
Temporal Planning for Business Process Optimisation
Daniele Magazzeni

Department of Informatics
King’s College London, UK

Fabio Mercorio
CRISP Research Centre

University of Milan Bicocca, Italy

Balbir Barn, Tony Clark, Franco Raimondi
Department of Computer Science

Middlesex University, London, UK

Vinay Kulkarni
Tata Consultancy Services

Pune, India

Abstract
In this paper we consider the problem of designing and opti-
mising a business process. Given a set of activities and a fixed
budget, the objective is to determine duration and resource al-
location for each activity such that the time-to-market is min-
imised while budget and dependencies constraints are met.
We give a formal description of the problem and we show
how it can be cast as a temporal planning problem, result-
ing in a challenging benchmark planning problem involving
concurrency and duration-dependent costs.
The user has to define only dependencies among activities,
costs of resources and the available budget, and then use a
planner to design an efficient process, which is then gener-
ated as a Gantt chart. As a case study, we consider a concrete
scenario provided by an industrial partner, and we use a tem-
poral planner to design an effective business process.

Introduction
Business organisations that provide or build products (e.g.,
software, mixed software-hardware solutions, and even ac-
tual goods) are likely to employ abstract modelling lan-
guages to describe and analyse their business processes.
A number of formal languages are available for modelling
business processes, and various tools exist to automate the
analysis of the modelled workflows and get advice on how to
better invest resources. In a number of instances, including
large organisations, the design of business processes is still
a manual process that relies on the experience of top-level
managers and domain experts to produce sequences of steps
that achieve a desired business goal, subject to the minimi-
sation/maximisation of various metrics. As a result, there is
no guarantee that the business processes obtained using this
process are indeed the most efficient solution. Additionally,
the exploration of different options is a very time-consuming
task: each new process has to be developed and analysed
separately, and alternative solutions need to be compared
manually.

In this paper we argue that the design and the optimisation
of business processes can be automated using AI planning
techniques, thus providing an effective tool to search for “ef-
ficient” solutions for resource allocation and task schedul-
ing, or to quickly explore alternative business processes.

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

More in detail, our contributions can be summarised as
follows: we present a novel application domain for temporal
planning that is derived form a concrete instance provided
by an industrial partner; we describe a benchmark domain
that results in a challenging multi-objective temporal plan-
ning problem; as a practical example, we consider a model-
driven software development process and we show how it
can be encoded as a temporal planning problem. Finally, we
use a temporal planner to generate solutions that minimise
time-to-market for a given project budget and we provide
a visual representation of the automatically generated non-
trivial resource allocation using Gantt charts.

A Formal Model for Business Processes
In this section we first provide a formal semantics for busi-
ness processes that abstracts the existing approaches de-
scribed above. Then, we describe an actual process currently
in use at Tata Consultancy Services. Then a mapping be-
tween the formal model and a temporal planning model is
presented, using the concrete business process as a running
example.
Definition 1 (Business Process) A Business Process (BP)
B is a 10-tuple (S ,si,se,P ,D,R,A,T ,C,b), where: S is a fi-
nite set of states, si 2 S is the initial state, se 2 S is the
end state, P is a finite set of parameters, D : S ! 2

S is the
dependency function, R : S ! 2

P is the requirements func-
tion, A : S ! 2

P is the allocation function, T : S ! R+ is
the temporal function, C : S ⇥ 2

P ⇥ R+ ! R+ is the cost
function and b 2 R+ is the budget.

The set of states S corresponds to the set of typical busi-
ness steps, such as “Requirements analysis” or “Code test-
ing”. Each state may depend on other states: for instance,
“Code testing” depends on “Code generation”. The set P in-
cludes parameters such as number of developers, number of
testers, number of domain experts, etc. For each state s 2 S ,
D(s) defines the set of states s depends on, R(s) defines the
requirements for the phase represented by s, A(s) defines
the resources allocated for it, T (s) defines its duration and
C(s,A(s), T (s)) defines its cost. Finally we have an initial
state si 2 S (such that D(si) = ;), and an end state se 2 S .
Definition 2 (Business Process Execution) A Business
Process Execution for the BP B=(S ,si,se,P ,D,A,T ,C,b) is
a sequence ⇡ = (s0a0t0)(s1a1t1)(s2a2t2) . . . sn, where,

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 3

8j � 0, sj 2 S , aj = A(sj), tj = T (sj). A Business
Process Execution is admissible iff: (i) s0 = si, (ii) sn = se,
(iii) 8j � 1, 8sk 2 {D(sj)} : sk 2 ⇡ ^ k < j, (iv)
8sl 2 S,R(sl) ✓ A(sl), (v)

P
j=0...n�1 C(sj , aj , tj) b.

