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Abstract 

In two studies, we investigated how people use base rates and the presence vs. the absence of new 

information to judge which of two hypotheses is more likely. Participants were given problems 

based on two decks of cards printed with 0 to 4 letters. A table showed the relative frequencies of 

the letters on the cards within each deck. Participants were told the letters that were printed on or 

absent from a card the experimenter had drawn. Base rates were conveyed by telling participants 

that the experimenter had chosen the deck by drawing from an urn containing, in different 

proportions, tickets marked either “deck 1” or “deck 2”. The task was to judge from which of the 

two decks the card was most likely drawn. Prior probabilities and the evidential strength of the 

subset of present clues (computed as “weight of evidence”) were the only significant predictors of 

participants’ dichotomous (both studies) and continuous (Study 2) judgments. The evidential 

strength of all clues was not a significant predictor of participants’ judgments in either study, and no 

significant interactions emerged. We discuss the results as evidence for additive integration of base 

rates and the new present information in hypothesis testing.  

 

Keywords: hypothesis testing; the feature-positive effect; additivity. 
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Integration of base rates and new information in an abstract hypothesis-testing task 

Imagine that a woman arrives at an emergency room with widespread abdominal pain and 

fever. Based on this limited information, at least two alternative diagnoses, toxic infection and 

appendicitis may appear plausible to a physician. The fever suggests that the patient is suffering 

from an inflammatory condition whereas the abdominal pain indicates infection in a delimited area. 

The physician might consider a diagnosis of toxic infection slightly more probable than one of 

appendicitis based on a priori considerations, such as the incidence of the two diseases and the 

patients she/he usually sees. Although it is essential to consider both the disease incidence and the 

occurrences of symptoms during the diagnostic process, an efficient diagnosis also relies upon an 

appropriate evaluation of the absence of some specific medical signs. In the aforementioned 

scenario, for example, the physician should also take the facts that the patient does not show 

important symptoms such as vomiting and diarrhea into consideration. According to the toxic 

infection hypothesis, these symptoms should be present whereas they are often absent under the 

alternate hypothesis of appendicitis. Therefore, an accurate revision of the a priori considerations in 

light of a comprehensive evaluation of the entire body of evidence that is provided by both the 

present and absent symptoms would lead the clinician to be more confident in a diagnosis of 

appendicitis than in a diagnosis of toxic infection.  

 This scenario illustrates the way in which a Bayesian-like revision process whereby the 

base-rate information is accurately integrated with the “indicant or diagnostic information” (Bar-

Hillel, 1980) should be carried out. The aim of the present study was to extend the results from 

previous literature regarding the ways in which people interpret both the presence and the absence 

of features and how they combine this information with the prior probabilities of the outcomes in 

abstract problems of hypothesis testing. 

Since Kahneman and Tversky’s (1973) seminal study that reported that people have a 

tendency to base judgments more on similarity (or representativeness) than on base rates, there have 

been a number of studies that have dealt with the way in which people use base-rate information 
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when making judgments. The predictions that the participants in this study made (e.g., estimating 

the probability that an individual is an engineer/lawyer) generally relied on the specific evidence 

that was available (e.g., personality sketches representative of either the stereotype of engineers or 

the stereotype of lawyers), and base-rate information (e.g., the composition of the set from which 

the sketches had been drawn) was rarely considered, even in cases in which the expected accuracy 

of any given prediction was low enough that the prior probabilities of the outcomes should have 

been weighted more heavily. 

Several subsequent studies have confirmed that participants undervalue the prior 

probabilities of outcomes; this phenomenon is known as the base-rate fallacy (e.g., Casscells, 

Schoenberger, & Graboys, 1978; Fischhoff & Beyth-Marom, 1983; Lyon & Slovic, 1976; at the 

interpersonal level, see, e.g., Nisbett & Borgida, 1975). However, several studies have also 

elucidated the circumstances under which people consider and utilize base-rate information when 

making judgments (e.g., Ajzen, 1977; Bar-Hillel, 1980; Christensen-Szalanski & Bushyhead, 1981; 

Fischhoff, Slovic, & Lichtenstein, 1979; Ginosar & Trope, 1980; Ginossar & Trope, 1987; see 

Koehler, 1996 for a review) 

In hypothesis-testing studies, it has been often assumed that the prior probabilities of various 

possible outcomes are equal (Fox & Rottenstreich, 2003; Nelson, 2005, footnote 12; Poletiek, 

2001). Only a few studies of hypothesis testing1 have considered the influence of unequal prior 

probabilities on the judgments that people make (Baron, Beattie, & Hershey, 1988; Nelson, 2005, 

footnote 12). To the best of our knowledge, the only study that specifically considered unequal prior 

probabilities in the context of hypothesis evaluation was done by Christensen-Szalanski and 

Bushyhead (1981). The participants in this study (physicians) demonstrated sensitivity to the 

prevalence of the disease that they were diagnosing (pneumonia); which corresponded to 3 cases 

per 100 patients in their clinical setting.  

