
MIMIC: Locating and Understanding Bugs
by Analyzing Mimicked Executions

Daniele Zuddas*, Wei Jin†, Fabrizio Pastore*

Leonardo Mariani*, Alessandro Orso†

*University of Milano - Bicocca †Georgia Institute of Technology
Milano, ITALY Atlanta, GA, USA

{zuddas | pastore | mariani}@disco.unimib.it {weijin | orso}@gatech.edu

ABSTRACT
Automated debugging techniques aim to help developers locate and
understand the cause of a failure, an extremely challenging yet fun-
damental task. Most state-of-the-art approaches suffer from two
problems: they require a large number of passing and failing tests
and report possible faulty code with no explanation. To mitigate
these issues, we present MIMIC, a novel automated debugging
technique that combines and extends our previous input generation
and anomaly detection techniques. MIMIC (1) synthesizes multi-
ple passing and failing executions similar to an observed failure and
(2) uses these executions to detect anomalies in behavior that may
explain the failure. We evaluated MIMIC on six failures of real-
world programs with promising results: for five of these failures,
MIMIC identified their root causes while producing a limited num-
ber of false positives. Most importantly, the anomalies identified by
MIMIC provided information that may help developers understand
(and ultimately eliminate) such root causes.
Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging
General Terms: Reliability, Experimentation
Keywords: Debugging, execution synthesis, anomaly detection

1. INTRODUCTION
Because software debugging is an extremely expensive and hu-

man intensive activity, researchers and practitioners alike have put
a great deal of effort into developing automated debugging tech-
niques and tools that can help developers reduce the cost of de-
bugging. One debugging task in particular, fault localization, has
been intensively investigated during the last decade. Among the
fault localization techniques developed to date, the ones based on
statistical analysis are particularly popular (e.g., [2, 17, 19, 21]).

Although statistical-fault-localization techniques can be effec-
tive in guiding the developer towards parts of the code that are
likely to be responsible for an observed failure, most of these ap-
proaches have two serious limitations. First, in order to perform
their statistical analysis, they require a large number of suitable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2643014.

passing and failing test cases [3, 32]. Unfortunately, this ideal set
of tests is rarely available in practice. Second, these approaches
normally return a list of statements ranked according to their likeli-
hood of being faulty, with no additional information. As the study
by Parnin and Orso has shown [24], developers usually need con-
text and some form of explanation to understand a bug.

To address and mitigate these issues, we present MIMIC, a novel
automated debugging technique that combines and extends two tech-
niques developed in previous work by the authors. The first one is
an input generation technique that can synthesize executions sim-
ilar to an observed failure [16]. The second technique performs
anomaly detection by identifying the violations of a previously built
model of the normal behavior of an application [26]. Given a pro-
gram p and a failure f for p, MIMIC performs the following steps.
First, it generates a set of inputs that, when run against p, result in
both passing and failing executions that are “similar” to f . Second,
MIMIC leverages these synthesized executions and the structure
of the program to automatically compute suitable points where to
monitor program behavior. Third, MIMIC uses the passing inputs
to build a model of p’s normal behavior, and the failing inputs to
identify violations of this model at the monitoring points computed
in the previous step. Finally, MIMIC reports the discovered viola-
tions, suitably processed, as potential explanations for f .

To evaluate MIMIC, we implemented it in a prototype tool and
used the tool on six failures of real-world programs. The results
of our evaluation provide initial evidence of the usefulness of our
approach. In particular, the results show that MIMIC can report
anomalies that are closely related to the root cause(s) of f and can
potentially help understand such cause(s). In addition, the results
show that both (1) using the synthesized executions generated by
MIMIC, instead of p’s existing test cases, and (2) monitoring pro-
gram behavior at the program points selected by MIMIC, rather
than at arbitrary program points, can considerably improve the ef-
fectiveness of the approach.

The main contributions of this work are:
• The definition of MIMIC, a new highly automated technique for

discovering failure causes by leveraging only failure data from a
single failing execution.
• An approach for identifying effective monitoring points within a

program for anomaly detection.
• An optimization heuristic for filtering out spurious anomalies

that are unlikely to be related to failure causes.
• The development of a publicly available prototype tool that im-

plements our technique, available at http://www.lta.disco.
unimib.it/tools/mimic.
• An empirical study that shows initial, yet clear evidence of the

usefulness of our approach.

http://www.lta.disco.unimib.it/tools/mimic
http://www.lta.disco.unimib.it/tools/mimic

Failure Data Step 1: Execution
Synthesis

Synthesized
Executions

Step 2: Monitoring
Points Detection

Monitored
Executions

Models

Step 3: Anomaly
Detection

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Anomalies

Application

Step 4: Filtering

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Failure
Causes

MIMIC

Figure 1: Overview of the MIMIC approach.

The rest of the paper is organized as follows. Section 2 provides
background information that is necessary to make the paper self
contained. Section 3 describes our approach in detail. Section 4
presents our empirical evaluation. Finally, Sections 5 and 6 discuss
related work and conclude the paper.

2. BACKGROUND
Before discussing MIMIC in detail, we concisely describe the

techniques that we leverage and extend in this work: F3 and RADAR.

2.1 F3

F3 is a general approach for reproducing and debugging field
failures that we developed in previous work [16]. The inputs to F3

are a program P and failure data D for an execution e of P that
resulted in a field failure f . Given this input, F3 (1) synthesizes
multiple passing and failing executions “similar” to e and (2) ap-
plies a customized statistical fault localization approach to identify
and rank statements in P that are likely to be responsible for f .

The failure data used by F3, D, is an ordered list of intermediate
program locations that can be seen as breadcrumbs to be followed,
or subgoals to be reached, to get to the failure. The last goal in
the list is the actual failure point. Given D, F3 uses our BugRe-
dux algorithm [15] to perform an optimized guided forward sym-
bolic execution that aims to synthesize multiple passing and failing
executions of P that reach the goals in the same order as e. (To
generate passing execution, the algorithm may remove some inter-
mediate goals from D, which increases the degrees of freedom of
the synthesis, and thus, the chances of generating such executions.)

In MIMIC, we leverage F3 in two ways. First, we use the execu-
tion generator in F3 to generate multiple passing and failing execu-
tions similar to the observed (in-house, in this case) failure f . As
failure data, MIMIC uses a (partial) call sequence for f , which in
previous work we found to offer a good tradeoff between amount
of information collected and usefulness of the information in guid-
ing execution synthesis [15] and fault localization [16]. Second,
MIMIC leverages the suspiciousness values generated by F3’s cus-
tomized fault localization techniques to select suitable points where
to monitor program behavior for anomaly detection.

2.2 RADAR
RADAR is a technique for automatically identifying the likely

causes of a regression failure [26]. RADAR relies on the availabil-

ity of a regression test suite such that (1) all tests in the suite pass
when executed on the original version of the software, and (2) some
tests fail when executed on the modified software. The basic idea
behind RADAR is to identify the behavioral differences between
the failing executions of the modified program and the passing ex-
ecutions of the original program.

The behavior of the original and modified programs is observed
at a set of code locations determined according to the differences
between the two programs. When running the programs, RADAR
collects two pieces of dynamic information: the sequence of state-
ments executed and the values of the program variables in scope at
the monitoring points. The information collected from the passing
tests is used to generate models that capture the “correct” behavior
of the application. To do so, RADAR leverages (1) Daikon [13],
to generate expressions that model values that can be assigned to
program variables, and (2) KBehavior [23], to generate finite state
automata (FSA) that represent the sequences of statements that can
be executed without observing any failure. RADAR checks the
traces recorded for the failing executions agains the models derived
from the passing executions to identify behavioral differences be-
tween original and modified programs that may indicate anomalies
and that may be the causes of an observed failure.

