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Abstract

In order to capture the so-called stylized facts and model high-frequency and ir-
regularly time spaced financial data continuous time GARCH processes are becoming
popular. In 2004 Klüppelberg, Lindner and Maller introduced the COGARCH model
as a continuous time analogue to the successful GARCH model. Like the GARCH pro-
cess, the COGARCH is based on a single source of randomness, which is a driving Lévy
process. Once introduced Lévy processes and stochastic calculus for semimartingales
we go into detail to discuss some properties of the COGARCH process.
Motivated by the fact that many data are asymmetric we also study some extensions;
in particular a continuous time GJR-GARCH is analysed. We go on to focus on marko-
vianity, stability, stationarity and moments. These are prerequisites for proposing a
new version of the pseudo-maximum likelihood estimator, which is, under some regular-
ity conditions, consistent. Finally the empirical quality of our estimator is investigated
in a simulation study based on a comparison with the method of moments.
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Introduction

Stochastic volatility is the main concept used in Financial Econometrics and Math-
ematical Finance to deal with the random and time-varying dispersion of returns of
a given asset or market index. We need it to take decisions concerning risk analysis,
portfolio selection and derivative pricing. It was also clear to the funding fathers of
the modern continuous time finance that homogeneity was not realistic; Black and
Scholes wrote in [10]: “there is evidence of non-stationarity in the variance. More
work must be done to predict variances using the available information.” In financial
time series the volatility clustering phenomenon is observed too. As Mandelbrot [37]
noted, large changes tend to be followed by large change, of either sign, and small
changes are usually followed by small changes. Therefore extreme returns tend to
cluster together. Empirical evidence also shows that, while returns are uncorrelated,
absolute returns or their squares display a positive, significant and slowly decaying
autocorrelation function. Moreover returns have fat tails such that their distributions
are leptokurtic. Such phenomena intrigued many researchers and oriented the devel-
opment of stochastic models in finance to model the so-called stylized facts. Engle [15]
first developed the famous ARCH (autoregressive conditionally heteroscedastic) model
and then Bollerslev [11] generalized this process obtaining the GARCH (generalized
ARCH) model. Processes with generalized autoregressive conditional heteroscedastic-
ity provide the volatility by means of the previous values of the process. These kinds
of models capture the main characteristics of financial data.
For a long period volatility and prices were modeled with discrete time models, but over
the last years the frequency of data has increased. This growing amount of available
data is called high-frequency data. Taking the data, which can be unequally spaced in
time, only at fixed time intervals neglects some of the information. Then, for modelling
this huge amount of data it seems natural to model price and volatility processes in
continuous time, which should also reflect as many as possible the well-known stylized
facts.
A first approach goes back to Nelson [43], who extended the discrete time GARCH pro-
cess by making diffusion approximations. This process leads to a stochastic volatility
model driven by two independent Brownian motions, in contrast with GARCH models
driven by only one source of randomness. Real data show that volatility and price
processes also have jumps, which cannot be captured by Nelson model. In order to
capture that Barndorff-Nielsen and Shephard [4] introduced a new model where the
volatility is an Ornstein-Uhlenbeck process driven by a Lévy process. Modelling jumps
with this model is possible, but it still contains two sources of randomness. Therefore
Klüppelberg, Lindner and Maller introduced in [27] a new continuous time GARCH
(COGARCH) process driven by a single Lévy process. Such a model preserves the

1



2 Introduction

structure and the main characteristics of the discrete time GARCH model.
Another typical characteristic of financial data is the so-called leverage effect, i.e. a
negative correlation between current returns and future volatility. Like in the discrete
time case, the COGARCH process cannot model this phenomenon. Therefore, exten-
sions, based on the discrete time GJR-GARCH and APGARCH models developed in
[20] and [45], were recently introduced in [31] and [5].
Concerning the estimation of COGARCH parameters, Haug, Klüppelberg, Lindner
and Zapp [23] proposed a method of moment estimator, which can be applied for
equally spaced time series. Its consistency and asymptotic normality were verified un-
der regularity conditions. In order to work with irregularly spaced time series Müller
[41] considered an MCMC estimator for COGARCH models driven by a compound
Poisson. No restrictions to the driven Lévy process are contemplated by the pseudo-
maximum likelihood estimator, proposed by Maller, Müller and Szimayer [36], which
is suitable for irregularly spaced data too. A modified version of this estimator (see
[26]) has been studied together with consistency and asymptotic normality. The most
recent procedure is due to Bibbona and Negri [9]; by means of higher moments they use
the optimal prediction-based estimating functions method proposed in [50]. Inferential
techniques for asymmetric processes are just related to the method of moments and
maximum likelihood (cf. [5]).

The aim of this work is to give an overview of the continuous time GARCH pro-
cesses, both symmetric and asymmetric, and study inferential procedures for the asym-
metric COGARCH process via pseudo-maximum likelihood method. This thesis is di-
vided in three chapters.

In Chapter 1 we give an introduction to the theory of Lévy processes and stochastic
calculus for semimartingales. Especially we will focus on infinitely divisible laws, Lé
vy-Itô decomposition, properties about bounded variation and moments, subordinators
and stochastic integration.

In Chapter 2 we introduce COGARCH and asymmetric COGARCH models and
prove a few properties like stationarity, markovianity and moments. We will also
consider examples showing simulated trajectories, for both processes, in order to see
how log-prices, log-returns and volatilities behave under such models. As driving Lévy
process we will choose the variance gamma process.

Chapter 3 is dedicated to estimate the asymmetric COGARCH model. Following
Behme, Klüppelberg and Mayr [5] we analyse the available methods: the method of
moment and the pseudo-maximum likelihood estimator. We will propose a new pseudo-
maximum likelihood method, which guarantees asymptotic properties. Such method
can be used with irregularly spaced time series and is based on an approximation of
the continuous time asymmetric GARCH process by an embedded sequence of discrete
time asymmetric GARCH series, which converges in probability to the continuous time
model in the Skorokhod distance. After a detailed description of this approach we will
prove the consistency of the estimator (as Kim and Lee have done for the COGARCH
model in [26]). We conclude with a simulation study in order to apply to simulated
data the developed algorithms.



Chapter 1

Introduction to Lévy processes

This chapter is dedicated to the theory of Lévy processes. Refering to [2], [30], [48]
and [46] we introduce infinitely divisible laws to go into detail about Lévy processes and
stochastic calculus for semimartingales. Examples will simplify theoretical concepts
and simulations give an idea about trajectories. Applications to Finance and Actuarial
Sciences can be found in [49], [33] and [40].

1.1 Infinitely divisible distributions

Definition 1.1. A probability measure µ on Rd endowed with the Borel σ-field B(Rd)
is infinitely divisible1 if ∀ n ∈ N there exists another probability measure µn such that

µ = µn ∗ · · · ∗ µn︸ ︷︷ ︸
n times

= µ∗nn

i.e. if µ has a convolution n-root.

Remark 1. The law µX of a random variable X which takes values in Rd is infinitely
divisible if for all n ∈ N µX has a convolution n-root. Equivalently X is infinitely
divisible if for all n ∈ N there exist i.i.d. random variables X

(n)
1 , . . . , X

(n)
n such that

X
d
=X

(n)
1 + · · ·+X(n)

n .

Moreover by Kac’s theorem2 the law of X is infinitely divisible if, for all n ∈ N, there
exists a random variable X(n) such that

φX(u) = [φX(n)(u)]n ,

where φX(u) := E(ei〈u,X〉) is the characteristic function of X.

Example 1.1. (Multivariate Gaussian r.v.) Let X be a gaussian Rd-valued random
vector, with density with respect to the Lebesgue measure on Rd given by

µX(dx) =
1

(2π)d/2|Σ|−1/2
exp

(
−1

2
〈x−m,Σ−1(x−m)〉

)
1Rd(x)dx

1De Finetti was the first to introduce the notion of infinitely divisible distribution.
2The Rd-valued random variables X1, . . . , Xn are independent if and only if Eei

∑n
j=1〈uj ,Xj〉 =

φX1
(u1) · · ·φXn

(un) for all u1, . . . , un ∈ Rd.

3



4 1. Introduction to Lévy processes

for all m ∈ Rd and strictly3 positive definite symmetric d×d matrix Σ. It is well known
that

φX(u) = exp

(
i〈m,u〉 − 1

2
〈u,Σu〉

)
=

[
exp

(
i〈m
n
, u〉 − 1

2
〈u, Σ

n
u〉
)]n

,

so we see that X is infinitely divisible, where φX(n) is the characteristic function of a
normal vector with expectation m/n and covariance matrix Σ/n.

Example 1.2. (Poisson r.v.) We consider the Poisson distribution with d = 1 taking
values in the set N0. X is Poisson distributed if its law, absolutely continuous respect
to the counting measure, is such that

µX({x}) = e−λ
λx

x!
1N0(x)

for all λ > 0. It is easy to verify that this law is infinitely divisible too, indeed

φX(u) = exp
(
λ(eiu − 1)

)
= exp

(
λ/n(eiu − 1)

)n
.

Example 1.3. (Compound Poisson r.v.) Let (Jk)k∈N a sequence of i.i.d. and Rd-valued
random variables with common law µJ independent of N which is Poisson distributed.
The random variable X :=

∑N
k=1 Jk is called compound Poisson random variable and

we can think of it as a random walk with a random number of steps controlled by a
Poisson random variable. Conditioning on N , using independence and fixing J0 = 0
we proceed to calculate the characteristic function

φX(u) = E(E(eiuX |N))

=
∞∑
n=0

E(eiuX |N = n)µN({n})

=
∞∑
n=0

(φJ(u))n e−λ
λn

n!

= e−λ
∞∑
n=0

(λφJ(u))n

n!
= exp[λ(φJ(u)− 1)].

Similarly to the Poisson case we can prove also for the compound Poisson the infinite
divisibility.

Other examples of infinitely divisible laws are the gamma, negative binomial, Cauchy
and strictly stable distributions. Counter-examples are the binomial and uniform dis-
tributions. In particular every random variable with bounded range is not infinitely
divisible, unless is constant.

Proposition 1.1.1. Let X and Y be independent and infinitely divisible random num-
bers. Then the same holds for X + Y , −X and X − Y .

3We avoid the definite positive case because the density could not exist if the matrix were singular.



1.1 Infinitely divisible distributions 5

Proof. By hypothesis µX and µY are infinitely divisible probability measures, so by
characterization via characteristic function we have

φX+Y (u) = φX(u)φY (u) = [φX(n)(u)φY (n)(u)]n,

hence the convolution µX ∗ µY is infinitely divisible. Similarly for the second point;
it is enough to observe that φ−X(u) = φX(u). About the third part we notice that
µX−Y = µX ∗ µ−Y and φX−Y = φXφY = |φX |2, and the result follows.

About infinitely divisible laws it is useful to analyze the characteristic function
behavior. For this reason we state and prove the following theorem.

Theorem 1.1.2. The characteristic function of an infinitely divisible law never van-
ishes.

Proof. We know that if φX is the characteristic function of an infinitely divisible law
µX , then the same holds for |φX |2 that is the characteristic function of the convolution
µX ∗µ−Y , where Y is an independent copy of X. Hence if µX,n is the n-root of µX then
µX,n ∗ µ−Y,n is the n-root of µX ∗ µ−Y and |φX,n|2 = |φX |2/n. We notice that ∀u ∈ Rd

ψ(u) := lim
n→∞

|φX,n(u)|2 = lim
n→∞

|φX(u)|2/n = 1{φX(u) 6=0}.

As φX(0) = 1 and φ is continuous, there exists a positive ε such that for u ∈ (−ε, ε)
φX(u) 6= 0. Then for u ∈ (−ε, ε) ψ(u) = 1, i.e. it is continuous at 0. In particular,
by Lévy theorem, it is a characteristic function and by continuity of the characteristic
function, as it takes values from the set {0, 1}, it must be ψ(u) = 1 ∀u. Consequently
for all u ∈ Rd φX(u) 6= 0.

Proposition 1.1.3. Let (µk)k∈N a sequence of infinitely divisible probability measures.
If µk converges weakly to µ as k →∞, then µ is infinitely divisible.

Proof. µk converges weakly to µ, then φk → φ as k → ∞, which implies φ
1/n
k → φ1/n

for every n ∈ N when k → ∞. We know that φ
1/n
k is a characteristic function as φk

is such that for u ∈ Rd φk(u) = (φk,n(u))n, where φk,n is a characteristic function for
every n. Moreover φ1/n is continuous at 0, then it is a characteristic function by Lévy
continuity theorem. Finally φ = (φ1/n)n, hence φ is the characteristic function of a
infinitely divisible probability measure.

Proposition 1.1.4. Any infinitely divisible probability law can be obtained as weak
limit of a sequence of compound Poisson distributions.

Proof. Let φX be the characteristic function of an arbitrary infinitely divisble proba-
bility measure µX , so that φ

1/n
X is the characteristic function of µX(n) . We define

φn(u) = exp
[
n
(
φ

1/n
X (u)− 1

)]
so that φn is the characteristic function of a compound Poisson random variable for
n ∈ N. Then, since ex − 1 ∼ x as x→ 0

φn(u) = exp[n(e(1/n) log(φX(u)) − 1)] ∼ exp[log(φX(u))] = φX(u)



6 1. Introduction to Lévy processes

as n→∞ and the result follows by Glivenko theorem4.

Corollary 1.1.5. The set of all infinitely divisible probability measures on (Rd,B(Rd))
coincides with the weak closure of the set of all compound Poisson laws on Rd.

Proof. It follows from Propositions 1.1.3 and 1.1.4.

1.1.1 Characterisation via Lévy-Khintchine formula

Theorem 1.1.6. (Lévy-Khintchine) A probability distribution µX is infinitely divisible
if and only if there exist a vector b ∈ Rd, a positive definite symmetric d× d matrix C
and a measure ν on Rd satisfying ν({0}) = 0 and

∫
Rd(1 ∧ |x|

2)ν(dx) < ∞, such that,
for all u ∈ Rd

φX(u) = exp

{
i〈b, u〉 − 1

2
〈u,Cu〉+

∫
Rd

[ei〈u,x〉 − 1− i〈u, x〉1B(x)]ν(dx)

}
where B = B1(0) is the unit ball of Rd.

Proof. We only prove the sufficient condition (a complete proof can be found in Sato);
so we need to show that the right-hand side is a characteristic function. Consider a
monotonic decreasing to zero sequence an in Rd and define the following function

φn(u) = exp

[
i〈b−

∫
[−an,an]c∩B

xν(dx), u〉 − 1

2
〈u,Cu〉

]
×

× exp

[∫
[−an,an]c

(ei〈u,x〉 − 1)ν(dx)

]
.

This represents the characteristic function of the convolution of a gaussian law with
an independent compound Poisson distribution (with intensity λn = ν([−an, an]c) and

jump magnitude ν̃(dx) =
1[−an,an]c (x)ν(dx)

ν([−an,an]c)
). Moreover it is clear that

lim
n→∞

φn(u) = φX(u).

In order to apply Lévy theorem we show now that this limit function is continuous at
zero; this boils down to proving for each u ∈ Rd the continuity at zero of

ψ(u) =

∫
Rd

[ei〈u,x〉 − 1− i〈u, x〉1B(x)]ν(dx)

=

∫
B

(ei〈u,x〉 − 1− i〈u, x〉)ν(dx) +

∫
Bc

(ei〈u,x〉 − 1)ν(dx).

We use Taylor expansion for ei〈u,x〉 = 1 + i〈u, x〉 − 1
2
〈u, x〉2 + · · · in order to obtain

|ψ(u)| ≤
∫
B

|ei〈u,x〉 − 1− i〈u, x〉|ν(dx) +

∫
Bc
|ei〈u,x〉 − 1|ν(dx)

≤
∫
B

1

2
|〈u, x〉2|ν(dx) +

∫
Bc
|ei〈u,x〉 − 1|ν(dx).

4If φn and φ respectively are for n ∈ N the characteristic functions of the probability distributions
µn and µ, then if φn(u)→ φ(u) for all u ∈ Rd when n→∞, then µn converges weakly to µ as n→∞.



1.1 Infinitely divisible distributions 7

Using now hyphotesis about ν, Cauchy-Schwarz inequality to find a bound for 〈u, x〉
and dominated convergence theorem in the second integral

|ψ(u)| ≤ |u|
2

2

∫
B

|x|2ν(dx) +

∫
Bc
|ei〈u,x〉 − 1|ν(dx)→ 0

as u → 0. We proved that φX is a characteristic function via Lévy theorem; then the
infinite divisibility follows applying Glivenko thereom and Proposition 1.1.3.

Remark 2. The triplet (b, C, ν) is called Lévy triplet or characteristic triplet and the
exponent η : Rd → C

η(u) = i〈b, u〉 − 1

2
〈u,Cu〉+

∫
Rd

[ei〈u,x〉 − 1− i〈u, x〉1B(x)]ν(dx)

is called Lévy exponent or characteristic exponent (or symbol). Since for all u ∈ Rd

|φ(u)| ≤ 1 for any probability measure, if µ is infinitely divisible then R(η(u)) ≤ 0,
where R(·) is the real part. Moreover b ∈ Rd is called drift term, C gaussian or diffusion
coefficient and ν Lévy measure.

Remark 3. The Lévy measure5 is such that ν({0}) and∫
Rd

(1 ∧ |x|2)ν(dx) = ν(
{
|x|2 ≥ 1

}
) +

∫
|x|2<1

|x|2ν(dx) <∞. (1.1)

These two conditions are sufficient to ensure that integral in the Lévy-Khintchine
formula converges, since the integrand function is O(1) if |x|2 ≥ 1 (|ei〈u,x〉| = 1) and
O(|x|2) if |x|2 < 1 (|ei〈u,x〉 − 1− i〈u, x〉1{|x|<1}| ≤ 1

2
〈u, x〉2 ≤ 1

2
|u|2|x|2).

We know that ν({|x|2 ≥ 1}) < ∞, but ν({|x|2 < 1}) can be finite or infinite. If the
Lévy measure is finite then ν({|x|2 < 1}) < ∞, but if ν({|x|2 < 1}) = ∞ then (1.1)
implies that ν({|x| ≥ ε}) < ∞ and ν({|x| < ε}) = ∞ ∀ε ∈ (0, 1). This fact follows by
the following inequalities

ν({|x| ≥ ε}) =

∫
|x|≥ε

|x|2

1 + |x|2
1 + |x|2

|x|2
ν(dx) ≤ 1 + ε2

ε2

∫
Rd

|x|2

1 + |x|2
ν(dx) <∞

since the map y 7→ 1+y2

y2
is decreasing on R+. Therefore this measure is always bounded

on sets which are disjoint with respect to a neighbourhood of the origin, but the measure
can be infinite in a neighbourhood of zero. It is clear that any finite measure on Rd is
a Lévy measure and furthermore any Lévy measure is a σ-finite measure.

5An alternative definition for the Lévy measure on Rd\ {0} is given by the equivalent characteri-
sation ∫

Rd\{0}

|x|2

1 + |x|2
ν(dx) <∞

as ∀x ∈ Rd
|x|2

1 + |x|2
≤ 1 ∧ |x|2 ≤ 2|x|2

1 + |x|2
.
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Example 1.4. It is straightforward to obtain characteristic triplets for Gaussian, Pois-
son and compound Poisson distributions. If X has gaussian law then b = EX, C is
the covariance matrix and ν = 0. In particular an infinitely divisible probability is
gaussian if and only if ν = 0. For the Poisson case b = 0, c = 0 and ν = λδ1. In effect

exp

[∫
R
(eiux − 1− iux1{|x|<1})λδ1(dx)

]
= exp[λ(eiu − 1)].

Under the hyphotesis that X is compound Poisson distributed since∫
Rd
i〈u, x〉1B(x)ν(dx) = i〈u,

∫
Rd
x1B(x)ν(dx)〉

then b =
∫
Rd x1B(x)ν(dx), C = 0 and ν = λµJ .

Remark 4. If the Lévy measure is such that
∫
B
|x|ν(dx) < ∞ then the symbol η can

be written in the following way

η(u) = i〈b̃, u〉 − 1

2
〈u,Cu〉+

∫
Rd

(ei〈u,x〉 − 1)ν(dx)

where b̃ = b−
∫
B
xν(dx). Moreover if µX has characteristic triplet (b, 0, ν) where ν is a

finite measure and b =
∫
B
xν(dx), then µX is a compound Poisson law with intensity

λ = ν(Rd) and jump size ν̃ = ν/λ. Actually

φX(u) = exp

{
i〈b, u〉 − 1

2
〈u,Cu〉+

∫
Rd

[ei〈u,x〉 − 1− i〈u, x〉1B(x)]ν(dx)

}
= exp

[
λ

∫
Rd

(ei〈u,x〉 − 1)ν̃(dx)

]
= exp [λ(φJ(u)− 1)] .

(1.2)

Proposition 1.1.7. The Lévy exponent η is continuous at every u ∈ Rd and such that
|η(u)| ≤ K(1 + |u|2), for each u ∈ Rd, where K > 0.

Proof. Continuity follows by a well known result according to which if φ : Rd → C
is continuous and such that φ(0) = 1 and φ(u) 6= 0 for every u, then there exists a
function η : Rd → C continuous and such that η(0) = 0 and eη(u) = φ(u).

Theorem 1.1.8. The map η : Rd → C is a Lévy exponent if and only if it is continuous,
hermitian6, conditionally positive definite7 and such that η(0) = 0.

6A map f : Rd → C is hermitian if f(−u) = f(u) ∀u ∈ Rd.
7We say that f : Rd → C is conditionally positive definite if for all n ∈ N and c1, . . . , cn ∈ C such

that
∑n
j=1 cj = 0 we have

n∑
i=1

n∑
j=1

cjcif(uj − ui) ≥ 0

for all u1, . . . , un ∈ Rd. If the complex numbers c1, . . . , cn have no constraints then f is called positive
definite.
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Proof. If η is a Lévy symbol then the same holds for tη for t > 0, consequently there
exists a probability measure µt such that φµt(u) = etη(u) for u ∈ Rd. Continuity
follows by Proposition 1.1.7, and by Schoenberg correspondence8 η is also hermitian
and conditionally positive definite since etη(u) is a characteristic function. It is clear
that η(0) = 0.
We now suppose that η is continuous, hermitian and conditionally positive definite
with η(0) = 0. By Schoenberg correspondence eη is positive definite, but by Bochner’s
theorem9, since eη is positive definite, continuous and such that eη(0) = 1, this function
is the characteristic function of a measure µ for each u ∈ Rd. Finally also η/n for
n ∈ N is hermitian, conditionally positive definite, continuous and it vanishes at the
origin, then eη/n is a characteristic function too, hence µ is infinitely divisible.

1.2 Lévy processes

1.2.1 Definition and examples

Definition 1.2. Let (Ω,F, (Ft)t∈T , P ) be a filtered probability space satisfying the
usual conditions10. An adapted and Rd-valued stochastic process L = (Lt)t∈T is called
Lévy Process if the following statements are satisfied:

1. L0 = 0 P -a.s.

2. Lt − Ls is independent of Fs ∀ 0 ≤ s < t.

3. Lt+s − Lt has law independent of t ∀ s, t ∈ T .

4. L is stochastically continuous, i.e. for every t ∈ T and each ε > 0 lims→t P (|Lt −
Ls| > ε) = 0.

Remark 5. Conditions 2. and 3. imply respectively that L has independent and
stationary increments. Hence for n ∈ N and each 0 ≤ t1 < t2 < · · · < tn+1 < ∞ the
random variables (Ltj+1

− Ltj)1≤j≤n are independent and the vector Lt − Ls has the
same law of Lt−s ∀ s < t, as L0 = 0. One can notice that under the first condition and
the stationarity hypothesis the last condition is equivalent to limt↓0 P (|Lt| > ε) = 0 for
ε > 0 since lims→t P (|Lt − Ls| > ε) = lims→t P (|Lt−s| > ε) = limk→0 P (|Lk| > ε) = 0.
In addition if X and Y are two stochastically continuous processes then X + Y is still
stochastically continuous. This fact follows from the well known inequality

P (|Xt + Yt| > ε) ≤ P (|Xt| > ε/2) + P (|Yt| > ε/2) ∀ε > 0.

8The mapping f : Rd → C is hermitian and conditionally positive definite if and only if etf is
positive definite ∀ t > 0.

9If φ : Rd → C is positive definite, continuous at the origin and such that φ(0) = 1, then φ is a
characteristic function.

10We assume completeness and right continuity for the filtration (Ft)t∈T . Given a complete proba-
bility space (Ω,F, P ), a filtration (Ft)t∈T on (Ω,F, P ) is called complete is Ft contains every negligible
set for all t ∈ T . Moreover (Ft)t∈T is right continuous if Ft = Ft+ :=

⋂
u>t Fu ∀ t < sup(T ). Under

these hypothesis we call the filtered probability space also standard filtered probability space.
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The term Lévy process honours the French mathematician Paul Lévy who played
an instrumental role in bringing together an understanding and characterisation of
processes with stationary independent increments. In earlier literature these processes
were called additive processes (processes with independent increments). Lévy himself
referred to them as a sub-class of additive processes.

We highlight now the relationship between infinite divisibility and Lévy processes.

Proposition 1.2.1. Given a Lévy process L, then Lt is infinitely divisible for each
t ∈ T .

Proof. For any n ∈ N and any t ∈ T

Lt = L t
n

+
(
L 2t

n
− L t

n

)
+ · · ·+

(
Lt − L (n−1)t

n

)
.

By stationarity and independence of the increments
(
L kt

n
− L (k−1)t

n

)
k≥1

is a sequence

of i.i.d. random variables.

Remark 6. We proved that Lt is infinitely divisible, hence from Theorem 1.1.6 φLt(u) =
eη(t,u) for each t ∈ T and u ∈ Rd, where η is the characteristic exponent.

To better understand the future results we introduce the following useful lemma.

Lemma 1.2.2. If X = (Xt)t∈T is a stochastically continuous process, then the map
t 7→ φXt(u) is continuous for each u ∈ Rd.

Proof. We start by considering the function x 7→ ei〈u,x〉; it is continuous at the origin
for each u ∈ Rd. Then, fixed u, ∀ε > 0 ∃δ1 > 0 such that sup|x|<δ1 |e

i〈u,x〉−1| < ε/2. By
stochastic continuity and definition of limit we can find δ2 > 0 such that if |t− s| < δ2

P (|Xt −Xs| > δ1) < ε/4 for each s, t ∈ T .
Hence, if we call µt−s the law of Xt −Xs, for |t− s| < δ2

|φXt(u)− φXs(u)| =
∣∣∣∣∫

Ω

ei〈u,Xt−s(ω)〉P (dω)

∣∣∣∣
=

∣∣∣∣∫
Ω

ei〈u,Xs(ω)〉 [ei〈u,Xt(ω)−Xs(ω)〉 − 1
]
P (dω)

∣∣∣∣
≤
∫
Rd
|ei〈u,x〉 − 1|µt−s(dx)

=

∫
Bδ1 (0)

|ei〈u,x〉 − 1|µt−s(dx) +

∫
Bδ1 (0)c

|ei〈u,x〉 − 1|µt−s(dx)

≤ sup
Bδ1 (0)

|ei〈u,x〉 − 1|+ 2P (|Xt −Xs| > δ1) < ε.

We are now ready to show an important theorem about characteristic function of
Lt, with t ∈ T .

Theorem 1.2.3. If L is a Lévy process, then φLt(u) = etη(u) ∀u ∈ Rd and t ∈ T , where
η is the characteristic exponent of L1.
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Proof. Let introduce φu(t) := φLt(u) the characteristic function as function of t, which
is continuous for every u ∈ Rd by Lemma (1.2.2). By independence and stationarity
of the increments

φu(s+ t) = E(ei〈u,Ls+t〉) = E(ei〈u,Ls+t−Ls〉ei〈u,Ls〉) = E(ei〈u,Ls+t−Ls〉)E(ei〈u,Ls〉),

then φu(s + t) = φu(t)φu(s). We are looking for solutions of this functional equation,
with the constraint φu(0) = 1. It is clear that the only function satisfying these
conditions is φu(t) = etα(u), where α : Rd → C. We know that L1 is infinitely divisible,
so α must be its characteristic exponent.

We can now formulate the Lévy-Khintchine expression for a Lévy process L =
(Lt)t∈T ,

φLt(u) = exp

{
t

[
i〈b, u〉 − 1

2
〈u,Cu〉+

∫
Rd

[ei〈u,x〉 − 1− i〈u, x〉1B(x)]ν(dx)

]}
for u ∈ Rd, where (b, C, ν) is the Lévy triplet of L1.

Remark 7. If L is a Lévy process with triplet (b, C, ν), then −L is a Lévy process with
characteristic triplet (−b, C, ν̃), where ν̃(A) = ν(−A) ∀A ∈ B(Rd). In effect

φ−Lt(u) = E(ei〈u,−Lt〉) = φLt(−u) =

= exp

{
t

[
i〈−b, u〉 − 1

2
〈u,Cu〉+

∫
Rd

[ei〈u,−x〉 − 1− i〈u,−x〉1B(x)]ν(dx)

]}
= exp

{
t

[
i〈−b, u〉 − 1

2
〈u,Cu〉+

∫
Rd

[ei〈u,y〉 − 1− i〈u, y〉1B(y)]ν(−dy)

]}
where −x = y. If we define the new measure ν̃ we obtain the triplet (−b, C, ν̃) for
the new process −L, that is certainly a Lévy process, because the conditions of the
Definition 1.2 are immediately verified.
For β ∈ Rd the process (Lt + βt)t∈T is a Lévy process too: the first three conditions
are clearly satisfied, about the fourth condition we have ∀ε > 0

P (|Lt + βt| > ε) ≤ P (|Lt| > ε/2) + P (t|β| > ε/2)

= P (|Lt| > ε/2) + 1( ε
2|β| ,∞)(t)

and taking the limit as t → 0 we have stochastic continuity. About its characteristic
function ∀u ∈ Rd

φLt+βt(u) = E(ei〈u,tβ〉)ei〈u,Lt〉 = ei〈u,tβ〉φLt(u),

hence the triplet is (b+ β, C, ν).

Example 1.5. (Brownian motion and Poisson process) The simplest example of Lévy
process is the deterministic linear drift. Other examples are the Brownian motion and
the Poisson process. About Brownian motion we prove only continuity condition since
the other ones are obvious. Since Bt ∼ N(0, tI) for every t ∈ T\ {0}

P (|Bt| > ε) = 1− P (−ε/
√
t ≤ Z ≤ ε/

√
t) = 1− Φ(ε/

√
t) + Φ(−ε/

√
t) =

1−
∫ ε1√

t

−∞
· · ·
∫ εd√

t

−∞
µZ(dx1, . . . , dxd) +

∫ − ε1√
t

−∞
· · ·
∫ − εd√

t

−∞
µZ(dx1, . . . , dxd)→ 0
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as t → 0, and where Z is an Rd-valued gaussian vector with zero mean, covariance
matrix I and law µZ . Similarly for the Poisson process on R ∀λ > 0 and as t→ 0

P (Nt > ε) = 1−
bεc∑
x=0

e−λt
(λt)x

x!
= 1− e−λt −

bεc∑
x=1

e−λt
(λt)x

x!
→ 0.

By Remark 7 the linear Brownian motion (Xt)t∈T = (µt + σBt)t∈T with σ > 0 and
µ ∈ R and the compensated compound Poisson process (Nt−λt)t∈T for λ > 0 are Lévy
processes too.

In the following figures one can see simulations about paths of some of these processes.
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t

Figure 1.1: Poisson process sample path with λ = 3
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Figure 1.2: Brownian motion sample path

Example 1.6. (Compound Poisson process) Let (Jn)n∈N and N = (Nt)t∈T be a se-
quence of i.i.d. random variables taking values in Rd having no atom at 0 with common
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Figure 1.3: 50 Brownian motion sample paths
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Figure 1.4: Linear Brownian motion sample path with σ = 10 and µ = 3

law µJ and a Poisson process with intensity λ > 0 independent of this sequence. The
compound Poisson process11 is defined as follows

Yt :=
Nt∑
n=1

Jn, t ∈ T.

We have already calculated in the Example 1.3 the expression of its characteristic
function

φYt(u) = exp [λt(φJ(u)− 1)] .

We now prove via definition that Y = (Yt)t∈T is a Lévy process. Y0 = 0 a.s. since we use
the convention that for any n ∈ N0

∑n
n+1 = 0. About independence and stationarity of

the increments we introduce the filtration F̃t := σ((Nu : u ≤ t) ∪ (Jn1{n≤Nt} : n ∈ N))

11This kind of process is widely used in the classical actuarial risk process to model the total claim
amount up to time t. In particular (Jn)n∈N are the (positive) claim sizes and Nt for t ≥ 0 is the
number of claims in [0, t]. More details and applications can be found in Mikosh [40].
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and we can see that

Yt − Ys =
Nt∑

n=Ns+1

Jn =
Nt−Ns∑
n=1

JNs+n1{Ns+n≤Nt} =
Nt−Ns∑
n=1

JNs+n

and

Ys =
∞∑
n=1

Jn1{n≤Ns}.