A less controversial phenomenon known as the feature-positive effect, which refers to the 

notion that people are more likely to pay attention to the presence of features than to their absence, 
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has been found in studies of several human and non-human perceptual and cognitive processes 

(e.g., Bourne & Guy, 1968; Hovland & Weiss, 1953; Nahinsky & Slaymaker, 1970; Neisser, 1963; 

Newman, Wolff, & Hearst, 1980; Treisman & Souther, 1985). Recent reports in the hypothesis-

testing literature that focused on the hypothesis-evaluation stage of hypothesis development (see 

Klayman, 1995; McKenzie, 2004) have provided evidence that people tend to over-rely on 

occurrences and disregard non-occurrences in an abstract hypothesis evaluation task (Cherubini, 

Rusconi, Russo, & Crippa, in revision). However, evidence for this phenomenon was not found in 

Christensen-Szalanski and Bushyhead’s (1981) study.  

Bayesian background 

Bayes’ rule provides a normative criterion that is often used to weigh the impact that new 

information has on two or more competing hypotheses and to determine how the initial confidence 

that a decision-making entity has in each of these hypotheses (which is expressed via the prior 

probabilities of the competing hypotheses) should be adjusted in light of the new information. This 

criterion can be expressed in terms of odds by the following equation (e.g., Fischhoff & Beyth-

Marom, 1983; Slovic & Lichtenstein, 1971): 
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where p () stands for “the probability of”, ¬ is the logical symbol for negation, | is a logical 

symbol that means “given that”, H is the hypothesis under consideration, ¬H is the alternate 

hypothesis, and D is the set of all the pieces of evidence. Reading from the left of the formula, there 

are (1) the posterior odds, which is expressed as the ratio of the probability that the focal hypothesis 

is true given the acquired evidence to the probability that the alternate hypothesis is true given the 

same evidence; (2) the prior odds, which can be expressed as the ratio of the probability that the 

focal hypothesis is true to the probability that the alternate hypothesis is true prior to the receipt of 

the new evidence; and (3) the likelihood ratio (LR) of the probability of finding the evidence given 

the truth of the focal hypothesis to the probability of finding the same evidence given the truth of 
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the alternate hypothesis. In the case of absent information (or a “no” answer to a question), the LR 

is given by the following expression: 

( )
( )HDp

HDp
¬¬

¬
|
|  

where ¬D indicates the missing data. Note that the conditional probability of a non-

occurrence is complementary to the conditional probability of an occurrence as seen in the 

following expression: 
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In other words, from a formal (Bayesian) standpoint, the presence of a highly likely clue is 

tantamount to the absence of a highly unlikely clue (and vice versa), so any default preferences for 

knowledge about present over absent features are unwarranted. 

Alan Turing (1912-1954) first used the log LR as a measure of the confirmatory/falsificatory 

strength of a datum (Good, 1979). In particular, he introduced the ban as the unit of measure of the 

weight of evidence (WE), which is determined according to the following expression (in decibans, 

that is, one-tenth of a ban): 
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In this form, the algebraic sign (+ or −) indicates the respective value (confirmatory or 

falsificatory) of the presence of the evidence relative to a focal hypothesis. A value of 0 means that 

the evidence is uninformative. 

Several other (Bayesian) measures of the confirmatory/falsificatory strength of a datum have 

been described in the literature (e.g., Crupi, Tentori, & Gonzalez, 2007; Nelson, 2005, 2008; 

Nelson, McKenzie, Cottrell, & Sejnowski, 2010). Unlike the WE, there are other metrics that take 

both the prior probabilities and the posterior probabilities into account. For example, the 

information gain (IG) measure, which is measured in bits and which is derived directly from 

Shannon’s (1948) definition of entropy (or uncertainty), is expressed as: 
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where X is a discrete random variable that can assume ix possible values, each of which has 

probability ( )ixp . The IG is the difference between the entropy prior to receiving the new 

information (D) and the entropy after receiving the new information, that is: 
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Irrespective of the specific model that is chosen to measure the utility value of a datum, an 

efficient (Bayesian) revision of initial beliefs rests on the accurate, multiplicative integration of the 

information that is conveyed by the prior probabilities and the information transmitted by the 

likelihood ratios of present features and those of absent features. A non-normative integration of 

these two sources of information reflects different possible underlying difficulties, which were 

illustrated by Fischhoff and Beyth-Marom (1983): (a) “misperception,” which is defined as a failure 

to assess the actual diagnosticity of the new evidence (b) “misaggregation,” which is defined as a 

failure to integrate the information from each source that occurs because either a non-normative rule 

of composition (e.g., averaging instead of multiplying) has been applied or the multiplicative rule 

from Bayes’ theorem has been correctly selected but erroneously applied. 

In the following two studies, we aimed to clarify whether and how people integrate 

information in a one-shot laboratory task in which participants were asked to evaluate two 

hypotheses when the probability distributions of both present and absent evidence were given. 

Overview of the studies 

We devised two studies to examine the ways in which people interpret incoming evidence, 

which was either present or absent, and integrate it with relevant base-rate information to make a 

decision about two mutually exclusive and jointly exhaustive hypotheses in a one-shot task. 