MIMIC leverages RADAR’s ability to monitor programs and
generate and check models for program variables, whereas it does
not use RADAR’s FSA models. The monitoring, model generation,
and model checking capabilities of RADAR have been adapted to
fit MIMIC’s purpose, as we describe in Section 3.

3. THE MIMIC APPROACH
MIMIC is a failure analysis technique whose goal is to automat-

ically identify the likely causes of failures from a set of failure data
(i.e., runtime information about a failure). MIMIC starts from a
failure (e.g., a failing test) and produces a list of events that likely
explain the cause(s) of the failure. As illustrated in Figure 1, MI-
MIC works in four steps: execution synthesis, monitoring points
detection, anomaly detection, and filtering. We first provide an
overview of these steps and then discuss them in detail.

The execution synthesis step starts from the failure data and gen-
erates multiple executions that mimic the corresponding failure. As
we quickly discussed in Section 2.1, in this step MIMIC leverages
F3 [16], which is based on symbolic execution, to synthesize both
failing and passing executions. When the approach is successful,

602 #define TAB_WIDTH(c_, h_) ((c_) - ((h_) % (c_)))
...
1349 clump_buff = xmalloc (MAX (8, chars_per_input_tab));
...
2680 char ∗s = clump_buff;
...
2690 if (c == input_tab_char)

chars_per_c = chars_per_input_tab;
2691 if (c == input_tab_char || c == ’\t’)
2692 {
2693 width = TAB_WIDTH (chars_per_c, input_position);
2694 if (untabify_input)
2695 {
2696 for (i = width; i; - -i)
2697 *s++ = ’ ’;
2698 chars = width;
2699 }

Figure 2: Code example: bug13272 in pr.

Passing input: |||\b|||\t\v\v

Failing input: \b\d\b\b\b\b\b\t\v\v

Figure 3: Examples of passing and failing inputs generated for
program pr.

the failing executions mimic the behavior of the original failure—
intuitively, they violate the same assertion. The passing executions,
conversely, are executions that are similar to the falling ones, in the
sense that they follow similar paths and typically reach the point of
failure, but do not result in a failure. In its subsequent steps, MI-
MIC uses these sets of similar executions to determine the events
that can discriminate passing from failing executions.

The monitoring points detection step determines, using a combi-
nation of several heuristics, a set of code locations that are particu-
larly suitable for detecting behavioral differences between passing
and failing executions. Because collecting precise behavioral data
from all code locations of a program is prohibitively expensive for
any non-trivial system, MIMIC selects a small but meaningful set
of code locations to be used as monitoring points.

The anomaly detection step collects data from the passing exe-
cutions at the monitoring points determined in the previous step.
MIMIC uses the collected data to generate behavioral models that
capture the (supposedly) correct behavior of the application. The
same monitoring points are then used to collect data from the fail-
ing executions. MIMIC uses the data collected from the failing exe-
cutions and the previously generated behavioral models to identify
violations of the models that can indicate an anomaly (i.e., a likely
failure cause). As we discussed in Section 2.2, MIMIC leverages
RADAR to monitor programs, generate models, and check models.

In principle, the anomalies detected in the previous step could be
already reported as likely causes of the failure being investigated.
However, some anomalous events could result from spurious be-
haviors unrelated to the failure. MIMIC addresses these cases in its
filtering step, which removes from consideration every anomalous
event that has not been observed in every failing execution. The ra-
tionale for this step is that since all the failing executions fail for the
same reason, a valid explanation for the failure should be present
in every failing execution that has been analyzed. At the end of
this step, the filtered anomalies are the likely failure causes that are
reported to the developer to help him debug the application.

Running Example.
To demonstrate how MIMIC works, we use a running example

that is also one of the case studies considered in our empirical eval-
uation. The example consists of a fault affecting pr, a Unix utility

Table 1: Excerpt of potential failure causes produced by MI-
MIC for pr.

Source Model Actual values
Line
pr.c:2697 input_position ≥ 0 input_position: -5
pr.c:2697 0≤input_position≤63 input_position: -5
pr.c:2697 i ≤ 8 i: 13
pr.c:2697 c > i c: 9

i: 13
pr.c:2697 c ≥ i c: 9

i: 13
pr.c:2697 chars_per_c ≥ i chars_per_c: 8

i: 13
pr.c:2697 chars_per_input_tab ≥ i chars_per_input_tab: 8

i: 13

program for paginating text files before printing. pr is part of Core-
utils [1]. The considered fault is difficult to trigger, and in fact, it
affected many versions of pr before being revealed and fixed.

Figure 2 shows an excerpt of pr. The code in the example fails
when, before a tab character, the number of backspaces in the in-
put string exceeds the number of characters that can be removed.
Figure 3 provides an illustrative example, in which the input string
contains a tab (\t) at position seven, and six out of the seven char-
acters before the tab are backspaces (\b).

The actual failure in the program is triggered when variable
input_position is assigned a negative value. This variable
represents the position in which the next character must be written.
When too many backspaces occur in the input string, the program
assigns a negative value to input_position, intuitively repre-
senting the case of a “cursor” that has been moved backward up to
a negative position. Processing a tab character causes the program
to enter the if branch at line 2691. When the value of width is
computed at line 2693, if input_position is negative, macro
TAB_WIDTH returns a value that is larger than the size of array
clump_buff. (This macro is apparently designed to work on
non-negative values only.) Since width exceeds the size of the
buffer, the program causes a buffer overflow while iteratively ex-
ecuting line 2697 to map the tab character into a (over-length) se-
quence of spaces.

MIMIC is able to capture the causes of this failure. For instance,
Table 1 shows an excerpt of the failure causes automatically de-
termined by our technique. Column Source Line indicates the line
of code used as observation point. Column Model indicates the
property that is systematically violated by all the failing executions.
Column Actual values shows a sample value extracted from one of
the failing executions.

MIMIC suitably identifies the trigger of the failure: negative val-
ues assigned to input_position (see the first two rows in Ta-
ble 1). This result might be already sufficient to debug the program,
as it is enough to notice that the unexpected negative value assigned
to input_position causes the assignment of a too large value
to width, which in turn produces the buffer overflow in the for
loop at lines 2696–2697. However MIMIC provides additional as-
sistance to developers because it also identifies the unusually high
values assigned to variable i, which counts the number of itera-
tions that are executed in the for loop. This anomalous value ex-
plicitly points at the location where the buffer overflow happens,
demonstrating that a consequence of the negative value assigned to
input_position is an excessive number of loop iterations.

In the following sections we discuss how each individual step
of the technique works in detail, using our running example for
illustrative purposes when possible.

3.1 Execution Synthesis
In the Execution Synthesis step, MIMIC generates a set of pass-

ing and failing executions similar to the falling execution that is
being debugged. To synthesizes these executions, as we discussed
earlier, MIMIC leverages the execution generator in F3 [16], which
can generate executions starting from the sequence of calls per-
formed in the failing execution. It is worth noting that, although we
are presenting MIMIC as a technique mainly meant to be applied
during in-house debugging, it could also be applied to crash reports
from the field, as long as they contain the right kind of failure data.

