
Capturing Software Evolution and Change

through Code Repository Smells

Francesca Arcelli Fontana, Matteo Rolla, and Marco Zanoni

Department of Informatics, Systems and Communication

University of Milano - Bicocca

{arcelli,zanoni}@disco.unimib.it,matteo.rolla@gmail.com

http://www.essere.disco.unimib.it

Abstract. In the last years we have seen the rise and the fall of many

version control systems. These systems collect a large amount of data

spanning from the path of the files involved in changes to the exact

text changed in every file. This data can be exploited to produce an

overview about how the system changed over time and evolved. We have

developed a tool, called VCS-Analyzer, to use this information, both for

data retrieval and analysis tasks. Currently, VCS-Analyzer implements

six different analysis: two based on source code for the computation of

metrics and the detection of code smells, and four original analysis based

on repositories metadata, which are based on the concepts of Repository

Metrics and Code Repository Smells. In this paper, we describe one smell

and two metrics we have defined for source code repository analysis.

Key words: Code Repository smells, Repository analysis, Repository

Metrics, Code changes

1 Introduction

Code smells are well known in the literature [1], and researchers have been trying

to automatically detect them and remove them through refactoring steps. Code

smells point out symptoms of deeper problems and are based on the analysis

of the code only. While searching problems in a system, not only a single code

snapshot should be taken into account, but also its history that will eventually

result into code smells or other problems or symptoms of problems. Analyzing

code changes is a natural way to track developers behavior. Version Control

Systems (VCS) play a huge role in software development. There is no safe way

of merging the work of several developers without using a VCS and furthermore

no developer nowadays would work on a project of some importance, size or

http://www.essere.disco.unimib.it


2 F. Arcelli Fontana, M. Rolla, M. Zanoni

value, without being able to revert changes when things get out of hand. VCSs

allow to store and expose many data on the contents, authors and times of the

changes applied on a project repository.

In this paper, we show some ways these data, or part of them, can be used

to extract symptoms of more deep-rooted problems. Since these symptoms are

based on repositories and for the analogy with Code Smells, they have been

called Code Repository Smells. In particular we focus our attention on a Code

Repository Smell, which we called Code Bashing. This smell refers to the sit-

uation in which changes made by several developers on several versions of a

specified file gather in a narrow portion of the file itself.

Moreover, we have defined two new metrics, for data gathered from reposi-

tories, called the Repository Stability and the File Volatility metrics. Repository

Stability is based on the concept of file closures and represents, at a given mo-

ment, the ratio between stable files and those that will be subjected to further

modifications. File Volatility express how much the content of a file, or a portion

of it, changes in relation to the number of its versions.

For our analyses, we have developed a tool, called VCS-Analyzer, that allows

retrieving data needed for software analysis harvesting system repositories. It

does not rely on any particular VCS, but instead it produces a model that

abstracts and encapsulates all the data retrieved from such systems, guaranteeing

complete independence. VCS-Analyzer needs only the identifier of the repository

to be analyzed, and takes care of the retrieval of metadata or files, depending

on the analysis to perform. It has been designed to allow simple plugging of

new analyses and other VCS, by decoupling the different aspects of repository

crawling. The tool currently supports Git and SVN, which are the most used

VCSs in the open source community, but others can be integrated if the need for

them arises. VCS-Analyzer has been used to perform different analyses on many

systems, e.g., JUnit, ElasticSearch, the Linux kernel. The detailed description

of VCS-Analyzer and the analyses performed can be found in the Thesis of

M. Rolla [2]. Currently the supported analyses exploit the detection of code

smells, the computation of many metrics, change sizes and number of changes,

as well as the information captured through the Code Repository Smell and

Metrics defined in this paper.

The paper is organized through the following sections: in Section 3 we in-

troduce the Code Bashing smell. In Section 4 and Section 5 we introduce and

describe the two new Repository Metrics. Finally, in Section 6, we conclude and

outline some future developments.



Capturing Software Evolution and Change through Code Repository Smells 3

2 Related Work

At the best of our knowledge, the literature does not report Code Bashing smell,

as defined in this paper, and the same holds for the identified Repository Metrics.

For what concerns the different analysis on the evolution of software repos-

itories, as those we can perform with VCS-Analyzer, many works have been

proposed in the literature, as the papers in the Proceedings of Mining Software

Repositories Conferences [3] and many other works [4, 5, 6, 7].

While for what concerns systems similar to VCS-Analyzer, different works

have been proposed in the literature, as for example Churrasco [8], which pro-

vides software evolution modeling, analysis and visualization through a web in-

terface, or Kenyon [9], a system designed to facilitate software evolution research

by providing a common set of solutions to common problems.

