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Abstract

Often we are confronted with heterogeneous multivariate data, i.e., data
coming from several categories, and the interest may center on the differ-
ential structure of stochastic dependence among the variables between the
groups. We concentrate on the comparison between two Directed Acyclic
Graph (DAG) models. For instance, one DAG relates to healthy people, and
the other to patients affected by a disease. The objective is to find differences,
if any, between the two DAGs, both in terms of conditional independencies
and in terms of the strengths of common dependencies. This is achieved
through a Bayesian model selection strategy. We assume that the two graph
models are jointly distributed according to a multivariate Gaussian family.
The advantage of a joint modelling approach is to exploit, whenever they
exist, similarities between the graphs. We approach model selection using
an objective Bayes framework, so that minimal prior elicitation is needed.
We elaborated a modelling framework incorporating a sparsity assumption,
which is likely to be satisfied when the number of variables is high or very
high. To this end, we make use of non-local priors on the regression coeffi-
cients to further enhance simple models having a good fit. We develop an
efficient search strategy over the space of pairs of DAGs, and test our pro-
cedure by means of simulations. Results are presented in terms of operating
characteristic curves and related indexes.



Chapter 1

Conditional Independence

Independence of random variables is a very strong statement on the relation-
ship it exists between variables. In the case of two random variables X and
Y , independence is defined as1

pX,Y (x, y) = pX(x)pY (y) for every x, y

and is denoted by X ⊥⊥ Y . This yields, conditioning on events with positive
probability, to

• pX|Y (x|y) = p(x)

• pY |X(y|x) = p(y)

which makes clear that independence means that Y doesn’t contain any
useful information about X and vice versa.

When it comes to complex models, independence may not be sufficient to
understand the relationships governing the variables, and a “looser” concept
of independence, i.e. conditional independence, gives us a lot of information
about them. Two random variables X and Y are conditionally independent
given the random variable Z if, for all z such that pZ(z) > 0

pX,Y |Z(x, y | z) = pX|Z(x | z)pY |Z(y | z) for every x, y

and we write X ⊥⊥ Y |Z. Easily it can be shown that the following properties
are equivalent (we omit subscripts to improve readability)

1Here like in all this work we let p(·) be the Radon-Nikodym derivative of the probability
distribution P with respect to a dominating σ-finite measure (e.g. pX(·) is the density
(pdf) or the probability mass function (pmf) of the random variable X).
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• p(x, y, z) = p(x, z)p(y, z)/p(z);

• p(x, y, z) = p(x | z)p(y | z)p(z);

• p(x | y, z) = p(x | z).

From the last equation we can interpret conditional independence in the same
way we did for marginal independence, namely we can say Y doesn’t contain
any useful information about X provided that Z is given.

An useful result to easily find conditional independence relationships from
probability mass functions or probability density functions is given by the
following theorem.

Theorem 1 (factorization criterion) Let V be a set of random variables
and S, U, T a partition of V then:

U ⊥⊥ T |S ⇔ p(v) = h(u, s)k(t, s)
2

Conditional independence is a very helpful tool, since it helps the re-
searcher to understand complex problems trough simple statements. The
problem is that in complex probability systems there can be a huge number of
conditional independence statements, making the interpretation of the prob-
lem extremely laborious. As always, when properly designed, a graphical
representation is a very powerful tool for making problems understandable.

A natural way to represent relationships between variables is through
simple graphs

Definition 1 (simple graph) A simple2 graph is an ordered pair G =
(V,E) of sets, with V = {1, 2, 3, . . . , q} a finite set of nodes or vertices and
E ⊆ V × V the set of the edges, such that it does not allows for self-loops,
(i, i) /∈ E ∀i ∈ V , and multiple edges. 2

We see from this definition that elements of E are couples of elements of V ,
and thus we may think nodes as random variables and represent dependence
between variables through the edges. But in reality we are interested in
the lack of dependence, or better conditional independence. The easiest
statement we can think about is X ⊥⊥ Y |Z, where X, Y, Z are random
variables. A natural way to represent this ternary relationship graphically
might be

2Note that in this work we will always talk about graphs that are simple, and every
time we will talk about a graph we will mean a simple graph.
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X

Z

Y

we can see the lack of dependence being represented by the lack of an edge
between X and Y , but that they are still connected through Z, so that we
can distinguish conditional independence from marginal independence, where
nodes would not be connected at all. Graphically this can be viewed as a
ternary relationship and we can say that Z separates X from Y . This is just
a very simple example and systems can become much more complex than
that, therefore we need a solid theory that helps us to connect this algebraic
objects with probabilistic models. Before we continue we may introduce some
basic concepts of graph theory.
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Chapter 2

Graphical Models

To simplify our notation we will indicate nodes with integers and small
Latin letters in general and set of nodes with capital Latin letters, e.g.
V = {1, 2, 3, ..., v, ..., q}. Finally random variables associated to a node v
as Xv and random vectors associated with a set A as XA.

2.1 Undirected Graphs

Definition 2 (undirected graph (UG)) A graph G = (V,E) is called
undirected when edges are seen as unordered pairs

(i, j) ∈ E ⇔ (j, i) ∈ E
2

Definition 3 (adjacent) If (vi, vj) ∈ E then vi and vj are said to be adja-
cent. 2

Definition 4 (adjacency matrix) A matrix A of size |V |×|V | with entries
aij = 1 when vi is adjacent to vj and 0 otherwise is called adjacency matrix.2

Definition 5 (path) We define a path from node a to node b of length n
a sequence a = v0, . . . , vn = b of vertices where subsequent elements in the
sequence are adjacent:

(vj−1, vj) ∈ E, j = 1, . . . , n
2

Definition 6 (cycle) Let (v1, . . . , vn) be a path, if v1 = vn then the path
(v1, . . . , vn) is called cycle. 2
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Definition 7 (boundary) We define boundary of S, bd(S), the set of the
vertices not in S adjacent with at least one vertex in S:

bd(S) = {a ∈ V \ S : (∃b ∈ S : (a, b) ∈ E)}
2

Definition 8 (vertex induced subgraph) Consider an undirected graph
G = (V,E), let S ⊂ V and ES = E ∩ (S × S) then the couple GS = (S,ES)
is called subgraph induced by S ⊂ V . 2

From this definition we note that ES contains only edges in E that connect
couples of vertices of S.

Definition 9 (complete graphs and complete subsets) S ⊆ V is said
to be a complete subset if and only if GS = (S,ES), the graph induced by S,
is complete, namely if every pair of distinct vertices in S are adjacent, i.e.

ES = S × S
2

Definition 10 (cliques) A clique is a maximal complete set, i.e. a set that
is complete and is not subset of any other complete set. 2

The family of the cliques is sometimes called also the graph generator, since
an undirected graph is uniquely itentified by the set C of its cliques.

We present two simple examples to visualize some of the concepts viewed
until now

Example 1

v1

v3

v6

v2

v4

v5
2
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• (v1, v3, v4, v5) is a path, (v1, v3, v4, v2, v1) is a cycle;

• Let A = {v1, v2}, then bd(A) = {v3, v4}

Example 2

v1 v2

v3 v4

• the graph induced by {v2, v3} is not complete;

• the graph induced by {v1, v2} is complete but {v1, v2} is not a clique;

• the graph induced by {v1, v2, v4} is complete and {v1, v2, v4} is a clique;

2

Now that we have some terminology we can formalize the concept of
separation.

Definition 11 (separation in an undirected graph) A subset S ⊆ V is
said to separate a, b ∈ V in G if every path form a to b intersects S. Let A,B
and S be three subsets of V . S separates A and B in G if S separates every
vertex in A from every vertex in B. We write A ⊥G B |S. 2

The connection between separation and conditional independence has
been formalized from Pearl and Paz (1987) through the concept of graphoid.

Definition 12 (semi-graphoid and graphoid) A ternary realationship⊥σ
is a semi-graphoid if and only if for any disjoint subsets A,B,C and D of V
it holds that:

(S1) A ⊥σ B |C ⇒ B ⊥σ A |C (simmetry)

(S2) A ⊥σ B |C and D ⊂ B ⇒ A ⊥σ D |C (decomposition)

(S3) A ⊥σ B |C and D ⊂ B ⇒ A ⊥σ B |C ∪D (weak-union)
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(S4) A ⊥σ B |C and A ⊥σ D |B ∪ C ⇒ A ⊥σ B ∪D |C (contraction)

If it is also true that:

(S5) A ⊥σ B |C ∪D and A ⊥σ C |B ∪D ⇒ A ⊥σ B ∪ C |D (intersection)

then the ternary relationship is called graphoid. 2

It is not difficult to see that the ternary relationship ⊥G of separation is a
graphoid. Exploiting rules of conditional independence we can also show that
the ternary relationship ⊥⊥ of conditional indipendence is a semi-graphoid
and that a sufficient (but not necessary) condition for ⊥⊥ to be a graphoid is
that the joint distribution is strictly positive.

Proof To prove that ⊥⊥ is a semi-graphoid we have to prove that condition
(S1) to (S4) are satisfied by ⊥⊥. With abuse of notation, we are indicating
with A the random vector XA:

(C1) A ⊥⊥ B |C ⇒ B ⊥⊥ A |C

Proof by definition

(C2) A ⊥⊥ B |C and D ⊂ B ⇒ A ⊥σ D |C

Proof

p(XA, XB, XC) = p(XA, XD, XB\D, XC)
(FC)
= h(XA, XC)k(XB, XC)

= h(XA, XC)k(XD, XB\D, XC)

integrating XB\D we get:

p(XA, XD, XC) = h(XA, XC)k∗(XD, XC) �

(C3) A ⊥⊥ B |C and D ⊂ B ⇒ A ⊥⊥ B |C ∪D

Proof

p(A|B,C) = p(A|C) ∧ p(A|D,C) = p(A|C)
⇔ p(A|B,C) = p(A|D,C)
⇔ p(A|(B \D), D,C) = p(A|D,C)
⇔ A ⊥⊥ (B \D) |D ∪ C
⇔ p(A,B,C,D) =h(A,D,C)k(B\D,D,C) =h(A,D,C)k(B,D,C)
⇔ A ⊥⊥ B |D ∪ C
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(C4)
A ⊥⊥ B |C (2.1)

and
A ⊥⊥ D |B ∪ C (2.2)

implies
A ⊥⊥ B ∪D |C

Proof
p(A,D,B,C)
(2.2)
= p(A,B,C)p(D,B,C)/p(B,C)

(2.1)
= h(A,C)k(B,C)p(D,B,C)/p(B,C)
= h(A,C)k∗(B,C,D)
⇔ A ⊥⊥ B ∪D |C

The first part is now proved. We still need to verify (S5).

(C5) A ⊥⊥ C |B ∪D ∧ A ⊥⊥ B |C ∪D ⇒ A ⊥⊥ B ∪ C |D

Proof IfA ⊥⊥ B |C∪D holds, then p(A,B,C,D) = h1(A,C,D)k1(B,C,D)
and ifA ⊥⊥ C |B∪D holds, then p(A,B,C,D) = h2(A,B,D)k2(C,B,D).
And this implies that:

h1(A,C,D)k1(B,C,D) = h2(A,B,D)k2(C,B,D) (2.3)

But this is equal, assuming k1(B,C,D) > 0, to:

h1(A,C,D) = k2(A,B,D)h2(C,B,D)/k1(B,C,D) = h∗(A,D)w(C,D)

since h1(A,C,D) must not depend on B, and this implies, substituing
in (2.3), that:

p(A,B,C,D) = h∗(A,D)w(C,D)k1(B,C,D) = h∗(A,D)k∗(B,C,D)

with
k∗(B,C,D) = w(C,D)k1(B,C,D) �

The results now follows from the factorization criterion. �
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2.1.1 Undirected Markov Properties

Given the concept of separation we can define three different ways of connect-
ing conditional independencies with a graph G = (V,E). We say a probability
distribution on XV satisfies

(P) the pairwise Markov property with respect to G if:

(i, j) /∈ E ⇒ Xi ⊥⊥ Xj |XV \{i,j}

(L) the local Markov property with respect to G if for every i ∈ V :

Xi ⊥⊥ XV \(bd(i)∪{i}) |Xbd(i)

(G) the global Markov property with respect to G if:

A ⊥G B |S ⇒ XA ⊥⊥ XB |XS

It’s easy to see that (G) ⇒ (L), to see that (L) ⇒ (P) we have to note
that since i and j are not adjacent j ∈ V \ (bd(i) ∪ {i}) and therefore
bd(i) ∪ ((V \ (bd(i) ∪ {i})) \ j) = V \ {i, j}. So applying (C3) to (L) gives
Xi ⊥⊥ XV \(bd(i)∪{i}) |XV \{i,j}, and applying (C2) we get (P). Note that since
we used just (C2) and (C3) to prove these implications they hold for any
semi-graphoid relationship.

Theorem 1 (Pearl and Paz) If the probability distribution of XV satisfies
(C5) then it also holds that (P) ⇒ (G) 2

To prove this theorem it is possible to use just the graphoid axioms (C1) to
(C5) and therefore also here conditional independence could be replaced by
any graphoid defined on V .

2.1.2 Factorization

Beside for visual representation graphs are also really useful for computation,
since they are objects computers easily understand and through their prop-
erties and relationship with probability distributions we can achieve local
computation easily. In this context factorization and his relationships with
Markov properties become essential.

9



Definition 13 (factorization w.r.t. a graph) LetG = (V,E) be an undi-
rected graph and let p(xV ) be the probability density function (or probability
mass function) of XV . If p(xV ) admits a factorization of the form

p(xV ) =
∏

T⊆V :T complete

gi(xT ) (F)

for some function g1(·) . . . gk(·) where gj(xT ) depends on xV only through xT ,
then we say that the distribution of XV factorizes with respect to G.

