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Abstract 

A graph based analysis is proposed to improve leakage management in water distribution networks. Starting from the model of 
the network, leakage scenarios, created through hydraulic simulation (EPANET), are considered as nodes in a graph, whose 
edges are weighted by the similarity between each pair of nodes (scenarios), in terms of pressure and flow variation due to the 
leak. The graph is then analyzed in the eigenspace of its Normalized Laplacian matrix and specifically into the eigensubspace 
spanned by the most relevant eigenvectors, allowing Spectral Clustering, which is more effective than traditional techniques but 
with much higher computational requirements, to be applied also to large scale problems. The results obtained in the eigenspace 
are eventually mapped back into the physical space where the capability of leakage localization may be further improved 
through the fusion with leak severity estimation.  
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1. Introduction 

Urban water distribution networks suffer, mainly due to the age of their pipeline infrastructure, frequent leaks 
and failures leading to service disruptions, large amounts of non revenue water, higher energy and rehabilitation 
costs (Puust, 2010). A more smart management of urban water distribution networks (WDN) is therefore needed to 
achieve higher levels of efficiency. The International Water Association (IWA) performance indicators (Alegre et 
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al., 2006) detail the relevance to improve the leakage management process, generally defined on three different 
steps: assessment, detection and physical localization (Preis et al., 2010). 

Analytical leakage localization tools have been brought to the forefront leading to the proposal of several 
approaches, one of which posits that leaks can be detected correlating changes in flow and pressure within the real 
water distribution network to the output of a simulation model whose parameters are then related to both location 
and severity of the leak. Another relevant research filed is more focused on the application of machine learning 
strategies to detect leaks and bursts by analyzing the data collected by real-time sensors without using any 
simulation (Romano et al., 2011).  

The approach proposed in this paper belongs to the class of strategies based on the combination of hydraulic 
simulation of leakages and machine learning. In particular, Artificial Neural Network based approaches have been 
proposed by Caputo and Pelagagge (2003) and, more recently, by Sivapragasam et al (2007). Their systems use 
pressure and flow to infer the leak location and severity, through an ANN trained on a dataset generated either by a 
mathematical model of the network or the hydraulic simulation software EPANET, provided by the Environmental 
Protection Agency (http://www.epa.gov/nrmrl/wswrd/dw/epanet.html). 

Another recent combination between EPANET-based leakage simulation and machine learning has been 
proposed by Mashford et al (2012), using Support Vector Machines. In this case, the SVM model has been trained 
on a dataset of leaks simulated on the junctions of the WDN (while most approaches simulate leaks on pipes): the 
trained SVM classifier is able to infer the leaky junction(s) according to the pressure and flow values. The approach 
has been tested on a network in the south east Melbourne providing satisfactory results. 

Again in combination with the hydraulic simulation software EPANET, other supervised machine learning 
approaches have been recently proposed, such as Genetic Programming (Lijuan et al., 2012), Bayesian approaches 
(Poulakis et al., 2003; Xia et al., 2006) and Hidden Markov Mode-based agents (Nasir et al., 2012). 

Clustering techniques, mostly applied to group the junctions of the physical network in order to identify suitable 
sectorization related to District Metering Areas (DMAs) or Pressure Management Zones (PMZs), have been 
recently proposed also for leakage localization (Xia and Guo-Jin, 2010), Candelieri and Messina (2012) and 
Candelieri et al. (2013). 

This paper investigates the benefits provided by a new clustering methods based on eigenvalues analysis 
compared to other classical partitioning strategies (K-means, K-Medoids, etc.). The output of the EPANET 
simulation for different leak location and severity is a vector of pressure and flow variations with respect to a 
faultless network, which will be later call “leakage scenario”. These scenarios are the nodes of a graph whose edges 
are weighted by a similarity measure between each pair of nodes. 

The rest of the paper is organized as follows: section 2 describes the overall approach and the different 
transformations from the physical space, associated to the water distribution network, to the eigenvectors space, 
associated to the scenarios similarity graph and the Spectral Clustering procedure; in section 3 the Spectral 
Clustering is detailed; section 4 provides some computational issues for efficient Spectral Clustering in Big Data 
settings; section 5 reports some experimental results. A discussion about the perspective of the approach is given in 
section 6. 

2. Definition of the overall approach 

In the following Fig. 1 the overall workflow of the graph-based analysis of leaks localization is depicted; the 
relevant difference between traditional and spectral clustering approaches is also highlighted. 