To prove independence of the increments we introduce the following lemma.

Lemma 1.2.4. The random variables JNs+n are independent of F̃s for n ∈ N and
distributed as J1.

Proof. Let A ∈ B(Rm), B ∈ B(Rd) and E ∈ σ(Nu : u ≤ t). Then

P ({(JNs+1, . . . , JNs+m) ∈ A} ∩ E ∩ {(J1, . . . Jd) ∈ B} ∩ {Ns ≥ i}) =

=
∞∑
h=i

P ({(Jh+1, . . . , Jh+m) ∈ A} ∩ E ∩ {(J1, . . . , Jd) ∈ B} ∩ {Ns = h})

=
∞∑
h=i

P ({(Jh+1, . . . , Jh+m) ∈ A})P ({(J1, . . . , Jd) ∈ B})P (E ∩ {Ns = i})

=
∞∑
h=i

P ({(J1, . . . , Jm) ∈ A})P ({(J1, . . . , Jd) ∈ B})P (E ∩ {Ns = h})

= P ({(J1, . . . , Jm) ∈ A})
∞∑
h=i

P ({(J1, . . . , Jd) ∈ B})P (E ∩ {Ns = h})

= P ({(J1, . . . , Jm) ∈ A})P ({(J1, . . . , Jd) ∈ B})P (E ∩ {Ns ≥ i}).

By choosing E = Ω, i = 0 and B = Rd we obtain that the two vectors (J1, . . . , Jm)
(JNs+1, . . . , JNs+m) have the same law. Since the family of the events E∩{(J1, . . . , Jd) ∈ B}∩
{Ns ≥ i} is stable under finite intersections and generates F̃s for E ∈ σ(Nu : u ≤ t),
A ∈ B(Rm), B ∈ B(Rd) and i ∈ N0 the equality

P ({(JNs+1, . . . , JNs+m) ∈ A} ∩ E ∩ {(J1, . . . , Jd) ∈ B} ∩ {Ns ≥ i}) =

= P ({(J1, . . . , Jm) ∈ A})P ({(J1, . . . , Jd) ∈ B})P (E ∩ {Ns ≥ i})

ends the proof.

It is now obvious that the increments are independent. Thanks to this fact we have ∀
0 ≤ s < t

φYt(u) = φYt−Ys(u)φYs(u)

hence

φYt−Ys(u) =
φYt(u)

φYs(u)
= exp[λ(t− s)(φJ(u)− 1)] = φYt−s(u),

therefore Y has also stationary increments. About stochastic continuity we have that
φYt−Ys(u) → 1 as s → t, hence, since as s → t µt−s converges weakly to δ0 Yt − Ys
converges in probability to 0.
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Figure 1.5: Compound Poisson process sample path with λ = 3 and jump-size standard
Gaussian distribution

Remark 8. If X and Y are independent Lévy processes, then also X + Y is a Lévy
process. We will prove this fact later via Lévy-Itô theorem.

Example 1.7. (Lévy-jump diffusion) Assume that the process L in R is a sum between
a linear Brownian motion and a compensated compound Poisson process, i.e.

Lt = bt+
√
cBt +

Nt∑
n=1

Jn − tλE(J1)

where b ∈ R, c ≥ 0 and λ > 0. Assume that all source of randomness are mutually
independent. Then the characteristic function of Lt is

E(eiuLt) = E

[
exp

(
iu

(
bt+
√
cBt +

Nt∑
n=1

Jn − tλE(J1)

))]

= eiubtE[exp(iu
√
cBt)]E

[
exp

(
iu

Nt∑
n=1

Jn − iutλE(J1)

)]
= eiubte−

1
2
u2ct exp

[
λt(E[eiuJ1 − 1− iuJ1])

]
= exp

[
t

(
iub− 1

2
u2c+

∫
R
(eiux − 1− iux)λµJ(dx)

)]
.

Example 1.8. Let B = (Bt)t∈T a Brownian motion on R; we introduce the stopping
time12 τt = inf {u : Bu = t}. By the iterated logarithm law it is a finite stopping time

12Reflection principle helps us to describe the law µτt . P (τt ≤ x) = 2P (Bx > t) = 2(1− Φ(t/
√
x)),

hence µτt(dx) = fτt(x)dx and the density is absolutely continuous

fτt(x) =
d

dt
Fτt(x) =

t

x3/2
√

2π
e−

t2

2x .

∀t ∈ T τt does not have finite mean, in effect E(τt) =
∫∞

0
t√
2πx

e−
t2

2x dx and the integrand function

behaves as 1/
√
x as x→∞. This process is also stable since µτnt is equal to the image of µτt by the

homothety x 7→ n2x. We saw that τ2t = τt + τ̃t, so by recurrence the sum of n i.i.d. distributions
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process. Our aim is to show that it is a Lévy process. Clearly τ0 = inf {u : Bu = 0} = 0,
and as τt is finite B̃u = Bu+τt − Bτt is a Brownian motion independent of Fτt . Given
s ∈ T τ̃s = inf{u : B̃u = s} and τs has the same distribution, and moreover τ̃s is
independent of τt. We can write

Bτt+τ̃s = Bτt+τ̃s −Bτt +Bτt = s+ t.

Therefore one can deduce τt + τ̃s = τt+s, that is τt+s − τt = τ̃s
d
= τs. It follows that the

stopping time process has independent and homogeneous increments. Furthermore as
t→ 0 by the reflection principle

P (τt > ε) = 1− P (τt ≤ ε) = 1− 2P (Bε ≥ t)→ 0

that guarantees that τt is a Lévy process.

1.2.2 Lévy-Itô decomposition

Theorem 1.2.5. (Lévy-Itô decomposition) Given a vector b ∈ Rd, a positive defi-
nite symmetric d × d matrix C and a measure ν on Rd satisfying ν({0}) = 0 and∫
Rd(1 ∧ |x|

2)ν(dx) < ∞, then there exists a probability space (Ω,F, P ) on which three
independent Lévy processes exist, where L1 is a linear Brownian motion, L2 a compound
Poisson process and L3 a square integrable martingale with an a.s. countable number of
jumps of magnitude less than 1 on each finite time interval. Taking L = L1 + L2 + L3

one can define a Lévy process on a probability space with the following characteristic
exponent

η(u) = i〈b, u〉 − 1

2
〈u,Cu〉+

∫
Rd

[ei〈u,x〉 − 1− i〈u, x〉1B(x)]ν(dx)

∀u ∈ Rd.

Remark 9. Any characteristic exponent η belonging to an infinitely divisible distribu-
tion can be written

η(u) =

{
i〈b, u〉 − 1

2
〈u,Cu〉

}
+

{
ν(Rd\B)

∫
Bc

(ei〈u,x〉 − 1)
ν(dx)

ν(Rd\B)

}
+

+

{∫
B

(ei〈u,x〉 − 1− i〈u, x〉)ν(dx)

}
for all u ∈ Rd. Call the three bracktes η1, η2 and η3; η1 and η2 correspond, respectively,
to a linear Brownian motion with drift b and diffusion C and a compound Poisson
process with rate ν(Rd\B) and jump law 1Bc(x) ν(dx)

ν(Rd\B)
. The proof of existence of the

theorem boils down to showing the existence of the process L3, whose characteristic
exponent is given by η3.

τ1, . . . , τn with law of µτt have the same law of τnt. It follows that about the density of X := τ1+···+τn
n2

fX(x) = n2fτnt
(n2x) = n2 nt√

2π(n2x)3/2
e−

t2n2

2xn2 =
t

x3/2
√

2π
e−

t2

2x = fτt(x)

that proves that τt has a strictly stable distribution with α = 1/2.
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However the proof of the theorem needs some preparatory results about square in-
tegrable martingales.
Let (Ω,F, (Ft)t∈T , P ) be a standard filtered probability space, let introduce a new space:
the space of real valued, right continuous, zero mean and square integrable martingales
with respect to the given filtration over the time period [0, t̃]. We call this space M2

t̃

and let see immediately that it is a complete space.

Proposition 1.2.6. (M2
t̃
, 〈·, ·〉) is a Hilbert space, where 〈M,N〉 = E(Mt̃Nt̃), M,N ∈

M2
t̃
.

Proof. We verify first of all that 〈M,N〉 = E(Mt̃Nt̃), M,N ∈M2
t̃

is an inner product.
It is symmetric (〈M,N〉 = 〈N,M〉), linear (〈αM + βN,O〉 = α〈M,O〉+ β〈N,O〉) and
such that 〈M,M〉 ≥ 0 by definition of expectation. It is also obvious that M = 0
implies 〈M,M〉 = 0, but it is more difficult to prove that 〈M,M〉 = 0 implies M = 0.
However by Doob’s maximal inequality, for M ∈M2

t̃

E(sup
s≤t̃

M2
s ) ≤ 4E(M2

t̃ )

then supt≤t̃Mt = 0 a.s., and since M is right continuous it follows that Mt = 0 ∀t ∈ [0, t̃]
a.s.
We now can show the completeness property; let M (n) a Cauchy sequence in M2

t̃
, then

∀t M (n)
t is a Cauchy sequence in the Hilbert space of zero mean and square integrable

random variables defined on (Ω,Ft, P ), L2(Ω,Ft, P ), endowed with the inner product
〈M,N〉. Hence there exists a limiting variable M in L2. If we show that M is a
martingale the proof is concluded; we will prove that Ms = E(Mt|Fs) for s < t. We
have to show that E(Ms1A) = E(Mt1A) ∀A ∈ Fs, but we have that13 E(Ms1A) =

limn→∞ E(M
(n)
s 1A) and E(Mt1A) = limn→∞ E(M

(n)
t 1A) and E(M

(n)
s 1A) = E(M

(n)
t 1A)

by martingale property for each A ∈ Fs. Clearly the limit is an Ft-adapted process
and by Jensen’s inequality

E(M2
s ) = E(E(Mt|Fs)2) ≤ E(E(M2

t |Fs)) = E(M2
t ) <∞.

If we take the right continuous version14 of this martingale we can assert that M2
t̃

is a
Hilbert space.

Our aim is constructing a sequence of right continuous, zero expectation and square
integrable martingales converging to a process having as Lévy symbol η3. Suppose we
have for n ∈ N a sequence of independent Poisson processes N (n) = (N

(n)
t )t∈T with

rate λn ≥ 0 and the i.i.d. sequences of (J
(n)
k )k∈N, which are themselves mutually

independent, with common law µJn which does not assign mass to the origin and has
finite second moment. Associated with each pair (λn, µJn) is the square integrable

13We used the proposition according to which the convergence in Lp, p > 1, implies the convergence
of the means.

14We use here the hypothesis of standard filtration, that guarantees the existence of a version càdlàg
martingale.
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martingale15 described by the compensated compound Poisson process, we denote it
by M (n) and its natural filtration by (F

(n)
t )t∈T . We put all processes on the same

probability space and take them as martingales with respect to the common filtration

Ft := σ

(⋃
n∈N

F
(n)
t

)
.

Theorem 1.2.7. If
∑

n≥1 λn
∫
Rd |x|

2µJn(dx) < ∞ then there exists a Lévy process X

defined on the same space as the processes
{
M (n) : n ∈ N

}
which is a square integrable

martingale with Lévy exponent given by

η(u) =

∫
Rd

(ei〈u,x〉 − 1− i〈u, x〉)
∑
n≥1

λnµJn(dx)

∀u ∈ Rd. Moreover for each t̃ > 0

lim
k→∞

E

sup
t≤t̃

(
Xt −

k∑
n=1

M
(n)
t

)2
 = 0.

Proof. First of all
∑k

n=1 M
(n)
t is a martingale, since it is sum of martingales and it is

square integrable as

E

( k∑
n=1

M
(n)
t

)2
 =

k∑
n=1

E((M
(n)
t )2) = t

k∑
n=1

λn

∫
Rd
|x|2µJn(dx) <∞

by independence and E(M
(i)
t M j

t ) = E(M
(i)
t )E(M

(j)
t ) = 0 for i 6= j. Fixed t̃ > 0, it easy

to prove that X
(k)
t =

∑k
n=1 M

(n)
t , 0 ≤ t ≤ t̃, is a Cauchy sequence with respect to the

seminorm L2, in effect

||X(k) −X(l)||2 = t

k∑
n=l

λn

∫
Rd
|x|2µJn(dx) =

= t

k∑
n=1

λn

∫
Rd
|x|2µJn(dx)− t

l−1∑
n=1

λn

∫
Rd
|x|2µJn(dx)→ 0

15If Jn has finite second moment for n ∈ N the process Mt =
∑Nt

n=1 Jn − λtE(J1) is a square
integrable martingale with respect to its natural filtration. In effect E(Mt|Fs) = Ms+E(Mt−Ms|Fs) =
Ms + E(Mt−s) = Ms ∀ 0 ≤ s < t and

E(M2
t ) = E

( Nt∑
n=1

Jn

)2
− λ2t2E2(J1)

= E

(
Nt∑
n=1

J2
n

)
+ E

(
Nt∑
n=1

Nt∑
m=1

JnJm1{n 6=m}

)
− λ2t2E2(J1)

= λtE(J2
1 ) + E(N2

t −Nt)E2(J1)− λ2t2E2(J1)

= λtE(J2
1 ) <∞.
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as k, l → ∞. We saw that the space M2 is a complete space, hence there exists a
martingale X = (Xt)0≤t≤t̃ such that ||X(k) − X||2 → 0 as k → ∞. Thanks to this

convergence we can claim that the law of X
(k)
t converges to the X law, and consequently

since the processes X(k) are Lévy processes

E(ei〈u,Xt−Xs〉) = lim
k→∞

E(ei〈u,X
(k)
t −X

(k)
s 〉) = lim

k→∞
E(ei〈u,X

(k)
t−s〉) = E(ei〈u,Xt−s〉)

and we conclude that X has stationary increments. X has also independent increments

P (Xt −Xs ∈ A,Xr ∈ B) = lim
k→∞

P (X
(k)
t −X(k)

s ∈ A,X(k)
r ∈ B) =

= P (Xt −Xs ∈ B)P (Xr ∈ B)

for all r ≤ s < t by convergence of finite dimensional distributions. Furthermore thanks
to Doob’s inequality

lim
k→∞

E( sup
0≤t≤t̃

(Xt −X(k)
t )2) ≤ lim

k→∞
4E[(Xt̃ −X

(k)

t̃
)2] = 0.

To prove stochastic continuity16

lim
t→0

P (|Xt| > ε) ≤ lim
t→0

lim
k→∞

P (|X(k)
t | > ε/2) + lim

t→0
lim
k→∞

P (|Xt −X(k)
t | > ε/2)

= lim
t→0

lim
k→∞

P (|X(k)
t | > ε/2)

≤ lim
t→0

lim
k→∞

2E(|X(k)
t |)/ε

≤ lim
t→0

lim
k→∞

2E

(
k∑

n=1

|M (n)
t |

)
/ε

≤ lim
t→0

lim
k→∞

2E1/2

(
k∑

n=1

|M (n)
t |

)2

/ε

=
2

ε
lim
t→0

√
t
∑
n≥1

λn

∫
Rd
|x|2µJn(dx) = 0.

Then the limiting process is a Lévy process and

lim
k→∞

E(ei〈u,X
(k)
t 〉) = lim

k→∞
exp

[∫
Rd

(ei〈u,x〉 − 1− i〈u, x〉)
k∑

n=1

λnµJn(dx)

]
= eη(u).

The limiting process X depends on t̃ (say X t̃), and we want to deal this issue. It is
well known that if an and bn are two sequences of real numbers, supn a

2
n = (supn |an|)2

and supn |an + bn| ≤ supn |an|+ supn |bn|, hence, by using also Minkowski’s inequality,

16We use Markov and Cauchy-Schwarz inequalities and hypothesis on the convergence of the series∑
n≥1 λn

∫
Rd |x|2µJn(dx).
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for t̃1 ≤ t̃2

E1/2

[
sup
t≤t̃1

(X t̃1
t −X t̃2

t )2

]
= E1/2

[
sup
t≤t̃1

(X t̃1
t −X

(k)
t +X

(k)
t −X t̃2

t )2

]

= E1/2

(sup
t≤t̃1
|X t̃1

t −X
(k)
t +X

(k)
t −X t̃2

t |

)2


≤ E1/2

(sup
t≤t̃1
|X t̃1

t −X
(k)
t |+ sup

t≤t̃1
|X(k)

t −X t̃2
t |

)2


≤ E1/2

(sup
t≤t̃1
|X t̃1

t −X
(k)
t |

)2
+ E1/2

(sup
t≤t̃1
|X t̃2

t −X
(k)
t |

)2


= E1/2

[
sup
t≤t̃1

(X t̃1
t −X

(k)
t )2

]
+ E1/2

[
sup
t≤t̃1

(X t̃2
t −X

(k)
t )2

]
→ 0

as k → ∞. Consequently the two processes agree a.s. on the time horizon [0, t̃1] and
we may say that the limit does not depend on time t̃.

We are then ready to prove the decomposition theorem.

Proof. (Theorem 1.2.5) The component η3 of the Lévy symbol can be written as follows

η3 =
∑
n≥0

[
λn

∫
Rd

(ei〈u,x〉 − 1)ν̃n(dx) + λni

∫
Rd
〈u, x〉ν̃n(dx)

]

where λn = ν(
{
x : 2−(n+1) ≤ |x| < 2−n

}
) and ν̃n(dx) = 1{2−(n+1)≤|x|<2−n}

ν(dx)
λn

with the

understanding that the n-th integral is absent if λn = 0. Since
∑

n≥0 λn
∫
Rd |x|

2ν̃n(dx) =∫
B
|x|2ν(dx) < ∞ then η3 is the characteristic exponent of a Lévy process by The-

orem 1.2.7, it is enough to take λn = ν(
{
x : 2−(n+1) ≤ |x| < 2−n

}
) and ν̃n(dx) =

1{2−(n+1)≤|x|<2−n}
ν(dx)
λn

.

About the fact that the three processes are on the same space we can construct a
product space which supports all these independent processes.

Remark 10. If the Lévy measure is finite from the symbol we get that L is sum of a
linear Brownian motion and a compound Poisson process,

η(u) = i〈u,
∫
Rd
x1B(x)ν(dx)〉 − 1

2
〈u,Cu〉+ ν(Rd)

∫
Bc

(ei〈u,x〉 − 1)
ν(dx)

ν(Rd)
.

Then almost all paths of L have a finite number of jumps on every compact interval;
we say that L has finite activity. If ν is not finite the compound Poisson martingale
associated with (λn, ν̃n) is such that the rate of arrival of the jumps increases and the
size of the jumps decreases as n increases. Then the process has a countable infinity
of small jumps and L has infinite activity.
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1.2.3 Right continuous version, filtrations and strong Markov
property

We know that the Brownian motion has an a.s. continuous version, we can formulate
a similar theorem about Lévy processes and the proof can be read in Applebaum [2].

Theorem 1.2.8. Every Lévy process has a càdlàg modification that is itself a Lévy
process.

We are going to introduce important results concerning filtrations in the Lévy
processes theory.

Proposition 1.2.9. Let L = (Lt)t∈T an Ft-Lévy Process, then L is independent of F0.

Proof. We need to prove independence of σ(L) and F0, but we can just prove the
independence of J and F0, where

J :=
{
{Lt1 ∈ A1, . . . , Ltk ∈ Ak} , k ∈ N, ti ∈ T,Ai ∈ B(Rd)

}
is a base for σ(L). Let introduce the increments Yi := Lti − Lti−1, for 1 ≤ i ≤ k and
t0 = 0 and prove the independence among F0, σ(Y1), . . . , σ(Yk). For each D ∈ F0 and
A1, . . . , Ak ∈ B(Rd) we need to show that

P

(
D

k⋂
i=1

{Yi ∈ Ai}

)
= P (D)

k∏
i=1

P (Yi ∈ Ai) (1.3)

and we are proceeding by induction on k. For k = 1 it is clear as Y1 = Lt1−L0 is inde-
pendent of F0. Similarly Yk = Ltk−Ltk−1

is independent of Fk−1 andD
⋂k−1
i=1 {Yi ∈ Ai} ∈

Ftk−1
by Doob measurability criterion. If (1.3) is true for k − 1, then

P

(
D

k⋂
i=1

{Yi ∈ Ai}

)
= P

(
D

k−1⋂
i=1

{Yi ∈ Ai}

)
P (Yk ∈ Ak)

= P (D)
k∏
i=1

P (Yi ∈ Ai).

Then the vector (Y1 . . . , Yk) is independent of F0, and since (Lt1 , . . . , Ltk) is measurable
function of (Y1, . . . , Yk) by Doob criterion is itself independent of F0.

Proposition 1.2.10. If L is an Ft-Lévy process with càdlàg paths, then it is at the
same time an Ft+-Lévy process.

Proof. We need to prove only the independent increments condition. We have to show
that Lt − Ls is independent of Fs+ =

⋂
ε>0 Fs+ε. By independence of the increments

for each ε > 0 Lt+ε − Ls+ε is independent of Fs+ε, and it is also independent of Fs+ as
Fs+ ⊆ Fs+ε. In order to conclude the proof it is enough to show that E(h(Lt−Ls)|A) =
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E(h(Lt − Ls)) for each A ∈ Fs+ and for any h : Rd → R bounded and continuous17.
We have proved so far

E(h(Lt+1/n − Ls+1/n)|A) = E(h(Lt+1/n − Ls+1/n)).

L is right continuous and by continuity of the test functions h

lim
n→∞

h(Lt+1/n − Ls+1/n) = h(Lt − Ls) a.s.;

then, by dominated convergence,

E(h(Lt − Ls)|A) = E(h(Lt − Ls))

for A ∈ Fs+ and h.

Proposition 1.2.11. Every right continuous Ft- Lévy process L defined on a com-
plete probability space is an F̄t+-Lévy process, where F̄t+ := σ(Ft+,N), with N :=
{N ∈ F : P (N) = 0}.

Proof. As in the previous theorem we just prove independence of the increments, i.e. in-
dependence between Lt − Ls and F̄s+ = σ(Fs+,N), where N = {N ∈ F : P (N) = 0}.
We need to remember that if a r.v. X is independent of G ⊂ F, then it is independent
of Ḡ := σ(G,N) too. Thanks to this fact we can end the proof.

Theorem 1.2.12. (0-1 Blumenthal law) Let L = (Lt)t∈T be a right continuous Lévy
process and let Ft be its natural filtration, then F0+ is trivial: for each A ∈ F0+

P (A) = 0 or P (A) = 1.

Proof. By Proposition 1.2.10 L is also an Ft+-Lévy process and by Proposition 1.2.9 it
is independent of F0+, hence σ(L) := σ((Lt)t∈T ) is independent of F0+. As F0+ ⊆ σ(L),
then F0+ is independent of itself. Consequently P (A) = P (A ∩ A) = P (A)P (A) for
A ∈ F0+ and P (A) = 0 or P (A) = 1.

Theorem 1.2.13. (Strong Markov property) Let L = (Lt)t∈T and τ be a right con-
tinuous Ft-Lévy process and an a.s. finite stopping time. Then Zt := Lτ+t − Lτ is a
Gt-Lévy process, where Gt := Fτ+t, and it has the same law of L.

Proof. τ + t is a stopping time for each t ∈ T , hence Gt = Fτ+t is well defined, and as
τ + s ≤ τ + t for s < t Gt is a filtration. Zt is Fτ+t-measurable18, then Z is an adapted
process.
Z0 = Lτ − Lτ = 0 gets right continuity by L. In order to prove independence and
stationarity of the increments we show first of all that

E(h(Lτ+t − Lτ+s)|G) = E(h(Lτ+t − Lτ+s)) (1.4)

17An Rd-valued random variable X is independent of G if and only if E(h(X)|G) = E(h(X)) for any
G ∈ G with P (G) > 0 and for each h : Rd → R bounded and continuous. We call this function h also
test function.

18If X is a progressively measurable process and τ is an a.s. finite stopping time, then Xτ is Fτ -
measurable. Our process L is progressively measurable: it is right continuous and adapted.
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for s < t and h : Rd → R bounded and continuous and G ∈ Gs such that P (G) > 0.
Start with discrete stopping times taking the values (tm)m∈I , then for any m ∈ I

E(h(Lτ+t − Lτ+s)1G1{τ=tm}) = E(h(Lτ+t − Lτ+s)1G∩{τ=tm}).

G ∈ Gs = Fτ+s, consequently G ∩ {τ = tm} = G ∩ {τ + s = tm + s} ∈ Ftm+s and
by hyphotesis, since L is a Lévy process and Ltm+t − Ltm+s is independent of Ftm+s,
h(Lτ+t − Lτ+s) and 1G∩{τ=tm} are independent. Hence

E(h(Lτ+t − Lτ+s)1G1{τ=tm}) = E(h(Lτ+t − Lτ+s))P (G ∩ {τ = tm}).

As the increments of L are stationary

E(h(Lτ+t − Lτ+s)1G) =
∑
m∈I

E(h(Lτ+t − Lτ+s)1G1τ=tm)

= E(h(Lt−s))
∑
m∈I

P (G ∩ {τ = tm})

= E(h(Lt−s))P (G)

and E(h(Lτ+t−Lτ+s)1G)
P (G)

= E(h(Lτ+t − Lτ+s)|G) = E(h(Lt−s)).
If we have an arbitrary stopping time τ we can consider a sequence τn of discrete
stopping times converging19 to τ . We have

E(h(Lτn+t − Lτn+s)|G) = E(h(Lt−s))

and by continuity of the test function h and right continuity of the process L h(Lτn+t−
Lτn+s) → h(Lτ+t − Lτ+s) a.s. for n → ∞. By dominated convergence theorem (h is
bounded) we obtain (1.4).
Zt − Zs = Lτ+t − Lτ+s, then E(h(Zt − Zs)|G) = E(h(Lt−s)) for each 0 ≤ s < t, for
every function h : Rd → R continuous and bounded and for every event G ∈ Gs such
that P (G) > 0. If G = Ω, then E(h(Zt − Zs)) = E(h(Lt−s)), and the law of Zt − Zs
depends only on t− s20 and it follows that the increments are homogeneous. Moreover
E(h(Zt − Zs)|G) = E(h(Zt − Zs)) and we can assert that Zt − Zs is independent of Gs
and that the process Z is a Lévy process.
About the law we just prove that Zt and Lt have the same distribution for t ∈ T and
the fact follows by E(h(Zt − Zs)) = E(h(Lt−s)) with s = 021.

Remark 11. Theorem 1.2.13 is a generalization of the strong Markov property for the
Brownian motion, according to which Zt := Bτ+t − Bτ is an Fτ+t-Brownian motion
independent of Fτ if τ is an a.s. finite stopping time and B = (Bt)t∈T is a Ft-Brownian
motion.

19If τ is a stopping time, then there exists a decreasing sequence τn of discrete stopping times such
that for every ω ∈ Ω τn(ω) ↓ τ(ω) for n→∞.

20A probability measure on Rd is defined via integrals of continuous and bounded functions. Let
µ and ν be two probability measures on Rd such that

∫
hdµ =

∫
hdν for every function h : Rd → R

continuous and bounded, then µ = ν.
21Two Lévy processes X and Y have the same law if and only if Xt and Yt have the same law for

every t ∈ T .
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1.2.4 Jump processes and Poisson random measures

We introduce the jump process ∆L = (Lt − Lt−)t∈T , where Lt− = lims↑t Ls, asso-
ciated with a Lévy process L. It is important to check the jump process cannot have
independent increments.

Lemma 1.2.14. If L is a Lévy process, then ∆Lt = 0 a.s. for fixed t ∈ T .

Proof. Let (tn)n∈N be a monotone sequence in R+ such that tn ↑ t as n → ∞. L has
càdlàg paths, then limn→∞ Ltn = Lt− . By stochastic continuity limtn→t P (|Ltn − Lt| >
ε) = 0 ∀ ε > 0, hence there exists a subsequence which converges almost surely to Lt.
Consequently we have

lim
n→∞

Ltn = Lt− and lim
j→∞

Ltnj = Lt

and by uniqueness of limit ∆Lt = Lt − Lt− = 0 a.s.

Remark 12. This lemma says that a Lévy process L has no fixed times of discontinuity.
In general, the sum of the jumps of a Lévy process does not converge, it is possible to
have ∑

0≤s≤t

|∆Ls| =∞.

But we always have ∑
0≤s≤t

|∆Ls|2 <∞.

Definition 1.3. (Random measure) Given (E,E) a measurable space a random mea-
sure on (E,E) is a transition kernel from (Ω,F) to (E,E); explicitly a mapping M :
Ω × E → R̄+ such that ω 7→ M(ω,A) is a random variable for every A ∈ E and
A 7→M(ω,A) is a measure on (E,E) for each ω in Ω.

A convenient tool for analyzing the jumps of a Lévy process is the random counting
measure of the jumps. Consider a set A ∈ B(Rd\0) such that 0 /∈ Ā (in this case we
will say also that A is bounded below), for fixed t ∈ T define the following random
measure

N(t, A) = # {0 ≤ s ≤ t : ∆Ls ∈ A} =
∑

0<s≤t

1A(∆Ls) =
∑

0<s≤t

δ∆Ls(A)

that counts the jumps of the process L of size in A up to time t.

Proposition 1.2.15. The set function A 7→ N(t, A) defines a σ−finite measure on
Rd\ {0} for each (ω, t). Moreover the set function λ(A) = E(N(1, A)) defines a σ−finite
measure on Rd\ {0}.

Proof. The set function A 7→ N(t, A) is a counting measure for every (ω, t), hence it is
σ−finite on Rd\ {0}. E(N(t, A)) =

∫
Ω
N(ω, t, A)P (dω), and since E(N(t, ∅)) = 0 and

for disjoint sets Ai, i ∈ N

E

(
N

(
t,
⋃
i

Ai

))
=

∫
Ω

N

(
ω, t,

⋃
i

Ai

)
P (dω) =

∫
Ω

∑
i

N(ω, t, Ai)P (dω) =

=
∑
i

E(N(t, Ai))
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it is a measure on Rd\ {0}. It is also σ−finite by Radon-Nikodym theorem.

The following theorem gives some properties about the random measure N(t, ·), in
particular in terms of kind of process. The proof is in Applebaum [2].

Theorem 1.2.16.

1. If A is bounded below, then (N(t, A))t∈T is a Poisson process with intensity
λ(A) = E(N(1, A)).

2. If A1, . . . , Am ∈ B(Rd\ {0}) are disjoint, then N(t, A1), . . . , N(t, Am) are inde-
pendent random variables.

Definition 1.4. (Poisson random measure) Let (E,E) be a measurable space and let
λ be a σ-finite measure on it. A random measure N on (E,E) is called Poisson random
measure if

1. for every A ∈ E the random variable N(A) is Poisson distributed with expectation
λ(A);

2. whenever A1, . . . , An are in E and disjoint the r.v. N(A1), . . . , N(An) are inde-
pendent for n ≥ 2.

Given a σ-finite measure λ and a measurable space (E,E) we can prove the existence
of a Poisson random measure on (E,E) with intensity λ. It holds the following lemma.

Lemma 1.2.17. Given a σ-finite measure λ on a measurable space (E,E) there exists
a Poisson random measure N on a probability space such that λ(A) = E(N(A)) for all
A ∈ E.

Proof. We assume first λ is finite and let π = λ(E) and λ̃ = λ/π. λ̃ is a probability
measure and let (ξn)nN be a sequence of i.i.d. r.v. with common law λ̃ and X a Poisson
r.v. with parameter π independent of the sequence. Then the random measure

N =
X∑
j=1

δξj

is a Poisson random measure with intensity λ. If λ is σ-finite, then there exists a
sequence (Bn)n∈N of subsets of E such that E =

⋃
nBn and λ(Bn) < ∞ for every n.

The restriction λn of the measure λ on Bn is finite, hence we can construct independent
Poisson random measures Nn with intensity λn. It follows that N =

∑
nNn is a Poisson

random measure.

Remark 13. Suppose that E = R+×U , where U is a space on which is defined a σ-field C

and E = B(R+)⊗C. Let X = (Xt)t∈T be an adapted process taking value in U such that
N is a Poisson random measure on (E,E), where N([0, t]×A) = # {0 ≤ s ≤ t : Xs ∈ A}
for each t ∈ T,A ∈ C. We will call X Poisson point process and N its associated Poisson
random measure22. If U = Rd\ {0}, C is its Borel σ-field and L is a Lévy process then
∆L is a Poisson point process and N is its associated Poisson random measure.

22Some authors call Poisson point process the random measure N .
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Let N(t, A) = # {0 ≤ s ≤ t : ∆Ls ∈ A} with A bounded below and f : Rd → Rd a
Borel measurable function. For each t ∈ T , ω ∈ Ω and A bounded below we define the
Poisson integral of f by∫

A

f(x)N(t, dx) =
∑
x∈A

f(x)N(t, {x}).

