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Abstract

The goal of autonomous mobile robotics is to build physical systems that
can interact with environments not specifically structured for this purpose.

Even if the applications that might exploit autonomous mobile robots
are widespread, current technologies are still immature at satisfying the
growing requests. For this reason, robot navigation constitutes one of the
major trends in the current research on robotics.

A precondition for a mobile robot to be autonomous is the ability to
self-localise inside an environment. This precondition is difficult to satisfy
when the robot does not exploit a map of the environment to localise itself.

Current research investigates methods for map learning, based on the
detection of natural features. These methods should allow a robot to self-
localise inside the environment it is exploring, and contemporarily to build
an incremental representation of the same environment.

Research on these methods is still in progress. This is due to the fact
that the problem they face is hard because of the following paradox : position
estimation needs a model of the environment, and world modelling needs the
robot position. “Which come first, the chicken or the egg?”

Current research answers the question by proposing solution based upon
the simultaneity of the activities. These kinds of approach are known under
the SLAM (Simultaneous Localisation And Mapping) acronym, and support
the idea that the two activities should be performed together.

The aim of this work is to propose a novel approach based upon the
concurrence of the two activities. This approach, named CLAM (Concurrent
Localisation And Mapping), is founded upon the conjecture that a proper
separation of concerns may help in breaking the loop of the “chicken and
egg” problem. Localisation and Modelling, acting on different time scales,
are mostly independent each other. Sometimes a synchronisation is needed,
but controlled by an external and suitable strategy.

We consider the CLAM system a time-sensitive one since it has to per-
form a number of different activities with multiple, dynamic, and inter-
dependent temporal requirements. Furthermore, a CLAM system must be
able to dynamically change the activities temporal requirements.

To fulfill the goal we have to define and implement a general framework
for the construction of time-sensitive systems.

The framework, named Real-Time Performers, is composed by a refer-
ence architecture and a working implementation providing software engi-
neers a consistent set of software modules to build time-sensitive systems.
The architecture is based upon a novel methodology based on computational
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reflection, this methodology models the temporal behaviour of the computa-
tional system with a set of suitable architectural abstractions, reifying time
related aspects of the system itself.

The final result of this work consists in a real implementation of a system
supporting the exploration activity of a robot equipped with an odometric
system (for positioning) and a trinocular stereo system (for environment
perception). CLAM principles and Real-Time Performers architecture have
driven the design of this system. Finally, the resulting system has been
developed exploiting Real-Time Performers framework.
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Chapter 1

Introduction

1.1 Background

Robotics is a branch of engineering that involves the conception, the design,
the manufacture, and the operation of robots.

A robot is a complex system designed to execute with precision one or
more tasks. There are as many different types of robots as there are tasks
for them to perform.

Robots may be classified exploiting different criteria: their generation
and their level of intelligence are the most used since are exhaustive. Con-
cerning the level of intelligence, robots mainly fall into either of three cate-
gories: autonomous robots, fleets of insect robots, and flocks of robots. An
autonomous robot acts as a stand-alone system, complete with its own com-
puter (called the controller). Fleets of insect robots are robot working in
fleet, where single robot has its own controller1. Flocks of robots are similar
to fleets of robot, but the members work under the supervision of a single
controller.

We will focus on a particular kind of autonomous robots: robots operat-
ing inside structured environments. An autonomous mobile robot should be
self-contained, i.e., it should have its own power supply, electro-mechanics,
sensors, and actuators for moving and performing tasks, processor systems
for perception, computing and control, and devices for communicating with
the outside world.

The development of techniques for autonomous robot navigation consti-
tutes one of the major trends in the current research on robotics.

This trend is motivated by the current gap between the available technol-
ogy and the demands of new applications. On one hand, current industrial
robots lack flexibility and autonomy: typically, these robots perform pre-
programmed sequences of operations in highly, constrained environments,

1The term insect arises from the similarity of the system to a colony of insects, where
the individuals are simple but the fleet as a whole can be sophisticated.
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2 1.1. Background

and are not able to operate in unknown environments or to face unexpected
situations. On the other hand, there is a clear emerging market for real
autonomous robots. Possible applications include: intelligent service robots
for offices, hospitals, and factories, domestic robots for cleaning or entertain-
ment, semi-autonomous vehicles for helping disabled people, surveillance,
rescue, and so on.

Fundamental components of any mobile robot systems are the localisa-
tion and navigation systems [10]. Leonard and Durrant-Whyte [64] sum-
marised the navigation problem as follows: to autonomously navigate, a
robot should be able to answer the following three questions: “Where am
I?”, “Where am I going?”, and “How should I get there?.” The first question
is termed localisation, while the second and the third deal with goal-planning
and path-planning respectively.

A robust and reliable solution to the localisation problem is, in any case,
a precursor to goal-planning and path-planning activities [64]: if a robot is
not able to localise itself inside an environment, all the more reason it is not
able to plan a path achieving the desired goal.

In industrial settings, the localisation problem may be solved by the
exploitation of artificial markers helping the robot in its self-localisation
process. Where markers are not available (or not installable), then it is
possible to provide the robot with a preloaded static map of the environment
it will navigate in.

This kind of solution cannot be applied for robots operating in office or
domestic environments. It might not be acceptable to place artificial markers
in these environments. It is in general difficult to assume the presence of a
map describing the environment geometry since the production of a map is
a long work requiring specific competencies.

Consequently, there is a great interest in investigating methods allowing
map learning (i.e., automatic environment maps reconstruction), based on
the detection of natural features, to be used for robot self-localisation and
navigation.

The aim of these methods is to make a mobile robot able to autonomously
localise inside an unknown environment. To fulfill this requirement, the
robot should be able to self-localise inside the environment it is exploring,
and contemporarily to build an incremental representation of the same en-
vironment.

The self-localisation and the world modelling activities are per se quite
simple to be performed separately, if respectively an accurate world rep-
resentation is available and the robot position inside the environment is
accurate. When the two activities have to be performed together without
neither the map, nor the exact position, the problem increases in difficulty.
Moreover, the imprecision (e.g., noises, errors, vibration, and so on) of the
perceptive systems of a mobile robot yields to more difficult issues.

Mobile Robot Localisation and World Modeling in a Real-Time Software Architecture



Chapter 1. Introduction 3

The complexity of the problem increases also for the strict relationship
between the two activities: position estimation needs a world model, and
world modelling needs the robot position. How to break these crossed de-
pendencies between these two information gathering processing? Leonard
and Durrant-Whyte in [65] say “This problem is difficult because of the fol-
lowing paradox: to move precisely, a mobile robot must have an accurate
environment map; however, to build an accurate map, the mobile robot’s
sensing locations must be known precisely [. . . ] which came first, the chicken
or the egg?”

1.2 Motivations

Current approaches address the “chicken and egg” problem by exploiting
solutions based on the simultaneity of the two activities. This kind of ap-
proaches are known under the SLAM acronym that stands for Simultaneous
Localisation And Mapping [65]. SLAM approaches are based upon the idea
that a vehicle (to operate in autonomy inside an unknown environment with
no initial position information) should be able to build a map of its envi-
ronment while simultaneously uses that map to self-localise.

Approaches based on SLAM philosophy perform in any conditions both
the activities. This operating mode may be useless when the differences
between the outputs produced at each execution by one of the activity are
trivial. This is the case of modelling activity. Indeed, the partial recon-
structed map of the environment (world model in the sequel) may be often
considered valid for a long period. A valid world model is a map containing
all the necessary information for a successful robot localisation.

The long period validity of the world model, is also enforced by the fact
that when a robot explores an unknown environment, its displacements will
be small enough to allow the robot not to lose itself. This means that the
real world that it perceives at each movement will not substantially change.

For these reasons, updating the world model does not bring any more
information for robot self-localisation. What is worse is that a lot of time
and resources are unnecessarily wasted.

Simultaneity not also implies that the activities cannot be executed sep-
arately, but also that it is impossible to assign them different timings. This
is an disadvantage when, for any reasons, one activity must be executed
asap.

From our point of view, in fact, SLAM target systems are time-sensitive
since their execution is subjected to temporal constraints. It is fundamental
for these systems that the right operations are performed at the right time.
All the more reasons, when anomalies occur. Suppose that a robot, for any
reason, does not localise itself. It is reasonable to think that the first (in a
temporal sense) operation to perform is to decrease its speed. This is only

Mobile Robot Localisation and World Modeling in a Real-Time Software Architecture



4 1.3. Contributions

one example, but what emerges is that time plays a crucial role in those kind
of systems. Consequently, the ability in managing both timing and correct
temporal execution of the activities are key issues.

From a software engineering point of view, what is also missed in current
solutions based on SLAM is an architectural approach to the problem.

SLAM approaches often neglect an overall architectural organisation of
the software system, focusing only on its algorithmic aspects.

The result is, in general, a software in which functionalities are merged
and mixed one another. But, what is worse, software so structured, poorly
adapts itself in a dynamical way to the different situations that may occur.
Concerning time-sensitive systems like SLAM target ones, the adaptivity of
activities execution timing it is a key point to achieve the temporal correct-
ness of the software system when exception occur.

In the software life-cycle, the algorithms definition is made after the anal-
ysis and design phases whose accuracy are decisive for a successful software.
A good system design leads to define components and to build the system by
their composition [102]. If the definition of components do not embed any
kind of strategy, then a lot of advantages may be achieved, e.g., the same
components may be used under different strategy, and the components may
be easily substituted with more efficient ones. Moreover, keeping in mind
computational [104] and architectural [16] reflection concepts, when design-
ing a system, then its execution may be easily observed and opportunely
controlled exploiting suitable strategies. The identification of the right ar-
chitectural abstractions leads to realise software systems that may adapt
themselves to any kind of circumstance may occur during their execution.

1.3 Contributions

The contribution of this thesis can be described as follows:

1. We propose a new approach to “Localisation and Modelling” based
upon the following key concepts:

� Localisation and Modelling, both relying on Perception, are the
basic activities performed by a robot when exploring an unknown
environment;

� Localisation and Modelling operate on separate information and
are subject to different timing constraints. Therefore they can be
performed concurrently and with independent timings;

� Localisation relies on information which loosely depends on the
information generated by Modelling, and vice-versa. Therefore
Localisation and Modelling must synchronise whenever a critical-
ity arises, i.e., whenever the information an activity relies on is
not reliable;
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� Synchronisation is controlled by a strategy which relies on the
observation of the criticalities and drives the relative rates of the
activities. This is made easier by exploiting the fact that the
physical speed of the robot can be controlled.

We named this approach CLAM, which stands for Concurrent Lo-
calisation And Mapping. Even if SLAM acronym differs only in one
character with the one we propose, this character makes the difference.
The substantial difference is the modality with which the two activ-
ities may be executed. SLAM treats the Localisation and Modelling
simultaneously, CLAM concurrently. Basic conjecture of this thesis is
that a proper separation of concerns should help breaking the chicken-
and-egg-loop. Even if Localisation and Modelling are related, they
act on different time scales, so that they can be considered as mostly
independent activities which sometimes synchronise under the control
of a suitable strategy.

2. Since current approaches to the design of time-sensitive systems do not
address temporal aspects of computation at the architectural level, we
propose, also, a software architecture named Real-Time Performers
that reifies a set of architectural abstractions that properly capture
the temporal behaviour of the system. This software architecture may
be considered a reference software architecture providing the basis
upon which real-time systems may be designed. Within the software
architecture, we have designed and implemented a general framework.

To test the validity of both the CLAM approach and the Real-Time
Performers architecture (and framework), a real implementation has been
realised to support the exploration activity of a robot equipped with an
odometric system (for positioning) and a trinocular stereo system (for envi-
ronment perception).

To this aim, we have designed our CLAM system using Real-Time Per-
formers building blocks. Successively, we have implemented a running sys-
tem exploiting the Real-Time Performers framework. The specific algo-
rithms coding the single steps of robot localisation have been developed as
simple as possible. This is justified by the fact that the aim was not the
invention of new algorithmic solution, but the creation of a new architec-
tural approach. As a matter of fact, given a sound underlying architecture,
the substitution of the trivial implementation of each algorithms with more
clever solutions is possible without affecting the overall system.

1.4 Outline of the Thesis

In the present chapter has been given a brief introduction about both the
problem we have faced and the motivations of our work. The chapter con-
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cluded providing an overview about the topics covered in this thesis.
The rest of the thesis is organised as follows:

� Chapter 2 deals with a brief overview about the state-of-the-art con-
cerning the robotics area dealing with autonomous mobile exploration.
The chapter ends with an overview about software architecture and
reflection mechanisms;

� Chapter 3 presents CLAM approach in detail justifying the idea behind
it;

� Chapter 4 presents Real-Time Performers reference architecture focus-
ing on its main principles;

� Chapter 5 covers the Real-Time Performers framework, describing its
main concepts and usage;

� Chapter 6 presents the system that we realised according to CLAM
principles and designed exploiting Real-Time Performers architecture.
This chapter focuses on algorithm aspects;

� Chapter 7 presents the exploitation of Real-Time Performers archi-
tecture and framework to the development of the system described in
chapter 6;

� Chapter 8 draws some conclusions and presents future development
about CLAM.
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Chapter 2

State of the Art

2.1 Introduction

In this chapter we will provide an overview about localisation, world mod-
elling, and both localisation and world modelling approaches devoted to
support the autonomous navigation of a robot inside an unknown environ-
ment. Then, a survey of the state of the art about software architecture will
be provided.

2.2 Robot Autonomous Navigation

Today robot are widely used in industry, in particular for tasks such as weld-
ing, painting, and packaging. All these robots are in form of manipulators
that carry out repetitive movements.

There is currently a diffusion in the set of applications away from fac-
tory setting toward office and domestic applications. One issue that, in
particular, motivates this change is the aging of the society.

Such kind of robot must include facilities for autonomous navigation in
indoor environments. To navigate in autonomy a robot must be provided
with methods helping it in self-localising inside the environment in which it
operates. In other words, it must be able to respond to the question “Where
am I?”

In industrial settings it is often permissible both to use artificial markers
and to provide the robot with a map of the environment for localisation pur-
pose. For operation in an office environment or in a domestic setting, it must
not be acceptable to place artificial markers throughout the environment.
In addition, the availability of a map is a difficult issue.

Consequently, there is a lot of interest in investigating methods allowing
automatic acquisition of environments maps based on natural features with
the purpose of exploiting them for robust localisation and navigation.

7



8 2.2. Robot Autonomous Navigation

2.2.1 The Localisation Problem

For any task the robot might do it should be able to self-localise, i.e., it
should be able to localise its place in the world.

Robot localisation, often referred to as position estimation or position
control, is currently a highly active field of research since it has been recog-
nised as one of the most fundamental problems in mobile robotics [20] and
[10].

The problem of self-localisation is divided into two main categories:
global and local1. In global localisation, the robot should be able to es-
timate the position without any a priori information about the position
itself. In local localisation, the robot knows the starting position within
some certainty and then tries to keep track of the position while moving.
In detail:

� Local Localisation (or Pose Tracking). In many applications an ini-
tial estimate of the robot pose is known. During the execution of
a task, a robot must update this estimate using measurements from
sensors. Using only sensors measuring relative movements (e.g., odom-
etry), the error in the pose estimate increases over time as errors are
accumulated. Indeed, the information provided by these sensors can
be integrated over time to give an estimate of the robot pose, that
is valid when moving over short distance. This is not true for longer
distances: the errors present in the measurements will accumulate and
result in an unbounded pose estimation error. Therefore other sensors
are needed to bound this error, and, so, to provide a more accurate
information about the robot pose. This is achieved by matching the
measurements provided by adjunctive sensors with an environmental
model. Even if the matching problem (or the problem of the corre-
spondences) is one of the hardest problem in any estimation process,
in pose tracking is simplified since in general a good initial position is
provided and, consequently, only a relatively small region around the
robot pose may be considered;

� Global Localisation. In some situation, and for a really autonomous
robot, the initial estimate position is not available. The process of
finding the pose without no (or very limited) initial estimate of posi-
tion, is called global localisation or pose initialisation. Techniques of
this type solve the so-called wake-up robot problem, in that they can
localise a robot without any prior knowledge about its position.

They furthermore can handle the kidnapped robot problem [39], in
which a robot is carried to an arbitrary location during it’s opera-
tion. The wake-up problem is the special case of the kidnapped robot
one in which the robot is told that it has been carried away.

1With local localisation being a part of the global one.
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Obviously, the problem is more hard than the pose tracking one, spe-
cially with the data association process. The level of complexity in-
creases with the size of the environment and its symmetry.

2.2.2 The Map Acquisition Problem

The problem of environment mapping may be sumarised as the problem of
acquiring a spatial model of a robot environment when it is not provided.
A robot needs a consistent map of the environment to self-localise (when
using sensors measuring relative movements) and to plan motion. As the
environment is unknown, robot should be able to construct the map in an
incremental way. To acquire a map, robots must possess sensors perceiving
the outside world. Sensors commonly used for this task include cameras,
range finders using sonar, laser, and infrared technology, radar, tactile sen-
sors, compasses, and GPS. However, all sensors are subject to errors, often
referred to as measurement noise.

The problem of map acquisition (also referred as map building) presents
completed issues, like:

� The measurement noise. Modelling problems, such as robotic map-
ping, are usually relatively easy to solve if the noise in different mea-
surements is statistically independent. If this were the case, a robot
could simply take more and more measurements to cancel out the ef-
fects of the noise. Unfortunately, in robotic mapping, the measurement
errors are statistically dependent. This is because errors in control
accumulate over time, and they affect the way future sensor measure-
ments are interpreted. As a result, whatever a robot infers about its
environment is plagued by systematic, correlated errors. Accommo-
dating such systematic errors is the key to build maps successfully,
but it is also a complicating factor in robotic mapping. Many existing
mapping algorithms are therefore surprisingly complex, both from a
mathematical and from an implementation point of view.

� Entities high dimensionality. The second complicating aspect of the
robot mapping problem arises from the high dimensionality of the
entities that are being mapped.

� Matching problem. This problem, also known as the data association
problem, consists in determining if sensorial measurements taken at
different points in time correspond to the same physical object in the
world.

� Environmental dynamics. Environments change over time. The changes
may be relatively slow (e.g., structural changes), or faster (e.g., door
status changes).
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2.2.2.1 Map Representation Models

There are many ways to represent the knowledge about an environment.
The representation is strictly related to the typology of the sensors adopted
for the map construction.

In the following, we briefly introduce two common classification criteria
(for details see [75] and [72]):

� A generic classification.

– Topological map. The environment is represented as a graph
where nodes represent places of importance (e.g., room), mean-
while arcs correspond to connections among places (e.g., corri-
dors);

– Features maps. Geometric features are used to represents the
environment. Feature examples are points and lines:

– Grid maps. The environment is divided into a grid in which each
cell represents a small area (or volume) of the environment. Every
cell is characterised by a certainty value expressing its occupancy;

– Appearance maps. Sensor data is used directly to form a function
from sensor data to pose space.

� A classification oriented to path-planning.

– Paths Maps. The executable robot paths are identified off line
and then memorised in a graph or by means of sequences of mo-
tion commands;

– Free-space Maps. This method consists in building a map by
means of sensorial surveys of a robot that moves in a completely
unknown environment. The paths are constituted by rectilinear
segments separated by halt-points in which a direction change is
made. These paths are memorised in a spatial graph, in which the
links represent the executable trajectories, the nodes represent
free areas or possible obstacles;

– Object Oriented Maps. These maps are exploited specially in case
of completely known environment, constituted by fixed obstacles,
or having available a system able to effect a geometric reconstruc-
tion of the obstacles. In this case the map could be realised by
means of a list of objects, each of which is described as a list of
segments, that is of couples of coordinates (also in probabilistic
terms) of the vertexes referred to the adopted coordinates;

– Composite Space Maps. The methods described until now has
the remarkable characteristic to use high level information (geo-
metric/topologic) relative to the environment and to the objects
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inside. In many applications it is instead necessary to take care of
a lower level information due to less informative sensors. In such
situations, this model is the right choice. It divides the world
in grids of cells, containing an attribute that specifies the state
(typically empty or free cell), also using probabilistic variables
(Occupancy Grids).

2.2.3 Closing the Loop: the SLAM Problem

An autonomous robot must perform both pose estimating and map recon-
struction. Since pose estimation requires a map and mapping requires the
pose, there ia a “chicken and egg” problem [65]. The answer to the question
is that they have to be carried out at the same time. The problem may be
stated as follows: starting from an initial position, a mobile robot travels
through a sequence of positions and obtains a set of sensor measurements at
each position. The goal is for the mobile robot to process the sensor data to
produce an estimate of its position while concurrently building a map of the
environment. This means that both the map and the robot position are not
known. In this case the robot start in an unknown location in an unknown
environment and proceed to incrementally build a navigation map of the
environment while simultaneously use this map to update its location.

In this problem, robot and map estimates are highly correlated and
cannot be obtained independently of one another.

This problem is usually known as Simultaneous Localization and Map
Building (SLAM) and was was first proposed by Leonard and Durrant-
Whyte [65]. The problem presents a number of complicated issues, including:

1. efficient mapping of large-scale environments;

2. correct association of measurements;

3. robust estimation of map and vehicle trajectory information.

2.2.4 Techniques for Mobile Robot Localisation

Most of the techniques for mobile robot localization in the literature belong
to the class of local approaches or tracking techniques, which are designed
to compensate odometric error occurring during navigation. But, as cited
by Borenstein [10], perhaps the most important result from surveying the
literature on mobile robot positioning is that, to date, there is not truly
elegant solution for the problem.

Most of the partial solutions can roughly be categorized into two groups:
relative and absolute position measurements. Because of the lack of a single
good method, developers of mobile robots usually combine two methods,
one from each group. The two groups can be further divided into the other
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categories: odometry, inertial navigation, active beacons localisation, global
positioning systems, landmark navigation, model matching.

Another way to categorise localisation techniques is to consider the ap-
proach to solution: there are method that consider the measurements un-
certainty, other that do not take into account. The former can be divided in
three subcategories again: techniques that use Kalman filtering, other that
adopt Markov approach, and the last Monte Carlo method.

In the following a brief overview will be given.

2.2.4.1 Categorisation on the basis of the position measurements

� Relative position measurements (also called dead-reckoning)

– Odometry. This method uses encoders to measure wheel rota-
tion and/or steering orientation. As reported in [19], odometry
presents both advantages and disadvantages. It is totally self-
contained, and provide the vehicle with an estimate of its posi-
tion. On the contrast, the position error grows without bound
unless an independent reference is used periodically to reduce the
error.

– Inertial navigation. This method uses gyroscopes and accelerom-
eters to measure rate of rotation and acceleration. Measurements
are integrated once (or twice) to yield position. Inertial navi-
gation systems, as odometry, are self-contained. On the down-
side, inertial sensor data drifts with time because of the need to
integrate rate data to yield position; any small constant error
increases without bound after integration. Inertial sensors are
thus unsuitable for accurate positioning over an extended period
of time. Another problem with inertial navigation is the high
equipment cost.

� Absolute position measurements (reference-based systems)

– Active beacons localisation. This method computes the robot ab-
solute position from measuring the direction of incidence of three
or more actively transmitted beacons. The transmitters, usually
using light or radio frequencies, must be located at known sites
in the environment.

– Artificial landmark recognition. Similarly to active beacon, in
these methods, artificial landmarks are placed at known locations
in the environment. The advantage is that they can be designed
for optimal detectability even under adverse environmental con-
ditions, and that the position errors are bounded. The disadvan-
tages are that they can not be used in all the environment, that
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three or more landmarks must be visible to allow position estima-
tion, and that the detection of external landmarks and real-time
position fixing may not always be possible.

– Natural landmark recognition. This approach is based on the
consideration that landmarks are distinctive features in the en-
vironment. These techniques present the advantages that the
environment do not have to be modified, but the environment
must be known in advance. The reliability of this method is not
as high as with artificial landmarks.

– Model matching. A robot hosts sensors to acquire information
about the environment. The acquired information is compared
to a map or world model of the environment. The robot absolute
location can be estimated if features from the sensor-based map
and the world model map match. Map-based positioning often
includes improving global maps based on the new sensory obser-
vations in a dynamic environment and integrating local maps into
the global map to cover previously unexplored areas. One of the
most important and challenging aspects of map-based navigation
is map matching, i.e., establishing the correspondence between a
current local map and the stored global map.

2.2.4.2 Categorisation of the basis of the method

� Techniques without uncertainty representation. In work [120], angle
histograms constructed out of laser range-finder scans and taken at
different locations in the environment are stored. The position and
orientation of the robot are calculated by maximizing the correlation
between the stored histograms and laser range-scans obtained while
the robot moves through the environment.
The estimated position, together with the odometry information, is
then used to predict the position of the robot and to select the his-
togram used for the next match. Other works like [123] and [98] present
similar techniques as [120], but using hill-climbing to match local maps
built from ultrasound sensors into a global occupancy grid map. The
location of the robot is represented by the position yielding the best
match.

� Probabilistic approach.

– Kalman filter techniques. Kalman filters [59] are a signal process-
ing technique widely used in robot systems. Many works adopt-
ing the Kalman filtering to position estimation are similar in the
model used to represent the robot motion. They differ mostly
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in the way they use sensorial inputs to update the gaussian dis-
tribution. Works like [74] and [107], the robot position is repre-
sented using a Gaussian distribution over the three-dimensional
state-space of the robot. The mode of this distribution yields
the current position of the robot, and the variance represents the
robot uncertainty. Whenever the robot moves, the Gaussian is
shifted according to the distance measured by the robot odom-
etry. Simultaneously, the variance of the Gaussian is increased
according to the model of the robot odometry. New sensory in-
put is incorporated into the position estimation by matching the
perceptions with the world model.
In [64], the beacons extracted from sonar scans are matched with
beacons predicted from a geometric map of the environment.
These beacons consist of planes, cylinders, and corners.
In [19], the author update the current position estimate, match-
ing distances measured by infrared sensors with a line segment
description of the environment.
In [97], many techniques for tracking purpose and based on oc-
cupancy grid maps and ultrasonic sensors are compared. They
show that matching local occupancy grid maps with a global grid
map results in a similar localization performance as if the match-
ing is based on features that are extracted from both maps.
[99] compares the robustness of two different matching techniques
with different sources of noise. The authors suggest the adoption
of a combination of map-matching and feature-based techniques
in order to inherit the benefits of both.
Both [50] and [69] use a scan-matching technique to estimate
the position of the robot based on laser range-finder scans and
learned models of the environment. [4] adopt a similar technique
but providing an high accuracy estimate of robot position.
All these works assume that robot position can be represented by
a single Gaussian distribution. The advantage of Kalman filter-
based techniques lies in their efficiency and in the high accuracy
that can be obtained. The restriction to a unimodal Gaussian
distribution, however, is prone to fail if the position of a robot
has to be estimated from scratch, i.e. without knowledge about
the starting position of the robot.
Furthermore, these technique are typically unable to recover from
localization failures. Recently, [56] introduced an approach based
on multiple hypothesis tracking, which allows to model multi-
modal probability distributions as they occur during global lo-
calization.