Although some studies have investigated the degrees to which participants are sensitive to the 

evidential strength of incoming evidence in hypothesis evaluation (e.g., Cherubini et al., in revision; 
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McKenzie, 2006; Skov & Sherman, 1986; Slowiaczek, Klayman, Sherman, & Skov, 1992), to the 

best of our knowledge, the study by Christensen-Szalanski and Bushyhead (1981) is the only one 

that has both addressed the issue of how people revise their beliefs in one-shot tasks in light of 

either clues that were present or absent and considered the way in which participants used the 

unequal prior probabilities of the hypotheses. However, their study suffered from possible 

intercorrelations among the cues that were probably due to the realism of their task in terms of how 

it reflected the interrelationships between features in the real world. We attempted to extend their 

investigation to a pencil-and-paper hypothesis-testing task that used materials that were not 

explicitly representative of a real environment.   

The materials and procedures of the two studies that are presented in this article were 

identical; these research methods were similar to those used by Cherubini et al. in another recent 

work (in revision). The only differences between the two present studies were in the dependent 

variables and, therefore, in a part of the instructions, for reasons we will discuss later. 

Materials and procedure 

In both studies, we presented the participants with 10 problems. All of the problems 

concerned two decks of cards, each of which was composed of 100 cards. Participants were told 

that each card within each deck showed between 0 and 4 letters on its face and that the letters had 

been chosen from the set {B, C, D, F}. In each problem, participants were given a table that showed 

the distributions of the letters, that is, participants were informed of the number of cards that had 

each letter printed on them within each deck. The instructions made it clear that the number of cards 

that depicted any given letter was independent of the number of cards that reported any other letter. 

Formally speaking, the letters on the cards represented the indicant information, that is, the 

likelihoods (see Appendix A for some of the formal properties of the 10 problems).  

The participants were told that the experimenter had drawn a card from one of the two decks 

without disclosing the identity of the deck that he/she had chosen. However, they were given verbal 

and visual descriptions of the card that had been drawn; they were explicitly informed about which 
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letters were printed on the face of the card and which letters were absent (see Appendix B for a 

sample stimulus). In each problem, the drawn card always featured two letters, and the other two 

letters were absent. In all of the problems, the hypothesis that was supported by the subset of the 

present clues was the alternate of the hypothesis that was favored by the subset of the absent clues 

(see Appendix A). The participant was tasked with surmising the identity of the deck from which 

the card had most likely been drawn based on the presence vs. absence of the letters, the probability 

table that was associated with the problem, and the prior probabilities of the two hypotheses. 

To provide the participants with relevant information about the prior probabilities of the two 

outcomes (i.e., deck 1 vs. deck 2), we told them that the experimenter had used a random process to 

choose the deck from which he/she then drew the card. Specifically, the experimenter drew a ticket 

from an urn that contained 20 tickets, each of which had either “deck 1” or “deck 2” written on it. 

Participants were not told which ticket was actually drawn by the experimenter, because that would 

have indicated the deck from which the card had been drawn. However, they were given the 

numbers of tickets (out of 20) that had “deck 1” and “deck 2” written on them. For example, in one 

problem, the urn contained 10 “deck 1” tickets and 10 “deck 2” tickets, so the prior probabilities of 

the two hypotheses were equal (i.e., both ps = .5). We set up problems with three different 

combinations of prior probabilities: equal (i.e., both ps = .5 vs. .5); unequal (p = .75 vs. p = .25); 

and extremely unequal (p = .95 vs. p = .05) (see Appendix A). The combination of the different 

levels of prior probabilities and the different amounts of information that were transmitted by the 

present and absent clues resulted in a range of posterior probabilities that ranged from a minimum 

of p = .53 to a maximum of p = .98 for the normatively favored hypothesis across all of the 

problems (see Appendix A). In both studies, we asked participants to make two kinds of judgments; 

the first was a judgment regarding which of the two hypotheses was the most likely, and the second 

was a judgment about their confidence regarding the correctness of their first response (see 

Appendix B). The latter judgment was used to obtain converging evidence about the sources that 

influenced the probability judgments that the participants made. 
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Booklets that consisted of a cover page (which was used to collect demographic data from 

the participants), a set of instructions (which included a sample problem to familiarize the 

participants with the task), and the 10 problems were distributed individually to students who had 

been recruited from the University of Milano-Bicocca. The participants were either recruited from 

quiet study rooms (Study 1) or were tested in a laboratory in exchange for course credit (Study 2). 

In Study 1, the order in which two alternative conclusions for each problem (i.e., “deck 1” and 

“deck 2”) were presented was fully balanced, which meant that two versions of the questionnaire 

were created. In Study 2, we balanced both the order of the conclusions and the order in which the 

10 problems were presented by presenting them in opposite orders in two versions of the 

questionnaire; this resulted in the use of a total of four parallel versions of the questionnaire.  

Balancing of the present vs. absent clues in the probability tables 

In each problem in each study, both the present and the absent letters were chosen randomly 

from the set {B, C, D, F} (see Appendix A). This procedure was followed to prevent the 

participants from learning that the subsets of the present and absent clues were always located in the 

same part of the probability table; that discovery could have systematically oriented their attention.  

