
Verification-Aided Regression Testing

Fabrizio Pastore,
Leonardo Mariani

Antti E. J. Hyvärinen,
Grigory Fedyukovich,
Natasha Sharygina

Stephan Sehestedt Ali Muhammad

University of Milano -
Bicocca. Milan, Italy

University of Lugano.
Lugano, Switzerland

ABB Corporate Research.
Ladenburg, Germany

VTT Technical Research
Centre. Tampere, Finland

{pastore,mariani}
@disco.unimib.it

{antti.hyvaerinen,
grigory.fedyukovich,

natasha.sharygina}@usi.ch

stephan.sehestedt@de.abb.com Ali.Muhammad@vtt.fi

ABSTRACT
In this paper we present Verification-Aided Regression Test-
ing (VART), a novel extension of regression testing that uses
model checking to increase the fault revealing capability of
existing test suites. The key idea in VART is to extend the
use of test case executions from the conventional direct fault
discovery to the generation of behavioral properties specific
to the upgrade, by (i) automatically producing properties
that are proved to hold for the base version of a program,
(ii) automatically identifying and checking on the upgraded
program only the properties that, according to the develop-
ers’ intention, must be preserved by the upgrade, and (iii)
reporting the faults and the corresponding counter-examples
that are not revealed by the regression tests. Our empirical
study on both open source and industrial software systems
shows that VART automatically produces properties that in-
crease the effectiveness of testing by automatically detecting
faults unnoticed by the existing regression test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Verification

Keywords
Regression testing, model checking, dynamic analysis

1. INTRODUCTION
A typical software development process produces a se-

quence of program versions each improving the functionality
of the previous version. Upgrades might inadvertently rein-
troduce or create programming faults that should ideally be
detected before the release of the upgraded program. Re-
gression testing aims to detect such regression faults early

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21-25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

in the development phase. The idea is that developers de-
sign and maintain across versions a test suite that can be
executed after each program upgrade to reveal faults. The
designed test suite typically covers as high number of state-
ments in the code or the specification as is practically possi-
ble. However high code coverage does not necessarily imply
high fault detection, even in the cases where the fault af-
fects a covered functionality [65]. For instance, if an online
shop has a fault in its checkout function that is triggered by
the presence of a specific item in the cart, a test suite that
ignores that item will never be able to detect the fault.

This paper demonstrates how bounded model checking [16,
19, 40, 11] can be efficiently combined with testing and dy-
namic invariant detection [25, 43, 20] to automatically dis-
cover problems that would otherwise go unnoticed by tra-
ditional regression testing. The key idea to detect faults
missed by regression testing is to verify the upgraded ver-
sion of a program against a set of properties that: (i) are
obtained by monitoring the execution of the regression suite
on the base version of the program, (ii) have been verified
to hold for the base version, and (iii) are not violated by
the regression suite designed for the upgraded version. This
key idea is implemented in the Verification-Aided Regression
Testing (VART) technique, which integrates testing, invari-
ant detection, and model checking into a novel verification
technique that is

(1) capable of automatically detecting faults that are not
revealed by conventional regression testing;

(2) less expensive to use than conventional model check-
ing, since the properties useful to check the upgrade
are automatically generated from the regression tests
(see conditions (i) and (ii)) instead of being manually
specified by the testers; and

(3) sensitive to the upgrade semantic, since the properties
that are intentionally invalidated by the change under
test are automatically eliminated (see condition (iii)).

There are techniques that can reveal faults by exploit-
ing statically and dynamically extracted properties [60, 39].
These techniques generate useful results but often produce a
high number of false alarms that annoy the users. The false
alarms are due to the generation and usage of properties
that are not sound but are simply likely to be true. Some
approaches can eliminate false alarms by generating tests
that confirm the discovered faults, but they are limited to
faults producing crashes and uncaught exceptions only [50,
21]. VART augments the effectiveness of regression testing

with an automated verification capability that has two key
qualities: in addition to crashes and uncaught exceptions
it automatically detects faults that typically require a user-
specified oracle to be revealed (e.g., faults that cause wrong
outputs), and it has an almost negligible risk of producing
false positives.

Other techniques for automated change analysis include
Differential Symbolic Execution (DSE) [49] and Behavioral
Regression Testing (BERT) [32]. These techniques can de-
tect the modified behaviors but they cannot point at the
faults introduced by the upgrade, as VART does.

In the area of model checking, there are several approaches
to check upgrades, but they need either manually specified
properties [54, 64] or behavioral equivalence between the
base and upgraded program version [29, 31]. Contrarily to
these approaches VART automatically generates the proper-
ties that need to be verified and it is not limited to changes
that do not modify the features of the program.

The empirical results obtained with open source and in-
dustrial systems confirm that VART can augment the effec-
tiveness of regression test cases by timely and automatically
detecting faults that are not revealed by the existing regres-
sion test cases and that require manually specified oracles to
be addressed with state of the art techniques. VART should
thus be considered as a natural complement to conventional
regression testing.

The paper is organized as follows. Section 2 provides back-
ground information about the techniques used in this paper.
Section 3 describes VART. Section 4 introduces a running
example. Sections 5, 6, and 7 present the generation of
dynamic properties, verified properties, and non-regression
properties, respectively. Section 8 presents how VART pro-
duces the list of faults introduced with the upgrade by check-
ing non-regression properties. Section 9 presents the empiri-
cal results obtained with open source and industrial systems.
Section 10 discusses related work, and finally Section 11 pro-
vides final remarks.

2. PRELIMINARIES
This section provides some background information about

three key technologies used in VART: model checking, re-
gression testing, and invariant detection.

A longstanding challenge in software engineering is to au-
tomatically prove non-trivial, semantic properties of com-
puter programs. In its full generality this problem is known
to be undecidable, but several procedures, while necessarily
either incomplete, non-terminating, or restricted to special
cases, have been shown to be extremely efficient in prac-
tice [14, 41, 13, 6].

In this paper we use Bounded Model Checking [12, 53]
(BMC), one of the most successful approaches for purely
static software verification, to empower regression testing.
The idea in BMC is to represent the software together with
the properties to be verified as an instance of the propo-
sitional satisfiability problem (SAT). Such a representation
captures the software behavior exactly, assuming that all
the loop bodies in the software are repeated at most a fixed
number of times. This approach has several advantages:
the logical formulation is usually very compact compared
to traditional model checking, where verification is reduced
to a reachability problem in a graph representing the pro-
gram state space; there are several high-performance SAT
solvers [57, 23] that can be used for solving the instances;

and the satisfying assignments of an instance can be directly
translated to meaningful counterexamples for correctness in
the form of fault-inducing executions. Furthermore, it is
widely recognized that BMC based approaches are partic-
ularly good at quickly finding short counterexamples when
they exist, making BMC very appealing for the task at hand.

A bounded model checker takes as input a program P , a
bound k for loop unrolling, and a set S of properties to be
verified against P , and returns for each property sl in S,
expressed as a propositional statement over variables of P
at a location l, either

• verified , if the executions of P satisfy sl;
• unreachable, if no execution of P reaches l;
• false, if there is an execution of P where the property

sl is broken; and
• unknown, if the checker is unable, due to memory or

time limits, to determine whether sl holds,

under the assumption that no loop body in the program is
repeated more than k times.

The approach is naturally a compromise between practi-
cality and completeness. As the SAT problem is
NP-complete, determining whether sl holds requires in the
worst case exponential time with respect to the size of the
SAT instance for all known algorithms. Furthermore, the
instances can in some cases grow very large since many op-
erations, such as multiplication, have quadratic encodings in
SAT and, for example, the instance grows exponentially in
number of nested loops.