– Markov approaches. There are many works that solve the localisa-
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tion problem adopting Markov approach. We can cite [87], [103],
[57], [12], [52], and [88]. The different variants of these technique
can be roughly distinguished by the type of discretisation used
for the representation of the state space: [87], [103], and [57] use
Markov localization for landmark-based navigation, and the state
space is organized according to the topological structure of the
environment. Here nodes of the topological graph correspond to
distinctive places in hallways such as openings or junctions and
the connections between these places. Possible observations of
the robot are, for example, hallway intersections. The advantage
of these approaches is that they can represent ambiguous situa-
tions and thus are in principle able to globally localize a robot.
Furthermore, the coarse discretisation of the environment results
in relatively small state spaces that can be maintained efficiently.
The topological representations have the disadvantage that they
provide only coarse information about the robot’s position and
that they rely on the definition of abstract features that can be
extracted from the sensor information. The approaches typically
make strong assumptions about the nature of the environments.
[87], [103], and [57] for example, only consider four possible head-
ings for the robot position assuming that the corridors in the
environment are orthogonal to each other.

2.2.5 Techniques for Map Matching

Robot mapping research has a long history (see [114]). In the first research
years and till early 1990s, the main approaches to the problem were divided
into two categories: metric and topological approaches. The former captures
the geometrical aspects of the environment, the latter describe the environ-
ment as as a graph where nodes are the places and arcs connect them.

Examples of early metric approaches were proposed in [84], [37], and
[38]. In the above cited works the authors proposed an algorithm (occu-
pancy grid mapping algorithm) that represents the environment maps by
grids modelling the free and the occupied spaces of the environment. This
approach has been widely used in robot system such as [11], [51], and [124].

Another metric oriented algorithm based upon the use of polyhedra to
describe the environment may be found in [17].

Concerning topological representation, there are several works. Some
examples may be found in [62], [18], and many others.

Historically, another classification criteria about mapping algorithms was
based upon the coordinate system used to express the position of the enti-
ties: robot-centric and world-centric. The former expresses entities in the
reference frame the origin of which is the robot, the latter in an absolute
reference frame.
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From the 1990s years, the algorithms for map matching are based upon
probabilistic approaches. These approaches may be divided into three major
categories: approaches exploiting Kalman filtering, approaches exploiting
expectation maximization, and approaches based upon objects identification
([114]).

Kalman filtering approaches are used to estimate the environmental
maps by usually describing the location of landmarks or significant features
(see, for example, [67] and [63]).

Expectation maximization approaches specifically address the correspon-
dence problem in mapping, i.e., the problem of determining whether sensor
measurements taken at different instant in time correspond to the same real
entity in the environment (see, for example, [100] and [113]).

Finally, the object identification approaches are based upon the recogni-
tion of specific object in the environment such as doors, ceilings, and so on
(see, for example, [68] and [73]).

In general and with camera sensors, matching is achieved by first ex-
tracting features, followed by determination of the correct correspondence
between image and model features, usually by some form of constrained
search [19].

2.2.5.1 Feature-based Visual map Building

We consider in the following the problem of constructing features map us-
ing camera sensors. The map update process may be decomposed in the
following two problem:

� features matching performed on features (usually points or areas)present
in both the image and the model frames.

� model-to-image transformation involving the translation, and rotation
between the 3D model and the sensed data reference frame.

A very exhaustive survey of model-to-image registration is give in [31].
The problem of features matching have been thoroughly explored in the

last years. Almost all the proposed approaches are based upon the ICP
(Iterated Closest Point) [8]:
Let us suppose to have two sets of 3D points which correspond to a single
shape but are expressed in different reference frames. We call one of these
sets the model set X, and the other the data set Y.
They assume that for each point in Y, the corresponding point in X is known.
The problem is to find the 3D transformation which, when applied to the
data set Y, minimizes a distance measure between the two point sets.
More formally, the goal is:

min
R,t

N
∑

i=1

‖xi − (Ryi + t)‖2 (2.1)
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where R is a 3 × 3 rotation matrix, t is a 3 × 1 translation vector, and the
subscript i refers to the corresponding elements of the sets X and Y.
In general, however, point correspondence are unknown: for each point yi

from the set Y, there exists at least one point on the surface of X which
is closer to yi than all other points in X. This is the closest point, xi. The
basic idea behind the ICP algorithm is that, under certain conditions, the
point correspondence provided by sets of closest points is a reasonable ap-
proximation to the true point correspondence.
The author of [8] proved that if the process of finding closest point sets and
then solving Eq. (2.1) is repeated, the solution is guaranteed to converge to
a local minimum. The ICP algorithm can be summarised as follows:

1. For each point in Y, compute the closest point in X;

2. With the correspondence from step 1, compute the incremental trans-
formation (R, t) with SVD;

3. Apply the incremental transformation from step 2 to the data Y;

4. If the change in total mean square error is less than a threshold, ter-
minate. Else goto step 1.

The algorithm based upon ICP differ in terms of:

� Considered features.

– Point to point registration. Data are disaggregated ([8] and [85])

– Volumetric scene ([30] and [34])

– Segment to segment registration([60])

� The point correspondence.

– Minimum Euclidean point-to-point distance ([8], and [125])

– Minimum point-to-tangent plane distance ([121])

– Weighted minimum point-to-plane distance ([29])

– Inverse camera calibration ([9])

� The detection and handling of the outliers. Some points correspon-
dences come out wrong due to noise, occlusions, and misalignment
in the current estimate. Consequently, the detection and handling of
such outliers is important.

– Threasholding based on point distance statistic computed be-
tween [125] and within [28] views

– Point-pair compatibilities computed from colour ([47])

– covariance-matrix-based affinities ([119])
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� The mathematical description of the transform components. Once
point correspondences have been established, the rigid transforma-
tion have to be computed. The methods are based upon a number of
least-square method (all in closed form). For a comparison see [36].

– Singular value decomposition of a matrix (SVD) ([5])

– Orthonormal matrices ([55])

– Unit (or dual) quaternions ([54] and [118])

� Pose determination target.

– Object in a scene

– The overall scene

� Sensor typology.

– Acoustic

– Camera

– Sonar

– Range-finder

– Laser

– . . .

2.2.5.2 Updating algorithms

The typology of information, the sensor characteristics, the map representa-
tion, and the presence of data association solution, are the main differences
between them.

Most of the proposed mapping algorithms are probabilistic. Some algo-
rithms are incremental, and hence can be run in real time, whereas others
require multiple passes through the data.

Some algorithms require exact pose information to build a map, whereas
others can do so using odometry measurements.

Some algorithms are equipped to handle correspondence problems be-
tween data recorded at different points in time, whereas others require fea-
tures to carry signatures that makes them uniquely identifiable.

The reason for the popularity of probabilistic techniques arises from the
fact that robot mapping is characterized by uncertainty and sensor noise.
Probabilistic algorithms approach the problem by explicitly modeling differ-
ent sources of noise and their effects on the measurements. In the evolution
of mapping algorithms, probabilistic algorithms have emerged as the sole
winner for this a so difficult problem.

Some of the approaches proposed are listed in the following:
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� Kalman Filter Approaches. A classical approach to generating maps
is based on Kalman filters [59]. This approach can be traced back to a
highly influential series of papers by Smith, Self, and Cheeseman [107]
and [108]. The authors proposed a mathematical formulation of the
approach that is still in widespread use today.

� Expectation Maximization Algorithms. A recent alternative to the
Kalman filter paradigm is the expectation maximization family of al-
gorithms (EM). EM is a statistical algorithm that was developed in
the context of maximum likelihood estimation with latent variables, in
a seminal paper by Dempster, Laird and Rubin [21]. In [115] and [13]
is reported that EM algorithms constitute the best solutions to the
correspondence problem in mapping. In particular, EM algorithms
have been found to generate consistent maps in non optimal condi-
tions. The main disadvantage is that EM algorithms do not retain a
full notion of uncertainty: they look in the space of all maps, in an
attempt to find the most likely map. To do so, they have to process
the data multiple times. Hence, EM algorithms cannot generate maps
incrementally, as is the case for many Kalman filter approaches.

In general, the presented approach address the mapping problem with
unknown robot pose. Other approach, like Occupancy grid Maps (previ-
ously proposed in [84] and [38]) and Object Maps, deal with the problem of
mapping with known poses.

2.2.6 Techniques for SLAM problem resolution

Simultaneous Localization and Mapping (SLAM) is a fundamental problem
in mobile robotics: while a robot navigates in an unknown environment, it
must incrementally build a map of its surroundings and localize itself within
that map [114].

During the past few years significant progress has been made towards
the solution of the SLAM problem.

Initial work by Smith [106] and Durrant-Whyte [33] established a sta-
tistical basis for describing geometric uncertainty and relationships between
features or landmarks. At the same time Ayache and Faugeras [7], and
Chatila and Laumond [17] were undertaking early work in visual navigation
of mobile robots using Kalman filter-type algorithms.

Discussions on how to solve the SLAM problem have their response soon
after in the key paper by Smith, Self and Cheeseman [107]. This paper
showed that as a mobile robot moves through an unknown environment
taking relative observations of landmarks, the estimates of these landmarks
are all necessarily correlated with each other because of the common error
in estimated vehicle location.
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Work then focused on Kalman-filter based approaches to indoor ve-
hicle navigation. Especially: Leonard and Durrant-Whyte with work on
sonar and data association [66], and Faugeras with work on visual naviga-
tion/motion [40].

In 1991 “Chicken and Egg” paper [65] identified some of the key issues
in solving the SLAM problem. A realisation that the two problems must be
solved together is dated around 1991.

The SLAM acronym coined in 1995 during the ISRR (International Sym-
posium of Robotics Research) conference.

The first proofs of convergence and the first demonstrations of the SLAM
algorithm are presented by Leonard and Feder in their work with sonar [42].
Dissanayake, Newman, and other authors in their work on outdoor radar
and sub-sea [27] provide the final convergence proofs.

The first session on navigation and SLAM problem was held in the ISRR
conference in 1999. It was a key event. Some of subsequent works are on
large-scale implementations [32], data association [14], understanding the
applicability of probabilistic methods [111] and [113], multiple vehicle SLAM
[122]), implementations indoor, on land, air and sub-sea.

Most of the approaches treat SLAM as a Kalman filtering problem. The
system state at time t is given by 2.2, where xt is the robot pose at time
t, li is the state of landmark i (landmarks are assumed stationary) and nt

is the number of landmarks observed up to time t.1 The length of the state
vector will increase over time, as more landmarks are observed. The filtered
belief state at time t, p(mt|observationstotimet), is a multivariate Gaussian
distribution N(µt,Σt). Its mean µt can be viewed as an estimate of the map
mt, and its covariance matrix Σt as a measure of its estimation confidence.

mt =
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(2.2)

The Kalman filter solution is elegant, but it does not scale to large SLAM
problems. Indeed, the Kalman filter approach comes with a number of
limitations. Most notably, the inability to represent complex environment or
feature models, the difficulty of faithfully describing highly skewed or multi-
modal vehicle error models, and the inherent complexity of the resulting
data association problem.

A parallel approach to vehicle navigation, which overcomes many of these
limitations, is to consider navigation as a Bayesian estimation problem [111].
In this method, vehicle motion and feature observation are described di-
rectly in terms of the underlying probability density functions and Bayes
theorem is used to fuse observation and motion information. Practically,
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these methods are implemented using a combination of grid-based environ-
ment modelling and particle filtering techniques. These Bayesian methods
have demonstrated considerable success in some challenging environments
[112].

2.3 Software Architectures

Software Architecture is a discipline within the Software Engineering field
emerged in the middle 80s, and that has been raising increasing interest ever
since. Mary Shaw and David Garland may be considered the pioneers of that
discipline writing works like [46], [1], [45], and [101] that have significantly
contributed to the widespread attention paid to the discipline. Their work
resulted in the book [102] that, even if dated 1996, it may be considered the
most authoritative (and elsewhere cited) reference concerning the software
architecture.

Software architecture discipline proposes a new set of concepts for de-
scribing, and reasoning about, software compositions at the high level of ab-
stractions at which software architects conceive software systems. In other
words, software architecture should represent an high-level view of the sys-
tem revealing the structure, but hiding all implementation details. Specifi-
cally, it should publish attributes such as responsibilities (of the constituents
of the architecture), distribution, and deployment.

Abstractly, software architecture involves the description of: elements
from which systems are built, interactions among those elements, patterns
that guide their composition, and constraints on these patterns. More in
detail, an architectural description of a software system should identify:

� the partition of the the overall functionality into components;

� the behaviour of components;

� the protocols used by components to communicate and cooperate i.e.,
which connectors exist between them.

� the overall topology of the system, i.e., which components and connec-
tors the system is made up of;

� the overall strategy of the system, i.e., temporal and functional depen-
dencies among activities carried out by different components.

Finding an appropriate architectural design for a system is a key ele-
ment for its long-term success. Architectural descriptions serve as a skeleton
around which system properties may be modelled, and thereby serve a vital
role in exposing the ability of system to meet its gross system requirements.
The adoption of an architecture leads to clarify intentions, makes decisions
and implications explicit, and allows system-level analysis. All these benefits
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are reflected in the Maintenance phase of the software life-cycle decreasing
its costs.

The big innovation concerning software architecture is that it allows soft-
ware engineer focusing on the overall structure of software systems instead
of on individual data structures and algorithms. The components described
by architectural descriptions represent high-level abstractions useful either
for the application domain or for structuring the system itself. Due to the
fact that at this level of thinking the system both domain-related concepts
and high-level structuring concepts are employed, it is often mentioned in
the literature that this level of design conceptually represents an interme-
diate step between the specification of requirements and the proper design
[91].

What is still missing is a conceptual framework for expressing architec-
tural concepts since it is too high-level to be represented by programming
language concepts. A closely related problem is that of expressing architec-
tural styles. The use of styles and patterns is one of the hallmarks of mature
engineering disciplines. They are well-known design solutions to recurring
problems. A classification of architectural style may be found in [102], while
another concerning design pattern in [44].

2.3.1 Software Architecture Activities

The research activities related to Software Architecture may be placed into
five major and interrelated areas.

2.3.1.1 Architectural Description Language (ADL)

This research area addresses the problem of architectural characterisation
by providing new architectural description language. These languages are
aimed at giving practitioners better ways of writing down architectures so
that they can be communicated to others and in many cases analysed with
tools. A complete survey of ADL may be found in [76].

2.3.1.2 Codification of current knowledge

This research area addresses codification of architectural expertise. Work
in this area concerns with cataloguing and rationalising the variety of ar-
chitectural principles and patterns that engineers have developed through
software practice.

Every style describes a system architecture as a collection of components
together with a description of the interactions among these (the connectors)[102].
More specifically, an architectural style defines:

� a vocabulary of component and connector types;

� a set of constraints on how they can be combined (topology rules);
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Category Style

Dataflow systems Batch sequential
Pipes and filters
Process-control

Virtual Machines Interpreters
Rule-based systems

Call-and-return statements Main program and subroutine
O-O systems
Layered
Client-server
Remote procedure calls

Data-centered systems (repositories) Databases
Hypertext systems
Blackboards

Independent components Communicating processes
Event systems

Table 2.1: A taxonomy of architectural style

� one or more semantic models specifying how to determinate a system
overall properties from the properties of its parts (not for all styles).

A taxonomy of architectural style is given in table 2.1.

2.3.1.3 Frameworks for specific domains

This research area of software architecture addresses architectural frame-
work for a specific class of software. When successful, such frameworks can
be easily instantiated to produce new products in the domain. In the most
restricted definition, a framework is a set of modules that can be reused for
the development of systems and embodying a certain architectural organisa-
tion, so that implementation of architectural concepts needs not be carried
on from scratch each time a certain style is reused.

More interesting are the Object-Oriented frameworks: collections of
classes implementing useful concepts that can be reused in a large class
of applications. These classes constitute “a generic software system for an
application domain” [92].

2.3.1.4 Formal models

This research area of software architecture addresses formal underpinnings
for architecture. As new notations are developed, and as the practice of
architectural design is better understood, formalisms for reasoning about
architectural design become relevant.
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2.3.1.5 Architecture recovery

More recent with respect of the previous areas, this research line addresses
the problem of reverse engineering at the architectural level. The overall aim
is that of constructing an architectural description of an existing system via
analysis of the source code.

2.4 Reflection

A lot of powerful notations and models for describing architecture have been
developed. These are used to specify architectures that will be implemented
with traditional programming language. Since programming language con-
cepts are at a lower abstraction level than architectural descriptions, it is
often the case that architectural information is distributed, implicit, and
intermixed with computational issues at code level [16].

To address this problem, in [16] is proposed a design model termed
Architectural Programming-in-the-Large (APIL), whereby architectural ab-
stractions are encapsulated in dedicated run-time entities. Computation is
charged to architecture-unaware components whose activity is coordinated
by architectural entities enforcing a specific architectural organisation onto
the system.

In [15] the author proposes a novel approach to the dynamic inspection
and modification of architectures, which formalises the ideas from APIL.
The approach is based on reflective mechanism and is termed Architectural
Reflection. The basic idea is that an architectural reflective system is aware
of its own architecture, whereas its components are not aware of the system
architecture. Architectural reflection is based upon previous works concern-
ing Computational Reflection [70].

In the following more exhaustive definitions of both computational and
architectural reflection are provided.

2.4.1 Computational reflection

Programming languages paradigms, design patterns, software architectures,
middleware, and frameworks provide effective abstractions for specific aims.
However, abstraction is defined as the process of eliminating details not rele-
vant for the task at hand. When abstractions are applied to a computational
system, details (better said, aspects) not relevant for the task at hand are
either neglected or hidden inside inner system layers, which exploit best-
effort strategies. But if the aim changes, previously hidden “details” may
become relevant and claim for proper abstractions. Time and architecture
cannot be neglected when designing a time-sensitive system. Applications
with time sensitive architectures must explicitly deal with non-functional
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requirements. Therefore they need abstractions for properly capture tempo-
ral aspects of computation. Such abstractions should allow both the internal
architecture and the temporal behaviour of the system to be observed and
controlled at the application programming level. Of course, the abstractions
should preserve a proper separation of concerns.

Computational reflection is “the activity performed by a computational
system when doing computation about (and by that possibily affecting) its
own state and computations” [70]. Computational reflection was originally
introduced by Smith (see [104] and [105]). Smith defines a reflective system
as “A computer system able to reason about itself” and “. . . ‘reflection’ in
its most general sense [. . . ] the ability of an agent to reason not only intro-
spectively, about its self and internal thought processes, but also externally,
about its behaviour and situation in the world” [104]. In other words, re-
flection allows a computer to deal in a systematical way with the diverse
aspects of its own computations.

In order to reflect, a system “embeds a theory of the system in the system
[. . . that. . . ] beyond being descriptive and true [. . . ] must be [. . . ] causally-
connected, so that accounts of objects and events are tied directly to those
objects and events” [104]. In practice real reflective computer systems ex-
press such theory in terms of data structures representing aspects of the
system to the system itself. Then it is possible to differentiate between ordi-
nary computations dealing with data structures representing the application
domain, and reflective computations dealing with data structures represent-
ing aspects of the system itself. The causal connection ensures that changes
in the system self-representations by ongoing computations are reflected in
the system actual state or behaviour, and changes by ongoing computations
to the system state or behaviour may affect data structures.

Rather than with full computational reflection, however, most research
focus on “[. . . ] a limited and rather introspective notion of ‘procedural reflec-
tion’: self-referential behaviour in procedural languages” [104]. Note that
“procedural” does not refer to the ordinary classification of programming
languages ([105], p. 41), in fact, Smith made a reflective Lisp, and [70] “dis-
cusses an OOL with an architecture for procedural reflection”. Actually, “In
a procedurally reflective programming language programs are executed not
through the agency of a primitive and inaccessible interpreter, but rather
by the explicit running of a program that represents that interpreter” [24].
Such a program is the “language processor”, and reifies its state in meta-
entities that depend on the language being made reflective: environment
and continuations [24], meta-objects [70], and so on; similarly, depending on
the language, the causal connection is mantained by reflective processors,
meta-objects, MOPs [61] and so on.

Since, strictly speaking, programming languages abstract from imple-
mentations of the physical processor, the subject of procedural reflection
is not the computer system as a whole anymore, but rather the abstract
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evolution of computational processes in themselves as defined in and by the
programming language. Procedural reflection is implicitly constrained in the
domain of programming languages. It cannot properly cross the implemen-
tation boundary between the reflective processor of the language, which is a
program, and the real processor, which is a physical component of the com-
puter that executes it. This is also the case of some reflective systems that
provide reflective access to the language processor. In fact, the meta-objects
reifying the processor are, in turn, defined in terms of another procedural
programming language [109].

Systems with time sensitive architectures deal instead with temporal
aspects of computations, which depend on the physical properties of the
underlying computational system as a whole. Therefore, in order to reflect
on temporal aspects and other physical aspects of computations, systems
have to be modelled by suitable meta-entities that properly represent them;
in addition, causal connection requires appropriate mechanisms that keep
these entities and the corresponding real properties of the system properly
aligned.

Having a different purpose from procedural reflection, both the meta-
entities and the mechanisms for causal connection will likely be different.
To clearly mark these distinctions and to avoid confusion with terms from
the restricted field of procedural reflection, from now on, we will term archi-
tectural abstractions those meta-entities representing aspects of the system
beyond the reach of programming languages. Nonetheless, since architec-
tural abstractions represent in a causally connected way aspects of the sys-
tem to the system itself, computations over architectural abstractions are in
effect reflective computations [116].

2.4.2 Architectural reflection

Architectural reflection is defined as the computation performed by a system
about its own software architecture [15], [116]. An architectural reflective
system is structured into two layers called architectural layers: an archi-
tectural base-layer and an architectural meta-layer. The base-layer is the
“ordinary system, which is assumed to be costuited by:

� a set of computational components. These are architecture-independent
i.e., they embed no architectural assumption;

� a set of architectural components embodying architectural behaviour,
which is to be attached to computational components. These com-
ponents shield the computational components so that the latter can
actually be architecture-independent;

� a set of connectors ruling over the interaction among components;
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� a program-in-the-large prescribing how components should be assem-
bled and interact i.e., the architecture of the system, addressing both
topology and strategy. The program-in-the-large [16] is executed at
run-time by a dedicated virtual machine that rules over the instantia-
tion and behaviour of components.

The architectural meta-layer maintains causally connected data structures
reifying the architecture of the base-layer.

According to the concept of domain as used in [70], the domain of the
base-layer is the systems application domain, while the domain of the archi-
tectural meta-layer is the software architecture of the base-layer.
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Chapter 3

Concurrent Localisation And

Mapping

3.1 Introduction

Concurrent Localisation And Mapping (CLAM in the sequel) is the approach
we propose to solve the chicken and egg problem raised previously. The
problem can be summarised as follow: to precisely locate itself, a mobile
robot relies on a precise model of its environment; however, to build a precise
environment model, the mobile robot relies on a precise knowledge of its
location.

The CLAM approach treats the Localisation and Modelling 1 activities as
concurrent, i.e., mostly independent and with different timing constraints.
Sometimes the two activities must synchronise. If synchronisation is needed,
the relative rates of the two activities can be adjusted in order to meet as
soon as possible the synchronisation requirements.

The CLAM approach assumes that:

� the robot is equipped with device(s) providing an error-prone estimate
of its position;

� the robot is equipped with device(s) providing perceptions about the
environment;

� the environment the robot explores is modelled as a collection of ob-
jects whose position is defined in a geometrical reference system;

� the robot speed and direction can be controlled;

� the overall environment does not change2.

1In the sequel we will use the term Modelling to refer the activity of building a repre-
sentation of the environment.

2This assumption aims at simplifying the discussion. It could be relaxed by enriching
the World Model with some dynamics.
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Under the above assumptions, the key concepts of the CLAM approach
are the following:

1. Localisation and Modelling, both relying on Perception, are the basic
activities performed by a robot when exploring an unknown environ-
ment;

2. Localisation and Modelling operate on separate information and are
subject to different timing constraints. Therefore they can be per-
formed concurrently and with independent timings;

3. Localisation relies on information which loosely depends on the in-
formation generated by Modelling, and vice-versa. Therefore Locali-
sation and Modelling must synchronise whenever a criticality arises,
i.e., whenever the information an activity relies on is not reliable;

4. Synchronisation is controlled by a strategy which relies on the obser-
vation of the criticalities and drives the relative rates of the activities.

The basic conjecture of this thesis is that a proper separation of concerns
should help breaking the chicken-and-egg loop. Of course, Localisation and
Modelling are related. However, they act on different time scales, so that
they can be considered as mostly independent activities which sometimes
synchronise under the control of a suitable strategy. Informally speaking,
the activities of a chicken-farm and of a fast-food selling fried chicken are
obviously related. However, they can be independently managed, provided
that their relative rates are kept under control on the medium-long term
and that criticalities, if any (i.e., lack of chickens to be fried), are properly
managed.

It is worth noting that the goal of this thesis is not to formally demon-
strate either that the proposed approach leads to an optimal solution, or
that it possibly leads to a solution at all. This is an exploratory work to-
wards the construction of complex systems whose overall behavior emerges
from the individual behavior of simple components, which loosely interact
thanks to their different execution rates. The rest of the chapter details the
above concepts.

In the following we use the Unified Modelling Language (UML) (for
details the reader can refer to [43], or more exhaustively [93]), to formalise
some of the key concepts presented in this chapter. This choice is motivated
by the fact that UML diagrams have the advantage of being both high-level
enough to be understandable and low-level enough for an experienced reader
to grasp all the necessary details.

3.2 CLAM Activities

Localisation and Modelling are the basic CLAM activities:
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� Localisation aim is to make the robot able to self-localise inside an
environment which is assumed to be known by means of a (partial)
model;

� Modelling aim is the construction of an environment representation
under the assumption that the robot knows its position inside the
environment.

Both activities exploit information provided by Perception. Perception
activity gets information from all the sensorial devices, performs basic pro-
cessing, and presents to both Localisation and Modelling a suitable repre-
sentation of what the robot perceives. All the two activities exploit the same
kind (in Object-Oriented parlance, the same classes) of information, i.e.:

� robot pose, i.e, its position and orientation in a reference frame;

� view, i.e., a set of geometrically located objects. Geometrically located
objects3 are characterised by their position in a reference frame.

A robot pose is defined by a translation on the (x, y) plane and a rotation
around the z axis (see equation 3.1).

P =





∆x

∆y

∆θ



 (3.1)

A view is defined as a set of geometrically located objects characterised
by their position in a reference frame (see equation 3.2).

V = {gloi} | i ∈ N (3.2)

Given a robot pose P and a view V , we define a located view as the pair
in equation 3.3.

LV = (V, P ) (3.3)

A located view LV relates the objects in V to the robot pose P in which
they have been, or could be, perceived4.

A robot pose provided by specific devices (e.g, the odometric system) is
called perceived pose. Its definition is given in equation 3.4

PP =





∆xP

∆yP

∆θP



 (3.4)

3In the following the objects are assumed to be Segments, characterised by the co-
ordinates of a couple of points. Different kinds of objects could be exploited, ranging from
points through high-level domain entities.

