2(z) = (z + 1)4
(−z2 + 4z − 1)

16z3
.

4. A non-stationary Lane-Riesenfeld algorithm

In the stationary setting we looked for a Refine-and-Smooth algorithm capable of defining the symbols
of degree-(n + 1) polynomial B-splines for all n ∈ N0, and we observed that all the resulting schemes are
featured by reproduction of Π1. Here, instead of Π1, we consider the 2-dimensional space

span{etx, e−tx}, with t ∈ [0, π) ∪ iR+. (4.1)

Moreover, we define ∀k ∈ N0

v(k) :=
1

2

(

e
i t

2k+1 + e
−i t

2k+1

)

= cos

(

t

2k+1

)

, t ∈ [0, π) ∪ iR+. (4.2)

Note that, after choosing an arbitrary v(0) ∈ (0,+∞) defined as

v(0) := cos

(

t

2

)

=







cos
(

s
2

)

∈ (0, 1) if t = s, s ∈ (0, π),
1 if t = 0,
cosh

(

s
2

)

∈ (1,+∞) if t = is, s ∈ R+,

we can equivalently compute the value of v(k) in (4.2) via the recursive formula (see [1, Proposition 2])

v(k+1) =

√

v(k) + 1

2
, ∀ k ∈ N0. (4.3)

In view of [1, Remark 3], we also remind that

lim
k→+∞

v(k) = 1. (4.4)

Following the stationary case, we define the k-level symbols of the smoothing and refine operators as follows.

Definition 4.1. Let v(k) be as in (4.2). For all k ∈ N0 we define

S(k)(z) :=
z + 1

2v(k+1)
, (4.5)

and

R(k)(z) := 1 +
v(k+1)

v(k)
S(k)(z2)z−1,

to be the k-level symbols of the smoothing and refine operators, respectively.
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Lemma 4.2. The refine operator in Definition 4.1, explicitly described by the k-level symbol

R(k)(z) =
z + 2v(k) + z−1

2v(k)
, (4.6)

reproduces the 2-dimensional space in (4.1).

Proof: Since R(k)(z) fulfills the conditions R(k)(−e
± t

2k+1 ) = 0, R(k)(e±
t

2k+1 ) = 2, then, in view of Proposi-
tion 2.2, it reproduces the 2-dimensional space in (4.1) with respect to the parameter shift τ = 0.

The non-stationary Lane-Riesenfeld algorithm, obtained by one application of the refine operator and n

successive applications of the smoothing operator, is thus performed by the k-level symbol

A(k)
n (z) = z−⌈

n

2 ⌉
(

S(k)(z)
)n

R(k)(z) =
(z + 1)n (z + 2v(k) + z−1)

2v(k)
(

2(v(k) + 1)
)

n

2 z⌈
n

2 ⌉
, n ∈ N0, (4.7)

where v(k) is the level-dependent parameter in (4.2).

Proposition 4.3. For all n ∈ N0 the subdivision scheme related to the symbols {A
(k)
n (z), k ∈ N0} in

(4.7) generates span{1, x, . . . , xn−1, etx, e−tx} and reproduces the 2-dimensional subspace span{etx, e−tx}
with t ∈ [0, π) ∪ iR+.

Proof: We start by observing that, for all n ∈ N0, A
(k)
n (−e

± t

2k+1 ) = 0 and, whenever n ≥ 1, (A
(k)
n )(r)(−1) =

0 for all r = 0, . . . , n − 1. Thus, recalling conditions in Proposition 2.2, the generation of the space

span{1, x, . . . , xn−1, etx, e−tx} is proven. Moreover, we notice that S(k)(e±
t

2k+1 ) = e
± 1

2
t

2k+1 , while from

Lemma 4.2 we have R(k)(e±
t

2k+1 ) = 2. Thus the conditions A
(k)
n (e±

t

2k+1 ) = 2(e±
t

2k+1 )τ with

τ =

{

0 if n even,
− 1

2 if n odd,
(4.8)

are satisfied too. Hence reproduction of span{etx, e−tx} is guaranteed for all values of n ∈ N0.