Since N depends on ω
∫
A
f(x)N(t, dx) is an Rd-valued random variable and generates

a càdlàg stochastic process. We have N(t, {x}) 6= 0 ⇔ ∆Ls = x for at least one
0 ≤ s ≤ t, then ∫

A

f(x)N(t, dx) =
∑
s≤t

f(∆Ls)1A(∆Ls). (1.5)

It follows finally a useful theorem concerning Poisson integration (see [2] for the proof).

Theorem 1.2.18. Let A be bounded below, then

1.
(∫

A
f(x)N(t, dx)

)
t∈T is a compound Poisson process such that for each u ∈ Rd

E
(

exp

[
i〈u,

∫
A

f(x)N(t, dx)〉
])

= exp

[
t

∫
A

(ei〈u,x〉 − 1)λf (dx)

]
=

= exp

[
t

∫
A

(ei〈u,f(x)〉 − 1)ν(dx)

]
where λf = λ ◦ f−1;

2. if f ∈ L1(A, λA)

E
(∫

A

f(x)N(t, dx)

)
= t

∫
A

f(x)λ(dx);

3. if f ∈ L2(A, λA)

Var

(∣∣∣∣∫
A

f(x)N(t, dx)

∣∣∣∣) = t

∫
A

|f(x)|2λ(dx).

1.2.5 Path variation and moments

Remark 14. By Theorem 1.2.18 the Lévy-Itô decomposition can be written as

Lt = bt+
√
CBt +

∫
|x|>1

xN(t, dx) +

∫
|x|≤1

xÑ(t, dx)

where Ñ(t, A) = N(t, A) − tλ(A). By the same theorem we can assert that λ is the
Lévy measure of the process L. The L2-martingale (

∫
|x|≤1

xÑ(t, dx))t∈T describes the

small jumps, while the process
∫
|x|>1

xN(t, dx) describes the large jumps and it is a

compound Poisson process as we have already seen.

The Lévy measure is responsible for other interesting properties, summarized in the
following remark and propositions about paths variation and moments.
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Remark 15. From the Lévy-̂Ito decomposition is clear that the presence of the linear
Brownian motion would imply that paths of the Lévy process have unbounded vari-
ation. But if there is no Brownian component the process may or may not have un-
bounded variation. The term L2, being a compound Poisson process, has only bounded
variation. Hence, in the case there is no diffusion component, understanding whether
the Lévy process has unbounded variation is an issue determined by the process L3.∫
B
xN(t, dx) < ∞ if and only if

∫
B
|x|ν(dx) < ∞. In that case we can identify L3

directly via

L3
t =

∫
B

xN(t, dx)− t
∫
B

xν(dx), t ∈ T.

This also tells us that L3 will be of bounded varition if and only if
∫
B
|x|ν(dx) <∞.

Consequently we have the following proposition.

Proposition 1.2.19. Let L be a Lévy process with triplet (b, C, ν).

1. If C = 0 and
∫
|x|≤1
|x|ν(dx) <∞, then L has finite variation.

2. If C 6= 0 or
∫
|x|≤1
|x|ν(dx) =∞, then L has infinite variation.

Proof. It follows immediately from Proposition 1.2.19.

It also holds an important result abount moments of the process for fixed t ∈ T .

Proposition 1.2.20. If L is a Lévy process with triplet (b, C, ν), then

1. Lt has r-th moment for r ∈ R+ if and only if
∫
|x|>1
|x|rν(dx) <∞.

2. Lt has moment generation function E(e〈u,Lt〉) < ∞ for u ∈ Rd if and only if∫
|x|>1

e〈u,x〉ν(dx) <∞.

Proof. We prove the second statement without loss of generality for d = 1. First
suppose that E(euLt) < ∞ for some t > 0. Recall L1, L2 and L3 given in the Lévy-
Îto decomposition. Note that L2 is a compound Poisson process with arrival rate
λ := ν(R \ (−1, 1)) and jump distribution F (dx) := 1{|x|≥1}ν(dx)/ν(R \ (−1, 1)) and
L1 + L3 is a Lévy process with Lévy measure 1{|x|≤1}ν(dx). Since

E(euLt) = E(euL
2
t )E(eu(L1

t+L
3
t ))

it follows that

E(euL
2
t ) <∞, (1.6)

and, as L2 is a compound Poisson process,

E(euL
2
t ) = e−λt

∑
k≥0

(λt)k

k!

∫
R

euxF ∗k(dx)

= eν(R\(−1,1))t
∑
k≥0

tk

k!

∫
R

eux(ν|R\(−1,1))
∗k(dx) <∞,

(1.7)
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where F ∗n and (ν|R\(−1,1))
∗n are the n-fold convolution of F and ν|R\(−1,1) and ν|R\(−1,1)

is the restriction of ν to R \ (−1, 1). For k = 1 we have∫
|x|≥1

euxν(dx) <∞.

Now suppose that
∫
R eux1{|x|≥1}ν(dx) < ∞ for some u ∈ R. Since (ν|R\(−1,1))

∗n(dx) is
a finite measure, we have∫

R
eux(ν|R\(−1,1))

∗n(dx) =

(∫
|x|≥1

euxν(dx)

)n
,

and hence (1.6) and (1.7) hold for all t > 0. The proof is completed once we show that
for t > 0

E(eu(L1
t+L

3
t )) <∞.

Since L1 +L3 has a Lévy measure with finite support, it follows that its characteristic
exponent can be extended to an entire function analytic on the whole C. To see this,
note that ∫

(−1,1)

(1− eiux + iux)ν(dx) =

∫
(−1,1)

∑
k≥0

(iux)k2

(k + 2)!
ν(dx)

≤
∑
k≥0

(|u|)k2

(k + 2)!

∫
(−1,1)

x2ν(dx) <∞.

Hence the characteristic symbol can be written as a power series for all u ∈ C and is
thus entire. The proof of the first part can be found in [48].

Remark 16. The variation of a Lévy process depends on the small jumps and the dif-
fusion component, the moment properties depend on the big jumps, while the activity
depends on all the jumps of the process.

Remark 17. As already said if X and Y are independent Lévy processes with triplets
(b, C, ν) and (b′, C ′, ν ′), then the sum is also a Lévy process. In the light of the decom-
position theorem as

φXt+Yt(u) = exp

{
t

[
i〈b̂, u〉 − 1

2
〈u, Ĉu〉+

∫
Rd

[ei〈u,x〉 − 1− i〈u, x〉1B(x)]ν̂(dx)

]}
where b̂ = b+ b′, Ĉ = C + C ′ and ν̂ = ν + ν ′.

It will be useful the following theorem too (see [48] for details).

Theorem 1.2.21. Let L be a Lévy process on Rd. Define L∗t = sups∈[0,t] |Ls| and let
g(r) be a non-negative continuous submultiplicative23 function on [0,∞), increasing to
∞ as r →∞. Then the following statements are equivalent.

1. E(g(L∗t )) <∞ for some t ∈ T
23A function g : Rd → [0,∞) is called submultiplicative if there exists a constant K > 0 such that

g(x+ y) ≤ Kg(x)g(y) for all x, y ∈ Rd
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2. E(g(L∗t )) <∞ for every t ∈ T

3. E(|g(L∗t )|) <∞ for some t ∈ T

4. E(|g(L∗t )|) <∞ for every t ∈ T .

We conclude this paragraph with an important result which we will use a lot in the
next chapters (Kyprianou [30] shows the proof).

Theorem 1.2.22. (Compensation formula) Suppose f : T × R × Ω → [0,∞) is a
random time-space function such that

1. as a trivariate function f = f(t, x)(ω) is measurable,

2. for each t ∈ T f(t, x)(ω) is Ft ×B(R)-measurable,

3. for each x ∈ R, with probability one, {f(t, x)(ω) : t ∈ T} is a left continuous
process.

Then for all t ∈ T

E
(∫

[0,t]

∫
R
f(s, x)N(ds, dx)

)
= E

(∫ t

0

∫
R
f(s, x)dsν(dx)

)
. (1.8)

1.2.6 Subordinators

A subordinator S = (St)t∈T is a one-dimensional Lévy process such that t 7→ St is
a.s. nondecreasing. By Lévy process definition this is equivalent to ask that St ≥ 0
a.s. for every t ∈ T .

Example 1.9. If St is a Brownian motion we have P (St ≤ 0) = 1/2, then it is clear
that such a process cannot be a subordinator.

Theorem 1.2.23. A Lévy process S is a subordinator if and only if its characteristic
triplet has the form (d, 0, ν), where d ≥ 0, ν((−∞, 0)) = 0 and

∫
R+(x∧ 1)ν(dx) <∞.

Proof. S is a subordinator if and only if its paths are monotone (nondecreasing) and its
jumps are nonnegative. The monotonicity of the paths is equivalent to their bounded
variation, consequently C = 0 and

∫
R(x∧1)ν(dx) <∞, and the jumps are nonnegative

if and only if Jt :=
∑

0≤s≤t 1(−∞,0)(∆Ss) = 0 for every t ∈ T . Moreover Jt = 0 if and
only if E(Jt) = tν((−∞, 0)) = 0. Finally it is clear that S is a subordinator if and only
if d ≥ 0.

Remark 18. We saw that a subordinator is such that ν((−∞, 0)) = 0, we call such
a process spectrally positive. On the other hand a process X is spectrally negative if
ν((0,∞)) = 0.

Corollary 1.2.24. S is a Lévy subordinator if and only if its symbol takes the form

η(u) = idu+

∫
(0,∞)

(eiux − 1)ν(dx)

where d = b−
∫

(0,1)
xν(dx).
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Proof. It follows from Theorem 1.2.23 and from the characteristic function formula for
Lévy processes.

We will call the pair (d, ν) the characteristics of the subordinator S.

Example 1.10. (Gamma process) For ϑ, α > 0 define tha gamma law

µX(dx) =
ϑα

Γ(α)
xα−1e−ϑx1(0,∞)(x)dx.

It is known that

E(eiuX) =
1

(1− iu/ϑ)α
=

[
1

(1− iu/ϑ)α/n

]n
and that such a distribution is infinitely divisible. For the Lévy-Khintchine theorem
we have a =

∫
(0,1)

xν(dx), C = 0 and ν(dx) = αx−1e−ϑx1(0,∞)(x)dx. This result follows

from Frullani integral

1

(1− z/ϑ)α
= exp

[∫ ∞
0

(ezx − 1)αx−1e−ϑxdx

]
for all α, ϑ > 0 and z ∈ C such that R(z) ≤ 0. The choice of b in the formula is
the necessary quantity to cancel the term 1{|x|≤1} in the integral with respect to ν.
Then there exists a Lévy process L such that L1 has Lévy-Khintchine formula given
by Frullani integral; this process is called gamma process. Hence the gamma process
is a subordinator with d = 0 and ν(dx) = αx−1e−ϑx1(0,∞)(x)dx. The Lévy measure is
such that

∫
R+(x ∧ 1)ν(dx) <∞. In fact

α

∫ ∞
1

e−ϑx

x
dx+ α

∫ 1

0

e−ϑxdx <∞.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

t

G
t

Figure 1.6: Gamma process sample path with α = ϑ = 1

Example 1.11. (Poisson process) Poisson processes are clearly subordinators. Com-
pound Poisson processes are subordinators if and only if the random variable Jn are
all non-negative-valued.



1.2 Lévy processes 31

Remark 19. Clearly every subordinator is of finite variation, since its paths are nonde-
creasing.

Theorem 1.2.25. (Weak law of large numbers for subordinators) If S is a subordinator

with drift d and Lévy measure ν, then St/t
p→ d as t ↓ 0.

Proof. We can write St = dt+S̃t, where S̃t is a subordinator with characteristic symbol
t
∫

(0,∞)
(eiux − 1)ν(dx).

lim
t→0

E(e−iuS̃t/t) = lim
t→0

exp

[
t

∫
(0,∞)

(e−iux/t − 1)ν(dx)

]
= 1

for every u ∈ R thanks to the dominated convergence. This proves that S̃t/t converges
in distribution to 0, and hence in probability. Consequently St converges in probability
to d.

A law of large numbers holds for a general Lévy process.

Theorem 1.2.26. Let L be a Lévy process on Rd. If E(|L1|) is finite, then a.s.
limt→∞ Lt/t = E(L1).

Proof. Let Ln be a random walk on Rd and suppose that E(|L1|) is finite, then by
Kolmogorov strong law of large numbers a.s. n−1Ln → E(L1). Moreover, since t−1Lt =
(t−1n)(n−1Ln + n−1(Lt − Ln)) it is enough to show

n−1 sup
t∈[n,n+1]

|Lt − Ln| → 0 a.s.

for n → ∞. Let Yn = supt∈[n,n+1] |Lt − Ln|, then it is a sequence of i.i.d. random
variables and by Theorem 1.2.21 E(Y1) is finite. Hence

lim
n→∞

1

n

n∑
i=1

Yi = 0 a.s..

It is clear that also n−1
∑n−1

i=1 Yi = 0→ 0 a.s. as n→∞ since (n−1)/n→ 1. It follows
that a.s. n−1Yn → 0.

We now introduce the time changing theorem. Let L a Lévy process and let S be a
subordinator defined on the same space as L such that L and S are independent. We
define a new process Z = (Zt)t∈T , where Zt := XSt for each t ∈ T .

Theorem 1.2.27. Z is a Lévy process.

Proof. Z0 is clearly 0. To prove stationarity let 0 ≤ t1 < t2 <∞, A ∈ B(R) and denote
as µt1,t2 the joint probability of St1 and St2 .

P (Zt2 − Zt1 ∈ A) = P (LSt2 − LSt1 ∈ A)

=

∫
(0,∞)

∫
(0,∞)

P (Ls2 − Ls1 ∈ A)µt1,t2(ds1, ds2)

=

∫
(0,∞)

∫
(0,∞)

P (Ls2−s1 ∈ A)µt1,t2(ds1, ds2)

= P (Zt2−t1 ∈ A)



32 1. Introduction to Lévy processes

by independence of L and S. About the independence of the increments, let 0 ≤ t1 <
t2 < t3 <∞ and write µt1,t2,t3 for the joint law of St1 , St2 and St3 . We define, for x ∈ R,
hx : R+ → C by hx(s) := E(eixLs), and, for x1, x2 ∈ R, define fx1,x2 : R+×R+×R+ → C
by

fx1,x2(u1, u2, u3) := E(eix1(Lu2−Lu1 ))E(eix2(Lu3−Lu2))

for 0 ≤ u1 < u2 < u3 < ∞. By conditioning and using independence of X and S and
of the increments of L

E(eix1(Zt2−Zt1 )+ix2(Zt3−Zt2 )) = E(fx1,x2(St1 , St2 , St3)).

By stationary increments of L we also have for 0 ≤ u1 < u2 < u3 <∞

fx1,x2(u1, u2, u3) = hx1(u2 − u1)hx2(u3 − u2).

Hence

E(eix1(Zt2−Zt1 )+ix2(Zt3−Zt2 )) = E(hx1(St2 − St1)hx2(St3 − St2))
= E(hx1(St2 − St1))E(hx2(St3 − St2))
= E(eix1Zt2−t1 )E(eix2Zt3−t2 ).

By Kac’s theorem we have independence of Zt2 − Zt−1 and Zt3 − Zt1 . Analogously we
can extend to n time intervals.
About stochastic continuity we know that L and S are stochastically continuous, then
for any a > 0, fixed ε > 0, there exists δ > 0 such that 0 < h < δ implies P (|Lh| >
a) < ε/2, and there exists also δ′ > 0 such that 0 < h < δ′ implies P (Sh > δ) < ε/2.
Hence for t ∈ T and h < min(δ, δ′)

P (|Zh| > a) = P (|LSh| > a) =

∫
[0,∞)

P (|Lu| > a)µSh(du)

=

∫
[0,+δ)

P (|Lu| > a)µSh(du) +

∫
(δ,∞)

P (|Lu| > a)µSh(du)

≤ sup
0≤u<δ

P (|Lu| > a) + P (Sh ≥ δ)

< ε/2 + ε/2 = ε.

Example 1.12. (Variance gamma process) Consider Zt = BSt for t ∈ T , where B is
a standard Brownian motion and S is an independent gamma subordinator. In this
case the name derives from the fact that each Zt arises by replacing the variance of
the normal random variable by a gamma law. We also are calling variance gamma the
following process Zt = µSt + σBSt for σ > 0 and µ ∈ R. Usually we take θ = α =
1/τ =: D > 0, with τ > 0.
The characteristic function of Zt for t ∈ T and u ∈ R is given by

E(eiuZt) =

(
1− iuµτ +

1

2
σ2τu2

)−t/τ
.
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In this case the Lévy measure is defined as

ν(dx) =


a2n
b2n

exp(−anbn |x|)
|x| dx x < 0

a2p
b2p

exp
(
−ap
bp
|x|
)

|x| dx x > 0

where

ap =
1

2

√
µ2 +

2σ2

τ
+
µ

2
, bp = a2

pτ

an =
1

2

√
µ2 +

2σ2

τ
− µ

2
, bn = a2

nτ.

Then for x < 0

ν(dx) =
1

τ |x|
exp

 x(
1
2

√
µ2 + 2σ2

τ
− µ

2

)
τ

 dx

= −D 1

x
exp

x
(√

1

4
µ2τ 2 +

1

2
σ2τ − µτ

2

)−1

︸ ︷︷ ︸
:=G

 dx,

and for x > 0

ν(dx) =
1

τ |x|
exp

− x(
1
2

√
µ2 + 2σ2

τ
+ µ

2

)
τ

 dx

= D
1

x
exp

−x
(√

1

4
µ2τ 2 +

1

2
σ2τ +

µτ

2

)−1

︸ ︷︷ ︸
:=M

 dx.

Thus,

ν(dx) =

{
−D exp(Gx)x−1dx x < 0

D exp(−Mx)x−1dx x > 0,

i.e.

ν(dx) = D exp(−G|x|)|x|−11(0,∞)(x)dx+D exp(−M |x|)|x|−11(−∞,0)(x)dx.

Furthermore this is a pure jump process because it has no gaussian component. About
its moments one can prove that for t ∈ T

E(Zt) = µt Var(Zt) = (µ2τ + σ2)t. (1.9)

The variance gamma process is an infinite activity pure jump Lévy process which
has been used to model log-returns, see [33] for a first application.
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Figure 1.7: Variance gamma process sample path with τ = 0.5, µ = 0 and σ = 1

1.2.7 Martingales, semimartingales and Lévy processes

Proposition 1.2.28. Let N , defined by N(t, A) = # {0 ≤ s ≤ t : ∆Ls ∈ A}, be the
Poisson random measure and let f : Rd → Rd an integrable function. If A is bounded
below, then the process

Mt :=

∫
A

f(x)Ñ(t, dx) =

∫
A

f(x)N(t, dx)− t
∫
A

f(x)λ(dx)

is a martingale. Moreover if f ∈ L2 M is a square integrable martingale and

E(|Mt|2) = t

∫
A

|f(x)|2λ(dx).

Proof. M is a compensated compound Poisson process by Theorem 1.2.18, then it is a
martingale. From the same theorem we have that it also is a L2-martingale.

It is interesting to get when a Lévy process L is a martingale, for this reason we
prove an interesting sufficient and necessary condition.

Proposition 1.2.29. Let L a Lévy process with triplet (b, C, ν) and assume that
E(|Lt|) < ∞. Then L is a martingale if and only if b̃ = b +

∫
|x|>1
|x|ν(dx) = 0.

Similarly L is a submartingale if b̃ > 0 and a supermartingale if b̃ < 0.

Proof. By Lévy-Itô decomposition

Lt = bt+
√
CBt +

∫
|x|>1

xN(t, dx) +

∫
|x|≤1

xÑ(t, dx)

= bt+
√
CBt +

∫
Rd
xÑ(t, dx) + t

∫
|x|>1

xν(dx)

= b̃t+
√
CBt +

∫
Rd
xÑ(t, dx)

as L has finite first moment if and only if
∫
|x|>1
|x|ν(dx) <∞. Then L is a martingale

if and only if b̃ = 0 since the processes
√
CBt and

∫
Rd xÑ(t, dx) are martingales.
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Remark 20. The decomposition Lt = b̃t +
√
CBt +

∫
Rd xÑ(t, dx) is called canonical,

and one observes that
∫
Rd xN(t, dx) =

∑
0≤s≤t ∆Ls by (1.5). Then

Lt = b̃t+
√
CBt +

∑
0≤s≤t

∆Ls − t
∫
Rd
xν(dx)

= bt+
√
CBt +

∑
0≤s≤t

∆Ls − t
∫
|x|≤1

xν(dx).

One can obtain a martingale in the following way too.

Proposition 1.2.30. Let L be a Lévy process with triplet (b, C, ν), then the process

Mt = ei〈u,Lt〉

etη(u)
for all u ∈ Rd is a complex martingale.

Proof. E(Mt) = 1 for t ∈ T . And

E(Mt|Fs) = E
(

ei〈u,Ls〉ei〈u,(Lt−Ls)〉

esη(u)e(t−s)η(u)

∣∣∣∣Fs) = MsE
(

ei〈u,(Lt−Ls)〉

e(t−s)η(u)

∣∣∣∣Fs) = Ms

for 0 ≤ s < t.

We now recall briefly the semimartingale definition in order to show that any Lévy
proces is a semimartingale.

Definition 1.5. X is a semimartingale if it is an adapted process such that for each
t ∈ T

Xt = X0 +Mt +Dt

where M = (Mt)t∈T is a local martingale and D = (Dt)t∈T is an adapted process of
finite variation.

An important class of semimartingales is given by the following result.

Proposition 1.2.31. Every Lévy process L is a semimartingale.

Proof. By the Lévy-Itô decomposition we have for each t ∈ T

Lt = Mt +Dt

where Mt =
√
CBt +

∫
|x|≤1

xÑ(t, dx) is a martingale (it is linear combination of mar-

tingales) and Dt = bt+
∫
|x|>1

xN(t, dx) a process with bounded variation.

1.2.8 Semimartingales and stochastic calculus

Denote with D the space of adapted processes with càdlàg paths, with L we denote
the space of adapted processes with càglàd paths and with S the collection of the simple
predictable processes.
We briefly recall the most important results about stochastic integration with semi-
martingales as integrators. All proofs can be found in Protter [46].
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Definition 1.6. (Stochastic integral) For H ∈ S and X càdlàg semimartingale, define
the linear mapping JX : S→ D by

JX(H) = H0X0 +
n∑
i=1

Hi(X
Ti+1 −XTi)

for H = H01{0} +
∑n

i=1Hi1(Ti,Ti+1], Hi ∈ FTi and 0 = T0 ≤ T1 ≤ · · · ≤ Tn+1 < ∞
stopping times. We call JX(H) the stochastic integral of H with respect to X.

Remark 21. One can use different notations. We will use the following ones

JX(H) =

∫
HsdXs = H ·X.

In order to enlarge the space of processes we can consider as integrands we introduce
the uniform convergence on compacts in probability.

Definition 1.7. A sequence of processes (Hn)n∈N converges to a process H uniformly

on compacts in probability (ucp) if for each t > 0 sup0≤s≤t |Hn
s − Hs|

p→ 0. If H∗t =

sup0≤s≤t |Hs|, then if Y n ∈ D, then Y n → Y in ucp if (Y n − Y )∗t
p→ 0 for every t > 0.

We denote with Sucp, Ducp and Lucp the respective spaces endowed with the ucp-
topology. Ducp is a metrizable space and it is complete under the following metric

d(X, Y ) =
∞∑
n=1

1

2n
E[min(1, (X − Y )∗n)].

To generalize our definition of stochastic integral we also introduce the following the-
orems.

Theorem 1.2.32. The space S is dense in L under the ucp-topology.

Theorem 1.2.33. Let X be a semimartingale. Then the mapping JX : Lucp → Ducp is
continuous.

The integration operator JX is continuous on Sucp, and also Sucp is dense in Lucp.
Hence we can extend the integration operator from S to L by continuity, since Ducp is
a complete metric space. Therefore we have the following new definition.

Definition 1.8. Let X be a semimartingale. The continuous linear mapping JX :
Lucp → Ducp obtained as the extension of JX : S→ D is called stochastic integral.

Theorem 1.2.34. (Associativity) The stochastic integral process Y = H ·X is itself a
semimartingale, and for G ∈ Lucp we have

G · Y = G · (H ·X) = (GH) ·X.

It is important to understand the behavior of the jump process of the integral process
too.

Theorem 1.2.35. The jump process ∆(H ·X)t is indistinguishible from Ht∆Xt.
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We recall here the definition of the quadratic covariation (or bracket process) between
two semimartingales which plays a fundamental role.

Definition 1.9. Let X and Y be two semimartingales. The quadratic variation process
of X, [X,X] = ([X,X]t)t≥0, or [X] = ([X]t)t≥0, is defined by

[X,X] := X2 − 2

∫
X−dX

and the quadratic covariation of X and Y is defined by

[X, Y ] := XY −
∫
X−dY −

∫
Y−dX

where we set X0− = 0 and Y0− = 0.

Remark 22. The operation (X, Y ) 7→ [X, Y ] is bilinear and symmetric, so we have the
polarization identity

[X, Y ] =
1

2
([X + Y,X + Y ]− [X,X]− [Y, Y ]).

Theorem 1.2.36. The bracket process [X, Y ] of two semimartingales has paths of finite
variation on compacts, and it is also a semimartingale.

Theorem 1.2.37. Let X and Y be two semimartingales, then

[X,X]0 = X2
0 and ∆[X,X] = (∆X)2

[X, Y ]0 = X0Y0 and ∆[X, Y ] = ∆X∆Y.

Theorem 1.2.38. (Integration by parts) Let X and Y be two semimartingales. Then
XY is a semimartingale and

XY =

∫
X−dY +

∫
Y−dX + [X, Y ].

Theorem 1.2.39. Let X and Y be two semimartingales, and let H and K ∈ Lucp.
Then

[H ·X,K · Y ] =

∫ t

0

HsKsd[X, Y ]s

and in particular

[H ·X,H ·X]t =

∫ t

0

H2
sd[X,X]s.

Definition 1.10. For a semimartingale X, the process [X,X]c denotes the path-by-
path continuous part of [X,X]. Analogously, [X, Y ]c denotes the path-by-path contin-
uous part of [X, Y ].

Remark 23. We can write [X,X]t = [X,X]ct +X2
0 +

∑
0<s≤t(∆Xs)

2.

Definition 1.11. A semimartingale X is called quadratic pure jump if [X,X]c = 0.

Example 1.13. The Poisson process is an example of a quadratic pure jump semi-
martingale.
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Theorem 1.2.40. If X is adapted, càdlàg, with paths of finite variation on compacts,
then X is a quadratic pure jump semimartingale.

Theorem 1.2.41. If X is a càdlàg semimartingale and Y is a process of bounded
variation, then [X, Y ]t =

∑
s≤t ∆Xs∆Ys.

Theorem 1.2.42. (Itô’s formula - I) Let X be a semimartingale and let f be a C2

real function. Then f(X) is a semimartingale and the following formula holds:

f(Xt)− f(X0) =

∫ t

0+

f ′(Xs−)dXs +
1

2

∫ t

0+

f ′′(Xs−)d[X,X]cs+

+
∑

0<s≤t

(f(Xs)− f(Xs−)− f ′(Xs−)∆Xs).
(1.10)

Theorem 1.2.43. (Itô’s formula - II) Let X = (X1, . . . , Xn) be a n-tuple of semi-
martingales and let f : Rn → R be a function with continuous second order partial
derivatives. Then f(X) is a semimartingale and

f(Xt)− f(X0) =
n∑
i=1

∫ t

0+

∂f

∂xi
(Xs−)dX i

s+

+
1

2

∑
1≤i,j≤n

∫ t

0+

∂2f

∂xi∂xj
(Xs−)d[X i, Xj]cs+

+
∑

0<s≤t

[
f(Xs)− f(Xs−)−

n∑
i=1

∂f

∂xi
(Xs−)∆X i

s

]
.

(1.11)



Chapter 2

Continuous time GARCH(1,1)
processes

Considering data of financial time series, such as log-returns on indexes, a collection
of empirical observations, known as stylized facts, can be noticed (see [52]).

• Returns series show little serial correlation, but they are not independent;

• series of absolute or squared returns show serial correlation;

• conditional expected returns are close to zero;

• volatility seems to vary over time and has jumps;

• extreme returns appear in clusters (volatility clustering);

• volatility is a stochastic process with long-range dependence effect;

• returns and volatility have heavy-tailed (higher moments do not exist) and skewed
marginals.

ARCH (autoregressive conditionally heteroscedastic) and GARCH (Generalised ARCH)
processes, introduced by Engle [15] and Bollerslev [11], are popular in financial econo-
metrics to capture some of the distinctive features of financial data listed above. Au-
toregressive conditional heteroscedaticity means that past observations and past volatil-
ities have an impact on the present value of the volatility and therefore on the present
observation. Then, we have a time-varying, non constant, conditional volatility. With
GARCH processes we can analyse financial time series data discretely, but thanks to
the fast development of higher and higher memory capacities of computers it is possi-
ble to record more and more data (high-frequency data). In order to analyse this huge
amount of data an extension from discrete time models to continuous time models
is necessary. Continuous time processes are also crucial to model irregularly spaced
data too. Various attempts have been made to capture the stylized facts in a contin-
uous time model. A first extension goes back to Nelson [43], who proposed to extend
the discrete time model by making diffusion approximations. This leads to stochastic
volatility models of the type

dYt = σtdB
(1)
t , dσ2

t = (γ − θσ2
t )dt+ ρσ2

t dB
(2)
t , t > 0,

39
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where B(1) = (B
(1)
t )t≥0 and B(2) = (B

(2)
t )t≥0 are independent Brownian motions, and

γ > 0, θ ≥ 0 and ρ ≥ 0. Clearly Yt models the log-price and σt the volatility. The
main difference between this model and the original GARCH is the fact that in the
GARCH modelling there is one single source of randomness. Moreover such diffusion
limits to discrete time GARCH can model heavy tails, but obviously they are not able
to model volatility jumps. Related models have been suggested and investigated, many
generalisations are based on Lévy processes replacing the Brownian motions and on
relaxing the independence property. We refer here to Barndorff-Nielsen and Shephard
[4] (see [1] for another Lévy driven model). This stochastic volatility model specifies
the volatility as an Ornstein-Uhlenbeck process, driven by a subordinator. Precisely,
let L = (Lt)t≥0 be a subordinator and α > 0. Then the squared volatility process (σ̃2

t )
is defined by the stochastic differential equation (SDE)

dσ̃2
t = −ασ̃2

t dt+ dLαt, t > 0, (2.1)

where σ̃2
0 is a finite random variable independent of L and σ̃t :=

√
σ̃2
t . The solution of

(2.1) is the Ornstein-Uhlenbeck type process

σ̃2
t =

(∫ t

0

eαsdLαs + σ̃2
0

)
e−αt, t > 0.

The logarithmic price process G̃ = (G̃t)t≥0 is such that

dG̃t = (µ+ bσ̃2
t )dt+ σ̃tdBt, t > 0,

with G̃0 = 0, µ and b real constants and B = (Bt)t≥0 a standard Brownian motion,
independent of σ̃2

0 and L. As the empirical volatility has jumps, it seems to make sense
to choose a model driven by a Lévy process. However, this model still has two sources
of randomness. In [27] Klüppelberg, Lindner and Maller adopt this idea about jumps
and a single noise process and suggest a new continuous time GARCH model, which
captures all the stylized facts as the discrete time GARCH does. As noise process
they choose a Lévy process and its increments in order to replace the innovations in
the discrete time GARCH model. Another characteristic is that stock returns are
negative correlated with changes in the volatility; the volatility tends to increase after
negative shocks and to fall after positive ones. This effect is called leverage effect. In
order to capture this effect other models have been proposed. Haug and Czado [22]
introduced a continuous time exponential GARCH. Lee [31] proposed a continuous time
asymmetric power GARCH process, which contains the continuous time GJR-GARCH
model recently analysed in [5].
We show both symmetric and asymmetric models with more details in the following
sections. We also like to refer to [12] for COGARCH(p,q) models and to [51] for
multivariate COGARCH(1,1) processes.

2.1 From discrete to continuous time GARCH pro-

cess

We start by defining, for n ∈ N, the discrete time GARCH(1,1) process, which is
given by the following equations

Yn = εnσn (2.2)
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σ2
n = β + λY 2

n−1 + δσ2
n−1, (2.3)

where σn is the positive square root of σ2
n, (εn)n∈N is a sequence of i.i.d. non-degenerate

random variables such that P (ε1 = 0) = 0 and the parameters are such that β > 0,
λ ≥ 0 and δ ≥ 0. We assume also some initial almost surely finite, and random in
general, values for ε0 and σ0, independent of each other and independent of (εn)n∈N.
It is clear that when δ = 0 one obtains the ARCH(1) model, instead when δ = λ = 0
(Yn)n∈N is just a sequence of i.i.d. random variables. For this reason λ + δ > 0 is
assumed through all the thesis. Details can be found in [15] and [11].