4Objects in V and pose P should be referred to the same reference frame. The presence
of multiple reference systems introduces the need for coordinates transformations. This
issue will be discussed in detail in chapter 6, and is skipped here for clarity.
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Figure 3.1: Localisation, Modelling, and their dependency on Perception

A set of geometrically located objects captured by specific devices (e.g.,
cameras, sonar, and so on) when the robot pose was defined by PP is called
perceived view. Its definition is given in equation 3.5.

PV = {pgloi} | i ∈ N (3.5)

Given the equations 3.4 and 3.5, we define as perceived located view the
pair in equation 3.6.

PLV = (PV, PP ) (3.6)

Perception activity generates perceived located views, i.e., sets of PLV s

Figure 3.1 emphasises the dependency of both Localisation and Mod-
elling on the Perception activity. Note that, though both Localisation and
Modelling rely on the same kind (i.e., classes) of information generated by
Perception, they exploit different sets (i.e., instances) of information inside
different timing frames. This is a basic remark to face the chicken-and-egg
problem, as we shall discuss later.

3.2.1 Localisation

The localisation problem arises from the fact that the robot perceived pose
PP , as generated by the odometric system, is prone to error. The Localisa-
tion activity aims at correcting the errors.

We define reference pose RP as a robot pose which is assumed to be
correct. Its definition is given in equation 3.7.

RP =





∆xR

∆yR

∆θR



 (3.7)

We define also reference view RV as a set of geometrically located objects
as perceived by the robot with pose RP (see equation 3.8).

RV = {rgloi} | i ∈ N (3.8)
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A reference located view is, then, the pair given in equation 3.9.

RLV = (RV,RP ) (3.9)

The Localisation activity corrects the odometric errors by exploiting the
following information:

� the current perceived located view PLV ;

� a reference located view RLV .

Defining estimated robot pose as the robot pose after the odometric er-
ror has been corrected (see equation 3.10), then Localisation also generates
estimated located views ELV , i.e., the pair (PV,EP ).

EP =





∆xE

∆yE

∆θE



 (3.10)

The idea behind the Localisation activity is quite simple. Assume that
the reference located view RLV is correct, i.e., the robot with pose RP did
observe the objects belonging to RV .

Let PRT be the perceived rototranslation which leads the robot from the
reference pose RP to the perceived pose PP . If PP has been properly per-
ceived, by applying PRT to the geometrically located objects in PV should
produce a set PV ′ = PRT ·PV such that PV ′ = RV , i.e., each object in PV ′

is similar5 (i.e., it exhibits similar geometrical features) to the corresponding
object in RV .

If this does not hold, a rototranslation DRT must be identified, such
that DRT · PV ′ = RV . DRT is the perception error of the odometric
system. Therefore the proper current located view can be estimated as
ELV = (PV,EP ) where EP = DRT · PP is the estimated pose computed
by the Localisation activity.

The obvious consequence is that EP is exploited to tune up the odomet-
ric system, and ELV is exploited as the reference view RLV for the next
localisation step. Of course, there are several problems, some of them are
local to the Localisation activity:

1. Normalisation: to relate PLV and RLV to a common reference frame;

2. Association: to identify, for each object in PV , a corresponding object
in RV 6;

3. Registration: to estimate DRT from pairs of corresponding objects in
PV and RV and to generate ELV .

5The concept of “similarity” will be discussed in detail in the following.
6As a matter of fact, Association will be considered to be successful if a reasonable

subset of the objects in RV and PV can be associated.
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Figure 3.2: The Localisation activity

Solutions to these local problems turn into steps of the Localisation ac-
tivity (see figure 3.2) and will be discussed in chapter 6.

The key issue is that if they are performed successfully, the Localisation
activity can autonomously continue its task. A global problem arises when-
ever Localisation fails. This means that the perceived located view PLV can-
not be successfully matched against the reference located view RLV . Apart
from Perception failures (hardware faults, blackouts, image processing un-
certainties, and so on) which are out of the scope of this work, Localisation
fails if the reference located view RLV is not a plausible representation of the
environment at the moment the perceived located view PLV was captured
(e.g. the robot turn around a corner, or entered an unexplored part of the
environment). This is what we call a criticality, which implies (at least) a
synchronisation between Localisation and Modelling, as we shall discuss in
section 3.4.

3.2.2 Modelling

Modelling aim is to incrementally build the world model, under the assump-
tion that Localisation properly works.

The world model is defined as a collection of geometrically located ob-
jects, which rose to the rank of being representative of “real world” objects,
whatever they are (see equation 3.11).

WM = {wmgloi} | i ∈ N (3.11)
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We define with the term views history a collection of estimated located
view which are assumed to be (nearly) correct (see equation 3.12).

V H = {ELVi} | i ∈ N (3.12)

Modelling exploits a views history V H and incrementally updates a world
model WM .

Again, the underlying idea is quite simple. If there is a set of views
ELV belonging to V H, and a reasonably7 large set of objects gloi such that
gloi ∈ EVi (with EVi ∈ ELVi) and all the objects exhibit similar geometric
features, then a wmglo object can be added (if it does not already exist) to
the world model.

As for Localisation, there are several local problems:

1. Association: to identify sets of corresponding objects gloi in different
views ELVi ∈ V H8;

2. Fusion: to merge the features of a set of corresponding objects in order
to define the features of a wmglo object which is assumed to model a
“real world” object with the purpose to update the world model WM ;

3. Integration: to check whether the wmglo object already exists in WM ,
and to possibly increase the WM .

Solutions to these local problems turn into the steps of the Modelling
activity sketched in figure 3.3, and will be discussed in the following. If
they are performed successfully, the Modelling activity can autonomously
continue its task.

A global problem arises whenever Modelling fails. This happens when-
ever sets of corresponding glo objects cannot be identified in the recent
history, i.e. the view history V H is not a plausible representation of a suit-
able world model. Again, this is a criticality which implies a synchronisation
between Modelling and Localisation.

Finally, the diagram in figure 3.4 sketches the CLAM classes of informa-
tion (and their relationships).

LocatedView class is a composition of one Pose and one View. Pose

and View may belong to only one LocatedView (filled diamond in diagram).
This is the milestone of CLAM. This UML syntax specifies that instances
created from both the View and the Pose classes may belong to only one
instance of LocatedView class.

The same hold for both View and WM: they are compositions of one or
more GLOs: the instance(s) composing wm (instance of WM class) and the

7What “reasonably large” does mean will be discussed in the following.
8This sub-activity may borrow from the results of the association sub-activity per-

formed by Localisation.
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Figure 3.3: The Modelling activity

Figure 3.4: The classes of information in CLAM
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instance(s) composing view (instance of View class) may only belong to wm

and view respectively.

Finally, a view history HV exists if and only if (simple diamond in dia-
gram) exists one or more ELV(s).

3.3 Concurrence

When criticalities do not arise during the execution of both Localisation
and Modelling, the activities may be executed concurrently. As explained
in section 3.2, for achieving the concurrence, the following conditions must
hold:

� the perceived located view PLV can be successfully matched against
the reference located view RLV ;

� the ELV views belonging to the history V H must contain sets of
corresponding glo objects.

When the two above conditions simultaneity hold, the activities do not op-
erate on the same concrete sets (i.e., instances) of information and, con-
sequently, may be executed concurrently. This is due to the fact that the
information needed by one activity is not accessed by the other, i.e., no in-
formation is updated by more then one activity. In such situation a trivial
pipeline between the activities may be exploited for synchronisation purpose.

Figure 3.5 sketches the UML activity diagram emphasising the concur-
rence of the CLAM activities. In the diagram, swimlanes 9 represents the
single activities.

The execution of Perception activity produces a perceived located view
PLV that is exploited by the Localisation activity. This is expressed by the
dashed line10 connecting the perceived located view (pv:PLV in the diagram)
to the Normalisation sub-activity11.

Association L sub-activity reifies in the diagram, the Association step in
the Localisation activity. The arrow connecting Normalisation and Associa-
tion L sub-activities is called transition and specifies the execution sequence.
In this specific case, the Association L sub-activity follows the Normalisa-
tion one. Association L exploits the reference located view (the box rv:RLV
in the diagram). This is represented by the dashed line connecting rv:RLV
to the sub-activity.

9In UML activity diagram, a swimlane models a single activity of the system.
10A dashed line connecting objects (the boxes) to activity (the ovals) specifies the object

flow.
11Even if Normalisation, Association, and so on, are, in UML parlance, activity, we refer

them with the term sub-activity to not bring confusion with Perception, Localisation, and
Modelling (called activities).
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Figure 3.5: The activities concurrency
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After the Association L sub-activity completion, the transition toward
Registration sub-activity may occur. Registration sub-activity produces an
estimated located view (ev:ELV). The occurrence of transition to Normalisa-
tion sub-activity specifies that a new Localisation activity may be executed.

The dashed arrow exiting from Registration and connecting ev:ELV plays
a crucial role, i.e.:

1. ev:ELV is not a single box, but a set of boxes, i.e., set of estimated
located views;

2. ev:ELV represents the information that Modelling activity exploits
(dashed arrow connecting ev:ELV to its EVAppend sub-activity).

The first consideration emphasises that the two activities have different
execution rates: Modelling may exploit more than one estimated located
view. This means that the execution rate of Localisation is greater then the
Modelling one.

The second consideration enphasises that Modelling exploits a set of
estimated located views ELV s, contrarily, Localisation exploits a perceived
located view (pv:PLV). This difference is at the basis of the concurrence
between the activities. Even if both PLV and ELV represent a located view,
these views are different both conceptually and concretely. Conceptually,
the first is a perceived located view, whereas the second an estimated one;
concretely, we have two well distinct objects (one created from PLV class,
whereas the second from ELV class). This consideration enforces the fact
that no information is updated by more that one activity.

The last sub-activity of Localisation is the RVUpdate one. Its purpose
is to provide Association L the reference view RV .

Concerning Modelling activity, the set of estimated located views are each
other linked to realise a history of estimated views V H. This operation is
performed by the EVAppend sub-activity.

Successively, the history of estimated views V H is exploited by the Asso-
ciation M (reifying the Association step in Modelling activity) to correlate
sets of geometrically located objects.

After the completion of the Association M sub-activity, its transition
toward Fusion sub-activity occurs.

Finally, after performing Fusion and Integration sub-activities, an up-
dated world model (wm:WM in the diagram) will be available.

3.4 Criticalities

As presented both in section 3.2 and 3.3, criticalities arise whenever the loop
is closed, i.e., when a syncronisation between Localisation and Modelling
activities is needed. Criticalities occur when:
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� the reference located view RLV is not a plausible representation of
the environment at the moment the perceived located view PLV was
captured;

� the history of views V H is not a plausible representation of a suitable
world model.

First criticality involves the Localisation activity, whereas the second, the
Modelling one.

3.4.1 Management of Localisation criticality

A criticality occurring during the execution of Localisation activity implies
that the reference located view RLV is not plausible. What we mean is that
glos belonging to current perceived located view can not be matched against
glos belonging to the reference located view. This implies that the reference
located view must be replaced with another one that might describe the
environment (with respect to the current perceived located view PLV ).

Referring to figure 3.5, a criticality arises when the transition between
Association L sub-activity and the Registration one is not resolved. Indeed,
it is exactly at this point of Localisation that the plausibility of the reference
located view RLV is evaluated. At this aim, the transition is a guarded
one. A guarded transition is a transition that may occur if and only if its
precondition is satisfied (i.e., the guard resolves to “true”). In our case,
the transition may occur if and only if the reference located view RlV is
matchable against the perceived one PLV . If this condition is satisfied,
then Localisation activity may go on (i.e., the Registration sub-activity is
reached). On the contrary, a criticality occurs.

To overcame the criticality, a plausible reference located view may be
derived from the world model WM . Two situation may occur:

1. the world model exists and it is a plausible reference view;

2. at the moment in which criticality occurs, the world model still does
not exist.

CLAM successfully faces both the two situations: the first is solved by
properly synchronising the information exchange between Localisation and
Modelling activities; the second is solved by also adjusting the relative rates
of the activities.

Concerning the first failure, we may again exploit an activity diagram to
explain the “recovery” strategy. At this aim, figure 3.6 sketches the activity
diagram modelling the synchronisation of the Localisation activity with the
Modelling one. The diagram is equal to the one presented in figure 3.5
excepts that for the following:
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� the presence of a branch connected to the transition exiting from As-
sociation L sub-activity. The branch has two guarded outgoing tran-
sitions: only one of them can be taken. If “PLV matches RLV”, then
we have the concurrence has described in the previous section. If this
condition is not satisfied, than this means criticality;

� the presence of the dashed line connecting the world model (wm:WM)
to the RVUpdate sub-activity. The object flow introduced specifies
the synchronisation between the two activity: they now share the very
same information reified by the world model. The world model is pro-
vided to the RVUpdate sub-activity, so that it may use it to update
the reference located view (rv:RLV);

� the presence of a new transition from RVUpdated to Normalisation
sub-activity. When the world model is retrieved, Localisation can per-
form again its normal (concurrence) execution;

� the absence of the dashed line connecting the estimated located views
(ev:ELV) with the RVUpdate sub-activity. Since RVUpdate exploits
the world model to update the reference located view, it does not exploit
the estimated located view (ev:ELV).

We have closed the loop: transition outgoing from Association L enter in
a branch, the outgoing selected transition is toward RVUpdate, RVUpdate
retrieves the world model to update the reference view, then its transition
toward Normalisation is resolved.

After the execution of Normalisation and Association L, again the branch
is reached. If the condition “PlV matches RlV” is evaluated true, then the
synchronisation between the activities successfully faced the criticality and
the activities may be again executed concurrently. On the contrary, we still
have the problem, even if this criticality is different. Indeed, either of the
following situations occurred: the world model did not satisfied the plausi-
bility constraint12 as required, no world model was available (second pointed
criticality).

Both the situations may be solved by adjusting the relative rates of the
two activity. In detail, Localisation rate must be slowed down, whereas the
Modelling rate must be speeded up, so that an updated world model will
be available as soon as possible. In addition, the rates should be adjusted
to achieve the following result: RVUpdate sub-activity execution will be
performed when world model is ready and already provided to the RVUpdate
sub-activity.

When the Localisation still fails, then a change of high-level strategy is
needed, but is out of the scope.

12Glos belonging to current perceived located view can not be matched against glos

belonging to the world model
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Figure 3.6: The activities synchronisation

Mobile Robot Localisation and World Modeling in a Real-Time Software Architecture



Chapter 3. Concurrent Localisation And Mapping 43

3.4.2 Management of Modelling criticality

A criticality occurring during the execution of Modelling activity implies
that the history of views V H is not plausible. What we mean is that corre-
sponding glo objects cannot be identified in the recent history of view HV .
Such a history does not provide useful information for Modelling purpose.

This criticality may be overcome by updating the history of views V H.

Referring to figure 3.5, a criticality arises when the transition between
Association M sub-and the Fusion sub-activity is not resolved. Indeed, it
is exactly at this point of Modelling that the plausibility of the history of
views HV is evaluated. At this aim, the transition is a guarded one: the
transition may occur if and only if sets containing corresponding glo objects
exist in the history of views HV . If this condition is satisfied, then Modelling
activity may go on (i.e., the Fusion sub-activity is reached). On the contrary,
a criticality occurs.

CLAM approach may solve the criticality by adjusting the relative rates
of the activities. Precisely, Modelling activity rate must be slowed down,
whereas the Localisation rate must be speeded up. The rate must be ad-
justed to achieve the following result: new Association M sub-activity ex-
ecution will be performed when an updated history of views HV will be
available.

Even if this “recovery” strategy goes wrong, then a change of high-level
strategy is needed, but, likewise Localisation, is out of the scope.

3.5 Timing

The issue concerning timing deserve some more discussion even if has been
touched previously concerning criticalities.

The timing of the Localisation and Modelling activities are different and
independent each other. Their independence is a consequence of concur-
rence, whereas their difference is due to the different lifetime of the infor-
mation they produce. In the following we are interested in this peculiarity.

The estimated robot pose EP is an information the lifetime of which
(i.e., existence period) is short. As a matter of the fact, the robot, to ex-
plore the environment, continuously move inside it. Independently from the
dimension of the robot displacement, each movement causes the execution
of a new Localisation activity (since the robot must understand which is its
pose after the movement). Consequently, the new estimated pose replace
the previous value.

Contrarily, the world model WM is an information the lifetime of which
is long. The robot, when exploring an unknown environment, moves slowly
both to avoid obstacles and to understand its pose with respect to the en-
vironment. Small robot displacements let the environment the robot per-
ceives still be quite always the same, i.e., constant. This means that the
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Figure 3.7: The activities timing

world model changes (better say evolves) very slowly. This consideration is
enforced when the environment is structured and immutable (at least for a
long term).

The above considerations justify that the activities are characterised by
different timings. Precisely, Localisation must be executed with a greater
rate than the Modelling one.

Let use imagine to model time as a line. The line is marked with ticks
representing a time scale. The more tightened are the ticks on the line, the
faster time passes. Activities steps are placed over a timeline. In doing so,
both their starting execution time and their duration is explicitly defined.
Under this model, a timeline completely describes the temporal behaviour
of the activity.

In a CLAM system we need two timelines: one modelling the temporal
behaviour of Localisation, the other of Modelling. Since the execution rate of
Localisation is faster than Modelling, the time scale of Localisation timeline
is finer than the Modelling one (see figure 3.7.a).

By opportunely enlarging or reducing the time scale of each timelines, it
is possible to control the execution speed of the CLAM activities. This leads
to face the criticalities. Figure 3.7.b shows how the criticality concerning
Localisation may be faced: if the world model does not exists, or it is not a
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plausible representation of the environment, then, the time scale of Locali-
sation is enlarged, whereas the time scale of Modelling is reduced. This lead
to modify the execution speed of the activities in order to synchronise them.
The figure shows how a proper selection of the activities execution speeds
allow to obtain that Modelling ends just in time for a new Normalisation
step of Localisation.

It is interesting to note the effects produced by playing with different
execution rates, e.g., the enlargement of the time scale of Localisation may
cause the robot to slow down.

The above described concepts will be treated in detail in chapter 4 where
the reference architecture Real-Time Performers (RTP) will be introduced
(another result of this work). Indeed, the RTP architecture supports the
design (and implementation) of time sensitive system allowing the explicit
control of the system temporal behaviour.

Finally, chapter 7 will present the exploitation of Real-Time Performers
architecture for a real CLAM implementation.
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Chapter 4

Real-Time Performers

4.1 Introduction

1

Software engineering usually focuses on methods, languages, and tools
to specify what the software has to do in a strictly functional sense. Given a
set of functional requirements, a number of methodologies, frameworks, and
tools support the development of an application from architecture through
design to implementation. The specification of a realistic system, however,
will also include qualities like reliability, portability, security, distribution,
timing, performance, and others desiderata. In the current practice of soft-
ware engineering these qualities are often neglected, and classified as non-
functional requirements.

In general, treating at architectural level non-functional requirements as
thoroughly as functional ones is a difficult task. On the one hand archi-
tecture aims to abstract from details of implementation ([35] and [83]), but
on the other hand many of the additional qualities required to the system
restrict the realisation of its functional requirements and largely depend on
their implementation.

Usually, the non-functional requirements that elude proper treatment at
the architectural level are somehow dealt with at the design and implemen-
tation stages. Common techniques span from introducing special-purpose
components (middleware) to tinkering with platform-dependent details.

This is especially true for the class of time-sensitive systems. We consider
a system time-sensitive if it has to perform a number of different activities
with multiple, dynamic, and inter-dependent temporal requirements which
include, among others, timeliness, predictability, Quality of Service (QoS),
performance, and so on. Furthermore, a time-sensitive system must be able
to dynamically change both its activities and their temporal requirements.
Actually, it should adapt itself to the intrinsic nature and variable amount

1The content of this section was elaborated with Sergio Ruocco and Andrea Trentini
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of processed data, to the unpredictable and exceptional situations it may
face, and to the varying performance and limitations of physical resources
instrumental to its computations.

Time-sensitive systems include properly the set of real-time systems
“whose correctness depends not only on the logical results of the com-
putation but also on the time at which the results are produced.” [110].
In addition, their correctness may depend also on performance and power
consumption, which are temporal aspects of computations often considered
aside to the domain of real-time systems. Hence the definition of time-
sensitive systems.

We argue that the principles underlying current approaches to design of
time-sensitive systems are not adequate to address the temporal aspects of
computations at architectural level. We identify the main issue in the lack of
proper architectural concepts that match the generality and the scalability
of those employed with success in modelling the behaviour of a system in a
purely functional sense.

To address this problem we introduce a novel approach to the archi-
tectural design of time-sensitive systems based on computational reflection
[104] (see section 2.4). We model the temporal behaviour of a computational
system with a set of architectural abstractions and, upon these bases, define
Temporal Reflection, a new class of reflection, as “the ability of a system to
self-represent, observe, and control its own temporal behaviour”.

The idea behind this novel approach have been reified in a software
architecture providing the basis upon which time-sensitive system my be
designed. Within the architecture, we have developed a framework that
may be used when building a system according to our architecture.

Even if major contributions of this work concern the software archi-
tecture (presented in section 4.2) and the related framework (presented in
chapter 5), in the following section a brief explanation about Temporal Re-
flection will provided since it is at the basis of the architecture.

4.1.1 The underlying idea: Temporal Reflection

Since we argue that current approaches to design of time-sensitive systems do
not address the temporal aspects of computations at architectural level, we
identify specific architectural abstractions that properly reify the temporal
behaviour of the system. Those abstractions are presented in figure 4.1.

A RealTimeLine reifies the “real” time, i.e., a monotonic sequence of
time instants characterised by the non-decreasing now() value of the current
time. The current time splits the timeline into a past and a future timeline.

An Action reifies the temporal aspects of a computational operation. It
associates a perform() operation with a TimeInterval.

A TimeInterval defines two <begin, end> instant pairs modelling the
planned time interval and the actual time interval for the operation execu-
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/** Time Interval abstraction */
TimeInterval {

int plannedBegin, plannedEnd;
int actualBegin, actualEnd;
TimeInterval(int pBegin, int pEnd);

}

/** Action abstraction */
abstract Action {

TimeInterval timeInterval;
abstract void perform();
Action(TimeInterval tInt){

timeInterval = tInt;
}

}

/** RealTimeLine abstraction */
RealTimeLine {

void addAction(Action);
int now();

}

Figure 4.1: Temporal Abstractions

tion. Actual instants of a TimeInterval make sense for the past timeline
only. They allow the past temporal behaviour of the system to be recorded
and observed. Both actual and planned instants are immutable for the past
timeline. On the other side, Actions can be inserted into the future timeline
and the planned instants of their TimeIntervals can be specified. This allows
the global temporal behaviour of the system to be controlled by properly
planning actions.

An execution engine triggers the execution of a computational operation
whenever the corresponding action is enabled, i.e., the current time falls
inside its planned interval, and sets the actual begin and end of the inter-
val whenever a computational operation is actually started and completed
respectively. The execution engine provides the required reflective causal
connection between the actual system temporal behaviour and the archi-
tectural abstractions that represents it, i.e. the actions and the real-time
line.

Finally, a Strategist is in charge of observing the past behaviour of the
system and of planning its future behaviour by observing Actions in the
past timeline and by setting Actions in the future timeline according to the
application goal(s) and requirements. Upon these bases it is then possi-
bile for a computational system to perform a new kind of reflection, that is
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to reason at architectural level about temporal aspects of its own computa-
tions. Accordingly, we define Temporal Reflection in general as “the ability
of a system to self-represent (reify), observe and control its own temporal
behaviour”.

4.2 A Reference Architecture for Real-Time Sys-

tems

An application program to explicitly deal with non-functional requirements
needs abstractions capturing timing and architectural issues to allow the ob-
servation and the control of both the internal architecture and the temporal
behaviour of the system at the application programming level. Real-Time
Performers (RTP in the sequel) tries to capture and to model these ab-
stractions into a reference software architecture for the design of modular,
distributed, and real-time systems.

As explained in section 2.3, it is widely known that there is a little
agreement on the definition of software architecture. Thus, when talking
about architecture, one must make it clear what he actually mean. Basing
upon the definitions given in [102] and [35], in our point of view, software
architecture comprises:

� the overall organisation of components and connectors;

� the externally visible properties of components;

� the overall system strategy.

A reference software architecture is a special kind of software architec-
ture. Unlike “concrete” architectures (i.e., architectures of actual, running
systems), a reference architecture must be general enough to accommodate a
wide range of concrete architectures, yet provide software architects and/or
designers with the basic conceptual building blocks for easily developing
systems in a certain application domain. In other words, a reference archi-
tecture should contain the vocabulary of the domain i.e., the basic concepts
found in the application domain, and a large fraction of the knowledge re-
quired to solve a composite problem [117].

4.2.1 Background Projects

RTP is the result of previous research activities. In particular, works like
HyperReal ([86], [89], [22], [23], and [90]), Kaleidoscope ([94], [96], and [95]),
and RAID2 ([80], [77], and [71]) have strongly influenced the design of RTP
architecture.

2Rilevamento dati Ambientali con Interfaccia DECT
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HyperReal is a software architecture focusing on time issues, Kaleido-
scope is a software architecture designed for monitoring and control systems,
and RAID is a monitoring and control system for Indoor Air Quality (IAQ)
within ancient buildings.

HyperReal focuses on timing issues, defining an entity (named controller)
that relies on a time-driven model of control, and separates the definition
of plans from the dispatching of actions they define. Special entities named
virtual clock support the explicit management of time.

Kaleidoscope architecture relies upon a general mechanism for the def-
inition of software components and their composition, and maintains at
the application level the definition of the policies controlling information
exchange. Kaleidoscope captures the common characteristics shared by al-
most every monitoring and control systems from the point of view both of
the application domain model and of the architectural requirements. From
the domain model point of view, these systems deal with physical entities
represented at different levels of abstraction. From the architectural point
of view, these systems must ensure reusability: computation (data elabo-
ration), distribution (data dissemination), and activation (data distribution
and elaboration policies) must be strictly separated. Kaleidoscope relies on
abstract representations of the domain entities (conceptual images) that are
mapped into concrete representations (concrete images) hosted by heteroge-
neous components. Connectors (projectors) allow different representations
of the same abstract entity to be aligned according to domain-dependent
strategies. Both concrete images and projectors do not encapsulate any
policy about when processing and alignment are done. The system over-
all control is assigned to strategists: the entities responsible for activating
image alignment and information processing.

RAID is the result of a three-year project (ended in December 2002)
funded by the Italian Ministry for University and Research. The RAID
project goal is to design, develop and deliver an IAQ monitoring and con-
trol system devoted to buildings characterised by the absence of automatic
control devices (e.g., fire and microclimate control plants). Wireless commu-
nication (due to a possible lack of cabling), innovative sensors for environ-
mental measurements, and the capability of inferring pollutant sources are
the main features of the project. The system acquires data from microcli-
matic, pollutant, and radon devices. Since the RAID target buildings may
not host cables, an acquisition module based on wireless network (DECT)
has been developed. It acquires measurements and distributes them to the
Main System through a TCP/IP infrastructure. Within the RAID project
the knowledge-based approach has been followed in order to support human
experts in IAQ control. In particular, the SER (Sistema Esperto RAID) ap-
plication has been developed in order to identify possible related causes (i.e.,
pollutant source localization) when IAQ anomalies are detected. Beside the
SER module, specific applications have been developed for RAID purposes:
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a specific configuration module, a data mining application, a 3D graphical
user interface, and a neural network. Due to their heterogeneous nature,
each of these modules needs specific information arranged in a suitable way.
Their integration should have been a challenge without a specific underlying
software architecture. Thus, the RAID system has been designed according
to Kaleidoscope principles.