It’s really important to note that the functions gj(xT ) are not uniquely
determined and can be multiplied or splitted up in different ways, so without
loss of generality we can rewrite (F) with respect to the cliques of G:

p(xV ) =
∏
T⊆C

gi(xT )

where C is the set of cliques of G. 2

Given the definition of factorization w.r.t. a graph we immediately note
that the factorization criterion in conjunction with (C2) gives us the con-
nection between factorization and Markov properties, i.e. (F ) ⇒ (G), so
that:

(F )⇒ (G)⇒ (L)⇒ (P )

If (P ) would imply (F ) we could show that all the Markov properties are
equivalent, and that the factorization (w.r.t. a graph) would be a necessary
and sufficient condition for a distribution to be Markov w.r.t. a graph. This
has been shown to be true by Hammersley and Clifford (1971) in the
case the pdf (or pmf) of XV is strictly positive.

Theorem 2 (Hammersley Clifford theorem) If the pdf (or pmf) of XV

is strictly positive then the pairwise Markov property implies the factorization
property. 2

Thanks to the Hammersley Clifford theorem we know that a strictly positive
probability distribution factorizes with respect to a graph G if and only if
it is Markovian w.r.t. G (in any sense). But even if we knew that a dis-
tribution is Markov with respect to G and strictly positive we don’t have a
tool to determine which are the local components gi(xT ) in (F), in that sense
decomposable graphs have an important role.
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2.1.3 Decomposable graphs

Definition 14 (decomposition) The pair (A,B) of subsets of V , with V =
A ∪B forms a (weak) decomposition of G if it holds that

• A ∩B separates A from B in G

• A ∩B is a complete subset of V . 2

Definition 15 (proper decomposition) We say a decomposition is proper
if A \B and B \ A are both non-empty. 2

Definition 16 (components and prime components) A decomposition
(A,B) decomposes G into the components GA and GB. Since a component
takes the form of a subgraph clearly it may or may not admit further de-
compositions. If a component does not admit further decompositions it is
called prime and the components we get by recursively decomposing G until
no more components can be further decomposed are called maximal prime
components of G. 2

Definition 17 (recursive definition of decomposable graph) An undi-
rected graph G is said to be decomposable if one of the following statements
holds:

1. G is complete

2. G admits a proper decomposition (A,B) into decomposable compo-
nents GA,GB 2

Looking at the recursive definition into more detail we see that a graph is
decomposable if and only if all its maximal prime components are complete
and since we continue decomposing until we find a complete component this
has to be induced by a clique of G.

Proposition 1 Assume that (A,B) decomposes G = (V,E), then a probabil-
ity distribution PV is globally Markov with respect to G if and only if both
its marginal distributions PA and PB are globally Markov with respect to GA
and GB respectively and the the densities satisfy

pV (xV )p(xA∩B) = pA(xA)pB(xB)
2

11



Let G be a decomposable graph with k cliques, C1, . . . , Ck, and k − 1 sepa-
rators, S1, . . . , Sk−1, resulting from the recursive decomposition process, ap-
plying Proposition 1 recursively we obtain the following factorization

pV (xV ) =

∏k
i=1 pCi(xCi)∏k−1
i=1 pSi(xSi)

Definition 18 (Chordal/Triangulated graphs) Another characterization
of a decomposable graph is given through the concept of chordality, i.e. an
undirected graph is decomposable if and only if it is chordal, where a graph is
chordal if every cycle of length ≥ 4 has a chord, that is, two non-consecutive
vertices that are adjacent. 2

Strictly connected with chordality is the concept of perfect numbering of the
vertices of an undericted graph

Definition 19 (Perfect numbering) A numbering V = {1, 2, . . . , q} is
perfect if for every i = 2, . . . , q it holds that:

bd(i) ∩ {1, . . . , i− 1} is complete in G
2

Both these definitions become important since it can be proved that an
undirected graph is decomposable if and only if its vertices admit a per-
fect numbering, and algorithms, like the maximum cardinality search, can
be developed efficiently to perform this check.

2.1.4 Gaussian graphical models

Given a graph G = (V,E), when we talk about a graphical model M(G)
we’re essentially talking about the family of distributions on XV that satisfy
the conditional independence statements encoded in G. Then, a Gaussian
(undirected) graphical model, is a subset of M(G), which contains just multi-
variate normal distributions. Furthermore we don’t even have to care about
specifying which undirected Markov properties they have to satisfy, since in
this context they’re all equivalent, because pV (x) > 0 ∀x.

A nice feature of Gaussian graphical models is that we can exploit the
precision matrix of the Gaussian distribution to read conditional indepen-
dence relationships easily. Without loss of generality, suppose to have a zero

12



mean multivariate Gaussian distribution with density

(2.4)

pV (x) ∝ exp

{
−1

2
x>Σ−1x

}
= exp

{
−1

2
tr
(
x>Σ−1x

)}
= exp

{
−1

2

q∑
i=1

q∑
j=1

σijxixj

}

where σij are the entries of the concentration matrix Σ−1. We see that setting
σij to zero xi and xj will never compare in the same factor again, and thus
from the factorization criterion

σij = 0 ⇔ Xi ⊥⊥ Xj |XV \{i,j}

Therefore a multivariate normal distribution will be pairwise Markov, and
thus Markov, with respect to a graph which has a missing edge between i
and j for each σij = 0, this graph is often called the concentration graph.

2.2 Directed acyclic graphical models

In the previous chapter we put a lot of attention on the concept of factor-
ization w.r.t. an undirected graph G. But if we ask about factorization
in probability, probably the most of us would immediately think about the
chain rule of probability

p(x1, . . . , xn) = p(x1)p(x2 | x1) · · · p(xn | x1, . . . , xn−1)

From this relationship we see that if we knew which conditional independence
statements were true, we could highly simply the model, and already work
on an efficient framework for computation.

To express our chain rule we impose an ordering to the variables and
implicitly we are not allowing to condition on variables with higher index.
That reflects in our graph theory, respectively, in adding arrows to the edges,
in order to direct the relationships, and not allowing directed cycles, to be
coherent with the allowed conditioning sets. Under this framework we call
the graph representation a directed acyclic graph. Among other things DAGs
are useful to represent structural equation models (SEMs), which are nothing
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else than sets of multivariate regression models where the dependent variable
in one regression may appear as independent variable in another equation.
This brief note will become very important when considering Gaussian dis-
tributions, since we remember that conditioning in a Gaussian framework is
essentially a regression.

We may note that adding arrows and disallowing directed cycles is not
enough since we want our graph to be coherent with the other conditional in-
dependence statements implied by the model, and applying the rules derived
for undirected graphs in this framework would not satisfy our needs.

2.2.1 Basic concepts

Before we can go into more detail we may introduce some new definition
relative to directed graphs.

Definition 20 (directed graph) A directed graph is a graph D = (V,E)
where edges are seen as ordered pairs. In general an edge (a, b) ∈ E will be
represented by an arrow a→ b. 2

Definition 21 (directed path, directed cycle) a directed path from v0

to vk is path where all subsequent nodes are directed in a way such that

vi−1 → vi ∀i = 1, . . . , k

A directed path which begins and ends with the same vertex is a directed
cycle. 2

Definition 22 (directed acyclic graph) A directed acyclic graph (DAG)
is a directed graph D = (V,E) with no directed cycles. 2

Definition 23 (trail) a trail from v0 to vk is a path where edges may be
directed in any sense. 2

Definition 24 (parents, children) If there is an arrow that connects node
a with b (a → b) we say a is a parent of b and b is a child of a. The set
of parents of node b is indicated as pa(b) and the set of the children of a as
ch(a). 2

Definition 25 (ancestors, descendants, non-descendants) If from a
there is a direct path that leads to b (a→ b) we say that a is an ancestor of b,
and b is a descendant of a. The set of the ancestors of b is indicated as an(b)
and the set of descendants of a as de(a). The set of the non-descendants of
a is nd(a) = V \ (de(a) ∪ {a}) 2
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Definition 26 (ancestral set) If an(a) ⊆ A for all a ∈ A we say that A is
an ancestral set, and the smallest ancestral set containing A is indicated as
An(A). 2

2.2.2 Recursive Factorization and the directed Markov
properties

We say a random vector XV admits a recursive factorization (DF) with
respect to a DAG D = (V,E) if the pdf (pmf) of XV can be represented as

pV (xv) =
∏
v∈V

p(xv | xpa(v))

There is an important connection between DAGs and UGs, namely, given
a DAGD, if we join all unmarried, i.e. not connected, parents with a common
child and make all the edges of the graph undirected, we get an undirected
graph Dm called the the moral version of D. Since the sets {a} ∪ pa(a)
are complete in Dm, it is not difficult to see that if a distribution admits
a recursive factorization w.r.t. D then it has the property to factorize (in
the undirected sense) with respect to Dm and it is therefore globally Markov
with respect to Dm. Even though we note that if a probability distribution
P factorizes according to to Dm, P does not necessary recursively factorizes
according to D. We also note that if A is an ancestral set then the marginal
distribution of A admits a recursive factorization with respect to DA, thus
we can restrict our attention on this subgraph only, and applying the same
reasoning again we can conclude that if a distribution P recursively factorizes
with respect to a DAG D then

XA ⊥⊥ XB |XS

whenever A and B are separated by S in the moral graph of the smallest
ancestral set containing A∪B∪S, and this is called the directed global Markov
property.

Definition 27 (well-ordering) We say that the vertices v1, . . . , vq of DAG
D are well ordered when the arrows always point from vertices with lower
index to vertices with higher index. Note that that a well-ordering is not
unique. 2

Definition 28 (predecessors) Given a well-ordering the predecessors of a
node v, pr(v), are all nodes that come before v in the well-ordering. 2
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Another Markov property in the DAG framework is the ordered Markov
Property (O): we say that a probability distribution on XV satisfies the or-
dered Markov property with respect to a DAG D if ∀v ∈ V

Xv ⊥⊥ Xpr(v)\pa(v) |Xpa(v)

As we have in the undirected graph framework also for directed acyclic graphs
we have a local Markov property, namely a probability distribution on XV is
said to satisfy the local Markov property (DL) w.r.t. a DAG D if ∀v ∈ V it
holds that

Xv ⊥⊥ Xnd(v)\pa(v) |Xpa(v)

And finally also a directed pairwise Markov property exists namely a prob-
ability distribution on XV satisfies the directed pairwise Markov property
(DP) w.r.t. a DAG D = (V,E) if for any i < j

(i, j) /∈ E ⇒ Xi ⊥⊥ Xj |Xan(i)∪an(j)\{i,j}

An important result is that here (O),(DL) and (DG) are equivalent, even
without assuming positive pdf (pmf), while (DG)⇒ (DP ), and are equiva-
lent just in case of positive probability distribution.

2.2.3 d-separation

Another way to express the directed global Markov property is through d-
separation: a trail π from a to c in D is said to be blocked by S ∈ V if it
contains a vertex b such that either

• b ∈ S and at b the arrows of π do not meet head to head, or

• b /∈ S ∧ de(b) ∩ S = ∅, and at b the arrows of π do meet head to head

A trail that is not blocked is said to be active. Two subsets A and B are
said to be d-separated by S if all trails from A to B are blocked by S.

It can be proved that S d-separates A from B if and only if S separates A
from B in the moral Graph induced by the smallest ancestral set containing
A ∪ B ∪ S and therefore that the directed global Markov property can be
equivalently expressed in terms of d-separation.
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2.2.4 Directed Gaussian Graphical Models

Directed Gaussian Graphical Models were first formalized by Shachter and
Kenley (1989), noting that the influence diagram graphical structure, this
is how they used to call a DAG, represents a particular representation of the
joint distribution into conditional distributions. In fact a q-variate normal
distribution XV = Nq(µ,Σ), given an ordering of the nodes, always admits
a factorization of the type:

(2.5)pV (xV ) =

q∏
j=1

pj|pa(j)(xj | xpa(j))

where Xi | pa(Xi) are univariate normal distributions with mean

µj + Σj,pa(j)Σ
−1
pa(j),pa(j)(Xpa(j) − µpa(j))

and variance
σjj − Σj,pa(j)Σ

−1
pa(j),pa(j)Σpa(j),j

We note that in this formulation some conditional independence state-
ments determine the conditioning sets for each variable. Furthermore an
interesting fact is that the conditional models are independent and there-
fore we can think our model as a set of separate multivariate regressions.
This highly simplifies our problem and puts us in an efficient conditional
independence framework for computation.

Let D be the DAG that connects the children to the parents according
to (2.5), then clearly XV factorizes w.r.t. to D = (V,E) and it is therefore
Markov with respect to D. Anyway it is still interesting to note that how
this factorization follows the ordered Markov property (O). Let indicate with
ΣA,B the submatrix of Σ relative to the vectors XA and XB. Then the vector

bj = Σj,pa(j)Σ
−1
pa(j),pa(j)

is the vector of the regression coefficients for the jth regression. If we think
each variable regressed against all its predecessors in a well-ordering, then we
can think the vector bj as a vector which states a conditional independence
between i and j (given the parents of j) when the ith entry of bj is zero,
which follows by decomposition (C2) from (O). Therefore if we summarize
all our regression coefficients in a matrix B, where per column we put our
bj relative to all the predecessors, and fill the rest of the vector with zeros,
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we get an upper triangular matrix B which will have the same zero-entries
as the adjacency matrix induced by D.

Since B is upper triangular I − B can be inverted, so let U = (I − B)−1

then the covariance matrix can be found as

Σ = U>DU (2.6)

with D a diagonal matrix with entries the conditional variances.

2.3 Markov equivalence

We say that two graphs are Markov equivalent if they encode the same set
of conditional independecies. In the directed case we can have graphs with
different structure which are Markov equivalent:

Example 3 Given 3 vertices this two graph are Markov equivalent

a

b

c a

b

c

The first graph admits a recursive factorization of the form:

p(a, b, c) = p(a)p(b|a)p(c|b) = p(a, b)p(c|b)

and the second

p(a, b, c) = p(b)p(a|b)p(c|b) = p(a, b)p(c|b)

Therefore both include only the conditional independence statement c ⊥⊥ a | b
which can be red also from the moral graph

a

b

c
2
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If we think about the directed global Markov property then we notice
that if two DAGs have the same immoralities, i.e. unmarried parents with a
common child, and and the same undirected version then their moral graph is
exactly the same, and thus they will encode the same set of conditional inde-
pendencies, in effect it can be proved that two DAGs are Markov equivalent
if and only if they have the same undirected version, often called skeleton,
and the same immoralities.