As we discussed in Section 2.1, the execution synthesis in MI-
MIC is based on a guided symbolic execution that can generate
both failing and passing executions that mimic the failure at hand.
Specifically, the failing executions would perform the same calls
and fail in the same way as the original failure; the passing execu-
tions, conversely, would perform as many as possible of the calls in
the call sequence and would not fail. Performing all calls may not
necessarily result in a failure, so in some cases F3 has to skip calls
to increase the set of program behaviors it can explore and be able
to actually generate passing executions.

To properly distinguish between failing and passing executions,
MIMIC relies on an external oracle. When used for in-house de-
bugging, this is not an issue, as it can simply reuse the oracle asso-
ciated with the failing test case that is being debugged. Even if we
wanted to use MIMIC on crash reports from the field, however, it
would be possible to define a pseudo-oracle that “recognizes” the
reported field failure and can check whether a synthesized execu-
tion fails in the same way. The facts that (1) the pseudo-oracle does
not have to distinguish failing and passing executions in general,
but must simply be able to recognize the observed failure, and that
(2) most reports from the field are about program crashes, makes
this feasible in many practical cases [15].

Figure 3 shows examples of a passing execution and a failing ex-
ecution synthesized by MIMIC for the pr program. In the figure,
\b is a backspace char, \d is a delete char, \t is a tabulation char-
acter, and \v is a vertical tab character. The two inputs differ in the
number of backspace and printable characters that occur before the
tab character, which are exactly the input elements that make the
program fail.

The synthesis of many passing and failing executions that repre-
sent similar program behaviors is of crucial importance for MIMIC
because its capability to detect failure causes depends on the dif-
ferences that exist between the analyzed passing and failing execu-
tions. Usually, the smaller these differences, the more accurate is
the detection of the failure causes. Recall that the synthesized fail-
ing and passing executions share the majority of the function calls.
In our empirical evaluation (see Section 4.4.4) we provide evidence
that MIMIC produces definitely better results when working with
the synthesized executions than when using the test suites available
with the programs.

3.2 Monitoring Points Detection
MIMIC identifies failure causes by comparing the behavior of

the program in the failing executions to the models that represent
the behavior of the program in the passing executions.

Since collecting data and generating models is an expensive op-
eration, MIMIC automatically identifies a small but effective set of
program points that can be used to observe the behavior of the sys-
tem during failing and passing executions and determine the causes
of the failures. To select such proper monitoring points, we defined
a suitability formula that associates a value in the range [0, 1] to
each line in the program. The higher the suitability value, the most
likely the program point is a useful observation point.

Given a source line l, the suitability of l is calculated as follows:

Suitability(l) =

kPR × PassRatio(l)+ l executed by all
kS × Suspiciousness(l)+ failing executions,
kVF × VicinityFailing(l)+
kVPOF × VicinityPOF(l)

0 otherwise

Since the formula is applied to the generated failing executions,
which are all caused by the same fault, the anomalies that are re-
ported to the developer must occur in every failing execution. There-
fore, the Suitability formula always assigns 0 to the lines of code
that are not covered by every failing execution.

If a line l is executed by every failing execution, its suitability
is determined as a weighted sum of four terms. The four constants
kPR, kS , kVF, and kVPOF represent the four weights which have to
sum to 1. In the following paragraphs we explain the meaning and
rationale for each term.

PassRatio(l): The detection of the illegal values assigned to pro-
gram variables during failing executions requires good models that
suitably generalize the behavior sampled with passing executions.
If a line is executed by several passing executions MIMIC can gen-
erate good models that capture the correct behavior of the appli-
cation. While if the line is executed by few passing executions,
MIMIC might generate models that overfit the executions, failing
to fully capture the legal behavior of the application. PassRatio
represents the ratio of passing executions that cover l, that is the
more passing executions cover l the more likely l is selected as a
monitoring point. For example, if 5 out of 10 passing executions
cover l the PassRatio(l) is 0.5.

Suspiciousness(l): To suitably observe the trigger and the ef-
fect of a fault, it is important to select monitoring points that are
likely to be related to the fault. To this end, MIMIC computes the
suspiciousness score of a line of code using fault localization. The
higher the suspiciousness score is, the more likely the line of code is
faulty or closely related to the fault. In particular MIMIC leverages
the customized fault localization technique in F3, which has been
shown to work particularly well for synthesized executions [16], to
compute the suspiciousness score.

VicinityFailing(l): The code locations executed by failing exe-
cutions only are likely to process illegal variable values that result
from the failure. To timely capture these anomalous values it is
important to have monitoring points that are close to the lines exe-
cuted by failing executions only. (MIMIC does not directly moni-
tor the lines executed by failing executions only because no passing
execution reaches these lines and thus no model of the correct be-
havior of the application could be generated for these locations.)
VicinityFailing measures how close a line of code is to a statement
executed by failures only. In particular, if Lonly is the set of lines
executed by failing executions only, VicinityFailing(l) is defined as

VicinityFailing(l) = max
lonly∈Lonly

VicinitySourceFile(l, lonly)

where

VicinitySourceFile(l1, l2) =

0.7
|l1−l2|

50 l1 and l2
in same file,

0 otherwise

The vicinity between two lines of code is 0 if the two lines of
code are in two different files. Otherwise, the distance is computed
using the difference between line numbers. The vicinity is 1 when
the two line numbers are the same. Although this simple metric has
worked well in the cases we studied, more sophisticated metrics
might be needed in the future. One possible solution, if such need
were to arise when performing additional experimentation, would
be to compute vicinity based on proximity in the control flow graph
of the program.

Currently, we compute vicinity using a formula based on an ex-
ponential growth to strongly penalize the lines of code that are far
from any statement executed by failing executions only. The con-
stants in the formula are chosen to prevent values from dropping
too abruptly: the vicinity drops by 30% every time the distance
between the lines of code increases by a factor of 50.

VicintyPOF(l): A line of code which is near the point of failure
is likely to capture the illegal values that are responsible for the
actual failure. To this end we compute the vicinity of a line of code
l to the point of failure, namely lPOF, using the following formula

VicinityPOF(l) = VicinitySourceFile(l, lPOF)

We did not systematically investigate different combinations of
weights to discover the optimal formula for computing the suit-
ability of a line of code l. However, we empirically observed that
the Suspiciousness and the PassRatio terms are the most impor-
tant ones, with the former term contributing more than the latter
in the identification of good monitoring points. We thus defined
the following values for the four weights kPR = 0.25, kS = 0.55,
kVF = 0.1, kVPOF = 0.1.

The suitability formula produces a ranking of the statements in
the program. The statements at the top of the ranking are those that
are likely to represent the best observation points for discovering
the causes of the failure according to the set of executions available.
From the ranking, MIMIC selects the firstN non-consecutive state-
ments for monitoring. MIMIC does not select consecutive state-
ments because they are likely to give similar opportunities in terms
of their ability to monitor values and discover failure causes. There-
fore, if consecutive statements occur among the first N statements,
only the one with the highest suitability is selected (the choice is
non-deterministic when the suitability is the same).

In practice, the exact value of N depends on the resources that
are available (e.g., time available for the analysis, computational
power of the analysis infrastructure). In most of our experiments,
we used N = 10.

MIMIC uses the monitoring points to extensively observe the
behavior of the program. In practice, it records the values of all the
variables (including fields and elements of data structures) that are
visible from the monitoring points. As we discussed in Section 2.2,
MIMIC uses the monitoring infrastructure available in RADAR to
collect the data [26].