4.2.2 An Overview of RTP

In our opinion, both computational and architectural reflection (see section
2.4) are the starting points to build dynamic systems. Computational re-
flection is defined as the activity performed by an agent when doing compu-
tations about itself [70]. Whereas, architectural reflection [15] is the compu-
tation performed by a system about its own internal architecture. It reifies
architectural features as meta-objects which can be observed and controlled
at runtime. The application of architectural reflection helps bringing visi-
bility over the computation performed by the overall system components at
the programming level. Finally, temporal reflection (see subsection 4.1.1)
adds to system the capability in reifying, observing, and controlling its own
temporal behaviour.

Reflection principles have guided the modelling of RTP architecture in
order to raise at the application programming level:

� strategies definition (action choice on behalf of events);

� timing issues management (speed-up/slow-down tuning);

� component behaviours definition (adding/removing performable com-
mands);

� system topology definition (adding/removing connected components).

RTP is based on the following key concepts:

� a system is made up by computational components;

� computational components exchange information via alignment com-
ponents;

� both computational and alignment components are activated and con-
trolled by supervising components.

The above three key concepts have lead to individuate three well distinct
corresponding roles inside a system: the role of computing data, the role of
distributing information, and the role of activating both computation and
distribution.

RTP assigns these roles to three specific components: Performer, Pro-
jector, and Strategist. Performer is the entity expressly designed to perform
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elaboration on own data, Projector is the entity expressly designed to project
(distribute) data between Performers, and Strategist is the entity expressly
designed to device or to employ plans or stratagems toward goals like the
activation of Performer computations and Projector alignments. The identi-
fication of these well-distinguished components emphasises the “separation
of concerns” between information processing, information alignment, and
their activation.

To achieve reuse both off-line and on-line, the following requirements
must hold:

� Performer should be unaware about both the surrounding environment
(in terms of topology) and the system behaviour; it should perform its
activities only upon triggered commands;

� Projector should be aware about only the Performers it projects, but
it should be unaware about the system behaviour; it should perform
alignment activities only upon triggered commands;

� Strategist should be aware about the overall system behaviour. Strate-
gies should be dynamically created thanks to reflective mechanisms.

RTP capture all of the above requirements in a reference architecture
that may be exploited for the design of strongly modular, distributed, dy-
namic, and real-time systems. Its main peculiarity consists in the ability
to arise at the application programming level both timing and architectural
issues allowing the changes of behavioural strategies dynamically. Moreover,
RTP allows strategy changes without affecting components implementation.
Since strategies can be planned at the application domain level instead of
being embedded in component, RTP allows application to easily satisfy non-
functional requirements.

Summarising, RTP may be considered as a reference architecture for
those systems in which the observation and the control of the temporal
overall system behaviour is a key issue.

RTP architecture has been positively accepted by the scientific commu-
nity. Indeed, RTP has been published in the following referred papers:

� [79] is the first published paper about RTP. In this paper we present
a mapping between a conceptual architecture based on a multi-agent
approach for Computer Supported Cooperative Work (CSCW), and
the RTP architecture;

� [82] is the first stand alone description of RTP concepts and idea. The
focus is on real-time data distribution;

� [81] enphasises the role of Performers and the dynamical change of
components behaviour;
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� [78] presents a proposal for RTP exploitation in a complex distributed
movement tracking system based on webcams.

An object-oriented approach, based upon the Unified Modelling Lan-
guage (UML) (for detail the reader can refer to [43], or the more exhaustive
reference [93]), has been employed throughout RTP lifecycle. Therefore, the
UML will be used in the sequel for documentation purposes.

4.3 Performers

A Performer is the entity executing specific activities useful for the system,
e.g., converting an image, calculating a pollutant concentration, and so on.

Performer may require data to execute its tasks, and the performed
activities may produce data.

Since a Performer must be a passive entity (to not encapsulate any kind
of activation strategies), it must be activated in order to perform activities.
At this aim, it must be able to accept a suitable set of commands. The
execution of an accepted command may influence the Performer state. These
considerations lead to model a Performer as a classical state machine:

� transitions correspond to the execution of local transition functions
(i.e., actions, or, methods adopting an O-O parlance);

� the execution of a transition is atomic;

� the definition of a local transition function does not include any refer-
ence to timing.

The definition above can be refined to model two abstraction levels that
are relevant in terms of both model and architecture. Imagine a Performer
with two sets of states: one defined macro, and the other micro. The set
of macro states corresponds to the states in which a Performer specifies to
be after receiving a command (i.e., the state that a Performer decides to
export). The set of micro states corresponds to the local environment of a
Performer, i.e., a set of local variables defined inside the Performer only.

The change of Performer macro state is due to a transition that is trig-
gered by a received command. Transitions are associated with actions.
The right transition is selected accordingly to the received command and
a guard3. A guard is a boolean expression depending on the local envi-
ronment. Guards are expressed in terms of environment variables. Actions
manipulate environment variables. This means that the (macro) state evolu-
tion is not affected by the performed actions (at least for a single transition).

Adopting a formal notation:

3If more than one guard is true, the selection of the transition is nondeterministic. If the
modeling of a fully deterministic system is required, there should not be non-deterministic
guards (or the non-deterministic choices should not affect the overall system behavior).
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� a Performer i is a t-uple Pi = {Si, si, Ti, Ei, Gi, Ai}, where:

– Si is the set of states;

– si is the initial state;

– Ti is a set of transitions;

– Ci is a set of commands;

– Ei is the local environment, i.e., a set of variables in a local name
space;

– Gi is a set of guards defined over Ei;

– Ai is a set of actions maipulating Ei.

� a transition t ∈ Ti is defined as ti = {so, sd, c, g, a}, where:

– so ∈ Si is the origin state;

– sd ∈ Si is the destination state;

– c ∈ Ci is a command;

– g ∈ Gi is a boolean expression defined over Ei;

– a ∈ Ai is an action.

4.3.1 Visibles

The Performer local environment deserves more discussion. Local environ-
ment is composed by two different sets of variables: the set of local variables,
visible inside the Performer only, and the set of visible variables, visible also
outside the Performer.

In turn, the set of visible variable is arranged in two subsets:

� the set of exported visible, variable writeable by the Performer and
readable from the outside (i.e., which can be assigned from the inside
and observed from the outside);

� the set of imported visible, variable readable by the Performer and
writeable by the outside (i.e., which can be observed from the inside
and assigned from the outside).

This formal separation is important because it allows a Performer to be not
aware of the information source and target respectively: a Performer may
only publish data on the exported visibles and read data from the imported
visibles. Thus, the set of visibles represents the only “port” to the outside
world of the Performer: communication between the Performer and the rest
of the system must always pass through this set. This must be regarded as
an advantage because makes Performers completely unaware of the system
in which they work. This means that such a component may be composed
under different topologies.
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Figure 4.2: Performer and its Visibles

Finally, Performers have a local name space for their visible variable
so that the visible variables cannot be shared explicitly. There are several
reasons for this choice: first, it encourages design modularity; second, it
helps separating local behaviour, topology and strategy; third, it properly
models the concrete architecture of a loosely connected distributed system.

The UML diagram in figure 4.2 shows the relationship between a Per-
former and its (possibly) visibles.

Summarising, a Performer is a commands acceptor/executor providing
data within exported visibles and requiring data within imported visibles.
Its functioning is very simple:

� accept a command from the outside;

� decide if the command is acceptable;

� process the command by (optionally) changing state and (optionally)
reading/writing visible variables.

4.4 Projectors

A Performer may require data produced by other Performers to carry out its
activity. Moreover, a Performer may produce data useful to other Performers
at the end of its computation.

Adopting a classical approach, a Performer should be aware about both
the Performers producing the data it needs, and the Performers requiring
data it produces. Such a solution implies Performers knowledge about the
system topology unwavering the component reuse under different topologies.

To overcame this restriction, in RTP information exchange between Per-
formers is possible only if data is projected between Performers. In other
words, a Performer can observe the exported visible of another Performer
only if the exported visibles are projected into its imported visibles. At
this aim, RTP introduces the concept of Projection. A Projection is a pair
(source, target) where source is an exported visible of one Performer, and
target is an imported visible of another Performer.
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Figure 4.3: Projector

In terms of architecture, Projectors reify Projections. Thus, Projectors
are the entities that allow data sharing between Performers defining map-
pings from visible exported variables of a Performer into imported visible
variables of another Performer.

Defining Projectors, the system topology will be described without em-
bedding inside the Performers the knowledge neither about the Projections
nor of other Performers.

Projectors are privileged Performers that reason “in-the-large”:

� they have visibility over a global name space, where the visible vari-
ables of the Performer are identified by a pair (performer, visible vari-
able);

� they have visibility over Projection definitions;

Projectors may connect different pairs of (performer, visible variable)
during system lifecycle. Since Projections are reified as concrete objects, the
capability of manipulating them is the basis for topological reflection, i.e.,
the capability of changing the system topology according to the observation
of its own state.

Finally, the definition of Projectors not imply any assumption neither
about why and when observation is done, nor about observation mechanisms
(polling, asynchronous messages, and so on) whose definition is a matter of
system dynamics not of topology.

The UML diagram in figure 4.3 shows the relationship between a Pro-
jector and the visibles that it aligns.

4.5 System dynamics

Performers and Projections are not aware about system dynamics: informa-
tion about when and why an elaboration and an alignment occur is not in
charge of these kinds of entities.

The definition of system behaviour is assigned to a specific entity that
has the complete view of both the system topology and the system condition.
By Strategy we mean all the issues related to when and why Performers and

Mobile Robot Localisation and World Modeling in a Real-Time Software Architecture



58 4.5. System dynamics

Projectors are triggered to compute and align respectively. This approach
has the goal of maximising reuse of both Performers and Projectors under
different dynamics. Strategy defines the future system behaviour observing
the current system state, the past system state, and the future planned
behaviour.

The Strategist (the reification of Strategy) is conceptually a single unit.
In practice, it can have any implementation, from an actually single entity
(for very simple, centralised systems) to a complex, distributed system, made
up of a number of clocks, schedulers, etc. In other words, it is not our
intention to centralise control (with all the known drawbacks) but simply to
separate control from the other two orthogonal issues (namely, computation
and distribution).

When an action has to be executed, depends on the kind of system we
are realising: in system where time does not play a crucial role, an action
may be executed, e.g., after the end of another one; whereas in real-time
system, an action must be executed within a specific time interval.

Even if RTP has been designed for real-time system (see subsection
4.5.2), it may be exploited also for other kind of systems with no timing
constraints. This is an appreciable result deriving from the separation of
concerns that RTP operates on control, computation, and distribution.

4.5.1 Systems not dealing with time issues

In its simple definition, a Trace defines a part of the system behaviour in
terms of partially ordered set of Requests. A Request specifies only the
recipient and the action to be performed without any information about
the time in which the Request has to be delivered.

Under the condition of nondeterministic guards, all the Traces defined
by a Strategist describe the overall system behaviour. The proposed ap-
proach allows a fully deterministic behaviour to be defined, if required by
the application domain. If a fully deterministic behaviour is not required,
nondeterminism simplifies the specifications by avoiding unnecessary con-
straints.

Traces defined for a system are arranged into two subsets: one containing
the Requests that have already been delivered (Past Trace) and the other
containing the Requests that have to be delivered (Future Trace).

Past trace represents a log of the system behaviour in terms of what has
happened. While, Future trace represents the expected system behaviour in
the future. A Strategist may change only dynamically this future behaviour
by adding, removing, or moving Requests.
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4.5.2 Systems dealing with time issues

The RTP complete exploitation occurs when designing and implementing
real-time systems. Indeed, RTP manages timing basing upon Temporal
Reflection: temporal abstractions identified in subsection 4.1.1 are at the
basis of RTP timing management.

The basic concepts about time in RTP are the following:

� time is discrete, i.e., time instants are modelled by nonnegative inte-
gers;

� a timeline is a monotonic sequence of integers;

� current time represents a point in a timeline, and is bound to change
monotonically.

When introducing timing issues, Trace and Request have to be mod-
elled consequently, i.e., they must be fleshed out with time information.
Consequently, we define TimedTrace as a set of TimedRequests, i.e., pairs
(request, interval) where interval is a segment of the timeline, defining its
execution planned time. Referring to the temporal abstractions defined in
4.1.1, TimedTrace reifies the RealTimeLine, TimedRequest the Action, and
interval the TimeInterval.

Note that associating Requests with intervals implies a partial ordering
of the requests. TimedRequests are only eligible for being executed when
current time falls inside the associated interval.

A TimedTrace keeps track of current time exploiting Virtual Clocks.
A virtual clock is an active component that is in charge of advancing the
current time of a timeline (for detail see [86] and [89]). A tick is an increment
of the current time of a timeline.

A virtual clock is associated to one reference clock (which, in turn, is
a virtual clock). The period of a virtual clock is the number of ticks of
the reference clock for each tick of the virtual clock. Informally, the pe-
riod of a virtual clock defines the timeline advancement speed. In general,
several virtual clocks may have the same reference clock. Therefore virtual
clocks are logically arranged in a forest. When we need a system-wide clock
the forest collapses to a tree whose root is the system clock. It is a clock
whose advancement is driven by events that do not fall inside the model (for
instance, physical interrupt or keystrokes or simulation events).

TimedTraces rely on virtual clocks; therefore they are not aware of any
kind of “absolute” time. The “absolute” execution speed of the TimedTrace
defining the behaviour of a sub-system can be controlled from the outside.
Of course, this holds for the future portion of the TimedTrace. The past
portion of the TimedTrace, including the past periods of the virtual clocks,
cannot be changed. A straightforward architectural mechanism is to define

Mobile Robot Localisation and World Modeling in a Real-Time Software Architecture



60 4.5. System dynamics

the past portion of a TimedTrace according to a virtual clock whose period
is immutable. In many cases, the system clock has an immutable period -
or a period that can be assumed as immutable if compared with the “real”
time.

Finally, when a TimedRequest is executed, it is updated with the ad-
ditional information concerning its actual execution time, and from now,
belongs to the past TimedTrace.

4.5.3 Strategy

A Strategist, as said in the beginning of section 4.5, is in charge of defining
the system behaviour. At this aim, it defines the set of future Requests as a
function of the current Trace and of the observable state of the Performers.

The model accommodates both on-line and off-line strategies4. Further-
more, the model assists different Strategies without affecting both Topology
and Performers definitions.

For instance, an alignment can be triggered according to three different
Strategies:

� push: the Strategist states that a Request is issued to a Projector
when its source variable changes;

� pull : the Strategist defines that a request is issued to a Projector on
a change of a suitable exported visible variable of the Performer the
target belongs to;

� timed : the Strategist triggers the execution of actions according to a
specific timing.

Similar remarks apply to the Strategies that generate actions to Performers.
Strategist may modify a Trace (the future portion) upon system observa-

tion. Mechanisms and policies used to observe the system must be confined
into the Strategist itself: it may poll interesting visibles or it may ask visibles
to generate notifying events.

Of course, you can devise a global Strategist controlling the overall be-
haviour. At the extreme, there might be a Strategist for each Performer
(i.e., each Performer becomes an autonomous thread).

What is relevant is that the model allows strategy changes dynamically
during the lifecycle of the system. In fact, since Strategies can be planned at
the application domain level, the system behaviour may be easily changed
to respond to the specific requirements by changing, adding, and removing
Requests inside a Trace (the future portion). Moreover, a Strategist may
even change, at the application level, the dynamics of the system in terms of

4Of course, off-line strategies do not depend on the current observable state of the
Performers.
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Figure 4.4: RTP system temporal behaviour controlled by a Strategist

timing issues, e.g., it may accelerate or decelerate some activities exploiting
virtual clocks.

Figure 4.4 sketches the system temporal behaviour controlled by a Strate-
gist as provide by RTP.
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Chapter 5

Real-Time Performers

Framework

5.1 Introduction

The chapter describes the substantial implementation work performed within
Real-Time Performers. The reasons why we call it a framework are the fol-
lowing:

� the implementing work is completely independent by specific applica-
tion domain. Under this respect, the resulting product may be con-
sidered as a class library;

� the designer may extend the class library by subclassing some of the
existing classes;

� the presence of a configuration tool to support startup topology and
initial strategy definition (under implementation).

The work presented in this chapter is therefore meant to be a common
platform that a software engineer is free to use as it is, or modify (by special-
isation of the basic provided mechanisms) when building a system according
to the RTP architecture.

This chapter will show the program structure through detailed UML
design diagrams, that have the advantage of being both high-level enough
to be understandable and low-level enough for an experienced reader to
grasp all the necessary details. In addition, whenever possible, we will not
show class attributes and operations, so as to keep the diagrams as simple
as possible.

Concerning the implementation language adopted for the development
of the framework, our choice is fallen on the Java Programming Language
[3] since it is an object-oriented language, it is independent from the specific
platform, and it provides basic reflective mechanisms.
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5.2 General Organisation

The framework has been logically structured into packages: each of them
contains entities that are in someway related each other. Figure 5.1 shows
the packages constituting the framework and the relationships among them.

Figure 5.1: The RTP packages and their relationships

Even if each of the packages is described in detail in the next sections, a
brief introduction will be provided:

� naming package deals with the uniqueness of the names for components
in RTP;

� performers package contains all the classes useful to define the Per-
former entity as introduced in section 4.3;

� projections package deals with the Projector entity introduced in
section 4.4;

� topologists package contains classes defining the Topologist entity
(i.e., the entity that create Performers and Projectors);

� commands package defines the commands to be delivered in order to
trigger actions;

� traces package reifies the dynamics of the system;
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� time package deals with all the temporal aspects of the system;

� strategy package contains an abstract representation of the strategy;

� engines package deals with the distribution of commands among per-
formers.

The rest of the chapter is organised in two sections: the first dealing with
topological issues (section 5.3), and the second dealing with the management
of of the system dynamics (section 5.4).

5.3 Topology

The packages described in this section contain all the issues related to system
topology. Main concepts here are Performers and Projectors as defined in
chapter 4.

Before entering into details about the reification of the RTP approach
as described in chapter 4, the naming package will be introduced as first
concept since it is present about in all the framework.

5.3.1 The naming package

Symbolic names are the preferred way, rather then using directly “refer-
ences”, to manage instances of objects inside a software system. Indeed,
exploiting symbolic names, the distribution of references may avoided to
preserve the consistence of the objects state.

When entities have to be referred uniquely inside the system, then nam-
ing is a prerequisite for the correctness of the system: the repository elected
as manager of the correspondence (name, reference) should also provides
a mechanism that assure univocal names.

Figure 5.2: The naming package
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naming package aim is the management of pairs (name, reference) as-
suring the iniquity of names. The UML diagram of figure 5.2 shows the
classes designed for this goal:

� NameServer class: is a class that serves to manage the references to
all the nameable entities inside the system. There is exactly one in-
stance of this class (stereotype << singleton >>). If the system is
distributed, than there will be one instance for each node in the sys-
tem. In practise, this class is made up by a hashtable that keeps track
of the nameable entities through their symbolic names;

� Name interface: This is a tag interface representing a unique (global
level) name that references a Nameable;

� Nameable interface: every entity inside the system that is someway
referred must be identified using an unique Name. These kinds of
entities must implement this interface;

� VisibleName interface: every Performer visible (see subsection 4.3.1
and 5.3.3) must be recognised by a name. This interface must be
implemented by every class representing a name for a visible. A
VisibleName could be a simple string;

� GenericName class: a simple implementation of both VisibleName

(for visible entities) and Name (for Nameable entities). It simply wraps
a string.

5.3.2 The commands package

This package, sketched in figure 5.3, contains basic entities representing the
commands that Performers may execute.

Command interface and AcceptableCommand class are the core of this
package. The former is a tag interface that must be implemented by every
class representing a command. It is defined as tag interface since a command
can be anything: from a simple string to a piece of software. Apart form its
definition, a Command is meaningful only for a particular receiver.

AcceptableCommand class specifies if a command is eligible to be ac-
cepted by the receiver. Its match(Command cmd) method verifies the valid-
ity of the command cmd in input. This class is very useful to the command
receivers since it encapsulates all the validity policy. This class may be
subclasses in order to override as needed the match() method.

From this point of view, the AcceptableCommand class may be defined as
a meta-representation of the performable commands by the computational
components constituting the system.

The GenericCommand class is an example of a concrete (even if trivial)
command. This implementation simply wraps a string.
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Figure 5.3: The commands package

Finally, class CreateCommand, and its concrete subclasses, define the set
of commands useful to create (and destroy) dynamically Performers and
Projectors.

5.3.3 The performer package

This packages, depicted in figure 5.4, contains all the classes representing
the computational components described in section 4.3.

Main concepts here are the Performer class, reifying the Performer en-
tity, and the Visible interface, reifying both the exported and the imported
visibles of a Performer.

Visible interface represents both imported and exported visible variable
whose handling is made using the get() and the set() methods respectively.
For generality purpose, the methods respectively return and require Object
instances (see code fragment in figure 5.5).

Concrete visible variables should implement the Visible interface. Visible
implementations should model the data a Performer (possibly) needs to ex-
ecute its task and the data it (possibly) produces for other Performers.
An example of concrete implementation of Visible is the GenericVisible

class: it is a simple wrapper for a generic object. This Visible definition is
“semantic-unaware”, which means that GenericVisible instances represent
data that is not related to specific application domain.
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Figure 5.4: The performer package

Since the framework must be the most flexible as possible in order to
satisfy the more wide choice between the possible observation mechanisms
(e.g, polling, events, and so on), we introduce also a special kind of visible
named NotifyingVisible. This visible is a specialisation of the Visible

interface that sends notifications each time its value is updated. This class
may be very useful when an event-driven policy is preferred to, for instance,
a polling one.

Performer class models a Performer. It is a generic command acceptor
with unique name (i.e., it is a Nameable). The uniqueness of its name is a
fundamental constraint since its name is what will be used to identify the
proper Performer when planning behaviour.

The double association with Visible interface (see figure 5.4) specifies
respectively the exported (out label) and imported (in label) visibles of a
Performer. From an implementation point of view, two separated hastables
reify the double association. Since a Performer may be an independent
entity (in the sense that does not need data to perform its activity and/or
does not produce data from its computations), the associations with the
Visible interface have cardinality 0..∗, instead of 1..∗.

The accept(Command cmd) method of Performer class is responsible
for activating the Performer accordingly with the Command instance in in-
put. Command represents a generic command to be executed by a Performer

instance. Its semantic is local to the receiving Performer. Since at this level
of abstraction, the definition of Performer class must fit with every kind
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/**
* A Visible exports get and set methods that should be used according to
* a “protocol” (e.g., for a “in” value only the Performer can call the
* getValue, . . .)
*/

public interface Visible {
/** Returns the value for this visible */
public Object getValue();
/** Sets the value for this visible */
public void setValue(Object v);

}

Figure 5.5: The Visible interface definition

of concrete and domain-dependant implementation, its accept() method
is defined abstract (i.e., not defined). Concrete Performers should be spe-
cialisations of the Performer class, and they have to provide an opportune
implementation of the accept method definition.

From the considerations above, at this level of abstraction, the role of
the Performer class is visibles management only. Code fragment in figure
5.6 exemplifies the concepts above described. This fragment emphasises the
definition of methods for the management of Performer visibles.

5.3.3.1 The programmableperformer package

Another feature of RTP architecture is its support to the dynamical change
of component behaviour. Indeed, RTP refines the paradigm of the Strat-
egy Pattern [44] by applying the state machine model to the computational
component with the purpose of dynamic behaviour change. By using re-
flective methods, the programmer (actually, the Strategist) may modify any
part of the state machine, thus building a (potentially) completely different
Performer than the one initially instantiated. The idea behind the choice
of state machines (as inspiration for the computational component) is that
there is a lot of research already available on FSA [53] (Finite State Au-
tomata) and their properties.

To create a truly dinamically (at runtime) changeable Performer, the
ProgrammablePerformer class was defined as an extension. The ProgrammablePerformer
represents an explicit state machine, it reifies states with State instances.
Figure 5.7 shows the UML class diagram of this class with its set of states
and ECA1-transitions. The ProgrammablePerformer has a set of States,
among them one is marked as “initial”, and another as “current”. Each
State has a set of Transitions that will be examined when interpreting

1Event-Condition-Action
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/**
* A Performer accepts commands (automaton-like) and allows access to
* visibles by name. The role of this level is Visible management only.
*/

public abstract class Performer implements Nameable {
/** The imported Visibles */
private Hashtable in;
/** The exported Visibles */
private Hashtable out;

/** Adds an imported Visible */
public void addVisibleIn(Visible v, VisibleName n) {

in.put(n, v);
}
/** Every Performer gives a name to every Visible */
public Visible getVisibleIn(VisibleName name) {

return (Visible)in.get(name);
}
//. . . same methods for exported Visibles

/** Classes must be specialised to implement the appropriate accept policy */
public abstract void accept(Command c);

//. . .
}

Figure 5.6: The Performer abstract class

acceptable commands. Each Transition reifies a ECA transition, i.e., it is
associated with an (optional) AcceptableCommand, a (optional) Condition,
a (optional) Action, and a (required) next State. The accept() method on
the State class cycles through all the associated Transitions until the fol-
lowing two conditions hold: a Transition that matches the actual received
Command exists, and the (optionally) associated Condition is evaluated as
true.

If such a Transition is found, its corresponding Action is executed
and its “next” State becomes the “current” one. Both Condition and
Action need a link to the Performer (marked “context” in the figure 5.7)
because they respectively need “read”2 and “read and write”3 access to the
Performer.

In this model, each class reifies an aspect of the formal state machine
described in section 4.3:

2A condition is evaluated against the state of the Performer.
3An action may also modify the Performer.
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Figure 5.7: The ProgrammablePerformer

� ProgrammablePerformer, represents the state machine: it exposes a
current state, the accept() method (to make it execute commands),
and the methods to manipulate the set of states (i.e., getState(),

getStates(), addState(), getInitialState(), setInitialState());

� State, (set of, associated to the Performer) represents a particular pub-
lic state of a Performer: it has a name and the methods to manipulate
the set of transitions (i.e., getTransition(), addTransition());

� Transition, (set of, associated to states) represents an ‘arc’ from one
state to another, it is a 4-uple (AcceptableCommand, Condition, State,
Action);

� AcceptableCommand, represents a command that may trigger a tran-
sition. The match() method evaluates as true only if the command
given is acceptable (the acceptation policy depends strictly on the
method implementation);

� Condition, represents an evaluable (boolean) condition. It may be a
function of internal attributes or Visible values of the Performer;

� Action, represents an executable (method) action. It will be executed
only after transition triggering.

It is very easy to create a new ProgrammablePerformer for a specific con-
text. The programmer needs only to extend the ProgrammablePerformer

class and write a specific constructor that defines an initial behaviour.
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5.3.4 The projections package

In RTP framework Projector class reifies Projection. It is a special kind
of Performer whose activity consists in aligning Performer visible variables.
More in detail, a Projector instance aligns one imported visible to one or
more exported visible.