Due to numerous optimizations BMC can nevertheless
solve many practical problems in reasonable time and mem-
ory limits. For example, the size of the resulting SAT in-
stance can be dramatically reduced by slicing off parts of the
program that do not affect the validity of the property being
checked, and extremely efficient SAT solver implementations
which learn the instance structure and use adaptive heuris-
tics [37] rarely suffer from the exponential worst-case behav-
ior in problems emerging from applications. The fact that
bounded model checkers only prove correctness of properties
for executions not exceeding the bound k is also beneficial
in many ways for detecting regressions. In addition to obvi-
ous performance benefits our experiments show that in most
cases even a single loop iteration is sufficient to indicate a
regression between two versions, and a small bound guar-
antees in a natural way that the reported counterexamples
are short. A well-known challenge for BMC is that in prac-
tice programs rarely contain manually specified properties.
VART answers this challenge by exploiting regression testing
and invariant detection to automatically generate the prop-
erties that capture the intended behavior of the program.

The main purpose of regression testing is to validate that
an already tested code has not been broken by an upgrade.
To this end regression testing maintains a test suite that can
be used to revalidate the software as it evolves [36]. The
regression testing process consists of adding new tests and,
when necessary, modifying the existing tests to validate the
software as it evolves.

Dynamic invariant detection exploits software executions,
such as the ones produced by executing a regression test
suite, to generate likely invariants [25, 43, 20]. A likely in-
variant is a program property that appears to hold according
to the evidence (i.e., the executions) that has been collected
so far. Several dynamic invariant detection techniques have

been successfully used as part of testing and analysis so-
lutions [52, 21, 38, 62]. In VART we use Daikon [25], a
well-known tool that can produce properties in the form of
propositional statements over program variables from exe-
cution traces.

3. Verification-Aided Regression Testing

Verified Properties
for Base

Dynamic
Properties for Base

Intra-Version Property
Verification

Regression Problems +
Counterexamples

Inter-Version Property
Verification

Base
Program

Monitoring + Inference

Upgraded
Program

Monitoring +
Filtering

Non-Regression
Properties

Tests for
Base Tests for

Upgrade

Phase 1: Generation
of Verified Properties

Phase 2: Checking
Verified Properties

for Base

Figure 1: The VART process.

The VART approach presented in this paper is intended to
augment conventional regression testing. Both VART and
regression testing are designed to help developers avoid in-
voluntarily creating and reintroducing faults in program up-
grades. VART improves regression testing by identifying a
list of potential regressions not detected by regression test-
ing, accompanied by the concrete executions demonstrating
the regressions. The approach takes as input two versions
of a program to be checked: a base version and an upgrade,
the correctness of which is to be determined by VART. In
addition the approach uses the two test suites that develop-
ers usually implement to validate software: one designed to
validate the base program and one designed to validate the
upgrade. The base test suite is used to derive relevant cor-
rectness requirements indicated as dynamic properties, while
the upgrade test suite is used to identify and eliminate the
dynamic properties that are present in the base but are in-
tentionally absent in the upgrade.

The high-level overview of the VART approach is given in
Fig. 1. The approach consists of two phases; the first gener-
ates the set of verified properties from the base program and
its regression tests, and the second identifies the regressions
of the upgrade and provides the related regressive executions
called counterexamples. The programmer is then able to use
the collected counterexamples for fixing the faults and inte-
grate them to the regression test suite for the upgrade. Once
a new upgrade of the program is available, the VART ap-
proach can then be re-employed using the previous upgrade
as the new base.

The first phase consists of two steps. The first step, la-
beled monitoring + inference in Fig. 1, generates a large
number of dynamic properties by observing the behavior of
the base program at specific program locations when execut-
ing the base test suite. VART generates dynamic properties
using an invariant detector such as Daikon [25]. For effi-
ciency reasons the dynamic properties are only generated

for the program locations that are likely affected by the
change. These locations are identified by comparing the
base and upgraded program as discussed in Sec. 5. Since
the dynamic properties are heuristically generalized from ex-
ecutions they are potentially imprecise: in particular, some
properties might overfit the observed behaviors. For in-
stance, suppose our previous example on a program that
implements an on-line shop records the number of bought
items in the variable numItems, and satisfies the invariant
numItems ≥ 0. If the base test suite for the program only
considers cases with less than eight items, the invariant de-
tector might also generate the property numItems < 8.

The second step, intra-version property verification, uses
a model checker to eliminate the dynamic properties that
result from data overfitting and do not hold for the base
program in general. The model checker labels each dynamic
property either as verified , unreachable, false, or unknown.
Since VART is intended to be conservative and generate
no false alarms, only the properties that the model checker
labels as verified are included in the set of verified properties
for base, while the properties labeled as unreachable, false,
and unknown are discarded.

The second phase finally determines whether there are
verified properties of the base program that are not inten-
tionally invalidated but nevertheless violated in the upgrade.
The phase consists of two steps. The monitoring + filter-
ing step uses the upgrade test suite to remove the prop-
erties that are intentionally broken by the upgrade. Con-
sider again the on-line shop implementation and assume
that each item is associated with a function getType which
in the base version can return only 0 or 1, and the first
phase produced a verified dynamic property equivalent to
getType() = 0∨getType() = 1. Now assume that the getType
implementation in upgrade can also return 2 and the devel-
oper has implemented a new test that checks this value. The
upgrade test suite, which includes the new test, can then be
used to eliminate the corresponding verified property of the
base program. Following this intuition VART automatically
eliminates the verified properties that are violated during
the execution of the upgrade test suite. The properties that
are not eliminated in this step are the non-regression prop-
erties that are expected to hold for the new version of the
software, according to the intention of the developers.

The second step, namely inter-version property verifica-
tion, uses model checking to determine whether the non-
regression properties hold in the upgrade. Every detected vi-
olation and the corresponding counterexample are reported
to the developers, who use the output to identify the fault.

Since even the generation of a small number of irrelevant
property violations, which are violations not caused by any
fault, could be a major obstacle to the adoption of analysis
techniques, we have consistently taken design decisions to
prevent VART from generating them. As a result there are
only two cases in which VART could report a false coun-
terexample: either as a result of a false dynamic property
being labeled verified by the bounded model checker, or a
dynamic property being deliberately invalidated in the up-
grade but not checked in the upgrade test suite. When the
former occurs the property can be simply dropped. Whereas
when the latter occurs the developer can add a new test that
violates the property to the upgrade test suite. When re-
executing the upgrade test suite VART automatically clas-
sifies the false property as outdated and does not include it

1 long availableProducts(store* store data) {
2 list node* product = store data→products;
3 long total = 0;
4 while (product 6= 0) {
5 int avail = isAvailable(product);
6 total += avail;
7 product = product→nxt;
8 }
9 return total;
10 }

11 int isAvailable(list node* prod) {
12 if (notInitialized(prod)) {
13 return 0;
14 }
15 if (prod→items > 0) {
16 return 1;
17 }
18 return 0;
19 }

Figure 2: Sample code: base version

in the set of the non-regression properties. The two cases did
not affect our empirical results, in fact only a singe irrelevant
property violation has been reported in our experiments.

4. RUNNING EXAMPLE
In the next sections we illustrate VART with a running ex-

ample. The case we consider is a regression fault that affects
the function availableProducts, which returns the number of
products that are available in a struct of type store. The C
implementation of this function in the base version is shown
in Fig. 2. Note that the availableProducts function uses the
auxiliary function isAvailable, which returns 1 if the product
is available, and 0 otherwise.