In contrast, in the undirected case two graphs are Markov equivalent if
and only if they are identical, but there still exists undirected graphs which
are Markov equivalent to direct graphs. Infact a DAG D and an UG G are
Markov equivalent if and only if the DAG is perfect, i.e. has no immoralities,
and the skeleton of the DAG is equal to G. Moreover we can see that the
skeleton of a perfect DAG is decomposable and that from every decomposable
UG directing the edges from lower to higher positions in a perfect numbering
we get a perfect DAG, therefore the family of perfect DAG models coincides
with the family of decomposable undirected models.
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Chapter 3

Bayes Factor

Bayes factors can be seen as the Bayesian analog of the classical tests of
hypotheses. In fact Bayes factors summarizes the evidence provided by the
data in favor of a statistical model opposed to another. While their formal
definition refers to just two models, thanks to their properties they are often
used for model selection problems. In this chapter we will review the basic
properties of Bayes factors with particular attention to the case of objective
Bayesian analysis.

3.1 Bayes factor and posterior model proba-

bilities

Definition 29 (Posterior probability of a Model M) LetM be a model
and D be a set of data then the posterior probability of the model M given
the data D is as follow:

P(M |D) =
P(D|M)P(M)

P(D)

2

Definition 30 (Marginal Likelihood) The integral of the likelihood over
all possible values of θ:

m(D) = P(D|M) =

∫
P(D|θ,M)P(θ|M) d θ

is defined as the marginal likelihood. 2
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Let M1 and M2 be two different generating models for the same set of
data D. If we want to evaluate which model is more probable a posteriori
we might consider the ratio:

P(M1|D)

P(M2|D)
=

P(M1)P(D|M1)

P(M2)P(D|M2)
=

P(M1)m1(D)

P(M2)m2(D)

If two models are equally probable a priori (which is a common assump-
tion) the ratio simplifies to the Bayes Factor

Definition 31 (Bayes Factor (BF)) We define Bayes Factor the quan-
tity:

Bij =
P(D|M1)

P(D|M2)
=
m1(D)

m2(D)
=

∫
P(D|θ1,M1)P(θ1|M1) d θ1∫
P(D|θ2,M2)P(θ2|M2) d θ2

which is a ratio of marginal likelihoods 2

Let Hi denote a hypothesis and E evidence. To compare hypotheses
post-experimentally, we often calculate the posterior odds:

Pr(Hi | E)

Pr(Hj | E)
=

Pr(E | Hi)Pr(Hi)/Pr(E)

Pr(E | Hj)Pr(Hj)/Pr(E)

=
Pr(E | Hi)Pr(Hi)

Pr(E | Hj)Pr(Hj)

=
Pr(E | Hi)

Pr(E | Hj)
× Pr(Hi)

Pr(Hj)
= Bayes factor× prior odds

Note that the Bayes factor is the same as

P(Hi | E)

P(Hj | E)
/
P(Hi)

P(Hj)

and that it does not depend on the priors on the hypothesis onHi’s. Note that
in the Bayes factor definition given above hypothesis were prior probabilities
on the models.

An useful result that joins the Bayes factor with the model posterior prob-
abilities is the following: suppose that we are comparing q models (M1, . . . ,Mq)
if the prior probabilities P(Mj) are available for each model, then one can
compute the model posterior probabilities from the Bayes factors

P (Mi|D) =
P (D|Mi)P (Mi)∑q
j=1 P (D|Mj)P (Mj)

=

[∑ P(Mj)

P(Mi)
Bji

]−1

(3.1)
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Definition 32 (Renormalized marginal probabilities) We define renor-
malized marginal probabilities as:

m̄i =
mi∑q
j=1mj

=

(∑
j

Bji

)−1

(3.2)

2

We note from (3.1) that if P(Mi) = 1/q for all i = 1, . . . , q then the posterior
probabilities are the same as the renormalized marginal probabilities. Fur-
ther note that there is a one to one relationship between Bayes factors and
renormalized marginal probabilities since beside (3.2) it also holds that

m̄j

m̄i

=

mj(D)∑q
j=1 mj(D)

mi(D)∑q
j=1 mj(D)

=
mj(D)

mi(D)
= Bji

In effect reporting the renormalized marginal probabilities (or equivalently
Bayes factors) beside/rather then the posterior probabilities is good practice
since anyone, through (3.1), can use the renormalized marginal probabilities
to determine their personal posterior probabilities choosing their favorite
prior probabilities.

Proposition 2 (Bayes factor composition)

Bij = BikBkj (3.3)

Proof

BikBkj =
mi

mk

mk

mj

=
mi

mj

= Bij
�

Definition 33 (Bayes factor chain rule) Applying the previous proposi-
tion iteratively we can see that given i+ 1 models index by s = 0, . . . , i

Bi0 =
i∏

s=1

Bs,s−1

and this is called the Bayes factor chain rule 2
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3.1.1 Encompassing

In some situations it may occur that the prior elicitation requires the BF
to be calculated between nested models, in those cases we can exploit the
encompassing approach (Cox, 1961) to get any other Bayes factor. Suppose
we have a model M0 that includes all other models, i.e. the encompassing
model, we can then compute the Bayes factors for the encompassing model
against any other and thanks to the Bayes factor composition (3.3) we can
obtain Bayes factors also for non-nested models, e.g. let model Mi and model
Mj be two non nested models then

Bij = B0j/B0i

The encompassing approach can also be used to get any desired model pos-
terior probability, let M0 be the reference model, we can reformulate (3.1)
as

(3.4)

P (Mi | D) =
mi(x)P(Mi)∑q
j=1 mj(x)P(Mj)

=

mi(x)
m0(x)

P(Mi)∑q
j=1

mj(x)

m0(x)
P(Mj)

=
Bi0P(Mi)∑q
j=1 Bj0P(Mj)

Clearly this approach can be also pursued when the reference model is a
model that is included in every other model, in this case we call the approach
encompassing from below.

3.2 Objective Bayes in model selection

The motivation for using objective Bayesian methods for variable selection is
that, in a subjective framework, the specification of all prior distributions for
all models is a huge work, and the usually limited expert time available one
would typically use it for model formulation and, possibly, prior elicitation
for the model that is ultimately selected. That said, following the objective
Bayes approach involves also some problems. For a complete review of such
problems refer to Berger et al. (2001), the major ones are

1. we have seen that to compute the BFs we need to integrate out the
parameters and the computation of the integrals can be hard, moreover
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doing it for all models (too many) may be not feasible in a reasonable
time span.

2. improper priors yields indeterminate BFs (when the parameter space
has different dimension)

3. vague priors give bad answers, i.e. the Bayes factor will always strongly
depend on the vague prior even when n is large.

4. in different models the same parameters may have different interpreta-
tion and the prior has to change in a corresponding fashion.

To address at least some of these issues we can use methodologies derived
from the partial Bayes factor presented in the next section.

3.2.1 Partial Bayes factor

To introduce the partial Bayes factor we need the concept of proper minimal
training sample. Let M1, . . . ,Mq be q models and x data. Under model
Mi let the data be related to parameters θi by a distribution f(x|θi) and
let pNi (θi), for i = 1, . . . , q, be noninformative priors for θi and mN

i (x) the
corresponding marginal likelihoods. Finally Let x be partitioned in to sets
x = (x(l), x(−l)) with x(l) a training sample.

Definition 34 (proper minimal training sample) A training sample x(l),
is called proper if 0 < mN

i (x(l)) <∞ for all Mi, and minimal if it is proper
and no subset is proper. 2

Definition 35 (partial Bayes factor) Given a proper minimal training
sample x(l) we can define a proper (conditional) prior

pNi (θi|x(l)) =
fi(x(l)|θi)pNi (θi)

mN
i (x(l))

(3.5)

2

Then the partial Bayes factor is the Bayes factor on the remaining dataset,
x(−l), conditioned on having observed x(l)

Bji(l) =
mN
j (x(−l)|x(l))

mN
i (x(−l)|x(l))
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Focusing on the numerator the partial marginal likelihood results:

(3.6)

mN
j (x(−l) | x(l)) =

∫
fj(x(−l) | x(l), θj)p

N
j (θj | x(l)) d θj

=

∫
f(x(−l)), x(l) | θj)

fj(x(l) | θj)
fj(x(l) | θj)pNj (θj)

mN
j (x(l))

d θj

=

∫
f(x | θj)pNj (θj)

mN
j (x(l))

d θj

=
mN
j (x)

mN
j (x(l))

and therefore partial Bayes factor can be also expressed as

Bji(l) =
mN
j (x)

mN
j (x(l))

mN
i (x(l))

mN
i (x)

= BN
ji (x)BN

ij (x(l)) (3.7)

Note that if the noninformative prior has an improper form then the inde-
terminate constant cancels out.

3.2.2 Intrinsic Bayes factor

We have just seen that the partial Bayes factor for comparing model Mj with
Mi no longer depends on the scales of the noninformative priors pNj and pNi ,
but it still depends on the arbitrary choice of the minimal training sample
x(l). To eliminate this dependence and to increase stability, Berger and
Pericchi (1996) proposed the Intrinsic Bayes factor.

Definition 36 (Intrinsic Bayes factor (IBF)) Let Bji(l) be the partial
Bayes factor in favor of Model Mj versus model Mi relative to a training
sample x(l). If we “average” the Bji(l) over all possible training sample
x(l), l = 1, . . . , L, we obtain the arithmetic IBF (AIBF) or the median IBF
(MIBF):

BAI
ji = BN

ji (x)
1

L

L∑
l=1

BN
ij (x(l)) BMI

ji = BN
ji (x)Med[BN

ij (x(l))]
2

Note that IBFs are resampling summaries of the evidence of the data for the
comparison of models.
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3.2.3 Fractional Bayes factor

The fractional Bayes factor follows the same “philosophy” of the partial Bayes
factor. So, suppose that the observed dataset x is partitioned in two datasets,
let say x(l) of size m and x(−l) of size n−m.1 Let b = m/n be the fraction
of the data of x contained in x(l), if both m and n are large, the likelihood
f(x(l)|θi) based only on the training sample x(l) will approximate to the full
likelihood f(x|θi) raised to the power b.2

Definition 37 (Fractional prior) As we did in (3.5) we use the trick of
creating a proper (conditional) prior, and exploiting the approximation read-
ily introduced we can define pF (θi | x)

p(θi | x(l)) =
f(x(l) | θi)pNi (θi)∫
f(x(l) | θi)pNi (θi) d θi

≈ f(x | θi)bpNi (θi)∫
f(x | θi)bpNi (θi) d θi

= pF (θi | x)

the so called fractional prior. 2

Definition 38 (Fractional Bayes factor) Remembering that the partial
Bayes factor is the Bayes factor on the remaining dataset, namely x(−l),
conditioned on having observed x(l), we can simply exploit the previously
introduced approximation and redo the same steps done for the partial Bayes
factor to obtain the fractional Bayes factor

BF
ji =

mF
j (x)

mF
i (x)

= BN
ji (x)

mN
i,b(x)

mN
j,b(x)

(3.8)

1it will become clearer in a minute that we don’t even need to choose x(l).
2since already with m simple random samples we are considering a lot of information

from the generating distribution, considering the likelihood on x(l) the remaining contri-
bution (to reach x) will be similar to the average contribution already considered with
x(l)

fi(x(−l)|θi) ≈ fi(x(l)|θi)
n−m
m

then

fi(x|θi) = fi(x(l)|θi)fi(x(−l)|θi) ≈ fi(x(l)|θi)fi(x(l)|θi)
n−m
m = fi(x(l)|θi)

1
b

which is equal to
fi(x|θi)b ≈ fi(x(l)|θi)
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Proof In detail the fractional marginal likelihood results:

mF
j (x) =

∫
f(x | θj)1−bpF (θj | x) d θj

=

∫
f(x | θj)1−b f(x | θj)bpNj (θj)∫

f(x | θj)bpNj (θj) d θj
d θj

=
mN
j (x)

mN
j,b(x)

with

mN
j,b(x) =

∫
f(x | θj)bpNj (θj) d θj

and finally, as usual, the ratio of the marginal likelihoods gives us the Bayes
factor, here the so called fractional Bayes factor. �

Note that (3.8) does not depend anymore from the dataset x(l), and so
there is no arbitrariness on the choice of the sampling dataset as we had with
the partial Bayes factor but that it inherits the fact that if the noninformative
prior has an improper form then the indeterminate constant cancels out.

The fractional prior pF (θi|x) ∝ f(x|θi)bpNi (θi) clearly depends on the
observed dataset x, intuitively to make the dependence weak b should be
small, in fact consistency of the FBF is achieved as long as b→ 0 for n→∞.
One common choice of b, suggested by O’Hagan (1995), is b = m/n where
m is the “minimal training sample size” as defined above.