Remark 4.4. Note that, when v(0) = 1, A
(k)
n (z) reduces to the symbol of the degree-(n + 1) polynomial

B-spline in (3.1), namely the non-stationary Lane-Riesenfeld algorithm in (4.7) gets back to its stationary
counterpart.

We conclude by observing that the proposed non-stationary extension of the Lane-Riesenfeld algorithm offers
an alternative definition of the symbols of normalized exponential B-splines recently introduced in [15, 16].

5. A family of alternating primal/dual subdivision schemes reproducing conics

Aim of this section is to show that, using the symbols of the non-stationary extension of the Lane-
Riesenfeld’s family, we can define a family of non-stationary subdivision schemes reproducing the 4-dimensional
space of exponential polynomials

span{1, x, etx, e−tx}, t ∈ [0, π) ∪ iR+, (5.1)

as shown in the following proposition.

Proposition 5.1. Let v(k) be defined as in (4.2). The family of non-stationary subdivision schemes with
k-level symbol

F (k)
n (z) = A(k)

n (z)K(k)
n (z), (5.2)
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with A
(k)
n (z) in (4.7) and

K(k)
n (z) = u(k)

n z + (1− 2u(k)
n v(k)) + u(k)

n z−1, u(k)
n =

1

2(v(k) − 1)
− v(k)

(

v(k)+1
2

)
n

2

(v(k))2 − 1
,

reproduces the 4-dimensional space in (5.1) for all n ∈ N\{1}, with respect to the parameter shift τ in (4.8).

Proof: Recalling Proposition 2.2 it can be easily verified that conditions for generation of the 4-dimensional
space in (5.1) are fulfilled for all n ∈ N\{1}. Moreover, for all n ∈ N\{1}

F (k)
n (1) = 2, (F (k)

n )′(1) = 2τ, F (k)
n (e±

t

2k+1 ) = 2(e±
t

2k+1 )τ , with τ in (4.8),

thus proving the claim.

Remark 5.2. We emphasize that the family proposed in (5.2) is a subcase of the family of fourth-order
exponential quasi-splines presented in [16], which can be obtained by specifying the fourth-order space of
exponential polynomials as in (5.1).

Lemma 5.3. For all n ∈ N\{1} and for all v(0) ∈ (0,+∞), the parameter u
(k)
n in Proposition 5.1 verifies

lim
k→+∞

u(k)
n = −

n

8
−

1

4
.

Proof: The claimed result follows from (4.4) and De l’Hop̂ital theorem.

Corollary 5.4. For all n ∈ N\{1} and for all v(0) ∈ (0,+∞), the symbol in (5.2) is such that

lim
k→+∞

F (k)
n (z) = Fn(z), (5.3)

with Fn(z) in (3.2). Thus, the non-stationary subdivision scheme with k-level symbol F
(k)
n (z) is asymptoti-

cally similar to the stationary scheme with symbol Fn(z).

Proof: The claimed result follows from (4.4) and Lemma 5.3.

Proposition 5.5. Let Φn be the basic limit function of the non-stationary subdivision scheme with k-level

symbol F
(k)
n (z), n ∈ N\{1} in (5.2). Then the support of Φn is Jn =

[

−n+4
2 , n+4

2

]

.

Proof: By definition (see Section 2), the basic limit function Φn is obtained as the limit function of the

non-stationary subdivision scheme with k-level symbol F
(k)
n (z), when applied to the initial data P

(0)
i = δi,0,

i ∈ Z. Thus, introducing the notation D(k) = { i
2k

| i ∈ Z}, we have that, at the initial level k = 0, the

restriction of the basic limit function Φn to D(0) vanishes everywhere except at i = 0. Then, by equation
(5.2) we get that, at refinement step k = 1, the restriction of the basic limit function Φn to D(1) vanishes

outside the interval J
(1)
n = [−n+4

4 , n+4
4 ] ⊂ Jn and, at each successive step k > 1, the width of the interval

J
(k)
n , where the restriction of Φn to D(k) does not vanish, is obtained by extending the left and right hand

side of J
(k−1)
n by a factor of n+4

2
1
2k
. Hence, at the N -th subdivision step, the restriction of the basic limit

function Φn to D(N) vanishes outside the interval

J (N)
n =

[

−
n+ 4

4
−

N
∑

k=2

n+ 4

2

1

2k
,
n+ 4

4
+

N
∑

k=2

n+ 4

2

1

2k

]