As an upgrade containing a fault we consider a new ver-
sion of the function isAvailable returning −1 for outdated
products no longer part of a catalogue. The updated func-
tion is shown in Fig. 3, where the new lines 14a–14c have
been framed. The considered upgrade is faulty because the
availableProducts function has not been changed to accom-
modate the change in isAvailable. Thus the resulting total
will be wrong when products that are not in a catalogue
occur in the list of products passed as input parameter to
the availableProducts function. In this example we assume
that a base test suite has been used to validate the base
program and that the base test suite does not reveal the
regression problem when executed on the upgrade. To test
the upgrade, we assume developers have added the test case
shown in Fig. 4 to the upgrade test suite. This test covers
the modification in the function isAvailable, since the line
14b in the upgraded program is executed by the test, but
does not reveal the regression.

Many popular automated techniques would be quite inef-
fective against this regression fault. Regression testing tech-
niques can be used to select from the existing test cases the
ones that cover the change, but they can never reveal this
fault unless the regression test suite includes tests that use
products not in the catalogue. However, since the use of
products that are not in the catalogue produces no differ-
ences in the computation for the base version of the soft-
ware, this is unlikely to happen. Automatic testing tech-
niques would also be ineffective. In fact the failure pro-
duced by this fault does not consist of an exception or a

11 int isAvailable(list node* prod) {
12 if (notInitialized(prod)) {
13 return 0;
14 }

14a if (prod→in catalog==0) {
14b return −1;
14c }

15 if (prod→items > 0) {
16 return 1;
17 }
18 return 0;
19 }

Figure 3: Sample code: upgraded version

1 int testUnavailableProduct() {
2 list node* prod = createProduct();
3 prod→name = ”MacBook”;
4 prod→in catalog = 0;
5 assertEquals(−1, isAvailable(prod));
6 }

Figure 4: Sample code: test for the upgrade

crash, but manifests itself in computing of a wrong total,
a non-trivial error typically requiring a human written or-
acle to be recognized. For the same reason, static analysis
solutions, like model checking, cannot discover the problem
in the upgrade unless suitable assertions are manually pro-
vided by the testers. The use of coverage criteria are also
not helpful. For instance the test in Fig. 4 already covers
the change and, unless particularly complex coverage crite-
ria such as the context-dependent def-use coverage [58] are
used, there would exist no indicators of inadequacy requir-
ing the design of additional tests. In practice, revealing this
fault requires the definition of a new test case, which might
or might not be manually implemented by a developer. In
this context, VART offers the unique opportunity of auto-
matically checking the side effects of changes, compensating
testing inefficiencies. In particular, even if the developer
does not add a proper test to reveal this fault, VART can
automatically reveal it.

5. DETECTING DYNAMIC PROPERTIES
The first step of the VART process (see Fig. 1) consists of

executing the regression test suite for the base version of the
software, monitoring the program behavior, and distilling
dynamic properties from the collected data.

Since the VART process attempts to confirm the correct-
ness of an upgrade, the scope of the monitoring is naturally
influenced by the changes between the two versions. After
identifying the modified functions, VART collects data from
certain program statements that are close to the changes but
remain still unchanged between the base and the upgraded
program, that is, unchanged statements in functions

• that contain changes;

• that call functions that contain changes; and

• that are called by the functions that contain changes.

The rationale is that VART should derive properties that
can be checked on the base and upgraded program versions
and that capture the impact of the change under analysis.
By selecting the unmodified program statements we guar-
antee that the local variables that occur in these statements

exist in both the base and the upgrade, increasing the prob-
ability of generating properties that use these variables and
that can thus be checked in both program versions. The
properties that use variables no more existing on the up-
grade are automatically dropped in Phase 2 (see Sec. 7).
The selection of program statements that are close to the
change (i.e., the modified functions, their callers and callees)
increases the likelihood of detecting properties that are in-
fluenced by the change while still keeping the size of the
monitored area reasonable.

VART intentionally approximates the impact of a change
with the simple rules specified above instead of using tech-
niques like impact analysis [7] and program slicing [56] that
are more precise but tend to select large portions of pro-
grams even for small changes. The selection strategy imple-
mented in VART keeps the cost of monitoring, inference and
model checking under control, avoiding scalability issues in
practice [48].

The running example contains a single change which is
local to the function isAvailable. VART selects for moni-
toring every program statement in the function isAvailable,
because the statements that occur in the base version of the
function also occur in the upgraded version of the function;
every program statement in the availableProducts function,
which is the only function invoking isAvailable; and every
program statement in the function notInitialized , not shown
in the example, which is invoked from isAvailable.

For each program location selected for monitoring, VART
records the value of every variable defined in the scope of
that location. After the test suite for the base version of the
program has been executed, VART uses Daikon to generate
the set of dynamic properties from the recorded data.

Consider, for example, the listing in Fig. 2. For the func-
tion availableProducts a base regression test suite combined
with an invariant detector like Daikon would automatically
generate the following dynamic properties:

• product 6= 0 after execution of line 2;

• avail = 0 ∨ avail = 1 after execution of line 5;

• product 6= 0 after execution of line 5;

• avail = 0 ∨ avail = 1 after execution of line 6; and

• total ≥ 0 after execution of line 6;

and for the function isAvailable the following dynamic prop-
erties:

• prod 6= 0 after execution of line 15; and

• return = 0 ∨ return = 1 after execution of line 19.

6. GENERATING VERIFIED PROPERTIES
Dynamic properties may overfit the observed behavior,

and thus they may capture the characteristics of the ex-
ecutions rather than the actual behavior of the program.
For instance, since in the running example we executed the
availableProducts function only with parameters that have
a non-null pointer to products, invariant detection gener-
ated the property product 6= 0 for line 2. In the case the
availableProducts function could also be executed with null
store data→products, this property would capture a char-
acteristic of the test suite rather than a general program
property.

A key advantage of VART is that model checking can au-
tomatically prune most of the dynamic properties caused
by overfitting, leading to a dramatic decrease in the num-
ber of false counterexamples reported to the developers. In

practice VART produces the list of verified properties by
checking each dynamic property against the base version
from which the property was derived with a model checker.
The verified properties will be exactly the properties that
the model checker labels as verified .

To keep the regression checking process reasonably light-
weight and practically applicable, the choice was made to
limit the scope of model checking on the call trees rooted at
the callers of the functions containing the changes. This im-
plies that if the model checker labels a property as verified ,
the property can be verified by the model checker for any
execution traversing any of the callers, independently of the
context of the callers. The chosen strategy may eliminate
properties that hold when they are considered in the entire
program but are false when analyzed in a generalized con-
text. This strategy is conservative since the properties that
hold in the generalized context are a subset of the proper-
ties that hold for the entire program. In the unlikely case
that starting the verification from the callers of the modi-
fied functions is too expensive, VART further restricts the
scope of the checking to the modified functions only. This
operation might further eliminate some properties that hold
when considering the entire program, but it is conservative
because the properties verified in the restricted scope also
hold in larger scopes. For similar reasons model checking
is not extended to library functions, which are conserva-
tively assumed to change the parameters in an arbitrary
way. Again this assumption may lead to the elimination of
some valid dynamic properties, but it is conservative as it
does not cause false properties to pass this phase.

Returning to the running example, we apply this pro-
cess to the dynamic properties reported in Sec. 5. Model
checking considers every caller of isAvailable as entry point
of the analysis. In the running example, the only caller
is availableProducts. Model checking automatically discov-
ers that the dynamic property product 6= 0 does not hold
and must be eliminated, while the rest of the properties are
marked as verified and form the set of verified properties.

7. FILTERING VERIFIED PROPERTIES
When a program is upgraded, the verified properties de-

rived from the base program can be used to check if the
upgrade preserves the behavior of the base. Some of the
properties derived for the base program might be no longer
checkable when evaluated in the upgrade, for instance be-
cause they refer to deleted or renamed variables. VART
automatically drops these properties by injecting the ver-
ified properties into the upgrade, compiling the code, and
removing the properties that cause compilation problems.