More in detail, the first step performs several simulation runs, through EPANET, by placing, in turn, a leak on a 
pipe and varying its severity in a given range. At the end of each leakage simulation, the EPANET software 
outputs pressure and flow value at each junction and pipe, respectively. Only the values in correspondence of the 
position of monitoring devices in the real network are taken into account.  

The pressure and flow variations due to each simulated leak are computed with respect to the correspondent 
values obtained by simulating the faultless network: thus, each simulated leak is stored in a dataset and represented 
by the pressure and flow variations (features) together with the information related to the affected pipe and the 
damage severity: each row of the dataset is named “leakage scenario”. 
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The dataset generation above described allows the transformation from the Physical Space to the Feature Space. 
A detailed description how the leakage scenarios may be obtained is contained in Candelieri and Messina (2012). 

The further step, proposed in this paper, is to build a scenarios (similarity) graph whose edges are weighted by 
the similarity between each pair of nodes (scenarios), that is similarity in terms of flow and pressure variations 
induced by two different leaks (different in terms of affected pipe or damage severity). 

 This step allows us to move from the Feature Space to the Scenarios Network Space and to deal with the 
problem of grouping similar leakage scenarios as a graph clustering task (Schaffer, 2007). 

In general, the aim of graph clustering is to group the nodes of a graph into clusters in order to maximize the 
sum of the weights on the edges within each cluster (intra-cluster similarity) while minimizing the sum of the 
weights on the edges connecting nodes in different clusters (inter-cluster similarity). 

Spectral Clustering is an effective graph clustering procedure; more details on the algorithm are provided in the 
following section 3. With respect to the Fig. 1 is important to anticipate that two different Spectral Clustering 
schemes may be adopted: the recursive bi-partitioning, that initially divides the scenarios graph into two sub-
graphs and then is recursively applied on each sub-graph until the desired number of groups (sub-graphs) have 
been achieved, and the one based on the application of the K-means in the space identified by the most relevant 
eigenvectors of the Normalized Laplacian of the scenarios graph’s affinity matrix. Both the schemes are described 
in section 3. 

 

Fig. 1.Overall approach proposed: Spectral versus traditional clustering of leakage scenarios. 

As already mentioned, the final goal is the same both for traditional and spectral clustering, that is partitioning 
leakage scenarios into subsets so that leakage scenarios in a cluster would be more similar than outside the cluster. 
However, spectral clustering works by taking into account the graph-based structure of the relations (edges) among 
scenarios (nodes). More in detail, the similarity between two scenarios has been computed as the correlation of the 
flow and pressure variations, ignoring the features related to pipe and severity. 

Although several measures have been proposed for evaluating the internal fitness and intra-similarity of 
clustering procedures, the evaluation of the leak localization capability has particular features making it necessary 
the definition of a specific measure, namely “Localization Index”. The Localization Index for each cluster (LIk) is 
computed as the number of distinct pipes of the scenarios in that cluster with respect to the overall number of pipes 
in the WDN: 
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        (1) 

 
where | pipes | is the overall number of pipes of the WDN and | pipesk | is the 

number of simulated leaky pipes of the scenarios into cluster k. 
The maximum value of LIk is LIk = 1 that is obtained when the cluster k contains scenarios all related to leaks 

simulated only on one pipe (i.e., | pipesk | = 1). On the other hand, the minimum value of LIk is LIk = 0 that is 
obtained if the cluster k contains scenarios referred to all the pipes of the WDN (i.e., | pipesk | = | pipes |). 

The overall localization index of any clustering procedure (LI) is computed as the average of LIk , with k 
varying from 1 to the overall number of clusters. 

The effectiveness of different clustering approaches can be ranked by the proposed localization index on the 
interval [0, 1]. Furthermore, being normalized with respect to the number of pipes of the WDN it can be also 
adopted to compare results obtained on different WDNs. 

It is also relevant to note that the last post-processing step implements the transformation from Scenarios 
Network Space back to the Feature Space and, finally, back to the Physical Space: when a specific cluster k is 
selected, all the pipes on which a leak has been simulated can be retrieved. 