Example 4 (FBF for the Normal Linear Model) LetMj be defined by

Mj : f(y|X; βj, γj) =
( γj

2π

)n/2
exp

(
−γj

2
‖y −Xβj‖2

)
2

A default noninformative prior for (βj, γj) is proportional to 1
γj

(i.e. reference

prior), so that the marginal fractional likelihood for model j is given by:

mF
j (y) =

mN
j (y)

mN
j,b(y)

=

∫ ∫
f(y | X; β, γ)pN(β, γ) d β d γ∫ ∫
f(y | X; β, γ)bpN(β, γ) d β d γ

27



lets concentrate on mN
j,b(y), suppressing the model subscript to simplify the

notation it can be rewritten as:

(3.9)

mN
b (y) =

∫ ∫
f(y | X; β, γ)bpN(β, γ) d β d γ

=

∫ ∫ ( γ
2π

)bn/2
exp

(
−bγ

2
‖y −Xβ‖2

)
1

γ
d β d γ

=

∫ ∫ (
1

2π

)bn/2
γbn/2−1 exp

(
−bγ

2
‖y −Xβ‖2

)
d β d γ

=

∫ (
1

2π

)bn/2
γbn/2−1 exp

(
−bγ

2
‖y −

Xβ̂‖2

)∫
exp

(
−bγ

2
‖X(β − β̂)‖

)
d β d γ

since

‖y −Xβ‖2 = ‖y −Xβ̂ +Xβ̂ −Xβ‖2

= ‖y −Xβ̂‖2 + ‖Xβ̂ −Xβ‖2 + 2(y −Xβ̂)>(Xβ −Xβ̂)

= ‖y −Xβ̂‖2 + ‖Xβ̂ −Xβ‖2 + 2(y −Hy)>(Xβ −Hy)

= ‖y −Xβ̂‖2 + ‖Xβ̂ −Xβ‖2

+ 2(y>Xβ − y>Hy − y>H>Xβ + y>H>Hy

= ‖y −Xβ̂‖2 + ‖Xβ̂ −Xβ‖2

We recognize in the integral in β the kernel of a multivariate normal distri-

bution Np
(
β̂,
[
bγ(X>X)

]−1
)

so that (3.9) becomes:

mN
b (y) =

∫ (
1

2π

)bn/2
γbn/2−1 exp

(
−bγ

2
‖y

−Xβ̂‖2

)(
2π

bγ

)p/2
| (X>X) |−1/2 d γ

= K

∫
γ
bn−p

2
−1 exp

(
−γ b

2
‖y −Xβ̂‖2

)
d γ

= K

∫
γ
bn−p

2
−1 exp

(
−γ b

2
R

)
d γ
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with K =
(

1
2π

)bn/2 (2π
b

)p/2 | (X>X) |−1/2 and R = ‖y − Xβ̂‖2. Thus we
recognize a Gamma distribution and mN

b (y) becomes when b > p
n

mN
b (y) = KΓ

(
bn− p

2

)(
b

2
R

)− bn−p
2

=

(
1

2π

)bn/2(
2π

b

)p/2
| (X>X) |−1/2 Γ

(
bn− p

2

)(
b

2
R2

)− bn−p
2

= π
p−bn

2 b
−bn

2 | X>X |−
1
2 Γ

(
bn− p

2

)
R−

bn−p
2

and this the fractional marginal likelihood is

mF (y) =
mN(y)

mN
b (y)

=
π−

n
2 b−

n
2 Γ
(
n−p

2

)
R−

n−p
2

π−
bn
2 b−

bn
2 Γ
(
bn−p

2

)
R−

bn−p
2

= π−
n(1−b)

2 b−
n(1−b)

2
Γ
(
n−p

2

)
Γ
(
bn−p

2

)R−n(1−b)
2

=
Γ
(
n−p

2

)
Γ
(
bn−p

2

) (bπ)−
n(1−b)

2 R−
n(1−b)

2

Finally the fractional Bayes factor in favor of Mj against Mi results

BF
ji =

mF
j (y)

mF
i (y)

=

Γ
(
n−pj

2

)
Γ
(
bn−pj

2

) (bπ)−
n(1−b)

2 R
−n(1−b)

2
j

Γ(n−pi2 )
Γ( bn−pi2 )

(bπ)−
n(1−b)

2 R
−n(1−b)

2
i

=
Γ
(n−pj

2

)
Γ
(
bn−pi

2

)
Γ
(
n−pi

2

)
Γ
(
bn−pj

2

) (Ri

Rj

)n(1−b)
2
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Chapter 4

Non-local Priors

4.1 Non-local priors for hypothesis testing and

model selection

In a parametric setting, classical hypothesis tests about a parameter of in-
terests θ are usually posted as

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

where Θ0 and Θ1 are disjoint parameter sets. In the Bayesian paradigm it is
required to specify prior distribution on θ under each hypothesis, and in most
Bayesian hypothesis tests local alternative prior densities are used, i.e. prior
densities that are positive on Θ0. On a philosophical level this seems to be
a contradiction and moreover it can be proved that Bayes factors with local
alternative priors have a strong unbalanced learning rate behavior, e.g. for a
scalar valued parameter and a point null hypothesis, if H1 is true, the Bayes
factor in favor of the null hypothesis decreases exponentially fast, while if H0

is true, the Bayes factor in favor of the alternative hypothesis decreases only
at rate Op(n

−1/2).

Johnson and Rossell (2010) highlighted that priors that separate be-
tween the null and alternative hypotheses can improve this convergence rates
and mitigate the unbalance.

Definition 39 (non-local prior) We say p(θ) is a non-local (alternative)
prior density, if for every ε > 0 there is a ζ > 0 such that

p(θ) < ε ∀θ ∈ Θ : inf
θ0∈Θ0

|θ − θ0|< ζ (4.1)

2
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An early proposal of non-local priors can be found in Verdinelli and
Wasserman (1996) and Rousseau (2007). They propose priors which are
defined to be 0 for all θ in a neighborhood of Θ0. For example, focusing
on point null hypothesis, with respect to a scalar parameter θ, these type of
priors are defined to be zero in an interval (θ0 − ε, θ0 + ε) for some ε > 0.
Johnson and Rossell (2010) state that the problem about these type of
priors is that they do not provide “flexibility in the specification of the rate
at which 0 is approached at parameter values that are consistent with the
null hypothesis” and lack of a “mechnism for rejecting H0 for values of θ
outside but near Θ0”. Therefore they propose moment priors.

Definition 40 (moment priors) Let focus on a point null hypothesis and
a scalar parameter, given a base prior pb(θ), with 2k finite integer moments,
k > 0, two bounded derivatives in a neighborhood containing θ0 and such
that pb(θ0) > 0, then the kth moment prior (MOM) is defined as

pM(θ) =
(θ − θ0)2k

τk
pb(θ)

with τk normalizing constant

τk =

∫
(θ − θ0)2kpb(θ) d θ = Epb [(θ − θ0)2k]

ensuring pM to be a proper density. 2

The moment prior is non-local satisfying (4.1), but assigns mass to all θs in
Θ1, and through the choice of the base prior and k it can be controlled the
rate at which it approaches zero. It also interesting to note that for k = 0
the moment prior reduces to the base prior.

Proposition 3 The convergence rate of the Bayes factor in favor of the
false alternative hypothesis when the alternative model is specified by the kth
moment prior is

B10 = Op(n
−k−1/2)

2

The extra power k, this class of priors gives to the Bayes factor with respect
to local priors, means that, for instance, if k = 1 the rate changes from
sublinear to superlinear.

Moment priors can be naturally generalized to the multivariate case as

pM(θ) =
Q(θ)k

Epb [Q(θ)k]
pb(θ)
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where

Q(θ) =
(θ − θ0)>Σ−1(θ − θ0)

nτσ2

with Σ a positive definite matrix and τ and σ2 scalars. For the choice of τ the
authors suggest to choose τ so that the prior probability that a standardized
effect size is less then 0.2 is less than 0.05, see section A.2 to learn more
about τ .

Following this work in Johnson and Rossell (2012) they propose the
product moment prior (pMOM), suited for model selection in high dimen-
sional normal linear models. This prior arises as the independent products
of the univariate MOM prior densities, and is proper. The main difference is
that while the multivariate MOM density is 0 only when all components of
the parameter vector are 0, pMOM instead is 0 if any of the components is
zero. This is important since it introduces a greater penalty for models that
have any of the components close to 0, and makes this prior appropriate for
variable selection where sparse models are usually preferred.

Finally, for identifying high probability models, they propose a MCMC
algorithm to explore the model space based on a Laplace approximation to
approximate the marginal likelihood of the data under each model.

4.2 Non-local priors for graphical model choice

Following the work of Johnson and Rossell (2010) Consonni and La Rocca
(2011) derived a FBF for pairwise comparison of nested Gaussian DAGs in
an objective framework. Let (V,D) be a DAG, the joint density of U1, . . . , Uq
can be written like in (2.5) as

p(u1, . . . , uq | β, γ) =

q∏
j=1

p(uj | upa(j); βj, γj)

Because of the recursive structure of the likelihood it is natural to assume
global parameter independence, see Geiger and Heckerman (2002)

p(β, γ) =
∏
j

p(βj, γj)

and therefore a natural default prior is

(4.2)pb(βj, γj) ∝ γ−1
j
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Since they focus on the pairwise comparison of two nested models, say D0 ⊂
D1, they define Lj, for each vertex j, as the set of the edges pointing to j
which are present in D1 but not in D0. Clearly setting βjl to zero for each
j and each l ∈ Lj brings D1 to D0, and exploiting the default prior (4.2) as
base prior they derive the (product) moment prior of order h for vertex j.

p(βj, γj) ∝ γ−1
j

∏
l∈Lj

β2h
jl (4.3)

Multiplying together these priors one obtains a (product) moment prior for
comparing Gaussian DAGs

p(β, γ) ∝
q∏
j=1

γ−1
j

∏
l∈Lj

β2h
jl

 (4.4)

To derive the FBF in closed form the main difficulty arises in the frac-
tional marginal likelihood under the alternative hypothesis, that because an
expectation of the product of even powers of the parameters in Lj under a
multivariate Gaussian distribution. But it can be proved that

Lemma 1 Let U = (U1, . . . , Uq) ∼ Nq(µ,Σ) where µ = (µ1, . . . , µq)
> and

Σ = {σlj}. Fix d ≤ q and a positive integer h, then

(4.5 )E

[
d∏
l=1

U2h
l

]
=

hd∑
i=0

1

2i
H

(h)
i (µ,Σ)

where

H
(h)
i (µ,Σ) =

∑
j∈Jh(i)

d∏
l=1

(2h)!
d∏

m=1

σjlmlm
jlm!

d∏
l=1

µ
j∗l
l

j∗l !

having defined

j∗l = 2h−
d∑

m=1

jlm −
d∑

m=1

jml

and

Jh(i) =

{
j :

d∑
l=1

d∑
m=1

jlm = i ∧ ∀l : j∗l ≥ 0

}
2
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Then focusing on vertex j, we omit index j for notational convenience, let
X be a n× p matrix whose columns contain the observations on the parent
variables, then the fractional marginal likelihood based on (4.3) is

wh(y|X, b) = (πbS2)−
n(1−b)

2

∑h|L|
i=0 4−iH

(h)
i (β̂, (X>X)−1)Γ

(
n−p−2i

2

)
(S2)i∑h|L|

i=0 4−iH
(h)
i (β̂, (X>X)−1)Γ

(
nb−p−2i

2

)
(S2)i

(4.6)
where 0 < b < 1 is the sample size dependent fraction satisfying nb >
p+ 2h|L|, β̂ = (X>X)−1X>y and S2 = (y −Xβ̂)>(y −Xβ̂).

For h = 0 (4.6) clearly gives the fractional marginal likelihood under the
null hypothesis, which is nothing else than the ordinary marginal fractional
likelihood under the default prior, see FBF for the Normal Linear Model 4.
Therefore the Moment FBF (MFBF)

FBF10(y, b) =

∏q
j=1w0(yj|X1j, b)∏q
j=1w1(yj|X0j, b)

(4.7)

In a following work Altomare et al. (2013), assuming an ordering of
the variables, developed an algorithm for model search in the space of DAGs
based on the MFBF (4.7). The algorithm exploits the encompassing ap-
proach (see subsection 3.1.1) to calculate the model posterior probabilities.
Using as reference model the complete independence DAG D0, which is
clearly included in every DAG, and approximating the normalizing constant
with an indexed collection H of high scoring DAGs

p̂(Dk | y) =
Bk0(y)p(Dk)∑
j∈HBj0(y)p(Dj)

These estimated posterior probabilities allow, among other things, also to
estimate the posterior edge inclusion probabilities as

p̂(e|y) =
∑

j∈H:e∈Dj

p̂(Dj|y)

To complete the model they propose as model prior, adapting the approach
of Scott and Berger (2010), a prior that they call split prior. The name
is due to the fact that also the model prior is thought vertex-wise. Let Dk be
a DAG and denote with M2, . . . ,Mq the corresponding regression models,
then

p(Dk) =

q∏
j=2

p(Mj) =

q∏
j=2

1

j

(
j − 1
|pa(j)|

)−1
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This prior, in conjunction with the factorization of the MFBF, allows the
computation the be done locally, i.e. the algorithm can be run separately
for each vertex, opening the doors to parallelization to further improve the
computation speed.

Although from (4.7) we can see that the MFBF for a model that is far
apart from the base DAG involves a lot of computation, therefore to speed
up the algorithm the authors propose to use the Bayes factor chain rule con-
sidering pairwise comparison between adjacent models, i.e. DAGs differing
by exactly one edge. In the context of MFBF this is just an approximation
but this highly simplifies the computation.

The search algorithm is similar to the algorithms proposed from Berger
and Molina (2005) and Scott and Carvalho (2008). The rationale be-
hind is easy: edge moves which already improved some models are likely to
improve other models too. Given a base DAG D0 = (M(0)

1 , . . . ,M(0)
q ), and

the number of models we want to explore for each regression (n_mod), we can
summarize the algorithm like

Algorithm 1 Local stochastic search

for j=2;j<=q;j++ do

based on the collection of the models adjacent to M(0)
j compute

(i) the estimated posterior probability of each model and

(ii) the relative edge inclusion probabilities

and set t equal to the number of adjacent models + 1.
while t<n_mod do
(i) a resampling move, i.e. randomly return to a previously visited

model according to the estimated posterior probabilities and

(ii) and a local move, i.e. randomly choose an edge move (add or
remove an edge) accordingly to the edge move probabilities

once a new model is chosen recalculate model and edge posterior prob-
abilities and set t=t+1

end while
end for

Finally, extending the concept of median probability (MP) model, intro-
duced by Barbieri and Berger (2004) in the context of regression models,
the authors suggest to evaluate the graph structure through the MP-DAG,
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i.e. the graph containing those edges whose inclusion probability is at least
0.5.
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Chapter 5

Objective Bayesian Analysis for
Differential Gaussian Directed
Acyclic Graphs

5.1 Introduction

Often we are confronted with heterogeneous multivariate data, i.e., data
coming from several categories, and the interest may center on the differential
structure of stochastic dependence among the variables between the groups,
as an example consider two groups, refractory and relapsed patients affected
by a specific cancer with the underlying q variables in each group being
expressions from selectively targeted genes.