Once the illegal properties have been dropped, in princi-
ple, it is possible to use a model checker to check each of the
verified properties against the upgraded program and report
violations, and counterexamples, to developers. However,
the upgrade may intentionally violate some of the proper-
ties that hold for the previous version of the software.

Consider for instance the verified property return = 0 ∨
return = 1 that holds for the return value of the isAvailable
function in the running example. The upgrade shown in
Fig. 3 intentionally violates this property because it intro-
duces a new value that can be returned. Developers are not
interested in collecting such false alarms, but instead want
to be informed about any unexpected side effect introduced
by the upgrade.

To capture the intention of the change and the expected
impact on the verified properties VART exploits the regres-
sion test suite that covers the upgrade, including the new
test cases implemented by the developers to specifically val-
idate the change. Intuitively the test cases that cover the
upgrade entail executions that have been knowingly modi-
fied by the developers. VART exploits this fact to eliminate
the verified properties that held for the base version but
became outdated in the upgrade. In particular, VART exe-
cutes the regression test suite of the upgraded program and
removes from the set of verified properties all the proper-
ties that are violated during the execution of the passing
tests, that is, all the properties that have been intentionally
invalidated by the upgrade.

If we consider the running example, by executing the test
shown in Fig. 4 on the upgraded program VART automat-
ically discovers that the property return = 0 ∨ return =
1 does not hold anymore because the value returned by
isAvailable in the test is −1. Thus the verified property
return = 0∨ return = 1 is outdated and must be eliminated.

The execution of the test in Fig. 4 also covers the verified
property prod 6= 0, which holds after the execution of line
15 and is not broken by the regression test suite1. In this
case the property is satisfied and it is not discarded.

The subset of verified properties that are not eliminated in
this step are the non-regression properties, a set of properties
that hold for the base version of the software and are not
intentionally invalidated by the upgrade. The violations of
the non-regression properties indicate the presence of side
effects that deserve the attention of the developers.

8. UPGRADE CHECKING
In this final step, VART uses again the model checker,

this time to verify the non-regression properties against the
upgraded program. The detected violations consist of prop-
erties reported either as false or unreachable. Both false and
unreachable properties may indicate the presence of regres-
sion faults: false properties reveal behaviors unintentionally
modified by the upgrade, while unreachable properties reveal
reachable statements sospiciously turned into unreachable
ones by the upgrade.

The violations are reported to the developers together
with the counterexamples represented as traces showing how
non-regression properties can be actually violated. To facil-
itate debugging, the counterexamples can also be translated
into test cases [8] and the non-regression properties can be
instrumented in the code of the upgraded program as assert
statements that fail when the tests are executed.

If we check the non-regression properties generated for
our running example, VART automatically reveals that the
following ones are violated:

1. avail = 0 ∨ avail = 1 after line 5

2. avail = 0 ∨ avail = 1 after line 6

3. total ≥ 0 after line 6

This result clearly indicates that the upgraded isAvailable
function can return a new value that has not been considered
in the implementation of availableProducts (see the viola-
tion of the non-regression properties 1 and 2), and that this

1when determining changes, VART compares the programs
and automatically maps the properties of the base program
on the corresponding locations in the upgraded program.

new value influences the computation of the total by allow-
ing negative values (see the violation of the non-regression
property 3). VART also generates the actual counterexam-
ple that demonstrates this case.

Fixing the fault in the running example is straightforward;
the fix could simply consist of adding an if condition that
prevents modifying the variable total when the return value
of isAvailable is −1.

Although the illustrated case is simple, note that VART
automatically identified a regression problem that normally
requires a manually specified oracle to be detected.

9. EMPIRICAL EVALUATION
In this section we briefly describe our implementation of

the VART approach and present the two empirical studies
in support of our key arguments: VART can compensate
the lack of thoroughness in regression test suites, and reveal
subtle problems when thorough test suites are available. The
first study is a controlled experiment that investigates the
complementarity between regression testing and VART for
a number of faults and program versions while changing the
thoroughness of the test suite. In the second study we apply
VART to a number of regression faults found in a range of
different industrial and open-source applications from the
numeric and string manipulation domains to demonstrate
that VART can detect faults that have not been revealed
with regression testing.

Prototype Tool. We implemented VART for programs writ-
ten in C. The identification of the program locations that
must be monitored, the collection of the runtime data, and
the generation of the dynamic properties are implemented
on top of the Radar tool [47], a dynamic analysis tool that
can generate various behavioral models from runtime data.
Radar uses diff to detect changes [2], GDB to record run-
time information [3] and Daikon [25] to generate models.

We integrated both the CBMC [30] and the eVolCheck [26]
bounded model checkers into VART. CBMC is a general pur-
pose model checker, while eVolCheck includes features to op-
timize upgrade checking in specific situations. In the experi-
ments we used CBMC when the optimizations implemented
in eVolCheck were not effective. We ran model checking with
a loop unrolling bound of 5 except for the GREP experiment
in Table 3, where the bound was set to 1. Based on our ex-
perimentation, these bounds were a reasonable compromise
between exactness and efficiency of the tool.

Our tool is freely available at http://www.lta.disco.

unimib.it/tools/vart.

Controlled Experiment. In principle, the effectiveness of
VART depends on the effectiveness of the regression tests
that are executed to generate the dynamic properties. If the
regression test suite is extremely poor, the dynamic prop-
erties generated from the tests will be poor as well. For
instance, VART cannot generate properties that hold at pro-
gram locations not covered by any test. In general, the
better the test suite validates the software, the better the
properties generated and checked with VART are. In this
section we present a study on the complementarity between
the thoroughness of the regression test suite and the effec-
tiveness of VART, and we show that VART can compensate
test suite inefficiencies even when the test suites do not cover
well the change.

Table 1: The 11 cases of the controlled study.
Num Fault ID Base Ver Upgrade

Ver
Change
Size

1 v3 DG10
10/1/1999
16:44:13

10/6/1999
1:13:21

4832 v3 KP2
3 v3 KP9
4 v3 DG1

8/13/1999
14:45:21

8/13/1999
15:02:00

9445 v3 DG8
6 v3 KP7
7 v3 DG3 10/7/1999

3:42:57
10/12/1999
4:11:40

185
8 v3 DG2
9 v4 KP8 1/21/2000

02:22:47
1/25/2000
3:34:23

354
10 v4 DG3
11 v4 KP6 1/17/2000

0:55:06
1/20/2000

4:43:03
89

We considered Grep [4] as subject program for this study
because it is a non trivial program available with a large test
suite of 817 test cases2 that thoroughly covers the program.
In this study we want to use such a test suite to extract
a number of more realistic and smaller test suites providing
different levels of coverage. As set of faults we considered all
the Grep faults in the SIR repository [5] that are available
for the last three versions of the Grep application and that
are revealed by the complete regression test suite. Those
amount to a total of 11 faults. Note that none of these faults
causes crashes or generate exceptions, thus they could not
be easily revealed with automated techniques, while VART
can address them without requiring any human intervention
thanks to the automatically generated non-regression prop-
erties.

Each SIR fault has been used to generate a regression
fault according to the following steps. We first identified
the most recent change in Grep that both is precedent to
the version targeted by the SIR fault and affects the state-
ment with the SIR fault. In the study, we used the version
before the change as the base version and the version after
the change as the upgrade. We then obtained the regres-
sion problem by injecting the SIR fault in the upgraded ver-
sion. We made sure that this process produced a regression
problem by checking that there exists at least one test that
produced the same result when executed on the base and
upgrade Grep versions, but produces a different result when
the fault is also injected in the upgrade.

Table 1 reports the 11 regression faults used in this experi-
ment. Column Num numbers the 11 regression faults from 1
to 11. Column Fault ID reports the SIR identifier of the fault
used to generate the regression problem. Columns Base Ver
and Upgrade Ver identify the upgrade used in the study by
reporting the dates of two consecutive commits. Note that
some faults share the same base version. For example the
faults 1, 2, and 3 are injected on different statements modi-
fied by the same commit. Column Change size specifies the
size of the considered change as the number of branches that
occur in the modified functions.