=

[

−
n+ 4

2

(

1−
1

2N

)

,
n+ 4

2

(

1−
1

2N

)]
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(c) v(0) = 15

Figure 1: Basic limit function of the subdivision scheme having symbol F
(k)
n (z) with n = 2, 3, 4, 8, 18 and v(0) =

0 (a), 1 (b), 15 (c). In each picture the function with the highest peak at 0 corresponds to n = 2, and as n increases, the
height of the peak decreases.

and from the inequality
(

1− 1
2N

)

< 1, it follows J
(N)
n ⊂ Jn for all N ∈ N. Since the support Jn of the basic

limit function Φn is given by limN→+∞ J
(N)
n , the claimed result follows straightforwardly.

In Figure 1 we plot the basic limit function Φn obtained when varying the value of n ∈ N\{1} and of
the initial tension parameter v(0) ∈ (0,+∞). Note that the x-axis has been reduced to [−4, 4] even if the
supports of Φ8 and Φ18 are larger.

The following proposition analyzes the smoothness properties of the family of non-stationary subdivision
schemes in (5.2).

Proposition 5.6. The family of non-stationary subdivision schemes with k-level symbols {F
(k)
n (z)}n≥2 in

(5.2) has the same integer smoothness as the family described by the stationary symbols {Fn(z)}n≥2 in (3.2).

9



Proof: In view of Remark 5.2, the result follows from [16, Theorem 3.5].

For the sake of completeness, we close this section by showing the refinement rules of the subdivision scheme

with k-level symbol F
(k)
1 (z) (that we have excluded from the family since it does not reproduce the 4-

dimensional space in (5.1)) and the first three members of {F
(k)
n (z)}n≥2 corresponding to n = 2, 3, 4, in

order to connect them to existing results from the literature.

5.1. n = 1: the non-stationary dual 3-point scheme

The subdivision scheme with k-level symbol F
(k)
1 (z) reproduces only span{1, etx, e−tx}. In fact

F
(k)
1 (−1) = 0, F

(k)
1 (−e

± t

2k+1 ) = 0, F
(k)
1 (1) = 2, F

(k)
1 (e±

t

2k+1 ) = 2(e±
t

2k+1 )−
1
2 ,

but

(F
(k)
1 )(1)(−1) =

4
(

e
t

2k+1 + e
− t

2k+1

) (

e
t

2k+2 + e
− t

2k+2

) − 1 6= 0, for all t 6= 0.

The subdivision rules of this scheme are

P
(k+1)
2i = 1

8v(k+1)v(k)((v(k))2−1)

(

(

(v(k) + 1)(2v(k) − 1)− 2v(k)v(k+1)
)

P
(k)
i−1

+
(

4v(k)(2(v(k))2 − 1)v(k+1) − 2v(k)(v(k) + 1)
)

P
(k)
i +

(

v(k) + 1− 2v(k)v(k+1)
)

P
(k)
i+1

)

,

P
(k+1)
2i+1 = 1

8v(k+1)v(k)((v(k))2−1)

(

(

v(k) + 1− 2v(k)v(k+1)
)

P
(k)
i−1

+
(

4v(k)(2(v(k))2 − 1)v(k+1) − 2v(k)(v(k) + 1)
)

P
(k)
i +

(

(v(k) + 1)(2v(k) − 1)− 2v(k)v(k+1)
)

P
(k)
i+1

)

.