 
When a possible leak is detected (e.g., with traditional methods, such as Minimum Night Flow analysis, as 

reported in Liemberg and Farley (2004), Behzedian et al. (2009) and Izquierdo et al. (2011)), the actual pressure 
and flow values at the monitoring points are compared with those obtained through simulation of the faultless 
network, to compute the pressure and flow variation due to the possible leak. The vector of pressure and flow 
variations is then compared, according to the similarity measure (correlation, in this study) with the clusters’ 
centroids in order to identify the most similar one and, consequently, the simulated leaky pipes related to the 
scenarios of that cluster. These pipes are the ones most probably affected by the leak, according to the pressure and 
flow variation found. 

3. Spectral Clustering 

Spectral Clustering (Luxburg, 2007 and Jaakkola, 2006) has recently emerged as an effective graph clustering 
algorithm. It can be implemented through standard linear algebra but its computational complexity O(n3) can 
prevent its application on large dataset. 

Although it has been proposed in order to solve graph clustering problems, specifically in the network analysis 
domain, it very often outperforms traditional clustering algorithms, such as the K-means algorithm or other 
partitioning algorithms, when applied on not relational data points datasets. 

In particular, given a set of data points x1, ..., xn and some similarity measure sij ≥ 0 between each xi and xj , 
traditional clustering approaches identify a partition of the data points into several groups in order to maximize 
intra cluster similarity and minimize inter clusters similarity. 

A possible way of representing the data points consists of building a similarity graph G=(V,E), where vertices vi 
are the original data points xi and edges eij are weighted by the corresponding sij of the Affinity matrix (vi and vj are 
not connected by any edge if sij = 0). At this point, the problem can be reformulated as a graph clustering task with 
the aim to identify a partition of the undirected similarity graph such that the sum of the weights on the edges 
between different groups is minimal while the sum of the weights on the edges within a group is maximal (i.e., 
points in different clusters are dissimilar from each other and points within the same cluster are similar to each 
other). 

The solution of this problem can be easily described in the case of bi-partitioning. Given two sets of nodes 
(clusters), C1 and C2, the objective is to minimize: 
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A n-dimensional vector p (i.e., n is the number of nodes in the graph) is used to represent the association of each 

node to cluster C1 or C2 : 
 

         
(3) 
 

 
The graph clustering problem can be formulated as minimization of the following function f(p): 
 

        
(4) 

 
 
Where Lij are the entries of the Laplacian matrix, the core of spectral clustering. Different alternative definitions 

have been proposed and studied through graph theory (Chung, 1997); the usually adopted definition is: 
 

ADL −=            (5) 
 
Where A is the affinity matrix of the undirected graph and D is the degree matrix, with each entry defined as:  
              

  
            (6) 
  

 
                    (7) 

 
The most important properties of the L matrix are: 

• it is symmetric and positive semi-definite (it has n non-negative, real-valued eigenvalues 0 ≤ λ1 ≤ λ2 ≤ 
... ≤ λn , irrespectively to their multiplicity); 

• its smallest eigenvalue is 0 (where its multiplicity indicates the number of distinct connected 
components); 

 
Many applications use Normalized Laplacian matrix instead of the basic one; the most common definition for 

the Normalized Laplacian matrix is the following: 
 
               (8) 
 

The combinatorial complexity of the minimizing (4) can be prohibitive for real world networks. However, a 
simple algebraic solution to the problem was proposed in (Fiedler, 1973): in particular, he used the result of the 
Rayleigh theorem and identified the 2nd smallest eigenvector of the Laplacian matrix (usually known as Fiedler 
vector) as the vector p which provides the optimal bi-partitioning of the graph. 

This result has permitted to implement recursive bi-partitioning spectral clustering approaches (Hagen and 
Kahng, 1992) in order to perform partitioning in K > 2 groups. However this approach requires the computation of 
matrices and eigenvalues, as well as the use of the Fielder vector, for each sub-graph until the desired number of 
clusters is reached. 

Another possible schema to solve the K-partitioning uses a data representation in the – usually low-dimensional 
– space of relevant eigenvectors (Luxburg, 2007; Ng et al., 2001). The relevant eigenvectors are the first l smallest: 
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the l-th eigenvalue is the one showing a sufficiently large variation in the eigengap, that is the difference between 
two successive eigenvalues in the list of eigenvalues sorted in ascending order. 

For example, the K-partitioning approach proposed in (Shi and Malik, 2000), consists in selecting the l smallest 
non-zero eigenvalues and performing a traditional k-means clustering on the resulting dataset having n rows (nodes 
of the graph) and l columns (eigenvectors corresponding to the l smallest eigenvalues).    