We investigate the effectiveness of VART with respect to
the effectiveness of regression testing for three relevant test
suites: MRT, Cov20 and Cov50. MRT is the smallest sub-
set of the original test suite that provides the same branch
coverage of the change as the entire test suite. We ordered

2the Grep test suite has been downloaded from the SIR
repository: http://sir.unl.edu/

Table 2: VART compared to regression testing
Test Faults RPV IPV Exec. Time (hours)
Suite Tests VART Min\Max\Avg
Cov20 3 5 5 0 6\60\22
Cov50 7 8 2 0 4\18\8.5
MRT 10 10 0 0 4\4\4

the test cases in MRT in a greedy fashion, so that the first
test case is the one that contributes most to the coverage
while the last test case is the one that contributes least to
the coverage. Given the thoroughness of MRT, Cov20 and
Cov50 represent the cases of smaller test suites that are more
likely to be available in the practice. In particular Cov20
and Cov50 are the smallest test suites that can be obtained
from MRT by selecting enough test cases to cover at least 20%
and 50% of the branches in the change, respectively. The
selection of the test cases from MRT follows the ordering of
the tests. The number of tests in MRT varies for each case
study, ranging from 4 to 47, with an average of 33.4 tests.

We used VART to analyze the 11 regression faults shown
in Table 1 while exploiting the 3 test suites defined above
(Cov20, Cov50, and MRT), for a total of 33 investigated
cases. Table 2 shows the results grouped by test suite. Col-
umn Test Suite indicates the type of test suite. Column
Faults reports data about the revealed faults. Columns Tests
and VART indicate the number of faults revealed by the
regression test suite and by Verification-Aided Regression
Testing, respectively. Columns RPV and IPV indicate the
total number of relevant and irrelevant property violations
reported by the model checker. Column Exec.Time reports
the min, max, and average number of hours needed to ana-
lyze each case with a Dell Poweredge Intel Xeon 3.73GHz.

We notice an interesting tradeoff between the number
of faults revealed with testing and the ones revealed with
VART. Even when the coverage of the change is small, VART
has been useful. In fact, when Cov20 is used, regression test-
ing reveals 3 faults, while VART reveals 2 additional faults,
for a total of 5 faults revealed. When Cov50 is used, re-
gression testing reveals 7 faults. VART improves the result
of regression testing by revealing an additional fault, for a
total of 8 faults revealed. Finally, when the minimal test
suite with the highest coverage of the change is executed,
both regression testing and VART reveal 10 faults. These
results confirm the intuition that VART can automatically
compensate the inefficiencies of regression test suites by re-
vealing faults that would otherwise remain unrevealed.

In this specific experiment VART did not reveal additional
faults when the change is thoroughly tested with MRT. How-
ever we show in the second experiment that VART not only
compensates the inefficiencies of test suites as preliminarily
demonstrated by this experiment, but can also reveal subtle
problems not revealed by thorough test suites.

VART generated no false alarms. Even when not reveal-
ing additional faults, such as for the MRT test suite, VART
reported no irrelevant property violations. This is a conse-
quence of the conservativeness of the technique that filters
any dynamic property that might generate a false alarm (in
this experiment, VART discarded 97% of the dynamic prop-
erties in average).

Considering that VART can augment regression testing
with automated verification capabilities which can reveal
crashing and non-crashing faults with a negligible risk of pro-
ducing irrelevant property violations, the additional faults

Table 3: VART Applied to Regression Problems
Subject Versions Test Suite Dyn. Non-Reg RPV IPV Execution

App. Size (LOCS) Base Upgrade Size Prop Prop Time (hours)
VTT 488 10.1 10.2 1000 1045 658 15 0 <1
ABB-1 200 - - 1600 3278 163 57 1 <1
ABB-2 200 - - 1600 3278 163 57 1 <1
ABB-3 200 - - 1600 3278 163 0 1 <1
SORT 4653 20-06-12 02-07-12 427 356 2 1 0 1.5
GREP 590 01-17-01 01-20-01 817 3303 51 3 0 36

revealed in this experiment demonstrate that VART is not
only conservative but also effective when relatively good re-
gression test suites are available.

Results about the execution time suggest that the analy-
sis can be feasibly executed overnight. In fact the average
execution time varied between 4 and 22.5 hours, depend-
ing on the cases that are analyzed. In three cases, when
the Cov20 test suite is used, the execution time reached 60
hours. This is due to the generation of a high number of false
properties that are filtered out by VART. However, elimi-
nating all these properties required a significant amount of
time. When more test cases are used, the number of false
properties, as well as the cost of running VART, decreases.
Considering that our implementation is not optimized (e.g.,
properties are checked sequentially instead of being checked
all together) and that a better server machine could be used
for the analysis, the execution time could likely be narrow
done to few hours also for the worst cases.

Detection of Regression Faults. This section presents a
study that investigates the effectiveness of VART with sev-
eral regression faults that have not been revealed by the cor-
responding regression test suites. The objective is to show
that VART can reveal subtle faults overlooked by thorough
test suites. To this end, we applied VART to 6 regression
problems in industrial and open source systems.

From industry we consider two systems developed at VTT
and at ABB. The system developed at VTT consists of a mo-
tion trajectory controller that is executed by a robotic arm
during maintenance tasks in novel experimental nuclear re-
actors [55]. For the experiment, we selected a known regres-
sion problem that does not cause crashes but produces in-
correct outputs when activated. This fault is hard to detect
with conventional testing and analysis techniques. Since the
test cases were not available for this system, we obtained the
regression tests by randomly generating 1,000 test inputs for
the base program (the inputs of the program consists of 12
numeric variables).

The system developed at ABB consists of the implementa-
tion of a protection function that is used in a control system
to detect spikes in large-scale power distribution networks.
The protection function is available with a suite of 1600
tests. Since it is a very stable function that did not show
faults in the last 10 years, we generated the regression faults
manually. We exploited this case to investigate if VART can
effectively detect configuration problems. We thus obtained
the 3 regressions by mutating the definition of the three
constants that are used to represent the system state. The
mutations have been injected in the most recent upgrade of
a portion of the function that uses the mutated constants.

To provide an even more compelling overview of the appli-
cability of the approach we also study VART using two pop-
ular open-source string manipulation systems; Sort, which is

distributed as part of the GNU Coreutils [1], and Grep [4].
Sort is a utility that can write sorted concatenation of multi-
ple files to the standard output, while Grep searches among
multiple files the lines that match a given pattern and prints
the matched lines to the standard output.

We selected the most recent regression fault available at
the time we made the experiments for both Sort and Grep.
In the case of Sort we selected the fault documented at http:
//debbugs.gnu.org/cgi/bugreport.cgi?bug=11816#34. A
comment attached to the commit of the bug fix and our
manual inspection confirm that this is a regression fault. In
the case of Grep we obtained a regression fault by injecting
the fault F DG 1, defined in the SIR repository, in the latest
upgrade of Grep. This is the only fault available in the SIR
repository that affects the code in the latest upgrade. In
the case of Sort, we used the test suite released with the
program. In the case of Grep, we used the test suite available
on the SIR repository.

In total, we investigated 6 regression faults in a number
of diverse systems. Note that the investigated faults are
regression faults not revealed by the available test suites.