5.2. n = 2: the interpolatory 4-point scheme reproducing conics

The subdivision scheme with k-level symbol F
(k)
2 (z) coincides with the scheme proposed in [1], having

refinement rules

P
(k+1)
2i = P

(k)
i ,

P
(k+1)
2i+1 = 1

8v(k)(v(k)+1)

(

−P
(k)
i−1 + (2v(k) + 1)2P

(k)
i + (2v(k) + 1)2P

(k)
i+1 − P

(k)
i+2

)

.

5.3. n = 3: the dual 4-point scheme reproducing conics

F
(k)
3 (z) is the k-level symbol associated to the subdivision scheme with refinement rules

P
(k+1)
2i = 1

32v(k)((v(k))2−1)(v(k+1))3
·
(

(

2(v(k))2 + 3v(k) + 1− 6v(k)(v(k+1))3
)

P
(k)
i−1

+
(

(12(v(k))2 − 7)v(k)(v(k) + 1)v(k+1) − 4(v(k))2 − 5v(k) − 1
)

P
(k)
i

+
(

2(v(k))2 + v(k) − 1 + 2(4(v(k))2 − 5)v(k)(v(k+1))3
)

P
(k)
i+1

+ (v(k) + 1)(1 − v(k)v(k+1))P
(k)
i+2

)

,

P
(k+1)
2i+1 = 1

32v(k)((v(k))2−1)(v(k+1))3
·
(

(v(k) + 1)(1− v(k)v(k+1))P
(k)
i−1

+
(

2(v(k))2 + v(k) − 1 + 2(4(v(k))2 − 5)v(k)(v(k+1))3
)

P
(k)
i

+
(

(12(v(k))2 − 7)v(k)(v(k) + 1)v(k+1) − 4(v(k))2 − 5v(k) − 1
)

P
(k)
i+1

+
(

2(v(k))2 + 3v(k) + 1− 6v(k)(v(k+1))3
)

P
(k)
i+2

)

,

which has been recently proposed in [4].
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5.4. n = 4: a relaxation of the interpolatory 4-point scheme reproducing conics

The subdivision rules of the non-stationary scheme with k-level symbol F
(k)
4 (z) are

P
(k+1)
2i = 1

32v(k)(v(k)+1)2

(

−(2 + v(k))P
(k)
i−2 +

(

4(v(k))2(2 + v(k))
)

P
(k)
i−1

+ 2
(

12(v(k))3 + 24(v(k))2 + 17v(k) + 2
)

P
(k)
i +

(

4(v(k))2(2 + v(k))
)

P
(k)
i+1 − (2 + v(k))P k

i+2

)

,

P
(k+1)
2i+1 = 1

8v(k)(v(k)+1)

(

−P
(k)
i−1 + (2v(k) + 1)2P

(k)
i + (2v(k) + 1)2P k

i+1 − P
(k)
i+2

)

.

According to [14, Section 2.4] we call this family member a relaxation of the 4-point scheme since it shares

with the interpolatory 4-point scheme (given by symbol F
(k)
2 (z)) the same odd-point rule.

Remark 5.7. It is interesting to observe that all members of the family {F
(k)
n (z)}n≥2 corresponding to

odd values of n, being dual, are characterized by k-level refinement rules involving the parameters v(k) and

v(k+1) =
√

v(k)+1
2 . This is a direct consequence of the definition of A

(k)
n (z) with n odd.

6. A family of non-stationary interpolatory 2n-point schemes reproducing conics

A family of non-stationary interpolatory 2n-point subdivision schemes with the capability of reproducing
the space of exponential polynomials span{1, x, x2, ..., x2n−3, etx, e−tx}, t ∈ [0, π)∪ iR+, has been already
introduced in [12]. Unlike [12], where the refinement rules of the family members are derived by means of
an auxiliary orthogonal scheme, we here propose an alternative construction that lays the foundations for
deriving a corresponding family of surface subdivision schemes interpolating quadrilateral meshes. More
precisely, we here derive a three-term recurrence formula defining the k-level symbol of each family member
as a function of the symbols of the two preceding members. As already shown in [10] for the family of
(stationary) interpolatory Dubuc-Deslauriers 2n-point schemes, this kind of recursion establishes the starting
point to extend the tensor-product version of 2n-point interpolatory schemes to quadrilateral meshes with
arbitrary topology. However, differently from the stationary case where the three-term recurrence in (3.5)
can be easily worked out, in the non-stationary setting more computational efforts are required to relate the

k-level symbols I
(k)
2n (z), I

(k)
2n−2(z) and I

(k)
2n−4(z). More precisely, to get the sought recurrence the following

preliminary results are needed.