In particular, conditions (iii), (iv), and (v) require all the
dependencies among phases to be satisfied, all phases re-
quirements to be met and the total cost to be within the given
budget, respectively.

The Model-Driven Software Development Process
Table 1 describes the states and the associated functions
R(s), T (s), and C(s, a, t) for a model-driven software de-
velopment (MDSD) process that has been used to deliver
several large business applications for past 16 years at Tata
Consultancy Services.

A row of the table depicts a specific phase of the MDSD
process, the time the phase takes to complete as a percent-
age of total time taken for completion of the MDSD pro-
cess, and the various actors participating in the phase along
with their relative contribution. For instance, the High Level
Design phase requires 5% of the time taken by the overall
MDSD process, and requires the participation of a Solution
Architect (SA), a Domain Expert (DE) and a Technology
Architect (TA). If the overall time required by a project is
100 man-days, this line encodes the fact that the HLD phase
requires 0.3 ·5 TA days, 0.1 ·5 DE days, and 0.6 ·5 SA days.
The remaining actors are Test Engineer (TE), MDE Expert
(ME), Modeller (M), Developer (D), and Tester (T).

The initial state is si = RE, and the end state is se = END.
The dependency function D is graphically shown in Fig-
ure 1. The function C(s, a, t) can be derived from the times
described in Table 1 and the costs in Table 2 (where costs
are normalised to the cost of a tester).

Business Process Optimisation as a Temporal
Planning Problem

The proposal of this paper is a translation of a business
process (as defined in Definition 1) into a temporal plan-
ning problem, so that planners can be used to find admissi-
ble business process executions (as defined in Definition 2)
while minimising the time-to-market.

It is worth noting that the use of temporal planning is
key in this context as it allows modelling of concurrent
activities and time-dependent resource allocations, and to
compute duration-dependent costs. Furthermore, although
the business process design could be seen as a scheduling
problem, it represents an interesting domain where planning
plays an important role. To this aim, we follow the same
approach proposed in (Fox, Long, and Magazzeni 2011;
2012), where the battery scheduling problem is cast as a
temporal planning problem and solved using the temporal
planner UPMurphi (Della Penna et al. 2009). In particular,
in the battery scheduling problem the number of switching
actions cannot be identified in advance as well as in the BP
domain the number of resources that can be allocated to each
phase is not known in advance. Furthermore, the order in
which phases are executed, their duration and how concur-
rency can be exploited are not know, either. In the following

we present the main components of the PDDL domain and
problem.

The Planning Domain. The business process domain
presents a number of challenging features to be modelled.
First, the business process consists of different phases each
of which, in turn, requires a number of tasks to be accom-
plished. The order of execution of the phases is not fixed,
but there is a set of dependencies among phases that must be
satisfied, which, however, allow for a set of phases to be exe-
cuted in parallel. Second, each task is associated with a skill
and people of different skills have to be allocated to each
phase to accomplish their corresponding tasks. The number
of people to allocate is not know in advance, and only an
upper bound is provided. Third, the project cost, that needs
to be maintained within the given budget, depends on how
many days each resource is allocated and thus is modelled
as a time-dependent cost. Finally, as we want to optimise the
time-to-market, the duration of the plan has to be minimised.

We begin the description of the domain with the
start project and end project actions, shown in
Figure 2a. The start (end) project action is used to enable
(disable) the recruitment of resources and the execution of
the project phases. Then, in order to model resource alloca-
tion, we distinguish between employing a resource (which
defines the total number of resources for each skill that will
be used) and allocating a resource (which defines how re-
sources are used throughout the process). We make this dis-
tinction as both recruitment and daily costs of resources
must be considered.

Employing Resources. Figure 2b shows the employ and
dismiss actions for domain experts (similar actions are
defined for other skills). These actions are used for manag-
ing the amount of resources recruited over the project. In
particular the employ action increments the project cost by
the cost of recruiting that particular resource (costs of re-
sources of different skills are shown in Table 2) making that
available to be allocated. On the other hand, the dismiss
action, which is applied when the project is completed, is
used to dismiss a resource.

Allocating resources. The planner can use allocation
(deallocation) actions to assign (release) resources of differ-
ent skills to each phase of the business process before (af-
ter) performing that phase through the corresponding execu-
tion action. As an example, Figure 2c shows the actions for
allocating and deallocating a domain expert. Note that the
deallocate action for skill Y does not require the whole
phase to be finished, but only the task for skill Y to be com-
pleted. This allows a flexible allocation of the same resource
to different phases.