4. Spectral Clustering for “Big Data” 

Recently some strategies for reducing memory and time requirements of the spectral clustering on large datasets 
have been proposed. Three different approximations have been in particular investigated: (i) reducing the 
computational cost of the eigen-decomposition, (ii) sparsifying the similarity matrix or (iii) performing a 
preliminary reduction of the original dataset. Moreover, from the technological point of view, some parallel 
computing solutions have been recently investigated in order to improve efficiency of spectral clustering without 
requiring any approximation (Chen et al., 2011). 

 
The Nyström method is the widely adopted technique for approximating eigen-decomposition (Williams and 

Seeger, 2000; Fowlkes et al., 2004; Talwalkar et al., 2008). In particular, a subset of data is selected (randomly or 
through some “greedy” method); eigen-vectors are then computed on the correspondent sub-matrix and finally 
used to estimate an approximation of the eigen-vectors of the overall dataset. 

 
Matrix sparsification techniques avoid to store the dense similarity matrix by considering only the more 

significant relationships between nodes. This can be performed by setting a threshold ε and removing all the edges 
with weights lower than ε (usually known as ε-neighborhood approach) or by considering only the t nearest 
neighbors of a node (usually known as t-nearest-neighbor approach). (Chen et al., 2004) 

 
Analogously to Nyström method, methods performing a preliminary reduction of the data size are based on 

sampling but, contrary to Nyström, they apply spectral clustering on the selected data without estimating the eigen-
vectors of the entire dataset. Fast approximate spectral clustering, proposed by Yan et al. (2009) is based on this 
idea and two different selection procedure are proposed: random or based on k-means. The k-means based version 
performs a preliminary k-means on the dataset (feature space) in order to identify a large number of k0 centroids 
which spectral clustering is performed on. 

 
As reported in Chen et al. (2004), from the clustering quality perspective, sparsification approaches provide 

slightly better results than the Nyström approximation: removing small similarity values does not lose much 
information with respect to the sampling performed by Nyström. 

 
Quality of clustering strictly depends on available dataset: the larger the number of different simulated leaks the 

higher the probability to correctly localize the leaky pipe. Different scenarios correspond to different pipes and 
severity without any significant random component, it comes to no surprise that random sampling leads to 
information losses. Results obtained by using spectral clustering and k-means fast approximate spectral clustering 
are reported in the following section 5. 

 
Efficiency is a really critical issue, not only with respect to spectral clustering, for the proposed leakage 

localization approach. Time and memory are required in several steps due to the Big Data nature of the problem: 
• Building the leakage scenarios dataset requires n EPANET runs, with n = number of pipes  number of 

severity values; 
• Creating the similarity matrix requires the computation of the similarity between each pair of nodes 

and also depends on the number of pressure and flow monitoring sensors (features): O(m*n2), with m 
the number of features; 

• Eigen-decomposition of the Laplacian matrix has computational complexity O(n3).  
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For the above reasons there has been in the last few years a growing attention on parallel/distributed 

frameworks based in particular on the Map-Reduce scheme, for the analytical leakage localization. 
Big Data issues become more critical with the adoption of smart metering solutions: when Automatic Metering 

Readers (AMRs) for near-real-time consumption metering are installed, the time series data related to water 
consumption are the input of the EPANET-based leakage simulation process and variations in flow and pressure 
are therefore provided as time series, increasing the number of features representing the leakage scenarios in the 
Feature Space according to time window considered. Currently, most of the WDNs do not use AMRs and 
consumption data are aggregated values, according to the accounting and billing process. Features representing 
leakage scenarios are therefore aggregated values, showing a lower level of complexity with respect to the 
adoption of AMRs. 

5. Experimental Results 

This section summarizes and compares the results obtained through Spectral Clustering and Fast Approximate 
Spectral Clustering (K-means based implementation) performed on a real WDN, in a little town in the North of 
Italy (approximately 13 km2), with an elevation ranging from 107 to 118.9 meters. This WDN guarantees the 
service to about 6300 citizens. As in most of the towns in Italy, water consumption is usually accounted for 
building and not for single user, therefore the number of consumption points is about 2600, lower than the number 
of citizens. The number of pipelines in the network model is 931: the simulation of leaks with severity varying on a 
set of 30 values has generated 931  30 = 27930 leakage scenarios. The monitoring sensors deployed into the 
WDN are 7: 6 acquiring pressure values and 1 acquiring flow values (features). 