Table 3 shows the results. Columns App. and Size indi-
cate the application used in the evaluation and its size. In
this empirical study we used non-trivial applications whose
size range from 200 locs to about 5,000 locs. Note that ap-
plications of these sizes are usually challenging for model
checkers. VART, thanks to its approach based on a re-
stricted scope and a conservative analysis as illustrated in
Section 6, suitably addressed these cases. Columns Base and
Upgrade indicate the two program versions used in the eval-
uation. The version is identified by the commit date. The
investigated regression problem is always introduced when
upgrading the program from the base to the upgrade version.
For confidentiality reasons we cannot show the version num-
bers for the cases based on the ABB system. Column Test
Suite Size indicates the size of the regression test suite used
in the evaluation. Columns Dyn. Prop and Non-Reg Prop
indicate the number of dynamic properties initially gener-
ated by VART and the number of non-regression properties
that have been actually used to validate the upgrade, re-
spectively. Columns RPV and IPV indicate the number of
the non-regression properties violated by the regression fault
and the non-regression properties violated incidentally by
the upgrade, respectively. Finally, column Execution Time
indicates the number of hours necessary for the analysis.

We note that VART generated a significant number of
properties (see Dyn. Prop. in Table 3) which efficiently
reduce to a handful of verified non-regression properties used
to check the upgrade (see Non-Reg Prop. in Table 3). The
fact that VART is aggressive in eliminating properties that
are not clearly useful to check the upgrade is an important
characteristic of VART that is fundamentally conservative

and aims at generating no IPVs at the cost of potentially
eliminating properties that might be useful in some cases.

Regarding the fault detection ability, this study confirmed
the effectiveness of VART, which has been able to auto-
matically detect 5 of the 6 regression faults under investi-
gation (corresponding to the cases with RPV > 0 in Ta-
ble 3), producing at most one irrelevant property violation.
In three cases, VART reported a small and useful set of vi-
olated properties (see RPV for VTT, Sort and Grep). In
two cases, VART reported a significant number of (useful)
violated properties (see RPV for ABB-1 and ABB-2). Even
if VART reported 57 (useful) violated properties, developers
could effectively analyze the output because the violations
are well-focused: they refer to 2 program locations only and
only a total of 6 variables occur among the 57 properties.

VART, even though it started with a large set of dynami-
cally detected properties, ended up generating a false alarm
only for one system. The false alarm actually reveals a
changed behavior that was not well tested by the suite made
available to us. Overall, small number of generated IPVs is
an extremely important result because the generation of a
big number of false alarms often represents a barrier to the
adoption of a given analysis solution.

VART did not identify the regression problem in one of
the cases. In that case, the injected fault impacted on the
error handling routines of the program. Since the available
regression test suite does not include tests with erroneous
inputs, VART cannot generate any assertion related to error
handling, and thus could not reveal the regression problem.

VART has been always able to analyze the target systems
in a few hours, with the only exception of GREP that needed
about 36 hours. This time could be likely narrowed done to
few hours using a better implementation and a better server
machine for the analysis. Despite the generation of many
dynamic properties and the usage of potentially expensive
bounded model checking to verify them, the restriction of
the scope of the analysis and the abstraction of library calls
implemented in VART made the analysis efficient.

When relevant property violations are reported, the iden-
tification of the fault is usually straightforward since devel-
opers can start debugging from counterexamples and a set of
non-regression properties violated by the fault. We demon-
strate the effectiveness of the output returned by VART by
briefly presenting three of the analyzed faults.

In the VTT system, the analyzed regression fault is an in-
correct initialization of the local variable vMax used to com-
pute the speed of a joint. The incorrect initial value causes
the speed of the joints, stored in the array jp, to exceed
the maximum allowed speed, stored in the array jl. VART
detected this fault by identifying that the non-regression
properties vMax = jl[0] and jp[0].v ≤ jl[0] do not hold in
the upgrade. The former property captures the wrong ini-
tialization of vMax. The latter property captures the actual
speed exceeding the maximum allowed speed. The rest of
the violated non-regression properties are related to the al-
gorithmic steps executed in the function with the fault.

In the Sort program, the regression fault is a wrong code
that stream open uses as a parameter when invoking func-
tion error . VART nicely captures this problem by identi-
fying that the upgrade violates the property status = 0 ∨
status = 2 defined in the body of function error , where
status is the name of the first parameter. The counterex-
ample shows that this problem occurs when error is invoked

from stream open.
In the Grep program, the function savedir is expected to

set name size to 1 when savedir is invoked with name size =
0. The upgrade does not execute this operation. VART
suitably captures this problem by identifying that the non-
regression property name size 6= 0 is violated exactly after
the point where the variable should be set to 1.

The reported cases provide a good evidence that VART
not only reveals problems unnoticed by the tests but also
provides information about the reason of the failure, usually
referring to locations close to the fault that caused the fail-
ure, thus making debugging straightforward in several cases.
Note that even if the investigated faults did not always cause
crashes, VART revealed them thanks to the soundness of the
automatically generated non-regression properties.

Threats to Validity. In this paper we provide initial evi-
dence of the effectiveness of VART. Although the results
cannot be generalized yet there are various aspects suggest-
ing they could be valid in different scenarios. VART re-
ported either none or a single irrelevant property violation,
and has been able to reveal faults unnoticed by regression
test suites for systems with different characteristics. We
considered both industrial and open source systems, and in-
vestigated both programs mostly implementing numerical
computations and programs working on strings. These re-
sults provide a good, although preliminary, evidence that
VART can be a practical solution that should be considered
to augment regression testing.

The reported results depend on the regression test suites
used in the evaluation making the nature and the choice of
the test suite a threat to the validity of the experiment. In
our evaluation we considered multiple test suites: thorough
test suites (e.g., the SIR test suite for Grep), real test suites
(e.g., the test suite for the Sort program), and random test
suites (e.g., the test suite for the VTT program). Since
VART revealed faults regardless the kind of test suite used
this threat does not appear to be severe.

Our empirical evaluation measures relevant and irrelevant
property violations, but classifying a report as relevant or
irrelevant might be subjective. In our experiments, VART
reported a small number of property violations close and
clearly correlated to the faults, as exemplified for some of
the cases. Thus, at least for the cases reported in the paper,
we do not see any risk of a misclassification.

10. RELATED WORK
VART is related to work in regression testing, anomaly

detection, model checking, and change analysis. This section
discusses VART with respect to results in these areas.

Regression testing concerns with a multitude of aspects
that are relevant when testing upgrades. For instance, it
addresses problems like the selection of the test cases that
must be re-executed to validate a change [15, 51], the prior-
itization of those tests [24, 59, 38], and the maintenance of
a test suite across program versions [22, 42].

The effectiveness of any regression testing process strongly
depends on the set of test cases implemented by the testers.
Those tests can only sample a limited number of cases and
several faults could be missed by regression testing tech-
niques. Adequacy criteria, such as structural-, specification-
or fault-based criteria [65] may mitigate issues related to in-
completeness of test suites but do not solve the problem.

VART is a technique that augments the effectiveness of
the regression testing process thanks to its ability of auto-
matically discovering non-regression properties and detect-
ing violations of those properties across program versions.
In our empirical results VART automatically discovered re-
gression faults not revealed by the regression test suites in 2
out of 3 configurations studied for the Grep program and in
5 out of 6 regression faults studied in 4 different applications.

The idea of learning behavioral models and properties, ei-
ther statically or dynamically, and then revealing anomalous
behaviors by checking the learnt models and properties, ei-
ther statically or dynamically, has been already investigated
in anomaly detection techniques.

The rationale exploited in anomaly detection is that fail-
ures are not frequent and thus the behaviors that violate the
common patterns might point at incorrect executions. Tech-
niques investigated a number of combinations. For instance,
Wasylkowski and Zeller statically derived and checked com-
putational tree logic formulas that capture method precon-
ditions [60]. BCT dynamically derives and checked finite
state models and Boolean properties that capture compo-
nents’ behaviors [39]. Jadet statically identifies patterns
of method invocations and discovers anomalous sequence of
method calls [61]. Radar dynamically generates and checks
program properties and control-flow models that capture the
behavior of software units, such as program functions [48].