Proposition 6.1. Let I2n−2(z) denote the Laurent polynomial of the (2n − 2)-point Dubuc-Deslauriers
scheme in (3.3). Let also v(k) be as in (4.2) and consider the space

span{1, x, x2, ..., x2n−3, etx, e−tx} with t ∈ [0, π) ∪ iR+. (6.1)

For all n ∈ N, n ≥ 2, the non-stationary subdivision scheme with k-level symbol

I
(k)
2n (z) = I2n−2(z) + (−1)n−1 γ

(k)
n−2

23(n−1)v(k)(v(k) + 1)n−1

(

z −
1

z

)2n−2(

z +
1

z

)

(6.2)

where

γ
(k)
n−2 =

n−2
∑

ℓ=0

2−ℓ

(

n− 2 + ℓ

ℓ

)

(v(k) + 1)ℓ, (6.3)

is interpolatory and reproduces the exponential polynomial space in (6.1).
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Proof. To simplify notation, we define the Laurent polynomial

G(k)
n (z) := (−1)n−1 γ

(k)
n−2

23(n−1)v(k)(v(k) + 1)n−1

(

z −
1

z

)2n−2(

z +
1

z

)

, (6.4)

such that I
(k)
2n (z) can be simply written as I

(k)
2n (z) = I2n−2(z) + G

(k)
n (z). Since G

(k)
n (z) verifies G

(k)
n (z) +

G
(k)
n (−z) = 0 and I2n−2(z) fulfills the interpolatory condition I2n−2(z) + I2n−2(−z) = 2, it clearly follows

that I
(k)
2n (z) + I

(k)
2n (−z) = 2 and hence the non-stationary 2n-point scheme is also interpolatory.

Moreover, from the polynomial reproduction properties of the (2n−2)-point interpolatory Dubuc-Deslauriers
scheme we know that

(I2n−2)
(r)(−1) = 0, r = 0, . . . , 2n− 3.

Taking into account that the symbol I2n−2(z) also satisfies

I2n−2(−e
t

2k+1 ) = I2n−2(−e
− t

2k+1 ) =
(−1)n−1

22n−3

(e
t

2k+1 − 1)2n−2

(e
t

2k+1 )n−1

n−2
∑

ℓ=0

2−2ℓ

(

n− 2 + ℓ

ℓ

)

(e
t

2k+1 + 1)2ℓ

(e
t

2k+1 )ℓ
,

while the Laurent polynomial G
(k)
n (z) in (6.4) is such that

(G(k)
n )(r)(−1) = 0, r = 0, . . . , 2n− 3,

and

G(k)
n (−e

t

2k+1 ) = G(k)
n (−e

− t

2k+1 ) =
(−1)n

22n−3

(e
t

2k+1 − 1)2n−2

(e
t

2k+1 )n−1

n−2
∑

ℓ=0

2−2ℓ

(

n− 2 + ℓ

ℓ

)

(e
t

2k+1 + 1)2ℓ

(e
t

2k+1 )ℓ
,

we can conclude that

(I
(k)
2n )(r)(−1) = 0, r = 0, . . . , 2n− 3 and I

(k)
2n (−e

± t

2k+1 ) = 0.

Therefore, in view of Proposition 2.2, the scheme with k-level symbol in (6.2) generates the exponential
polynomial space in (6.1) for all n ∈ N, n ≥ 2, and thus, being interpolatory, it also reproduces such space.

Remark 6.2. Since γ
(k)
n−2 in (6.3) verifies limk→+∞ γ

(k)
n−2 =

(

2n−3
n−1

)

, the family of non-stationary interpola-
tory 2n-point schemes with k-level symbol (6.2) is asymptotically similar to the family of 2n-point interpo-
latory Dubuc-Deslauriers schemes with symbol in (3.4).