Note that an arbitrary number of Projectors can be associated to the
same visible exported by the Performer source. In addition, more than one
Projector can exist even between the same pair of Visible exported by two
Performers. This accounts for all those cases in which different strategies
need to be applied when aligning the same information, or when (e.g, for
fault tolerance) different underlying technologies coexist between the same
pair of visibles.

Since the Projector role is to perform data distribution, the inherited
method accept(Command aCommand) recognises only one kind of Command

instance: the ‘sync’ one. At this aim, the AcceptableCommand class (see
the commands package) is exploited. Once the command is accepted, the
synch() method is performed.

Framework aim is not to cover implementation-related issues such as the
communication technology and underlying platform (if any). The aim is to
provide a general mechanism from which may kinds of Projectors may be
implemented. For testing purpose, we have implemented a concrete Projec-
tor (whose coding is sketched in code fragment of figure 5.8). In this simple
implementation, the sync() command aligns (copies) the values of source
and target.

Other kind of Projectors may be realised, examples are Fifo buffers (see
figure 5.9) in which either imported or exported visible variables are buffers.
Obviously more complex situations can be devised and the sync() method
is defined accordingly.

5.3.5 The topologist package

Topologist is special kind of Performer: its role is to create topology. At
this aim the actions that it should be able to perform are the creations of
Performers, Projectors linking Performers, and, eventually, the destructions
of both Performers and Projectors.

The abstract class Topologist (sketched in figure 5.10) provides all the
necessary methods to manage system topology. This class is a specialisation
of Performer class and, consequently, it must be triggered to modify the
topology with a suitable set of commands (i.e., AccettableCommands for this
Performer).
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/**
* A Performer accepts commands (automaton-like) and allows access to
* visibles by name. The role of this level is Visible management only.
*/

public abstract class Performer implements Nameable {
/** The imported Visibles */
private Hashtable in;
/** The exported Visibles */
private Hashtable out;

/** Adds an imported Visible */
public void addVisibleIn(Visible v, VisibleName n) {

in.put(n, v);
}
/** Every Performer gives a name to every Visible */
public Visible getVisibleIn(VisibleName name) {

return (Visible)in.get(name);
}
//. . . same methods for exported Visibles

/** Classes must be specialised to implement the appropriate accept policy */
public abstract void accept(Command c);

//. . .
}

Figure 5.8: The sync method of ConcreteProjector class

5.4 Dynamics

Even if the aim of RTP framework is to support the concrete design of
systems dealing with real-time constraints, the framework may be exploited
also for other kind of systems in which time does not play a crucial role.

In fact, despite timing issues, the RTP goal is to allow the dynamic
planning of system behaviour at the programming level.

What this means is that the system behaviour may be “programmed”
each time by observing what has happened.

The packages dealing with the controllable behaviour of the system will
be presented in the sequel. Since classes dealing with system behaviour are
organised into packages that do not take into account the typology of system
they will support (with timing constraints or not), they are presented as they
should be used.

First we will present classes useful to control system behaviour of deter-
ministic system, then classes to use when building systems with temporal
constraints.
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Figure 5.9: The projections package

5.4.1 System not dealing with timing constraints

Important concepts here are Traces and Requests that completely describe
system behaviour.

As introduced in section 4.5.1, the actions performed by a system are
arranged inside Trace. A Trance is a partially ordered set of Requests.
RTP framework provides homonymous classes for both Trace and Request
as shown in figure 5.11.

A pair defines the Request class:

� recipient, a Name class instance (implementing the Nameable interface)
specifying the univocal recipient for the Request. The recipient may
be any kind of Performer (a Performer, a Projector, or a Topologist);

� command, an instance of the Command class defining what the recipi-
ent has to perform.

Trace class is an aggregation of Request instances. To emphasis the
separation between what has already happened and what has planned to
happen, the dependency of Trace class with respect to Request class is
realised using two aggregation namely todo (specifying what has planned),
and done (specifying what has already happened). The aggregation labelled
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Figure 5.10: The topologist package

Figure 5.11: The traces package

todo reifies the FutureTrace, whereas the aggregation labelled done reifies
the PastTrace (as desctribed in subsection 4.5.1).

The next() method constitutes the core of Trace class definition: it
returns the next performable Request instance. When the selected Request
has been delivered and executed, then it is moved in the PastTrace. The
implementation of the next() method is strictly domain dependant. A
simple implementation is provided in the Trace class: Request instances
are stored using a First-In-First-Out (FIFO) policy, accordingly, the method
returns the first Request in the pile. Obviously, this policy may be changed
by subclassing Trace class and overriding the next() method as needed.

Trace class is passive, i.e., it is unaware about when its next() method
is invoked. In general, the entity that is in charge of activating a Trace is the
Engine. An Engine simply executes the method next() of all the Traces it
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controls. Then, on the basis of the Request instance returned by the next()
method, it searches for the correct Performer by means of the NameServer,
and, finally, it dispatches the command. The execution is sketched in the
sequence diagram of figure 5.12.

Figure 5.12: The execution of a Request

RTP framework provides a general Engine class. Its method fetchAndDispatch()

is responsible for fetching the Request and correctly (in the sense of the cor-
rect recipient) dispatching it. This method is abstract and, consequently,
the subclasses has to provide it a suitable implementation. In RTP are de-
fined two concrete implementation of the Engine: AutonomoutEngine and
TickedEngine. The former is used when there is no entity that is in charge
of activating the Engine, the latter is used when someone else triggers op-
portunely the Engine (see section 5.4.2).

AutonomousEngine is a thread the execution of which may be controlled
by means of its exported methods. When activated (method activate()),
it continuously invokes the next() method of the Trace instances it controls.

The code fragment in figure 5.13 shows the construction of a Trace (lines
1, 2, 3, and 4) by adding specific Requests. Then, an Engine is instantiated
(line 5) specifying which Trace it controls. Finally the Engine is activate
(line 6). Since the Trace we used in the example is a Trace instance, then
each time the engine invokes its next() method, the Request in the top of
the FIFO is returned.
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//. . .
Trace t = new Trace(); //1

t.add(new Request(
new GenericName("Perf1"), new GenericCommand("Do"))); //2

t.add(new Request(
new GenericName("Proj1"), new GenericCommand("SYNC"))); //3

t.add(new Request(
new GenericName("Perf2"), new GenericCommand("Do"))); //4

Engine e = new AutonomousEngine(t); //5

e.activate(); //6
//. . .

Figure 5.13: Trace construction

5.4.2 Systems dealing with timing constraints

More interesting is the management of timing Requests in RTP framework.
Every concept relative to time is modelled inside the time package pre-

sented in figure 5.14.

Figure 5.14: RTP classes reifying time

Here we have defined the following key classes:

� ReferenceClock, reifies the absolute time. It is the reference timer
for a bunch of virtual clocks. It is responsible for advancing the real
time;

Mobile Robot Localisation and World Modeling in a Real-Time Software Architecture



78 5.4. Dynamics

� VirtualClock, models a virtual clock as defined in subsection 4.5.2.
It is characterised by a starting point, an end point, and a period. The
period is the number of reference clock ticks between updates of the
virtual clock current time. VirtualClock is a “time-event” generator
for entities interested in current time.

� TimeInterval, specifies the temporal coordinates with respect to a
VirtualClock. A TimeInterval can be an instant (begin = end) or
an interval.

Obviously, Request and Trace classes as defined in 5.4.1 must be spe-
cialised in order to manage timing issues. At this aim, the framework pro-
vides the TimedRequest and TimedTrace classes as skectched in figure 5.15.

Figure 5.15: TimedRequest and TimedTrace

TimedRequest class is subclass of the Request one. It inherits the associ-
ation with the recipient and the command to be performed. What is more in
its definition is the association with at least one instance of TimeInterval
describing the interval validity (in a temporal sense) for the Request. This
association describes the planned temporal interval in which the Request
have to be delivered and performed. The other association (labelled when
(actual time)) within the TimeInterval class describes the actual (if any)
temporal interval. This association describes the time in which the Request
has been delivered and then executed. The cardinality of the association
is 0..1 because it may occur that a Request cannot be executed since its
planned time is expired with respect to the now value.

TimedTrace is a subclass of the Trace class. It contains TimedRequests,
and, consequently, overrides the next() method with a time-aware imple-
mentation.
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A TimedTrace is aware of the current time by means of the associ-
ated VirtualClock. When its next() method is invoked, it finds for the
TimedRequest whose planned TimeInterval is near to current time.

As for Trace class, an Engine is in charge of activating the TimedTrace

next() method. But, on the contrary, the Engine for timing system must
be activated in a suitable way, i.e., it cannot be an autonomous thread4.
RTP defines TickedEngine class as a class depending to the reference clock:
it is “ticked” each time the reference real time advances. The reason why
we do not associate the TickedEngine class to a VirtualClock is that an
engine may “controls” several virtual clocks whose periods are different.

The sequence diagram sketched in figure 5.16 illustrates how classes in-
teracts each other. In the same figure an object called Strategist, creates the
TimedTrace, the VirtualClock, the TimedEngine, and the ReferenceClock
instances, adjusting their relationships. When the reference clock is acti-
vated, it communicates the advancement of time both to the virtual clock
(tick() method) and the Engine (activate() method). In turn, the En-
gine verifies if there are Requests to be delivered by the invocation of the
next() method of the TimedTrace it controls. If a TimedRequest is per-
formable, then it operates in the same way as described in section 5.4.1:
Engine retrieves, by means of the NamingServer, the recipient Performer
and invokes its accept() method by passing the command to be performed.
At the end of the Performer processing activity, the actual TimeInterval is
imposed to the TimedRequest.

5.5 Strategy

Strategy is in charge of defining the system behaviour. At this aim, it
defines Traces and TimedTraces by the observation of the current state
(Visible or NotifyingVisible exported by the Performer) and the past
system behaviour (PastTrace in Traces classes).

Even if Strategy encapsulates any domain-related issues, the RTP Strategist

class represents a very simple reification of strategy. The aim of this class is
to emphasises the role of the strategies inside a system. This class exports
the following methods:

� addTrace(), adds a Trace or a TimedTrace to this Strategist. The
added Trace will be manipulated by this Strategist only;

� observe(), allows the Strategist to control the system behaviour. This
method may be invoked by the reference clock each time it ticks the
Engine and the virtual clocks. The method is declared abstract since
its implementation is strongly domain-dependant.

4Really, it can be an autonomous thread, but it will “tick” the TimedTrace keeping no
account about the time
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Figure 5.16: The sequence diagram for a simple timing system

Special kind of Strategist is the NotifiableStrategist: it is an ob-
server of NotifyingVisibles instances (see subsection 5.3.3). The class
export the method update() that is invoked when a NotifyingVisible

instance notifies a change of its value.

observe() and update() methods are very useful when an event-drive
policy is preferred. This is not the only way of controlling system behaviour:
it is possible, also, adopting a polling policy.

Obviously, these are very simple classes, that the end user may or not
decide to use. The classes have been introduced inside a specific package
(strategy package) of the RTP framework only to emphasise the role of
Strategy inside the system.

Strategist (by notification or by polling), in order to plan (or modify)
future behaviour, must have visibility over:

� current system state;
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� past system behaviour.

Current system state may be acquired by the Strategist accessing directly
to the visible variables exported by the Performers. Past system behaviour
may be accessed by the Strategist using methods exported by Trace and
TimedTrace classes. Some examples:

� lastDone(), returns the last performed Request;

� getDone(), returns the list of delivered Requests;

� getMissed(), returns the Requests that have not been executed;

� getActualDurationLastRequest(), returns the actual duration of
the last Timed Request;

� diffPlannedActualEnd(), returns the gap (in time) between the planned
and the actual time of a specific Timed Request;

� . . .

Exploiting the above methods, the Strategist may plan future system
behaviour by executing one (or both) of the following:

� modify the virtual clock speed (e.g., when the difference in time be-
tween planned and actual ends (or begins) of Requests are too dis-
tance). A speed modification is made by means of the speedUp() and
slowDown() methods exported by VirtualClock class. When a vir-
tual clock is slowed down, then its period is enlarged. Symmetrically,
when a virtual clock is speeded up, its period is reduced. Note that the
change of the virtual clock speed allows to control the the execution
speed of the activity whose Requests are placed on the TimedTrace
controlled by the virtual clock.

� modify the Trace (e.g., modify the actual begin of a Request to make
it nearer to actual time, add a new set of Requests if the planned are
still all executed, and so on).

Finally, with respect to the abstractions identified in subsection 4.1.1,
we have the mapping with concrete entities in RTP framework as sketched
in table 5.1.

5.5.1 An example

5 Since the management of temporal behaviour at the programming level is
the core of the functionality provided by the RTP architecture, a simplified

5The content of this section was elaborated with Sergio Ruocco and Andrea Trentini.
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Temporal Abstractions RTP concrete classes

Action Command

TimeInterval TimeInterval

RealTimeLine TimedTrace

Action in RealTimeLine TimedRequest

A (programmable) Clock VirtualClock

Table 5.1: Mapping between temporal abstractions and concrete reifications

example of an actual implementation will be provided. The description in
the sequel is a portion of an article that has been submitted for acceptance
in SAC 2004 conference.

The application domain is a adaptive MPEG Video player. A video
player has been chosen as a reference problem for its own set of diverse non-
functional requirements related with time: reactivity, adaptability, timeli-
ness, and so on. Both problem and solution are simplified, as their aim is to
give a flavour of the proposed approach. Four basic functional requirements
must be fulfilled to play an MPEG video:

� F1, read a byte stream including the encoded data;

� F2, parse the data and reconstruct YUV6 images;

� F3, convert YUV frames in RGB;

� F4, display RGB frames in the proper sequence.

Such basic requirements must be enriched by non-functional require-
ments mainly dealing with QoS issues:

� NF1, read promptly incoming data, or may be lost;

� NF2, adapt to fluctuating incoming data rate;

� NF3, absorb the variable duration of algorithms;

� NF4, display the frames with the proper timing.

The main goal of the system is to play the video correctly. Thus the NF4
requirement, which directly arises from user needs, is the main constraint
that must be fulfilled. However, all of them must be considered to get a
satisfactory solution.

The ability of the system to fulfill NF4 hinges both on the character-
istics of the execution platform, which include, but are not limited to, its

6YUV is a colour space that splits colour information in one luminance channel (Y)
and two chrominance channels, U and V.
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performance, and on the intrinsic nature of the encoded data. It is appar-
ent that the system is expected to execute the algorithms that parse raw
data, reconstruct images, and convert them in a format suitable for display
“fast enough” (NF3). But also be reactive and read promptly incoming data
before they are lost (NF1). Furthermore, it must keep the raw data in a
buffer that is large enough to cope with the expected variance in data, to
not starve the parse and decode activities rate (NF2). Therefore, while NF4
can be considered an externally controlled constraint, NF1–NF3 express the
correctness of the system temporal behaviour in terms that depend more or
less directly on the intrinsic characteristics, or qualities of both the general
abstract architecture and the specific implementation of the system as they
emerge during execution. In particular, NF1 mirrors the behaviour of a
realistic low-level data reading mechanism.

The example supposes that an underlying hardware device physically
reads data from the input peripheral directly into main memory (DMA-like).
Then it manifests data availability with a signal and the amount of data read
through a variable. Upon signal receiving, the application should perform
a ‘logical read’ operation before incoming data are lost, i.e., advances the
current buffer pointer to the next available buffer. Thus, the duration of
the ‘logical read’ operation can be reasonably considered bounded and not
dependent on the amount of read data.

5.5.1.1 The RTP solution

The implementation was done by carefully wrapping an already existing free
MPEG player [2] written in Java in terms of RTP entities. The wrapping op-
eration involved code cleaning and the removal of embedded synchronisation
policies, i.e. the architecture did not need any structural modification. Fig-
ure 5.17 shows the performers defined (by specialization of the Performer

class) to build the video player:

� Parser (includes Reader): this is a pre-emptable thread that contin-
uously reads and parses data bytes from the MPEG file (the rationale
for this peculiar implementation choices is discussed below);

� Converter: accepts a CONVERT command, converts images from YUV
to RGB;

� Displayer: shows converted images, accepts a DISPLAY command.

Even though the intrinsic structure of the software used justifies per se the
merging of Read and Parse and their implementation with a thread, a brief
discussion provides a useful rationale for more general cases. Since this im-
plementation bases on the standard Java platform, not on a bare embedded
system, it is reasonable to rely on the language run-time support for a suit-
able implementation of the Read Action from the input stream, and on the
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underlying operating system for the prompt read and buffering of incoming
data from the device. With respect to the parsing operation, it has not
definite temporal requirements per se except for “adequate performance”.

At the architectural level, the Parse Action has been modelled by an
atomic Action with a definite start, an unpredictable end, and an infinite
deadline.

On the other hand, facing the task of implementing an all-software sys-
tem that in principle must be suitable for a single-CPU platform, to realise
the Parse Action exactly as previously conceived would likely interfere with
the execution of others time-critical Actions. In this case a standard, pre-
emptable thread seems to be the most natural solution. In this implemen-
tation the Parser is a wrapper that hides the peculiar implementation of
the reading and parsing activities. When the asynchronous parsing thread
completes an image, the Strategist notes it as soon as a Parse Action is
“performed”.

Of course, like other threads in the system, the Read/Parse thread is
always preempted by time-critical Actions on the real-time line.

Figure 5.17: Performers in MPEG Video Player application

Part of the Java implementation is shown in code fragments presented
in figures 5.18, 5.19, 5.20, and 5.21.

Code fragment in figure 5.18 belongs to the bootstrap code: creation of
a TimedTrace with its associated VirtualClock (comments 1 and 2) and an
AutonomousEngine (comment 3). At the end of the code, when the Engine
is already set up and running, control is given to the Strategist by calling
its run() method (comment 4).

Code fragment in figure 5.19 shows the Strategist behaviour. When
the AutonomousEngine is running, i.e., continuously fetching and dispatch-
ing Requests, the Strategist role is to observe and control the overall
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//. . .
/** Creates a virtual clock */
VirtualClock vc = new VirtualClock(); //1

/** Create an empty trace */
TimedTrace tr = new TimedTrace(vc); //2

/** Creates engine and set trace to be fetched */
AutonomousEngine eng = new AutonomousEngine(); //3
eng.addTrace(tr);

/** Gives control to the strategist */
Strategist.run(); //4
//. . .

Figure 5.18: Creation of an empty trace (with a virtual clock)

/** The run method for strategy control */
public static void run() {

initialStrategy(); //1
while (true) {

strategy(); //2
}

}

Figure 5.19: The Strategy

system state. The Strategist must build the initial trace (comment 1)
and periodically adjusts trace content (comment 2).

Code fragment in 5.20 represents a possible startup system strategy.
Since NF4 is the primary temporal requirement, the Strategist can fulfill it
by planning, once and for all, a sequence of display actions.

Finally, code fragment in 5.20 sketches the dynamic behaviour of the
system. When the state changes, the Strategist plans future behaviour as
follows:

� if the performed action was a Parse and the image is completed (com-
ment 1), then the Strategist plans a Convert (comment 2);

� if the action performed was a Read (comment 5), the Strategist may
modify the previous planned corresponding Parse action to change its
plannedBegin constraint. In other words, the Strategist tries to plan
the Parse action at a time that is earlier than the previously planned
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public static void initialStrategy() {
/** Plan maxFrameNumber frames display in advance */
for (int i = 0; i < maxFrameNumber; i++) {

TimeInterval tInt = new TimeInterval(
i*frameInterval, i*frameInterval+displayDuration);
Main.tr.addAction(new TimedRequest(tInt, "DISPLAY", "Displayer"));

}
}

Figure 5.20: Initial strategy

one. It can do it by retrieving in the past timeline the actualEnd of the
Read action and assigning it to the plannedBegin of the corresponding
Parse action (comments 6, 7, and 8). Even if somewhat redundant, this
specific planning emphasises how the observation of the past behaviour
may change the future behaviour;

� if the reading mechanism flags that new data are available (comment
9), the Strategist plans a pair of Read and Parse actions (comments
10 and 11, comments 12 and 13 respectively).

Experimental results have shown that the proposed methodology does
not affect neither performance nor functionality since the RTP player is
indistinguishable from the original version.
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public static void strategy() {
if (Main.tr.last().equals("PARSE")) {

if(ns.getNameable("Parser").imageCompleted()) { //1
/** Plans convert, a YUV image is ready */
TimeInterval tInt = new TimeInterval(Main.tr.now(), //2
Main.tr.next("DISPLAY").getPlanned().getBegin()); //3
Main.tr.addAction(new TimedRequest( //4

tInt, "CONVERT", "Converter"));
}

}
if (Main.tr.last().equals("READ")) { //5

/** Modifies the previously planned parse */
TimeInterval tlr = Main.tr.last().getActual(); //6
TimeInterval tlp = Main.tr.next("PARSE").getPlanned(); //7
tlp.setBegin(tlr.getEnd()); //8

}
if (ns.getNameable("Reader").available()>0) { //9

/** Plans a read and a parse */
TimeInterval readtInt = new TimeInterval( //10

Main.vc.now(), Main.vc.now() + readDeadline);
Main.tr.addRequest(new TimedRequest( //11

readtInt, "READ", "Reader"));
TimeInterval parsetInt = new TimeInterval( //12

Main.vc.now()+readDeadline, Main.vc.getEnd());
Main.tr.addRequest(new TimedRequest( //13

parsetInt, "PARSE", "Parser"));
}

}

Figure 5.21: The strategy
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Chapter 6

CLAM Approach Applied

6.1 Introduction

To verify the validity of the approach we propose to solve the “chicken and
egg” problem (as described in chapter 3), we have translated CLAM idea
into a concrete software implementation.

The design of the software system has been made according to Real-
Time Performers architecture, whereas its implementation has been made
exploiting the Real-Time Performers framework. The motivations of this
choice are manifold, among them we report:

� the architectural separation of concerns between data computation,
data distribution, and both data computation and data distribution
activations;

� the management at the programming level of the system temporal
behaviour which involves, among the others, the dynamic change of
activities relative execution speed.

The separation of concerns allows to obtain reuse. This is essential to
support any future development concerning the algorithms involved in each
steps of Perception, Localisation, and Modelling. The management of the
system temporal behaviour allow to face issues concerning the criticalities.

This aim of this chapter is to provide a description of the algorithmic
aspects of our implementation. In detail, this chapter will provide a de-
scription of the methods we use to implement each step of the Perception,
Localisation, and Modelling activities.

The description of both the system design and its concrete implementa-
tion will be provided in chapter 7. In the same chapter, details concerning
the system dynamics will be faced.

To emphasise the generality of CLAM approach, we remark that what
will be presented in the following sections is only one way of implementing
the activities.
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Whatever it will be the desired implementations, when designing a CLAM
system, it is important to treat separately the activities in order to exploit
CLAM principles.

6.2 Perception Activity

Perception activity addresses all the issues concerning the inputs captured by
the robot sensorial equipments. The aim of this activity consists in acquiring
data from the perceptive devices and elaborating them to produce suitable
information needed by both the Localisation and Modelling activities.

Referring to chapter 3, Perception activity must provide for CLAM pur-
pose the following kind of information:

� perceived robot pose: the robot pose (i.e., position and orientation)
inside the environment;

� perceived view : a representation of the environment made up of geo-
metrically located objects captured when the robot was at the corre-
sponding perceived pose.

Perception activity generated perceived located views, i.e., pairs perceived
view, perceived pose.

Perceived located views depend on the typology of the robot and the
devices it uses. In our experiments, we use a Robuter endowed of:

� 24 sonar sensors able to perceive the presence of an obstacle in a
range from 15 cm up to 600 cm, with an accuracy of the order of the
centimeter; the cone of the sonars is around 25◦ wide (not used for our
scope);

� a trinocular video system;

� an odometric system;

The trinocular video system is used to acquire images from which re-
constructing the perceived view ; whereas the odometric system is used to
acquire the robot pose. At the end of the Perception activity the following
information will be available:

� perceived view, reifying the CLAM perceived view PV . It is a set
of 3D segments (geometrical located objects, as defined in CLAM)
representing the robot visual perception about the scene. As the robot
moves, it acquires a triplet of images, one from each camera. Those
images are then elaborated to produce the robot current perceived
view consisting in a set of 3D segments. The robot founds the reference
frame to this set of segments.
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Figure 6.1: The Robuter
�

� perceived robot pose, reifying the CLAM perceived pose PP . It de-
scribes the robot position and orientation as provided by its odometric
system. This pose is referred to an initial reference frame.

Perception activity performs the following steps:

� Perceived View Acquisition, generating the perceived view ;

� Perceived Pose Acquisition, generating the perceived robot pose.

Since the pose and the view are related information, these steps must be
executed at the same time.

6.2.1 Perceived View Acquisition

The aim of this step is to provide the other activities with a suitable represen-
tation of the perceived view. In this specific implementation, the perceived
view consists in a 3D representation (3D view) of the environment likewise
perceived by the three cameras. A 3D view is constituted by exactly one set
of 3D segments whose reference frame is relative to the robot.

This step needs the following phases to be executed (see figure 6.2) in
the order in which are listed:

1. Images Acquisition: acquires one digitalised image from each camera;

2. Filtering : reduces the amount of noise affecting the images; pre-
processes them to produce for one of each an array of pixels expressed
in the image coordinate system;

3. Edges Detection: filters each images to obtain for each image a set of
significant features (in our case, edge points);
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4. Polygonal Approximation: determines, from each sets of edge points,
the corresponding 2D segments;

5. Stereo-matching : retrieves triples of homologous 2D segments in the
three image planes;

6. Triangulation: merge each triples of 2D homologous segments to ob-
tain the 3D segment in space coordinate.

Even if 3D view reconstruction is out of the scope of this work, a brief expla-
nation of the previous phases will be provided in the following subsections.

6.2.1.1 Images Acquisition

This phase drives image acquisitions from the three cameras. As the result
of the acquisition process, three digitalised images, one from each camera,
are available for further computation. Figure 6.3 shows an acquisition from
each camera executed during a test phase. Those images will be processed
by the “Filtering” phase.

Before entering into detail of the 3D view reconstruction, a brief expla-
nation about the image formation will be provided.

The cameras are modelled with the pinhole model [48]. Each camera is
modelled by its optical center C and its image plane P . A point P (x, y, z)
in the 3D space projects onto the image plane at an image point I(u, v) (see
figure 6.4).

This transformation (from P to I) is modelled by a linear transformation
T in homogeneous coordinates (perspective transformation).

If I∗ = [U V S]T are the homogeneous coordinates of point I and
[x y z]T are the coordinates of a generic point P in the scene, the following
relation holds:

I∗ =





U

V

S



 = T[x y z 1]T (6.1)

where T is a 3×4 matrix termed perspective matrix of the camera also
called Direct Linear Transformation (DLT) matrix. The determination of
the twelve (eleven are independent) parameters of T is made adopting a
experimental approach (camera calibration). The reason for this choice is
that the effective transformation from the absolute reference frame to the
camera reference frame depends on a number of physical parameters that are
not known. Those parameters are termed intrinsic and extrinsic parameters.
The camera calibration approach is the process of estimating those intrinsic
and extrinsic parameters. The parameters to evaluate are eleven instead
of twelve since we deal with homogeneous coordinates. Six of them are
extrinsic and interest the camera (i.e., the reference frame of the camera
with respect to the reference frame of the real world), the other five are
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Figure 6.2: Perceived 3D view reconstruction steps
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Figure 6.3: Three images acquired by cameras on Robuter
�
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Figure 6.4: The pinhole camera model

intrinsic and are related to the reference frame of the image plane (three are
referred to rotational and translational parameters, one to the scale factor,
and the last concerns the position of the images axes u and v).