In our running example, MIMIC automatically selected line 2697
among the top 10 lines, which resulted to be an effective choice for
determining the causes of the failure—the failure causes reported
in Table 1 have been detected using line 2697 as observation point.

3.3 Anomaly Detection
In the Anomaly Detection step MIMIC runs the passing and fail-

ing executions and collects information about program behavior at
the monitoring points determined in the previous step.

The data collected from the passing executions are used to distill
models that capture the values that can be legally assigned to pro-
gram variables. To this end, MIMIC leverages Daikon [13], which

is an inference engine that generates Boolean expressions for a set
of variables whose values have been observed in multiple execu-
tions. In our case, for each individual monitoring point, Daikon
generates a set of Boolean expressions that hold for the variables
that can be accessed from the monitoring point.

For the variable values collected from line 2697 in our running
example, MIMIC generates both useful expressions, such as
input_position≥0 (which captures an important characteris-
tic of passing executions), and spurious expressions, such as
clump_buff ≥ s (which does not capture any relevant infor-
mation about the failure).

To discover anomalous events that might reveal the causes of
failures MIMIC checks the data collected while running the fail-
ing executions with the models generated from passing executions.
Each anomalous event is composed of three fields: the source line
where the event has been detected, the model that has been vio-
lated by the anomalous event, and the actual values that violated the
model. For instance 〈2697, input_position ≥ 0, input_position =
−5〉 and 〈2697, clump_buff ≥ s, clump_buff = “ i\001”s =
“i\001”〉 are two anomalous events detected by MIMIC for the pr
case study.

Regarding the classes of faults that can be addressed, this anomaly
detection strategy is general. In fact, the actual possibility to ad-
dress a fault does not depend on the type of fault, rather depends on
the impact of the fault on the program variables. In particular, the
faults that can be addressed with MIMIC are all the faults that can
cause anomalous variable values that can be detected with Daikon
invariants (or other invariant generators).

3.4 Filtering
Although MIMIC generates passing and failing executions that

are similar by construction, the differences between them might be
related to spurious events rather than to events that caused failures.
To filter out such spurious events, MIMIC implements a simple
heuristic that has shown to be effective in practice: it considers
the set of anomalous events detected for each failing execution and
filters out the ones that do not occur in every failure.

Since the same model might be violated in many different ways,
and the way the model is violated is usually irrelevant for identi-
fying the failure causes, MIMIC filters anomalies considering only
the models and ignoring the actual values that violate the models.
For instance, the model input_position ≥ 0 at line 2697
of pr.c might be violated in many different ways. For a failing
execution, input_position may be equal to -1, while for a
different failing execution its value may be -5. The fact that the
two executions witness different values for input_position is
irrelevant. The important information is that, for all the failing ex-
ecutions, input_position has a negative value. For this rea-
son, an anomaly A = 〈loc,model, values〉 is common to all the
failing executions if every failing execution produces an anomaly
A′ = 〈loc’,model’, values’〉, with loc = loc’ and model = model’.

In our running example MIMIC successfully preserved the
anomaly 〈2697, input_position ≥ 0, input_position = −5〉, which
is important to understand the fault, whereas it eliminated the
anomaly 〈2697, clump_buff ≥ s, clump_buff = “ i\001”s =
“i\001”〉, which is irrelevant.

The anomalies that are not filtered out are presented to the devel-
oper as set of possible failure causes that might explain the reason
of the failure reported in the crash report. Since each anomaly that
is presented to the developer occurs as many times as the number
of failing executions that have been synthesized, there are multi-
ple values that can be presented to the tester to show the way the
models have been violated. MIMIC selects one of these values non-

Table 2: Benchmark programs and faults used in our study.
Name Version Size Fault Type Fault ID

(LOC)
grep 2.2 10K Injected DG_4
sed 1.18 14K Injected AG_20
pr 6.10 3K Real [8]
mknod 6.10 0.3K Real [6]
od 6.7 2K Real [7]
XMail 1.21 1K Real CVE-2005-2943

deterministically from the set of available ones, while keeping the
whole set of values that violate a model available for inspection.
Table 1 shows some of the failure causes automatically reported by
MIMIC for our running example.

4. EMPIRICAL EVALUATION
To assess the effectiveness of MIMIC, we implemented a proto-

type tool and used it to investigate the following research questions:

• RQ1: Can MIMIC report anomalies that are related to faults?

• RQ2: Does filtering increase the quality of the results?

• RQ3: Is the automatic selection of monitoring points effective?

• RQ4: Do synthesized executions produce better results than the
test suites of the analyzed applications?

• RQ5: Can the detected violations help understand the causes of
a failure?

In the following we describe our prototype implementation, the
objects of study, the experiment setup, and the results of the evalu-
ation.

4.1 Implementation
We implemented MIMIC in a prototype tool written in Java.

The MIMIC prototype can analyze failures that affect programs
written in C/C++. Our implementation integrates several other
tools. In particular, MIMIC uses F3 to synthesize passing and fail-
ing executions from failure data that consist of (partial) call se-
quences [16] and RADAR to generate and check behavioral mod-
els [25]. RADAR monitors applications using the GDB debugger
and generates program properties using Daikon [13]. MIMIC col-
lects coverage data using GCOV.

MIMIC uses Daikon with the suppression of redundant models
disabled. Otherwise Daikon might incidentally suppress a model
that perfectly captures the reasons of the failure when it is implied
by other models that do not represent the reason of the failure as
clearly as the suppressed one.

4.2 Objects of Study
Table 2 presents the programs that we used to evaluate MIMIC.

We selected six real-world open source programs written in C and
C++: grep, a well known command-line utility for searching the
lines that match a given pattern within textual files [20]; sed, a
stream editor [20]; Xmail, a mail server [11]; and three programs
from the Coreutils file manipulation package: pr, mknod and
od [1]. We selected these programs because they are well-known
Unix utilities whose size ranges from 300 LOC to 14 KLOC.

We considered one fault per program. In two cases, grep and
sed, the faults have been defined by a third party (we used the
faulty versions of grep and sed available in the public repository

SIR [20]). In all other cases the faults are real faults discovered by
end-users in the field. In Table 2, column Fault Type indicates the
type of fault, while column Fault ID provides the exact reference
to the fault that has been analyzed.

Each fault is associated with a test case that triggers it and pro-
duces the corresponding failure. For real faults, we considered the
test case implemented from the report provided by the end-users.
For the injected faults, we considered a failing test case randomly
selected from the test suites provided with the programs. The fail-
ure data have been obtained from running these tests against instru-
mented versions of the benchmark programs.

4.3 Experiment Setup
In this section we present the design of the empirical studies

aimed to answer our research questions.
RQ1: Can MIMIC report anomalies that are related to faults?

This research question investigates whether MIMIC can detect the
causes of failures, that is, if it can detect anomalies related to the
fault under analysis. To answer this research question, we executed
the MIMIC prototype on each case study and manually classified
the reported anomalies as either true or false positives. We clas-
sified as true positives only those anomalies that either represent
the condition that triggers the failure or capture erroneous variable
values produced by the faulty code. An effective analysis should
return few anomalies with a high density of true positives.

RQ2: Does filtering increase the quality of the results? This re-
search question investigates the effectiveness of the filtering step.
To answer this research question, we manually inspected the anoma-
lies that MIMIC automatically filtered out and classified them as
either true or false positives. An effective filtering should eliminate
most of the false positives without eliminating the true positives.