Remark 24. Equation (2.2) specifies the mean level process and Equation (2.3) models
the conditional volatility process, which is time dependent and randomly fluctuating.

Remark 25. Iterating (2.3)

σ2
n = β + (δ + λε2n−1)σ2

n−1

= β + (δ + λε2n−1)(β + (δ + λε2n−2)σ2
n−2)

= β(1 + δ + λε2n−1) + (δ + λε2n−1)(δ + λε2n−2)(β + (δ + λε2n−3)σ2
n−3)

= β[1 + δ + (λε2n−1) + (δ + λε2n−2)(δ + λε2n−3)] + (δ + λε2n−1)(δ + λε2n−2)·
· (δ + λε2n−3)σ2

n−3

= · · ·

= β
n−1∑
i=0

n−1∏
j=i+1

(δ + λε2j) + σ2
0

n−1∏
j=0

(δ + λε2j), n ∈ N,

where
∏b

j=a = 1 if a > b. Furthermore

σ2
n = β

n−1∑
i=0

n−1∏
j=i+1

(δ + λε2j) + σ2
0

n−1∏
j=0

(δ + λε2j)

∼= β

∫ n

0

exp

 n−1∑
j=bsc+1

log(δ + λε2j)

 ds+ σ2
0 exp

(
n−1∑
j=0

log(δ + λε2j)

)

= β

∫ n

0

exp

n−1∑
j=0

log(δ + λε2j)−
bsc∑
j=0

log(δ + λε2j)

 ds+ σ2
0 · exp

(
n−1∑
j=0

log(δ + λε2j)

)

=

β ∫ n

0

exp

− bsc∑
j=0

log(δ + λε2j)

 ds+ σ2
0

 exp

(
n−1∑
j=0

log(δ + λε2j)

)
.

(2.4)

We write the summation in the following way

n−1∑
j=0

log(δ + λε2j) = n log δ +
n−1∑
j=0

log

(
1 +

λ

δ
ε2j

)
in order to define, for every 0 < δ < 1, the auxiliary càdlàg Lévy process X = (Xt)t≥0

Xt := −t log δ −
∑

0<s≤t

log

(
1 +

λ

δ
(∆Ls)

2

)
(2.5)
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which represents the continuous time equivalent of the summation above taken with
the opposite sign. We have replaced the noise variables εj with the increments of a
càdlàg Lévy process L = (Lt)t≥0. X is clearly right continuous since the summation
includes t.
Now, using this process and looking at Equation (2.4), we define the left continuous
square volatility process as

σ2
t :=

(
β

∫ t

0

eXsds+ σ2
0

)
e−Xt− , t ≥ 0 (2.6)

with σ0 finite random variable independent of (Lt)t≥0.

Remark 26. The volatility process is a generalized Ornstein-Uhlenbeck process.

Once constructed these processes we can define the càdlàg integrated COGA-
RCH(1,1) G = (Gt)t≥0 as solution of the following SDE{

dGt = σtdLt

G0 = 0.

Remark 27. Surely by Theorems 1.2.34 and 1.2.35 G is a semimartingale jumping at
the same times as L does, and ∆Gt = σt∆Lt.

2.1.1 Properties of the auxiliary process

We can begin by investigating the process X, which has a special structure. For
this reason we state and prove the following proposition.

Proposition 2.1.1. X is a spectrally negative Lévy process with bounded variation.
Moreover the characteristic triplet is such that CX = 0,

νX([0,∞)) = 0,

νX((−∞,−x]) = νL

({
y ∈ R : |y| ≥

√
(ex − 1)δ/λ

})
, x > 0

and

γX,0 := γX −
∫

[−1,1]

xνX(dx) = − log δ.

Proof. We first prove that X is a Lévy process. It is clear that a.s. X0 = 0. About the
stationarity and independence of the increments for 0 < s < t

Xt −Xs = −(t− s) log δ −
∑
s<k≤t

log

(
1 +

λ

δ
(∆Lk)

2

)
d
= − (t− s) log δ −

∑
0<k≤t−s

log

(
1 +

λ

δ
(∆Lk)

2

)
= Xt−s
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and

φXt−Xs,Xs(u1, u2) = E(eiu1Xt−s+iu2Xs)

= e−iu1(t−s) log δe−iu2s log δ·

· E
(

e−iu1
∑
s<k≤t log(1+λ

δ
(∆Lk)2)e−iu2

∑
0<k≤s log(1+λ

δ
(∆Ls)2)

)
= e−iu1(t−s) log δe−iu2s log δE

(
e−iu1

∑
s<k≤t log(1+λ

δ
(∆Lk)2)

)
·

· E
(
e−iu2

∑
0<k≤s log(1+λ

δ
(∆Lk)2)

)
= φXt−s(u1)φXs(u2).

Now, we just have to prove stochastic continuity.

lim
t↓0

P (|Xt| > ε) = lim
t↓0

P

(∣∣∣∣∣−t log δ −
∑

0<s≤t

log

(
1 +

λ

δ
(∆Ls)

2

)∣∣∣∣∣ > ε

)

≤ lim
t↓0

P (t| log δ| > ε/2) + lim
t↓0

2

ε

∑
0<s≤t

E
(

log

(
1 +

λ

δ
(∆Ls)

2

))
= lim

t↓0
P (ε < −2t log δ)

= lim
t↓0

1(−∞,−2t log δ)(ε) = 0.

Then X is a Lévy process. Surely it has no positive jumps since

∆Xt = Xt − lim
s↑t

Xs = − log

(
1 +

λ

δ
(∆Lt)

2

)
< 0 ∀t > 0.

This means that for A ⊆ R+

νX(A) = E

( ∑
0<s≤1

1A(∆Xs)

)
=

= E

[ ∑
0<s≤1

1A

(
− log

(
1 +

λ

δ
(∆Ls)

2

))]
= 0.

Instead, for x > 0

νX((−∞,−x]) = E

[ ∑
0<s≤1

1(−∞,−x]

(
− log

(
1 +

λ

δ
(∆Ls)

2

))]

= E

[ ∑
0<s≤1

1[ex,∞)

(
1 +

λ

δ
(∆Ls)

2

)]

= E

[ ∑
0<s≤1

1
[
√

(ex−1)δ/λ,∞)
(|∆Ls|)

]
= νL

({
y ∈ R : |y| ≥

√
(ex − 1)δ/λ

})
.
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Hence νX is the image measure of νL under the transformation T : R → (−∞, 0]
x 7→ − log

(
1 + λ

δ
x2
)
. Moreover∫

|x|≤1

|x|νX(dx) =

∫
|y|≤
√

(e−1)δ/λ

log

(
1 +

λ

δ
y2

)
νL(dy)

≤ λ

δ

∫
|y|≤
√

(e−1)δ/λ

y2νL(dy).

We observe that if
√

(e− 1)δ/λ ≤ 1∫
|y|≤
√

(e−1)δ/λ

y2νL(dx) ≤
∫
|y|≤1

y2νL(dy) <∞,

and if
√

(e− 1)δ/λ > 1∫
|y|≤
√

(e−1)δ/λ

y2νL(dx) =

∫
|y|≤1

y2νL(dy) +

∫
[−
√

(e−1)δ/λ,−1)

y2νL(dy)+

+

∫
(1,
√

(e−1)δ/λ]

y2νL(dy)

≤ c+
δ

λ
(e− 1)

∫
[−
√

(e−1)δ/λ,−1)

νL(dy)

+
δ

λ
(e− 1)

∫
(1,
√

(e−1)δ/λ]

νL(dy)

<∞.
Moreover by the Lévy-Itô decomposition we know that for every Lévy process L such
that

∫
|x|≤1
|x|νL(dx) is finite

Lt = γLt+
√
CLBt +

∑
0<s≤t

∆Ls − t
∫
|x|≤1

xνL(dx),

and since in our caseXt = −t log δ−
∑

0<s≤t ∆Xs, then CX = 0 and γX−
∫

[−1,1]
xνX(dx) =

− log δ.
As CX = 0 and

∫
[−1,1]

|x|νX(dx) is finite, Theroem 1.2.19 implies that X is a process

of bounded variation (in effect for fixed ω ∈ Ω it is difference of two non decreasing
processes: −t log δ and

∑
0<s≤t log

(
1 + λ

δ
(∆Ls)

2
)
).

By Lévy-Khintchine formula (Theorem 1.2.3) we finally get that

E(eiuXt) = exp

(
−itu log δ + t

∫
(−∞,0)

(eiux − 1)νX(dx)

)
,

which shows that X is the negative of a subordinator with positive drift.

2.2 The volatility process: stability, markovianity

and moments

Firstly we prove that the square volatility process is solution, like G, of a stochastic
differential equation.
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Proposition 2.2.1. The process (σ2
t )t≥0 satisfies the following stochastic differential

equation

dσ2
t+ = βdt+ σ2

t e
Xt−d(e−Xt), t > 0

and we have

σ2
t = σ2

0 + βt+ log δ

∫ t

0

σ2
sds+

λ

δ

∑
0<s<t

σ2
s(∆Ls)

2. (2.7)

Proof. Set Kt := t log δ and St :=
∏

0<s≤t
(
1 + λ

δ
(∆Ls)

2
)
; by Definition 1.5 they are

semimartingales since they are processes of finite variation. Let f(k, s) = eks and apply
Ito’s lemma in two variables for semimartingales (Theorem 1.2.43)

f(Kt, St) = eKtSt = e−Xt ,

e−Xt = 1 +

∫ t

0+

eKs−dSs +

∫ t

0+

e−Xs−dKs +
1

2

∫ t

0+

e−Xs−d[K,K]cs+

+

∫ t

0+

eKs−d[K,S]cs +
∑

0<s≤t

(e−Xs − e−Xs− − eKs−∆Ss − eXs−∆Ks).

Clearly ∆KS = 0 for s > 0 and e−Xs − e−Xs− = eKsSs − eKsSs− = eKs∆Ss so that the
summation vanishes. Then

e−Xt = 1 +

∫ t

0+

eKs−dSs + log δ

∫ t

0

e−Xs−ds+
1

2

∫ t

0+

e−Xs−d[K,K]cs+

+

∫ t

0+

eKs−d[K,S]cs

= 1 +

∫ t

0

eKsdSs + log δ

∫ t

0

e−Xs−ds

because [K,K]t = CKt+
∑

0<s≤t(∆Ks)
2 = 0 and by Theorem 1.2.41

[K,S]t =
∑

0<s≤t

(∆Ks∆Ss) = 0.

S ia a pure jump process, hence
∫ t

0
eKsdSs = λ

δ

∑
0<s≤t e−Xs−(∆Ls)

2.
Integration by parts (Theorem 1.2.38) gives

e−Xt
∫ t

0

eXsds =

∫ t

0+

e−Xs−d

(∫ s

0

eXudu

)
+

∫ t

0+

(∫ s−

0

eXudu

)
d(e−Xs)+

+ [e−X· ,

∫ ·
0

eXSds]t

=

∫ t

0+

e−Xs−d

(∫ s

0

eXudu

)
+

∫ t

0+

(∫ s

0

eXudu

)
d(e−Xs)+

+ [e−X· ,

∫ ·
0

eXsds]t.
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By the associativity of the stochastic integral (Theorem 1.2.34) and as Xs = Xs− for
fixed s almost surely∫ t

0+
e−Xs−d

(∫ s

0

eXudu

)
=

∫ t

0+
e−Xs−eXsds = t.

Moreover

[e−X· ,

∫ ·
0

eXSds]t = [

∫ t

0

e−Xsd1[t,∞)(s),

∫ t

0

eXsds] =

∫
d[1[t,∞)(s), s].

[1[t,∞)(s), s] = s1[t,∞)(s) −
∫ s

0
ud1[t,∞)(u) −

∫ s
0

1[t,∞)(u)du, and if s ≥ t [1[t,∞)(s), s] =
s− t− (s− t) = 0 as like if s < t. Hence [e−X· ,

∫ ·
0

eXSds]t = 0 and

e−Xt
∫ t

0

eXsds = t+

∫ t

0+

(∫ s−

0

eXudu

)
d(e−Xs).

Then

σ2
t+ = β

∫ t

0

eXs−Xtds+ σ2
0e−Xt

= β

(
t+

∫ t

0+

(∫ s

0

eXudu

)
d(e−Xs)

)
+ σ2

0e−Xt

= β

(
t+

∫ t

0+

(∫ s

0

eXu−Xs−
)

eXs−d(e−Xs)

)
+ σ2

0e−Xt

= βt+

∫ t

0+

(σ2
s − e−Xs−σ2

0)eXs−d(e−Xs) + σ2
0e−Xt

= βt+

∫ t

0+

σ2
se
Xsd(e−Xs)− σ2

0

∫ t

0+

d(e−Xs) + σ2
0e−Xt

= βt+

∫ t

0+

σ2
se
Xsd(e−Xs)− σ2

0(e−Xt − 1) + σ2
0e−Xt

= βt+

∫ t

0+

σ2
se
Xsd(e−Xs) + σ2

0+

because σ2
t = σ2

t+ almost surely. Then

dσ2
t+ = βdt+ σ2

t e
Xt−d(e−Xt), t > 0.

We also can observe that

σ2
t+ = βt+

∫ t

0+

σ2
se
Xs−d(e−Xs) + σ2

0+

= σ2
0+ + βt+ log δ

∫ t

0

σ2
sds+

∫ t

0

eXs−σ2
sd

(
λ

δ

∑
0<u≤s

e−Xu−(∆Lu)
2

)

= σ2
0+ + βt+ log δ

∫ t

0

σ2
sds+

∑
0<s≤t

σ2
s(∆Ls)

2,
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or equivalently

σ2
t = σ2

0 + βt+ log δ

∫ t

0

σ2
sds+

λ

δ

∑
0<s<t

σ2
s(∆Ls)

2. (2.8)

Hence, remembering that [L,L]t = CLt+
∑

0<s≤t(∆Ls)
2 = CLt+ [L,L]dt , we get that

dσ2
t+ = (β + log δσ2

t )dt+
λ

δ
σ2
t d[L,L]dt . (2.9)

Remark 28. In GARCH(1,1) model σ2
n+1 = β + λσ2

nε
2
n + δσ2

n, so

σ2
n+1 − σ2

n = β + δσ2
n − σ2

n + λσ2
nε

2
n = β − (1− δ)σ2

n + λσ2
nε

2
n

similarly to (2.9). Or alternatively by summation

σ2
n = βn− (1− δ)

n−1∑
i=0

σ2
i + λ

n−1∑
i=0

σ2
i ε

2
i + σ2

0

which is similar to (2.8). These representations (both in discrete and in continuous
time) show feedback and autoregressive aspects.

To study the stability it is interesting to understand when the volatility process
converges as t→∞. For this reason we introduce and prove the following theorem.

Theorem 2.2.2. Suppose that∫
R

log

(
1 +

λ

δ
y2

)
νL(dy) < − log δ, (2.10)

then the process (σ2
t )t≥0 converges weakly, as t → ∞, to a finite random variable σ2

∞
such that

σ2
∞

d
= β

∫ ∞
0

e−Xtdt.

Conversely, if (2.10) does not hold, then σ2
t

p→∞ as t→∞.

Proof. By a continuous time analogue of the Goldie-Maller theorem (see Erickson and
Maller [16] or [8])

∫∞
0

e−Xsds converges almost surely to a finite random variable if

Xt →∞ a.s. and σ2
t

p→∞ as t→∞ otherwise. By definition

σ2
t = β

∫ t

0

eXs−Xt−ds+ σ2
0e−Xt− ,

but, as we are interested in its behavior when t → ∞, we will not write Xt−, but Xt.
If Xt →∞ we have that a.s. σ2

0e−Xt → 0. Moreover if we set t− s = u

β

∫ t

0

eXs−Xtds
d
= β

∫ t

0

e−Xt−sds = β

∫ t

0

e−Xsds.
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So, we only need to show that

Xt
a.s.→ ∞⇔

∫
R

log

(
1 +

λ

δ
y2

)
νL(dy) < − log δ.

E(X1) = −iφ′X1
(0)

= −i
[
exp

(
−iu log δ +

∫
(−∞,0)

(eiux − 1)νX(dx)

)]
u=0

·

·
(
−i log δ + i

∫
(−∞,0)

(eiuxx)νX(dx)

)
u=0

= − log δ +

∫
(−∞,0)

xνX(dx),

then E(X1) always exists (νX([0,∞)) = 0), possibly E(X1) = −∞ and Xt/t→ E(X1)
almost surely as t→∞ by Theorem 1.2.26. If E(X1) ≤ 0, then Xt → −∞ or oscillates.
So Xt →∞ a.s. if and only if E(X1) > 0 (see Theorem 1 in Bertoin and Yor [8]). Indeed
if Xt/t → ∞ a.s. Xt cannot converge for its special structure and cannot diverge to
−∞ because limt→∞Xt = 0 · limt→∞ t ≥ 0. So it remains to prove that Xt cannot go
to ∞ if E(X1) = 0. Suppose that Xt →∞, which is equivalent to

lim
t→∞
−t log δ − lim

t→∞

∑
0<s≤t

log

(
1 +

λ

δ
(∆Ls)

2

)
=∞.

Then At :=
∑

0<s≤t log
(
1 + λ

δ
(∆Ls)

2
)

converges to c ∈ [0,∞) or diverges to ∞ but
slower than −t log δ. If At → c, Xt/t→ − log δ > 0 and we have the first contradiction.
If At →∞ (slower than t), then Xt/t→ log δ > 0 and we have the same contradiction.
In the last possible case, i.e. At � t (At/t → k > 0), Xt/t → − log δ − k. The last
quantity is greater than zero because limt∞Xt = limt→∞(−t log δ − kt) = ∞ if and
only if − log δ > k and since Xt/t → E(X1) At/t → k =

∫
R log

(
1 + λ

δ
y2
)
νL(dy). By

our assumption k < − log δ so that E(X1) > 0 if and only if

− log δ +

∫
(−∞,0)

xνX(dx) = − log δ −
∫
R

log

(
1 +

λ

δ
y2νL(dy)

)
> 0.

Another property we are going to prove is the markovianity of (σ2
t )t≥0.

Theorem 2.2.3. (σ2
t )t≥0 is a Markov process, moreover if σ2

∞ exists and σ2
0

d
=σ2

∞
(independent of (Lt)t≥0), then (σ2

t )t≥0 is strictly stationary
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Proof. Let (Ft)t≥0 be the filtration generated by (σ2
t )t≥0 and let y ∈ [0, t),

σ2
t = β

∫ y

0

eXsdse−Xt− + β

∫ t

y

eXsdse−Xt− + σ2
0e−Xt−

= β

∫ y

0

eXsdse−Xy−eXy−−Xt− + β

∫ y

0

eXsdse−Xt− + σ2
0e−Xt−

= (σ2
y − σ2

0e−Xy−)e−(Xt−−Xy−) + β

∫ y

0

eXsdse−Xt− + σ2
0e−Xt−

= σ2
ye
−(Xt−−Xy−) + β

∫ y

0

eXsdse−Xt−

= σ2
yAy,t +By,t

where Ay,t := e−(Xt−−Xy−) and By,t := β
∫ t
y

e(Xs−Xy−)dse−(Xt−−Xy−), independent of

(Ft)t≥0. Then conditioning to Fy σ
2
t depends only on σ2

y. Now set σ2
0

d
=σ2

∞ in order to

prove that σ2
t

d
=σ2

∞ for t > 0. We can take σ2
0 := β

∫∞
0

e−(Xs+t−Xt)ds, then

σ2
t+ = β

∫ t

0

eXs−−Xtds+ β

∫ ∞
0

e−Xs+tds

= β

∫ t

0

eX(t−u)−−Xtdu+ β

∫ ∞
0

e−Xs+tds

where in the first integral we set s = t − u. By the time-reversal property X(t−u)− −
Xt

d
= −Xu for 0 ≤ u ≤ t. Hence

σ2
t+

d
= β

∫ t

0

e−Xsds+ β

∫ ∞
t

e−Xsds = β

∫ ∞
0

e−Xsds
d
=σ2

0.

As σt has no fixed point of discontinuity σ2
t = σ2

t+ almost surely. Then σ2
t

d
=σ2

0 for
t > 0.

Remark 29.

E(σ2
t |Fy) = E(σ2

yAy,t|Fy) + E(By,t|Fy)
= σ2

yE(Ay,t) + E(By,t).

Theorem 2.2.4. (σ2
t )t≥0 is also time-homogeneous.

Proof. Let D[0,∞) be the Skorohod space of càdlàg functions on [0,∞) and define the
function

gy,t : D[0,∞)→ R2 x 7→ (e−(xt−−xy−), β

∫ t

y

e−(xt−−xs)ds).

X is a Lévy process so (Xs)s≥0
d
= (Xs+h − Xh)s≥0 for every positive h. Furthermore

(Ay,t, By,t) = gy,t((Xs)s≥0) and (Ay+h,t+h, By+h,t+h) = gy,t((Xs+h−Xh)s≥0)
d
= gy,t((Xs)s≥0),

then the joint distribution of (Ay,t, By,t) depends only on t− y and by independence of
σ2
y and (Ay,t, By,t) the transition functions are time homogeneous.
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Corollary 2.2.5. If (σ2
t )t≥0 is the stationary version of the process with σ2

0
d
=σ2

∞, then
(Gt)t≥0 has stationary increments.

Proof. For t ≥ 0 Gt =
∫ t

0
σsdLs. We can write Gt in the following way too

Gt = Gy +

∫ t

y+
σsdLs, y ∈ [0, t).

Consequently

Gt −Gy =

∫ t

y+
σsdLs = σ0

∫ t

y+
dLs = σ0(Lt − Ly+) =

= σ0(Lt − Ly)
d
=σ0Lt−y =

∫ t−y

0

σ0dLs =

∫ t−y

0

σsdLs = Gt−y.

Since the integrand (σs)y<s≤t depends on the past until y only through σy and the
integrator Ls is independent of this past the following result holds.

Corollary 2.2.6. The bivariate process (σt, Gt)t≥0 is markovian.

Remark 30. We have for t ≥ 0 Xt = −t log δ −
∑

0<s≤t log
(
1 + λ

δ
(∆Ls)

2
)
.

If λ = 0 Xt = −t log δ and

σ2
t =

(
β

∫ t

0

δ−sds+ σ2
0

)
δt =

(
β

log δ

∫ δt

1

x−2dx+ σ2
0

)
δt =

= − β

log δ
(1− δt) + σ2

0δ
t.

For the discrete time GARCH model if λ = 0

σ2
n = β

n−1∑
i=0

δn−i−1 + σ2
0δ
n = βδn−1 1− δ−n

1− δ−1
+ σ2

0δ
n =

= βδn
1− δ−n

δ − 1
+ σ2

0δ
n = β

1− δn

1− δ
+ σ2

0δ
n, n ∈ N

which proves the analogy between these two models. We also notice that only δ > 0
is allowed so far. This continuous time model does not contain a COARCH submodel.
If we want that δ = 0 we have to go back to

n−1∑
j=0

log(δ + λε2j) =
n−1∑
j=0

log(λε2j) = n log λ+
n−1∑
j=0

log ε2j

in order to define

Xt = −t log λ−
∑

0<s≤t

log(∆Ls)
21{∆Ls 6=0}, t ≥ 0,

which is a Lévy process only if L is a compound Poisson process.
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Let introduce the following lemma concerning the relationship between the Laplace
transform of Xt and the stability of the volatility process.

Lemma 2.2.7. Keep c > 0

(a) Let λ > 0, then the Laplace transform E(e−cXt) of Xt at c is finite for some t > 0,
or equivalently for every t > 0, if and only if E(L2c

1 ) <∞.

(b) If E(e−cX1) < ∞, then |Ψ(c)| < ∞, where Ψ(c) = logE(e−cX1) and E(e−cXt) =
etΨ(c), with

Ψ(c) = c log δ +

∫
R

[(
1 +

λ

δ
y2

)c
− 1

]
νL(dy).

(c) If E(L2
1) <∞ and Ψ(1) < 0, then σ2

t
d→ σ2

∞, where σ2
∞ is a finite random variable.

(d) If Ψ(c) < 0 for some c > 0, then Ψ(d) < 0 for d ∈ (0, c).

Proof. (a) The Laplace transform E(e−cXt) is finite for some, and hence all, t ≥ 0 if
and only if∫

|x|>1

e−cxνX(dx) =

∫
|y|>
√

(e−1)δ/λ

(
1 +

λ

δ
y2

)c
νL(dy)

=

∫
(−∞,−

√
(e−1)δ/λ)

(
1 +

λ

δ
y2

)c
νL(dy)+

+

∫
(
√

(e−1)δ/λ,∞)

(
1 +

λ

δ
y2

)c
νL(dy) <∞.

For y → ±∞ (
1 +

λ

δ
y2

)c
∼
(
λ

δ

)c
y2c,

then

A :=

(
λ

δ

)c ∫
(−∞,−

√
(e−1)δ/λ)

y2cνL(dy) <∞.

In effect since E(L2c
1 ) < ∞ ⇔

∫
|y|>1

y2cνL(dy) < ∞, if −
√

(e− 1)δ/λ < −1, then

A ≤
(
λ
δ

)c ∫
y<−1

y2cνL(dy) <∞, instead, if−
√

(e− 1)δ/λ > −1A =
∫

(−∞,−1)
y2cνL(dy)+∫

[−1,−
√

(e−1)δ/λ)
y2cνL(dy) which is finite as well. Analogously for

B :=

(
λ

δ

c)∫
(
√

(e−1)δ/λ,∞)

y2cνL(dy),

if
√

(e− 1)δ/λ > 1 B ≤
∫
y>1

y2cνL(dy) < ∞ and if
√

(e− 1)δ/λ < 1 B =∫
(
√

(e−1)δ/λ,1]
y2cνL(dy) +

∫
(1,∞)

y2cνL(dy) is still finite. Hence

∫
|y|>
√

(e−1)δ/λ

(
1 +

λ

δ
y2

)c
νL(dy) <∞.
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(b) Ψ(c) = logE(e−cX1) < ∞ as E(e−cX1) < ∞ (the Laplace transform of Lt never
vanishes if L is a Lévy process). By the expression of the characteristic function
of Xt

Ψ(c) = c log δ +

∫
R

[(
1 +

λ

δ
y2

)c
− 1

]
νL(dy). (2.11)

(c) E(L2
1) <∞ and Ψ(1) < 0, then∫

R

λ

δ
y2νL(dy) < − log δ.

Since ∫
R

log

(
1 +

λ

δ
y2

)
νL(dy) <

λ

δ

∫
R
y2νL(dy) < − log δ,

and by Theorem 2.2.2 σ2
t converges weakly to a finite random variable σ2

∞ such

that σ2
∞

d
= β

∫∞
0

e−Xtdt.

(d) Ψ(c) < 0 for some c > 0. E(L2c
1 ) < ∞ implies E(L2d

1 ) < ∞ for 0 < d ≤ c so that
E(e−dXt) <∞. Then Ψ(d) is definable for 0 < d ≤ c. Ψ(d) < 0 if and only if

1

d

∫
R

[(
1 +

λ

δ
y2

)d
− 1

]
νL(dy) < − log δ.

The function d 7→ 1
d

[(
1 + λ

δ
y2
)d − 1

]
is increasing for fixed y, hence

1

d

∫
R

[(
1 +

λ

δ
y2

)d
− 1

]
νL(dy) ≤ 1

c

∫
R

[(
1 +

λ

δ
y2

)c
− 1

]
νL(dy)

< − log δ.

Remark 31. (c) can be extended. If E(L2c
1 ) < ∞ and Ψ(c) < 0 for some c > 0, then

(2.10) holds, and a stationary version of (σ2
t )t≥0 exists. All that follows from the fact

that Ψ(c) < 0 is equivalent to

1

c

∫
R

((
1 +

λ

δ
y2

)c
− 1

)
νL(dy) < − log δ.

Since log(1 + (λ/δ)y2) < (1/c)((1 + (λ/δ)y2)c − 1) for y 6= 0, this implies (2.10).

Once proved such important proporties we calculate the moments of the processes
and we show some related results in order to show the tails heaviness of the COGARCH
process.

Proposition 2.2.8. Let λ > 0, t > 0 and h ≥ 0.

(a) E(σ2
t ) <∞ if and only if E(L2

1) <∞ and E(σ2
0) <∞. If this is so

E(σ2
t ) = − β

Ψ(1)
+

(
E(σ2

0) +
β

Ψ(1)

)
etΨ(1).

(If Ψ(1) = 0 the right hand side has to be interpreted as its limit as Ψ(1)→ 0, and
in this case E(σ2

t ) = βt+ E(σ2
0).)
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(b) E(σ4
t ) <∞ if and only if E(L4

1) <∞ and E(σ4
0) <∞. In this case

E(σ4
t ) =

2β2

Ψ(1)Ψ(2)
+

2β2

Ψ(2)−Ψ(1)

(
etΨ(2)

Ψ(2)
− etΨ(1)

Ψ(1)

)
+

+ 2βE(σ2
0)

(
etΨ(2) − etΨ(1)

Ψ(2)−Ψ(1)

)
+ E(σ4

0)etΨ(2).

(Also here the right hand side has to be interpreted as its limit if some of the
denominators are zero.) Moreover

Cov(σ2
t , σ

2
t+h) = Var(σ2

t )e
hΨ(1).

Proof. (a) Since Xt = Xt− a.s. and by Fubini theorem

E(σ2
t ) = βE

(∫ t

0

eXs−Xtds

)
+ E(σ2

0e−Xt)

= βE
(∫ t

0

e−Xt−sds

)
+ E(σ2

0)E(e−Xt)

= βE
(∫ t

0

e−Xudu

)
+ E(σ2

0)etΨ(1)

= β

∫ t

0

euΨ(1)du+ E(σ2
0)etΨ(1)

= − β

Ψ(1)
+

(
E(σ2

0) +
β

Ψ(1)

)
etΨ(1)

which is finite if and only if E(σ2
0) and Ψ(1) are finite, i.e. if and only if E(σ2

0) and
E(L2

1) are finite quantities. If Ψ(1) = 0

lim
Ψ(1)→0

E(σ2
t ) = lim

Ψ(1)→0

β

Ψ(1)
(etΨ(1) − 1) + E(σ2

0) = βt+ E(σ2
0).

(b)

E(σ4
t ) = E

[
β2

(∫ t

0

eXs−Xtds

)2
]

+ E(σ4
0)E(e−2Xt)+

+ 2βE(σ2
0)E

(∫ t

0

eXs−2Xtds

)
:= β2E(I1) + E(σ4

0)etΨ(2) + 2βE(σ2
0)E(I2).

By Bertoin and Yor theorem (see Theorem 2 in [8])

I1 =

(∫ t

0

eXs−Xtds

)2
d
=

(∫ t

0

e−Xsds

)2

=

∫ t

0

∫ t

0

e−Xse−Xududs

=

∫ t

0

∫ t

0

e−(Xs−Xu)e−2Xududs

= 2

∫ t

0

∫ s

0

e−(Xs−Xu)e−2Xududs,
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then

E(I1) = 2

∫ t

0

∫ s

0

E(e−(Xs−Xu))E(e−2Xu)duds

= 2

∫ t

0

esΨ(1)

(∫ s

0

eu(Ψ(2)−Ψ(1))du

)
ds

=
2

Ψ(1)Ψ(2)
+

2

Ψ(2)−Ψ(1)

(
etΨ(2)

Ψ(2)
− etΨ(1)

Ψ(1)

)
.

E(I2) = E
(∫ t

0

eXs−2Xtds

)
=

∫ t

0

e(t−s)Ψ(2)esΨ(1)ds =
etΨ(2) − etΨ(1)

Ψ(2)−Ψ(1)
,

hence

E(σ4
t ) =

2β2

Ψ(1)Ψ(2)
+

2β2

Ψ(2)−Ψ(1)

(
etΨ(2)

Ψ(2)
− etΨ(1)

Ψ(1)

)
+

+ 2βE(σ2
0)

(
etΨ(2) − etΨ(1)

Ψ(2)−Ψ(1)

)
+ E(σ4

0)etΨ(2)

and we get that it is finite if and only if are finite Ψ(2) and E(σ4
0), i.e. if E(L4

1) and
E(σ4

0) are finite. We calculate now the mixed moment E(σ2
t σ

2
t+h) in order to calculate

the autocovariance function. We know that

E(σ2
t+h|Ft) = σ2

tE(e−(Xt+h−Xt)) + β

∫ t+h

t

E(e−Xt+h−s)ds,

so

E(σ2
t+h|Ft) = σ2

t e
hΨ(1) + β

∫ t+h

t

e(t+h−s)Ψ(1)ds

= σ2
t e
hΨ(1) + β

∫ h

0

euΨ(1)ds

= σ2
t e
hΨ(1) + β

ehΨ(1) − 1

Ψ(1)

= (σ2
t − E(σ2

0))ehΨ(1) + E(σ2
h).