Another possible source of influence on the judgments that were made by the participants 

that we considered was the informativeness of the clues (which was computed as IG). The mean IG 

that was associated with the subset of present clues in the 10 problems (M = .09, SD = .46) was not 

significantly different from the mean IG that was associated with the subset of absent clues (M = 

.13, SD = .50), t(9) = -.19, p = .852, two-tailed. We then considered the IG that was conveyed by 

each clue separately (the IG was computed for each clue independently of any other clue and 

treating each clue as if it were present). We found that, in the 10 problems, the mean IG of the 20 

present clues (M = .09, SD = .37) was not significantly different from the mean IG of the 20 absent 

clues (M = .05, SD = .24), t(19) = .64, p = .529, two-tailed. Furthermore, the IG was greater than 

.5381 bits (which was the maximum value of the IG among the absent clues) for only 3 of the 20 

present clues in the overall probability table (see Appendix A). In contrast, none of the 20 absent 



ADDITIVE INTEGRATION IN HYPOTHESIS TESTING 10

clues had an IG value that was greater than the maximum IG that was transmitted by a present clue, 

.6349 bits. Finally, the single clue that had the highest IG was an absent clue in only 2 of the 10 

problems; in the remaining 8 problems, the most informative clue was present on the drawn card. 

However, the frequency with which a negative IG occurred (i.e., greater uncertainty about the 

outcomes after viewing the clue than prior to receiving it) was equally distributed: seven present 

clues and seven absent clues had negative IG values. 

We concluded that, in general, our stimuli were sufficiently balanced to ensure that an 

overrating of the present clues relative to the absent clues would not be due to a simple preference 

for the most informative clues.  

Study 1 

In the first study, we tested the each participant’s ability to use base-rate information and 

incoming evidence (i.e., both present and absent clues) to make discrete judgments regarding the 

plausibilities of two mutually exclusive and jointly exhaustive hypotheses.  

Method 

Participants 

A total of 40 students (25 females, 15 males; mean age = 21.1 years; range: 19-27 years) 

from the University of Milano-Bicocca volunteered to participate in the study. 

Materials and procedure 

The materials and procedure in this study were as described in the Materials and Procedure 

subsection of the Overview of the Studies section. In Study 1, we asked each participant to make a 

discrete prediction about which of the two hypotheses (i.e., deck 1 vs. deck 2) was more likely. 

Furthermore, each participant was asked to rate his/her confidence in his/her discrete prediction on 

a scale from 1 (not very confident) to 7 (very confident) (see Appendix B). 

Data analysis 

Data analyses were conducted using mixed-effects multiple regression models (Bates & 

Maechler 2009; Pinheiro & Bates, 2000) with random intercepts for the subjects. This approach was 
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chosen due to a number of theoretical considerations. First, probability is a continuous variable by 

nature, so it is more appropriate to model it as a continuous predictor than to treat it as a 

dichotomous factor that indicates the normative-favored deck (Baayen, 2010; DeCoster, Iselin, & 

Gallucci, 2009). Conveniently, regression models allow us to investigate the ways in which 

differences in probabilities affect the choices that participants make. Second, it is likely that there 

will be a certain amount of variability among the answers that are given by the participants in this 

type of task (e.g., Gigerenzer & Hoffrage, 1995, Table 3, p. 695, Table 4, p. 697; Villejoubert & 

Mandel, 2002, Figure 3, p. 175); therefore, we introduced a random effect of subject into the 

models to account for this variability and to obtain a more reliable estimation of the fixed effects. 

Third, this type of modeling permits a coding scheme for the dependent variable that is not as 

theory driven as the coding scheme that is usually adopted. In fact, as described below, this type of 

modeling allowed us to code each dichotomous answer as simply “deck 1” versus “deck 2” rather 

than “correct” versus “incorrect.” In this way, we avoided coding responses according to an 

assumption that correctness is fundamentally linked to a specific normative criterion (for a review 

of several alternative Bayesian models, see Crupi et al., 2007; Nelson, 2005, 2008; Nelson et al., 

2010). 

In the analyses, the prior probabilities (PriorProb), the weight of evidence2 that was 

computed for all of the clues (WE_allClues), and the weight of evidence that was computed for only 

the subset of present clues (WE_presClues) were introduced as potentially significant predictors 

(Appendix A reports the exact values that were used to fit the model for each of the predictors that 

we considered). Both first-level effects and interactions were tested. The analysis started with a full 

factorial model, which was progressively simplified by removing the effects that did not 

significantly contribute to the goodness of fit of the model. Model parameters were considered one 

by one, and they were removed when the result of the likelihood ratio test that compared the 

goodness of fit of the model before removing the effect of each parameter with the goodness of fit 

of the model after removing the effect of each parameter was not significant. The random-effects 
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structure initially included the effect of the participants on the intercept. Random effects of the 

participants on the predictors (random slopes) were also tested to evaluate whether their inclusion 

significantly increased the goodness of fit of the model. The inclusion of a random slope would 

indicate that a given effect varies considerably between subjects and would indicate the presence of 

potential individual differences. 