Suppose we model the dependence among variables through a graph (ei-
ther undirected or directed). We could do this separately for each category,
however it is reasonable to assume that there will be some shared edges across
categories, and a joint estimation would be desirable to borrow strength and
thus achieve a better inference.

A Bayesian approach to address this issue, in the undirected graph frame-
work, under an informative setting, is presented in Peterson et al. (2014),
they address the problem of inferring multiple undirected networks in sit-
uations where some of the networks may be unrelated. Let have k nk-
dimensional samples Y (k) from Nq(0, (Ω(k))−1) where Ω(k) is the inverse of
the covariance matrix. Given a graph structure they use a G-Wishart prior
(Roverato, 2002) for each precision matrix Ω(k) and link the graph struc-
tures via Markov random field priors which encourage common edges through
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edge-specific parameters and a supergraph which describes the relatedness
between the graphs. On the parameters of the supergraph they put spike
and slab priors (George and McCulloch, 1993) with a non-local alter-
native component and to the edge-specific parameters they assign a prior
that encourages higher edge selection probabilities for edges included in a
reference graph G0. Samples from the posterior distribution are obtained
with a MCMC algorithm, and graph structures are selected thresholding the
posterior marginal probabilities of edge inclusion.

Another Bayesian approach, but for Gaussian DAG models, is presented
in Yajima et al. (2012) with regard to the two-category case. For category

k = 0, 1, let the data be Y (k) = (y
(k)
1 , . . . , y

(k)
p ) with y

(k)
j = (y

(k)
1j , . . . , y

(k)
nkj

).
They assume the model:

y
(k)
ij | y

(k)
ipak(j), αj, βj, δj, σ

2
j ,Dk

ind∼ N(αj +
∑

l∈pak(j)

y
(k)
il (βjl + δjlI{si = 1}), σ2

j ),

for i = 1, . . . , nk, j = 1, . . . , p. The scalar αj is a nuisance parameter,
σ2
j the error variance, I{A} the indicator function of the event A, si is a

subgroup indicator such that si = I{differential group} and βj the collection
of regression coefficients {βsj, s 6= j, s = 1, . . . , p}, with a similar definition
for δj representing the vector of differential effects. Model determination is
performed based on local priors, essentially standard variable selection priors
(George and McCulloch, 1993), and using a Reversible Jump Markov
Chain Monte Carlo (RJMCMC) algorithm (Green, 1995), along the lines
described in Fronk and Giudici (2004).

We concentrate on the two groups problem and we face it modeling the
system through a Gaussian DAG couple linked in a fashion similar to Yajima
et al. (2012), assuming that an ordering of the variable is given. Our aim is
thus model selection and we choose to work in a objective Bayesian framework
so that no complex prior elicitation is needed. The philosophy we followed
when designing this algorithm was the one of exploratory analysis, we tried
to provide an output which could be helpful to a researcher who is facing a
multidimensional problem, and often this results in having a sparse graph,
and in our case a sparse graph couple. Our proposal consists thus in assigning
a non-local prior to the regression coefficients with the objective of enforcing
stronger sparsity constraints on model selection.
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5.2 A new model parametrization

Given q variables of interest and two groups, the baseline group, indexed by
0, and the differential group indexed by 1, let D = {D0,D1} be the set of
DAGs describing the dependence structure between the q variables in the two
groups. It is important to note that, since we are interested in differential
effects, D = {D0,D1} alone is not sufficient to describe our model, in fact,
given an ordering of the edges, there are two different types of differential
effect:

(i) we have an edge in D0 but not in D1 or viceversa

(ii) both graphs have the edge but the effect is not the same

While the first type of differential effects are caught by D the second type
of differential effects suggests to introduce a third component: ∆, the set
of common edges with differential effect. Now the triple M = (D0,D1,∆)
defines our model.

As usual in the Gaussian Multivariate framework let see the DAGs, given
an ordering of the variables, as sets of regression models, formally Dk, for
k = 0, 1, can be split into q independent modelsMk1, . . . ,Mkq and thus our
triple could conveniently be expressed by the triples Mj = (M0j,M1j,∆j)
j = 1, . . . , q. Note that for j = 1 there is no regression and ∆1 = ∅. To
simplify our formulation we will further assume that the variable of interest
have zero mean, so that no intercept is needed in our regressions, this is a
standard assumption in graphical modeling and is achieved in practice by
centering or standardizing the data matrix.

In this new formulation of the model ∆j does not looses his meaning, since
it will be the set of the parents of j which are common in the both regressions
but with a differential effect. Let further ∆j = pa0(j) ∩ pa1(j) \ ∆j be the
set of common parents of j with common effect.

To fix the ideas we represent in a Venn diagram, in Figure 5.1, the parental
sets, under the baseline and differential model, relative to vertex j.

5.3 Likelihood

Let us have a sample of n independent observations, n0 for the baseline group,
and n1 for the differential group, and let Y be the centered or standardized
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pa1(j)pa0(j)

∆j

∆j

Figure 5.1: Venn diagram representing the sets induced by the triple Mj =
(M0j ,M1j ,∆j).

data matrix, ordered for representational convenience:

Y
n×q

=
[
y

1
· · · y

q

]
=

 Y 0
n0×q
Y 1
n1×q

 =

[
y(0)

1
· · · y(0)

q

y(1)
1
· · · y(1)

q

]
=


(
y

(0)
ij

)
n0×q(

y
(1)
ij

)
n1×q


with in mind our model formulation, we can assume, conditionally on know-
ing the group of each observation, the following likelihood:

p(Y | D0,D1,∆,β, δ, γ, c)

=

n0∏
i=1

q∏
j=1

p(y
(0)
ij | y

(0)
i,pa0(j),D0, βj, γj)

n1∏
i=1

q∏
j=1

p(y
(1)
ij | y

(1)
i,pa1(j),D0,D1,∆, βj, δj, γj, cj)

p(y
(0)
ij | ·) = N

(
y

(0)
ij

∣∣∣µ(0)
j , γ−1

j

)
p(y

(1)
ij | ·) = N

(
y

(1)
ij

∣∣∣µ(1)
j , (cjγj)

−1
)

with
µ

(0)
j =

∑
l∈pa0(j)

βljy
(0)
il (5.1)

µ
(1)
j =

∑
l∈∆j

βljy
(1)
il +

∑
l∈∆j

(βlj + δlj) y
(1)
il +

∑
l∈pa1(j)\pa0(j)

δljy
(1)
il (5.2)

We further indicate with γ = (γ1, . . . , γq)
> a vector of conditional precisions

and c = (c1, . . . , cq)
> a multiplicative parameter. In order to make the com-

putation faster, c will be treated as constant vector given the model and will
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be chosen according to the data1. Since cj times the precision γj of the jth
regression under the baseline model is nothing else than the precision of the
jth regression under the differential model it seems reasonable to set cj equal
to the ratio of the estimated conditional variances.

The parameters we are most interested in are instead β = {β
1
, . . . , β

q
}

and δ = {δ1, . . . , δq}

β
j

def
= βpa0(j) =

[
βpa0(j)\pa1(j)

βpa0(j)∩pa1(j)

]
=

 βpa0(j)\pa1(j)

β∆j

β∆j


δj

def
= δpa1(j)\∆j

=

[
δ∆j

δpa1(j)\pa0(j)

]
As we can see from these formulas their structure, i.e. which and how many
parameters we have in each regression, will depend on our model tripleMj,
and setting a coefficient to 0 will bring us to a smaller model nested in the
first one, which we could also express without including this parameter.

We can further see from (5.1) and (5.2) that the differential model depends
on the regression coefficients of the baseline model for the edges which are
common in both graphs. This happens in two situations, first when an edge
is present in both graphs but the effect is different (∆j), and second when we
suppose that the edge has the same effect in both baseline and differential
model (∆j). Note that in the latter situation the parameter will need to fit
both models to make the likelihood reasonably high, but keep in mind that
our aim is model selection rather then parameter estimation.

5.4 Priors

5.4.1 Parameter priors

Because of the recursive structure of the likelihood is natural to assume the
assumption of global parameter independence, see Geiger and Heckerman
(2002):

p(β | D0) =
∏
j

p(β
j
| D0)

1This choice will become clearer when deriving the Fractional Bayes Factor because it
will allow us to get it in closed form
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p(δ | β,D0,D1,∆) =
∏
j

p(δj | βj,D0,D1,∆)

p(γ) =
∏
j

p(γj)

Since our aim is to investigate differential effects is natural to prefer pos-
sibly sparse models where only strong differential effects are considered,
this intuition suggests to work with product moment priors (Consonni and
La Rocca, 2011; Altomare et al., 2013). We remember from section 4.2
that product moment priors arise from a Bayesian testing procedure based
on combining the advantages of the FBF with those of the moment prior,
in order to obtain an objective method with enhanced learning behavior.
Therefore when assigning parameter priors we have to concentrate on pair-
wise comparison of two nested models.

Definition 41 (model inclusion) In our framework a model

M(A) = (D(A)
0 ,D(A)

1 ,∆(A))

is said to be included in a model

M(B) = (D(B)
0 ,D(B)

1 ,∆(B))

if and only if for each j ∈ {1, . . . , q} and each l < j:

1. l ∈ ∆
(B)

j ⇒ l ∈ pa
(A)
0 (j)⇔ l ∈ pa

(A)
1 (j)

2. l ∈ ∆
(B)
j ⇒ l /∈ pa

(A)
0 (j) \ pa

(A)
1 (j)

or equivalently if and only if

• pa
(A)
0 (j) \ pa

(A)
1 (j) ⊂ pa

(B)
0 (j) \ pa

(B)
1 (j)

• pa
(A)
1 (j) \ pa

(A)
0 (j) ⊂ pa

(B)
1 (j) \ pa

(B)
0 (j) ∪∆

(B)
j

• ∆
(A)
j ⊂ ∆

(B)
j

• ∆
(A)

j ⊂ ∆
(B)

j ∪∆
(B)
j 2

This assures that, when the inclusion is respected, the likelihood underM(A)

can be obtained from the likelihood under M(B) simply by setting some
δ

(B)
lj ,β

(B)
lj to zero. Note that, in contrast with the single graph case where
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setting a parameter to zero corresponds to removing an edge, here when
removing a parameter different scenarios can arise. Since we always remove
edges or set parameters to zero from the bigger model M(B), to enumerate
the various scenarios let drop the superscript (B)

1. βlj = 0

• l ∈ pa0 \ pa1: we remove edge l→ j in D0, this is the same as the
single graph case.

• l ∈ ∆: we remove edge l→ j from both D0 and D1

• l ∈ ∆: we remove edge l→ j from D0 and ∆

2. δlj = 0

• l ∈ pa1 \ pa0: we remove edge l → j from D1, this is the same as
the single graph case.

• l ∈ ∆: we remove edge l→ j from ∆ and let D1 and D0 untouched

3. βlj = 0 and δlj = 0

• we remove edge l→ j from D0, D1 and ∆j.

This highlights the importance of introducing the third component ∆ in our
model formulation, without it we could not have an identified model when
removing/adding a parameter.

Following the method introduced in section 4.2 we choose as base priors
the default priors

pD(β
j
| D0) ∝ 1

pD(δj | D1,∆) ∝ 1

pD(γj) ∝ γ−1
j

and given two models M(A) ⊂M(B), we define,

Lβj = pa
(B)
0 (j) \ pa

(A)
0 (j)

and

Lδj =
[(

pa
(B)
1 (j) \ pa

(B)
0 (j)

)
\
(

pa
(A)
1 (j) \ pa

(A)
0 (j)

)]
∪
(

∆
(B)
j \∆

(A)
j

)
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so that the hypothesis that M(A) holds is equivalent to set β
(B)
lj = 0, l ∈ Lβj

and δ
(B)
lj = 0, l ∈ Lδj , j = 1, . . . , q in M(B). The corresponding default

product moment priors of order h are then

p(β
j
|D0) ∝

∏
l∈Lβj

β2h
lj

p(δj|βj,D0,D1,∆) ∝
∏
l∈Lδj

δ2h
lj

so that
p(β

j
, δj, γj|D0,D1,∆) ∝ γ−1

j

∏
l∈Lβj

β2h
lj

∏
l∈Lδj

δ2h
lj (5.3)

where h is a positive integer, as usual h = 0 returns the initial default prior.
Note that when we are comparing against the null model, i.e. a complete
independence model in both group, our prior will then be:

p(β
j
, δj, γj|D0,D1,∆) ∝ γ−1

j

∏
l∈pa0(j)

β2h
lj

∏
l∈pa1(j)\∆j

δ2h
lj

5.4.2 Model prior

For the model prior after several proposal we choose to go for an uniform
prior

p(D0,D1,∆) ∝ 1

since from the simulations we have seen that this prior is more stable. By
stable we mean that the uniform prior against sparsity inducing priors or
common structure inducing priors, performs slightly worse for pairs of DAGs
with high common structure, e.g. when more then 80% of the edges are the
same in both graphs, but outperforms these priors when the two graph are
not that similar.