Consequently

E(σ2
t σ

2
t+h) = E[E(σ2

t σ
2
t+h|Ft)]

= E[σ2
tE(σ2

t+h|Ft)]
= (E(σ4

t )− E(σ2
t )E(σ2

0))ehΨ(1) + E(σ2
t )E(σ2

h).

(2.12)

As

E(σ2
t )E(σ2

h)− E(σ2
t )E(σ2

t+h) = E(σ2
t )(E(σ2

h)− E(σ2
t+h))

= E(σ2
t )

[(
E(σ2

0) +
β

Ψ(1)

)
ehΨ(1)(1− etΨ(1))

]
= ehΨ(1)(E(σ2

t )E(σ2
0)− E2(σ2

t )),
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therefore

Cov
(
σ2
t , σ

2
t+h

)
= (E(σ4

t )− E2(σ2
t ))e

hΨ(1) = Var(σ2
t )e

hΨ(1).

Proposition 2.2.9. Let λ > 0. Then the k-th moment of σ2
∞ (and of σ2

t if the volatility
process is strictly stationary) is finite if and only if E(L2k

1 ) <∞ and Ψ(k) < 0 for k ∈ N
and we have

E(σ2
∞) = k!βk

k∏
l=1

1

−Ψ(l)
.

Proof.

E(σ2k
∞) = βkE

[(∫ ∞
0

e−Xtdt

)k]

= βkE
[∫ ∞

0

· · ·
∫ ∞

0

e−Xt1 · · · e−Xtkdtk · · · dt1
]

= k!βkE
[∫ ∞

0

∫ t1

0

· · ·
∫ tk−1

0

e−(Xt1−Xt2 ) · · · e−(k−1)(Xtk−1
−Xtk )·

· e−kXtkdtk · · · dt1
]

= k!βk
∫ ∞

0

∫ t1

0

· · ·
∫ tk−1

0

et1Ψ(1)et2Ψ(2)−Ψ(1) · · · etk(Ψ(k)−Ψ(k−1))dtk · · · dt1

= k!βk
k∏
l=1

1

−Ψ(l)

provided that Ψ(1), · · ·Ψ(k) are all negative and defined. If j ∈ {1, · · · , k} is the first
index for which Ψ(j) ≥ 0 or E(e−jX1) =∞, then E(σ2k

∞) =∞. E(σ2k
∞) <∞ if and only

if Ψ(k) is defined and negative, namely if and only if Ψ(k) < 0 (which implies Ψ(j) < 0
for j < k) and E(L2k

1 ) <∞ (that implies E(e−kXt) = etΨ(k) <∞).

Corollary 2.2.10. If (σ2
t )t≥0 is strictly stationary with σ2

0
d
=σ2

∞, then

E(σ2
∞) = − β

Ψ(1)

E(σ4
∞) =

2β2

Ψ(1)Ψ(2)

Cov
(
σ2
t , σ

2
t+h

)
= β2

(
2

Ψ(1)Ψ(2)
− 1

Ψ2(1)

)
ehΨ(1)

provided that E(L2k
1 ) < ∞ and Ψ(k) < 0 with k = 1 for E(σ2

∞) and k = 2 for E(σ4
∞)

and Cov
(
σ2
t , σ

2
t+h

)
.

Proof. From Propositions 2.2.8 and 2.2.9.
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Theorem 2.2.11. Let k ∈ N, δ ∈ (0, 1) and λ ≥ 0. Then σ2
∞ exists and has finite k-th

moment if and only if

1

k

∫
R

[(
1 +

λ

δ
y2

)k
− 1

]
νL(dy) < − log δ.

Proof.

1

k

∫
R

[(
1 +

λ

δ
y2

)k
− 1

]
νL(dy) < − log δ

if and only if Ψ(k) < 0 and E(L2k
1 ) < ∞. Obviously if E(L2k

1 ) < ∞ and if Ψ(k) < 0,
then E(L2

1) < ∞ and Ψ(1) < 0 so that σ2
t converges weakly. And σ2

∞ has finite k-th
moment since E(L2k

1 ) <∞ and Ψ(k) < 0.

Proposition 2.2.12. (a) For any Lévy process L with nonzero Lévy measure such that∫
R

log(1 + y2)νL(dy) <∞

there exist δ, λ ∈ (0, 1) such that σ2
∞ exists, but E(σ2

∞) =∞.

(b) k ∈ N, for any Lévy process L such that E(L2k
1 ) < ∞ and ∀δ ∈ (0, 1) there exists

λδ > 0 such that σ2
∞ exists with E(σ2k

∞) <∞ for every (λ, δ) such that 0 ≤ λ ≤ λδ.

(c) λ > 0. For no Lévy process L with nonzero Lévy measure do the moments of all
orders of σ2

∞ exist.

Proof. (a) Set δ0 := exp(−
∫
R log(1 + y2)νL(dy)) and δ1 := exp(−

∫
R y

2νL(dy)). Since∫
R

log(1 + y2)νL(dy) <

∫
R
y2νL(dy)

0 ≤ δ1 < δ0 < 1. For any λ = δ ∈ (δ1, δ0)∫
R

log

(
1 +

λ

δ
y2

)
νL(dy) =

∫
R

log(1 + y2)νL(dy) < − log δ

since exp(−
∫
R log(1 + y2)νL(dy)) > δ if and only if

∫
R log(1 + y2)νL(dy) < − log δ.

Then σ2
t converges in distribution to a finite random variable σ2

∞. But E(σ2
∞) =∞

because ∫
R

λ

δ
y2νL(dy) =

∫
R
y2νL(dy) > − log δ

as exp(−
∫
R y

2νL(dy)) < δ if and only if
∫
R y

2νL(dy) > − log δ.

(b) If E(L2k
1 ) <∞, then Ψ(k) <∞ for λ > 0. We have

1

k

∫
R

[(
1 +

λ

δ
y2

)k
− 1

]
νL(dy) <∞

and the left hand side goes to 0 if λ → 0. So, choosing λ sufficienlty small there
exists σ2

∞ such that E(σ2k
∞) is finite.
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(c) Let η > 0 and q := νL({y : |y| ≥ η}) =
∫
|y|≥η νL(dy) > 0. For k ∈ N

∫
R

[(
1 +

λ

δ
y2

)k
− 1

]
νL(dy) ≥

∫
|y|≥η

[(
1 +

λ

δ
y2

)k
− 1

]
νL(dy)

≥

[(
1 +

λ

δ
η2

)k
− 1

]∫
|y|≥η

νL(dy) =

[(
1 +

λ

δ
η2

)k
− 1

]
q.

If all moments of σ2
∞ existed by Theorem 2.2.11

1

k

∫
R

[(
1 +

λ

δ
y2

)k
− 1

]
νL(dy) < − log δ,

but we know that∫
R

[(
1 +

λ

δ
y2

)k
− 1

]
νL(dy) ≥

[(
1 +

λ

δ
η2

)k
− 1

]
q.

Then

−k log δ

q
>

(
1 +

λ

δ
η2

)k
− 1,

contradiction. If k is equal to 1, then − log δ/q > λη2/δ ⇔ −δ log δ − qλη2 > 0,
which is a contradiction for fixed q, λ, η > 0, because the left hand side can be
negative for some δ ∈ (0, 1).

Remark 32. The volatility process never has moments of all orders. Therefore COGA-
RCH process turns out to be heavy tailed.

We conclude investigating other pathwise properties of the volatility process.

Proposition 2.2.13. The volatility σt satisfies for all t ≥ 0

σ2
t ≥

β

− log δ
(1− δt).

If σ2
t0
≥ β
− log δ

for some t0, then σ2
t ≥

β
− log δ

for every t ≥ t0. If σ2
t

d
=σ2

∞ is the stationary
version, then

σ2
∞ ≥

β

− log δ
. (2.13)

Morevoer σ2
t+ − σ2

t = λ
δ
σ2
t (∆Lt)

2.

Proof. From Equation (2.5) for 0 ≤ s < t,

Xs −Xt− = (t− s) log δ +
∑
s<u<t

log

(
1 +

λ

δ
(∆Lu)

2

)
≥ (t− s) log δ.
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In particular

σ2
t = β

∫ t

0

eXs−Xt−ds+ σ2
0e−Xt−

≥ β

∫ t

0

e(t−s) log δds =
β

− log δ
(1− et log δ).

Then (2.13) follows as t→∞. Now let t > t0 and suppose that σ2
t0
≥ β
− log δ

. Since

σ2
t = e(Xt0−−Xt−)σ2

t0
+ β

∫ t

t0

eXs−Xt−ds

σ2
t ≥ e(t−t0) log δσ2

t0
+ β

∫ t

t0

e(s−t0) log δds

≥ e(t−t0) log δ

(
β

− log δ

)
+

(
β

− log δ

)
(1− e(t−t0) log δ) =

β

− log δ
.

From (2.7) we obtain that σ2
t+ − σ2

t = λ
δ
σ2
t (∆Lt)

2.

Remark 33. The stationary version of the volatility process is always bounded away
from 0 once t > 0. Furthermore, if a volatility jump occurs, this jump is necessarily
positive.

2.3 Moments of the COGARCH increments

Let introduce the increments of the process G corresponding to logarithmic asset
returns over time periods of length r

G
(r)
t := Gt+r −Gt =

∫ t+r

0

σsdLs −
∫ t

0

σsdLs =

∫ t+r

t+

σsdLs

for t ≥ 0 and r > 0. We have already proved that if (σ2
t )t≥0 is stationary, then (G

(r)
t )t≥0

is stationary too. We are calculating the moments and the autocovariance function of
this new process and speaking of which the following proposition holds.

Proposition 2.3.1. Suppose that L is a quadratic pure jump process (i.e. CL = 0)
with E(L2

1) < ∞ and E(L1) = 0, and that Ψ(1) < 0. Let (σ2
t )t≥0 be the stationary

volatility process with σ2
0

d
=σ2

∞, then for t ≥ 0, h ≥ r > 0

E(G
(r)
t ) = 0

E((G
(r)
t )2) = − βr

Ψ(1)
E(L2

1)

Cov
(
G

(r)
t , G

(r)
t+h

)
= 0.

Assume furthermore that E(L4
1) <∞ and Ψ(2) < 0, then

Cov
(

(G
(r)
t )2, (G

(r)
t+h)

2
)

=

(
e−rΨ(1) − 1

−Ψ(1)

)
E(L2

1)ehΨ(1)Cov(G2
r, σ

2
r).
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If further λ > 0, E(L8
1) < ∞, Ψ(4) < 0,

∫
|x|≤1
|x|νL(dx) < ∞ and

∫
R x

3νL(dx) = 0,

then Cov
(

(G
(r)
t )2, (G

(r)
t+h)

2
)
> 0.

Proof. L is a quadratic pure jump Lévy process with zero mean, so [L,L]t =
∑

0<s≤t(∆Ls)
2,

t ≥ 0 and moreover it is a martingale because E(Lt|F∗s) = E(Lt − Ls|F∗s) + Ls =
E(Lt−s) + Ls = Ls for 0 < s < t, where (F∗t )t≥0 is the filtration generated by L. We

want to calculate the expectation of G
(r)
t ; we have that

E(G
(r)
t ) = E(Gt+r −Gt) = E(Gr) = E

(∫ r

0

σsdLs

)
= E(L1)

∫ r

0

E(σs)ds = 0.

Integration by parts implies that

G2
t = G2

0 + 2

∫ t

0+

Gs−dGs + [G,G]t,

and we obtain

E(G2
r) = E

(
2

∫ r

0+

Gs−σsdLs

)
+ E([G,G]r)

= E
(∫ r

0

σ2
sd[L,L]s

)
.

The first term vanishes and about the second one we see from the compensation formula
(Theorem 1.2.22) that

E

( ∑
0<s≤r

σ2
s(∆Ls)

2

)
= E

(∫ r

0

∫
R
x2σ2

sN(ds, dx)

)
= E

(∫ r

0

∫
R
x2σ2

sνL(dx)ds

)
=

∫
R
x2νL(dx)

∫ r

0

E(σ2
s)ds

= E(L2
1)E(σ2

0)r =
−βr
Ψ(1)

E(L2
1).

We have
∫
R x

2νL(dx) = E(L2
1) because

E(L2
1) = −φ′′L1

(0)

= −

[(
iγL + i

∫
R
(x− x1{|x|≤1})νL(dx)

)2

− τ 2
L + i2

∫
R
x2νL(dx)

]

= −

[(
iγL + i

∫
|x|>1

xνL(dx)

)2

−
∫
R
x2νL(dx)

]
,

but as

E(L1) = −φ′L1
(0)

= −i
[
iγL + i

∫
R
(x− x1{|x|≤1})νL(dx)

]
= γL +

∫
|x|>1

xνL(dx) = 0
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E(L2
1) = −

(
−i
∫
|x|>1

xνL(dx) + i

∫
|x|>1

xνL(dx)

)2

+

∫
R
x2νL(dx).

And we finally see that E((G
(r)
t )2) = E(G2

r). In order to calculate the autocovariance

E(G
(r)
t G

(r)
t+h) = E

(∫ t+r

t+

σsdLs

∫ t+r+h

(t+h)+

σsdLs

)
= E

(∫ t+h+r

0

σ2
s1(t,t+r](s)1(t+h,t+r+h](s)d[L,L]s

)
= 0

if h ≥ r. Consequently Cov(G
(r)
t , G

(r)
t+h) = 0 if h ≥ r > 0.

Suppose now E(L4
1) < ∞ and Ψ(2) < 0 and let Er(·) be the conditional expecta-

tion given Fr, the σ−algebra generted by (σ2
s)0≤s≤r. By the integration by parts and

compensation formula

Er((G(r)
h )2) = E

(
2

∫ h+r

h+

Gs−dGs + [G,G]h+r − [G,G]h

)
= Er

(
2

∫ h+r

h+

Gs−σsdLs

)
+ Er

(∫ h+r

h

σ2
sd[L,L]s

)
=

∫
R
x2νL(dx)

∫ h+r

h

Er(σ2
s)ds

= E(L2
1)

∫ h+r

h

[(σ2
r − E(σ2

0))e(s−r)Ψ(1) + E(σ2
s−r)]ds

= E(L2
1)(σ2

r − E(σ2
0))

(
e−rΨ(1) − 1

−Ψ(1)

)
ehΨ(1) + E(L2

1)E(σ2
0)r.

Hence

E((G
(r)
0 )2(G

(r)
h )2) = E[Er((G(r)

0 )2(G
(r)
h )2)

= E[G2
rEr((G

(r)
h )2)

=
(e−rΨ(1) − 1)

−Ψ(1)
ehΨ(1)E(L2

1)E(G2
rσ

2
r −G2

rE(σ2
0))+

+ E(G2
r)E(L2

1)E(σ2
0)r.

It follows that

Cov((G
(r)
0 )2, (G

(r)
h )2) =

(e−rΨ(1) − 1)

−Ψ(1)
ehΨ(1)E(L2

1)Cov(G2
r, σ

2
r) + E(G2

r).

In order to prove that the covariance is positive we need to prove that Cov(G2
r, σ

2
r) >

0. We assume E(L8
1) < ∞, Ψ(4) < 0,

∫
|x|≤1
|x|νL(dx) < ∞ and

∫
R x

3νL(dx) = 0.

Integration by parts says that

G2
t = [G,G]t + 2

∫ t

0+

Gs−dGs =
∑

0<s≤t

σ2
s(∆Ls)

2 + 2

∫ t

0+

Gs−σdLs,
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from (2.7)

λ

δ
G2
t = σ2

t+ − βt− log δ

∫ t

0

σ2
sds− σ2

0 + 2
λ

δ

∫ t

0+

Gs−σsdLs

so that

λ

δ
E(G2

tσ
2
t ) = E(σ4

t )− βtE(σ2
t )− log δE

(
σ2
t

∫ t

0

σ2
sds

)
− E(σ2

t σ
2
0)+

+ 2
λ

δ
E
(
σ2
t

∫ t

0+

Gs−σsdLs

)
.

σ2
t

∫ t

0+

Gs−σsdLs =

∫ t

0+

Gs−σs

(
σ2
se
Xs−−Xt− + β

∫ t

s

eXu−Xt−du

)
dLs

= e−Xt−
∫ t

0+

Gs−σ
3
se
Xs−dLs+

+

∫ t

0+

Gs−σs

(
β

∫ t

s

eXu−Xt−du

)
dLs.

(2.14)

Define It :=
∫ t

0+
Gs−σ

3
se
Xs−dLs, then

e−XtIt =

∫ t

0+

e−Xs−dIs︸ ︷︷ ︸
:=At

+

∫ t

0+

Is−d(e−Xs)︸ ︷︷ ︸
:=Bt

+ [e−X· , I]t︸ ︷︷ ︸
:=C∗t

.

E (At) = E
(∫ t

0+

e−Xs−d

(∫ s

0+

Gu−σ
3
ue
Xu−dLu

))
= E

(∫ t

0+

Gs−σ
3
sdLs

)
= E(L1)

∫ t

0

E(Gs−σ
3
s)ds = 0.

We observe that

d(e−Xt) = d(e−Xt)−Ψ(1)e−Xtdt+ Ψ(1)e−Xtdt

= etΨ(1)(d(e−Xt)e−tΨ(1) −Ψ(1)e−Xte−tΨ(1)dt) + Ψ(1)e−Xtdt

= etΨ(1)d(e−Xt−tΨ(1) − 1) + Ψ(1)e−Xtdt

and about Bt we have∫ t

0+

Is−d(e−Xs) =

∫ t

0+

Is−(esΨ(1)d(e−Xs−sΨ(1) − 1) + Ψ(1)e−Xsds)

=

∫ t

0+

Is−esΨ(1)d(e−Xs−sΨ(1) − 1) + Ψ(1)

∫ t

0+

Is−e−Xsds.

Rt := e−Xt−tΨ(1) − 1 is a martingale because E(|Rt|) ≤ E(e−Xt−tΨ(1)) + 1 = 2 and

E(Rt|F∗s) = E(e−(Xt−Xs) − (t− s)Ψ(1)e−Xs−sΨ(1) − 1|F∗s)
= e−Xs−sΨ(1)E(e−(Xt−Xs) − (t− s)Ψ(1))− 1

= e−Xs−sΨ(1) − 1 = Rs
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for 0 < s < t. Moreover E(Rt) = 0 and hence

E (Bt) = E
(∫ t

0+

Is−esΨ(1)dRs

)
+ Ψ(1)E

(∫ t

0

Is−e−Xsds

)
= Ψ(1)

∫ t

0

E(Is−e−Xs)ds.

Analyzing C∗t we see that

∆C∗t = ∆e−Xt∆It =
λ

δ
Gtσ

3
t (∆Lt)

3

since ∆It = Gt−σ
3
t e
−Xt−∆Lt and

∆e−Xt = δt

( ∏
0<s≤t

(
1 +

λ

δ
(∆(Ls))

2

)
−
∏

0<s<t

(
1 +

λ

δ
(∆Ls)

2

))

=
λ

δ
e−Xt−(∆Lt)

2.

By Theorem 1.2.41

C∗t =
∑

0<s≤t

∆e−Xs∆Is =
λ

δ

∑
0<s≤t

Gs−σ
3
s(∆Ls)

3 =
λ

δ

∫ t

0+

Gs−σ
3
sdMs

with Mt :=
∑

0<s≤t(∆Ls)
3 which is a martingale too, indeed

E(|Mt|) = E

(∣∣∣∣∣ ∑
0<s≤t

(∆Ls)
3

∣∣∣∣∣
)
≤ E

(∑
0<s≤t

|∆Ls|3
)
<∞

because
∫
|x|≤1
|x|νL(dx) <∞ and

E(Mt|F∗s) = E(Mt −Ms|F∗s) +Ms = E

(∑
s<k≤t

(∆Ls)
3

)
+Ms = Ms, 0 < s < t.

Moreover from the compensation formula and hypotesis about
∫
R x

3νL(dx)

E(Mt) = E
(∫ t

0

∫
R
x3νL(dx)ds

)
= 0

and it follows

E(C∗t ) =
λ

δ
E(M1)

∫ t

0

E(Gs−σ
3
s)ds = 0.

Therefore E(e−XtIt) = Ψ(1)
∫ t

0
E(e−XsIs)ds and we have the ODE

d(E(e−XtIt)) = Ψ(1)E(e−XtIt)dt

whose solution is E(e−XtIt) = 0. Analyze the other term of the (2.14)
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∫ t

0+

Gs−σs

(
β

∫ t

s

eXu−Xt−du

)
dLs =

= β

(∫ t

0

eXu−Xt−du

)(∫ t

0+

Gs−σsdLs

)
− β

∫ t

0+

Gs−σs

(∫ s

0+

eXu−Xt−du

)
dLs

= β

∫ t

0+

(∫ s

0

eXu−Xt−du

)
d

(∫ s

0+

Gu−σudLu

)
+ β

∫ t

0+

(∫ s

0+

Gu−σudLu

)
d

(∫ s

0

eXu−Xt−du

)
+ βC̃t+

− β
∫ t

0+

Gs−σs

(∫ s

0+

eXu−Xt−du

)
dLs

= β

∫ t

0+

(∫ s

0

eXu−Xt−du

)
Gs−σsdLs + β

∫ t

0+

eXs−Xt−
(∫ s

0

Gu−σudLu

)
ds+

+ βC̃t − β
∫ t

0+

Gs−σs

(∫ s

0

eXu−Xt−du

)
dLs

= β

∫ t

0+

eXs−Xt−
(∫ s

0

Gu−σudLu

)
ds+ βC̃t,

with C̃t the quadratic covariation between
∫ t

0
eXu−Xt−du and

∫ t
0+
Gs−σsdLs.

∆C̃t = Gt−σt∆Lt∆

(∫ t

0

eXu−Xt−du

)
= Gt−σt∆Lt

(
e−Xt

∫ t

0

eXudu− e−Xt−
∫ t

0

eXudu

)
= Gt−σt∆Lt

∫ t

0

eXudu
λ

δ
e−Xt−(∆Lt)

2

=
λ

δ
e−Xt−

(∫ t

0

eXudu

)
Gt−σt(∆Lt)

3

and

C̃t =
∑

0<s≤t

∆

(
e−Xs

∫ s

0

eXudu

)
Gs−σs∆Ls

=
λ

δ

∑
0<s≤t

e−Xs−
(∫ s

0

eXudu

)
Gs−σs(∆Ls)

3

=
λ

δ

∫ t

0+

e−Xs−
(∫ s

0

eXudu

)
Gs−σsdMs

so that

E(C̃t) =
λ

δ
E(M1)

∫ t

0+

E
(

e−Xs−
(∫ s

0

eXudu

)
Gs−σs

)
ds = 0.
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So

E
(
β

∫ t

0

(∫ s

0+

Gu−σudLu

)
e−(Xt−−Xs)ds

)
= β

∫ t

0

E
(∫ s

0+

Gu−σudLue
−(Xt−Xs)

)
ds

= β

∫ t

0

E
(∫ s

0+

Gu−σudLu

)
E
(
e−(Xt−Xs)

)
ds = 0.

Therefore

λ

δ
E(G2

tσ
2
t ) = E(σ4

t )− βtE(σ2
t )− log δE

(
σ2
t

∫ t

0

σ2
sds

)
− E(σ2

t σ
2
0).

From (2.12) and stationarity of the volatility process

E(σ2
t σ

2
s) = Var(σ2

0)e(t−s)Ψ(1) + E2(σ2
0)

hence

λ

δ
E(G2

tσ
2
t ) = E(σ4

t )− βtE(σ2
t )− log δE

(∫ t

0

(Var(σ2
0)e(t−s)Ψ(1) + E2(σ2

0)ds

)
+

− Var(σ2
0)etΨ(1) − E2(σ2

0)

= Var(σ2
0)(1− etΨ(1))− βtE(σ2

0)− log δVar(σ2
0)

1− etΨ(1)

−Ψ(1)
+

− log δE2(σ2
0)t.

From (2.11) λ
δ
E(L2

1) = Ψ(1)− log δ and we get

λ

δ
E(G2

t )E(σ2
t ) =

−βt
Ψ(1)

E(L2
1)E(σ2

0)
λ

δ

= −βtE(σ2
0)− t log δE2(σ2

0).

We can conclude that

λ

δ
E(G2

t , σ
2
t ) = Var(σ2

0)

(
1− etΨ(1) − log δ(1− etΨ(1))

−Ψ(1)

)
= Var(σ2

0)

(
(1− etΨ(1))(−Ψ(1)− log δ)

−Ψ(1)

)
> 0.

Remark 34. Proposition 2.3.1 tells us that log-returns are uncorrelated, while the
squared log-returns are correlated. This agrees with empirical results. In this model
the autocorrelation function of the squared log-return decreases exponentially. Fur-
thermore Var(G

(r)
t ) is linear in r.

Proposition 2.3.2. Suppose that the Lévy process L has finite variance and zero mean,
and that Ψ(1) < 0. Let (σt)t≥0 be the stationary volatility process. Then the process

((G
(r)
ri )2)i∈N has for every fixed r > 0 the autocorrelation structure of an ARMA(1,1)

process.
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Proof. Let γ(h) := Cov((G
(r)
ri )2, (G

(r)
r(i+h))

2) be the autocovariance function, for h ∈ N0,

and denote by ρ(h) := Corr((G(r)
ri )2, (G

(r)
r(i+h))

2) the autocorrelation function of the

discrete time process ((G
(r)
ri )2)i∈N. Then

ρ(h)

ρ(1)
=
γ(h)

γ(1)
= e−(h−1)r|Ψ(1)|, h ∈ N.

For h = 1 we have ρ(1) = γ(1)/Var(G2
r).

We now state a theorem telling us the stationary distribution σ2
∞ is self-decomposable.

Theorem 2.3.3. The stationary distribution σ2
∞ is self-decomposable, i.e. such that

σ2
∞

d
= kσ2

∞ + Y,

where k ∈ (0, 1) and Y is independent of σ2
∞.

Proof. The auxiliary process X is spectrally negative and Xt → +∞ a.s. as t → ∞.
From this follows that the stopping time Th, defined for h > 0 by

Th := inf {t ≥ 0 : Xt = h} ,

is almost surely finite. Consider the σ-algebra generated by (Xs)0≤s≤t, Ft, and the stop-
ping time σ-algebra FTh . By strong Markov property (XTh+t −XTh)t≥0 is independent
of FTh and has the same law as (Xt)t≥0.

σ2
∞

d
= β

∫ ∞
0

eXtdt = β

∫ Th

0

e−Xtdt+ β

∫ ∞
Th

e−Xtdt =: Ah +Bh,

tells us that Ah is FTh-measurable that

Bh = β

∫ ∞
Th

e−(Xt−XTh )e−XThdt = e−hβ

∫ ∞
Th

e−(Xt−XTh )dt

is independent of Ah and has the same law as e−hσ2
∞. Hence for h > 0

σ2
∞

d
=Ah + e−hσ2

∞

with Ah and σ2
∞ are independent.

Under suitable conditions once can show that σ2
∞ has Pareto like tails (see [28]).

See also [9] for higher and joint moments.

Remark 35. We will often use a different parametrisation for the COGARCH model.
Take δ = e−η and λ = ϕe−η so that the auxiliary process becomes

Xt = ηt−
∑

0<s≤t

log(1 + ϕ(∆Lt)
2)

and the volatility process is solution of the following differential equation

dσ2
t+ = (β − ησ2

t )dt+ ϕσ2
t d[L]dt .
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The following plots show trajectories of Gt, G
(1)
t and σ2

t . The simulation was done
by choosing parametrisation introduced in Remark 35 and a variance gamma process
as driving Lévy process with µ = 0 and τ = σ = 11, so that E(L1) = 0 and E(L2

1) = 1.
In this case for τ > 0

E(eiuLt) =

(
1 +

τu2

2

)−t/τ
and

νL(dx) =
1

τ |x|
exp

(
−
√

2/τ |x|
)

dx, x 6= 0.

By Equation (2.11)

Ψ(1) = −η + ϕ

∫
R
x2νL(dx) = ϕ− η

and

Ψ(2) = −2η +

∫
R
((1 + ϕx2)2 − 1)

1

τ |x|
e−
√

2/τ |x|dx

= −2η +

∫
R
(2ϕx2 + ϕ2x4)

1

τ |x|
e−
√

2/τ |x|dx

= −2η + 2ϕ+
2ϕ2

τ

∫ ∞
0

x3e−
√

2/τ |x|dx = 2ϕ− 2η + 3τϕ2.
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Figure 2.1: Simulation of a variance gamma driven COGARCH(1,1) process
(Gt)0≤t≤10000 with parameters β = 0.04, η = 0.053, ϕ = 0.038, τ = σ = 1 and

µ = 0, log-return process (G
(1)
t )0≤t≤10000 and squared volatility process (σ2

t )0≤t≤10000.

1There shouldn’t be confusion between the volatility process and the parameter of the variance
gamma we called σ in the first chapter.
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2.4 Asymmetric COGARCH(1,1) process

As is well known in literature, there is an asymmetric response of the volatility to
positive and negative past returns. The so-called leverage effect refers to the observed
tendency of the volatility to be negatively correlated with stock returns: volatility
tends to increase in response to bad news and to fall in response to good news. It also
been documented that the effect is asymmetric: declines in stock price are accompanied
by larger increases in volatility than the decline in volatility which accompanies rising
prices. Therefore, it is important to include the asymmetric term in financial time series
models (see [39], [45] and [47]). Then, new discrete time models were introduced. Ding,
Granger and Engle proposed in [13] an Asymmetric Power GARCH (APGARCH)
model, which contains classical ARCH and GARCH processes, as well as the GJR-
GARCH model (see [20]) and the Threshold GARCH (TGARCH) model developed
by Zakoian [53]. We will discuss continuous time APGARCH presented in [31] and
continuous time GJR-GARCH studied by Behme, Klüppelberg and Mayr recently in
[5].

2.4.1 Discrete time APGARCH process

Definition 2.1. Let (εn)n∈N be a sequence of i.i.d. random variables with E(εn) = 0
and Var(εn) = 1. The process (Yn)n∈N is called Asymmetric Power GARCH(p, q) if it
satisfies the following form (cf. [39])

Yn = εnσn (2.15)

στn = β +

q∑
i=1

λih(Yn−i) +

p∑
j=1

δjσ
τ
n−j, (2.16)

with h(x) := (|x| − γx)τ , β > 0, τ > 0, λi > 0, δj > 0 and |γi| < 1.

Remark 36. The function h(x) is strictly positive for all x ∈ R\{0} and τ > 0 because
|x| > γx if and only if γ ∈ (−1, 1).

Remark 37. For τ = 2 and γi = 0 for each i = 1, · · · , q h(x) = x2 and we obtain the
discrete time GARCH(p, q) model. In general for τ = 2 we have the GJR-GARCH(p, q)
(see [20]). In this case if 0 ≤ γi < 1

σ2
n = β +

q∑
i=1

λi(|Yn−i| − γiYn−i)2 +

p∑
j=1

δjσ
2
n−j

= β +

q∑
i=1

λi(1− γi)2Y 2
n−i + 4

q∑
i=1

λiY
2
n−i1{Yn−i<0} +

p∑
j=1

δjσ
2
n−j

= β +

q∑
i=1

λ∗iY
2
n−i +

q∑
i=1

γ∗i Y
2
n−i1{Yn−i<0} +

p∑
j=1

δjσ
2
n−j
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with λ∗i = λi(1− γi)2 and γ∗i = 4λiγi. If −1 < γi < 0, then

σ2
n = β +

q∑
i=1

λi(1 + γi)
2Y 2

n−i − 4

q∑
i=1

λiY
2
n−i1{Yn−i>0} +

p∑
j=1

δjσ
2
n−j

= β +

q∑
i=1

λ∗iY
2
n−i +

q∑
i=1

γ∗i Y
2
n−i1{Yn−i>0} +

p∑
j=1

δjσ
2
n−j

with λ∗i = λi(1 + γi)
2 and γ∗i = −4λiγi.

2.4.2 Continuous time APGARCH process

Assume that p = q = 1, so that we have

Yn = εnσn, στn = β + λ(|Yn−1| − γYn−1)τ + δστn−1,

where β > 0, τ > 0, λ ≥ 0, δ ≥ 0 and −1 < γ < 1.
We will replace the innovations of the discrete time APGARCH model through the
increments of a Lévy process. We observe that

στn = β + λ(|Yn−1| − γYn−1)τ + δστn−1

= β + λ(|εn−1σn−1| − γεn−1σn−1)τ + δστn−1

= β + λ(|εn−1| − γεn−1)τστn−1 + δστn−1

= β + (λh(εn−1) + δ)στn−1.

(2.17)

Iteration of (2.17) gives us

στn = β + (λh(εn−1) + δ)στn−1

= β + (λh(εn−1) + δ)(β + (λh(εn−2) + δ)στn−2)

= · · ·

= β
n−1∑
i=0

n−1∏
j=i+1

(δ + λh(εj)) + στ0

n−1∏
j=0

(δ + λh(εj))

∼= β

∫ n

0

exp

 n−1∑
j=bsc+1

log(δ + λh(εj))

 ds+ στ0 exp

(
n−1∑
j=0

log(δ + λh(εj))

)

= β

∫ n

0

exp

 n−1∑
j=bsc+1

(
log δ + log

(
1 +

λ

δ
h(εj)

)) ds+

+ στ0 exp

(
n−1∑
j=0

(
log δ + log

(
1 +

λ

δ
h(εj)

)))
.