RQ3: Is the automatic selection of monitoring points effective?
MIMIC heuristically defines monitoring points taking into consid-
eration the structure of the program and the set of executions that
have been synthesized. In principle, the selected monitoring points
should guarantee the best observation capabilities for the fault un-
der analysis. However, their effectiveness must be empirically as-
sessed.

To answer this research question, we measured the number of
true and false positives obtained by using the observation points
determined by MIMIC and by following the common practice of
observing the behavior of a program at the entry and exit points of
its functions [9,10,23,31]. A good set of observation points should
generate more true positives and less false positives.

RQ4: Do synthesized executions produce better results than the
test suites of the analyzed applications? This research question in-
vestigates the benefit of using a set of synthesized executions that
accurately samples the behavior of the application around the fail-
ure compared to using the test suites available with the programs.
To answer this research question we compared MIMIC as defined
in the paper to two alternative configurations.

The first configuration, MIMIC-orig, applies MIMIC using the
original test suite instead of synthesized executions, but uses the
same observation points computed for the synthesized executions.
In this way the differences on the results could be uniquely due to
the different test cases used for the analysis. However, using the
observation points computed from the synthesized executions for
both configurations might penalize the analysis based on the orig-
inal test suite. We thus consider a third option, MIMIC-orig-obs,
which uses the original test suite of the program and the observation
points computed for the original test suite instead of the synthesized
test suite (i.e., we applied the suitability formula to the tests avail-
able with the program instead of the synthesized executions). Since

Table 3: Results for RQ1.

Name Passing Failing Monitoring Failure Causes
Tests Tests Points TP FP

grep 365 30 10 1 0
sed 27 54 10 0 0
sed 27 54 30 0 0
od 8 4 10 1 10
mknod 53 4 10 3 13
XMail 5650 304 10 8 0
pr 1721 35 10 0 0
pr 1721 35 20 8 21

the test suites available with the programs do not include multiple
failing test cases, we used the synthesized failing executions for the
purpose of the experiment.

RQ5: Can the detected violations help understand the causes of
a failure? This research question investigates whether the results
obtained with MIMIC are not only related to the fault (i.e., they are
true positives), but are also practically useful to identify the faults.
The quantitative investigation of this research question would re-
quire a large study based on human subjects. So far, we focused on
the technical contribution and such a study, which is motivated by
the promising empirical results reported in the next section, is part
of our future work. Here we try to address this research question
qualitatively by shortly presenting the individual cases that have
been investigated and providing qualitative arguments that show
how the results returned by MIMIC can help identifying failure
causes.

Since MIMIC leverages several computationally expensive tech-
niques (e.g., symbolic execution and dynamic invariants detection
techniques) and, more importantly, the goal of the empirical eval-
uation is to assess the effectiveness of the technique, we did not
consider any particular time limit for the analysis. All the cases
reported in this paper have been analyzed in few hours, which is
compatible with a common “test overnight” scenario. The only ex-
ception is the fault in pr, which needed one day of processing time
due to the complexity of the symbolic states involved in the analy-
sis.

4.4 Results and Discussion

4.4.1 RQ1: Can MIMIC report anomalies that are
related to faults?

Table 3 shows the results for RQ1. Columns Passing Tests and
Failing Tests report the number of passing and failing executions
automatically synthesized by MIMIC. Column Monitoring Points
reports the number of program points monitored for each case study.
We generally used the top 10 locations. In case 10 was not enough
to get any result (see sed and pr), we tried with a higher number
of locations. Columns TP and FP report the number of true and
false positives among the set of the likely failure causes identified
by MIMIC.

When using 10 monitoring points, MIMIC detected the failure
causes (i.e., TP > 0) for 4 out of 6 cases. In two cases, sed
and pr, MIMIC detected no failure causes. To investigate if the
problem was related to the number of monitoring points, we re-
peated the analysis with an increased number of points: 20 mon-
itoring points were enough to identify the failure causes for pr,
while even 30 monitoring points were insufficient for sed. We
carefully inspected the fault in sed and found that the correspond-
ing fault could not be addressed with MIMIC. This is due to the

fact that the faulty code region always fails when executed. There
is thus no way to generate passing executions that cover code re-
gions close enough to produce models useful to debug the fault. It
is worth noting that, in the cases where the failure cause was not de-
tected, MIMIC generated no false positives either, thus preventing
the developer from inspecting useless anomalies.

In some cases, MIMIC generated a perfect outcome, such as for
grep and XMail, where it reported only true positives. For three
cases, od, mknod, and pr, conversely, the results included both
true and false positives. However, MIMIC always returned a small
number of (quick to inspect) anomalies for the cases considered,
so we do not expect false positives to be a major issue in these
cases. In summary, our results show that MIMIC has the potential
to report the causes of failures automatically.

4.4.2 RQ2: Does filtering increase the quality of the
results?

Table 4 shows the results for RQ2. For each case, identified by
the program name (column Name) and the number of monitoring
points used (column Monitoring Points), Table 4 reports the num-
ber of unique anomalies discovered by MIMIC; that is, multiple
anomalies that violate the same model in different executions are
counted as one. Column False Positives shows the total number
of anomalies unrelated to the fault detected by MIMIC before ap-
plying the filtering step (column All), the number of false positives
successfully filtered out (column Filtered), and the number of false
positives that have not been filtered out automatically (column Re-
ported). Column True Positives shows the total number of anoma-
lies related to the faults detected by MIMIC before applying the fil-
tering step (column All), the number of true positives erroneously
filtered out (column Filtered), and the number of true positives suc-
cessfully reported to developers (column Reported). The last row
of the table reports average values across all cases.

The results show that the filtering step can effectively remove
many false positives. In fact, it eliminated around 60% of the false
positives on average, although with varying performance among
the individual case studies. In particular, for 4 out of 7 cases (one
case produced no anomalies), filtering eliminated 100% of the false
positives, thus returning only useful anomalies to the developers. In
the three remaining cases, filtering was less effective, eliminating
from 0% to 12.5% of the false positives. This result suggests that,
depending on the characteristics of the failure, filtering could have
varying effectiveness. In particular, we noticed that filtering was
less effective when either (1) MIMIC generated few failing exe-
cutions (such as for od and mknod) or it generated many failing
executions, but the failure was triggered only through a very spe-
cific path with little possibility to obtain diverse failing executions
(such as for pr). Ideally, MIMIC needs multiple diverse failing ex-
ecutions to effectively filter false positives, and both lack of failing
executions and lack of diversity are factors that clearly affect the
performance of the filter.

Finally, filtering demonstrated to be conservative, suggesting that
the assumptions behind it tend to hold in practice. In fact, filtering
never dropped any true positive, as shown in Table 4.

4.4.3 RQ3: Is the automatic selection of monitoring
points effective?

Table 5 shows the results for RQ3. Column MIMIC shows the
number of true positives (column TP) and false positives (column
FP) returned by MIMIC when using the top 10 monitoring points
(20 in the case of pr) identified by the Suitability formula presented
in Section 3.2. Column Entry-Exit Points shows the number of true
positives (column TP) and false positives (column FP) returned by

Table 4: Results for RQ2.