Several criteria have been proposed in order to evaluate and compare the fitness of different clustering schemes; 
most of them are based on accuracy, as reported in several studies using benchmark datasets where any example is 
already associated to a specific group (class). According to aim of leakage localization, clustering fitness has to be 
evaluated according to a specific index related to the capability to generate clusters of scenarios related to a limited 
set of pipes. In the following Table 1, the Localization Index (LI), as defined in the previous section 2, is reported 
for: 

• a “pure” spectral clustering procedure 
• a fast approximate spectral clustering procedure with a 50% reduction of the original dataset size 
• a fast approximate spectral clustering procedure with a 75% reduction of the original dataset size 

 

Table 1. Localization Index: comparison between spectral clustering and fast approximate spectral clustering. Selection a 
and selection b of the Fast Approximate Spectral Clustering are related to a reduction of 50% and 75% of the original 
dataset size, respectively 

 Spectral Clustering Fast Approximate Spectral 
Clustering (selection a) 

Fast Approximate Spectral 
Clustering (selection b) 

Mean 0.83 0.48 0.33 

Standard Deviation 0.15 0.34 0.24 

Min 0.66 0.03 0.00 

Max 0.97 0.93 0.67 

 
 
These results show that the trade-off between complexity and localization capability is rather unfavorable for 

the specific localization index. As reported in the literature, the full spectral clustering is also, as expected, superior 
also in terms of accuracy, but the trade-off, in this case, is much better. 
 

The leakage scenarios dataset has been also used to train a regression model able to estimate the leakage 
severity according to pressure and flow variations at the monitoring points. A simple Least Median Squared Linear 
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Regression (Rousseeuw and Leroy, 2005) proved to be sufficiently reliable (Relative Mean Absolute Error = 
0.8764% and Root Relative Mean Squared Errors = 2.5368%, on 10-fold cross validation). The combination of the 
leakage localization, based on spectral clustering, and the severity regression model permits to improve the 
localization capability, supporting the definition of a suitable investigation plan; the overall workflow is depicted 
in Fig. 2: 

• when a possible leakage is assessed, the actual pressure and flow variations at the monitoring points 
are compared to the centroids of the clusters identified through spectral clustering; 

• in parallel, the same pressure and flow variations are used by the regression model to estimate the 
severity, namely discharge coefficient; 

• the output of the two previous steps are combined. Fig. 2 depicts an example of the combination 
process: the pipe most probably affected by a leak is “pipe=14”, because it appears in three different 
scenarios of the identified cluster and also with discharge coefficient equal to the predicted one 
(C=0.01). Then, “pipe=20” appears twice but with discharge coefficients different from the predicted 
one, while the “pipe=333” appears only once but with a discharge coefficient equal to the predicted 
one. Respect to this, a higher priority is given to “pipe=333” than “pipe=20” in the definition of the 
investigation plan (ranked list of probably leaky pipes depicted in the same figure). 

 
 

 

Fig. 2 Fusion of the clustering results and severity estimation. 

6. Discussions 

This study dealt with the application of graph-based analysis to develop an effective computational leakage 
localization approach aimed at improving the leakage management process in urban WDN. This approach is based 
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on a combination of simulation of different leaks, in terms of location and severity, and the graph-based clustering 
analysis of the pressure and flow variations resulting from each simulation run (leakage scenario). 

In particular, Spectral Clustering, in its pure and approximated version, has been investigated according to its 
widely proved quality. 

One important result is the inapplicability of the traditional measures of clustering fitness and the need of the 
definition of a specific index, namely Localization Index (LI). 

Another important result stem from the comparison between “pure” and approximated spectral clustering 
proving that the latter does not provide significant benefits: while the reduction of computational costs affects only 
slightly general accuracy measures, it affects strongly the water specific measure Localization Index. 

Spectral clustering approximations have been considered to tackle the critical issue of Big Data associated to the 
analytical task. The wider is the set of leakage scenarios generated the higher is the localization capability, 
however, due to its high computational complexity (O(n3)), spectral clustering is not efficient for large scale 
problems. 

The results obtained comparing “pure” and approximate spectral clustering, together with the opportunity to 
parallelize the leakage simulation runs, suggest to address future research activities to the design and development 
of a parallel/distributed framework for the specific problem of computational leakage localization. 

Finally, the possibility to combine the graph-based analysis for leakage localization with more traditional 
machine learning techniques (i.e., regression) for the estimation of leak severity allows us to implement a 
workflow able to further improve localization and support WDN managers in defining a suitable investigation and 
intervention plan. 
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