Executing Phases. Modelling the execution of a phase
presents an interesting issue, as a phase consists of one or
more tasks to be completed. Furthermore, the duration of
each task is defined in terms of man-days for the skill re-
quired to perform the task (as shown in Table 1). Let us
assume that phase p requires skills A, B, C, and for each
of them the amount of work is pAdays, pBdays and
pCdays.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 4

Figure 1: Dependency graph for the MDSD process

Table 1: Phases of the MDSD process

s 2 S T (s) R(s)
% Time DE SA TA TE ME M D T

Requirements Elicitation (RE) 15 0.9 0.1
High Level Design (HLD) 5 0.1 0.6 0.3
Test Case Preparation (TCP) 5 0.2 0.1 0.7
Low Level Design (LLD) 10 0.3 0.7
Code Generator Procurement (CGP) 10 0.2 0.2 0.6
Component Interface Modelling (CIM) 2 0.1 0.1 0.8
Component Interface Validation (CIV) 2 0.1 0.1 0.8
Component Interface Assembly (CIA) 1 0.2 0.1 0.7
Modelling Component Implementation (MCM) 5 0.1 0.1 0.8
Validation of Component Implementation Model (VCIM) 5 0.1 0.1 0.8
Coding of Component Implementation (CCI) 7 0.8 0.2
Model-Based Code Generation (MBCG) 3 0.1 0.1 0.8
DSL translation (DSLT) 4 0.1 0.9
Compilation (COMP) 5 1
Unit Testing (UT) 5 1
Component Assembly (CA) 5 0.2 0.4 0.4
Integration Testing (IT) 5 0.1 0.1 0.8
User Acceptance Testing (UAT) 5 0.1 0.1 0.1 0.7
Sign Off (SO) 1 0.4 0.3 0.3
END

(:action start_project
:parameters (?p - phase)
:precondition (and
(todo_project)
(is_first_phase ?p))

:effect (and
(running_project)
(not (todo_project))))

(:action end_project
:parameters (?p - phase)
:precondition (and
(completed ?p)
(is_last_phase ?p))

:effect (and
(project_completed)))

(a)

(:action employ_DE
:parameters ()
:precondition (and
(< (employed_DE) (max_DE))
(running_project))

:effect (and
(increase (available_DE) 1)
(increase (employed_DE) 1)
(increase (total_project_cost)
(employment_cost_DE))))

(:action dismiss_DE
:parameters ()
:precondition (and (project_completed)
(> (employed_DE) 0) (> (available_DE) 0))
:effect (and
(decrease (employed_DE) 1)
(decrease (available_DE) 1)))

(b)

(:action allocate_DE
:parameters (?p - phase)
:precondition (and
(doing ?p)
(> (available_DE) 0))

:effect (and
(increase (allocated_DE ?p) 1)
(decrease (available_DE) 1)))

(:action deallocate_DE
:parameters (?p - phase)
:precondition (and
(completed_DE ?p)
(>= (available_DE) 0)
(> (allocated_DE ?p) 0))

:effect (and
(decrease (allocated_DE ?p) 1)
(increase (available_DE) 1)))

(c)

Figure 2: (a) The start project and end project actions. (b) The employ and dismiss actions for a Design Expert.
(c) The allocate and deallocate actions for a Design Expert

If the planner has allocated pAres, pBres, pCres re-
sources to phase p, then the duration of the phase is

max

i2{A,B,C}

✓
pidays

pires

◆

Therefore, the effects of the action become effective only
when all the tasks have been completed. On the other hand,
the resources of skill j allocated for the phase become avail-
able as soon as the task requiring skill j terminates, even if
the other tasks of the phase are still executing.

Modelling such a scenario is not trivial, and the proposed

solution is illustrated in Figure 4. For each phase of the busi-
ness process, an envelope action is used, whose duration is
left to the planner, which encapsulates k durative actions
(where k is the number of different tasks required to com-
plete the phase), whose duration depends on the resources
previously allocated by the planner.

As an example, Figure 3a shows the envelope action to
perform a phase, while Figure 3b shows the action for the
task requiring domain experts. Note that the number of re-
sources to be allocated to the task is a significant value that
the planner will identify carefully. Indeed, this value affects

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 5

Table 2: Normalised costs of resources of different skills

Skill per-day-cost employment cost
DE 5 30
SA 5 30
TA 4 25
TE 2 20
ME 5 30
M 2 20
D 1.25 12.5
T 1 10

both the duration of a task and, in turn, the cost for executing
it, since a resource is paid according to its daily cost and the
task duration.