Name Monitoring True Positives False Positives
Points All Filtered Reported All Filtered Reported

grep 10 1 0 (0%) 1 (100%) 25 25(100%) 0 (0%)
sed 10 0 - - 263 263(100%) 0 (0%)
sed 30 0 - - 315 315(100%) 0 (0%)
od 10 1 0 (0%) 1 (100%) 10 0 (0%) 10(100%)
mknod 10 3 0 (0%) 3 (100%) 13 0 (0%) 13(100%)
XMail 10 8 0 (0%) 8 (100%) 115 115(100%) 0 (0%)
pr 10 0 - - 0 - -
pr 20 8 0 (0%) 8 (100%) 24 3(12,5%) 21(87,5%)
Avg 0% 100% 59% 41%

Table 5: Results for RQ3.

Name
MIMIC Entry-Exit Points

Monitoring Failure Causes Failure Causes
Points TP FP TP FP

grep 10 1 0 0 0
sed 10 0 0 0 22
od 10 1 10 0 478
mknod 10 3 13 0 0
XMail 10 8 0 8 16
pr 20 8 21 10 10

MIMIC when using the function entry and exit points to observe
the program behavior.

The results show that the monitoring points identified with the
suitability formula can be used to detect failure causes more effec-
tively than a standard set of monitoring points, such as the entry
and exit points of program functions. In fact, when using entry-exit
points, MIMIC missed several code locations important for detect-
ing failure causes and the number of successful cases (i.e., cases
with at least a true positive) dropped to two.

Monitoring entry and exit points might imply monitoring code
locations that are both not well covered by passing executions and
unrelated to the problem under investigation, causing the genera-
tion of poor models that introduce many false positives. In fact,
for three cases out of six (sed, od, and XMail) the strategy based
on entry-exit points returned significantly more false positives than
MIMIC.

Only in two cases the use of entry-exit points resulted in less
false positives. In one of these two cases (mknod), detecting less
false positives also implied detecting no true positives; MIMIC,
conversely, successfully discovered the causes of the fault in this
case. In the remaining case, the entry-exit points strategy produced
slightly better results than the strategy implemented in MIMIC, but
both approaches were successful.

Overall, this empirical results demonstrate the effectiveness of
the strategy defined in this paper, which detects the monitoring
points taking into consideration the specific characteristics of the
case under analysis, including the failure, the set of synthesized ex-
ecutions, and the structure of the program. In particular, the strat-
egy based on the Suitability formula has been able to identify an
effective set of monitoring points for all the faults that could be
analyzed with MIMIC (recall that the fault in sed cannot be ad-
dressed with MIMIC).

4.4.4 RQ4: Do synthesized executions produce bet-
ter results than the test suites of the analyzed
applications?

MIMIC discovers failure causes exploiting its unique capability
of synthesizing passing and failing executions that are similar to
the failing execution under analysis. One key question is to what
extent this capability impacts the results. To answer this research
question, we compared the results obtained with MIMIC to two
alternative configurations: (1) MIMIC-orig, which consists of ap-
plying MIMIC to the test suite of the application using the mon-
itoring points computed from the synthesized executions, and (2)
MIMIC-orig-obs, which consists of applying MIMIC to the test
suite of the application using the monitoring points computed from
these same tests. We compare the results in terms of false and true
positives.

Figure 4 shows a histogram that illustrates the number of false
positives generated by the three configurations for five cases. We
did not consider XMail, in this case, because it is not distributed
with a test suite (and thus only MIMIC can be applied to it). To
keep the histogram readable, we cut the bars at 70. For sed, od,
and pr, however, the configurations using the test suite distributed
with the applications generated thousands of anomalies. Based on
these results, we can conclude that the original test suite cannot be
used to analyze these three cases due to the excessive number of re-
ported false positives. On the contrary, MIMIC generated a limited
number of false positives for od and mknod, and no false positives
for sed, showing the higher effectiveness of the synthesized tests,
compared to the original test suites, in the context of our failure
analysis.

In the case of grep, the test suite of the program generated again
a higher number of false positives compared to MIMIC, which gen-
erated no false positives. However, in this case, the number of false
positives generated by MIMIC-orig and MIMIC-orig-obs is man-
ageable. The failure in mknod is the only case in which, using the
original test suite, the number of false positives that are generated
is smaller than (but comparable to) the number of false positives
generated by MIMIC.

The results about false positives already show the clear advan-
tage of synthesized executions over the original test suites. The su-
periority of synthesized executions is confirmed by the data about
true positives shown in Figure 5.

In terms of true positives, MIMIC-orig-obs produced the worst
results and detected useful anomalies only for grep. When consid-
ering MIMIC-orig, the results slightly improved, with the number
of cases in which it reported at least a true positive raising to three.
In practice, however, only two of these three cases can be practi-
cally addressed with MIMIC-orig, as it returned thousands of false

0	

10	

20	

30	

40	

50	

60	

70	

GREP	 SED	 OD	 MKNOD	 PR	

Fa
ls
e	
Po

si
*v

es
	

MIIMC	

MIMIC-‐orig	

MIMIC-‐orig-‐obs	

Figure 4: False positives reported by 3 different versions of
MIMIC to answer RQ4.

0	

2	

4	

6	

8	

10	

GREP	 SED	 OD	 MKNOD	 PR	

Tr
ue

	 P
os
i*
ve
s	

MIIMC	

MIMIC-‐orig	

MIMIC-‐orig-‐obs	

Figure 5: True positives reported by 3 different versions of
MIMIC to answer RQ4.

positives for pr, which makes the result virtually useless for devel-
opers. MIMIC, conversely, returned effective and concise results
for four of these five cases.

In summary, when using the original test suite instead of syn-
thesized executions, the effectiveness of the technique decreases
significantly. Finally, we were not able to apply MIMIC-orig and
MIMIC-orig-obs to XMail because XMail is not distributed with
a test suite (as discussed above), but MIMIC was applicable and
effective also in this case.

4.4.5 RQ5: Can the detected violations help under-
stand the causes of a failure?

To demonstrate that MIMIC can be practically useful to help de-
velopers understand failure causes and debug program failures, we
shortly describe the output returned by MIMIC for each analyzed
failure, discussing how this output can be used to understand the
fault in the program. We will not discuss pr because we already
presented it as the running example in Section 3. Because of space
limitations, we will keep the discussion short and focused on a sub-
set of the anomalies detected by MIMIC.

In grep, MIMIC discovered that all the failing executions vio-
late the property end ≥ p. In the violated model, p is a pointer used
to iterate through the locations of a buffer; end is also a pointer, but
it is used to point at the last location available in the same buffer.
This violation indicates that the failure is a buffer overflow caused
by a wrong value assigned to p, thus effectively focusing the atten-
tion of the developers on the statements that update the value of p.
The fault in the program actually consists of a wrong assignment to
p.

In od, MIMIC discovers that failures happen when the model
file_stats.st_size != n_skip is violated, that is, when file_stats.st_size
is equal to n_skip. This violation is detected just before the predi-
cate ((uintmax_t) file_stats.st_size <= n_skip) is evaluated in a con-
ditional statement. Developers are thus directly pointed at the im-
plementation of the two branches following the conditional state-
ment. Exploiting this contextual information, it is fairly easy to
recognize that, when file_stats.st_size is equal to n_skip, the wrong
branch is taken by the program—a problem that can be fixed by
replacing ≤ with < in the conditional statement.

In mknod, MIMIC discovers that failures happen when arg !=
null is violated, that is, when arg is equal to null. This anomaly ex-
actly captures the failure cause because the program crashes when
this null value is passed as a parameter to function quote, which is
invoked just after the statement that produces the violation.