In a first analysis, the discrete judgments that were made by the participants were used as the 

dependent variable. A logistic mixed-effects model (Jaeger, 2008) was adopted, in which “deck 1” 

was used as the reference level. In other words, the predictors in this model were calculated relative 

to the properties of “deck 2” (control level ); the model tested the significances of the various 

predictors in predicting the odds of choosing “deck 2” in comparison to “deck 1”3. A second 

analysis introduced the degree to which each participant was confident in his/her judgment as the 

dependent variable. In this case, the predictors were computed based on using the chosen deck as a 

reference. For each problem, the prior probabilities and weight-of-evidence measures of the chosen 

deck were introduced as independent variables. The statistical significances of the fixed effects in 

this analysis were evaluated using a Markov chain Monte Carlo (MCMC) sampling algorithm with 

10,000 samples.  

Results 

The final model that resulted from the analysis of the discrete decisions that the participants 

had made included the PriorProb and the WE_presClues as fixed predictors. The WE_allClues 

variable was removed from the model because it did not significantly improve the overall goodness 

of fit. Table 1 reports the fixed effects that were included. The higher the prior probability and the 

weight of evidence (considering only the subset of present clues) of “deck 2” were, the more likely 

it was that participants would choose it. Conversely, the lower the prior probability and the weight 

of evidence (of present clues only) of “deck 2” were, the more likely it was that “deck 1” would be 

chosen. No significant interaction emerged, which indicated that the reported effects were additive 

in nature. The inclusion of random slopes of participants on WE_presClues (s.d.=.06) was 
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necessary, which suggests that the subjects differed in their general degrees of sensitivity to the 

informativeness of the present clues. 

The analysis of the degree to which the participants were confident in their judgments 

revealed the same set of significant effects (see Table 2). For both the PriorProb and the 

WE_presClues variables, the higher the predictor values were, the more confidence the subjects had 

in their responses. However, random slopes of participants on both the PriorProb (s.d.=.73) and the 

WE_presClues (s.d.=.03) variables were included in this model, which indicates that both of these 

effects varied across participants when a confidence report was requested. 

Discussion 

Our findings provide evidence that people can make judgments based on base-rate 

considerations, but that they do not integrate the base rates with all of the new evidence that they 

obtain according to the multiplicative rule from Bayes’ theorem. Instead, their integration patterns 

are influenced by a psychologically compelling feature of the new information, namely by the 

presence of the clues, as opposed to their absence. Furthermore, they combine this information with 

base rates in an additive manner. 

The effect of prior probabilities is consistent with results from previous studies that have 

shown that participants are sensitive to base-rate information when the priors are manipulated 

within subjects (e.g., Fischhoff et al., 1979). Furthermore, this kind of effect is in keeping with the 

studies that argue that using sample spaces of random events that are clearly defined (conditions 

met by card games like ours) sensitize participants to base rates (e.g., Ginossar & Trope, 1987, 

Experiment 6, pp. 471-472; Koehler, 1996; Nisbett, Krantz, Jepson, & Kunda, 1983).  

The feature-positive effect when evaluating two competing hypotheses that we observed is 

consistent with a recent experimental work (Cherubini et al., in revision), but it is at odds with the 

results of Christensen-Szalanski and Bushyhead’s (1981) study, in which physicians used the 

absence of a symptom as efficiently as the presence of a symptom when estimating the predictive 

value of the symptoms for a diagnosis. This inconsistency might be traced back to the realism of 
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their study. Specifically, the participants in their study might have noted the absence of symptoms 

because they co-occurred with the presence of other important symptoms (see Christensen-

Szalanski and Bushyhead, 1981, p. 934). Furthermore, because the participants in that study were 

expert physicians, their ability to perform a medical diagnosis task might be greater than the ability 

of non-expert participants who were faced with an abstract task (e.g., Cherubini, Russo, Rusconi, 

D’Addario, & Boccuti, 2009). 

The formal structure of our problems ensured that the informativeness of the present clues 

was comparable to that of the absent clues, so we were able to avoid the kind of spurious co-

occurrence that is described above. We did not insert the WE of the subset of absent clues into the 

model as a potentially significant predictor because it had a strong negative correlation with the 

WE_presClues (r = -.9). This result is not surprising since we designed the problems so that the 

hypothesis that was favored by the subset of present clues was always the opposite of the hypothesis 

that was supported by the subset of absent clues. 

The results of the analysis of the dichotomous dependent variable were further corroborated 

by the analysis of confidence ratings. Specifically, both the PriorProb and the WE_presClues 

variables significantly predicted the degree to which participants trusted the responses that they 

gave. We also found significant random effects which indicated  that participants varied in the 

degree to which they were sensitive to the amount of information that was conveyed by the 

presence of a group of clues (in both dichotomous judgments and in confidence ratings) and to the 

prior probabilities (only in confidence ratings). This result is consistent with previous research 

about probability judgments that reported that there were individual differences in responding to 

this type of task (e.g., Gigerenzer & Hoffrage, 1995; Villejoubert & Mandel, 2002). 