The estimation process assumes that both the 3D vectors Mi of N refer-
ence points Mi and the 2D image coordinates (ui, vi) are given, and consider
the problem of estimating T from these measurements. Six non-coplanar
points are sufficient [40]. In practise, dozens of points are used, and the pa-
rameters of T are computer either by least squares or by Kalman filtering.

6.2.1.2 Filtering, Edge Detection, and Polygonal Approximation

Filtering is the first phase in the image processing elaboration. The aim is
to reduce the noise in each image: each image preprocessed to increase its
signal noise ratio (SNR).

Then, Edge Detection phase discovers the contours of objects in a scene.
It is an operation difficult for a computer. Some of the reasons are the
following ones:

� the notion of object is not understood. Indeed, the goal of computer
vision is to identify objects in scenes;

� an edge is a discontinuity of some sort of the image intensity func-
tion. We have the problem of measurement noise. This intensity is
a physical measurement that is subject to noise. The detection of
discontinuities of image intensity can be achieved mathematically by
computing derivations of this function;

� the source of an edge may be of different type: some edges comes
from shadow cast by objects, some from variations in the reflectance
of objects, and so on.
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This operation is generally performed analysing the image luminance
intensity: qualitatively, image contours correspond to discontinuities of the
luminance intensity. Contour points are defined in regions of transition
corresponding to a strong luminance intensity gradient1. A lot of extraction
techniques are based on this consideration (examples are zero crossing and
local maxima, see [6] for details).

Next step in image processing elaboration is the Polygonal Approxima-
tion of the points extracted from Edge Detection. The application of a
Polygonal Approximation replaces all quasi-linear portions of bounds with
straight segments. The first step groups points in blobs using a similitude
criteria (e.g., the gradient direction). Once obtained the blobs, they may be
approximated to segments using techniques applied like recursive splitting,
Berthord algorithm, and others (see [6]).

The technique used in our implementation is quite similar to Fast Line
Finder [58] algorithm. The sequence of operations performed are the follow-
ing:

� module (see figure 6.5) and direction (see figure 6.6) calculus of the
luminance intensity gradient executed for every pixel in the image;

� quantization of the gradient direction for every pixel;

� pixels clustering to create blobs (see figure 6.7) containing points that
are potentially constituting a segment. This operation is performed
by grouping pixels that have the following common characteristics for
the gradient: its module over a prefixed threshold and with an homo-
geneous direction;

� the estimation of the segment presents in every blob with least square
(LM) algorithm.

The result of Polygonal Approximation is a set of 2D segments in the
image plane for each camera.

6.2.1.3 Stereo-Matching

Stereo-matching phase deals with the problem of relating segments in the
three image planes, i.e., finding triplets of homologous segments that are
projections of the same segment in the 3D space. The result of this phase
is a set containing triples of homologous 2D segments.

The techniques adopted in literature are divided into two principal cat-
egories: methods that use luminance schemas, and methods that execute
matching of contours. The method adopted in CLAM belongs to the second
categories and executes a research of the correspondence between segments.

1How much strong is one of the problems.
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Figure 6.5: The gradient module
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Figure 6.6: The gradient direction
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Figure 6.7: The blobs
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A brief introduction to the stereoscopic vision and the related problem
of matching will be provided, emphasising the necessity in introducing the
third camera. For further information the reader can refer to [6] and [41].

We use more than a camera since it is not possible to deduce the ge-
ometry of an observed scene from a single image. Instead, it is possible to
determinate the position of points observed if multiple images of the same
scene are taken from different viewing angles. The process of combining
multiple images of a scene to extract three-dimensional geometric informa-
tion is called stereo vision. The simplest stereo process uses two images and
is named binocular stereo vision. The term trinocular stereo vision is used
when three camera are used.

Using a plurinocular system, we have the problem of relating the infor-
mation of each camera. This problem is known as stereo matching problem.
Given n camera, and n sets of planar features (points, segments, blobs, and
so on) extracted from the images, how to detect homologous features, i.e.,
how to detect features belonging to different images that are projections of
the same feature in the 3D space?

One solution to the matching problem resides in the geometry of stereo
vision. We will describe the geometry of stereo vision in a binocular system,
and we will show how a third camera will be useful to disambiguate matches.

Given point I1 on image plane π1, we will seek its homologous I2 on the
image plane π2 (see figure 6.8). We define:

� base line, the line passing through the two optical centers C1 and C2;

� epipolar plane, the plane passing through the base line and the 3D
point P ;

� epipolar lines, the intersections between the epipolar plane and the
image planes. Referring to figure 6.8, D21 is the epipolar line on the
image plane π2 associated with I1, while D12 is the epipolar line asso-
ciated with I2. Those lines are called conjugate epipolar lines.

Given I1, the point I2 will belong to the epipolar line D21. This is
justified by the following considerations. The set of 3D points the image of
which is the point I1 belongs to the line connecting I1 and C1. The image
of this line on camera 2 is the epipolar line associated with I1 (conjugate
epipolar line D21). The problem is completely symmetric. If we consider
the epipolar plane, this one intersects the images planes π1 and π2 along the
conjugate epipolar lines D12 and D21. Any point of the epipolar line D12

has its potential match in the conjugate epipolar line D21, and vice versa.
Any epipolar line of image 2 is the image of a line passing through C1, and,
consequently, the epipolar lines of image 2 form a bundle of lines with center
in point E2 (the image of C1 in camera 2). Point E2 is termed epipole of
image 2. The same holds for camera 1: E1 is the image of C2 in camera 1
and so it is the epipole of image 1.
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Figure 6.8: The geometry of a binocular stereo video system

Once the perspective transformations matrix of camera 1 and camera 2
are known, then the epipoles may be computed together with the epipolar
lines (see [6] for details). The computation of the epipolar lines (that is
called geometric constraints of stereo vision) is not sufficient to determinate
stereoscopic matches. For a point in image 1 there exist an infinity of possible
homologous points in image 2. Additional physical constraints are needed.
Those are divided into local and global constraints. Considering segments
to be matched, in the first set we find orientation and length, while in the
second, uniqueness and ordering.

If we introduce a third camera (trinocular stereo vision) the validity
of a match could be tested directly by verifying the presence of a specific
point in image 3. This consideration leads to gain simplicity, reliability,
and accuracy. For a comparatione between binocular and trinocular stereo
vision see [26] and [25].

The geometry of a trinocular stereo video system is sketched in 6.9.
Referring to that figure, we have:

� three cameras modelled by their optical center Cj and their image
plane πj , where j = 1, 2, 3;

� given a 3D point P (x, y, z), its Ij image in camera j is given by the
intersection of the line passing throw P and Cj with the image plane
πj;

� points I1, I2, and I3 are homologous;

� every camera pair (i, j) satisfies the epipolar constraints. Thus, a
point P in the real space will produce three epipolar planes whose in-
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Figure 6.9: A Trinocular video system and the epipolar lines

tersections with the images planes will provide three pair of conjugate
epipolar lines;

� if a triple I1, I2, and I3 are homologous, every Ii will be at the inter-
section of the two epipolar lines Di,j and Dj,i (associated to the other
homologous Ij and Ik);

� to verify if a pair of image point Ii and Ij are homologous, it is sufficient
to test the existence of the third homologous at the intersection of the
epipolar lines Dk,i and Dk,j inthe πk image plane.

The technique adopted in CLAM exploits both the trinocular epipolar
constraints described above and length as local constraint.

The algorithm may be summarised as follows. Defining S1, S2, and S3

the sets of segments respectively in image 1, 2, and 3, given a segment s1i

in S1, then the algorithm:

1. computes the epipolar lines of its extremes (A and B) in image 2;

2. finds in S2, all the segments intersecting the two epipolar lines or that
segments having extremes quite near to the epipolar lines. The result
is a subset of S2 termed S2G

containing the sets of candidate segments
for matching;

3. computes the epipolar lines of s1i
extremes (A and B) in image 3;
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4. for every segment in S2G
,

(a) computes the epipolar lines of its extremes in image 3;

(b) calculates the intersections with the epipolar lines evaluated at
point 3;

5. finds in the set S3 the segment that is more near and elects it as the
virtual candidate segment;

6. finds near the virtual segment, that real segment that satisfy the local
constraint (length).

The results of this phase are sets of homologous segments. Each set
consists of one segment from each image. Figure 6.10 shows the results of
the stereo-matching.

6.2.1.4 Triangulation

The aim of this phase is to provide the current perceived view, in our case
a perceived 3D view constituted by 3D segments.

The previous phase (stereo matching) provides a set of homologous seg-
ments in the image planes. This phase deals with the identification of the
three-dimensional segments that have produced the triplets of homologous
segments. This operation searches the 3D segment that better approximates
the three image segments that belong to a triplet. This operation consists
in two steps:

1. identification of the support line R of the three-dimensional segment
D;

2. identification inside R of the segment D.

Step 1 is made using the Kalman filter to obtain the optimum estima-
tion of the parameters of line R. The process starts from the parameters of
the two-dimensional lines that support the three homologous segments. The
measurement equation is f(xi, a) = 0. An estimation of the initial parame-
ters is made using the complete representation of a line. Once obtained the
initial estimate â0 and its covariance matrix S0, next step is to linearized the
equation of measurement f(xi, a) = 0 whit values quit near to the current
estimation (âi, âi−1). Figure 6.11 sketches the construction of the line R
from the estimated segments d′

1, d′2, and d′3.

Step 2 deals with the detection of the 3D segment inside the line R.
At this aim, the interpretation lines aiCi and biCi are calculated for every
image segment di where i = 1, 2, 3. Point Ai and Bi on line R are obtained
such as the distance from lines aiCi and biCi respectively is minimum. This
operation permits to compute segments A1B1, A2B2, and A3B3. Noise
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Figure 6.10: Stereo-matching results
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Figure 6.11: Construction of the line R

corrupting images, leads to have that A1 6= A2 6= A3 and B1 6= B2 6= B3.
The segment D, image of the triplet d1, d2, and d3, is so determined as
intersection of segments A1B1, A2B2, and A3B3.

Figure 6.12 shows the construction of the interpretation lines for segment
d′i and the identification of its extremes in the 3D space, whereas figure 6.13
shows the construction of a 3D segment as intersection of the three 3D
segment that have produced the projections d′

1, d′2, and d′3.

At the end of the “Perceived View Acquisition” phase all the sensorial
information coming from the three camera are fused to generate a set of
3D segments representing the perceived view and whose reference frame is
referred to the robot, i.e., the robot kinematics center is the origin of their
reference frame.

Finally, the segments returned by the Perception activity are enriched
with a factor of uncertainty. The uncertainty is represented by a 6×6 sym-
metric matrix expressing the covariance.

6.2.2 Perceived Pose Acquisition

The pose acquisition phase aim is to provide a suitable representation of
the robot perceived position and orientation as required by the CLAM app-
proach. With the adjective “suitable”, we mean that the pose should be
referred to the coordinate system of the previous robot pose. Indeed, when
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Figure 6.12: The interpretation lines and points Ai and Bi

Figure 6.13: Determination of the extremes of 3D segment D
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a robot moves, it really performs a displacement with respect to its previous
position. For this reason, it is conceptually more correct thinking in terms
of relative position with respect to the previous one and not to the abso-
lute one. The odometric system should directly returns this displacement,
i.e., the returned pose should be referred to the coordinate system of the
previous robot pose.

When the odometric system does not return such kind of position, then
some adjustments have to be performed. At this aim the information needed
to perform this modification are the following:

� the current odometric robot pose, i.e., the robot position as returned
by the odometric system;

� the previous odometric robot pose, i.e., the position in which the robot
was before executing the displacement that lead it at the current po-
sition.

From the above considerations, to achieve a suitable perceived robot
displacement, this phase needs the following steps to be executed (see figure
6.14):

1. Odometry Acquisition: it acquires the robot pose as provided by the
odometric system. The result of this step is a robot pose called odo-
metric pose;

2. Perceived Robot Pose Computation: if needed, it adjusts the odomet-
ric pose to provide a suitable representation of the perceived robot
pose. At this aim, this step exploits the current odometric pose and
the previous odometric pose to compute the rotational and transla-
tional parameters necessary to express the odometric pose in the the
coordinate system of the previously perceived robot pose.

6.2.2.1 Odometry Acquisition

The robot is equipped with an odometric system continuously evaluating its
pose. The pose is described by the pose vector in equation 6.2.

pt =
[

∆x ∆y ∆θ
]T

(6.2)

where ∆x is the displacement executed by the robot referred to the x axis,
∆y is the displacement executed by the robot referred to the y axis, and ∆θ

is the rotation executed by the robot around the z axis.
The pose vector in equation 6.2 is referred to a initial state of the odo-

metric system. An initial state represents, in every respect, a coordinate
system. If the initial state is set once for all at the beginning of the robot
exploration and it is not changed during robot operations, then each time the
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Figure 6.14: Perceived robot pose steps

Figure 6.15: The absolute odometry
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Figure 6.16: The delta odometry

odometric system returns the odometric robot position, it is always referred
to this initial state. This situation is sketched in figure 6.15.

To achieve the desired robot perceived pose (i.e., referred to the previous
perceived robot pose) as sketched in figure 6.16, this value must be reset at
each movement. If it is not possible, then, knowing the initial state value, a
transformation of the odometric pose is required.

This transformation is performed by the following step.

6.2.2.2 Perceived Robot Pose Computation

The aim of this step is to compute (if needed) the correct estimation of
the translational and rotational parameters needed to derive the perceived
robot pose (representing a displacement) from the odometric one (see figure
6.16). Then, this step, exploiting these computed parameters, calculates the
perceived robot pose.

Since the robot can translate only on x and y axis, and can rotate only
around the z axis, this step must compute the (x, y) translation parameters
and the rotational parameter θ around z axis. This computation will also
provide the rototranslation parameters that will be used in the Association
phase of Localisation activity (see subsection 6.3.2).

The rototranslation parameters computation is made as follows.

Let be RF1 the coodinate system realised by the previous odometric
robot pose. RF1 is known with respect to the odometry initial state (that
realises the coordinate system RF0). Concerning 6.3, let be O1 the origin
of the coordinate system RF1 with respect to RF0, and ∆Θ10 the rotation
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angle around the z axis.

O1 =





∆X10

∆Y10

∆Z10



 and ∆Θ10 (6.3)

Whereas, let be RF2 the coordinate system realised by the current odo-
metric robot pose. Likewise RF1, RF2 is known with respect to the odom-
etry initial state too. Similarly (6.4), let be O2 the origin of the coordinate
system RF2 with respect to RF0, and ∆Θ20 the rotation angle around the
z axis.

O2 =





∆X20

∆Y20

∆Z20



 and ∆Θ20 (6.4)

An antirototranslation of a point p2 = (x2, y2, z2) from RF2 to RF0 is
given by the matrix in 6.5.





cos(∆Θ20)x2 − sin(∆Θ20)y2 + ∆X20

sin(∆Θ20)x2 + cos(∆Θ20)y2 + ∆Y20

z2



 (6.5)

Whereas, a rototranslation of the same point p2 from RF0 to RF1 is
given by matrix in 6.6.





















cos(∆Θ10 − ∆Θ20)x2 + sin(∆Θ10 − ∆Θ20)y2+
cos(∆Θ10)(−∆X10 + ∆X20) + sin(∆Θ10)(−∆Y10 + ∆Y20)

− sin(∆Θ10 − ∆Θ20)x2 + cos(∆Θ10 − ∆Θ20)y2+
sin(∆Θ10)(∆X10 − ∆X20) + cos(∆Θ10)(−∆Y10 + ∆Y20)

z2





















(6.6)

Simplifying 6.6 (neglecting z coordinates), we obtain the formula in 6.7.

R(∆Θ20−∆Θ10)

[

x2

y2

]

+R(∆Θ01)

[

∆X20 − ∆X10

∆Y20 − ∆Y10

]

= R21

[

x2

y2

]

+T21 (6.7)

Applying equation 6.7, we will be able to refer the current odometric
robot pose with respect to the coordinate system realised by the previous
odometric pose. The result is the perceived robot pose as required by CLAM
representing the robot displacement.

Finally, likewise the segments, the robot perceived pose returned is en-
riched with a factor of uncertainty. The uncertainty is represented by a 3×3
symmetric matrix expressing the covariance.
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6.3 Localisation Activity

Odometry is intrinsically error prone. Even if the errors are small at each
movement, they are incrementally added so that we achieve a big error.
In fact small errors (caused by effects such as drift or slippage), multiply
overtime. Such effects are relatively easy to compensate if a model of the
environment is readily available.

The aim of Localisation activity is to estimate the robot pose trying to
reduce the errors produced by the odometric system. Exploiting the CLAM
approach, key concept concerning Localisation activity is that it operates
assuming a known environment. This means that the kind of information
describing the environment that Localisation exploits for its purpose are
supposed to be corrected (i.e., the perceived view is supposed to be correct).

To fulfill this goal, the robot pose estimation is computed exploiting the
following kind of information as described in chapter 3:

� current perceived located view

� a reference located view

To achieve an estimation of the robot pose, as specified in chapter 3,
Localisation activity is constituted by the following phases (see figure 3.2):

1. Normalisation: relates current perceived view and reference view to a
common reference system;

2. Association: for each segment (geometrically located object) belonging
to the current perceived view, looks for its homologous (i.e., represent-
ing the same real entity in the environment) in the reference view;

3. Registration: from the pairs of homologous segments, estimates the
current robot pose.

6.3.1 Normalisation

Normalisation phase aim it to relate current perceived view and the refer-
ence view to a common reference system. This CLAM implementation re-
lates current perceived view to the coordinate system of the reference view.
Another solution would have been to make a sort of forecasting concerning
the reference view: the reference view would be referred to the coordinate
system of the current perceived view.

At the end of Normalisation, we will have two sets of 3D segments ex-
pressed in the same coordinate system.

Thus, the aim of this phase is to change the reference system of the cur-
rent set of perceived 3D segments. The normalisation of each 3D segments
is executed as described below.
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Let be pi
1 = [x1, y1, z1]

T and pi
2 = [x2, y2, z2]

T the extremes of a segment
si = [x1, y1, z1, x2, y2, z2]

T belonging to the current perceived view. The
current perceived robot pose is given by pi = [∆X,∆Y,∆Θ]T . Both the
perceived view and the perceived robot pose are the results of the Perception
activity as described in section 6.2. Applying the rotation matrix 6.8 and
the translation vector 6.9 we obtain in 6.10 the rototranslated segment si

rt.

R =

















cos(∆Θ) sin(∆Θ) 0 0 0 0
− sin(∆Θ) cos(∆Θ) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(∆Θ) sin(∆Θ) 0
0 0 0 − sin(∆Θ) cos(∆Θ) 0
0 0 0 0 0 1

















(6.8)

T =

















∆X

∆Y

0
∆X

∆Y

0

















(6.9)

si
rt =

















∆X + cos(∆Θ)x1 + sin(∆Θ)y1

∆Y − sin(∆Θ)x1 + cos(∆Θ)y1

z1

∆X + cos(∆Θ)x2 + sin(∆Θ)y2

∆Y − sin(∆Θ)x2 + cos(∆Θ)y2

z2

















(6.10)

Concerning the segment uncertainty, it is updated when the segment is
rototranslated. Let be:

� Λi
s the covariance matrix of segment si;

� Λi
p the covariance of the robot pose pi;

� DSXY Θ the matrix constituted by appending as columns the ∆X val-
ues, and ∆Y values obtained from equations 6.9 (see equation 6.11);

� DSsi the matrix constituted by appending as columns x1 , y1, z1, x2,
y2, and z2 values obtained from equations 6.9 (see equation 6.12).
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DSXY Θ =
















1 0 0 1 0 0

0 1 0 0 1 0

− sin(∆Θ)x1+ − cos(∆Θ)x1− 0 − sin(∆Θ)x2+ − cos(∆Θ)x2− 0
cos(∆Θ)y1 sin(∆Θ)y1 cos(∆Θ)y2 sin(∆Θ)y2

















(6.11)

DSsi =

















cos(∆Θ) − sin(∆Θ) 0 0 0 0
sin(∆Θ) cos(∆Θ) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(∆Θ) − sin(∆Θ) 0
0 0 0 sin(∆Θ) cos(∆Θ) 0
0 0 0 0 0 1

















(6.12)

Then, the new covariance for segment si
rt will be given by equation 6.13.

Λsi
rt

= DST
XY Θ · Λi

s · DSXY Θ + DST
si · Λ

i
p · DSsi (6.13)

At the end of this phase, the current perceived view is geometrically
expressed in the same reference system of the reference view. Consequently,
we have two sets of 3D segments all referred to a common coordinate system.

6.3.2 Association

The aim of Association phase is to find pairs of homologous segments, i.e.,
pairs of segments belonging to different views, but representing the same
segment in the real world.

The association may be realised exploiting different approaches all based
on geometric constraints. Those approaches differ each other for the geo-
metric features compared. Same examples may be found in [8], [8], [60].

The CLAM features are segments and we adopt an approach based on
the minimum distance between segments.

The CLAM association mechanism is based on a simplified version of
the Hausdorff distance [49]. Given two segments A1B1 (belongin to the
current perceived view) and A2B2 (belonging to the reference frame), their
minimum distance is given by:

min(‖A2 − A1‖ + ‖B2 − B1‖), (‖B2 − A1‖ + ‖A2 − B1‖) (6.14)
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Since we need univocal pairs of segments, for those that do not satisfy
this constraint, it is chosen the pairs that have the minimum distance. For
this version of CLAM, the segments uncertainty is not taken into account.

The problem of mismatch (i.e., the problem of relating wrong segments)
is solved setting a threshold for the distance.

As result of this phase, we have a set constituted by pairs of 3D segments
representing the real segment.

6.3.3 Registration

This phase constituites the core of the Localisation activity, since it provides
an estimation of the correct robot pose exploiting the results achieved by
the phases previously explained. Referring to chapter 3, CLAM approach is
based upon the consideration that Localisation activity estimates the robot
pose inside an environment that is assumed known.

For this reason, if the sets of segments that have been associated in the
previous phase do not fit perfectly (they are assumed correct), then this
error should be caused by the erroneous robot perceived pose.

Then, the aim of this phase is to correct the pose provided by the odom-
etry system by finding the best rototranslation parameters between current
perceived and reference views that realises the best fitting/association of the
segments.

The technique used in CLAM is an iterative one based upon the Monte
Carlo method. The method iteratively evaluates the new distance of the
segments pairs each time new rototranslation parameters describing the po-
tential robot pose are generated in a randomatic way. Finally, the roto-
translation that have produced the minimum distance is selected as the best
estimation of the robot pose.

At the end of the Localisation activity, we have deduced an estimation
of the robot pose that corrects the one returned by the odometric system.
Exploting CLAM principles, the computation of the estimated pose has been
made upon the condition that the information provided by the trinocular
stereo system is correct.

Last consideration concerns the iterativeness of some of the phases con-
stituting the Localisation activity: the “Normalisation”, “Association”, and
“Registration” phases may be iterated to affine the estimation of the robot
pose. In this case, the input for the “Nornalisation” activity is the result of
the “Register” activity.

6.4 Modelling Activity

The Modelling activity consists in incrementally updating the map of the
environment the robot is exploring.
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As the Localisation activity assumes the correctness of the reference
located view and tries to correct the pose, the Modelling activity considers
the pose correct and tries to adjust the visual information.

This activity, when executed, takes into account all the views acquired
form the last time the activity has been performed.

The views that will update the world model are all referred to the abso-
lute reference frame. Our approach to map building is extremely selective
since it introduces in the world model only those segments that have been
identified in at least two views. At the first run, this seems to be reductive,
but we should not forget that the robot is exploring an unknown environ-
ment. For this reason, it moves slowly and covers a brief distance at each
movement. It is highly probable that what it sees at time t, it will see again
at time t + 1. Adding in the world model segments that have been never
matched, will lead to introduce something that really does not exist: with
high probability those unmatched segments derive from, for instance, an
error in the Perception activity.

For the above reasons, the Modelling activity incrementally constructs
the world model merging only those segments that have been associated in
the Association phase of Localisation activity.

At this aim Localisation, for each associated segments, keeps an history
of previously associations of the same segment. To explain this concept, an
example will be provided. Suppose that at time t the segment st belonging
to current perceived view has been associated to segment st−1 perceived at
time t − 1. The Localisation activity (at time t + 1) associates the segment
st+1 with the segment st. This means that st−1, st, and st+1 are all the
representation of the same real segment.

This history of associations is related to the reference frame of the world
model. The decision of submitting the rototranslation of segments in the
absolute reference frame to the Localisation activity is motivated by the
consideration that positioning issues concern only Localisation. We apply
what is called separation of concerns: the management and the knowledge
of robot pose is matter of Localisation, whereas the management and the
construction of the world model is matter of Modelling.

From the consideration above described and referring to figure 3.3, Mod-
elling activity consists in the Fusion and Integration phases.

6.4.1 Fusion

Localisation activity, after the updating of the robot pose, refers the asso-
ciated segments to the absolute reference frame (i.e., the reference frame of
the world model) and keeps track of a linked list of associated views (i.e.,
subsets of the views containing also the associated segments).

The Fusion phase fuses together all the homologous segments belonging
to the linked list and adds the resulting segments in the world model.
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The fusion operation estimates the position of the real segment and up-
dates its uncertainty. In doing so it exploits equation 6.15 to determinate the
new covariance matrix, and equation 6.16 to estimated its current position.
This is a simplification form of Kalman filter.

ΛŝM
= (Λ−1

st
+ Λ−1

st−1
)−1 (6.15)

where Λst
is the covariance matrix of the segment in the perceived view

acquired at time t, and Λst−1
is the covariance matrix of the segment in the

perceived view acquired at time t − 1.

ŝM = ΛŝM
(Λ−1

st
st + Λ−1

st−1
st−1) (6.16)

where st is the segment in the perceived view acquired at time t, and st−1

is the segment in the perceived view acquired at time t − 1.

6.4.2 Integration

This phase deals with the integration of the fused segments in the world
model. Integration means that the segments are someway introduced in the
world model :

� if the fused segment is a new segment, then it is simply added to the
world model ;

� if the fused segment corresponds to a pre-existent segment in the world
model, than the two segments are fused exploiting the technique used
by the Fusion phase.

To verify if a fused segment reifies a real segment whose representation is
already presents in the world model, an association mechanism is exploited.
We use the same exploited in the association phase of Localisation activity.
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Chapter 7

RTP Exploitation for CLAM

7.1 Introduction

CLAM approach is based upon the concurrent execution of Localisation
and Modelling constituting the two main activities a robot executes when
exploring an unknown environment with uncertain information about its
pose.