In XMail, MIMIC discovers that the failure happens when pred-
icate iAddrLength ≤ 9 is violated. This happens, for instance,
when iAddrLength (a variable whose value is determined by user
input) is assigned the value 356. Because variable iAddrLength is
used to copy chars into a buffer of fixed size, this anomaly indi-
cates a possible stack overflow that happens when iAddrLength is
assigned a value that is too large, which is exactly the cause of the
observed failure.

4.5 Threats to Validity
Even if our results are positive for the cases considered, they

might not generalize beyond the systems and failures analyzed in
this paper. To mitigate this issue, we considered failures in differ-
ent applications (both standalone applications and Coreutils) and of
different nature (both injected and real faults). However, additional
experiments are necessary to assess the generality of the results.

Part of the evaluation exploits the classification of the anomalies
as true and false positives. This classification has been the result
of a partially subjective work, and there is a risk that different de-
velopers might classify the same anomalies in different ways. To
mitigate this issue, we classified as true positives only the anoma-
lies that either represent the condition that triggers the failure or
capture erroneous variable values produced by the faulty code; we
classified as false positives all remaining cases, including the am-
biguous ones. To further address this issue, we reported qualitative
results that show case by case how the output generated by MIMIC
has been useful to locate and understand the faults considered.

A last threat to validity is the possible presence of faults in our
tools. To address this threat, we carefully inspected all the anoma-
lies reported by MIMIC for each case considered in the empirical
evaluation. By doing so, we gained confidence that our implemen-
tation and results were correct.

5. RELATED WORK
In this section, we discuss existing techniques that are closely re-

lated to MIMIC. In particular, we discuss statistical fault localiza-
tion, anomaly detection, experimental debugging, and techniques
exploiting synthesized executions.

Statistical fault localization techniques localize faults based on
the intuition that code elements executed more frequently by fail-
ing executions are more likely to be faulty (e.g., [5, 17, 19, 21, 27]).
These techniques differ mainly in the statistical analysis used to
compute such likelihood. Most statistical fault localization tech-
niques suffer from two main limitations. The first limitation is that
they rely on the existence of a large number of passing and fail-
ing test cases [3, 32], which are rarely available in practice. The
second limitation is that these techniques provide suspicious code
locations without any further explanation, which has been shown
to be of limited helpfulness to developers [24]. MIMIC addresses
both of these limitations. First, it does not rely on an existing test
suite, as it leverages F3 to automatically generate multiple passing
and failing executions from a single failure. Second, it leverages
RADAR to infer, from the so generated passing and failing execu-
tions, models that capture correct program behavior and violations
of such models that can be used to understand the context of a fail-
ure and investigate its causes.

Anomaly detection techniques can be used to identify the behav-
ioral anomalies that occur in failing executions [4,12,22,23,26,30].
These techniques infer models that capture the valid behavior of a
program from a set of passing executions and identify the anoma-
lous events responsible for the failure by checking the failing ex-
ecutions using the inferred models. The effectiveness of anomaly
detection techniques depends on two main aspects: the quality of
the passing executions and the strategy used to monitor the pro-
gram. Most state-of-the-art techniques rely on existing test cases
and monitor programs at predefined code locations (e.g., method
entry and exit points). A notable exception is RADAR, which
can determine the monitoring points dynamically according to the
characteristics of the change that is being analyzed. Unfortunately,
RADAR can be applied to regression faults only, in the sense that
it relies on the existence of an extensive regression test suite [26].
MIMIC is the first anomaly detection technique that (1) generates
synthetic executions, instead of relying on existing tests, to explore
the execution space close to the original failing execution and (2)
selects monitoring points based on the characteristics of both the
program and the synthesized executions, rather than a-priori. Re-
sults from our empirical studies show that these two capabilities are
of fundamental importance in determining the effectiveness of our
approach.

Experimental debugging approaches such as delta debugging and
predicate switching can also be used to perform fault localization.
Delta debugging (e.g., [33]) is based on a divide-and-conqueror al-
gorithm that, given one passing execution and one failing execu-
tion, identifies a minimal set of circumstances (e.g., inputs or pro-
gram states) that can distinguish the two executions, and can thus
be considered causes for the failure. Techniques based on pred-
icate switching, conversely, aim to identify the predicates in the
code that, if flipped, can transform a failing execution into a pass-
ing one [34]. Both delta debugging and predicate switching alter
executions in a possibly unsound way, which often results in infea-
sibility issues that negatively affect the diagnosis ability of these
techniques. MIMIC, conversely, always identifies anomalies that
differentiate real (i.e., feasible) failing executions from real passing
executions.

Other techniques share with MIMIC the idea of applying anomaly
detection to automatically synthesized executions (e.g., [28, 29])
and differ in both the kind of output they produce and the exe-
cution synthesis strategy they use. Sahoo and colleagues use dy-
namic data dependence information to locate the statements that
may have generated anomalous values in failing executions, that
is, values that violate invariants derived from synthesized passing

executions [29]. The primary purpose of this technique is different
from MIMIC’s, as it focuses on fault localization and does not aim
to detect the causes of failures as MIMIC does. Most importantly,
this technique relies on the availability of a grammar-based spec-
ification for the generation of test inputs, while MIMIC generates
test cases using guided symbolic execution. (These two alterna-
tive techniques have somehow complementary strengths and weak-
nesses, as shown in related work by Kifetew and colleagues [18].)
BugEx shares with MIMIC the goal of helping software developers
understand the failure context [28]. Specifically, BugEx produces
as output a set of predicates that are most likely to occur in failing
executions. BugEx and MIMIC differ fundamentally in the way
they generate program inputs and the way they observe program
executions. BugEx generates inputs from a failing unit test using a
search based approach [14], whereas MIMIC uses guided symbolic
execution to systematically generate synthetic executions from a
set of executions data [16]. As for observing program executions,
BugEx monitors a set of state predicates at predetermined points
in the program, whereas MIMIC monitors predicates at code loca-
tions determined according to the characteristic of both the program
and the executions of synthesized tests. Our empirical evaluation
shows that this latter approach can be more effective than one based
on observing program executions at fixed locations.

6. CONCLUSION
Most automated techniques that aim to help developers local-

ize and understand the causes of software failures suffer from two
main limitations. First, they can be applied only when a high num-
ber of passing and failing tests are available, which rarely happens
in practice. Second, they provide little to no information about the
possible causes of a failure, which makes them less useful to devel-
opers [24]. To address these limitations, researchers have recently
defined techniques that generate passing and failing executions au-
tomatically and analyze the differences between passing and failing
executions. MIMIC, the approach that we presented in this paper,
operates in this space and is the first technique that combines the
following unique capabilities: (1) debugging of individual program
failures, even when a test suite is not available; (2) generation of
passing and failing executions similar to an observed failure and
particularly suitable for debugging and differential behavioral anal-
ysis; (3) identification of suitable monitoring points for the compar-
ison of passing and failing executions; and (4) effective filtering of
false positives by leveraging multiple failing executions.

The results of our empirical evaluation, performed on six faults
of several real-world applications, show that MIMIC can effec-
tively detect failure causes. They also show that MIMIC’s unique
capabilities, and in particular the ability to synthesize passing and
failing executions and identify effective monitoring points, are cru-
cial for the success of the technique. These promising empirical
results motivate the design of a user study with the goal of confirm-
ing that the reports produced by MIMIC can actually help devel-
opers locate, understand, and fix faults. In addition to performing
this user study, in future work we will also investigate techniques
for systematically analyzing each individual anomaly identified by
MIMIC to empirically confirm or disprove the correlation between
the anomaly and the failure and further improve the effectiveness
and accuracy of our approach.