We replaced the innovations εj by the increments of the Lévy process L = (Lt)t≥0 with
Lévy measure νL 6= 0.
Define the auxiliary process X = (Xt)t≥0 as follows

Xt := −t log δ −
∑

0<s≤t

log

(
1 +

λ

δ
h(∆Ls)

)
, t ≥ 0,
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where λ > 0, 0 < δ < 1, |γ| < 1, τ > 0 and h(x) = (|x|−γx)τ . With στ0 a finite positive
random variable independent of L define the càglàd volatility process analogously to
(2.6) by

στt =

(
β

∫ t

0

eXsds+ στ0

)
e−Xt− , t ≥ 0.

We now can define the integrated continuous time APGARCH(1,1) process G = (Gt)t≥0

as the càdlàg process satisfying the following stochastic differential equation

dGt = σtdLt, t ≥ 0,

with G0 = 0.
Analogously to the COGARCH(1,1) model G jumps at the same time as L does, with
∆Gt = σt∆Lt.

2.4.3 Continuous time GJR-GARCH process

Continuous time APGARCH(1,1) model includes for τ = 2 the continuous time
GJR-GARCH(1,1) process analyzed in more details in [5]. For p = q = 1, β > 0,
λ > 0, δ ∈ (0, 1) and γ ∈ (−1, 1) equation (2.16) implies

σ2
n = β + λ(|Yn−1| − γYn−1)2 + δσ2

n−1

= β + λ(|εn−1σn−1| − γεn−1σn−1)2 + δσ2
n−1

= β + λε2n−1σ
2
n−1 − 2λγ|εn−1σn−1|εn−1σn−1 + λγ2εn−12σ2

n−1 + δσ2
n−1

= β + λ(1− γ)2ε2n−1σ
2
n−11{εn−1≥0} + λ(1 + γ)2ε2n−1σ

2
n−11{εn−1<0} + δσ2

n−1

= β + λ∗ε2n−1σ
2
n−11{εn−1≥0} + γ∗ε2n−1σ

2
n−11{εn−1<0} + δσ2

n−1

where λ∗ := λ(1− γ)2 and γ∗ := λ(1 + γ)2. Hence

σ2
n = β +

(
δ + (λ∗1{εn−1≥0} + γ∗1{εn−1<0})ε

2
n−1

)
σ2
n−1

= β +
(
δ + (λ∗1{εn−1≥0} + γ∗1{εn−1<0})ε

2
n−1

)
·

·
[
β +

(
δ + (λ∗1{εn−2≥0} + γ∗1{εn−2<0})ε

2
n−2

)]
σ2
n−2

= · · ·

= β

n−1∑
j=0

n−1∏
k=j+1

(
β + (λ∗1{εk≥0} + γ∗1{εk<0})

)
+ σ2

0

n−1∏
k=0

(
β + (λ∗1{εk≥0} + γ∗1{εk<0})

)
= β

∫ n

0

exp

 n−1∑
k=bsc+1

log(δ + (λ∗1{εk≥0} + γ∗1{εk<0})ε
2
k)

 ds+

+ σ2
0 exp

(
n−1∑
k=0

log(δ + (λ∗1{εk≥0} + γ∗1{εk<0})ε
2
k)

)

= β

∫ n

0

exp

 n−1∑
k=bsc+1

(
log δ + log

(
1 +

λ∗1{εk≥0} + γ∗1{εk<0}

δ
ε2k

)) ds+

+ σ2
0 exp

(
n−1∑
k=0

(
log δ + log

(
1 +

λ∗1{εk≥0} + γ∗1{εk<0}

δ
ε2k

)))
.
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Hence, if we define the process X = (Xt)t≥0 as

Xt := −t log δ −
∑

0<s≤t

log

(
1 +

λ∗1{∆Ls≥0} + γ∗1{∆Ls<0}

δ
(∆Ls)

2

)

one obtains the integrated continuous time GJR-GARCH(1,1) process G = (Gt)t≥0

defined by

dGt = σtdLt,

with

σ2
t :=

(
β

∫ t

0

eXsds+ σ2
0

)
e−Xt− , t ≥ 0.

Remark 38. Choosing the parameters δ = e−η, λ = ϕe−η it follows that λ∗ = ϕe−η(1−
γ)2 and γ∗ = ϕe−η(1 + γ)2 we can write

Xt = ηt−
∑

0<s≤t

log
(
1 +

[
(1− γ)21{∆Ls≥0} + (1 + γ)21{∆Ls<0}

]
ϕ(∆Ls)

2
)

= ηt−
∑

0<s≤t

log(1 + ϕh(∆Ls)).

This kind of model has the same properties as the COGARCH(1,1) process (see
[5]). We list them without proofs since one can prove these results analogously we did
for the symmetric model.

Proposition 2.4.1. Suppose that E(|L1|τ ) <∞. Then X is a spectrally negative Lévy
process with bounded variation. Moreover the characteristic triplet is such that CX = 0,

νX([0,∞)) = 0,

νX((−∞,−x]) = νL

({
y ∈ R : h(y) ≥

√
(ex − 1)δ/λ

})
, x > 0

and

γX,0 := γX −
∫

[−1,1]

xνX(dx) = − log δ.

Proposition 2.4.2. The process (σ2
t )t≥0 satisfies the following stochastic differential

equation

dστt+ = βdt+ στt eXt−d(e−Xt), t > 0

and we have

στt = στ0 + βt+ log δ

∫ t

0

στsds+
λ

δ

∑
0<s<t

στsh(∆Ls). (2.18)

Remark 39. If we use the parametrisation with β, η, ϕ and γ we obtain

dστt+ = (β − ηστt )dt+ ϕστt d

(∑
0<s≤t

h(∆Ls)

)
.
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Theorem 2.4.3. Suppose that∫
R

log

(
1 +

λ

δ
h(y)

)
νL(dy) < − log δ, (2.19)

then the process (στt )t≥0 converges in distribution as t→∞ to a finite random variable
στ∞ such that

στ∞
d
= β

∫ ∞
0

e−Xtdt.

Conversely, if (2.19) does not hold, then στt
p→∞ as t→∞.

Theorem 2.4.4. (στt )t≥0 an (στt , Gt)t≥0 are time homogeneous Markov processes, more-

over if στ∞ exists and στ0
d
=στ∞ (independent of (Lt)t≥0), then (στt )t≥0 is strictly station-

ary and (Gt)t≥0 ia a process with stationary increments.

Lemma 2.4.5. Keep c > 0

(a) Let λ > 0, then the Laplace transform E(e−cXt) of Xt at c is finite for some t > 0,
or equivalently for every t > 0, if and only if E(Lτc1 ) <∞.

(b) If E(e−cX1) < ∞ |Ψ(c)| < ∞, where Ψ(c) = logE(e−cX1) and E(e−cXt) = etΨ(c),
with

Ψ(c) = c log δ +

∫
R

[(
1 +

λ

δ
h(y)

)c
− 1

]
νL(dy).

(c) If E(|L1|τ ) < ∞ and Ψ(1) < 0, then στt
d→ στ∞, where στ∞ is a finite random

variable.

(d) If Ψ(c) < 0 for some c > 0, then Ψ(d) < 0 for d ∈ (0, c).

Proposition 2.4.6. Let λ > 0, t > 0 and h̃ ≥ 0.

(a) E(στt ) <∞ if and only if E(|L1|τ ) <∞ and E(στ0 ) <∞. If this is so

E(στt ) = − β

Ψ(1)
+

(
E(στ0 ) +

β

Ψ(1)

)
etΨ(1).

(If Ψ(1) = 0 the right hand side has to be interpreted as its limit as Ψ(1)→ 0, and
in this case E(στt ) = βt+ E(στ0 ).)

(b) E(σ2τ
t ) <∞ if and only if E(|L1|2τ ) <∞ and E(σ2τ

0 ) <∞. In this case

E(σ2τ
t ) =

2β2

Ψ(1)Ψ(2)
+

2β2

Ψ(2)−Ψ(1)

(
etΨ(2)

Ψ(2)
− etΨ(1)

Ψ(1)

)
+

+ 2βE(στ0 )

(
etΨ(2) − etΨ(1)

Ψ(2)−Ψ(1)

)
+ E(σ2τ

0 )etΨ(2).

(Also here the right hand side has to be interpreted as its limit if some of the
denominators are zero.) Moreover

Cov
(
στt , σ

τ
t+h̃

)
= Var(στt )eh̃Ψ(1).
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Proposition 2.4.7. Let λ > 0. Then the k-th moment of στ∞ (and of στt if the volatility
process is strictly stationary) is finite if and only if E(|L1|τk) < ∞ and Ψ(k) < 0 for
k ∈ N and we have

E(στk∞ ) = k!βk
k∏
l=1

1

−Ψ(l)
.

Corollary 2.4.8. If (στt )t≥0 is strictly stationary with στ0
d
=στ∞, then

E(στ∞) = − β

Ψ(1)

E(σ2τ
∞ ) =

2β2

Ψ(1)Ψ(2)

Cov
(
στt , σ

τ
t+h̃

)
= β2

(
2

Ψ(1)Ψ(2)
− 1

Ψ2(1)

)
eh̃Ψ(1)

provided that E(|L1|τk) < ∞ and Ψ(k) < 0 with k = 1 for E(σ2τ∞) and k = 2 for

E(σ2τ
∞ ) and Cov

(
στt , σ

2τ
t+h̃

)
.

Theorem 2.4.9. Let k ∈ N, δ ∈ (0, 1) and λ ≥ 0. Then στ∞ exists and has finite k-th
moment if and only if

1

k

∫
R

[(
1 +

λ

δ
h(y)

)k
− 1

]
νL(dy) < − log δ.

Proposition 2.4.10. (a) For any Lévy process L with nonzero Lévy measure such that∫
R

log(1 + h(y))νL(dy) <∞

there exist δ, λ ∈ (0, 1) such that στ∞ exists, but E(στ∞) =∞.

(b) k ∈ N, for any Lévy process L such that E(|L1|τk) <∞ and ∀δ ∈ (0, 1) there exists
λδ > 0 such that στ∞ exists with E(στk∞ ) <∞ for every (λ, δ) such that 0 ≤ λ ≤ λδ.

(c) λ > 0. For no Lévy process L with nonzero Lévy measure do the moments of all
orders of στ∞ exist.

It is not known how to calculate the moments for every τ > 0. Therefore only
models with τ = 2 will be considered in the following.

Proposition 2.4.11. Suppose that L is a quadratic pure jump process (i.e. CL = 0)
with E(L2

1) < ∞ and E(L1) = 0, and that Ψ(1) < 0. Let (σ2
t )t≥0 be the stationary

volatility process with σ2
0

d
=σ2

∞, then for t ≥ 0, h̃ ≥ r > 0

E(G
(r)
t ) = 0

E((G
(r)
t )2) = − βr

Ψ(1)
E(L2

1)
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Cov
(
G

(r)
t , G

(r)

t+h̃

)
= 0.

Assume furthermore that E(L4
1) <∞ and Ψ(2) < 0, then

Cov
(

(G
(r)
t )2, (G

(r)

t+h̃
)2
)

=

(
e−rΨ(1) − 1

−Ψ(1)

)
E(L2

1)eh̃Ψ(1)Cov(G2
r, σ

2
r).

If further λ > 0, E(L8
1) < 0, Ψ(4) < 0,

∫
|x|≤1
|x|νL(dx) <∞ and

∫
R x

3νL(dx) = 0, then

Cov
(

(G
(r)
t )2, (G

(r)

t+h̃
)2
)
> 0.

Proposition 2.4.12. Suppose that E(L1) = 0, E(L2
1) < ∞, and that Ψ(1) < 0. Let

(σ2
t )t≥0 be the stationary version. Then the process ((G

(r)
ri )2)i∈N has for every fixed r > 0

the autocorrelation structure of an ARMA(1,1) process.

Theorem 2.4.13. The stationary distribution στ∞ is self-decomposable, i.e. such that

στ∞
d
= kστ∞ + Y,

where k ∈ (0, 1) and Y is independent of στ∞.

We choose L symmetric so that the asymmetry of the model originates in γ only.
In particular we will use E(L1) = 0 and E(L2

1) = 1.

Remark 40. For a symmetric Lévy process the sign of the parameter γ is irrelevant
because positive and negative jumps of the same size appear with the same probability.
Hence we assume from now on that γ ∈ [0, 1).

Remark 41. Asymmetry of a COGARCH process can also be achieved by choosing an
asymmetric Lévy process as driving process. Replacing in (2.18) the term h(∆Ls) for
L with symmetric Lévy measure νL by (∆Ls)

2 with the following asymmetric measure

ν(dx) = νL(dx)((1− γ)1{x≥0} + (1 + γ)1{x<0})

yields the same model. However one prefers using the parameter γ in order to model the
asymmetry because we can estimate this parameter by means of statistical procedures.

We now show a few plots regarding the behavior of the trajectories of the GJR-
COGARCH(1,1) model and related processes for different values of γ in order to un-
derstand its influence on the asymmetry.
We simulated sample paths of a continuous time GJR-GARCH(1,1) process, (Gt)t≥0,
driven by a variance gamma with σ = τ = 1 and µ = 0. The parameters of the model
were chosen as β = 0.04, η = 0.053, ϕ = 0.038 and γ ∈ {0, 0.2, 0.4, 0.6}. We can
see if a large value is chosen for γ the negative jumps of the driving Lévy process are
weighted more than positive jumps of the same size. In pictures showing log-returns
sample paths we can observe bigger volatility clustering for high values of γ too.
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Figure 2.2: Simulation of a variance gamma driven GJR-COGARCH(1,1) process
(Gt)0≤t≤10000 with parameters β = 0.04, η = 0.053, ϕ = 0.038, γ = 0, τ = σ = 1 and

µ = 0, log-return process (G
(1)
t )0≤t≤10000 and squared volatility process (σ2

t )0≤t≤10000.
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Figure 2.3: Simulation of a variance gamma driven GJR-COGARCH(1,1) process
(Gt)0≤t≤10000 with parameters β = 0.04, η = 0.053, ϕ = 0.038, γ = 0.2, τ = σ = 1 and

µ = 0, log-return process (G
(1)
t )0≤t≤10000 and squared volatility process (σ2

t )0≤t≤10000.



2.4 Asymmetric COGARCH(1,1) process 75
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Figure 2.4: Simulation of a variance gamma driven GJR-COGARCH(1,1) process
(Gt)0≤t≤10000 with parameters β = 0.04, η = 0.053, ϕ = 0.038, γ = 0.4, τ = σ = 1 and

µ = 0, log-return process (G
(1)
t )0≤t≤10000 and squared volatility process (σ2

t )0≤t≤10000.
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Figure 2.5: Simulation of a variance gamma driven GJR-COGARCH(1,1) process
(Gt)0≤t≤10000 with parameters β = 0.04, η = 0.053, ϕ = 0.038, γ = 0.6, τ = σ = 1 and

µ = 0, log-return process (G
(1)
t )0≤t≤10000 and squared volatility process (σ2

t )0≤t≤10000.
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Chapter 3

Pseudo-maximum likelihood
estimation for asymmetric
COGARCH processes

For the COGARCH model different methods have been suggested: method of mo-
ments, pseudo-maximum likelihood (PML), Markov chain Monte Carlo (MCMC) and
optimal prediction-based estimating functions (OPBEFs). See respectively [23], [36],
[41] and [9]. The method of moments estimator, which is consistent and asymptoti-
cally normal under regularity conditions, is suitable only for equally spaced time series.
On the other hand MCMC method is suitable for irregularly spaced time data, but
it was just proposed for COGARCH models driven by a compound Poisson process.
The pseudo-maximum likelihood estimator can be applied both for every driven Lévy
process and for irregularly spaced data. It has also been proved by Kim and Lee in [26],
once modified the likelihood function, that PML estimator is consistent and asymptoti-
cally normal. OPBEFs method needs higher moments and uses observations separeted
by a constant time lag as well. Asymptotic properties are well known (see [50]). We
refer to [21], [6] and [19] for estimation in discrete time models.
For the asymmetric model, by following [23] and [36], Behme, Klüppelberg and Mayr
suggested in [5] the method of moments and the pseudo-maximum likelihood.
The aim of this chapter is the estimation of the GJR-COGARCH(1,1) model param-
eters (β, η, ϕ, γ). Following [36] and [26] we will introduce a new pseudo-maximum
likelihood estimator and prove the weak consistency. For doing that firstly we show
how to fit the continuous time model to irregularly spaced time series data using dis-
crete time GJR-GARCH methodology, by approximating the GJR-COGARCH with
an embedded sequence of discrete time GJR-GARCH series. We need to discretize
the continuous time volatility process and for this reason a “first jump” approxima-
tion is used (see [35] for details about this methodology). At the end we summarize
the method of moments in order to compare this kind of approach with the pseudo-
maximum likelihood estimator by means of Monte Carlo simulations.

77
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processes

3.1 Discrete approximation of the GJR-COGARCH

Take a deterministic sequence Nn such that limn→∞Nn = ∞ and divide the finite
interval [0, T ], with T > 0, in Nn subintervals of length ∆tk(n) := tk(n)− tk−1(n), for
k = 1, · · · , Nn, in the following way

0 = t0(n) < t1(n) < · · · < tNn(n) = T.

Assume that maxk=1,··· ,Nn ∆tk(n)→ 0 as n→∞, and define for n ∈ N a discrete time
process (Gn,k)k=1,··· ,Nn such that for k = 1, · · · , Nn

Gn,k = Gn,k−1 + σ̃n,k−1

√
∆tk(n)εn,k, (3.1)

where Gn,0 = 0 and the variance σ̃2
n,k follows the recursion

σ̃2
n,k = β∆tk(n)+

+
(

1 +
[
(1− γ)21{εn,k−1≥0} + (1 + γ)21{εn,k−1<0}

]
ϕ∆tk(n)ε2n,k−1

)
e−η∆tk(n)σ̃n,k−1

= β∆tk(n) + e−η∆tk
(n)σ̃2

n,k−1 + ϕe−η∆tk
(n)(|Yn,k| − γYn,k)2

(3.2)

with Yn,k := Gn,k −Gn,k−1.
The innovations (εn,k)k=1,··· ,Nn for n ∈ N are constructed using a first jump approxi-
mation of the Lévy process as follows. Take a strictly positive sequence 1 ≥ an ↓ 0
satisfying limn→∞∆tk(n)ν̄2

L(an) = 0, where ν̄L(x) =
∫
|y|>x νL(dy) is the tail of the Lévy

measure. Such a sequence always exists as limx↓0 x
2ν̄L(x) = 0 for any Lévy measure.

For n ∈ N define the following stopping times

τn,k := inf {t ∈ [tk−1(n), tk(n)) : |∆Lt| ≥ an} , k = 1, · · · , Nn.

τn,k is the time of the first jump of the driving Lévy process in the k-th interval whose
magnitude exceeds an, if such a jump occurs. Thanks to the strong Markov property(

1{τn,k<∞}∆Lτn,k
)
k=1,··· ,Nn

is for each n ∈ N a sequence of independent and identically distributed random variables
with law

νL(dx)1{|x|>an}
ν̄L(an)

(1− e−∆tk
(n)ν̄L(an)), x ∈ R \ {0} , k = 1, · · · , Nn,

and with mass e−∆tk
(n)ν̄L(an) at 0. These random variables have finite mean, ςk(n), and

variance, ξ2
k(n), since E(L2

1) = 1. So, the innovations required are

εn,k =
1{τn,k<∞}∆Lτn,k − ςk(n)

ξk(n)
,

where for n ∈ N E(εn,1) = 0 and E2(εn,1) = 1. Finally we take σ̃2
n,0 independent of the

εn,k.
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Remark 42. Equations (3.1) and (3.2) specify a GJR-GARCH(1,1)-type recursion. In
the classical discrete time GJR-GARCH(1,1) process

σ2
k = a+ bh(σk−1εk−1) + cσ2

k−1 (3.3)

with a, b, c, γ > 0. If ∆tk(n) does not depend on k, then (3.2) is equivalent to (3.3)
after rescaling by ∆t(n) and a new parametrisation, and (3.1) becomes a rescaled GJR-
GARCH(1,1) equation for the differenced sequence Gn,k − Gn,k−1. In general, even if
the time grid is non equally spaced, we have convergence to the GJR-COGARCH(1,1).

Embed the discrete time processes Gn,· and σ2
n,· into continuous time versions Gn

and σ2
n with

Gn(t) := Gn,k and σ2
n(t)=σ

2
n,k for t ∈ [tk−1(n), tk(n)),

0 ≤ t ≤ T and Gn(0) = 0. The processes Gn and σ2
n are in D[0, T ], the space of càdlàg

real-valued stochastic processes on [0, T ]. The following theorem (see [5]) shows how a
COGARCH process can be obtained as the limit of an embedded sequence of discrete
time GARCH series.

Theorem 3.1.1. The Skorokhod distance1 between the processes (G, σ2) and the dis-
cretized, piecewise constant processes (Gn, σ

2
n)n∈N converges to 0 in probability as n→

∞, i.e.

ρ
(
(Gn, σ

2
n), (G, σ2)

) p→ 0, as n→∞.

Consequently, we also have convergence in distribution in D[0, T ]× D[0, T ], that is

(Gn, σ
2
n)

d→ (G, σ2), as n→∞.

3.2 Estimation via pseudo-maximum likelihood

G = (Gt)t≥0 is observed discretely with irregular time spaces. For each n ∈ N we
set N = Nn,

0 = t0 < t1 < · · · < tN <∞, ∆tk := tk − tk−1

and

Yn,k := Gtk −Gtk−1
=

∫
(tk−1,tk)

σsdLs.

∆ := ∆n := max(∆t1 , · · · ,∆tN ), where ∆tk are allowed to be nonidentical. We assume
that ∆→ 0 and tN →∞ as n→∞.

1The Skorokhod distance J1 between two Rd-valued processes U and V , each in Dd[0, T ] (the space
of càdlàg Rd-valued stochastic processes on [0, T ]) is defined by

ρ(U, V ) = inf
λ∈Λ

{
sup

0≤t≤T

∥∥Ut − Vλ(t)

∥∥+ sup
0≤t≤T

|λ(t)− t|
}

where Λ is the set of strictly increasing continuous function with λ(0) = 0 and λ(T ) = T .
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processes

Let ϑ◦ = (β◦, ϕ◦, η◦, γ◦) ∈ Θ be the vector of the (unknown) true parameters, ϑ =
(β, ϕ, η, γ) and

Θ := {ϑ = (β, ϕ, η, γ) : β∗ ≤ β ≤ β∗, η∗ ≤ η ≤ η∗, ϕ∗ ≤ ϕ ≤ ϕ∗,

γ∗ ≤ γ ≤ γ∗, η − ϕ(1 + γ2) ≥ c∗
}

the parametric space with 0 < β∗ < β∗ < ∞, 0 < η∗ < η∗ < ∞, 0 < ϕ∗ < ϕ∗ < ∞,
0 ≤ γ∗ < γ∗ < 1, 0 < c∗ <∞.
Let

σ̃2
n,0(ϑ) :=

β

η − ϕ(1 + γ2)

and
σ̃2
n,k(ϑ) := β∆tk + e−η∆tk σ̃2

n,k−1(ϑ) + ϕe−η∆tkh(Yn,k)

for k = 1, · · · , N so that

σ̃2
n,k(ϑ) = β

k−1∑
i=0

∆tk−ie
−η(tk−tk−i) + e−ηtk σ̃2

n,0(ϑ) + ϕe−ηtk
k∑
i=1

eηtk−ih(Yn,k−i+1)

with h(∆Lu) = (|∆Lu| − γ∆Lu)
2, 0 ≤ γ < 1. We can see σ̃2

n,k(ϑ) as an estimate of σ2
tk

when ϑ = ϑ◦.

Our aim is to use a pseudo-maximum likelihood method to estimate the parameters
(β, η, ϕ, γ) from Yn,1, · · · , Yn,N . We derive the pseudo-likelihood as follows.
Since (σ2

t )t≥0 is Markovian, then Yn,k is conditionally independent of Yn,k−1, Yn,k−2, · · · ,
given Ftk−1

, where (Ft)t≥0 is the natural filtration of L satisfying the usual conditions.
Consequently E(Yn,k|Ftk−1

) = 0 and

ρ2
n,k = E(Yn,k|Ftk−1

) = E(L2
1)

∫ tk

tk−1

(
(σ2

tk−1
− E(σ2

0))es−tk−1Ψ(1) + E(σ2
s−tk−1

)
)

ds

= (σ2
tk−1
− E(σ2

0))

∫ tk

tk−1

es−tk−1Ψ(1)ds+

∫ tk

tk−1

E(σ2
s−tk−1

)ds

= (σ2
tk−1
− E(σ2

0))
e∆tk

Ψ(1) − 1

Ψ(1)
+ ∆tkE(σ2

0).

Since

Ψ(1) = −η◦ +

∫
R
((1 + ϕ◦(|x| − γ◦x)2)− 1)νL(dx)

= −η◦ + ϕ◦
∫
R
(|x|2 − 2γ◦x|x|+ γ◦2x2)νL(dx)

= −η◦ + ϕ◦
[
(1 + γ◦2)

∫
R
x2νL(dx)− 2γ◦

∫
R
|x|xνL(dx)

]
= −η◦ + ϕ◦(1 + γ◦2),

then we have

ρ2
n,k =(σ2

tk−1
− E(σ2

0))
e(ϕ◦(1+γ◦2)−η◦)∆tk − 1

−η◦ + ϕ◦(1 + γ◦2)
+ ∆tkE(σ2

0)

=

(
σ2
tk−1
− β◦

η◦ − ϕ◦(1 + γ◦2)

)
e(−η◦+ϕ◦(1+γ◦2))∆tk − 1

−η◦ + ϕ◦(1 + γ◦2)
+

β◦∆tk

η◦ − ϕ◦(1 + γ◦2)
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and we can use

ρ̃2
n,k(ϑ) =

(
σ̃2
n,k−1(ϑ)− β

η − ϕ(1 + γ2)

)(
e(ϕ(1+γ2)−η)∆tk − 1

ϕ(1 + γ2)− η

)
+

β∆tk

η − ϕ(1 + γ2)

as estimates of the conditional variances of Yn,k when ϑ = ϑ◦.
We assume that Yn,k have conditionally gaussian distribution with zero mean and
variance ρ2

n,k and use recursive conditioning to write for m = mn ∈ N a pseudo-log-
likelihood function for Yn,1, · · · , Yn,N as

L̃N(ϑ) = −1

2

N∑
k=m

Y 2
n,k

ρ2
n,k

− 1

2

N∑
k=m

log ρ2
n,k −

N −m+ 1

2
log 2π. (3.4)

We must substitute in (3.4) a calculable quantity for ρ2
n,k, hence we need such for σ2

tk−1
.

We discretize the continuous time volatility process as was done in the previous sec-
tion and in Theorem 3.1.1. Consequently we define the pseudo-gaussian log-likelihood
function of ϑ as

LN(ϑ) :=
N∑

k=m

ln,k(ϑ)∆tk, ln,k(ϑ) = −

(
Y 2
n,k

ρ̃2
n,k(ϑ)

+ log
ρ̃2
n,k(ϑ)

∆tk

)

and we use as estimator ϑ̂n the measurable maximum point of LN , i.e.

LN(ϑ̂) = max
ϑ∈Θ

LN(ϑ).

Remark 43. This pseudo-log-likelihood function is slightly different from (3.4) in which
∆tk does not appear. The reason will be more clear later when we prove the consistency
of the estimator. Without this term the pseudo-maximum likelihood estimator is not
consistent, for this reason we propose this kind of estimator. Behme, Klüppelberg and
Mayr [5] (and Maller, Müller and Szimayer [36] for the symmetric model) adopted the
version without ∆tk .

In order to prove the consistency theorem we need regularity conditions on the driving
Lévy process and the sampling scheme.

Theorem 3.2.1. Under
C1. ϑ ∈ Θ, ∆→ 0, tN →∞, tm = o(tN), e−η∗tm = O(∆1/2) as n→∞.
C2. CL = 0, i.e. there is no Brownian component ((Lt)t≥0 is a quadratic pure jump
Lévy process).
C3. E(L1) = 0, E(L2

1) = 1, E(L4
1) <∞ and Ψ(2) < 0, where Ψ(z) = logE(e−zX1).

ϑ̂n
p→ ϑ◦.

To prove the theorem we need some preliminary results we are going to show.

3.2.1 Proof of the consistency

To prove the consistency of the estimator we look for a function Υ(ϑ) such that

1

tN
LN(ϑ)

p→ Υ(ϑ) and Υ(ϑ◦) = max
ϑ∈Θ

Υ(ϑ),
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processes

so that we can say that if the functions LN and Υ are close each other, then their
maximum points should be close each other too. Actually we need the uniform con-
vergence in probability in order to guarantee this result and the following propositions
and lemmas, though quite technical, aim to show this kind of convergence.

From now on C denotes a generic constant. We start extending the time domain
of the processes L and X to R by letting

Lt := −L∗(−t)−, −∞ < t < 0

Xt := η◦t+
∑
t<s≤0

log (1 + ϕ◦h◦(∆Ls)) , −∞ < t < 0

with L∗ independent copy of L.

Remark 44. It is clear that L and X are both càdlàg Lévy processes.

We now define

σ2
u := β◦

∫ u

−∞
eXv−Xu−dv, u ≤ 0.

Lemma 3.2.2. σ2
u is square integrable.

Proof.

σ2
u = β◦

∫ u

−∞
eXv−Xu−dv

d
= β◦

∫ u

−∞
eXv−u−dv = β◦

∫ 0

−∞
eXsds

and

E
(∫ 0

−∞
eXsds

)2

= E
∫ 0

−∞

∫ 0

−∞
eXreXsdrds = E

∫ 0

−∞

∫ 0

−∞
eXs−Xre2Xrdrds =

=

∫ 0

−∞

∫ s

−∞
E(eXs−Xr)E(e2Xr)drds+

∫ 0

−∞

∫ 0

s

E(eXr−Xs)E(e2Xs)drds <∞.

Remark 45. Note that (σ2
u)u≤0 is strictly stationary as

β◦
∫ u

−∞
eXv−Xu−dv

d
= β◦

∫ 0

−∞
eXsds

a.s.
= β◦

∫ 0

−∞
eXs−X0−ds = σ2

0.

Define

σ2
0(ϑ) := β/η + ϕ

∫
(−∞,0)

eηuσ2
ud

( ∑
0<s≤u

h(∆Ls)

)
and for t > 0

σ2
t (ϑ) :=β/η + (σ2

0(ϑ)− β/η)e−ηt + ϕe−ηt
∫

(0,t)

eηuσ2
ud

( ∑
0<s≤u

h(∆Ls)

)

=β/η + ϕ

∫
(−∞,t)

e−η(t−u)σ2
ud

( ∑
0<s≤u

h(∆Ls)

)
.



3.2 Estimation via pseudo-maximum likelihood 83

Remark 46. Clearly (σ2
t (ϑ))t≥0 is a càglàd process.

Lemma 3.2.3. E(σ2
0(ϑ)) <∞ for all ϑ ∈ Θ.

Proof.

E
∫

(−∞,0)

eηuσ2
ud

( ∑
0<s≤u

h(∆Ls)

)
=

= E
∫

(−∞,0)

eηuσ2
ud

(
(1 + γ2)

∑
0<s≤u

(∆Ls)
2 − 2γ

∑
0<s≤u

(∆Ls)|∆Ls|

)

=

{
(1− γ)2

∫
(−∞,0)

eηuσ2
ud[L]u if ∆Lu > 0

(1 + γ)2
∫

(−∞,0)
eηuσ2

ud[L]u if ∆Lu ≤ 0.

Since

E
∫

(−∞,0)

eηuσ2
ud[L]u = E

∑
u≤0

eηuσ2
u(∆Lu)

2 = E
∫

(−∞,0]

∫
R
x2eηuσ2

uN(du, dx) =

= E
∫ 0

−∞

∫
R
x2eηuσ2

uνL(dx)du =

∫
R
x2νL(dx)

∫ 0

−∞
E(σ2

u)e
ηudu =

= E(σ2
0)

∫ 0

−∞
eηudu <∞.

Lemma 3.2.4. (σ2
t (ϑ))t≥0 is strictly stationary and satisfies the following stochastic

differential equation

dσ2
t+(ϑ) = (β − ησ2

t (ϑ))dt+ ϕσ2
t d

(∑
0<s≤t

h(∆Ls)

)
.

Especially σ2
t (ϑ) ≥ β/η a.s. and E(σ4

t (ϑ)) <∞.