Study 2 

In Study 2, we aimed to assess the soundness of the results of Study 1 by adding a more 

finely tuned judgment to the discrete prediction about which of the two hypotheses was the more 

likely one (see Appendix B). It has been suggested that the response mode can affect the degree to 
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which people are sensitive to base-rate information. In one study, Manis, Dovalina, Avis, & 

Cardoze (1980) hypothesized that a discrete judgment, like the one in Study 1 of the present work 

(or other discrete judgments that participants make in studies of probability matching), might 

“involve a more rudimentary form of cognitive processing” (Manis et al., 1980) compared with the 

kind of processing that is entailed in making a subjective probability judgment. It stands to reason, 

therefore, that the base-rate information would have a more profound effect on discrete predictions 

compared with the continuous judgments that people make. Although the results from Manis et al.’s 

study (1980) were reinterpreted by Bar-Hillel and Fischhoff (1981) in light of a possible artifact of 

the materials they used, their hypothesis remains a reasonable one.  

Method 

Participants 

A total of 48 participants (40 females, 8 males; mean age = 23.1 years; range: 19-48 years) 

from the University of Milano-Bicocca took part in the study, most of them in exchange for course 

credit. 

Materials and procedure 

The materials and procedure were the same as those that have been described in the 

Materials and Procedure subsection of the Overview of the Studies section. The main difference 

between Study 1 and the present experiment was that we also asked participants in Study 2 to make 

a more nuanced judgment about the more likely hypothesis. Specifically, we first asked participants 

to provide a discrete judgment about the more likely hypothesis, after which we asked them to 

indicate the percentage between 51% and 100% on an 11-point scale that corresponded to the level 

of plausibility of the chosen hypothesis (see Appendix B). 

Data analysis 

The statistical procedures that were described for the first study were also followed in Study 

2. The same analysis that had been employed to analyze data regarding the confidence levels of the 
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participants was used to analyze the data about the newly introduced response (the judgments that 

the participants made regarding the probability that the chosen deck was the more likely). 

Results 

The analyses of the discrete preferences of the participants confirmed the results of Study 1. 

As shown in Table 3, the final model included both the PriorProb and the WE_presClues variables 

as significant positive predictors and random slopes of participants on the WE_presClues (s.d.=.09). 

The results of the model of participants’ confidence were not completely consistent with the results 

of Study 1; a significant correlation between the PriorProb and WE_presClues variables emerged, 

but no random slopes were found (Table 4). The complex interaction (Figure 1) indicates that both a 

high prior probability and a high WE (computed based on only the present clues) of the chosen deck 

are necessary for participants to report high levels of confidence in their responses.  

In the model that was dedicated to the continuous judgments that the participants made, both 

the PriorProb and the WE_presClues emerged as significant predictors (Table 5). The higher the 

prior probability of the chosen deck, the higher participants perceived its likelihood of being the 

deck from which the card was drawn. The same reasoning applies to the WE_presClues. The 

likelihood that the drawn card had originated from the chosen deck was deemed to be higher for 

high levels of the WE_presClues that was associated with the chosen deck. No significant 

interaction emerged, which confirms the additive nature of the two effects. Again, there was no 

significant impact associated with the WE_allClues variable, so it was removed from the model. No 

random slopes were found. 

Discussion 

The results of Study 2 are highly consistent with those of Study 1, which provides evidence 

for the reliability of the observed effects. We replicated the finding that the influences of base-rate 

information and new information (only if it was about the present features) were additive when 

considering the discrete dependent variable (i.e., the dichotomous choice between deck 1 and deck 

2). The additional dependent variable, a subjective probability judgment about the degree of 
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plausibility of the chosen deck, yielded the same fixed effects. Hence, our findings do not support 

Manis et al.’s (1980) hypothesis that the response mode has an effect on the use of prior 

probabilities. Indeed, base rates affected the judgments that the participants made whether these 

judgments were dichotomous or were made along a more graduated scale. 

The only divergent finding between the present experiment and the results of Study 1 is the 

significant interaction between the PriorProb and the WE_presClues variables that emerged from 

the analysis of the degrees to which the participants were confident in their responses. Participants 

trusted their judgments more when both of these sources of influence attained high values, and their 

confidence in their responses decreased when one of these two sources only attained a low value 

(see Figure 1). This inconsistency can be explained by the different phrasing of the question in the 

two studies. In Study 2, the question concerned the participant’s confidence in both the discrete and 

the graduated judgments, whereas in Study 1, it only concerned the discrete judgment (see 

Appendix B). Therefore, the participants had to be supported by high values of both the PriorProb 

and the WE_presClues variables to be confident in both of the responses they gave. 