5.5 Moment Fractional Bayes Factor

When we are interested in comparing

M(A) = (D(A)
0 ,D(A)

1 ,∆(A))
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against
M(B) = (D(B)

0 ,D(B)
1 ,∆(B))

with M(A) ⊂ M(B) we can note that given the recursive structure of the
likelihood and of the priors, then also the fractional marginal likelihood,
under each hypothesis, factorizes

w
(H)
h (Y , g0, g1) =

q∏
j=1

w
(H)
j,h (y

j
| y(0)

pa0(j), y
(1)
pa1(j), g0, g1)

with H = A,B and g0 and g1 the sample size dependent fractions, see sub-
section 3.2.3. The subscript h is, as usual, the order of the product moment
prior, and we remember that under the null hypothesis our parameter prior is
the default local prior used to define the product moment prior. Furthermore
this prior can be obtained simply by setting h = 0 in the product moment
prior of order h, therefore we will simply drop this subscript when talking
about the null hypothesis. So let w

(B)
h be the fractional marginal likelihood

for modelM(B) and w(A) the fractional marginal likelihood for modelM(A),
then the moment fractional Bayes factor for comparing M(A) against M(B)

with M(A) ⊂M(B) is

MFBF
(h)
BA =

w
(B)
h

w(A)
=

q∏
j=1

w
(B)
j,h

w
(A)
j

=

q∏
j=1

MFBF
(h)
j,BA

This factorization allows us to work at node j level. So let focus on the
fractional marginal likelihood under the alternative model M(B) and drop
the superscript (B) and the subscript j for notational convenience. Let

X0 =
[
y

(0)
pa0 \ pa1

y
(0)

∆
y

(0)
∆ 0 0

]
and

X1 =
[

0 y
(1)

∆
y

(1)
∆ y

(1)
∆ y

(1)
pa1 \ pa0

]
be the observations of the parents of node j under DAG D0 and D1, aug-

mented with 0’s to be coherent in size with β̃ =

[
β
δ

]
. The fractional

marginal likelihood is then

wh =
I(h, y(0), y(1),X0,X1, 1, 1)

I(h, y(0), y(1),X0,X1, g0, g1)
(5.4)
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with

(5.5)I(·) =

∫
p(y(0) | β, γ,D0;X0)g0p(y(1) | β, δ, γ,D0,D1,∆;X1, c)

g1

p(β, δ, γ | D0,D1,∆) d β d δ d γ

The main issue with I(·) is that we have a product of parameters, coming
from the product moment prior, that we have to integrate out. In (5.5) we
can see the product of two multivariate normal densities one raised to the
power of g0 and the other to the power of g1. With a single multivariate
normal density we could proceed like in Consonni and La Rocca (2011),
thus it would be useful to group these two densities in a single object, so
focusing on the exponentials of the likelihoods we can note that

exp
{
−g0γ

2
‖y(0)−X0β̃‖2

}
exp

{
−cg1γ

2
‖y(1)−X1β̃‖2

}
=
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]([
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]
−
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β̃

)}
= exp

{
−γ

2
‖y

g
−Xgβ̃‖2

}
where we have indicated

y
g

= G
1
2
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y(0)
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g0y

(0)

√
cg1y

(1)

]
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with
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]
if we further define

β̂
g

= (X>gXg)
−1X>g yg

and
S2
g = (y

g
−Xgβ̂g)

>(y
g
−Xgβ̂g)

we can use the well know relation
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from which we can see the kernel of a

N|β̃|
(
β̃; β̂

g
,

1

γ

(
X>gXg

)−1
)

With in in mind (5.3) let d = |Lβ|+|Lδ| then
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applying Lemma 1 and integrating out γ we get
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Focusing on the gamma function we note that the fractions 0 < g0 < 1 and
0 < g1 < 1 have to be chosen so that

n0g0 + n1g1 > |β̃|+2hd

One thing one has to be careful about, is that because of the particular
construction we adopted to solve this integral, Xg, β̂g and S2

g they will all

depend on the fractions g0 and g1, and therefore nothing will cancel out when
computing the marginal fractional likelihood w

(B)
h (5.4).

Under the null hypothesis M(A) our parameter prior is the default local
prior used to define the product moment prior, thus the fractional marginal
likelihood w(A) can be obtained from the same formulas above just setting
h = 0.

5.6 Stochastic search

The recursive structure of the MFBF gives us the opportunity to work locally.
Therefore to search in the space of models, following Altomare et al. (2013),
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we exploit the encompassing from below approach and the approximation of
the MFBF with the BF chain rule, and we adapt the local search algorithm
described previously to this framework.

The main difference between the two algorithms is that in the single graph
framework a local move proposes an adjacent model, i.e. a model that differs
exactly by one parameter from the starting model. In our framework this
could be a limit and to improve the way our algorithm moves through the
space of triples we prefer to define a local move in slightly different way.

Definition 42 (local move) we define a local move the change of status of
an edge couple, where by status of an edge couple we mean

1. the edge is missing in both graphs

2. the edge is present in D0 but not in D1

3. the edge is present in D1 but not in D0

4. the edge is present in both D0 and D1 but not in ∆

5. the edge is present in both D0 and D1 and in ∆ 2

We see from our definition of inclusion, that making a move from status 4 to
2, from status 4 to 3 and from status 5 to 2 it doesn’t involves nested models,
i.e. we don’t have a MFBF with which can compare these 2 models. This can
be solved noting that two models, M(i) and M(j), differing just by a single
edge status e, with e = 1 in M(i) and e 6= 1 in M(j), then M(i) is always
nested in M(j). Therefore we can calculate the MFBF in two steps, i.e.
passing through status 1 and taking the ratio between the two intermediate
Bayes Factors.

We have implemented all this logic in MATLAB and at the end of the
day, given a starting tripleM(b) = (D(b)

0 ,D(b)
1 ,∆(b)) = (M(b)

1 , . . . ,M(b)
q ), with

M(b)
j = (M(b)

0j ,M
(b)
1j ,∆

(b)
j ) j = 1, . . . , q and the number of models we want to

explore for each vertex (n_mod) our algorithm can be summarized as
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Algorithm 2 Local stochastic search for differential Gaussian DAGs

for j=2;j<=q;j++ do

based on the collection of the models adjacent to M(b)
j compute

(i) the estimated posterior probability of each model and

(ii) the relative edge inclusion probabilities

and set t equal to the number of adjacent models + 1.
while t<n_mod do
(i) a resampling move, i.e. randomly return to a previously visited

model according to the estimated posterior probabilities and

(ii) and a local move, i.e. randomly choose an edge move (change
the status of an edge couple) accordingly to the edge move prob-
abilities

once a new model is chosen recalculate model and edge posterior prob-
abilities and set t=t+1

end while
end for

5.7 Simulations

5.7.1 Comparison with the disjoint model

First of all we want to evaluate if our joint proposal improves the results
obtained by applying on each graph separately the standard method proposed
by Altomare et al. (2013). In this section we will call this method the
disjoint method. In order to complete this task we simulate from three
different scenarios. In the first one we suppose that the graphs share 90%
of their edges, in the second that 50% of the edges are shared and in the
last one just 10%. We apply these scenarios to the 20, 50 and 100 variables
problem, see Table 5.1

Simulation strategy

To present how we simulate the data let s be the desired percentage of shared
edges between the graphs. We start by simulating a DAG randomly recurring
to the R package pcalg (Kalisch et al., 2012), with sparsity parameter
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q n0 = n1 s z
1 20 20 0.9 0.1
2 20 20 0.5 0.1
3 20 20 0.1 0.1
4 50 50 0.9 0.1
5 50 50 0.5 0.1
6 50 50 0.1 0.1
7 100 50 0.9 0.1
8 100 50 0.5 0.1
9 100 50 0.1 0.1

Table 5.1: Descriptive schema of the simulations considered for the comparison of the
joint vs the disjoint method, s is the percentage of shared structure, and z the sparsity
level.

z = 0.1 and setting edge weights randomly to 0.4 or 0.8. In our simulations
edge weights are the weights of the parameters of the conditional regressions
with conditional variance equal to 1, this approach gives standardized effects
around 0.3 and 0.6 respectively. The DAG obtained this way will be our
baseline DAG D0. To determine D1 let D1 = D0 and randomly remove
from D1 the desired percentage of edges we want to be different (1 − s), at
the same time we add in the same amount new edges to D1, i.e. edges not
present in D0, with edge weights 0.4 or 0.8 randomly. Finally, we choose
randomly (1 − s) × 100% of of the edges we have not touched yet and in
order to introduce some common edges with differential effect we change
their weights to 0.4 or 0.8 respectively.

When we have D0 and D1 we generate the data with the function rmvDAG

of the package pcalg. This is equal to simulate from a normal distribution
with zero mean and covariance matrix Σk k = 0, 1 given by (2.6) with D = Iq.

Results

In Table 5.1 we summarize with a schema the simulations considered, and
in the appendix (subsection B.1.2) we represent the corresponding graphs.
We can see that we have chosen situations where the number of observations
are relatively small, since we know that the disjoint algorithm, under these
conditions, with a moderate sample size reconstructs the graph almost per-
fectly, thus, with such sample sizes, we would not have had any space to see
if there is some improvement in searching the graphs jointly.
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Since the sample sizes are small we simulate 3 datasets for each configu-
ration and we asses the performances of the methods with the mean of the
AUCs obtained from the graphs selected by thresholding the edge posterior
probabilities at various points. In particular we will look at the overall AUC
(Table 5.2), i.e. the AUC we get considering false positive edge discovery
rates and true positive edge discovery rates in both graphs as they would
be a single model (Table 5.3), and at the shared structure AUC (Table 5.4),
i.e. the AUC we get considering as a true positive an edge present in both
true graphs (Table 5.5). The corresponding ROC curves can be found in the
appendix (subsection B.1.1).

We test the datasets, in both algorithms, with h = 1 and h = 2.

From Table 5.2 we see that the joint method outperforms the disjoint
one when the graphs have many common edges (s = 0.9). Instead, when
the graphs don’t share much structure, with a moderate number of nodes it
has performances similar to the disjoint method while it seems to deterio-
rate when q = 100. This problem may be connected to the fact that when
the sample size is too small (in relation to the graph size) and there is no
significant common structure between the graphs, the algorithm still tries to
borrow strength from the two graphs, and since the small sample can not
adequately separate between the two models the performances deteriorate.
Anyway even in these situations if we look at the AUCs relative to the com-
mon structure (Table 5.4) we see that our algorithm at least reconstructs
common edges better.

A strategy to exploit the best of the two approaches may be the one of
trying to launch the disjoint algorithm first, and if from its output we see that
the two graphs are similar (e.g. more then 50% of the edges are the same)
then probably we can improve the performances with the joint method.

5.7.2 Common edges with differential effect

To compare the disjoint with the joint method we have not looked at the
shared edges with differential effect, since the disjoint method is not able to
catch these differences. To understand how our algorithm works in relation
to these effects we consider a graph couple with common structure of 0.8,
50 nodes and sparsity 0.1 for various values of the sample size: 50, 100, 250.
Since the method we use to generate the random DAGs doesn’t let us control
the standardized effects precisely we introduce a threshold on how much these
effects have to be different in order to be considered differential. We set these
thresholds to 0, 0.05, 0.1, 0.2 and we test our algorithm with h = 1. Results

51



Model h=1 h=2

q n0 = n1 s Joint Disjoint Joint Disjoint

20 20 0.9 0.83 0.77 0.87 0.74

20 20 0.5 0.82 0.81 0.84 0.81

20 20 0.1 0.81 0.81 0.82 0.78

50 50 0.9 0.98 0.94 0.98 0.89

50 50 0.5 0.95 0.95 0.95 0.91

50 50 0.1 0.93 0.93 0.91 0.90

100 50 0.9 0.91 0.89 0.92 0.84

100 50 0.5 0.86 0.88 0.85 0.84

100 50 0.1 0.85 0.90 0.84 0.86

Table 5.2: overall AUCs for the joint and disjoint method for h = 1 and h = 2

h=1 h=2

Model Joint Disjoint Joint Disjoint

q n0 = n1 s TPR FPR TPR FPR TPR FPR TPR FPR

20 20 0.9 0.65 0.15 0.19 0.02 0.58 0.06 0.13 0.01

20 20 0.5 0.59 0.13 0.31 0.02 0.51 0.06 0.22 0.01

20 20 0.1 0.55 0.14 0.29 0.03 0.45 0.07 0.19 0.01

50 50 0.9 0.88 0.03 0.60 0.01 0.82 0.01 0.51 0.00

50 50 0.5 0.82 0.04 0.67 0.01 0.77 0.02 0.61 0.01

50 50 0.1 0.76 0.05 0.64 0.01 0.68 0.03 0.56 0.01

100 50 0.9 0.80 0.06 0.56 0.01 0.78 0.03 0.46 0.01

100 50 0.5 0.71 0.07 0.56 0.01 0.65 0.05 0.49 0.01

100 50 0.1 0.68 0.07 0.60 0.01 0.60 0.04 0.51 0.01

Table 5.3: mean of the overall TPRs and overall FPRs for the joint and disjoint method
for h = 1 and h = 2
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Model h=1 h=2

q n0 = n1 s Joint Disjoint Joint Disjoint

20 20 0.9 0.83 0.74 0.88 0.70

20 20 0.5 0.76 0.70 0.79 0.74

20 20 0.1 0.77 0.74 0.89 0.69

50 50 0.9 0.98 0.91 0.98 0.84

50 50 0.5 0.95 0.92 0.97 0.86

50 50 0.1 0.97 0.94 0.98 0.88

100 50 0.9 0.90 0.84 0.92 0.77

100 50 0.5 0.86 0.82 0.86 0.78

100 50 0.1 0.88 0.82 0.86 0.74

Table 5.4: AUCs relative to the shared structure recognition for the joint and disjoint
method with h = 1 and h = 2

h=1 h=2

Model Joint Disjoint Joint Disjoint

q n0 = n1 s TPR FPR TPR FPR TPR FPR TPR FPR

20 20 0.9 0.59 0.10 0.06 0.00 0.54 0.04 0.02 0.00

20 20 0.5 0.44 0.09 0.11 0.01 0.41 0.04 0.06 0.00

20 20 0.1 0.41 0.11 0.08 0.01 0.40 0.06 0.03 0.00

50 50 0.9 0.86 0.02 0.48 0.00 0.81 0.01 0.40 0.00

50 50 0.5 0.78 0.03 0.48 0.00 0.76 0.02 0.40 0.00

50 50 0.1 0.78 0.04 0.42 0.00 0.70 0.03 0.29 0.00

100 50 0.9 0.74 0.03 0.40 0.00 0.74 0.02 0.31 0.00

100 50 0.5 0.67 0.04 0.37 0.00 0.62 0.03 0.30 0.00

100 50 0.1 0.66 0.05 0.33 0.00 0.61 0.03 0.24 0.00

Table 5.5: mean of the TPRs and FPRs relative to the shared structure recognition for
the joint and disjoint method for h = 1 and h = 2

53



0 0.05

q n0 = n1 AUC TPR FPR AUC TPR FPR

50 50 0.51 0.04 0.00 0.53 0.06 0.00

50 100 0.60 0.20 0.00 0.63 0.26 0.00

50 250 0.68 0.37 0.00 0.78 0.56 0.00

0.1 0.2

q n0 = n1 AUC TPR FPR AUC TPR FPR

50 50 0.54 0.08 0.00 0.51 0.01 0.01

50 100 0.66 0.31 0.00 0.76 0.50 0.01

50 250 0.83 0.67 0.00 0.93 0.87 0.02

Table 5.6: AUCs for the differential edges recognition for various thresholds:
0, 0.05, 0.1, 0.2.

are reported in Table 5.6. For these examples the corresponding overall AUCs
are 0.97, 0.99 and 1 respectively. We see instead, that catching the common
edges with differential effect is an harder task and that even with a threshold
of 0.2, which seems a reasonable threshold for us, we need a moderate sample
size to get good results. This behavior is to impute to the fact we chose a
product moment prior for the δ parameters, and thus just differential effects
which are considerably high are highlighted by this method.