These techniques can identify a number of faults, but they
also produce several false alarms that hinder their applica-
bility. This is mainly due to the oracle problem, i.e., these
techniques cannot distinguish between failing and passing
runs. To overcome the oracle problem and eliminate the
false alarms, some techniques report only the problems that
can be confirmed by generating a test [50, 21]. This solu-
tion limits the faults that can be revealed to problems that
produce crashes and uncaught exceptions. On the contrary,
VART suitably integrates static and dynamic analysis to
produce properties that are provably true and uses heuris-
tics to remove outdated properties when analyzing upgrades.
Those mechanisms almost eliminate irrelevant property vio-
lations. Moreover, even if limited to regression faults, VART
can automatically identify problems beyond crashes and ex-
ceptions, that typically require an oracle to be detected.

The idea of confirming automatically generated proper-
ties has been explored in other settings, such as using static
analysis to confirm dynamic properties [44], using the crowd
to confirm assert statements [46], and jointly using mutants
and testing to confirm dynamic properties [28]. The ap-
proach closer to VART, regarding property generation, is
the one by Nimmer and Ernst who used static analysis to
confirm properties generated for small-sized programs [45,
44]. They investigated this integration to automatically sug-
gest developers the annotations that can be added into pro-
grams. VART exploits a similar idea on larger programs to
generate the verified properties, which are used to obtain the
non-regression properties that are checked on the upgrades.

Model checkers are widely used to statically verify safety
properties of software programs [18, 17, 10, 9, 53, 34]. Those
properties are represented as expressions over program vari-
ables in the control flow of the program. Such properties
typically require knowledge of the program functionality and
must be written by the developer, although some tools, such
as those based on CProver [17, 53], support automatic gen-
eration of simple properties to be checked: pointer deref-

erencing, division by zero, array bounds checks and a few
more. The tool Houdini [27] offers various static heuristics
to guess program invariants to be checked using a model
checker. These invariants are based on a random choice and
therefore not necessarily useful. The tool Spacer [34] gen-
erates safe inductive invariants from the proof of program
correctness. Since this tool performs analysis with respect to
already specified properties, the newly generated invariants
will also depend on such properties. The approach taken in
VART is novel in the sense that the properties are general-
ized from executions and employed in the context of regres-
sion testing.

Previous works studied how to use model checking to ver-
ify whether properties are preserved by software upgrades.
Using the efforts spent on checking the previous version,
eVolCheck [26] tends to localize the verification only to the
modified parts of the program. Assertions have been used
to compare the behavior of programs also in other contexts,
such as discovering interleaving bugs [33], and checking rel-
ative correctness specifications [35]. Unlike our approach,
these approaches lack the ability to automatically capture
the intention of the change.

Program slicing [56] and impact analysis [7] can be used
to assess the impact of a change. Regression faults that in-
validate program assertions can be addressed with program
slicing combined with symbolic executions [63]. Other so-
phisticated techniques, such as DSE [49] and BERT [32],
can be used to determine the changed behaviors between
two program versions. In particular DSE identifies behav-
ioral differences at the level of function summaries, while
BERT identifies differences on the outputs that can be pro-
duced by two program versions. These techniques can de-
tect behavioral differences but cannot distinguish between
intended changes and regression problems, like VART does.

11. CONCLUSION
Regression testing is a well-established solution for the

validation of changes and upgrades. The effectiveness of re-
gression testing is strongly dependent on the completeness of
the test suite that is executed to validate the changes. Com-
plete regression test suites are hard to design, and ineffective
regression test suites cause several erroneous upgrades to be
discovered late, when fixing faults is expensive.

This paper presents Verification-Aided Regression Testing
(VART), an extension of regression testing that in addition
to exploiting the tests to reveal faults uses behavioral prop-
erties, derived from test executions, to automatically dis-
cover additional faults not revealed by the regression tests.

VART originally combines testing, invariant detection, and
model checking to obtain the unique capability of (1) auto-
matically producing properties proved to hold for the base
version of a program, (2) automatically identifying and check-
ing on the upgraded program only the properties that, ac-
cording to the developers’ intention, must be preserved by
the upgrade, and (3) reporting faults that are not revealed
by tests and corresponding counter-examples that show how
to activate the faults. Note that this process can automati-
cally reveal faults that require manually specified assertions
to be detected with testing and model-checking.

Results indicate that VART can both compensate the inef-
ficiencies of regression test suites and augment the effective-
ness of thorough test suites revealing subtle faults overlooked
by the tests.

12. REFERENCES
[1] Coreutils. http://www.gnu.org/software/coreutils/.

[2] Diff utils. http://www.gnu.org/software/diffutils/.

[3] GDB. http://sources.redhat.com/gdb/.

[4] Grep. http://www.gnu.org/software/grep/.

[5] Software-artifact infrastructure repository.
http://sir.unl.edu.

[6] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and
N. Sharygina. Lazy abstraction with interpolants for
arrays. In proceedings of the International Conference
on Logic for Programming, Artificial Intelligence, and
Reasoning, volume 7180 of LNCS. Springer, 2012.

[7] R. Arnold and S. Bohner. Software Change Impact
Analysis. Wiley-IEEE Computer Society Press, 1996.

[8] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala,
and R. Majumdar. Generating tests from
counterexamples. In proceedings of the International
Conference on Software Engineering, 2004.

[9] D. Beyer, T. A. Henzinger., R. Jhala, and
R. Majumdar. The software model checker Blast:
Applications to software engineering. International
Journal on Software Tools for Technology Transfer,
9:505–525, 2007.

[10] D. Beyer and M. E. Keremoglu. CPAchecker: A Tool
for Configurable Software Verification. In proceedings
of the International Conference on Computer Aided
Verification, LNCS, pages 184–190, 2011.

[11] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and
Y. Zhu. Symbolic Model Checking Using SAT
Procedures instead of BDDs. In proceedings of the
annual Design Automation Conference, 1999.

[12] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic model checking without BDDs. In
proceedings of the International Conference Tools and
Algorithms for Construction and Analysis of Systems,
volume 1579 of LNCS, pages 193–207. Springer, 1999.

[13] A. R. Bradley. SAT-based model checking without
unrolling. In proceedings of the International
Conference on Verification, Model Checking, and
Abstract Interpretatio, volume 6538 of LNCS, pages
70–87. Springer, 2011.

[14] S. Chaki, E. M. Clarke, A. Groce, J. Ouaknine,
O. Strichman, and K. Yorav. Efficient verification of
sequential and concurrent C programs. Formal
Methods in System Design, 25(2–3):129–166, 2004.

[15] Y. Chen, D. Rosemblum, and K. Vo. TestTube: A
system for selective regression testing. In proceedings
of the International Conference on Software
Engineering, 1994.

[16] E. Clarke and A. Emerson. Design and synthesis of
synchronization skeletons using branching-time
temporal logic. In Logic of Programs, 1981.

[17] E. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In proceedings of the
International Conference Tools and Algorithms for
Construction and Analysis of Systems.

[18] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
SATABS: SAT-based Predicate Abstraction for
ANSI-C. In proceedings of the International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, LNCS, 2005.

[19] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

[20] J. Cobb, J. Jones., G. Kapfhammer, and M. J.
Harrold. Dynamic invariant detection for relational
databases. In proceedings of the Ninth International
Workshop on Dynamic Analysis, 2011.

[21] C. Csallner, Y. Smaragdakis, and T. Xie.
DSD-crasher: A hybrid analysis tool for bug finding.
ACM Transactions on Software Engineering and
Methodologies, 17(2):8:1–8:37, May 2008.