General Discussion 

In the two studies that are presented in this article, we found consistent evidence that the 

judgments that the participants made regarding which of two hypotheses was more likely were 

affected by both prior probabilities and by new information (that was gleaned solely from present 

clues), but not by an interaction between these variables. This tendency to “weight and add the 

cues” (Juslin, Nilsson, & Winman, 2009) has long been known to affect belief-updating tasks (e.g., 

Hogarth & Einhorn, 1992; Juslin et al., 2009; Lopes, 1985, 1987; McKenzie, 1994; Shanteau 1970, 

1972, 1975). Our findings extend this understanding to a one-shot hypothesis-testing task by 

showing that participants integrated prior probabilities and the new information additively instead 

of relying on multiplicative (Bayesian) integration (e.g., Juslin et al., 2009). However, this result 

also extends the existing literature by showing that additive integration might involve only part of 

the new information, namely the features that occur relative to those that do not (i.e., the feature-
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positive effect). The analysis of the degrees to which participants were confident in their responses 

provided converging evidence for the additive roles of prior probabilities and the presence of 

information. However, in Study 2 we found an interaction between these two sources of information 

that may reflect the different task requirement. 

 The generalization of the use of additivity as an aggregation rule to one-shot tasks is 

relevant because this rationale has only been applied and simulated rarely with respect to one-shot 

tasks (Juslin et al., 2009; McKenzie, 1994). In fact, McKenzie (1994) noted: “Although researchers 

have examined the conditions under which subjects do and do not use base rates in one-shot tasks, 

how the information is integrated into a final response is unclear”. He then suggested that base rates 

might be used and averaged with the information that is provided by the LR. These kinds of 

averaging strategies performed well relative to the normative Bayesian criterion in simulations. The 

present research represents a tentative answer to the question of whether and when people actually 

use intuitive strategies, such as averaging strategies, in one-shot tasks. In particular, we found that 

instead of averaging, the participants simply added the two sources of probabilistic information that 

they were given in a laboratory card game. 

This finding suggests that additivity might not be due to the sequential nature of a belief-

updating task; it can also occur when a single revision process is required. The use of additivity as a 

“composition” rule (Slovic & Lichtenstein, 1971, p. 661) has been considered an error in the 

combining process, and it has been called “misaggregation” in previous works (Fischhoff & Beyth-

Marom, 1983, p. 248). The direct consequence of the failure to aggregate the priors and the LR 

multiplicatively is that people provide probability estimates that are less extreme than they would be 

if they were acting according to Bayes’ rule. Overall, this implies a relatively low certainty (low 

positive IG) about the hypotheses after receiving new evidence and a loss of information in the case 

of extreme initial beliefs (i.e., negative IG). In short, the effect of multiplying the priors and the LR 

is more pronounced than the effect of combining them additively. Future studies should investigate 

the implications of additivity in one-shot tasks for human-environment relations despite the fact that 
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this composition rule fails to adhere to the formal rules of probability theory (Juslin et al., 2009; 

Koehler, 1996; McKenzie, 1994). 

Our study also adds to the existing information integration literature by shedding light on 

one of the possible relevant “weighting parameters” (Slovic & Lichtenstein, 1971, p. 661). We 

found that the new information influenced the judgments that the participants made only when it 

gave clues about presence. Linear relationships between participants’ judgments and both prior 

probabilities and the evidential strength of the subset of present clues were observed when the 

participants made a dichotomous choice between the two competing hypotheses (Studies 1-2) and 

when they were asked to make a more specific, graduated judgment (Study 2). Thus, participants 

failed to perceive the informativeness of all of the evidence that they received (i.e., 

“misperception”, Fischhoff & Beyth-Marom, 1983, p. 248) because their decision-making processes 

were guided by a feature that was psychologically relevant but logically irrelevant: the presence of a 

clue, as opposed to the absence of one.  

In conclusion, this is the first study to demonstrate the difficulties in achieving a 

multiplicative (Bayesian) aggregation of base rates and the LR that might emerge as a consequence 

of both the misaggregation and misperception of available information sources in an unfamiliar 

one-shot task of hypothesis testing. Not only do people deviate from the normative Bayesian 

criterion when assessing the component probabilities by giving more weight to the presence of 

features than they do to the absence of them, but people may also use a non-normative, additive rule 

for combining the base rates with the LR to reach a final decision. 
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Footnotes 

1 Note that here we refer to “one-shot tasks” (McKenzie, 1994), in which participants are given base 

rates and make a single judgment. Participants in “belief-updating tasks” (McKenzie, 1994) make 

multiple judgments, and the first response corresponds to the prior probabilities for the second 

revision (e.g., Beach, 1968), so it is more likely that unequal prior probabilities will be available to 

participants in the latter kind of task. 

2 We adopted WE because it is a direct measure of the informativeness of a datum independent of 

the prior probabilities and of the posterior probabilities, unlike measures such as IG (see the 

Introduction).  

3 The opposite model, in which “deck 2” was used as the reference level, is statistically equivalent 

and leads to consistent results. 
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Table 1 

Analysis of participants’ discrete judgments: Fixed effects resulting from a logistic mixed-effects 

regression model (“deck 1” is the reference level). Study 1. 

 Estimate Std. Error z-value p-value 

Intercept -1.45 .27 5.49 <.001 

PriorProp 3.13 .46 6.79 <.001 

WE_presClues .11 .02 7.08 <.001 
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Table 2 

Analysis of participants’ confidence: Fixed effects resulting from a mixed-effects regression model. 