The aim of VCS-Analyzer is different from many other tools, in particular it

implements the computation of code related metrics and the detection of code

smells as well, and its main focus is supporting the software assessment process

analyzing data exposed (and thus available), by the version control systems

rather than the code itself.

3 Code Bashing Smell

Code is rarely completely right at first writing: it undergoes several changes

and optimizations, which are natural during its evolution. When a portion of

code keeps changing frequently it may point out a deeper problem in the system

structure or design. Nevertheless, when developers reiteratively edit the same

portion of code, it is sign of a problem: e.g., either the requirement specifica-

tions were not exhaustive and subject to frequent change, or the code is too

complex for the developer to be fully understood. Moreover, once a piece of code

is considered stable enough, changes involving it should be in a limited number,

following the principle of single responsibility [10] which states that every class

should have a single reason to change, because it has a single responsibility. Even

in agile methods, where changes are normal and welcome, an excessive change

to the same piece (or single line) of code can be suspicious. Clearly, depend-

ing on the repository branch and conventions, the evaluation of the amount of

changes can have different interpretations. A local development branch will be

by far more unstable than an official stable/release branch. It often happens that

local branches are used to experiment different solutions, and files get almost

totally changed from time to time. On mature projects, instead, there is usually



4 F. Arcelli Fontana, M. Rolla, M. Zanoni

a branch which receives only tested and approved code. When too many changes

are made to this kind of code, it is often the sign that a problem happened.

We can think to assign to the code a value, able to express how much it has

been exposed to changes. The idea is to assign to each line of code a score, called

Changing Intensity, representing how many times the line has been touched by

some changes. The higher the score, the more a line participated to changes. The

algorithm we implemented in VCS-Analyzer populates an array of Changing

Intensity for every text file in the repository. To track change positions and

text, the algorithm analyzes the differences between the same file in consecutive

versions, using the patch texts provided by the VCS. All major VCSs embrace

the unified diff format. The lines of a diff can be grouped into three categories:

– Neutral blocks: composed of lines serving as context and not taking part in

changing the file.

– Additive blocks: composed of lines marked with the plus sign (+) by the diff;

these are the lines added in the new version of the file.

– Subtractive blocks: composed of lines that are marked by the minus sign (-);

they represent the lines that will not be present in the new version.

The algorithm splits the diff text and the file in blocks, reassembling them

in a way that the result is a sequence of blocks with additive, subtractive and

neutral blocks. Then the vector containing the changing intensities of the pre-

vious version of the file is updated accordingly to the changes represented by

the different blocks. Changes in the unified diff format are in form of additions

and deletions only. Edits are represented by the deletion of lines followed by the

addition of the former lines, incorporating the change. The way the scores are

assigned to lines is guided by a simple score assignment schema we propose.

The idea behind the score assignment schema is that the score of every line

should represent how many times the line has been changed. Following this

criterion we manage different cases:

– isolated additive block: inserted lines at the end of file get score 1, the others

get the score of the line at the same position plus 1;

– isolated subtractive block: deleted lines get removed, and their score is also

removed; the lines before and after the block (if existing) get their score plus

1, witnessing the code removal;

– subtractive block followed by additive block, representing a change: depending

on the size of the two blocks we consider three cases:

– same size: lines get the score of the substituted lines plus 1;



Capturing Software Evolution and Change through Code Repository Smells 5

– addition longer than deletion: the scores of the deleted lines, plus 1, are

passed to the first added lines; remaining lines get score 1;

– deletion longer than addition: all added lines except the last one get the

respective deleted line score plus 1, while the last gets the maximum score

of the remaining deleted lines plus 1.

In the following, we report an example of the application of the score assign-

ment schema. For space reasons, we focus on the last case (modification with

more deletion than addition), which is the more complex and less intuitive one.

In Listing 1, Listing 2 and Listing 3, we show a file before and after a change,

and the diff file for the change. Each line of the file has an associated score,

before and after the change. For the sake of simplicity, in the following listings,

changes are represented only in the form of a single line or a few lines, but the

real implementation obviously uses blocks instead.

Listing 1. Original file

1 public class Test {

4 private String key;

4 // first line comment

1 // second line comment

1 }

Listing 2. Resulting file

1 public class Test {

4 private String key;

5 // single line comment

1 }

Listing 3. Difference between the two files

@@ -1,5 +1,4 @@

public class Test {

private String key;

- // first line comment

- // second line comment

+ // single line comment

}



6 F. Arcelli Fontana, M. Rolla, M. Zanoni

4 File Volatility Metric

File Volatility is the first Repository Metric we defined1. At every moment during

its life, each file has associated a Changing Intensity vector, calculated with the

method described in section 3.