[22] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. On
test repair using symbolic execution. In proceedings of
the International Conference on Automated Software
Engineering, 2009.

[23] N. Eén and N. Sörensson. An extensible SAT-solver.
In proceedings of the International Conference on
Theory and Applications of Satisfiability Testing,
volume 2919 of LNCS, pages 502–518. Springer, 2004.

[24] S. Elbaum, A. Malishevsky, and G. Rothermel. Test
case prioritization: A family of empirical studies.
IEEE Transactions on Software Engineering,
28(2):159–182, Feb. 2002.

[25] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2):99–123,
2001.

[26] G. Fedyukovich, O. Sery, and N. Sharygina.
eVolCheck: Incremental Upgrade Checker for C. In
proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems, volume 7795 of LNCS, 2013.

[27] C. Flanagan and K. R. M. Leino. Houdini, an
annotation assistant for ESC/Java. In proceedings of
the International Symposium of Formal Methods
Europe, 2001.

[28] M. Gabel and Z. Su. Testing mined specifications. In
proceedings of the International Symposium on the
Foundations of Software Engineering, 2012.

[29] B. Godlin and O. Strichman. Regression verification:
proving the equivalence of similar programs. Software
Testing, Verification & Reliability, 23(3):241–258,
2013.

[30] S. V. Group. The cbmc homepage.
http://www.cprover.org/cbmc/.

[31] R. H. Hardin, R. P. Kurshan, K. L. McMillan, J. A.
Reeds, and N. J. A. Sloane. Efficient regression
verification. In proceedings on the International
Workshop on Event Systems, 1996.

[32] W. Jin, A. Orso, and T. Xie. Automated behavioral
regression testing. In proceedings of the Third
International Conference on Software Testing,
Verification and Validation (ICST), 2010.

[33] S. Joshi, S. Lahiri, and A. Lal. Underspecified
harnesses and interleaved bugs. In proceedings of the
annual Symposium on Principles of Programming
Languages, 2012.

[34] A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M.
Clarke. Automatic abstraction in SMT-based
unbounded software model checking. In proceedings of
the International Conference on Computer Aided
Verification, 2013.

[35] S. K. Lahiri, K. McMillan, R. Sharma, and
C. Hawblitzel. Differential assertion checking. In
Foundations of Software Engineering, 2013.

[36] H. Leung and L. White. Insights into regression
testing. In proceedings of the International Conference
on Software Maintenance, 1989.

[37] Y. S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An
efficient SAT solver. In proceedings of the International
Conference on Theory and Applications of
Satisfiability Testing, Revised Selected Papers, volume
3542 of LNCS, pages 360–375. Springer, 2005.

[38] L. Mariani, S. Papagiannakis, and M. Pezzé.
Compatibility and regression testing of
COTS-component-based software. In proceedings of
the International Conference on Software Engineering,
2007.

[39] L. Mariani, F. Pastore, and M. Pezzé. Dynamic
analysis for diagnosing integration faults. IEEE
Transactions on Software Engineering, 37(4):486–508,
2011.

[40] K. McMillan. Symbolic Model Checking. An Approach
to the State Explosion Problem. PhD thesis, Carnegie
Mellon University, 1992.

[41] K. L. McMillan. Lazy abstraction with interpolants. In
proceedings of the International Conference on
Computer Aided Verification, volume 4144 of LNCS,
pages 123–136. Springer, 2006.

[42] M. Mirzaaghaei, F. Pastore, and M. Pezzé. Supporting
test suite evolution through test case adaptation. In
proceedings of the International Conference on
Software Testing, Verification, and Validation, 2012.

[43] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest.
Using dynamic analysis to discover polynomial and
array invariants. In proceedings of the International
Conference on Software Engineering, 2012.

[44] J. W. Nimmer and M. D. Ernst. Static verification of
dynamically detected program invariants: Integrating
Daikon and ESC/Java. Electronic Notes on
Theoretical Computer Science, 55(2):255–276, 2001.

[45] J. W. Nimmer and M. D. Ernst. Automatic generation
of program specifications. In proceedings of the
International Symposium on Software Testing and
Analysis, 2002.

[46] F. Pastore, L. Mariani, and G. Fraser. Crowdoracles:
Can the crowd solve the oracle problem. In proceedings
of the International Conference on Software Testing,
Verification and Validation (ICST), 2013.

[47] F. Pastore, L. Mariani, and A. Goffi. RADAR: a tool
for debugging regression problems in C/C++ software.
In proceedings of the International Conference on
Software Engineering - Tool Demo Track, 2013.

[48] F. Pastore, L. Mariani, A. Goffi, M. Oriol, and
M. Wahler. Dynamic analysis of upgrades in C/C++
software. In proceedings of the International
Symposium on Software Reliability Engineering, 2012.

[49] S. Person, M. Dwyer, S. Elbaum, and C. Pǎsǎreanu.
Differential symbolic execution. In proceedings of the
International Symposium on Foundations of Software
Engineering, 2008.

[50] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross.
Statically checking api protocol conformance with
mined multi-object specifications. In proceedings of the

International Conference on Software Engineering,
2012.

[51] G. Rothermel and M. Harrold. A safe, efficient
regression test selection technique. ACM Transactions
on Software Engineering and Methodologies,
6(2):173–210, Apr. 1997.

[52] D. Schuler, V. Dallmeier, and A. Zeller. Efficient
mutation testing by checking invariant violations. In
proceedings of the International Symposium on
Software Testing and Analysis, 2009.

[53] O. Sery, G. Fedyukovich, and N. Sharygina. FunFrog:
Bounded model checking with interpolation-based
function summarization. In proceedings of the
International Symposium on Automated Technology
for Verification and Analysis, volume 7561 of LNCS,
pages 203–207. Springer, 2012.

[54] O. Sery, G. Fedyukovich, and N. Sharygina.
Incremental upgrade checking by means of
interpolation-based function summaries. In proceedings
of the International Conference on Formal Methods in
Computer-Aided Design. IEEE, 2012.

[55] Y. Shimomura. The present status and future
prospects of the iter project. Journal of Nuclear
Materials, 329-333(1):5–11, 2004.

[56] J. Silva. A vocabulary of program slicing-based
techniques. ACM Computing Survey, 44(3):12:1–12:41,
2012.

[57] J. P. M. Silva and K. A. Sakallah. Grasp: A search
algorithm for propositional satisfiability. IEEE
Transactions on Computers, 48(5):506–521, 1999.

[58] A. L. Souter and L. Pollock. The construction of
contextual def-use associations for object-oriented
systems. IEEE Transactions on Software Engineering,
29(11):1005–1018, Nov. 2003.

[59] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and
R. S. Roos. Timeaware test suite pioritization. In
proceedings of the International Symposium on
Software Testing and Analysis, 2006.

[60] A. Wasylkowski and A. Zeller. Mining temporal
specifications from object usage. In proceedings of the
International Conference on Automated Software
Engineering, 2009.

[61] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting
object usage anomalies. In proceedings of the joint
meeting of the European Software Engineering
Conference and the International Symposium on
Foundations of Software Engineering, 2007.

[62] T. Xie and D. Notkin. Tool-assisted unit test
generation and selection based on operational
abstractions. Automated Software Engineering
Journal, 13(3):345–371, July 2006.

[63] G. Yang, S. Khurshid, S. Person, and N. Rungta.
Property differencing for incremental checking. In
proceedings of the International Conference on
Software Engineering, 2014.

[64] J. Yi, D. Qi, S. Tan, and A. Roychoudhury.
Expressing and checking intended changes via software
change contracts. In proceedings of the International
Symposium on Software Testing and Analysis, 2013.

[65] H. Zhu, P. Hall, and J. May. Software unit test
coverage and adequacy. ACM Computing Surveys,
29(4):366–427, Dec. 1997.