As described in chapter 3, even if Localisation and Modelling are related,
they act on different time scales so that they may be considered mostly
independent one another. When some kind of synchronisation in needed,
a criticality arises. A suitable Strategy, relying on the observation of the
criticalities, adjusts the relative rates of activities to meet as soon as possible
the synchronisation requirements.

Statements like “different time scale”, “. . . some kind of synchronisa-
tion . . . ”, “. . . suitable strategy . . . ”, “. . . observation of criticalities . . . ”,
“. . . adjusts the relative rates . . . ”, recall concepts adressed in Real-Time
Performers. Time scales, Strategy, dynamic temporal management at the
application level are the core concepts of the Real-Time Performers architec-
ture (see chapters 4 and 5). Real-Time Performers allows to build systems
in which different timings drive the execution of the activities making the
system itself. RTP operates a separation of concerns between information
processing (both elaboration and information) and policies driving (strat-
egy) the execution timing of the processing. Finally, RTP reifies a set of
suitable architectural abstractions modelling the temporal behaviour of a
computational system.

However, the major contribution given by RTP exploitation in CLAM
is the management of criticalities. Since a criticality may be solved by
adjusting the activities relative execution speeds, and RTP provides the
appropriate mechanisms, then the RTP is fits perfectly for the design and
implementation of CLAM systems.

Figure 7.1 sketches how the concepts related to the the CLAM approach
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Figure 7.1: The RTP exploitation for CLAM

are reified through the RTP ones.

The chapter is organised in two main sections: the first describing the
system structure (information types, i.e., visibles, and computational com-
ponents, i.e., Performers), whereas the second describing system dynamics.
In this section we will present both system normal behaviour (concurrence),
and system criticalities management (synchronisation).

In the following, several UML class diagrams will be presented. The
convention used is that in general if a class belongs to a different package, it
will presented with no detailed information. Moreover, if the class belongs
to the RTP framework, it will be filled with blue colour, whereas if the class
belongs to a different package defined in CLAM, it will be filled with yellow
colour.

7.2 General System Structure

Since a self-localisation and mapping reconstruction system for autonomous
robot exploration is quite complex, to not bore the reader, only main con-
cepts will be provided in the sequel.

The design of the system has been made trying, when possible, to oppor-
tunely separate system information, computational entities, and execution
policies defining CLAM.

Consequently, a prior main separation (see figure 7.2) is made between
system data (type package), computational components (performers pack-
age), and strategy (strategy package).

types package contains classes that (directly or indirectly) constitutes
the Visible variables as defined in chapter 4; performers package contains
classes that define CLAM Performers; strategy package contains classes
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Figure 7.2: The main packages

for describing system dynamics.
Section 7.3 deals with the classes defining the information in the CLAM

system, section 7.4 deals with the Performers defined for CLAM purpose,
and section 7.5 deals with the system dynamic behaviour.

Referring to chapter 3, three major activities define CLAM system: Per-
ception, Localisation, and Modelling :

� Perception deals with information acquisition (and pre-elaboration);

� Localisation deals with robot pose estimation;

� Modelling deals with environmental map reconstruction.

types and performers packages are organised into sub-packages reflect-
ing the separation between the CLAM activities as above remarked.

7.3 Information

The classes of information exploited by the CLAM system are arranged in
the packages sketched in figure 7.3.

Packages relevant for our discussion are the basic, teh perception, the
localisation, and the modelling ones. The others constitute the basis for
their definition. For clarity purpose, a very brief explanation of the classes
these basic packages comprise will be given:

� geom package addresses geometrical issues providing the following classes:
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Figure 7.3: The packages constituting types
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– Point3D modelling a generic point in a 3D space;

– PoseVector class modelling a translation over the (x, y) plane
and a rotation around the z axis. An instance from this class
models a generic robot position;

– Segment3D class modelling a segment in a 3D space. As explained
in section 6.2.1, one of the results of Perception activity (con-
cerning trinocular stereo system), is a 3D view made up by 3D
segments. A 3D segment is defined by a pair of 3D points (its
extremes). Beside the others, the class publishes two interesting
methods: rototranslate(PoseVector), and antirototraslate(PoseVector).
The first method rototranslates the 3D segment with respect to
the rototranslation parameters in input. The result is a 3D seg-
ment referred to another coordinate system corresponding to a
previous (temporally speaking) robot position. The second one
rototranslates a segment too, but this rototranslation may be
view as a forecast of its position: given a 3D segment referred to
a coordinate system generated by the robot position at time t,
the method computes the coordinates of the 3D segment suppos-
ing that the robot at time t + 1 will be in the position given by
the input argument;

� uncertainty package contains classes modelling the imprecision of
the perceptive devices, of the image processing algorithms, and of
the errors in estimating both robot pose and segments belonging to
the world model. The uncertainty is expressed by means of ma-
trixes. SegCovariance models the matrix covariance of a 3D segment,
whereas PoseCovariance models the matrix covariance of the robot
pose;

� math package provides classes exploited in the uncertainty package.
Since uncertainty is represented in a matrix form, this packages defines
Matrix class and a set of classes supporting the operation between
matrixes.

7.3.1 Basic types

The basic package deserves more discussion since it contains basic classes
from which the information exploited by the three activities is built.

The overall organisation of the package is sketched in figure 7.4.

As emphasises by the italic typeface used for the name of the classes,
the concepts here described are abstract, i.e., they do not represent concrete
entities. They model general concepts that will be specialised by concrete
representations. As mentioned in chapter 1, the aim of this CLAM im-
plementation is to verify the validity of the approach. Maintaining basic
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Figure 7.4: The classes of the basic package

methods and classes as general as possible, it guarantees their reuse for
different implementations of Localisation and Modelling exploiting CLAM
approach.

� Index class models a general estimation value of reliability. An Index

is associated to every kind of information the value of which is sub-
jected to satisfy some kind of constraint. This class is general enough
to represent both the goodness and the badness of the information
to which it is associated. The only abstract method it publishes is
getValue() returning the actual value of the index.

� Confidence class defines the level of plausibility of the entity to which
the confidence is referring to. The higher is the confidence value, the
higher is the level of reliability of the entity to which it belongs. On
the contrary, the lower is the confidence value, the lower is the level of
reliability of the entity to which it belongs.

� Diffidence class defines the level of plausibility of the entity to which
the diffidence is referring to. The lower is the diffidence value, the
higher is the level of reliability of the entity to which it belongs. On
the contrary, the higher is the diffidence value, the lower is the level
of reliability of the entity to which it belongs. Examples of Diffidence
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values are the PoseCovariance and the SegCovariance classes: they
defines the level of confidence of a position and a segment respectively.
Diffidence is a general concept that must be opportunely reified;

� Position class defines a general position in a 3D space. A position is
completely defined by rotational and translational parameters (reified
by the association with PoseVector class), and by its level of uncer-
tainty (reified by the association with the PoseCovariance class). A
position specifies where the robot is, i.e., it specifies the robot pose
with respect to a general coordinate system. This definition is general
enough, since no assumption is made about the coordinate system is
used. Position class reifies the robot pose P defined in section 3.2 by
equation 3.1;

� AbsolutePosition and DeltaPosition classes are special kind of po-
sitions (they are subclasses of Position class) representing respec-
tively the robot pose with respect to an absolute coordinate system
and to a relative one. DeltaPosition conceptually represents the
displacement the robot make at each movement;

� Segment class models a general 3D segment as handled by CLAM ac-
tivities. What we mean is that a pure geometric information about a
segment is not sufficient to accurately perform Localisation and Mod-
elling activities: a Segment instance is not only defined by geometrical
information (reified by the association with Segment3D class), but is
enriched by uncertainty (reified by the association with SegCovariance

class) specifying the confidence level of the segment geometry and ex-
istence. No assumption is made about the typology of segment: it may
be a segment perceived by the robot, a segment of the world model,
the segment of the reference view, and so on. Segment class reifies a
geometrically located object gloi defined in section 3.2;

� View class is defined as an aggregation of Segment instances. It models
a general view. No assumption is made about the origin of the view,
i.e., it may represents exactly the view perceived by the robot, or a
view referred to another coordinate system, or the world model, and
so on. The concept here described is simply that a set of someway
related segments are grouped to form a view. View class reifies the
view V defined in section 3.2 by equation 3.2;

� LocatedView class associates a view to the position to which is re-
ferred. As sketched in figure 7.4, LocatedView class is associated with
DeltaPosition class instead of Position class. This is justified by
the fact that for related view we intend views whose coordinate system
is not the absolute one. LocatedView class reifies the located view LV

defined in section 3.2 by equation 3.3;
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Figure 7.5: The classes of the perception package

� Criticality interface is a key concept in CLAM. This class models
any kind of information useful to drive opportunely CLAM execution.
Referring to chapter 3, this class represents the information that is
constantly under control when performing activities in CLAM. Pre-
cisely, this is the information exploited to plan correctly the beaviour
of the system. If a criticality arises, then an opportune strategy should
be adopted. This means that if a criticality arises, then a notification
is made to communicate that a greave situation is occurred. This
class may be think as modelling an exception that may occur during
execution. This is a general concept that must be opportunely reified.

7.3.2 Perception types

Perception activity exploits classes of information belonging to this package
(see figure 7.5). All the classes belonging to this package have assigned the
<< immutable >> stereotype. This property means that, when instances
are created, they do not change own state during their lifecycle. This is an
important property that help in maintaining well distinct the information
types exploited during the CLAM activities execution. The perception types
are the following:

� PerceivedPosition class describes a robot position as perceived by
the odometric system. Since the odometric system may return both an
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absolute position or a relative one (see subsection 6.2.2.1), this class
is a general position (i.e., it is a specialisation of the Position class);

� Odometry class models the robot odometry. It represents the odometry
state. The state is expressed by a current acquired position and a
previous one (in temporal sense). These concepts are modelled by the
two associations that this class has with the PerceivedPosition class.

� PerceivedDeltaPostion class models the displacement the robot exe-
cutes at each movement. The class specialises the DeltaPosition one,
and, consequently, it reifies the rototranslation parameters that must
be used to refer actual robot pose to another one. PerceivedDeltaPostion
class reifies the perceived pose PP defined in section 3.2 by equation
3.4;

� PerceivedSegment class represents the 3D segment as perceived by
the three cameras. A PerceivedSegment is a particular type of Segment.
This class reifies a perceived geometrically located object pgloi defined
in section 3.2;

� PerceivedView class models the view perceived by the robot. This is
the result of the Perceived View Acquisition phase described in section
6.2.1. This kind of view (it is a specialisation of the more general View
class) is composed by the set of perceived segments (i.e., instances of
PerceivedSegment class). PerceivedView class reifies the perceived
view PV defined in section 3.2 by equation 3.5;

� PerceivedLocatedView class models a complete Perception, i.e., it
comprises all the perceptive inputs. For this reason a PerceivedLocatedView
is a view referred to the robot pose (as a matter of fact it is a sub-
class of the LocatedView class). It is fundamental the association
class named Time presents in the associations PerceivedLocatedView,
PerceivedDeltaPosition and PerceivedLocatedView, PerceivedView.
This is a constraint indicating that a Perception is made up by per-
ceptive inputs taken at the very same time. PerceivedLocatedView

class reifies the perceived located view PLV defined in section 3.2 by
equation 3.6.

7.3.3 Localisation types

Localisation activity exploits the classes of information belonging to this
package.

To provide a clear description of the classes in this package, we will
subdivide them with respect to the Localisation step they support.
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Figure 7.6: Types concerning Normalisation

What is said for << immutable >> stereotype in Perception, still holds
here. The use of the << mutable >> stereotype means that the instance
state may change during system execution.

7.3.3.1 Types concerning Normalisation

Figure 7.6 sketches the types produced by the Normalisation phase. Refer-
ring to section 6.3.1, Normalisation changes the coordinate system of a set
of segments (a view). In particular, this phase refers the current perceived
view to the coordinate system of the reference view. Since the reference
view is a view that is referred to a previous robot pose (just the previous
one, or the starting one), we call the resulting view BackwardView. This
view is made up by BackwardSegments: special kind of segments preserving
their original position.

7.3.3.2 Types concerning Association

Association plays a crucial role in CLAM since the result of its execution may
cause a change in system behaviour (i.e., from concurrent to synchronised).
Consequently, some of the types defined for its purpose (sketched in figure
7.7), are, as we will see later in section 7.5, fundamental for the CLAM
activities right timing detection.

The aim of Association phase (see section 6.3.2) is to generate pairs
of homologous segments (i.e., representing the same real entity) from two
different views. AssociatedSegment class reifies those pairs. It contains a
pair of segments: one belongs to the actual perceived view, the other belongs
to the reference view. AssociatedViews class contains all the homologous
segments.

As sketched in figure 7.7, the goodness of a pair of associated segment is
given by the AssociatedSegsDiffidence class, whereas the goodness of all
pairs of associated segments is given by the AssociatedViewsDiffidence
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Figure 7.7: Types concerning Association
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class. These classes are special kind of Diffidence: they describe the qual-
ity of each pair of segments and the quality of the set of pairs respectively.
The lower are their values, the better are the associations.

Since AssociatedViews depends on the set of AssociatedSegments,
the same is true for its diffidence value, i.e., AssociatedViewsDiffidence
is evaluated from the values of each AssociatedSegsDiffidence. Finally,
these classes are defined abstract for generality purposes.

The system we have realised, exploits the following concrete reification:
SegsDistance and SegsDistanceMean. The former represents the geomet-
rical distance between the pair of segments, the latter represents the mean
value between all the distances.

Referring to subsection 3.4.1, a criticality during the execution of Local-
isation activity may occur when the reference view is not plausible. What
we mean is that the reference view does not represent the same environment
the robot is perceiving. This situation causes the failure of the association
phase implying an high value of the AssociatedViewsDiffidence. Criti-
calities depend on the value of this confidence value. We have identified two
kind of criticalities: NoAssociatedSegments and FewAssociatedSegments

representing respectively the situation in which no segments have been as-
sociated (worse case), and few segments belong to both the views. When
one of the two situation takes place, the corresponding criticality arises and
strategy must adopt a suitable corresponding policy.

7.3.3.3 Types concerning Registration

The information produced by Association (AssociatedViews) is then elab-
orated by Registration phase with the aim of estimating robot pose.

The evaluated estimated pose is described by EstimatedPosition class.
This is a special kind of DeltaPosition. The reason for this choice is
that, despite the nature of the reference view, a robot, when moving, per-
forms a displacement. If the reference view is the previous view, then actual
EstimatedPosition is the displacement the robot performs from its pre-
vious position to its current one. Even if the reference view is the world
model, the robot actual EstimatedPosition may be view as the result of
a displacement that leads the robot to be in its actual position from its
initial one. EstimatedPosition class reifies the estimated pose EP defined
in section 3.2 by equation 3.10.

7.3.3.4 Types produces at the end of Localisation

The information generated at each Localisation step are sketched in figure
7.8.

� EstimatedLocatedView class relates a perceived view (PerceivedView)
to an estimated robot position (EstimatedPosition). This class (as we
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Figure 7.8: Basic types concerning Localisation

will see later) is fundamental for next Localisation activity. The class
reifies the estimated located view ELV defined in section 3.2;

� EstimatedAbsoluteView class reifies the absolute pose of the robot.
This class is a << singleton >>. It is also a << mutable >>, since
its value changes each time a new EstimatedPosition is available.

� AbsoluteSegment class models a segment (it is a subclass of the Segment
class) referred to the origin of the world model. Note that an AbsoluteSegment

is in association with another AbsoluteSegment. This association is
needed to keep track of the associated segments;

� AbsoluteView class is a set of AbsoluteSegments. It is a special kind
of View. As for the segments, even AbsoluteViews are each other
linked: the current created AbsoluteView is linked to the previous
AbsoluteView.

7.3.4 Modelling types

Classes describing Modelling activity types are very simple as shown in figure
7.9.

Main concepts are WMSegment class, modelling a segment in the world
model (referring to section 3.2, it is a world model geometrically located
object), and WorldModel class, defining the world model (referring to sec-
tion 3.2, it is defined by equation 3.11). The only interesting method in
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Figure 7.9: The classes of the modelling package

WMSegment class is updateSegment() that is used to modify (the class is
<< mutable >>) the segment exploiting new information about it.

A WMSegment is characterised by a index of quality called NumberOfMatches:
it specifies how many times this segment has been perceived during explo-
ration. This is an important parameter to test the validity of a segment,
e.g., if the NumberOfMatch level of a segment is low, then the probability
that this segment really does not exist is high.

Segments belonging to world model are generated (and modified) from
AbsoluteFusedSegment instances. These instances are the result of the fu-
sion phase. In turn, AbsoluteFusedSegments are derived from AbsoluteSegments
created by Localisation activity. Absolute segments are arranged inside their
view called AbsoluteView. If there is not a plausible history of this kind of
views, then a criticality arises. An example of plausibility criteria concerns
the availability of an updated set of views (NoAbsoluteViewsAvailable).

7.4 Performers

Performers are structured into packages likewise types. All the packages are
sketched in figure 7.10.

This subdivision into packages has the aim of maintaining logically grouped
Performers dealing with the same problematic:

� basic package contains fundamental classes for criticality evaluation
and notification;

� view3d package contains all the classes needed to graphically visualise
the system state. The visualiser Performer is Viewer3D class, the
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Figure 7.10: The performers packages for CLAM
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other classes are used by the Performer itself. Since the role of this
package is not fundamental for our thesis, it will not be described in
the following.

� robot package contains Performers dealing with the robot. Initialise
Performer aim is to change setting parameters for the robot. The
Motion Performer deals with the motion of the robot. Whereas the
RobotPoseUpdater deals with the update of the odometric position
value (if necessary). This package will not be described in the follow-
ing for the same reason involving view3d package;

� perception, localisation, and modelling packages group all the
Performers needed for Perception, Localisation, and Modelling pur-
poses respectively. These packages will be described in detail since
they constitute the core of the Localisation and Modelling activities.

7.4.1 Basic Performer

The basic package contains classes for criticality notification and evaluation.

The CriticalPerformer class defines a special kind of Performer. It is
a classical command acceptor (as described in sections 4.3 and 5.3.3), but
it also evaluates if some kind of criticalities arises from the execution of one
of its acceptable commands (method evalCriticality()).

When a criticality occurs, the CriticalPerformer writes it (an instance
of the Criticality class) on the corresponding CriticalityNotifier out
visible. CriticalityNotifier is a special kind of NotifyingVisible the
state of which is given by its Criticality instance.

CriticalityNotifier out visibles are notifying entities since their val-
ues must be immediately known to perform the opportune strategy.

7.4.2 Perception activity

Performers dealing with Perception activity are sketched in figure 7.12.

PositionAcquisition Performer is in charge of acquiring current robot
pose. This Performer reifies the Perceived Pose Acquisition phase as de-
scribed in subsection 6.2.2.

At this aim, the only acceptable command by the Performer is the
ACQUIRE POSITION one. When it receives this command, it asks the robot
to return its perceived pose.

The result is a PerceivedDeltaPosition specifying the last displace-
ment executed by the robot, as described in subsection 7.3.2.

ViewAcquisition Performer is in charge of acquiring current perceived
views. The only acceptable command for this Performer is the ACQUIRE VIEW

one. This command, when executed, asks the robot to return a triplet of
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Figure 7.11: The basic package

Figure 7.12: The Performers for Perception purpose
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images, one from each camera, and reconstructs the current perceived 3D
view as described in subsection 6.2.1.

After the execution of the command, the current perceived view is avail-
able and completely described by the PerceivedView class (see subsection
7.3.2).

Both PositionAcquisition and ViewAcquisitionPerformers are wrap-
per classes since the concrete execution of both pose and view acquisition
are in charge of a pre-existent application (named Trinocular) developed
using the C++ programming language.

Finally, the aim of the PerceptionPerformer is to receive and to merge
the information (visibles) provided by the other Performers. The execu-
tion of the acceptable command PERCEPTION, let the PerceptionPerformer
to generate a PerceivedLocatedView instance (as described in subsection
7.3.2) containing all the perceptive inputs.

PerceivedLocatedView instances constitute the information provided
by the Perception activity to the other activities.

7.4.3 Localisation activity

Each phase of the Localisation activity is carried on by a specific Performer
(see figure 7.13).

For generality purposes, some of the Performers are left abstract to be
used under different implementation. As specified, the algorithms described
in chapter 6 constitute one of the possible implementations.

ViewBackwarder Performer reifies the Normalisation phase as described
in subsection 6.3.1. The Performer recognises only the BACKWARD command.
To be executed, the command needs that the following visibles are available:
the view to backward (ViewToBackward in visible), and a robot pose in which
to refer the view (BackwardPosition in visible).

A new view is generated at the end of the performed command. This
view (BackwardView) is made available by means of the out visible named
BackwardView.

Association Performer aim is to find pairs of homologous segments
belonging to two different views (the current perceived and the reference
one). The operation may be performed if the views (i.e., the sets of segments)
are referred to the same coordinate system. This is the reason why this
Performers uses a BackwardedView as input for computation. This view is
received from BackwardPerformer by means of the in visible BackwardView.
The reference view is maintained by ReferenceView in visible. The result
of the execution of ASSOCIATE command (the only acceptable one) is a sets
of associated segments (a AssociatedViews instance, see section 7.3.3).

Association Performer is a CriticalPerformer: at the and of the as-
sociation mechanism, it verifies the occurrence of some kind of criticality.
Criticalities may occur if the reference view is not a plausible representation
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Figure 7.13: The Performers for Localisation purpose
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of the environment the robot is perceiving. When this situation occurs, the
Performer updates its notifying out visible (CriticalityNotifier) named
Association with a value representing the kind of criticality. Contrary,
if the Association is performed in a successful way, then the evaluated
AssociatedViews is stored in the AssociatedViews out visible.

This implementation of the association algorithm is intentionally defined
abstract to allow the exploitation of this Performer under different associa-
tion mechanisms.

We have defined a MeanDistanceAssociator class to perform associ-
ation. This class computes the geometrical distance between segments as
described in subsection 6.3.2.

The aim of the Registration Performer is to estimate robot pose ex-
ploiting the information concerning the associated segments and the actual
robot perceived pose. Consequently, the in visible variables are: BackwardPosition,
the current perceived robot pose (the pose of the acquired segments before
a Normalisation), and AssociatedViews, the pairs of associated segments.

When the REGISTER command is sent to the Performer, then the evalu-
ation of the current robot position is executed. The estimated robot pose is
made available by the EstimatedPosition out visible.

Likewise Association, this class is abstract. Our concrete implemen-
tation is the MonteCarlo class. The Registration is made by a randomatic
selection of new positions that are quite near to the perceived one (as ex-
plained in subsection 6.3.3).

Localisation Performer is the core of the activity. It is in charge of
executing a major number of activities activated by the following commands:

� CREATE LOCALISATION. This command is executed at the end of ev-
ery Localisation activity. The aim is to store the estimated located
views (see chapter 3) in instances of EstimatedLocatedView class
(7.3.3). Information needed are the current perceived view (from
PerceptionPerformer) and the relative estimated pose of the robot
(from the Registration Performer). These information are retrieved
from the PerceivedLocatedView and EstimatedPosition in visible
respectively. Special case of this command is CREATE FIRST-LOCALISATION.
This is used when the system is started up.

� RELATIVE LOCALISATION. This command specifies to the Performer
that a relative Localisation is required. A relative Localisation implies
that the reference view is the previous view (i.e., the last estimated
located view). At this aim, the Performer updates its ReferenceView
out visible exploiting the last EstimatedLocatedView created (i.e., the
result of the last execution of the CREATE LOCALISATION command).
Then, it updates also the ViewToBackward and BackwardPosition

out visible variable to provide the ViewBackwarder Performer with
the information it needs for Normalisation;
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� GLOBAL LOCALISATION. When an absolute Localisation is required, this
command is sent to the Performer. The behaviour is similar to the
RELATIVE LOCALISATION command. The difference consists in the ref-
erence view it exports to the Association Performer: instead of being
an estimated located view, this information is the world model.

� UPDATE ABS-POS. LocalisationPerformer receives this command when
the Registration phase has been executed. This command allows the
Performer to estimate the new absolute robot pose. At this aim, it
needs the current estimated position (readeable from its EstimatedPosition
in visible). After the computation, it publishes it by means of its
AbsolutePosition out visible;

� CREATE ABSOLUTE-VIEW. The command specifies the Performer to pro-
duce the actual absolute view from the current perceived view. In
particular, it reads from its AssociatedViews in visible the segments
to rototranslate, and exploits the absolute robot pose estimated by
the execution of the UPDATE ABS-POS command. Then, the Performer
exports the absolute view by means of its AbsoluteViews out visible.

7.4.4 Modelling activity

The Modelling activity is reified by the Performers sketched in figure 7.14.

When Modelling is required, the estimated located views from Local-
isation are made available to WMPerformer (see chapter 3). The com-
mand UPDATE VIEWS allows the Performer to retrieve these views and to
export them to the Fusion Performer. The other acceptable command of
this Performer is the UPDATE WM one: it is the command used to provide
the LocalisationPerformer with an updated representation of the world
model.

Fusion Performer aim is to merge all the homologous segments from the
history of views. Since the history of views may be critical for the execution
of the Fusion phase (see chapter 3), this Performer is a CriticalPerformer.
When it receives the FUSE VIEWS command, it verifies the validity of the
views and then perform the fusion. If the views are invalid, then it notifies
the criticality by means of its CriticalityNotifier out visible. The fusion
is performed by exploiting the algorithm described in subsection 6.4.1. At
the end of the activity, the Performer exports the fused segments (instance
of the FusedSegments class) by means of its FusedSegments out visible.

Integration Performer aim is to update the world model by integrat-
ing the new information produced by the Fusion Performer. It accepts the
INTEGRATE command that causes the execution of Integration phase as de-
scribed in subsection 6.4.2. The updated world model is then given back to
WMPerformer by means of the WorldModel out visible.
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Figure 7.14: The Performers for Modelling purpose
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7.5 System dynamics

This section deals with the dynamics of the CLAM system as described
in chapter 3 and reified using RTP concepts. Subsection 7.5.3 describes
the normal (concurrent) execution of the system, whereas subsection 7.5.4
will describe the management of criticalities. Before entering into dynamics
details, some information about the startup of the system will be provided
in the following subsection. The startup involves the topology creation, the
RTP traces definition, and the clocks advancing time determination.

7.5.1 System Topology

The topology defines which out visibles are linked to which in visibles. As
explained in section 5.3.3, RTP framework defines a Topologist Performer
that is in charge of creating all the Performers and the Projectors con-
stituting the system. Since Topologist is a Performer, it creates system
components and connectors only upon command.

Commands are placed inside a trace enriched by their planned time
intervals. An idea of the commands delivered to the Topologist may be
found in the code fragment of figure 7.15. The code fragment sketches
the commands for the creation of the ViewAcquisition Performer, the
PerceptionPerformer, and the Projector linking the PerceivedView out
visible exported by the AcquisitionViewPerformer and the PerceivedView
in visible of the PerceptionPerformer. Similar commands complete the
overall topology.

When all commands are added to the trace, then they may be delivered
to Topologist Performer.