Proposition 6.3. For all n ∈ N the non-stationary subdivision scheme with k-level symbol I
(k)
2n (z) has the

same integer smoothness as the stationary 2n-point interpolatory Dubuc-Deslauriers scheme with symbol
I2n(z).

Proof: From [11], for all n ∈ N the stationary 2n-point Dubuc-Deslauries scheme is CL continuous with

L ≤ n − 1, and from Remark 6.2 the non-stationary scheme with k-level symbol I
(k)
2n (z) is asymptotically

similar to I2n(z). Moreover, I
(k)
2n (z) satisfies the sum rules of order n. In fact, I

(k)
2n (1) = 2 for all n ∈ N and

k ∈ N0 and since, in view of Proposition 6.1 I
(k)
2n (z) generates Π2n−3, we have that

max
s=0,...,n−1

∣

∣

∣

∣

∣

dsI
(k)
2n (−1)

dzs

∣

∣

∣

∣

∣

= 0 for all n ∈ N, k ∈ N0.

Thus, from Corollary 2.4, the claim is proven.
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As seen in the stationary case, we conclude the section by showing that the first member of the non-stationary

Lane-Riesenfeld’s family, A
(k)
0 (z), and that of the corresponding Hormann-Sabin’s family, F

(k)
2 (z), can be

used as building blocks to obtain the family of non-stationary interpolatory 2n-point schemes with k-level

symbols {I
(k)
2n (z)}n≥2 by means of two- and three-term recurrence relations.

Lemma 6.4. For all n ∈ N, n ≥ 3, the factors γ
(k)
n−2 in (6.3) and

γ
(k)
n−3 =

n−3
∑

ℓ=0

2−ℓ

(

n− 3 + ℓ

ℓ

)

(v(k) + 1)ℓ, (6.5)

satisfy the relation

γ
(k)
n−3 =

1− v(k)

2
γ
(k)
n−2 + v(k)

(

v(k) + 1

2

)n−2 (
2n− 5

n− 2

)

.

Proof: After rewriting γ
(k)
n−3 in the following equivalent form,

γ
(k)
n−3 =

n−2
∑

ℓ=0

2−ℓ

(

n− 3 + ℓ

ℓ

)

(v(k) + 1)ℓ − 2−(n−2)

(

2n− 5

n− 2

)

(v(k) + 1)n−2,

by using the well-known relation
(

n−2+ℓ
ℓ

)

=
(

n−3+ℓ
ℓ

)

+
(

n−3+ℓ
ℓ−1

)

on binomial coefficients, we get

γ
(k)
n−3 =

n−2
∑

ℓ=0

2−ℓ

(

n− 2 + ℓ

ℓ

)

(v(k) + 1)ℓ −
v(k) + 1

2

n−3
∑

ℓ=0

2−ℓ

(

n− 2 + ℓ

ℓ

)

(v(k) + 1)ℓ

− 2−(n−2)

(

2n− 5

n− 2

)

(v(k) + 1)n−2

= γ
(k)
n−2 −

v(k) + 1

2

(

γ
(k)
n−2 − 2−(n−2)

(

2n− 4

n− 2

)

(v(k) + 1)n−2

)

− 2−(n−2)

(

2n− 5

n− 2

)

(v(k) + 1)n−2

=
1− v(k)

2
γ
(k)
n−2 + 2−(n−2)(v(k) + 1)n−2

(

v(k) + 1

2

(

2n− 4

n− 2

)

−

(

2n− 5

n− 2

))

.

Finally, using the fact that 1
2

(

2n−4
n−2

)

=
(

2n−5
n−2

)

, the claimed result is obtained.