5.7.3 Comparison with Peterson et al. (2014)

The most advanced Bayesian method we found in literature for making in-
ference on multiple graphs is the one of Peterson et al. (2014), we will call
it the benchmark method. This algorithm works in the undirected graphs
framework, so if we want to compare our method with theirs we have to
assume a known ordering and focus on decomposable graphs, see section 2.3.

Simulation strategy

To simulate the data, we proceed in a way similar to the one described
earlier, with the only expedient of transforming our randomly chosen DAGs
to perfect DAGs and obtaining therefore the UGs just removing the arrows.
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Note that sparsity and shared structure will not be fully controllable when
generating DAGs and UGs randomly in this way.

Results

Before presenting the results we may note that we put ourselves in a fa-
vorite situation, since we’re are assuming a known ordering of the variables.
The benchmark algorithm cannot exploit the given ordering since it works
in an undirected framework, so to rebalance the comparison we decided to
check the performances of our algorithm also in the case the ordering is
mis-specified.

In order to set a desired mis-specification level note that if we have an or-
dered sequence 1, . . . , q, and a permutation of that sequence π = π(1), . . . , π(q),
the number of inversions, i.e. the number of pairs (π(i), π(j)) such that
π(i) < π(j) and i > j, is a well-established way to asses how far π is from
the naturally ordered sequence. Moreover we know that the number of in-
versions takes values between 0 and q(q − 1)/2, so dividing the number of
inversions by its maximum we get a relative distance d.

We decided to test our algorithm under three different degrees of mis-
specification, namely d = 0, 0.25, 1. We investigate the performances of the
algorithms under 6 situations, in particular we sampled data from 4 different
randomly chosen DAG couples with 20 nodes each, and different values of
sample size, graph sparsity and common structure. In order to reduce the
variability due to the sampling, we decided to run the algorithms on three
different samples under each configuration.

model q n0 = n1 ≈ z ≈ s

1 1 20 20 0.1 0.8

2 1 20 50 0.1 0.8

3 1 20 100 0.1 0.8

4 2 20 100 0.2 0.8

5 3 20 100 0.2 0.5

6 4 20 100 0.2 0.3

Table 5.7: Descriptive schema of the simulations considered for the comparison with
the benchmark method.

55



In Table 5.7 we summarize with a schema the situations considered, and in
the appendix we represent the corresponding graphs (subsection B.2.2). We
set up our algorithm with h = 1 and with regard to the benchmark algorithm,
following Peterson et al. (2014), we set the hyper-parameters of the G-
Wishart prior in the “noninformative setting” b = 3 and D = Iq. For the edge
specific prior we follow the suggestions given to encourage overall sparsity,
i.e. we choose as reference graph a q× q matrix of all ones and set a = 1 and
b = 4 for the parameters of the Beta governing the edge inclusion probability,
which leads, for every edge, to a prior probability of edge inclusion of 20%
and finally we set the hyperparameter w of the Bernoulli prior on the latent
indicator of network relatedness equal to 0.8 for the first 4 examples and
to 0.5 in last 2, to set a prior belief that the networks are related in a way
similar to the true one. Finally we run a MCMC chain of 30000 samples of
which 10000 for burn-in.

We present in Table 5.8 the overall AUCs, in Table 5.10 the common
structure AUCs and the corresponding ROC curves in the appendix (subsec-
tion B.2.1).

From the overall AUCs we see that our method outperforms the bench-
mark when the order is not mis-specified. When d = 0.25 our algorithm
still works better then the benchmark when the sample size is small, while
we get similar results when the sample size grows. Finally with d = 1,
we perform similarly to the benchmark when there is an high sparsity level
(z = 0.1), which clearly makes the mis-specification less dramatic, otherwise
the benchmark outperforms our method. Similar results hold also for the
shared structure AUCs in Table 5.10.

We may further note that in Altomare et al. (2013) it is stated that
the performance of the MFBF search with respect to the mis-specification
deteriorates with the number of v-structures, i.e. unmarried parents that
meet head to head, present in the true graph. In our examples we have no v-
structures since we needed to restrict our attention to decomposable graphs.
Anyway these results seem to suggest that when the ordering is known or if
we have at least a general idea on how to order the variables, we can get an
advantage using our method, while when the ordering is completely unknown
we may rather go with the benchmark method, remembering that this implies
to carefully set the hyper-parameters in order to get good results.
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5.8 Conclusion and Discussion

In this work we concentrated on the comparison between two Directed Acyclic
Graph (DAG) models with the objective of finding differences, if any, between
the two DAGs, both in terms of conditional independencies and in terms of
the strengths of common dependencies.

We approached model selection using an objective Bayes framework, so
that minimal prior elicitation is needed and we made use of non-local priors
on the regression coefficients to incorporate in our model a sparsity assump-
tion. Finally we tested our method against the approach of Peterson et al.
(2014) showing that our algorithm is competitive in several settings.

We conclude this work by considering some issues worth of further inves-
tigation. Our model selection procedure was based on the Fractional Bayes
Factor (FBF), essentially because in this way the expression of the marginal
likelihood is available in closed form, and this greatly speeds up computa-
tions. Other approaches of model choice, such as the intrinsic priors Berger
and Pericchi (1996), may be also theoretically sound, but computationally
less efficient, especially in an high dimensional settings, where numerical in-
tegrations can slow down the algorithm massively.

A critical point of our procedure is the assumption that there exists a
known ordering of the variables. Notice that this requirement is in some way
natural for DAGs which are mathematical objects relying on some ordering
which provides the orientation of the edges. They help researchers better
understand the problem. Moreover we have shown that our algorithm still
gives good results when the mis-specification of the ordering is moderate.
We would like to point out that our tests on the mis-specification where con-
ducted in a situation where there were no immoralities, and with the growth
of the immoralities the performances in relation to the mis-classification
should deteriorate.

If we look at DAGs purely as models for conditional independence, a
drawback is that our algorithm does not assign equal scores to DAGs con-
tained in the same equivalence classes, since non-local priors do not fall in the
(restrictive) class of priors characterized by this feature Geiger and Heck-
erman (2002). A potential way out of this difficulty, would be to consider
only equivalence classes of DAGs, whose representative is an essential graph
Andersson et al. (1997).

An additional problem that we have noted is that, when the sample size
is small in relation to the number of variables, and the graphs do not share
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enough structure, our method does not perform as well as the disjoint one
(analyzing the two graphs separately). Therefore in such situations a recom-
mendation is to run the disjoint method first, asses how much structure the
two graphs share, and if the common edges are prevalent, running the joint
algorithm should bring improvements on model selection.
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Peterson et. Al d=0 d=0.25 d=1

0.75 0.90 0.87 0.80

0.88 0.98 0.93 0.87

0.90 1.00 0.89 0.89

0.93 0.99 0.92 0.82

0.93 0.98 0.93 0.83

0.93 0.98 0.91 0.83

Table 5.8: overall AUCs of the joint MFBF method (for d = 0, 0.25, 1) and of the
benchmark method.

Joint

Peterson et al. d = 0 d = 0.25 d = 1

TPR FPR TPR FPR TPR FPR TPR FPR

0.86 0.64 0.68 0.13 0.66 0.12 0.56 0.13

0.68 0.13 0.85 0.04 0.75 0.05 0.62 0.08

0.72 0.08 0.95 0.01 0.66 0.05 0.66 0.05

0.75 0.10 0.94 0.03 0.76 0.04 0.61 0.14

0.75 0.09 0.90 0.06 0.78 0.08 0.61 0.15

0.73 0.08 0.89 0.05 0.74 0.07 0.59 0.11

Table 5.9: mean of the TPRs and FPRs for the joint MFBF method (for d = 0, 0.25, 1)
and the benchmark method.
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Peterson et. Al d=0 d=0.25 d=1

0.77 0.92 0.88 0.82

0.90 0.99 0.93 0.89

0.91 1.00 0.87 0.87

0.94 0.99 0.90 0.82

0.93 0.98 0.88 0.78

0.91 0.98 0.86 0.79

Table 5.10: Shared Structure AUCs for the joint MFBF method (for d = 0, 0.25, 1) and
the benchmark method.

Joint

Peterson et al. d = 0 d = 0.25 d = 1

TPR FPR TPR FPR TPR FPR TPR FPR

0.84 0.61 0.62 0.09 0.60 0.08 0.51 0.09

0.60 0.07 0.83 0.03 0.73 0.04 0.60 0.06

0.62 0.04 0.94 0.01 0.59 0.04 0.59 0.04

0.66 0.06 0.91 0.02 0.71 0.03 0.54 0.10

0.48 0.06 0.85 0.06 0.62 0.07 0.36 0.09

0.42 0.05 0.87 0.05 0.56 0.07 0.34 0.07

Table 5.11: mean of the TPRs and FPRs for the joint MFBF method vs the benchmark
method.
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Appendix A

Notes about non-local priors

A.1 Scale Invariance

Given the linear model:

y
n×1

= X
n×p

β
p×1

+ ε
n×1

(A.1)

with:
H0 : βi = 0 ∀i

To evaluate the properties of the prior proposed by Consonni and La Rocca
(2011), since the model selection exploits the FBF, we have to consider the
induced fractional prior:

(A.2)πFBF (β | σ2) ∝ πCL(β | σ2)p(y |Xβ, σ2I)b

∝
∏

β2h
i N (β | β̂, σ

2

b
(X>X)−1)

It is desirable that a prior on the regression parameter will be coherent
when defined on a scaled model, in the sense that the prior on the scaled
model can be constructed either directly by applying the “construction rule”
or by transforming the prior accordingly to the new model. The scaled model
can be obtained either scaling y orX or even both. In general, letting c, k > 0
the scaled model will be:

cy = kX
c

k
β + cε⇔ y′ = X ′β′ + ε′ (A.3)
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Prior (A.2) has this property since for model (A.3) automatically we
would define the prior on β′ like:

πFBF (β′ | σ′2) ∝
∏

β′i
2N (β′ | β̂′, σ

′2

b
(X ′

>
X ′)−1)

while defining the prior on (A.1) and then obtaining the prior through
transforming the variables would give:

πβ′(β
′ | σ′2) = πβ(

k

c
β′ | σ2)

(
k

c

)p
∝
∏

β′i
2

exp

[
− b

σ2
‖(y −X k

c
β′)‖2

2

]
=
∏

β′i
2

exp

[
− b

σ2c2
‖(cy −Xkβ′)‖2

2

]
=
∏

β′i
2

exp

[
− b

σ′2
‖(y′ −X ′β′)‖2

2

]
∝
∏

β′i
2N (β′ | β̂′, σ

′2

b
(X ′

>
X ′)−1)

The prior proposed by (Johnson and Rossell, 2010, 2012) instead ex-
ploits τ for achieving this result.

A.2 Comparison

If we consider the model:

yi = µ+ εi εi
iid∼ N (0, σ2) H0 : µ = 0

then the first order pMOM proposed by Johnson and Rossell (2010,
2012)) reduces to:

πJR(µ) ∝ µ2N (µ | 0, τσ2)

the fractional prior (A.2) becomes:

πFBF (µ) ∝ µ2N (µ | y, σ
2

bn
)

and interestingly the non-local prior obtained by considering the Zellner g-
prior as local component is:

πG(µ) ∝ µ2N (µ, 0,
gσ2

n
)
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Figure A.1: prior with τ = 0.348 in red and with τ = 1 in blue

If we center the data and consider the default choices suggested for the FBF
(b = 1

n
)) and g-prior (g = max(n, p2)) we see that in several settings these

two priors match, and they differ from Johnson and Rossell (2010, 2012)
just for the scaling factor τ . It is important to note that even though these
priors have the same distribution, when computing the FBF not the whole
likelihood is considered but just a fraction, namely (1 − b) = n−1

n
, but this

difference becomes negligible when n is sufficiently large.