7.5.2 System Configuration for Concurrence

The configuration of the system involves the definition of traces, virtual
clocks, and reference clocks. Their definitions are imposed by the following
considerations:

1. Localisation and Modelling activities are driven by different timings
since they produce information characterised by different lifetime (see
section 3.5)). For this reason, commands performing Localisation and
Modelling should be placed inside two different RTP TimedTraces each
of them driven by its own RTP virtual clock (see subsection 5.4.2) with
proper period.

2. time scale of the Localisation virtual clock is finer then the Modelling
time scale, due to the short lifetime of Localisation produced informa-
tion;
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//. . .
//The creation of the ViewAcquisition Performer
trace.addRequest(new TimedRequest(new TimeInterval(begin, begin+=step),

new CreatePerformerCommand("clam.performers.perception.ViewAcquisition",
new GenericName("ViewAcquisition")),
new GenericName("Topologist")));

//The creation of the PerceptionPerformer
trace.addRequest(new TimedRequest(new TimeInterval(begin, begin+=step),

new CreatePerformerCommand("clam.performers.perception.PerceptionPerformer",
new GenericName("PerceptionPerformer")),
new GenericName("Topologist")));

//The creation of the Projector between the PerceivedView out visible of
//ViewAcquisition and the PerceivedView in visible of PerceptionPerformer
trace.addRequest(new TimedRequest(new TimeInterval(begin, begin+=step),

new CreateProjectorCommand(
new GenericName("ViewAcquisition"), new GenericName("PerceptionPerformer"),
new GenericName("PerceivedView"), new GenericName("PerceivedView"),
new GenericName("ViewAcquisition_PerceptionPerformer")),
new GenericName("Topologist")));

//. . .

Figure 7.15: A fragment of topology creation

3. the execution timings of Localisation and Modelling are independent
since they operates on separate information. Consequently, the time
advancement of the two virtual clocks is controlled by two different
reference clocks.

In term of concrete implementation, the Strategist is in charge of defining
virtual clocks, traces, and reference clocks. Successively, Strategist fills the
traces and finally starts the system by activating the reference clocks.

Referring to code fragment 7.16, the Strategist creates two virtual clocks
(comments 1 and 4). vcLocalisation starts at time 0, ends at time 1,000,000,000,
has a now value equals to 0, and its time scale 1. This means that its now
value will be incremented each time the reference clock controlling its time
advancement will tick it. vcModelling has the same parameters values of
vcLocalisation except for the time scale: 16 means that vcModelling now
value will be incremented at every 16 ticks of the reference clock controlling
its time advancement.

The Strategist creates two separated TimedTraces: one will contain
commands that will be delivered to Localisation Performers (comments 2
and 3), the second commands to Modelling Performers (comments 5 and
6). Localisation timed trace keeps track of its current time by means of
vcLocalisation virtual clock (comment 2), whereas Modelling timed trace
exploits vcModelling virtual clock (comment 5).
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VirtualClock vcLocalisation = new VirtualClock(0, 1000000000, 0, 1); //1
TimedTrace t1 = new TimedTrace(vcLocalisation); //2
addTrace(t1, new GenericName("Localisation")); //3

VirtualClock vcModelling = new VirtualClock(0, 1000000000, 0, 16); //4
TimedTrace t2 = new TimedTrace(vcModelling); //5
addTrace(t2, new GenericName("Modelling")); //6

Figure 7.16: The TimedTraces creation

The Strategist creates two different Engines that are in charge of de-
livering commands to the Performers (comments 1 and 3 in code fragment
7.17). engLocalisation dispatches commands placed in the Localisation
TimedTrace (comment 2), whereas engModelling is in charge of delivering
commands placed in the Modelling TimedTrace (comment 4).

TickedEngine engLocalisation = new TickedEngine(); //1
engLocalisation.addTrace(t1); //2

TickedEngine engModelling = new TickedEngine(); //3
engModelling.addTrace(t2); //4

Figure 7.17: The Engines creation

Finally, the Strategist creates two reference clocks, one for each virtual
clock, (see code fragment 7.18).

ReferenceClock rcLocalisation = new ReferenceClock(); //1
rcLocalisation.addEngine(engLocalisation); //2
rcLocalisation.addVC(vcLocalisation); //3
rcLocalisation.addStrategist(this); //4

ReferenceClock rcModelling = new ReferenceClock(); //5
rcModelling.addEngine(engModelling); //6
rcModelling.addVC(vcModelling); //7
rcModelling.addStrategist(this); //8

Figure 7.18: The Reference clocks creation

Before starting the system, i.e., starting the reference clocks, the Strate-
gist fills the TimedTraces with initial requests. Referring to code fragment
7.19:
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� comment 1: the setUpRequest method builds the requests for topol-
ogy creation. The requests are inserted in Localisation TimedTrace1

and the planned begin for the first request is 0;

� comment 2: the perception method builds the requests for a Percep-
tion activity. The requests are inserted into the Localisation Timed-
Trace. The planned begin for the first Perception request is the
planned end of the last request for topology creation (endPlannedSetup);

� comment 3: the localisation method builds the request for a Lo-
calisation activity. The requests are inserted into the Localisation
TimedTrace. The planned begin for the first Localisation request is the
planned end of the last request for Perception activity (endPlannedPerception);

� comment 4: the modelling method builds the requests for a Modelling
activity. The requests are inserted into the Modelling TimedTrace.
The planned begin for the first Modelling request is the planned end
of the last request for topology creation (endPlannedSetup).

long endPlannedSetup = setUpRequests(t1, 0, 2); //1
long endPlannedPerception = perception(t1, endPlannedSetup); //2
localisation(t1, endPlannedPerception); //3
modelling(t2, endPlannedSetup); //4

Figure 7.19: The planning of one Perception, one Localisation and one Mod-
elling activities

Figure 7.20 sketches the system state after the described configuration2.
The virtual clock of Localisation TimedTrace is finer with respect to Mod-
elling one and the future traces contains the requests for the first Locali-
sation and the first Modelling. The figure shows also how the timings are
independent and that Localisation and Modelling are concurrent.

7.5.3 Concurrence Management

During normal condition (i.e., when criticalities do not arise, see section 3.3),
Localisation and Modelling are executed concurrently, i.e., each activity is
carried on independent from the other.

The two main activities and the Perception one are subdivided into
phases (see chapter 6) each of them may be activated if the correspond-
ing request (or set of requests) is present inside the related TimedTrace.

1It is possible to place requests in the Modelling trace too.
2Actually, in the Localisation TimedTrace are also inserted the requests for topology

creation and the first Perception activity.
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Figure 7.20: The system state after the configuration

Requests for Perception and Localisation are placed inside the same timed
traced.

When one command (inside the request) is delivered to the Performer
depends on both the now value of the TimedTrace and the planned interval
of the request. It is in charge of the Strategist to put the requests inside the
traces with a right planned interval. The order in which commands must
be delivered is given by the object flows and the transitions present in the
activity diagram of figure 3.5. In the same diagram, it is enphasised that a
Localisation follows immediately one Perception (the dashed arrow connect-
ing pv:PV to Normalisation). For this reason, the request for Perception are
placed inside the TimedTrace we use for Localisation.

From the above consideration and referring to figure 3.5, the Strategist
must compute the planned intervals of the requests driving Localisation so
that the order in which the requests are selected is like the one shows in
table 7.1:

� the first operation to perform is to acquire the current perceived robot
pose. Performer involved is the PositionAcquisition one that is ac-
tivated by means of the ACQUIRE POSITION command (row numbered
1);

� the images from cameras are then acquired and elaborated to produce
the current perceived view. Performer involved is the ViewAcquisition
one and the relative command is the ACQUIRE VIEW (row numbered 2);

� from the acquired perceived view (row numbered 3) and the acquired
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perceived pose (row numbered 4), then the PerceptionPerformer

merges the perceptive inputs (row numbered 5) to produce current
PerceivedLocatedView. Perception activity is so completed;

� LocalisationPerformer acquires the actual PerceivedLocatedView
(row numbered 6) and exports to the interested Performers the ref-
erence view (the last estimated view), the pose vector to which refer
current perceived view, and the current acquired view (row numbered
7);

� ViewBackwarder Performer refers current perceived view (row num-
bered 8) to the coordinate system (row numbered 9) given by the
reference view (row numbered 10);

� Association Performer associates (row numbered 13) segments from
the reference view (row numbered 12) and the actual perceived view
referred to the same coordinate system of the reference view (row
numbered 11)

� Registration Performer estimates the actual robot position (row
numbered 16) exploiting the set of associated segment (row numbered
14) and the actual perceived pose (row numbered 15);

� LocalisationPerformer then creates the new EstimatedLocatedView

(row numbered 18) exploiting the estimated pose (row numbered 17),
it updates the absolute estimated robot pose (row numbered 119), and
then it creates the new absolute view (row numbered 21) by means of
the associated views (row numbered 20).

The information exchange between Performers is made by means of ded-
icated Projectors (see row numbered 3, 4, 6, 8, 9, 11, 12, 14, 15, 17, and
20). The only command they recognise is the SYNC one. When they receive
the command, they read from the out visible of the Performer exporting
the information and write to the corresponding in visible of the Performer
requiring the information.

Figure 7.21 shows a screen shot of the application we developed. The
graphical interface is divided into two main panel. The top panel shows
activities concerning Localisation, the bottom the Modelling. In the top
panel:

� on the left side is presented the current perceived view;

� on the left bottom side is presented the reference view;

� on the right side is presented the current perceived view rototranslated
with respect to the reference view;

� on the right bottom side is presented the associated segments;
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Command Recipient

1 ACQUIRE POSITION PositionAcquisition

2 ACQUIRE VIEW ViewAcquisition

3 SYNC ViewAcquisition PerceptionPerformer

4 SYNC PositionAcquisition PerceptionPerformer

5 PERCEPTION PerceptionPerformer

6 SYNC PerceptionPerformer LocalisationPerformer

7 RELATIVE LOCALISATION LocalisationPerformer

8 SYNC LocalisationPerformer ViewBackwarder.View

9 SYNC LocalisationPerformer ViewBackwarder.Position

10 BACKWARD ViewBackwarder

11 SYNC ViewBackwarder Association

12 SYNC LocalisationPerformer Association

13 ASSOCIATE Association

14 SYNC Association Registration

15 SYNC LocalisationPerformer Registration

16 REGISTER Registration

17 SYNC Registration LocalisationPerformer

18 CREATE LOCALISATION LocalisationPerformer

19 UPDATE ABS-POS LocalisationPerformer

20 SYNC Association LocalisationPerformer.AssociatedViews

21 CREATE ABSOLUTE-VIEW LocalisationPerformer

Table 7.1: Commands and Recipients for Perception and Localisation
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Figure 7.21: The execution of Localisation step
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Command Recipient

1 SYNC LocalisationPerformer WMPerformer

2 UPDATE VIEWS WMPerformer

3 SYNC WMPerformer Fusion

4 FUSE VIEWS Fusion

5 SYNC Fusion Integration

6 SYNC WMPerformer Integration

7 INTEGRATE Integration

8 SYNC Integration WMPerformer

9 SYNC WMPerformer LocalisationPerformer

Table 7.2: Commands and Recipients for Modelling

The figure does not show the world model in the bottom panel: this
means that Modelling activity is not yet completed.

Since timings are independent, the requests planned interval driving
Modelling are completely unrelated to the ones driving Localisation. Like-
wise Localisation, the Strategist must determinate the planned interval so
that the associated commands are delivered in the order in which are pre-
sented in table 7.2.

Referring to table 7.2, the Modelling execution sequence is the following:

� the first operation is the creation of the history of views that will be
exploited by the Fusion performer (row numbered 2);

� Fusion Performer fuses homologous segments (row numbered 4) ex-
ploiting the history of views (row numbered 3);

� Integration Performer updates the world model (row numbered 7) ex-
ploiting the fused segments (row numbered 5) and the actual world
model (row numbered 8). Finally, it returns an updated version of the
world model to the WMPerformer (row numbered 9).

The same we said for information exchange between Performers in Lo-
calisation activity, still holds for Modelling.

Figure 7.22 sketches the situation of the system in which at least one
Modelling step has been executed.

During system evolution, the Strategist observes the overall behaviour
and, when necessary, updates the TimedTraces with new sets of requests as
described in tables 7.1 and 7.2. The necessity arises when the requests are
almost all delivered (successfully).

Concerning Localisation, code fragment 7.23 shows the policy adopted
by the Strategist: when the last executed request is CREATE ABSOLUTE-VIEW

(comment 4), then Localisation process is nearly finished (see table 7.1).
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Figure 7.22: The system at runtime
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Since the Strategist observes the system each time the reference clocks ad-
vances its time, it may happen that the last executed request is still the same
(the time advancement of the Localisation virtual clock may not be equals
to its reference clock). To overcame this situation, the Strategist, before up-
dating the timed trace verifies also that there is not already planned another
Perception-Localisation activity (comment 3). If all the two conditions hold,
then it plans a new set of requests for Perception and then Localisation. The
first request begin planned time is set equals to the planned end of the last
request to perform present in the TimedTrace (comment 6). If there is no
request inside the trace, then the time is set equals to the now value of the
Localisation TimedTrace virtual clock. The others begin planned time are
set consequently.

Request requestLocLastDone = t1.lastDone(); //1
Request alreadyInserted = t1.searchFor(

new GenericCommand("BACKWARD"), new GenericName("ViewBackwarder")); //2
if(requestLocLastDone != null && alreadyInserted == null) { //3

if(requestLocLastDone.getCommand() instanceof GenericCommand){
GenericCommand c = (GenericCommand)requestLocLastDone.getCommand();
if(c.getCommand().equals("CREATE_ABSOLUTE-VIEW")){ //4

TimedRequest lastToDo = (TimedRequest)t1.lastTodo(); //5
long durationLocalisation = 0;

if(lastToDo != null) {
durationLocalisation = lastToDo.getPlanned().getEnd(); //6
} else {
durationLocalisation = vcLocalisation.now(); //7
}

durationLocalisation = perception(t1, durationLocalisation); //8
durationLocalisation = localisation(t1, durationLocalisation); //9

}
}

}

Figure 7.23: The planning of new Requests under concurrent execution

The technique the Strategist uses for Localisation still applies to Mod-
elling. Referring to code fragment 7.24, the Strategist controls if the last per-
formed command was INTEGRATE (comment 4) and that it did not planned
another Modelling activity (comment 3). The planned begin time for the
first new request is set equals to the planned end of the last request presents
in the future trace, or equals to the now value of the Modelling TimedTrace
virtual clock.

Figure 7.25 sketches a graphical representation od the concurrence of
Localisation and Modelling activities. They are carried on with indepen-
dent timings over two TimedTraces (with different period). The Strategist
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Request requestModLastDone = (TimedRequest)tMod.lastDone(); //1
alreadyInserted = t2.searchFor(

new GenericCommand("UPDATE_VIEWS"), new GenericName("WMPerformer")); //2
if(requestModLastDone != null && alreadyInserted == null ){ //3

if(requestModLastDone.getCommand() instanceof GenericCommand){
GenericCommand cM = (GenericCommand)requestModLastDone.getCommand();
if(cM.getCommand().equals("INTEGRATE")){ //4

TimedRequest lastToDo = (TimedRequest)t2.lastTodo(); //5
long durationModelling = 0;
if(lastToDo != null) {

durationModelling = lastToDo.getPlanned().getEnd(); //6
} else {
durationModelling = vcModelling.now(); //7
}

modelling(t2, durationModelling); //8
}

}
}

Figure 7.24: The planning of new Requests under concurrent execution

observes the past TimedTraces of both the activities, and plans future be-
haviour.

7.5.4 Criticalities Management

When criticalities arise, then the Strategist must opportunely synchronise
the two activities. The Strategist becomes aware of criticalities since it is no-
tified by the CriticalPerformers (by means of their CriticalitiesNotifier
out visibles).

Referring to section 3.4 of the chapter describing the CLAM approach,
criticalities occur when:

� the reference view is not a plausible representation of the environment
at the moment in which actual perceived view was captured;

� the history of views do not contain information suitable for the update
of the world model.

First pointed criticality concerns Localisation, whereas the second one,
Modelling.

Mobile Robot Localisation and World Modeling in a Real-Time Software Architecture



Chapter 7. RTP Exploitation for CLAM 151

Figure 7.25: The RTP management of concurrent execution

Mobile Robot Localisation and World Modeling in a Real-Time Software Architecture



152 7.5. System dynamics

Command Recipient

1 UPDATE WM WMPerformer

2 SYNC WMPerformer LocalisationPerformer

3 SYNC Association LocalisationPerformer.BackwardView

4 GLOBAL LOCALISATION LocalisationPerformer

5 SYNC LocalisationPerformer ViewBackwarder.View

6 SYNC LocalisationPerformer ViewBackwarder.Position

7 BACKWARD ViewBackwarder

8 SYNC ViewBackwarder Association

9 SYNC LocalisationPerformer Association

10 ASSOCIATE Association

Table 7.3: Commands and Recipients for the criticality management

7.5.4.1 Localisation activity

Since the plausibility of the reference view is verified in the Association phase
(3.4), then criticalities may only arise from the execution of the ASSOCIATE

command delivered to the Association Performer. As a matter of the fact,
the Association Performer has been defined a CriticalPerformer (see
subsection 3.4.1).

When criticalities arise, the Association Performer notifies the Strate-
gist by writing in its notifying out visible the criticality typology: NoAssociatedSegments
(i.e., no segment of actual perceived view has been found in the reference
view) or FewAssociatedSegments (i.e., a few number of associeted segments
has been found).

Apart from the specific type of criticality, this may be overcame by
substituting current reference view with the world model and then going on
with normal execution.

The substitution of the world model is obtained by the requests as de-
scribed in table 7.3:

� the first request commands the WMPerformer to export the current
world model (row numbered 1);

� the next request synchronises Localisation and Modelling activities
(row numbered 2). The request is delivered to the Projector linking
the world model out visible of the WMPerformer to the world model in
visible of the LocalisationPerformer;

� the LocalisationPerformer exports the current perceived view, the
world model, and the pose vector to which refer current perceived view
(row numbered 4);

� ViewBackwarder Performer refers current perceived view (row num-
bered 5) to the coordinate system (row numbered 6) given by the
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reference view (row numbered 7);

� Association Performer associates (row numbered 10) segments from
the reference view (row numbered 9) and the actual perceived view
referred to the same coordinate system of the reference view (row
numbered 8)

Then, the system may go on with the requests that already were in the
timed traces. Obviously their planned time intervals must be changed ro
reflect the new added requests, i.e., they must be deferred.

The above strategy is described in code fragment 7.26 (comments 1, 2,
and 3). First the Strategy plans the requests described in table 7.3 (comment
2), then it defers the requests presents in the timed trace (comment 3). These
requests are those presents in table 7.1 from the row numbered 14 to the
end.

if(criticality instanceof FewAssociatedSegments | |
criticality instanceof NoAssociatedSegments){ //1
long time = globalLocalisation(t1, vcLocalisation.now()); //2
adjustLocalisationFutureTrace(t1, time); //3

} else {
if(criticality instanceof NoWorldModel){ //4

vcModelling.speedUp(); //5
vcLocalisation.slowDown(); //6
long time = globalLocalisation(t1, vcLocalisation.now()); //7
adjustLocalisationFutureTrace(t1, time); //8

}
}

Figure 7.26: The management of Localisation criticalities

Figure 7.27 shows a screen shot of our implementation. In the panel
containing the reference view is visible the world model. This means that
the criticality has been correctly managed by the Strategist.

If the world model does not still exist (comment 4), then the Strategist
speeds up the Modelling activity (comment 5), slows down the Localisation
one (comment 6), and adopts the same strategy used above (comments 7
and 8).

Figure 7.28 sketches the management of the above Localisation criti-
cality. When a criticality occurs (figure 7.28.a), the Strategist adjusts the
relative speeds of both Localisation and Modelling activities to allows syn-
chronisation (figure 7.28.c). It slows down the Localisation virtual clock,
speeds up the Modelling virtual clock, and modifies the Localisation Timed-
Trace (figure 7.28.b).
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Figure 7.27: A criticality concerning Localisation
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Figure 7.28: The RTP management of Localisation criticality
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If the criticalities still overcame, then other strategies must be adopted
such as the planning a different robot speed or a different robot direction.
This is out of our scope.

7.5.4.2 Modelling activity

Since the plausibility of the history of views is verified in the Fusion phase,
then criticalities may only arise from the execution of the FUSION command
delivered to the Fusion Performer (likewise AssociationPerformer, Fusion
is a CriticalPerformer).

When criticalities arise, the Fusion Performer notifies the Strategist by
writing in its notifying out visible the criticality.

This criticality may solved by adjusting the relative speeds of the activ-
ities (see subsection 3.4.2).

Referring to code fragment 7.29, the Strategist first slows down the vir-
tual clock of Modelling activity (comment 2), then speeds up the virtual
clock of Localisation activity (comment 3), and finally adjusts the Timed-
Trace of Modelling. The adjustment involves the insertion of requests from
row numbered 1 to row numbered 4 in table 7.2 (comment 4), and the de-
ferment of the requests from row numbered 5 to row numbered 9 in table
7.2 (comment 5).

if(criticality instanceof NoAbsoluteViewsAvailable){ //1
vcModelling.slowDown(); //2
vcLocalisation.speedUp(); //3
long time = repeatModelling(t2, vcLocalisation.now()); //4
adjustModellingFutureTrace(t2, time); //5

}

Figure 7.29: The management of Modelling criticality

Figure 7.30 sketches the management of the above Modelling criticality.
When a criticality occurs (figure 7.30.a), the Strategist adjusts the relative
speeds of both Localisation and Modelling activities to allows synchronisa-
tion (figure 7.30.c). It slows down the Modelling virtual clock, speeds up the
Localisation virtual clock, and modifies the Modelling TimedTrace (figure
7.30.b).

If the criticality still arises then other strategies must be adopted as
explained in the previous subsection.
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Figure 7.30: The RTP management of Modelling criticality
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Chapter 8

Conclusions

8.1 Summary of Contribution

The thesis has presented an interdisciplinary work involving the area of
autonomous mobile robotics and the field of software architecture.

Concerning the robotics area, we have proposed a novel approach to
solve the problem of robot exploration in an unknown environment and
with uncertain information about its pose. The problem has been addressed
with an architectural approach. This approach has led us to the definition
of CLAM (Concurrent Localisation And Mapping).

CLAM is based on assumption that, in normal condition (i.e., when the
information an activity relies on is reliable), the two main activities (Locali-
sation and Modelling) that a robot performs may be executed concurrently.
When some kind of synchronisation is needed to accomplish the reliability
of the information, then it may be realised by modifying opportunely the
relative speed of the activities. Formally, the key concepts of the CLAM
approach are the following:

1. Localisation and Modelling, both relying on Perception, are the basic
activities performed by a robot when exploring an unknown environ-
ment;

2. Localisation and Modelling operate on separate information and are
subject to different timing constraints. Therefore they can be per-
formed concurrently and with independent timings;

3. Localisation relies on information which loosely depends on the in-
formation generated by Modelling, and vice-versa. Therefore Locali-
sation and Modelling must synchronise whenever a criticality arises,
i.e., whenever the information an activity relies on is not reliable;

4. Synchronisation is controlled by a strategy which relies on the obser-
vation of the criticalities and drives the relative rates of the activities.
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The CLAM approach is based on a proper separation of concern between
Localisation and Modelling to break the chicken-and-egg loop. The activi-
ties, even if each other related, may be considered independent each other
since they operate with independent timings. When criticalities arise, then
a suitable strategy must drive opportunely their execution rates so that the
syncronisation is successfully reached.

A concrete CLAM implementation needs an underlying software archi-
tecture capable of capturing the temporal aspects belonging to the system
itself. From CLAM key concepts, it follows that a CLAM system needs
to execute different activities with different, dynamic, and inter-dependent
temporal requirements. Moreover a CLAM system needs to dynamically
change the activities temporal requirements. From the above consideration,
a CLAM system may be considered as a time-sensitive one.

Real-Time Performers is an architectural framework based on reflection
that allows monitoring and control of the time related behavioural aspects
of the systems built upon it. RTP is based on the following concepts:

� the system runs temporally planned actions;

� actions are planned for execution by placing them in timelines (defin-
ing the overall behaviour of the system);

� a timeline is “ticked” by a virtual clock ;

� a virtual clock may be speed-tuned to modify the execution rates of
actions on its timeline;

� a strategist may control the system by tuning virtual clocks an by
changing the content of timelines (i.e. adding/removing/modifying
actions).

The RTP framework was implemented using the Java Programming Lan-
guage. The RTP framework was used to build a concrete implementation of
a system based on CLAM principles.

Preliminary qualitative testing has been done to verify that the man-
agement of CLAM criticalities works as expected. The implemented system
actually succeeds in changing strategy and timings when needed.

8.1.1 Publications

The results of this thesis have been published in the following referred paper:

� D. Micucci, M. Sarini, C. Simone, F. Tisato, and A. Trentini. Con-
ceptual and concrete architectures in the design of CSCW application.
In Proceedings of the annual Workshop on Agents. November, 2002,
Milan
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� D. Micucci, A. Trentini, and F. Tisato. A connector-based approach
for controlled data distribution RTP architecture. In Proceedings of
the Data Distribution for Real-Time Systems. May, 2003 Providence,
RI, USA

� D. Micucci and A. Trentini. A pattern-like framework to ease dy-
namically change components behaviour. In Proceedings of the 15th
international conference on Software Engineering and Knowledge En-
gineering. July, 2003, Redwood City, CA, USA

� D. Micucci. An Object-Oriented software approach for a distributed
human tracking motion system. In Proceedings of Visual Commu-
nications and Image Processing (VCIP). SPIE. July, 2003, Lugano,
Switzerland

The following papers are under revision:

� D. Micucci, S. Ruocco, F. Tisato, A. Trentini. Time Sensitive Archi-
tectures: a Reflective Approach. Submitted to SAC 2004

� D. Micucci, F. Marchese, D. Sorrenti, F. Tisato. CLAM: Concurrent
Localisation And Mapping from an architectural point of view. To sub-
mit to IROS 2004, IEEE/RSJ International Conference on Intelligent
Robots and Systems

8.2 Future Developments

Our first concern is a thorough validation of the whole architecture. We are
setting up qualitative and quantitative test sets to measure:

� localisation error;

� model quality (shape, dimensions, etc.);

� correctness of criticality identification;

� RTP time constants correctness (and their tuning) with respect to the
robot-world constants;

� resonances/loops;

Currently, due to problematic availability of the actual robot, every test
of our system is done in batch, offline with respect to the robot itself: we
capture sensors data and feed them into CLAM. CLAM then works on robot
movements in a “stored” reality. Our next step is the complete integration
into the robot guidance system.

The whole architecture is completely independent from the algorithms
used for Localisation and Modelling. We would like to experiment with new
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algorithms (e.g. 3D shape recognition) to let new criticalities arise and try to
manage them. The same pattern applies for new world-modelling algorithms
(e.g. “segment cleaning”).

Our current environment is somewhat static, instead we would like to
experiment with a very dynamic one, and see if this approach compares well
with other, more traditional, ones.

Moreover, to further test the validity of Real-Time Perfomers ideas, the
framework is being exploited in a complex distributed webcam-based move-
ment tracking system.
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