Proposition 6.5. Let v(k) be as in (4.2) and I
(k)
2 (z) = A

(k)
0 (z) = z2+2v(k)z+1

2v(k)z
. For all n ∈ N, n ≥ 2,

the non-stationary subdivision scheme with k-level symbol I
(k)
2n (z) in (6.2) satisfies the two-term recurrence

relation

I
(k)
2n (z) = I

(k)
2n−2(z) + (−1)n−1

(

z −
1

z

)2n−4(

z +
1

z

)(

z2 − (4(v(k))2 − 2) +
1

z2

)

γ
(k)
n−2

23(n−1)v(k)(v(k) + 1)n−1
,

(6.6)

where γ
(k)
n−2 is defined as in (6.3).

Proof. From equations (3.3) and (6.2) we obtain

I
(k)
2n (z)− I

(k)
2n−2(z) =

(−1)n−2

24(n−2)

(

2n− 5

n− 2

)(

z −
1

z

)2n−4 (

z +
1

z

)

+G(k)
n (z)−G

(k)
n−1(z),

with G
(k)
n (z) in (6.4). Introducing the explicit expression of G

(k)
n (z) −G

(k)
n−1(z) and simplifying the result,

we have that

I
(k)
2n (z)− I

(k)
2n−2(z) =

(−1)n−1

23(n−1)

(

z − 1
z

)2n−4 (
z + 1

z

)

(

− 1
2n−5

(

2n−5
n−2

)

+
γ
(k)
n−2

v(k)(v(k)+1)n−1

(

z − 1
z

)2
+

8γ
(k)
n−3

v(k)(v(k)+1)n−2

)

.
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Finally, using Lemma 6.4, we can write

8γ
(k)
n−3

v(k)(v(k) + 1)n−2
=

4(1− v(k))

v(k)(v(k) + 1)n−2
γ
(k)
n−2 +

1

2n−5

(

2n− 5

n− 2

)

,

and hence the claim is obtained.

The following corollary is a straightforward consequence of the result in Proposition 6.5.

Corollary 6.6. Let

I
(k)
2 (z) = A

(k)
0 (z) =

z2 + 2v(k)z + 1

2v(k)z
,

and

I
(k)
4 (z) = F

(k)
2 (z) =

(z + 1)2(z2 + 2v(k)z + 1)(−z2 + 2(v(k) + 1)z − 1)

8v(k)(v(k) + 1)z3
.

For all n ∈ N, n ≥ 3, the symbol I
(k)
2n (z) of Proposition 6.5 satisfies the three-term recurrence relation

I
(k)
2n (z) = I

(k)
2n−2(z)−

(z2 − 1)2

8(v(k) + 1)z2
γ
(k)
n−2

γ
(k)
n−3

(

I
(k)
2n−2(z)− I

(k)
2n−4(z)

)

,

with γ
(k)
n−2 in (6.3) and γ

(k)
n−3 in (6.5).

Remark 6.7. The subdivision scheme with symbol I
(k)
6 (z), obtained from the family {I

(k)
2n (z)}n≥1 when

setting n = 3, coincides with the interpolatory 6-point scheme proposed in [18, Section 4.1].

7. Conclusions

The representation of the wide variety of shapes required in many applications, ranging from geomet-
ric modelling to image segmentation, can be obtained by using non-stationary subdivision schemes with
the properties of high smoothness and conic reproduction. To this end, in this paper we have presented
new families of approximating and interpolating non-stationary subdivision schemes enjoying such proper-
ties. The definition of a non-stationary extension of the well-known Lane-Riesenfeld algorithm has been
shown to be the fundamental element of this study, since its symbol is used as building block to design a
non-stationary family of alternating primal/dual schemes as well as a family of non-stationary 2n-point in-
terpolatory schemes, both featured by members with increasing smoothness. In particular, the two families
have been shown to be useful generalizations of the Hormann-Sabin’s family [14] and the Dubuc-Deslauriers’s
family [11], respectively, and they have been proven to keep the smoothness of their stationary counterparts
unchanged.

Acknowledgements. This work was partially supported by Italian funds from MIUR-PRIN 2012 (grant
2012MTE38N) and INdAM-GNCS. The authors are grateful to the anonymous reviewers for their useful
suggestions.
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