In Johnson and Rossell (2010, 2012) it is recommended to choose τ
so that: P(|µ

σ
| ≥ 0.2) = 0.99, giving τ = .348, instead setting τ = 1 we get

P(|µ
σ
| ≥ 0.2) = 0.998, indicating an even stronger selection effect, which can

be seen also graphically in fig. A.1.
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Appendix B

Supplementary materials

B.1 Comparison with the disjoint model

B.1.1 ROC Curves

ROC Curves for the comparison when h = 1
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Figure B.1: Joint vs Disjoint with h = 1: Overall structure recognition for simulation 1
(q = 20, n0 = n1 = 20, s = 0.9)
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Figure B.2: Joint vs Disjoint with h = 1: Shared structure recognition for simulation 1
(q = 20, n0 = n1 = 20, s = 0.9)
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Figure B.3: Joint vs Disjoint with h = 1: Overall structure recognition for simulation 2
(q = 20, n0 = n1 = 20, s = 0.5)
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Figure B.4: Joint vs Disjoint with h = 1: Shared structure recognition for simulation 2
(q = 20, n0 = n1 = 20, s = 0.5)
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Figure B.5: Joint vs Disjoint with h = 1: Overall structure recognition for simulation 3
(q = 20, n0 = n1 = 20, s = 0.1)
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Figure B.6: Joint vs Disjoint with h = 1: Shared structure recognition for simulation 3
(q = 20, n0 = n1 = 20, s = 0.1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
a
te

Global Structure h=1

Joint

Disjoint

Figure B.7: Joint vs Disjoint with h = 1: Overall structure recognition for simulation 4
(q = 50, n0 = n1 = 50, s = 0.9)
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Figure B.8: Joint vs Disjoint with h = 1: Shared structure recognition for simulation 4
(q = 50, n0 = n1 = 50, s = 0.9)
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Figure B.9: Joint vs Disjoint with h = 1: Overall structure recognition for simulation 5
(q = 50, n0 = n1 = 50, s = 0.5)
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Figure B.10: Joint vs Disjoint with h = 1: Shared structure recognition for simulation
5 (q = 50, n0 = n1 = 50, s = 0.5)
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Figure B.11: Joint vs Disjoint with h = 1: Overall structure recognition for simulation
6 (q = 50, n0 = n1 = 50, s = 0.1)
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Figure B.12: Joint vs Disjoint with h = 1: Shared structure recognition for simulation
6 (q = 50, n0 = n1 = 50, s = 0.1)
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Figure B.13: Joint vs Disjoint with h = 1: Overall structure recognition for simulation
7 (q = 100, n0 = n1 = 50, s = 0.9)
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Figure B.14: Joint vs Disjoint with h = 1: Shared structure recognition for simulation
7 (q = 100, n0 = n1 = 50, s = 0.9)
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Figure B.15: Joint vs Disjoint with h = 1: Overall structure recognition for simulation
8 (q = 100, n0 = n1 = 50, s = 0.5)
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Figure B.16: Joint vs Disjoint with h = 1: Shared structure recognition for simulation
8 (q = 100, n0 = n1 = 50, s = 0.5)
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Figure B.17: Joint vs Disjoint with h = 1: Overall structure recognition for simulation
9 (q = 100, n0 = n1 = 50, s = 0.1)
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Figure B.18: Joint vs Disjoint with h = 1: Shared structure recognition for simulation
9 (q = 100, n0 = n1 = 50, s = 0.1)

ROC Curves for the comparison when h = 2
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Figure B.19: Joint vs Disjoint with h = 2: Overall structure recognition for simulation
1 (q = 20, n0 = n1 = 20, s = 0.9)
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Figure B.20: Joint vs Disjoint with h = 2: Shared structure recognition for simulation
1 (q = 20, n0 = n1 = 20, s = 0.9)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
a
te

Global Structure h=2

Joint

Disjoint

Figure B.21: Joint vs Disjoint with h = 2: Overall structure recognition for simulation
2 (q = 20, n0 = n1 = 20, s = 0.5)
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Figure B.22: Joint vs Disjoint with h = 2: Shared structure recognition for simulation
2 (q = 20, n0 = n1 = 20, s = 0.5)
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Figure B.23: Joint vs Disjoint with h = 2: Overall structure recognition for simulation
3 (q = 20, n0 = n1 = 20, s = 0.1)
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Figure B.24: Joint vs Disjoint with h = 2: Shared structure recognition for simulation
3 (q = 20, n0 = n1 = 20, s = 0.1)
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Figure B.25: Joint vs Disjoint with h = 2: Overall structure recognition for simulation
4 (q = 50, n0 = n1 = 50, s = 0.9)
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Figure B.26: Joint vs Disjoint with h = 2: Shared structure recognition for simulation
4 (q = 50, n0 = n1 = 50, s = 0.9)
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Figure B.27: Joint vs Disjoint with h = 2: Overall structure recognition for simulation
5 (q = 50, n0 = n1 = 50, s = 0.5)
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Figure B.28: Joint vs Disjoint with h = 2: Shared structure recognition for simulation
5 (q = 50, n0 = n1 = 50, s = 0.5)
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Figure B.29: Joint vs Disjoint with h = 2: Overall structure recognition for simulation
6 (q = 50, n0 = n1 = 50, s = 0.1)
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Figure B.30: Joint vs Disjoint with h = 2: Shared structure recognition for simulation
6 (q = 50, n0 = n1 = 50, s = 0.1)
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Figure B.31: Joint vs Disjoint with h = 2: Overall structure recognition for simulation
7 (q = 100, n0 = n1 = 50, s = 0.9)
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Figure B.32: Joint vs Disjoint with h = 2: Shared structure recognition for simulation
7 (q = 100, n0 = n1 = 50, s = 0.9)
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Figure B.33: Joint vs Disjoint with h = 2: Overall structure recognition for simulation
8 (q = 100, n0 = n1 = 50, s = 0.5)
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Figure B.34: Joint vs Disjoint with h = 2: Shared structure recognition for simulation
8 (q = 100, n0 = n1 = 50, s = 0.5)
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Figure B.35: Joint vs Disjoint with h = 2: Overall structure recognition for simulation
9 (q = 100, n0 = n1 = 50, s = 0.1)
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Figure B.36: Joint vs Disjoint with h = 2: Shared structure recognition for simulation
9 (q = 100, n0 = n1 = 50, s = 0.1)
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B.1.2 Generating Graphs
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Figure B.37: True graphs for simulation 1
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Figure B.38: True graphs for simulation 2
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Figure B.39: True graphs for simulation 3
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Figure B.40: True graphs for simulation 4
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Figure B.41: True graphs for simulation 5
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Figure B.42: True graphs for simulation 6
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Figure B.43: True graphs for simulation 7
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Figure B.44: True graphs for simulation 8
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Figure B.45: True graphs for simulation 9
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B.2 Comparison with Peterson et al. (2014)

B.2.1 ROC curves
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Figure B.46: Joint vs Benchmark: Overall structure recognition for simulation 1 (q = 20,
n0 = n1 = 20, z = 0.1, s = 0.8)
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Figure B.47: Joint vs Benchmark: Shared structure recognition for simulation 1 (q = 20,
n0 = n1 = 20, z = 0.1, s = 0.8)
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Figure B.48: Joint vs Benchmark: Overall structure recognition for simulation 2 (q = 20,
n0 = n1 = 50, z = 0.1, s = 0.8)
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Figure B.49: Joint vs Benchmark: Shared structure recognition for simulation 2 (q = 20,
n0 = n1 = 50, z = 0.1, s = 0.8)
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Figure B.50: Joint vs Benchmark: Overall structure recognition for simulation 3 (q = 20,
n0 = n1 = 100, z = 0.1, s = 0.8)
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Figure B.51: Joint vs Benchmark: Shared structure recognition for simulation 3 (q = 20,
n0 = n1 = 100, z = 0.1, s = 0.8)
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Figure B.52: Joint vs Benchmark: Overall structure recognition for simulation 4 (q = 20,
n0 = n1 = 100, z = 0.2, s = 0.8)
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Figure B.53: Joint vs Benchmark: Shared structure recognition for simulation 4 (q = 20,
n0 = n1 = 100, z = 0.2, s = 0.8)
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Figure B.54: Joint vs Benchmark: Overall structure recognition for simulation 5 (q = 20,
n0 = n1 = 100, z = 0.2, s = 0.5)
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Figure B.55: Joint vs Benchmark: Shared structure recognition for simulation 5 (q = 20,
n0 = n1 = 100, z = 0.2, s = 0.5)
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Figure B.56: Joint vs Benchmark: Overall structure recognition for simulation 6 (q = 20,
n0 = n1 = 100, z = 0.2, s = 0.3)
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Figure B.57: Joint vs Benchmark: Shared structure recognition for simulation 6 (q = 20,
n0 = n1 = 100, z = 0.2, s = 0.3)
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B.2.2 Generating Graphs
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Figure B.58: True graphs for simulation 1,2 and 3.
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Figure B.59: True graphs for simulation 4.
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Figure B.60: True graphs for simulation 5.
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Figure B.61: True graphs for simulation 6.

102



Bibliography

Altomare, D., G. Consonni, and L. La Rocca, 2013 Objective
Bayesian Search of Gaussian Directed Acyclic Graphical Models for Or-
dered Variables with Non-Local Priors. Biometrics 69 (2): 478––487.

Andersson, S. A., D. Madigan, M. D. Perlman, and others, 1997
A characterization of Markov equivalence classes for acyclic digraphs. The
Annals of Statistics 25 (2): 505–541.

Barber, D., 2012 Bayesian Reasoning and Machine Learning. Cambridge
University Press.

Barbieri, M. M. and J. O. Berger, 2004 Optimal predictive model
selection. The Annals of Statistics 32 (3): 870–897.

Berger, J. O. and G. Molina, 2005 Posterior model probabilities via
path-based pairwise priors. Stat. Neerl. 59: 3–15.

Berger, J. O. and L. R. Pericchi, 1996 The intrinsic Bayes factor
for model selection and prediction. Journal of the American Statistical
Association 91 (433): 109–122.

Berger, J. O., L. R. Pericchi, J. K. Ghosh, T. Samanta, F. D. San-
tis, J. O. Berger, and L. R. Pericchi, 2001 Objective Bayesian Meth-
ods for Model Selection: Introduction and Comparison. Lecture Notes-
Monograph Series 38: pp. 135–207.

Buntine, W., 1991 Theory refinement on Bayesian networks. In Proceed-
ings of the Seventh conference on Uncertainty in Artificial Intelligence, pp.
52–60. Morgan Kaufmann Publishers Inc.

Castillo, I. and A. van der Vaart, 2012, 08)Needles and Straw in a
Haystack: Posterior concentration for possibly sparse sequences. The An-
nals of Statistics 40 (4): 2069–2101.

103



Consonni, G. and L. La Rocca, 2011 Moment priors for Bayesian model
choice with applications to directed acyclic graphs. In J. M. Bernardo,
M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. Smith, and
M. West (Eds.), Bayesian Statistics 9, pp. 119–144. Oxford University
Press.

Cox, D. R., 1961 Tests of Separate Families of Hypotheses. In Proceedings
of the Fourth Berkeley Symposium on Mathematical Statistics and Proba-
bility, Volume 1: Contributions to the Theory of Statistics, Berkeley, Calif.,
pp. 105–123. University of California Press.

Friedman, J., T. Hastie, and R. Tibshirani, 2008 Sparse inverse co-
variance estimation with the graphical lasso. Biostatistics 9 (3): 432–441.

Friedman, N. and D. Koller, 2003 Being Bayesian about Bayesian Net-
work Structure: A Bayesian Approach to Structure Discovery in Bayesian
Networks. Machine Learning 50 (1–2): 95–125. Full version of UAI 2000
paper.

Friedman, N., I. Nachman, and D. Peér, 1999 Learning bayesian net-
work structure from massive datasets: the sparse candidate algorithm. In
Proceedings of the Fifteenth conference on Uncertainty in artificial intelli-
gence, pp. 206–215. Morgan Kaufmann Publishers Inc.

Fronk, E.-M. and P. Giudici, 2004 Markov Chain Monte Carlo Model
Selection for DAG Models. Statistical Methods & Applications 13 (3):
259–273.

Geiger, D. and D. Heckerman, 1994 Learning Gaussian networks. In
Proceedings of the Tenth international conference on Uncertainty in arti-
ficial intelligence, UAI’94, San Francisco, CA, USA, pp. 235–243. Morgan
Kaufmann Publishers Inc.

Geiger, D. and D. Heckerman, 2002, 10)Parameter priors for directed
acyclic graphical models and the characterization of several probability
distributions. The Annals of Statistics 30 (5): 1412–1440.

George, E. I. and R. E. McCulloch, 1993 Variable Selection Via Gibbs
Sampling. Journal of the American Statistical Association 88: 881–889.

Green, P., 1995 Reversible Jump Markov Chain Monte Carlo Computation
and Bayesian Model Determination. Biometrika 82: 711–732.

104



Grzegorczyk, M., 2010 An Introduction to Gaussian Bayesian Networks.
In Q. Yan (Ed.), Systems Biology in Drug Discovery and Development,
Volume 662 of Methods in Molecular Biology, pp. 121–147. Humana Press.

Guo, J., E. Levina, G. Michailidis, and J. Zhu, 2011 Joint estimation
of multiple graphical models. Biometrika 98 (1): 1–15.

Hammersley, J. M. and P. E. Clifford, 1971 Markov fields on finite
graphs and lattices. Unpublished manuscript.

Heckerman, D., D. Geiger, and D. M. Chickering, 1995 Learning
Bayesian networks: The combination of knowledge and statistical data.
Machine learning 20 (3): 197–243.

Johnson, V. E. and D. Rossell, 2010 On the use of non-local prior
densities in Bayesian hypothesis tests. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 72 (2): 143–170.

Johnson, V. E. and D. Rossell, 2012 Bayesian Model Selection in High-
Dimensional Settings. J. Amer. Statist. Assoc. 107 (498): 649–660.
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