We can then define the volatility of a file respect to its evolution, as the ratio

between the maximum value in the Changing Intensity vector and the number

of changes to the file since its creation. This value represents how frequently a

piece of code has been changed during the evolution of the containing file up to

a given moment. A value close to 1 that means in the file there is a portion of

the code that is kept being involved in changes from the beginning until the last

version. This behavior is clearly not desirable, or at least points to a peculiar

situation. Figure 1 represents the plot of the File Volatility of the file pom.xml in

the ElasticSearch2 project. In an ideal situation, the value of the metric decreases

in time, starting from 1. When a file is created its File Volatility is 1, and at

each change it keeps close to 1 if the changes are applied to the same region of

code. Otherwise, the value of the metric tends to be lower. In the example, the

value of the metric quickly decreases to smaller values, meaning that the changes

involved different regions of the file. In that particular file, the only line of code

receiving a high score is the one representing the version of the system. In fact,

the same line has been edited every time the system changed its version number.

500 1,000 1,500 2,000 2,500 3,000

0.2

0.4

0.6

0.8

1

Versions

File Volatility

Fig. 1. Evolution of the File Volatility metric

Code refactoring techniques like Move Method, Extract Method and Extract

Class can greatly affect the value of the metric. Consider for example the case

1 At the end of the section, we outline the differences with other existing metrics like

code churn.
2 https://github.com/elasticsearch/elasticsearch

https://github.com/elasticsearch/elasticsearch


Capturing Software Evolution and Change through Code Repository Smells 7

of problematic code in a method, which is subjected to many changes for several

reasons and was not even supposed to be in that particular class. It could be a

case, e.g., of a Feature Envy method. To remove such smell, the refactoring to

apply could be to move that method elsewhere in the code base. If that method

had, into its body, lines with the highest values of Changing Intensity in the file,

then its removal would dramatically drop the volatility metric value. The same

statement holds w.r.t. every refactoring technique that implies the removal of a

considerable portion of the code, as well as deleting code for other reasons.

File Volatility is different from other existing metrics measuring code changes.

Two widely investigated change measures are the number of file changes and

code churn [7]. File Volatility expresses a different measure than the number

of file changes. In fact, it summarizes the changes of the single lines, relative

to the number of file changes. For example, a file receiving 10 new lines in 10

versions, one line per versions, has a number of changes value of 10. Its File

Volatility, instead is 1/10 (assuming no other lines have ever been changed).

The code churn (in its simplest form) for the same file will be (absolute form)

10, or (relative form) the average of 1/LOC for each of the 10 versions. File

Volatility is a measure evaluating the peaks of line changes in files, while code

churn is related to the size of every change made to the file, without recognizing

the identity of the single lines.

5 Repository Stability Metric

The second Repository Metric we defined is Repository Stability. Following the

principle of single responsibility, when a piece of code reaches enough maturity,

the chances of it being changed are extremely low. M. Feathers defined that a

class can be considered closed [11] at time t if no further modifications will hap-

pen from t to present. The same concept can be extended to files: a file can be

considered closed when no further development is done on it from a version to

the present one. When a file reaches enough maturity, there is high probability

that it will not be subjected to future changes. Given this assumption, tracked

files can be grouped in active files and closed files. To give a graphical imme-

diate representation of the concept of file closures described above, we report,

as an example, the values computed on JUnit, chosen for its long change and

development history. JUnit’s repository3 is managed by Git, after the migration

from CVS. Figure 2 shows the amount of files involved in every single commit.

3 https://github.com/junit-team/junit

https://github.com/junit-team/junit


8 F. Arcelli Fontana, M. Rolla, M. Zanoni

100 200 300 400 500 600 700 800

100

200

300

Versions

Number of changes

Fig. 2. Number of files changed each version

We can see that there are few commits that really stand out from the average

and especially the last one, as we will see later, has a remarkable impact on the

value of the metric. In Figure 3 we can see a comparison of the evolution of total

and closed files.

100 200 300 400 500 600 700 800

200

400

Versions

Files Closed files

Total files

Fig. 3. Evolution of closed/total files

100 200 300 400 500 600 700 800

0.2

0.4

0.6

0.8

1

Versions

Closed files / Total files

Fig. 4. Evolution of the Repository Stability metric in JUnit



Capturing Software Evolution and Change through Code Repository Smells 9

The commit near the end represents the reason why the metric keeps low

values for almost the entire life span of the repository, except for the last two

hundreds versions. The development team decided to apply new coding conven-

tions to the code base. This decision resulted in a huge number of files involved

into the change. Hence, only the files not interested by the new standards could

be considered closed. Just after the commit, the number of closed files suddenly

increases and keeps increasing until the end of the timeline. In the last commit,

the number of closed and total files are the same. This is due to the fact that, by

construction, the odds of finding a file contained in a change set decrease pro-

portionally with the progress in the history of commits. At last commit, none

of the files can be found at a later stage. The desired development behavior

is to focus on single functionalities and then move to others when the imple-

mentation is mature enough. By looking at the Repository Stability evolution

graph, one can immediately judge if developers are following this principle. The

Repository Stability evolution graph for a given interval, should keep growing as

time advances and the gap between active and closed files should be as narrow

as possible. Even in agile development environments with short release cycles

and incremental refactoring, there is a time when code has to stop changing and

become stable. Obviously, code can’t be mature from the start, but it should be

at some time in the future.