Study 1. 

 Estimate Std. Error MCMCmean pMCMC 

Intercept 3.06 .23 3.06 <.001 

PriorProb 1.01 .19 1.05 <.001 

WE_presClues .03 .01 .02 <.01 
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Table 3  

Analysis of participants’ discrete judgments: Fixed effects resulting from a logistic mixed-effects 

regression model (“deck 1” is the reference level). Study 2. 

 Estimate Std. Error z-value p-value 

Intercept -2.51 .29 8.61 <.001 

PriorProb 5.05 .52 9.69 <.001 

WE_presClues .11 .02 6.05 <.001 
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Table 4 

Analysis of participants’ confidence: Fixed effects resulting from a mixed-effects regression model. 

Study 2. 

 Estimate Std. Error MCMCmean pMCMC 

Intercept 3.95 .19 3.96 <.001 

PriorProb .33 .16 .33 .06 

WE_presClues -.01 .01 -.01 n.s. 

PriorProb * WE_presClues .03 .01 .03 <.05 
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Table 5 

Analysis of participants’ probability judgments: Fixed effects resulting from a mixed-effects 

regression model. Study 2. 

 Estimate Std. Error MCMCmean pMCMC 

Intercept .67 .02. .67 <.001 

PriorProb .10 .02 .10 <.001 

WE_presClues .002 .001 .002 <.001 
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Figure caption 

Figure 1. Analysis of participants’ confidence in Study 2: Participants’ confidence in the responses 

they gave as a function of prior probabilities and weight of evidence of the subset of present clues 

only. 
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Appendices 

Appendix A 

Formal properties of the 10 problems that were used in the two experiments. The conditional probabilities of the present clues are presented in 

bold. The conditional probabilities of the absent clues correspond to the frequencies that were shown to the participants in the tables. 

 
 

Problem Deck 
Prior 

probabilities 
[PriorProb] 

Likelihoods Information 
gain of 
present 
clues 

Information 
gain of 
absent 
clues 

Weight of 
evidence of 

present clues in 
relation to deck 2 

(control level) 
[WE_presClues] 

Weight of 
evidence of all 

clues in relation 
to deck 2 (control 

level) 
[WE_allClues] 

Posterior 
probabilities p (B) p (C) p (D) p (F) 

1 1 .2500 .6700 .3300 .6900 .9000 -.1880 .6204 -5.0488 5.3830 .0900 
2 .7500 .5500 .0800 .8900 .1900 .9100 

2 1 .5000 .5000 .1800 .3500 .1300 .0016 .2592 .4139 -5.3495 .7700 
2 .5000 .1100 .9000 .7000 .5000 .2300 

3 1 .2500 .1300 .3000 .0900 .7300 .4865 .2218 7.2301 -5.3526 .5300 
2 .7500 .8800 .7200 .6200 .5600 .4700 

4 1 .9500 .7100 .2300 .5800 .9000 .2724 -.7136 -16.2001 -3.3422 .9800 
2 .0500 .3000 .0200 .1600 .2000 .0200 

5 1 .7500 .4000 .9000 .7200 .9500 .7170 -.0858 -14.3573 -6.1807 .9300 
2 .2500 .0400 .3300 .5400 .8000 .0700 

6 1 .0500 .1200 .2800 .0700 .5700 .2275 -.6958 8.8404 -5.3217 .1500 
2 .9500 .9100 .7300 .4700 .6500 .8500 

7 1 .5000 .8500 .8000 .2000 .7300 .2765 .6437 -5.9989 5.4084 .2200 
2 .5000 .3000 .0600 .6700 .2000 .7800 

8 1 .9500 .0500 .5600 .6000 .4600 -.7122 .2144 13.1702 5.3887 .8500 
2 .0500 .7000 .8300 .9400 .4000 .1500 

9 1 .7500 .4000 .5000 .0200 .2200 .3971 .5931 15.1792 5.5268 .4600 
2 .2500 .8700 .7500 .2900 .5000 .5400 

10 1 .0500 .9600 .8700 .9000 .8900 -.5940 .2817 -16.4825 5.1441 .0200 
2 .9500 .2100 .0400 .4400 .1900 .9800 
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Appendix B 

A sample stimulus. 

In this case, the urn used to choose the deck from which to draw the card contained 15 tickets with 

“deck 2” written on them and 5 tickets with “deck 1”.  

On the card drawn from the chosen deck, there are a D and an F, but not a B or a C. 

Mark the box indicating the deck from which the card was more likely drawn. 

 

 B C D F 

deck 1 13 30 9 73 

deck 2 88 72 62 56 

 

 

 

Indicate your confidence in the response you provided: 

not very confident 1 2 3 4 5 6 7   very confident 
 

 

Study 2 version. 

From which deck was the card most likely drawn? 

(mark one of the two boxes with an X) 

 

 

How likely is it that the card was drawn from this deck? (mark the corresponding percentage) 

51% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

 

Indicate your confidence in the responses you provided: 

not very confident 1 2 3 4 5 6 7   very confident 

F 

D 

deck 1 deck 2 

deck 1 deck 2 
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