Proof. Since

σ2
t (ϑ) = β/η + (σ2

0(ϑ)− β/η)e−ηt + ϕe−ηt
∫

(0,t)

eηuσ2
ud

( ∑
0<s≤u

h(∆Ls)

)

σ2
t+(ϑ)− σ2

0+(ϑ) = (σ2
0(ϑ)− β/η)e−ηt + ϕe−ηt

∫
(0,t]

eηuσ2
ud

( ∑
0<s≤u

h(∆Ls)

)
+

− ϕ
∫

(−∞,0]

eηuσ2
ud

( ∑
0<s≤u

h(∆Lu)

)

= (σ2
0(ϑ)− β/η)(e−ηt − 1) + ϕe−ηt

∫
(0,t]

eηuσ2
ud

( ∑
0<s≤u

h(∆Ls)

)
.
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∫ t

0

(β − ησ2
s(ϑ))ds =

∫ t

0

(β − ησ2
s+(ϑ))ds

=

∫ t

0

[
−η(σ2

0(ϑ)− β/η)e−ηs − ηϕe−ηs
∫

(0,s]

eηuσ2
ud

( ∑
0<k≤u

h(∆Lk)

)]
ds

= (σ2
0(ϑ)− β/η)(e−ηt − 1)− ϕ

∫
(0,t]

∫ t

u

ηe−ηsdseηuσ2
ud

( ∑
0<k≤u

h(∆Lk)

)

= (σ2
0(ϑ)− β/η)(e−ηt − 1) + ϕ

∫
(0,t]

e−η(t−u)σ2
ud

( ∑
0<k≤u

h(∆Lk)

)
+

− ϕ
∫

(0,t]

σ2
ud

( ∑
0<k≤u

h(∆Lk)

)
.

Hence, as

σ2
t+(ϑ)− σ2

0+(ϑ) =

∫ t

0

(β − ησ2
s(ϑ))ds+ ϕ

∫
(0,t]

σ2
ud

( ∑
0<k≤u

h(∆Lk)

)

dσ2
t+(ϑ) = (β − ησ2

t (ϑ))dt+ ϕσ2
t d

(∑
0<s≤t

h(∆Ls)

)
.

We also have that for every s, t ≥ 0

σ2
t (ϑ) = β/η + ϕ

∫
(−∞,t)

e−η(t−u)σ2
ud

( ∑
0<k≤u

h(∆Lk)

)

= β/η + ϕ

∫
(−∞,s)

e−η(t−y)eη(t−s)σ2
y+t−sd

( ∑
0<k≤y+t−s

h(∆Lk)

)
d
= β/η + ϕ

∫
(−∞,s)

e−η(s−y)σ2
yd

( ∑
0<k≤y

h(∆Lk)

)
= σ2

s(ϑ).

Since σ2
0(ϑ) ≥ β/η a.s., then σ2

t (ϑ) ≥ β/η a.s. too.
Moreover

σ2
0(ϑ) = β/η + ϕ

∫
(−∞,0)

eηuσ2
ud

( ∑
0<s≤u

h(∆Ls)

)

= β/η + ϕ
∞∑
j=0

∫
(−j−1,−j]

eηuσ2
ud

( ∑
0<s≤u

h(∆Ls)

)
,

which implies that

σ2
0(ϑ) ≤ β/η + ϕ

∞∑
j=0

e−ηj
∫

(−j−1,−j]
σ2
ud

( ∑
0<s≤u

h(∆Ls)

)
.
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It follows that

σ4
0(ϑ) ≤ β2/η2 +

[
∞∑
j=0

e−ηj
∫

(−j−1,−j]
σ2
ud

( ∑
0<s≤u

h(∆Ls)

)]2

+

+ 2β/η
∞∑
j=0

e−ηj
∫

(−j−1,−j]
σ2
ud

( ∑
0<s≤u

h(∆Ls)

)

We just have to deal with[
∞∑
j=0

e−ηj
∫

(−j−1,−j]
σ2
ud

( ∑
0<k≤u

h(∆Lk)

)]2

=

=
∞∑
j=0

e−2ηj

[∫
(−j−1,−j]

σ2
ud

( ∑
0<k≤u

h(∆Lk)

)]2

+

+
∞∑
j=0

∞∑
i=0∧i 6=j

e−ηie−ηj
∫

(−j−1,−j]
σ2
ud

( ∑
0<k≤u

h(∆Lk)

)∫
(−i−1,−i]

σ2
ud

( ∑
0<k≤u

h(∆Lk)

)
.

Clearly

E
∞∑
j=0

e−ηj

[∫
(−j−1,−j]

σ2
ud

( ∑
0<k≤u

h(∆Lk)

)]2

=
∞∑
j=0

e−ηjE

[∫
(−j−1,−j]

σ2
ud

( ∑
0<k≤u

h(∆Lk)

)]2

.

It is known that

E
∑

−j−1<u≤−j

σ4
u(∆Lu)

4 = E
∫

(−j−1,−j]

∫
R
σ4
ux

4νL(dx)du

=

∫
R
x4νL(dx)

∫
(−j−1,−j]

E(σ4
u)du

= E(σ4
0)

∫
R
x4νL(dx) <∞.

Remark 47.
∫
R x

4νL(dx) is finite since E(L4
1) <∞⇔

∫
|x|≥1

x4νL(dx) <∞ and because∫
|x|<1

x4νL(dx) ≤
∫
|x|<1

x2νL(dx) <∞ thanks to the properties of the Lévy measure.

For u 6= s

E
∑

−j−1<u≤−j

∑
−j−1<s≤−j

σ2
uσ

2
s(∆Lu)

2(∆Ls)
2 =

∑
−j−1<u≤−j

E

[
σ2
u

∑
−j−1<s≤−j

σ2
s(∆Ls)

2(∆Lu)
2

]

=

∫ −j
−j−1

E

(
σ2
u

∑
−j−1<s≤−j

σ2
s(∆Ls)

2

)
du

=

∫ −j
−j−1

∫ −j
−j−1

E(σ2
uσ

2
s)duds =

= A(1− eΨ(1) − e−Ψ(1) + 1) +B
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with A and B constants

A =
β◦2

−Ψ2(1)

(
2

Ψ(1)Ψ(2)
− 1

Ψ2(1)

)
and B =

β◦2

Ψ2(1)
.

Then

∞∑
j=0

e−2ηi

(
E(σ4

0)

∫
R
x4νL(dx) +

∫ −j
−j−1

∫ −j
−j−1

E(σ2
uσ

2
s)duds

)
<∞.

Furthermore

∞∑
j=0

∞∑
i=0∧i 6=j

e−ηie−ηjE
∫

(−j−1,−j]
σ2
sd[L]s

∫
(−i−1,−i]

σ2
ud[L]u =

=
∞∑
j=0

∞∑
i=0∧i 6=j

e−ηie−ηjE

[ ∑
−j−1<s≤−j

σ2
s

∑
−i−1<u≤−i

σ2
u(∆Lu)

2(∆Ls)
2

]

=
∞∑
j=0

∞∑
i=0∧i 6=j

e−ηie−ηj
∫ −j
−j−1

E

(
σ2
s

∑
−i−1<u≤−i

σ2
u(∆Lu)

2

)
ds

=
∞∑
j=0

∞∑
i=0∧i 6=j

e−ηie−ηj
∫ −j
−j−1

∫ −i
−i−1

E(σ2
sσ

2
u)duds <∞

and the lemma is validated.

Lemma 3.2.5. σ2
0(ϑ◦) = σ2

0 a.s., hence σ2
t (ϑ
◦) = σ2

t a.s. for t ≥ 0 and σ2
t ≥ β◦/η◦.

Proof.

σ2
0(ϑ◦) = β◦/η◦ + ϕ◦

∫
(−∞,0)

eη
◦uσ2

ud

( ∑
0<k≤u

h◦(∆Lk)

)

= β◦/η◦ + ϕ◦
∫

(−∞,0)

eη
◦u

(
β◦
∫ u

−∞
eXv−X−u−dv

)
d

( ∑
0<k≤u

h◦(∆Lk)

)

= β◦/η◦ + β◦ϕ◦
∫ 0

−∞

(∫
(v,0)

eη
◦u−Xu−d

( ∑
0<k≤u

h◦(∆Lk)

))
eXvdv

= β◦
∫ 0

−∞

[
eη
◦v−Xv + ϕ◦

∫
(v,0)

eη
◦u−Xu−d

( ∑
0<k≤u

h◦(∆Lk)

)]
eXvdv.
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Moreover if Ss := log(1 + ϕ◦h◦(∆Ls))

eη
◦v−Xv = e−

∑
v<s≤0 log(1+ϕ◦h◦(∆Ls))

=
∑
v<w≤0

(
e−
∑
w≤s≤0 Ss − e−

∑
w<s≤0 Ss

)
+ 1

=
∑
v<w≤0

e−
∑
w≤s≤0 Ss

(
1− e−

∑
w<s≤0 Ss/e−

∑
w≤s≤0 Ss

)
+ 1

=
∑
v<w≤0

e−
∑
w≤s≤0 Ss

(
1− eSw

)
+ 1

= −ϕ◦
∑
v<w≤0

e−
∑
w≤s≤0 Ssh◦(∆Lw) + 1

= −ϕ◦
∫

(v,0]

eη
◦w−Xw−d

( ∑
0<k≤w

h◦(∆Lk)

)
+ 1.

Then, since h◦(∆L0) = 0 = X0− a.s.,

σ2
0(ϑ◦) = β◦

∫ 0

−∞
eXv−X0−dv = σ2

0

a.s.. We know that for every t ≥ 0

σ2
0+(ϑ◦) = σ2

t+(ϑ◦)−
∫ t

0

(β◦ − η◦σ2
s(ϑ
◦))ds− ϕ◦

∫
(0,t]

σ2
sd

( ∑
0<k≤s

h(◦∆Lk)

)

and

σ2
0+ = σ2

t+ −
∫ t

0

(β◦ − η◦σ2
s)ds− ϕ◦

∫
(0,t]

σ2
sd

( ∑
0<k≤s

h◦(∆Lk)

)
,

then

σ2
t+(ϑ◦) + η◦

∫ t

0

σ2
s(ϑ
◦)ds = σ2

t + η◦
∫ t

0

σ2
sds a.s..

It follows2 that σ2
t (ϑ
◦) = σ2

t a.s. and that σ2
t ≥ β◦/η◦.

Proposition 3.2.6.

Υ(ϑ) := −E
(

σ2
0

σ2
0(ϑ)

+ log σ2
0(ϑ)

)
has the unique maximum at ϑ = ϑ◦ and is uniformly continuous in ϑ ∈ Θ.

2Suppose that ft +
∫ t

0
fsds = gt +

∫ t
0
gsds. If we assume that ft 6= gt, for example ft > gt, then∫ t

0
gsds−

∫ t
0
fsds =

∫ t
0
(gs − fs)ds < 0, but at the same time

∫ t
0
(gs − fs)ds = ft − gt > 0 and we have

a contradiction.



88
3. Pseudo-maximum likelihood estimation for asymmetric COGARCH

processes

Proof.

Υ(ϑ)−Υ(ϑ◦) = −E
(

σ2
0

σ2
0(ϑ)

+ log σ2
0(ϑ)

)
+ E

(
σ2

0

σ2
0(ϑ◦)

+ log σ2
0(ϑ◦)

)
= −E

(
σ2

0

σ2
0(ϑ)

)
+ 1 + E

(
log

σ2
0(ϑ◦)

σ2
0(ϑ)

)
≤ −E

(
σ2

0

σ2
0(ϑ)

)
+ 1 + E

(
σ2

0(ϑ◦)

σ2
0(ϑ)

)
− 1

= E
(

σ2
0

σ2
0(ϑ)

)
− E

(
σ2

0

σ2
0(ϑ)

)
= 0.

For h̃ > 0 and η1, η2 such that η∗ ≤ η2 < η1 ≤ η∗

∥∥∥∥∫
(−∞,0)

|eη1u − eη2u|σ2
ud[L]u

∥∥∥∥
2

=

∥∥∥∥∫
(−∞,0)

eη2u|e(η1−η2)u − 1|σ2
ud[L]u

∥∥∥∥
2

≤

≤

∥∥∥∥∥ sup
−h̃<u<0

|e(η1−η2)u − 1|
∫

(−∞,0)

eη2uσ2
ud[L]u + e−η2h̃

∫
(−∞,−h̃]

eη2(u+h̃)σ2
ud[L]u

∥∥∥∥∥
2

=

(
sup
−h̃<u<0

|e(η1−η2) − 1|+ e−η2h̃

)∥∥∥∥∫
(−∞,0]

eη2uσ2
ud[L]u

∥∥∥∥
2

since ∫
(−∞,−h̃]

eη2(u+h̃)σ2
ud[L]u =

∫
(−∞,0]

eη2vσ2
v−h̃d[L]v−h̃

d
=

∫
(−∞,0]

eη2uσ2
ud[L]u.

Then

lim
δ↓0

sup
|η1−η2|<δ

∥∥∥∥∫
(−∞,0)

eη1uσ2
ud[L]u −

∫
(−∞,0)

eη2uσ2
ud[L]u

∥∥∥∥
2

≤

≤ lim
δ↓0

sup
|η1−η2|<δ

∥∥∥∥∫
(−∞,0)

|eη1u − eη2u|σ2
ud[L]u

∥∥∥∥
2

= 0

as we can choose h̃ such that e−η2h̃ < ε ∀δ ≥ δ̃.

Proposition 3.2.7. Let σ2
n,k−1(ϑ) := σ2

tk−1
(ϑ), then

1

tN

N∑
k=m

(
σ2
n,k−1

σ2
n,k−1(ϑ)

+ log σ2
n,k−1(ϑ)

)
∆tk

p→ −Υ(ϑ).
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Proof. For tk−1 < u ≤ tk

|σ2
n,k−1(ϑ)− σ2

u(ϑ)| =

−ϕe−ηu
∫

(0,u)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)∣∣∣∣∣
=

∣∣∣∣∣ϕe−ηtk−1

∫
(−∞,0)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
− ϕe−ηu

∫
(−∞,0)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
+

+ϕe−ηtk−1

∫
(0,tk−1)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
− ϕe−ηu

∫
(0,u)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)∣∣∣∣∣
=

∣∣∣∣∣ϕe−ηtk−1

∫
(−∞,tk−1)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
− ϕe−ηu

∫
(−∞,u)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)∣∣∣∣∣
=

∣∣∣∣∣ϕ
∫

(−∞,tk−1)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
(e−ηtk−1 − e−ηu)+

−ϕe−ηu
∫

(tk−1,tk)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
+ ϕe−ηu

∫
(u,tk)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)∣∣∣∣∣
≤ ϕ(e−ηtk−1 − e−ηtk)

∫
(−∞,tk−1)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
+

+

∣∣∣∣∣ϕe−ηu
∫

(u,tk)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
− ϕe−ηu

∫
(tk−1,tk)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)∣∣∣∣∣
≤ ϕe−ηu

∫
(tk−1,tk)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
+

+ ϕ(e−ηtk−1 − e−ηtk)

∫
(−∞,tk−1)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
.

Hence, for tk−1 < u ≤ tk

|σ2
n,k−1(ϑ)− σ2

u(ϑ)| ≤

≤ ϕ(e−ηtk−1 − e−ηtk)

∫
(−∞,tk−1)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
+

+ ϕeη(tk−tk−1)

∫
(tk−1,tk)

σ2
sd

(∑
0<i≤s

h(∆Li)

)

= ϕeη∆tk

∫
(tk−1,tk)

σ2
sd

(∑
0<i≤s

h(∆Li)

)
+ ϕe−ηtk−1

∫
(−∞,tk−1)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
+

− ϕeη(tk−1−tk)

∫
(−∞,tk−1)

eη(s−tk−1)σ2
sd

(∑
0<i≤s

h(∆Li)

)
.
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It follows that

sup
tk−1<u≤tk

|σ2
n,k−1(ϑ)− σ2

u(ϑ)| ≤ ϕeη∆tk

∫
(tk−1,tk)

σ2
sd

(∑
0<i≤s

h(∆Li)

)
+

(1− e−η∆tk)ϕ

∫
(−∞,tk−1)

e−η(tk−1−s)σ2
sd

(∑
0<i≤s

h(∆Li)

)
.

For tk−1 < s ≤ tk

σ2
s(ϑ) = σ2

n,k−1(ϑ) + (σ2
0(ϑ)− β/η)(e−ηs − e−ηtk−1)+

+ ϕe−ηs
∫

(0,s)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

)
− ϕe−ηtk−1

∫
(0,tk−1)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

)

≤ σ2
n,k−1(ϑ) + ϕe−ηs

∫
(0,s)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

)
+

− ϕe−ηtk−1

∫
(0,tk−1)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

)

≤ σ2
n,k−1(ϑ) + ϕe−ηtk−1

∫
(0,s)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

)
+

− ϕe−ηtk−1

∫
(0,tk−1)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

)

≤ σ2
n,k−1(ϑ) + ϕ

∫
(tk−1,tk)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

)
.

Therefore

sup
tk−1<s≤tk

σ2
s(ϑ) ≤ σ2

n,k−1(ϑ) + ϕ

∫
(tk−1,tk)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

)
.

By Lemma 3.2.4

E

(
sup

tk−1<s≤tk
σ2
s(ϑ)

)2

= E sup
tk−1<s≤tk

σ4
s(ϑ) ≤

≤ E(σ4
n,k−1(ϑ)) + ϕ2E

(∫
(tk−1,tk)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

))2

+

+ 2ϕE(σ2
n,k−1(ϑ))

∫
(tk−1,tk)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

)

≤ E(σ4
n,k−1(ϑ)) + ϕ2E

(∫
(tk−1,tk)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

))2

+

+ 2ϕ
∥∥σ2

n,k−1(ϑ)
∥∥

2

∥∥∥∥∥
∫

(tk−1,tk)

eηuσ2
ud

(∑
0<i≤u

h(∆Li)

)∥∥∥∥∥
2

<∞
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and ∥∥∥∥∥ sup
tk−1<u≤tk

|σ2
n,k−1(ϑ)− σ2

u(ϑ)|

∥∥∥∥∥
2

≤ ϕeη∆tk

∥∥∥∥∥
∫

(tk−1,tk)

σ2
sd

(∑
0<i≤s

h(∆Li)

)∥∥∥∥∥
2

+

+ (1− e−η∆tk)ϕ

∥∥∥∥∥
∫

(−∞,tk−1)

e−η(tk−1−s)σ2
sd

(∑
0<i≤s

h(∆Li)

)∥∥∥∥∥
2

<∞.

Then

max
m≤k≤N

∥∥∥∥∥ sup
tk−1<u≤tk

|σ2
n,k−1(ϑ)− σ2

u(ϑ)|

∥∥∥∥∥
2

= o(1).

One can also abserve that

E

∣∣∣∣∣ 1

tN

N∑
k=m

(
σ2
n,k−1

σ2
n,k−1(ϑ)

+ log σ2
n,k−1(ϑ)

)
∆tk −

1

tN

∫ tN

tm

(
σ2
s

σ2
s(ϑ)

+ log σ2
s(ϑ)

)
ds

∣∣∣∣∣ =

= E

∣∣∣∣∣ 1

tN

N∑
k=m

∫ tk

tk−1

(
σ2
n,k−1

σ2
n,k−1(ϑ)

+ log σ2
n,k−1(ϑ)

)
ds+

− 1

tN

N∑
k=m

∫ tk

tk−1

(
σ2
s

σ2
s(ϑ)

+ log σ2
s(ϑ)

)
ds+

1

tN

∫ tm

tm−1

(
σ2
s

σ2
s(ϑ)

+ log σ2
s(ϑ)

)
ds

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1

tN

N∑
k=m

∫ tk

tk−1

(
σ2
n,k−1

σ2
n,k−1(ϑ)

− σ2
s

σ2
s(ϑ)

+ log σ2
n,k−1(ϑ)− log σ2

s(ϑ)

)
ds

∣∣∣∣∣+
+

1

tN
E
∣∣∣∣∫ tm

tm−1

(
σ2
s

σ2
s(ϑ)

+ log σ2
s(ϑ)

)
ds

∣∣∣∣
≤ E

1

tN

N∑
k=m

sup
tk−1<s≤t

(∣∣∣∣∣ σ2
n,k−1

σ2
n,k−1(ϑ)

− σ2
s

σ2
s(ϑ)

∣∣∣∣∣+
∣∣log σ2

n,k−1(ϑ)− log σ2
s(ϑ)

∣∣)∆tk+

+
1

tN
E sup
tk−1<s≤t

∣∣∣∣ σ2
s

σ2
s(ϑ)

+ log σ2
s(ϑ)

∣∣∣∣∆tm .

This upper bound converges to 0 since

sup
tk−1<s≤tk

∣∣∣∣∣ σ2
n,k−1

σ2
n,k−1(ϑ)

− σ2
s

σ2
s(ϑ)

∣∣∣∣∣ ≤ sup
tk−1<s≤tk

∣∣∣∣∣ σ2
n,k−1

σ2
n,k−1(ϑ)

−
σ2
n,k−1

σ2
s(ϑ)

∣∣∣∣∣+
+ sup

tk−1<s≤tk

∣∣∣∣σ2
n,k−1

σ2
s(ϑ)

− σ2
s

σ2
s(ϑ)

∣∣∣∣
= sup

tk−1<s≤tk
σ2
n,k−1

∣∣∣∣∣ 1

σ2
n,k−1(ϑ)

− 1

σ2
s(ϑ)

∣∣∣∣∣+ sup
tk−1<s≤tk

1

σ2
s(ϑ)

∣∣σ2
n,k−1 − σ2

s

∣∣
≤ sup

tk−1<s≤tk

σ2
n,k−1

min(σ2
n,k−1(ϑ), σ2

s(ϑ))2
|σ2
n,k−1(ϑ)− σ2

s(ϑ)|+

+ sup
tk−1<s≤tk

1

σ2
s(ϑ)
|σ2
n,k−1 − σ2

s |.
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Given that σ2
t (ϑ) ≥ β/η a.s. for every t taking the expectation

E sup
tk−1<s≤tk

∣∣∣∣∣ σ2
n,k−1

σ2
n,k−1(ϑ)

− σ2
s

σ2
s(ϑ)

∣∣∣∣∣ ≤
≤ CE sup

tk−1<s≤tk
σ2
n,k−1|σ2

n,k−1(ϑ)− σ2
s(ϑ)|+ CE sup

tk−1<s≤tk
|σ2
n,k−1 − σ2

s |

≤ C max
m≤k≤N

∥∥σ2
n,k−1

∥∥
2

∥∥∥∥∥ sup
tk−1<s≤tk

σ2
n,k−1|σ2

n,k−1(ϑ)− σ2
s(ϑ)|

∥∥∥∥∥
2

+

+ C max
m≤k≤N

E sup
tk−1<s≤tk

|σ2
n,k−1 − σ2

s | → 0

and

E sup
tk−1<s≤tk

| log σ2
n,k−1(ϑ)− log σ2

s(ϑ)| ≤

≤ E sup
tk−1<s≤tk

1

min(σ2
n,k−1(ϑ), σ2

s(ϑ))
|σ2
n,k−1(ϑ)− σ2

s(ϑ)|

≤ C max
m≤k≤N

E sup
tk−1<s≤tk

|σ2
n,k−1(ϑ)− σ2

s(ϑ)| → 0.

In this way the series can converge to 0 since one obtains

o(1)
1

tN

N∑
k=m

∆tk = o(1)
tN − tm
tN

→ 0.

Furthermore

E sup
tk−1<s≤tk

∣∣∣∣ σ2
s

σ2
s(ϑ)

+ log σ2
s(ϑ)

∣∣∣∣∆tm ≤

≤ C

∥∥∥∥∥ sup
tk−1<s≤tk

σ2
s

∥∥∥∥∥
2

∆tm + E sup
tk−1<s≤tk

1

min(σ2
s(ϑ), 1)

|σ2
s(ϑ)− 1|∆tm

≤ C

(∥∥∥∥∥ sup
tk−1<s≤tk

σ2
s

∥∥∥∥∥
2

+ E sup
tk−1<s≤tk

|σ2
s(ϑ)− 1|

)
∆tm → 0.

We also have

1

tN

N∑
k=m

(
σ2
n,k−1

σ2
n,k−1(ϑ)

+ log σ2
n,k−1(ϑ)

)
∆tk − E

(
σ2

0

σ2
0(ϑ)

+ log σ2
0(ϑ)

)
=

=
1

tN

N∑
k=m

(
σ2
n,k−1

σ2
n,k−1(ϑ)

+ log σ2
n,k−1(ϑ)

)
∆tk −

1

tN

∫ tN

tm

(
σ2
s

σ2
s(ϑ)

+ log σ2
s(ϑ)

)
ds+

+
1

tN

∫ tN

tm

(
σ2
s

σ2
s(ϑ)

+ log σ2
s(ϑ)

)
ds− E

(
σ2

0

σ2
0(ϑ)

+ log σ2
0(ϑ)

)
.

Thanks to the previous calculations

1

tN

N∑
k=m

(
σ2
n,k−1

σ2
n,k−1(ϑ)

+ log σ2
n,k−1(ϑ)

)
∆tk −

1

tN

∫ tN

tm

(
σ2
s

σ2
s(ϑ)

+ log σ2
s(ϑ)

)
ds

L1→ 0
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and by the ergodic theorem

1

tN

∫ tN

tm

(
σ2
s

σ2
s(ϑ)

+ log σ2
s(ϑ)

)
ds− E

(
σ2

0

σ2
0(ϑ)

+ log σ2
0(ϑ)

)
p→ 0.

That ends the proof.

Lemma 3.2.8. There exists a constant c > 0 such that for all large n

min
m≤k≤N

inf
ϑ∈Θ

σ̃2
n,k(ϑ) ∧ min

m≤k≤N
inf
ϑ∈Θ

ρ̃2
n,k(ϑ)

∆tk
> c a.s..

Proof.

σ̃2
n,k(ϑ) ≥ β

k−1∑
i=0

∆tk−ie
−η(tk−tk−i) ≥ β∗

k−1∑
i=0

∆tk−ie
−η(tk−tk−i)

=
β∗
η

k−1∑
i=0

η∆tk−ie
η∆tk−ie−η(tk−tk−i−1) ≥ β∗

η∗

k−1∑
i=0

(eη∆tk−i − 1)e−η(tk−tk−i−1)

=
β∗
η∗

(1− e−ηtk) ≥ β∗
η∗

(1− e−ηtN ) ≥ β∗
η∗

(1− ε)

since there exists ñ ∈ N such that e−ηtN < ε for every n ≥ ñ. We choose ε = 1/2, then

min
m≤k≤N

inf
ϑ∈Θ

σ̃2
n,k(ϑ) ≥ β∗

2η∗
> 0 a.s..

ρ̃2
n,k(ϑ)

∆tk
=

(
σ̃2
n,k−1(ϑ)− β

η − ϕ(1 + γ2)

)
e(ϕ(1+γ2)−η)∆tk − 1

(ϕ(1 + γ2)− η)∆tk

+
β∆tk

(η − ϕ(1 + γ2))∆tk

= σ̃2
n,k−1(ϑ)

e(ϕ(1+γ2)−η)∆tk − 1

(ϕ(1 + γ2)− η)∆tk

+
β

η − ϕ(1 + γ2)
·

·

(
1− e(ϕ(1+γ2)−η)∆tk − 1

(ϕ(1 + γ2)− η)∆tk

)
.

We just deal with

σ̃2
n,k−1(ϑ) +

β

(η − ϕ(1 + γ2))

(
1− e(ϕ(1+γ2)−η)∆tk − 1

(ϕ(1 + γ2)− η)∆tk

)
.

We know that

inf
ϑ∈Θ

(f(ϑ) + g(ϑ)) = − sup
ϑ∈Θ

(−f(ϑ)− g(ϑ)) ≥ − sup
ϑ∈Θ

(−f(ϑ))− sup
ϑ∈Θ

(−g(ϑ))

= inf
ϑ∈Θ

f(ϑ) + inf
ϑ∈Θ

g(ϑ)
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so that

min
m≤k≤N

inf
ϑ∈Θ

(f(ϑ)+g(ϑ)) ≥ min
m≤k≤N

( inf
ϑ∈Θ

f(ϑ)+ inf
ϑ∈Θ

g(ϑ)) ≥ min
m≤k≤N

inf
ϑ∈Θ

f(ϑ)+ min
m≤k≤N

inf
ϑ∈Θ

g(ϑ).

Then

min
m≤k≤N

inf
ϑ∈Θ

σ̃2
n,k−1(ϑ) + min

m≤k≤N
inf
ϑ∈Θ

β

(η − ϕ(1 + γ2))

(
1− e(ϕ(1+γ2)−η)∆tk − 1

(ϕ(1 + γ2)− η)∆tk

)
≥

≥ β∗
2η∗
− β∗

4η∗
=

β∗
4η∗

> 0 a.s.

as (
1− e(ϕ(1+γ2)−η)∆tk − 1

(ϕ(1 + γ2)− η)∆tk

)
→ 0.

Lemma 3.2.9.

E
(∫

(0,h̃]

Gs−σsdLs

)2

= O(h̃2), h̃→ 0.

Proof.

E(σ2
t − σ2

0)2 = 2E(σ4
0)− 2E(σ2

t σ
2
0) =

(
4β2

Ψ(1)Ψ(2)
− 2β2

Ψ2(1)

)
(1− etΨ(1)) = O(t)

as t→ 0. Further with h̃ > 0

E
(∫

(0,h̃]

Gs−σsdLs

)2

=

∫
(0,h̃]

E(G2
s−σ

2
s)ds

=

∫
(0,h̃]

E[G2
s−(σ2

s − σ2
0)]ds+

∫
(0,h̃]

E(G2
s−σ

2
0)ds.

|E[G2
s−(σ2

s − σ2
0)]| ≤ E1/2(G4

s−)E1/2(G2
s−σ

2
0)2 = O(s)

as s→ 0 since

E(G4
s−) = E(L4

1)

∫ s

0

E(σ4
0)du = E(L4

1)E(σ4
0)s.

E(G2
s−σ

2
0) = E[E(G2

s−|F0)σ2
0] = E[σ2

0

∫ s

0

E(σ2
u|F0)du]

= E
[
σ2

0

∫ s

0

(σ2
0 − E(σ2

0))euΨ(1)du+ σ2
0

∫ s

0

E(σ2
u)du

]
= E

(
σ2

0

(
σ2

0 − E(σ2
0)

esΨ(1)−1

Ψ(1)

))
+ E2(σ2

0)s = O(s)

for s→ 0. Then there exist δ,M such that if we choose s < h̃ < δ∫
(0,h̃]

E[G2
s−(σ2

s − σ2
0)]ds+

∫
(0,h̃]

E(G2
s−σ

2
0)ds ≤ 2M

∫ h̃

0

sds = Mh̃2.
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Lemma 3.2.10. Suppose that e−η∗tm = O(∆1/2), then

max
m≤k≤N

∥∥σ̃2
n,k(ϑ)− σ2

n,k(ϑ)
∥∥

2
= O(∆1/2).

Proof.

σ2
n,k(ϑ)− σ̃2

n,k(ϑ) = β/η + (σ2
0(ϑ)− β/η)e−ηtk + ϕe−ηtk

∫
(0,tk)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
+

− β
k−1∑
i=0

∆tk−ie
−η(tk−tk−i) − e−ηtk σ̃2

n,0(ϑ)− ϕe−ηtk
k∑
i=1

eηtk−ih(Yn,k−i+1)

with

h(Yn,k−i+1) =

{
(1− γ)2Y 2

n,k−i+1 Yn,k−i+1 > 0

(1 + γ)2Y 2
n,k−i+1 Yn,k−i+1 ≤ 0.

We observe that

e−ηtk σ̃2
n,0(ϑ) = e−ηtk

β

η − ϕ(1 + γ2)
≤ e−η∗tm

β

η − ϕ(1 + γ2)
= O(∆1/2),

max
m≤k≤N

∥∥(σ2
0(ϑ)− β/η)e−ηtk

∥∥
2

= max
m≤k≤N

∥∥(σ2
0(ϑ)− β/η)

∥∥
2

e−ηtk ≤

≤ max
m≤k≤N

∥∥(σ2
0(ϑ)− β/η)

∥∥
2

e−η∗tm = O(∆1/2)

and

β/η

(
1−

k−1∑
i=0

η∆tk−ie
−η(tk−tk−i)

)
= β/η

(
1−

k−1∑
i=0

η∆tk−ie
η∆tk−1eη(tk−i−1−tk)

)
≤

≤ β/η

(
1−

k−1∑
i=0

(
eη∆tk−i − 1

)
eη(tk−i−1−tk)

)
= β/ηe−ηtk = O(∆1/2).

Integration by parts gives the following equation.

k∑
i=1

e−η(tk−tk−i)Y 2
n,k−i+1 =

=
k∑
i=1

e−η(tk−tk−i)

[
2

∫
(tk−i,tk−i+1]

(Gu− −Gtk−i)σudLu +

∫
(tk−i,tk−i+1]

σ2
ud[L]u

]
.