6 Conclusions and Discussions

In this paper, we have described a new Repository Smell, highlighting code

regions that received more attention than others. We defined also two Repository

Metrics, giving a quick overview of the level of maturity of single files and of

an entire repository. In particular, File Volatility assigns to each file a score,

telling how much changes are concentrated on particular lines, revealing code

regions that needed more attention than others, and could need more in the

future. Repository Stability, instead, can summarize the portion of repository

which did not need to be changed since an instant in its development history;

repositories where most files change over time can suffer from organizational or

design issues, so this metric can reveal potential quality problems.

This information can be exploited for software maintenance and quality as-

sessment. For example, the selection of a third party open source component

can be aided with measures characterizing the maturity of the project, as well

as other issues related to its development process.



10 F. Arcelli Fontana, M. Rolla, M. Zanoni

We already analyzed different projects, i.e., Mozilla Rhino, JUnit, Elastic-

Search, RSpec (core package), Tomcat, ION, and the Linux kernel. The results

of these analysis are available in a web page4 that we will keep updated with

results obtained on new projects. In the past, we focused our attention on code

smell detection and assessment [12]. Now we aim to focus on finding smells tied

to software evolution and repository analysis, to extend our experimentation

with the new Repository Smells and discovering new ones. Moreover, through

VCS-Analyzer we intend to perform different empirical analysis for assessing the

quality of software projects, basing on their development history.

References

1. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,

Boston, MA, USA (1999)

2. Rolla, M.: Empirical analysis for software assessment. Master’s thesis, University

of Milano-Bicocca, Viale Sarca, 336, Milano, Italy (January 2014)

3. Zimmermann, T., Penta, M.D., Kim, S., eds.: Proc. 10th Working Conference on

Mining Software Repositories (MSR ’13), San Francisco, CA, USA, May 18-19,

2013. In Zimmermann, T., Penta, M.D., Kim, S., eds.: MSR, IEEE / ACM (2013)

4. Peters, R., Zaidman, A.: Evaluating the lifespan of code smells using software

repository mining. In: Proceedings of the 16th European Conference onSoftware

Maintenance and Reengineering (CSMR 2012). (2012) 411–416

5. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for

mining software repositories in the context of software evolution. J. Softw. Maint.

Evol. 19(2) (March 2007) 77–131

6. Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.: Mining version histories

to guide software changes. 31(6) (June 2005) 429–445

7. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system

defect density. In: Proceedings. 27th International Conference on Software Engi-

neering (ICSE 2005). (May 2005) 284–292

8. D’Ambros, M., Lanza, M.: Distributed and collaborative software evolution anal-

ysis with churrasco. Science of Computer Programming 75(4) (2010) 276–287

Experimental Software and Toolkits (EST 3): A special issue of the Workshop on

Academic Software Development Tools and Techniques (WASDeTT 2008).

9. Bevan, J., Whitehead, Jr., E.J., Kim, S., Godfrey, M.: Facilitating software evolu-

tion research with kenyon. In: Proceedings of the 10th European Software Engineer-

ing Conference Held Jointly with 13th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (ESEC/FSE-13), Lisbon, Portugal, ACM

(2005) 177–186

4 http://essere.disco.unimib.it/VCSAnalyzerResults.html

http://essere.disco.unimib.it/VCSAnalyzerResults.html


Capturing Software Evolution and Change through Code Repository Smells 11

10. Martin, R.C.: Chapter 9 — SRP: The Single Responsibility Principle. In: The Prin-

ciples of OOD. objectmentor.com (February 2002) http://www.objectmentor.

com/resources/articles/srp.pdf.

11. Feathers, M.: Working Effectively with Legacy Code. Robert C. Martin Series.

Pearson Education (2004)

12. Arcelli Fontana, F., Braione, P., Zanoni, M.: Automatic detection of bad smells in

code: An experimental assessment. J. Object Technology 11(2) (Aug 2012) 5:1–38

http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf

	Lecture Notes in Business Information Processing
	Authors' Instructions
	Introduction
	Related Work
	Code Bashing Smell
	File Volatility Metric
	Repository Stability Metric
	Conclusions and Discussions
	References