Acknowledgements
This work was partially supported by NSF awards CCF-1320783,
CCF-1161821, and CCF-0964647, and by funding from Google,
IBM Research and Microsoft Research to Georgia Tech.

7. REFERENCES
[1] Coreutils. http://www.gnu.org/software/coreutils/.
[2] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund. An

Evaluation of Similarity Coefficients for Software Fault
Localization. In Proceedings of the Pacific Rim International
Symposium on Dependable Computing, pages 39–46, 2006.

[3] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Practical Fault
Localization for Dynamic Web Applications. In Proceedings
of the International Conference on Software Engineering,
pages 265–274. ACM, 2010.

[4] A. Babenko, L. Mariani, and F. Pastore. AVA: Automated
Interpretation of Dynamically Detected Anomalies. In
Proceedings of the International Symposium on Software
Testing and Analysis, pages 237–248, 2009.

[5] L. Briand, Y. Labiche, and X. Liu. Using Machine Learning
to Support Debugging with Tarantula. In Proceedings of the
International Symposium on Software Reliability
Engineering, pages 137–146, 2007.

[6] CoreUtils. Fault in Mknod.
http://lists.gnu.org/archive/html/bug-coreutils/2008-03/msg00224.html.

[7] CoreUtils. Fault in OD.
http://lists.gnu.org/archive/html/bug-coreutils/2007-08/msg00034.html.

[8] CoreUtils. Fault in PR.
http://lists.gnu.org/archive/html/bug-coreutils/2008-04/msg00177.html.

[9] C. Csallner and Y. Smaragdakis. Dynamically Discovering
Likely Interface Invariants. In Proceedings of the
International Conference on Software Engineering, pages
861–864, 2006.

[10] C. Csallner and Y. Smaragdakis. DSD-Crasher: A hybrid
analysis tool for bug finding. ACM Transactions on Software
Engineering and Methodologies, 17(2):245–254, 2008.

[11] Davide Libenzi. XMail. http://www.xmailserver.org/.
[12] M. Dimitrov and H. Zhou. Anomaly-based Bug Prediction,

Isolation, and Validation: An Automated Approach for
Software Debugging. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 61–72, 2009.

[13] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically Discovering Likely Program Invariants to
Support Program Evolution. IEEE Transactions on Software
Engineering, 27(2):99–123, 2001.

[14] G. Fraser and A. Arcuri. EvoSuite: Automatic Test Suite
Generation for Object-oriented Software. In Proceedings of
the ACM Symposium and the European Conference on
Foundations of Software Engineering, pages 416–419. ACM,
2011.

[15] W. Jin and A. Orso. Bugredux: Reproducing field failures for
in-house debugging. In Proceedings of the International
Conference on Software Engineering, pages 474–484, 2012.

[16] W. Jin and A. Orso. F3: fault localization for field failures. In
Proceedings of the International Symposium on Software
Testing and Analysis, pages 213–223, 2013.

[17] J. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of the
International Conference on Software Engineering, pages
467–477, 2002.

[18] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella.
Reproducing Field Failures for Programs with Complex
Grammar-Based Input. In Proceedings of the IEEE
International Conference on Software Testing, Verification
and Validation, pages 163–172, March 2014.

[19] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable Statistical Bug Isolation. In Proceedings of the
Conference on Programming Language Design and
Implementation, pages 15–26, 2005.

[20] Lincoln University of Nebraska. Software-artifact
Infrastructure Repository. http://sir.unl.edu/.

[21] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER:
Statistical Model-based Bug Localization. In Proceedings of
the ACM Symposium and the European Conference on
Foundations of Software Engineering, pages 286–295, 2005.

[22] L. Mariani and F. Pastore. Automated Identification of
Failure Causes in System Logs. In Proceedings of the
International Symposium on Software Reliability
Engineering, pages 117–126, 2008.

[23] L. Mariani, F. Pastore, and M. Pezze. Dynamic Analysis for
Diagnosing Integration Faults. IEEE Transactions on
Software Engineering, 37(4):486–508, 2011.

[24] C. Parnin and A. Orso. Are automated debugging techniques
actually helping programmers? In Proceedings of the
International Symposium on Software Testing and Analysis,
pages 199–209, July 2011.

[25] F. Pastore, L. Mariani, and A. Goffi. RADAR: A tool for
debugging regression problems in C/C++ software. In
Proceedings of the International Conference on Software
Engineering, pages 1335–1338, 2013.

[26] F. Pastore, L. Mariani, A. Goffi, M. Oriol, and M. Wahler.
Dynamic analysis of upgrades in C/C++ software. In
International Symposium on Software Reliability
Engineering, pages 91–100, 2012.

[27] M. Renieris and S. Reiss. Fault Localization with Nearest
Neighbor Queries. In Proceedings of the International
Conference on Automated Software Engineering, pages
30–39, 2003.

[28] J. Röβler, G. Fraser, A. Zeller, and A. Orso. Isolating Failure
Causes Through Test Case Generation. In Proceedings of
International Symposium on Software Testing and Analysis,
pages 309–319, 2012.

[29] S. K. Sahoo, J. Criswell, C. Geigle, and V. Adve. Using
Likely Invariants for Automated Software Fault Localization.
In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 139–152, 2013.

[30] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting Object
Usage Anomalies. In Proceedings of the ACM Symposium
and the European Conference on Foundations of Software
Engineering, pages 35–44, 2007.

[31] T. Xie and D. Notkin. Tool-assisted Unit Test Selection
based on Operational Violations. In Proceedings of the
International Conference on Automated Software
Engineering, pages 40–48, 2003.

[32] Y. Yu, J. Jones, and M. J. Harrold. An Empirical Study of the
Effects of Test-suite Reduction on Fault Localization. In
Proceedings of the International Conference on Software
Engineering, pages 201–210. ACM, 2008.

[33] A. Zeller and R. Hildebrandt. Simplifying and Isolating
Failure-Inducing Input. IEEE Transactions on Software
Engineering, 28(2):183–200, 2002.

[34] X. Zhang, N. Gupta, and R. Gupta. Locating Faults Through
Automated Predicate Switching. In Proceedings of the
International Conference on Software Engineering, pages
272–281, 2006.

http://lists.gnu.org/archive/html/bug-coreutils/2008-03/msg00224.html
http://lists.gnu.org/archive/html/bug-coreutils/2007-08/msg00034.html
http://lists.gnu.org/archive/html/bug-coreutils/2008-04/msg00177.html

	1 Introduction
	2 Background
	2.1 F3
	2.2 RADAR

	3 The MIMIC Approach
	3.1 Execution Synthesis
	3.2 Monitoring Points Detection
	3.3 Anomaly Detection
	3.4 Filtering

	4 Empirical Evaluation
	4.1 Implementation
	4.2 Objects of Study
	4.3 Experiment Setup
	4.4 Results and Discussion
	4.4.1 RQ1: Can MIMIC report anomalies that are related to faults?
	4.4.2 RQ2: Does filtering increase the quality of the results?
	4.4.3 RQ3: Is the automatic selection of monitoring points effective?
	4.4.4 RQ4: Do synthesized executions produce better results than the test suites of the analyzed applications?
	4.4.5 RQ5: Can the detected violations help understand the causes of a failure?

	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	7 References