We only have to deal with

e−ηtk
∫

(0,tk)

eηsσ2
sd

(∑
0<i≤s

h(∆Li)

)
− e−ηtk

k∑
i=1

eηtk−i
∫

(tk−i,tk−i+1]

σ2
ud[L]u,

i.e. with

e−ηtk
∑

(0<≤tk)

eηsσ2
s(∆Ls)

2 − e−ηtk
k∑
i=1

eηtk−i
∫

(tk−i,tk−i+1]

σ2
ud[L]u, (3.5)
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and with
k∑
i=1

e−η(tl−tk−i)
∫

(tk−i,tk−i+1]

(Gu− −Gtk−i)σudLu.

k∑
i=1

(eη∆tk−i+1 − 1)e−η(tk−tk−i)
∫

(tk−i,tk−i+1]

σ2
ud[L]u =

=
k∑
i=1

eη(tk−i+1−tk)
∑

tk−i<u≤tk−i+1

σ2
u(∆Lu)

2 −
k∑
i=1

e−η(tk−tk−i)
∑

tk−i<u≤tk−i+1

σ2
u(∆Lu)

2

=
∑

tk−1<u≤tk

σ2
u(∆Lu)

2 + eη(tk−1−tk)
∑

tk−2<u≤tk−1

σ2
u(∆Lu)

2 + · · ·

· · ·+ eη(t1−tk)
∑

0<u≤t1

σ2
u(∆Lu)

2 −
k∑
i=1

e−η(tk−tk−i)
∑

tk−i<u≤tk−i+1

σ2
u(∆Lu)

2,

then

e−ηtk
∑

(0<s≤tk)

eηsσ2
s(∆Ls)

2 − e−ηtk
k∑
i=1

eηtk−i
∫

(tk−i,tk−i+1]

σ2
ud[L]u ≤

≤
k∑
i=1

(eη∆tk−i+1 − 1)e−η(tk−tk−i)
∫

(tk−i,tk−i+1]

σ2
ud[L]u

=
k∑
i=1

(eη∆tk−i+1 − 1)e−η(tk−tk−i)
∫

(tk−i,tk−i+1]

σ2
udu+

+
k∑
i=1

(eη∆tk−i+1 − 1)e−η(tk−tk−i)
∫

(tk−i,tk−i+1]

σ2
ud([L]u − u)

where the second term is a sum of martingale differences. Indeed for r < u

E

(∫
(tk−i,tk−i+1]

σ2
ud[L]u

∣∣∣∣∣Fr
)

=

∫
R
x2νL(dx)

∫ tk−i+1

tk−i

Er(σ2
u)du =

=

∫ tk−i+1

tk−i

Er(σ2
u)du = E

(∫
(tk−i,tk−i+1]

σ2
udu

∣∣∣∣∣Fr
)
.

The L2-norm of (3.5) is O(∆1/2) uniformly in m ≤ k ≤ N .

E

(∫
(tk−i,tk−i+1]

σ2
ud([L]u − u)

)2

= E

(∫
(0,∆tk−i+1

]

σ2
ud([L]u − u)

)2

= E(σ4
0)∆tk−i+1

= O(∆).∥∥∥∥∥
k∑
i=1

(eη∆tk−i+1 − 1)e−ηtkeηtk−i
∫

(tk−i,tk−i+1]

σ2
ud([L]u − u)

∥∥∥∥∥
2

≤

≤
k∑
i=1

|eη∆tk−i+1 − 1|eηtk−ie−ηtk
∥∥∥∥∥
∫

(tk−i,tk−i+1]

σ2
ud([L]u − u)

∥∥∥∥∥
2

= O(∆) ≤ O(∆1/2).
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∥∥∥∥∥
k∑
i=1

(eη∆tk−i+1 − 1)e−ηtkeηtk−i
∫

(tk−i,tk−i+1]

σ2
udu

∥∥∥∥∥
2

≤

≤
k∑
i=1

|eη∆tk−i+1 − 1|eηtk−ie−ηtk
∥∥∥∥∥
∫

(tk−i,tk−i+1]

σ2
udu

∥∥∥∥∥
2

= O(∆) ≤ O(∆1/2).

because

E

(∫
(tk−i,tk−i+1]

σ2
udu

)2

= E(σ4
0)

∫
R
x4νL(dx)∆tk−i+1

+B∆2
tk−i+1

+

+ A(1− e−Ψ(1)∆tk−i+1 − eΨ(1)∆tk−i+1 + 1) = O(∆).

Moreover
k∑
i=1

e−η(tk−tk−i)
∫

(tk−i,tk−i+1]

(Gu− −Gtk−1
)σudLu

is also a sum of martingale differences

E

(∫
(tk−i,tk−i+1]

(Gu− −Gtk−1
)σudLu

)2

=

∫
(tk−i,tk−i+1]

E(G2
u−tk−iσ

2
u)du

=

∫
(0,∆tk−i+1

]

E(G2
sσ

2
s)ds = O(∆2)

such that∥∥∥∥∥
k∑
i=1

e−η(tk−tk−i)
∫

(tk−i,tk−i+1]

(Gu− −Gtk−1
)σudLu

∥∥∥∥∥
2

≤

≤
k∑
i=1

e−ηtkeηtk−i

∥∥∥∥∥
∫

(tk−i,tk−i+1]

(Gu− −Gtk−1
)σudLu

∥∥∥∥∥
2

= O(∆3/2) ≤ O(∆1/2).

Lemma 3.2.11.

max
m≤k≤N

∥∥∥∥∥sup
ϑ∈Θ

1

ρ̃2
n,k(ϑ)

∣∣∣∣ ∂∂ϑρ̃2
n,k(ϑ)

∣∣∣∣
∥∥∥∥∥

2

<∞.

Proof. Thanks to Lemma 3.2.8

sup
ϑ∈Θ

1

ρ̃2
n,k(ϑ)

∣∣∣∣ ∂∂ϑρ̃2
n,k(ϑ)

∣∣∣∣ ≤
≤ C sup

ϑ∈Θ

(∣∣∣∣ ∂∂ϑσ̃2
n,k−1(ϑ) +O(∆tk)σ̃

2
n,k−1(ϑ)

∣∣∣∣)
≤ C

(
1 +

k−1∑
i=1

e−η∗/2(tk−1−tk−i−1)h(Yn,k−i−1)

)
.

This bound and Lemma 3.2.10 imply the result.
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Proposition 3.2.12.

sup
ϑ∈Θ

∣∣∣∣ 1

tN
LN(ϑ)−Υ(ϑ)

∣∣∣∣ = oP (1).

Proof.

1

tN
LN(ϑ) =

1

tN

N∑
k=m

ln,k(ϑ)∆tk

=
1

tN

N∑
k=m

[ln,k(ϑ)− E(ln,k(ϑ)|Fn,k−1)]∆tk +
1

tN

N∑
k=m

E(ln,k(ϑ)|Fn,k−1)∆tk

=
1

tN

N∑
k=m

[ln,k(ϑ)− E(ln,k(ϑ)|Fn,k−1)]∆tk −
1

tN

N∑
k=m

(
ρ2
n,k

ρ̃n,k(ϑ)
+ log

ρ̃2
n,k(ϑ)

∆tk

)
∆tk

with

ρ2
n,k(ϑ) =

(
σ2
n.k−1(ϑ)− β

η − ϕ(1 + γ2)

)(
eϕ(1+γ2)−η)∆tk − 1

ϕ(1 + γ2)− η

)
+

β∆tk

η − ϕ(1 + γ2)

and
ρ2
n,k := ρ2

n,k(ϑ
◦).

The first term is a sum of martingale differences which converges to 0 in probability
because

E[ln,k(ϑ)− E(ln,k(ϑ)|Fn,k−1)] = 0.

We first prove the pointwise convergence in probability, i.e.

1

tN
L(ϑ)

p→ Υ(ϑ).

∣∣∣∣∣ ρ2
n,k(ϑ)

∆tkσ
2
n,k−1(ϑ)

− 1

∣∣∣∣∣ =

=

∣∣∣∣∣
(
σ2
n,k−1(ϑ)− β

η − ϕ(1 + γ2)

)(
e(ϕ(1+γ2)−η)∆tk − 1

(ϕ(1 + γ2)− η)∆tk

)
1

σ2
n,k−1(ϑ)

+

+
β

(η − ϕ(1 + γ2))σ2
n,k−1(ϑ)

− 1

∣∣∣∣∣
=

∣∣∣∣∣ β

(η − ϕ(1 + γ2))σ2
n,k−1(ϑ)

(
1− e(ϕ(1+γ2)−η)∆tk − 1

(ϕ(1 + γ2)− η)∆tk

)
+

e(ϕ(1+γ2)−η)∆tk − 1

(ϕ(1 + γ2)− η)∆tk

− 1

∣∣∣∣∣
≤

∣∣∣∣∣ e(ϕ(1+γ2)−η)∆tk − 1

(ϕ(1 + γ2)− η)∆tk

− 1

∣∣∣∣∣ (1 + C) = O(∆).

Hence

max
m≤k≤N

sup
ϑ∈Θ

∣∣∣∣∣ ρ2
n,k(ϑ)

∆tkσ
2
n,k−1(ϑ)

− 1

∣∣∣∣∣ = O(∆). (3.6)
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Moreover

max
m≤k≤N

∥∥∥∥∥ ρ2
n,k

ρ̃2
n,k(ϑ)

−
ρ2
n,k

ρ2
n,k(ϑ)

+ log ρ̃2
n,k(ϑ)− log ρ2

n,k(ϑ)

∥∥∥∥∥
1

≤

≤ C max
m≤k≤N

(
∥∥σ2

n,k−1

∥∥
2

+ 1)
∥∥σ̃2

n,k−1(ϑ)− σ2
n,k−1(ϑ)

∥∥
2
→ 0.

We need to show that

− 1

tN

N∑
k=m

(
ρ2
n,k

ρ̃2
n,k(ϑ)

+ log
ρ̃2
n,k(ϑ)

∆tk

)
∆tk

p→ Υ(ϑ) ∀ϑ ∈ Θ.

One knows that

max
m≤k≤N

(
ρ2
n,k

ρ̃2
n,k(ϑ)

−
ρ2
n,k

ρ2
n,k(ϑ)

+ log ρ̃2
n,k(ϑ)− log ρ2

n,k(ϑ)

)
p→ 0,

then

1

tN

N∑
k=m

(
ρ2
n,k

ρ̃2
n,k(ϑ)

+ log
ρ̃2
n,k(ϑ)

∆tk

)
∆tk −

1

tN

N∑
k=m

(
ρ2
n,k

ρ2
n,k(ϑ)

+ log
ρ2
n,k(ϑ)

∆tk

)
∆tk

p→ 0.

From (3.6)

max
m≤k≤N

ρ2
n,k(ϑ)

∆tkσ
2
n,k−1(ϑ)

p→ 1

so that

1

tN

N∑
k=m

(
ρ2
n,k

ρ2
n,k(ϑ)

+ log
ρ2
n,k(ϑ)

∆tk

)
∆tk −

1

tN

N∑
k=m

(
σ2
n,k−1

σ2
n,k−1(ϑ)

+ log σ2
n,k−1(ϑ)

)
∆tk

p→ 0

and

1

tN

N∑
k=m

(
ρ2
n,k

ρ̃2
n,k(ϑ)

+ log
ρ̃2
n,k(ϑ)

∆tk

)
∆tk −

1

tN

N∑
k=m

(
σ2
n,k−1

σ2
n,k−1(ϑ)

+ log σ2
n,k−1(ϑ)

)
∆tk

p→ 0

as

max
m≤k≤N

(
ρ2
n,k

∆tkσ
2
n,k−1

∆tkσ
2
n,k−1(ϑ)

ρ2
n,k(ϑ)

− 1

)
p→ 0 and

1

tN

N∑
k=m

σ2
n,k−1

σ2
n,k−1(ϑ)

∆tk →M <∞.

All these results imply

1

tN

N∑
k=m

(
ρ2
n,k

∆tkσ
2
n,k−1

∆tkσ
2
n,k−1

∆tkσ
2
n,k−1(ϑ)

∆tkσ
2
n,k−1(ϑ)

ρ2
n,k(ϑ)

−
σ2
n,k−1

σ2
n,k−1(ϑ)

+ log
ρ2
n,k(ϑ)

∆tkσ
2
n,k−1(ϑ)

)
∆tk ≤

≤ 1

tN

N∑
k=m

max
m≤k≤N

[
σ2
n,k−1

σ2
n,k−1(ϑ)

(
ρ2
n,k

∆tkσ
2
n,k−1

∆tkσ
2
n,k−1(ϑ)

ρ2
n,k(ϑ)

− 1

)
+ log

ρ2
n,k(ϑ)

∆tkσ
2
n,k−1(ϑ)

]
∆tk

p→ 0.
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Then
1

tN
LN(ϑ)−Υ(ϑ)

p→ 0

since by Proposition 3.2.6

− 1

tN

N∑
k=m

(
σ2
n,k−1

σ2
n,k−1(ϑ)

+ log σ2
n,k−1(ϑ)

)
∆tk −Υ(ϑ)

p→ 0.

We now verify the uniform convergence. By mean value theorem

sup
|ϑ1−ϑ2|<h̃

|LN(ϑ1)− LN(ϑ2)| = sup
|ϑ1−ϑ2|<h̃

∣∣∣∣∣
N∑

k=m

(ln,k(ϑ1)− ln,k(ϑ2))∆tk

∣∣∣∣∣ ≤
≤

N∑
k=m

sup
|ϑ1−ϑ2|<h̃

|ln,k(ϑ1)− ln,k(ϑ2)|∆tk ≤ sup
|ϑ1−ϑ2|<h̃

N∑
k=m

|ln,k(ϑ1)− ln,k(ϑ2)|∆tk

=
N∑

k=m

sup
|ϑ1−ϑ2|<h̃

∣∣∣∣ ∂∂ϑln,k(ϑ)

∣∣∣∣ |ϑ1 − ϑ2|∆tk ≤
N∑

k=m

sup
|ϑ1−ϑ2|<h̃

∣∣∣∣ ∂∂ϑln,k(ϑ)

∣∣∣∣∆tk h̃

≤
N∑

k=m

sup
ϑ∈Θ

∣∣∣∣ ∂∂ϑln,k(ϑ)

∣∣∣∣∆tk h̃,

and

max
m≤k≤N

E sup
ϑ∈Θ

∣∣∣∣ ∂∂ϑln,k(ϑ)

∣∣∣∣ ≤ max
m≤k≤N

E sup
ϑ∈Θ

(
Y 2
n,k

ρ̃2
n,k(ϑ)

+ 1

)∣∣∣∣∣ 1

ρ̃2
n,k(ϑ)

∂

∂ϑ
ρ̃2
n,k(ϑ)

∣∣∣∣∣
≤ C max

m≤k≤N
E
(
Y 2
n,k

∆tk

+ 1

)
sup
ϑ∈Θ

∣∣∣∣∣ 1

ρ̃2
n,k(ϑ)

∂

∂ϑ
ρ̃2
n,k(ϑ)

∣∣∣∣∣
= C max

m≤k≤N
E
(E(Y 2

n,k|Ftk−1
)

∆tk

+ 1

)
sup
ϑ∈Θ

∣∣∣∣∣ 1

ρ̃2
n,k(ϑ)

∂

∂ϑ
ρ̃2
n,k(ϑ)

∣∣∣∣∣
≤ C max

m≤k≤N
E(σ2

n,k−1 + 1) sup
ϑ∈Θ

∣∣∣∣∣ 1

ρ̃2
n,k(ϑ)

∂

∂ϑ
ρ̃2
n,k(ϑ)

∣∣∣∣∣
≤ C max

m≤k≤N

∥∥∥∥∥sup
ϑ∈Θ

∣∣∣∣∣ 1

ρ̃2
n,k(ϑ)

∂

∂ϑ
ρ̃2
n,k(ϑ)

∣∣∣∣∣
∥∥∥∥∥

2

<∞.

as ∣∣∣∣ ∂∂ϑln,k(ϑ)

∣∣∣∣ =

∣∣∣∣∣ −Y 2
n,k

ρ̃4
n,k(ϑ)

∂

∂ϑ
ρ̃2
n,k(ϑ) +

1

ρ̃2
n,k(ϑ)

∂

∂ϑ
ρ̃2
n,k(ϑ)

∣∣∣∣∣
≤

Y 2
n,k

ρ̃2
n,k(ϑ)

∣∣∣∣∣ 1

ρ̃2
n,k(ϑ)

∂

∂ϑ
ρ̃2
n,k(ϑ)

∣∣∣∣∣+

∣∣∣∣∣ 1

ρ̃2
n,k(ϑ)

∂

∂ϑ
ρ̃2
n,k(ϑ)

∣∣∣∣∣
=

(
Y 2
n,k

ρ̃2
n,k(ϑ)

+ 1

)∣∣∣∣∣ 1

ρ̃2
n,k(ϑ)

∂

∂ϑ
ρ̃2
n,k(ϑ)

∣∣∣∣∣
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and

E(Y 2
n,k|Ftk−1

)

∆tk

=

=

(
σ2
n,k−1 −

β◦

η◦ − ϕ◦(1 + γ◦2)

)
e∆tk

(ϕ◦(1+γ◦2)−η◦) − 1

∆tk(ϕ
◦(1 + γ◦2)− η◦)

+
β◦

η◦ − ϕ◦(1 + γ◦2)

= σ2
n,k−1

e∆tk
(ϕ◦(1+γ◦2)−η◦) − 1

∆tk(ϕ
◦(1 + γ◦2)− η◦)

+
β◦

η◦ − ϕ◦(1 + γ◦2)

(
1− e∆tk

(ϕ◦(1+γ◦2)−η◦) − 1

∆tk(ϕ
◦(1 + γ◦2)− η◦)

)
≤ Cσ2

n,k−1.

It follows that

lim
h̃→0

lim sup
n→∞

E
1

tN
sup

|ϑ1−ϑ2|<h̃
|L(ϑ1)− L(ϑ2)| = 0. (3.7)

Taking a ϑ ∈ Θ and a finite subcover{
Bh̃(ϑi) :=

{
ϑ ∈ Θ : ϑi − h̃ < ϑ < ϑi + h̃

}
: i = 1, · · · , I

}
,

by the triangle inequality, we know that∣∣∣∣ 1

tN
L(ϑ)−Υ(ϑ)

∣∣∣∣ ≤ ∣∣∣∣ 1

tN
L(ϑ)− 1

tN
L(ϑi)

∣∣∣∣+

∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣+ |Υ(ϑi)−Υ(ϑ)| .

Choose ϑi so that ϑ ∈ Bh̃(ϑi).∣∣∣∣ 1

tN
L(ϑ)− 1

tN
L(ϑi)

∣∣∣∣ ≤ 1

tN
sup

|ϑ1−ϑ2|<h̃
|L(ϑ1)− L(ϑ2)|

since |ϑ− ϑi| < h̃. Moreover

|Υ(ϑi)−Υ(ϑ)| ≤ sup
|ϑ1−ϑ2|<h̃

|Υ(ϑ1)−Υ(ϑ2)|,

as Υ(ϑ) is uniformly continuous, we know that this bound can be made arbitrarly small
by choosing h̃ to be small. This bound can be made less than ε/3 for any h̃ < h̃1.∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣ ≤ max
i=1,··· ,I

∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣ .
Putting these results together, we have that for any h̃ < h̃1

sup
ϑ∈Θ

∣∣∣∣ 1

tN
L(ϑ)−Υ(ϑ)

∣∣∣∣ ≤ 1

tN
sup

|ϑ1−ϑ2|<h̃
|L(ϑ1)− L(ϑ2)|+ max

i=1,··· ,I

∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣+ ε/3.

So for any h̃ < h̃1

P

(
sup
ϑ∈Θ

∣∣∣∣ 1

tN
L(ϑ)−Υ(ϑ)

∣∣∣∣ > ε

)
≤

≤ P

(
1

tN
sup

|ϑ1−ϑ2|<h̃
|L(ϑ1)− L(ϑ2)|+ max

i=1,··· ,I

∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣ > 2ε/3

)

≤ P

(
1

tN
sup

|ϑ1−ϑ2|<h̃
|L(ϑ1)− L(ϑ2)| > ε/3

)
+ P

(
max
i=1,··· ,I

∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣ > ε/3

)
.
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Now we show that we can take n sufficienlty large so that the two last probabilities
can be made small. (3.7) implies there exists N1(ε, δ) so that for n > N1(ε, δ), h̃ < h̃1

P

(
1

tN
sup

|ϑ1−ϑ2|<h̃
|L(ϑ1)− L(ϑ2)| > ε/3

)
< δ/2.

For the h̃ considered so far, find the finite subcover

{Bh̃(ϑi) : i = 1, · · · , I}

so that

P

(
max
i=1,··· ,I

∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣ > ε/3

)
= P

(
I⋃
i=1

{∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣ > ε/3

})
≤

≤
I∑
i=1

P

(∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣ > ε/3

)
.

We know that for each ϑi and for any δ > 0 there exists N2i(ε, δ) so that for n > N2i(ε, δ)

P

(∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣ > ε/3

)
<

δ

2I
.

Let N2(ε, δ) = maxi=1,··· ,I N2i(ε, δ), then for n > N2(ε, δ)

I∑
i=1

P

(∣∣∣∣ 1

tN
L(ϑi)−Υ(ϑi)

∣∣∣∣ > ε/3

)
< δ/2.

Combining the results there exists an N(ε, δ) = max(N1(ε, δ), N2(ε, δ)) so that for every
n > N(ε, δ)

P

(
sup
ϑ∈Θ

∣∣∣∣ 1

tN
L(ϑ)−Υ(ϑ)

∣∣∣∣ > ε

)
< δ.

3.3 Alternative method: method of moments

Let assume log-returns are observed discretely with regular time spaces of fixed
length ∆. For i ∈ N we denote the stationary increments of the GJR-COGARCH by

G
(∆)
i∆ = G(i+1)∆ −Gi∆.

The following theorem (see [5]) shows how the parameters of the model might be
estimated.

Theorem 3.3.1. Let L a pure jump Lévy process with E(L1) = 0, E(L2
1) = 1, E(L4

1) <
∞ and Lévy measure such that

∫
R x

3νL(dx) = 0 and S :=
∫
R x

4νL(dx) is known.

Assume Ψ(2) < 0 and let (G
(∆)
i∆ )i∈N be the stationary increment process of the integrated
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GJR-COGARCH process with parameters β, η, ϕ and γ. Let µ,Γ, k and p constants
such that

E(G
(∆)2

i∆ ) = µ, Var(G
(∆)2

i∆ ) = Γ

ρ(h̃) := Corr((G
(∆)2

i∆ ), (G
(∆)2

i∆+h̃
)) = ke−∆h̃p, h̃ ∈ N.

Set E := (1− e−∆p)(e∆p − 1),

M1 := Γ− 6kΓ

E
(p∆− 1 + e−∆p)− 2µ2, M2 := 1− µ2S

∆M1

, M3 :=
∆kΓp2S

M1E
.

Then M1,M2,M3 > 0. Further set

γ̃1,2 :=
−M3 − 4pS

2pS −M2

±
√

8pSM2
2M3 + 32p2S2M2

2 + 2pSM2M2
3 − 8pSM3

2

M2(2pS −M2)
∈ R.

Set additionally, for i = 1, 2, Hi := γ̃2
i + 4γ̃i − 4 and

M i
4 :=

p2

γ̃2
i

+ 2
∆kΓp3

γ̃iM1EHi

,

and choose the unique γ̃ ∈ {γ̃1, γ̃2} such that M i
4 > 0 and√

M i
4HiSγ̃i = −M2γ̃

2
i +M3γ̃i +HiSp.

Then γ̃ ∈ [1, 2) and the parameters β, η, ϕ and γ are uniquely determined by

β =
pµ

∆
, ϕ = −p

γ̃
+

√
p2

γ̃2
+ 2

∆kΓp3

γ̃M1E(γ̃ + 4γ̃ − 4)
,

γ =
√
γ̃ − 1, η = p+ ϕγ̃.

We are now ready to summarize the estimation algorithm.

(1) Calculate the moment estimator of µ

µ̂n :=
1

n

n∑
i=1

(G
(∆)
i∆ )2.

(2) For fixed d ≥ 2 and h̃ = 0, · · · , d, calculate the estimator of the empirical auto-
covariances γ̂n := (γ̂n(0), γ̂n(1), · · · , γ̂n(d))T as

γ̂n(h̃) :=
1

n

n−h̃∑
i=1

((G
(∆)

(i+h̃)∆
)2 − µ̂n)((G

(∆)
i∆ )2 − µ̂n)

and compute the empirical autocorrelations ρ̂n := (γ̂n(1)/γ̂n(0), · · · , γ̂n(d)/γ̂n(0))T .
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(3) Compute the least squares estimator for (p, k) as

(p̂n, k̂n) := min
(p,k)∈R2

+

d∑
h̃=1

(log(ρ̂(h̃))− log k + ∆ph̃)2.

Define the mapping H : Rd+2
+ → R by

H(ρ̂n, p, k) :=
d∑

h̃=1

(log ρ̂n(h̃)− log k + ∆h̃p)2.

In order to obtain least squares estimators we compute partial derivatives.

∂

∂k
H(ρ̂n, p, k) = −2

k

d∑
h̃=1

(log ρ̂n(h̃)− log k + ∆h̃p) = 0 ⇔

d∑
h̃=1

(log ρ̂n(h̃) + ∆h̃p) = d log k.

Then, if log ρ̂n := 1
d

∑d
h̃=1 log ρ̂n(h̃),

k = exp

(
log ρ̂n + ∆p

(d+ 1)

2

)
. (3.8)

∂

∂p
H(ρ̂n, p, k) = −2∆

d∑
h̃=1

h̃(log ρ̂n(h̃)− log k + ∆h̃p) = 0.

Using (3.8) we obtain

∆
d(d+ 1)

2
log ρ̂n −∆

d∑
h̃=1

h̃ log ρ̂n(h̃) = p

(
∆d(d+ 1)(2d+ 1)

6
− ∆2d(d+ 1)2

4

)
.

Hence

p̂∗n =
−
∑d

h̃=1(log ρ̂n(h̃)− log ρ̂n)(h̃− d+1
2

)
d(d+1)(2d+1)

6
− ∆d(d+1)2

4

.

For the stationary model the parameter p has to be strictly positive, but the
unrestricted minimum of H(ρ̂n, p, k) could give a negative estimate for p. As a
remedy, we define the estimator of p as

p̂n := max(p̂∗n, 0)

and we take p̂n = 0 as an indication that data are not stationary. Therefore

k̂n = exp

(
log ρ̂n +

p̂∗n∆(d+ 1)

2

)
.
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(4) Compute the estimator ϑ̂Mn := (β̂Mn , η̂
M
n , ϕ̂

M
n , γ̂

M
n ) where

β̂Mn = p̂nµ̂n, ϕ̂Mn = − p̂n
ˆ̃γn

+

√
p̂2
n

ˆ̃γ2
n

+ 2
k̂nΓ̂np̂3

n

ˆ̃γnM̂1nÊn(ˆ̃γ2
n + 4ˆ̃γn − 4)

,

γ̂Mn =

√
ˆ̃γn − 1, η̂Mn = p̂n + ϕ̂Mn ˆ̃γn,

where Γ̂n := γ̂n(0) and Ên, M̂1n and ˆ̃γn are the empirical versions of E, M1 and
γ̃ obtained by replacing p, k, µ, Γ with their estimators.

Remark 48. We could also base the least squares estimation on the autocovariance func-
tion, but it turned out that the estimators chosen are more accurate. This is because
k is independent of β in contrast with k̃ := Cov((G

(∆)
i∆ )2, (G

(∆)
(i+1)∆)2)ep. Moreover

Theorem 3.3.2. Under the same conditions as in Theorem 3.3.1 we obtain strong
consistency for the estimator, i.e.

ϑ̂Mn
a.s.→ ϑ0.

Proof. The GJR-COGARCH volatility is a generalized Ornstein-Uhlenbeck process.
The result of Fasen [17] makes σ2 exponentially β-mixing. This implies that it is
strongly mixing (or α-mixing) with an exponentially decreasing rate. Following [23] one

can prove that (G
(r)
ir )i∈N is α-mixing with an exponentially decreasing rate as well. The

volatility process is strictly stationary, then the return process is also strictly stationary
and together with the strong mixing property this implies that (G

(r)
ir )i∈N is ergodic. And

by Birkhoff’s ergodic theorem we have strong consistency of the empirical moments and
autocovariance function of ((G

(∆)
i∆ )2)i∈N. The parameter vector is a continuous function

of the first two moments of the GJR-COGARCH and of p and k. Then, consistency of
the moments implies consistency of the estimates for (β, η, ϕ, γ).

Remark 49. In Theorem 3.3.1 ρ(h̃) > 0 for every h̃ ∈ N and we obtain that M1,M2,M3

and M i
4 are strictly positive. However the corresponding sample estimates could be

negative. As we showed estimator is consistent, so, for large samples, the empirical
estimates will be positive. Analogously for γ̃ ∈ [1, 2), the sample version might be less
than 1 or greater than 2. However, consistency makes ˆ̃γ in [1, 2) for large samples. All
that was considered in the numerical algorithm developed.

3.4 Monte Carlo simulation study

In this section the PML estimation method is applied to simulated data sets and
compared with the method of moments. We simulated 1000 GJR-COGARCH(1,1)
data sets with ∆tk = 0.5 for every k between 0 and 10000. As driving Lévy process
L we chose a variance gamma with τ = σ = 1 and µ = 0 and for the true GJR-
COGARCH parameters we took β = 0.04, η = 0.053, ϕ = 0.038 and γ = 0.6. For an
accurate simulation the grid for the Euler method is 500 times finer with respect to the
final grid of the observation. For each simulated sample we estimated the parameters
with both methods. The following tables highlight the results.
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MM β̂ η̂ ϕ̂ γ̂

mean 0.0641 0.0359 0.0267 0.4177
bias 0.0241 -0.0171 -0.0113 -0.1823
relative bias 0.6025 -0.3226 -0.2974 -0.3039
MSE 0.0059 0.0003 0.0002 0.00007

Table 3.1: Estimated mean, bias, relative bias, mean square error and mean absolute
error of the MM estimators. The number of simulated samples is 1000 and the true
values are β = 0.04, η = 0.053, ϕ = 0.038 and γ = 0.6.

PML β̂ η̂ ϕ̂ γ̂

mean 0.05137 0.04888 0.03537 0.55428
bias 0.01137 -0.00412 -0.00263 -0.04572
relative bias 0.28425 -0.07774 -0.06921 -0.0762
MSE 0.00028 0.00001 0.00007 0.12535

Table 3.2: Estimated mean, bias, relative bias, mean square error and mean absolute
error of the PML estimators. The number of simulated samples is 1000 and the true
values are β = 0.04, η = 0.053, ϕ = 0.038 and γ = 0.6.

Results and kernel densities show that PML estimators for β, η and ϕ are more
efficient than the corresponding MM estimators. We obtain the contrary for the es-
timator for γ: a few outliers make the PML estimator less accurate. Moreover PML
estimates are always less biased. Therefore, it seems that the convergence rate to reach
the consistency is faster if we estimate parameters with PML method.
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Figure 3.1: Kernel density of the PML estimator for β.
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Figure 3.2: Kernel density of the PML estimator for η.
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Figure 3.3: Kernel density of the PML estimator for ϕ.
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Figure 3.4: Kernel density of the PML estimator for γ.



Conclusion and outlook

Analysing high-frequency financial data and modelling the so-called stylized facts
are nowadays based on continuous time models.
In this thesis, after an introduction to Lévy processes and related stochastic calculus,
we addressed to stochastic volatility models in continuous time. First of all COGA-
RCH process was introduced and its properties studied. Then, in order to capture
the leverage effect asymmetric COGARCH models were analysed as well. Simula-
tions of variance gamma COGARCH and GJR-COGARCH were proposed to study
sample paths behavior. Thanks to these numerical analysis we could understand how
the index, capturing the asymmetry, affects trajectories. Probabilistic properties have
been studied for the continuous time APGARCH too. Finally, inferential procedures
were proposed for estimating the GJR-COGARCH model parameters. In particular,
we focused on a new version of the pseudo-maximum likelihood and its asymptotic
properties. Results about consistency have been proved and confirmed by means of
numerical studies. A Monte Carlo simulation study with 1000 GJR-COGARCH sam-
ples compared pseudo-maximum likelihood method with the method of moments and
we obtained that PML estimates are less biased and more efficient than MM estimates.
Asymptotic properties of the PML estimator are still subject of research; asymptotic
distribution and rates of convergence are in progress. Moreover, the interest in multi-
variate continuous time models with stochastic volatility has increased in recent time,
therefore an extension of the PML method to such multivariate processes are taken
into consideration.
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[18] Fasen, V., Klüppelberg, C. and Lindner, A. Extremal behavior of stochastic
volatility models. Stochastic Finance. Springer, 2006.
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