The Planning Problem. The goal is to complete the
whole project satisfying all the dependencies. Further-
more, the total project cost must be within the given
budget. To this end, the goal has the condition that
total project cost must be no greater than budget,
where total project cost depends on the number of
resources with different skills allocated to a task and the
per-day cost of each resource (as shown in Table 2). As
we said before, we are interested in minimising Time-to-
Market. This is mapped into the planning metric (:metric
minimize (total-time)).

A fragment of the PDDL problem is shown in Fig-
ure 3c, where we show key elements for phase Com-
pilation (COMP) and resource Developer (D). The bud-
get is fixed to 1, 500 (normalised to the cost of a tester).
The per day cost D, the employment cost D and
the maximum number of Developers that can be employed
are defined according to the normalised costs of resources
shown in Tab. 2.

The predicate (todotask D COMP) is used to spec-
ify which kind of skills are needed to complete the phase
(here a Developer is needed to perform the Compila-
tion phase). The dependency graph for the MDSD process
is defined through the predicate (depends COMP CIA
MBCG DSLT)which constrains the execution of the COMP
phase to the completion of three distinct phases, that are the
Component Interface Assembly, Model-Based Code Gener-
ation, and DSL Translation.

Experimental Results
To solve the business process domain, we used the for-
ward chaining temporal planner POPF (Coles et al. 2010).
We considered the MDSD of Table 1, with a budget of
1, 500 and a maximum number of employees for each skill
to be employed equal to 5. We used a x64 Linux machine
equipped with 6 GB of RAM and we considered the best so-
lution found by POPF within 30 minutes1. We found a solu-
tion for the MDSD process (P in the following) that requires
about 15 days, with a total cost of 1, 202.

A complete Gantt chart for the solution P that gives an
overview of the execution of phases and tasks has been

1POPF is an any-time planner, which improves the current so-
lution as time is given.

generated2. Here we focus on a fragment of it (shown in
Figure 5) which allows us to highlight the key element of
the plan, that is the optimised parallel execution of several
phases. In particular, the model allows the switching of a re-
source between phases even when they are still on-going.
Specifically, Figure 5 focuses on phases Modelling Com-
ponent Implementation (MCM), Component Interface As-
sembly (CIA), and Coding of Component Implementation
(CCI). Note that all these three phases need to complete a
task which involves Software Architects (boxes with a green
vertical texture in Figure 5). Furthermore, the three phases
need to be completed in order to start the Compilation phase
(according to the dependency graph shown in Figure 1). In
order to speed up the execution of these parallel phases the
planner decides to assign 4 out of 5 Software Architects to
complete the task of phase Coding of Component Implemen-
tation. At the same time, it first assigns the remaining Soft-
ware Architect to phase Component Interface Assembly, and
then to phase Modelling Component Implementation, while
the phase Coding of Component Implementation is still run-
ning. Through a non-trivial allocation of resources between
tasks, the planner is able to reduce the project duration and
optimise the budget usage.

Evaluation
The generated solution has been validated by our industrial
partner, in comparison with plans used in the company for
similar projects. From a practical point of view, our indus-
trial partner confirmed that the added value of the plan-based
solution comes from having a plan that suggests efficient du-
rations for phases where resources are switched between on-
going phases, which is key for reducing the time-to-market
and that would be hard to be planned manually.

As a further evaluation, we compare the solution P with
two other plan-based solutions PA and PB , as described in
the following.

Solution PA. First we want to show how planning can
provide different high quality solutions according to the
amount of resources available, by modifying (if needed) the
process itself, and not only the resource allocation. There-
fore we modify the planning problem by allowing the plan-
ner to recruit up to 6 workers (instead of 5) for each skill.
The planner is then able to find the plan PA, which is more
expensive (although still within the assigned budget) but
shorter then P . Figure 6 shows a comparison between the
two solutions. As can be noticed, the planner produces a dif-
ferent process, and PA differs from P not only in the re-
source allocations and phase durations, but also in the order
in which the phases are executed.

Solution PB . Second we want to show how the use of
planning can effectively help the business process design,
comparing to what one could achieve without using a plan-
ner. To this aim, based on the industrial partner’s experience,
we modify the planning domain to reflect as much as possi-
ble how the business process is currently designed in indus-
try. As noticed before, a typical approach followed by man-

2 Due to the space limitation the complete Gantt chart has been
made available at http://goo.gl/Ki7RvX

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 6

(:durative-action execute_phase
:parameters (?p ?dp1 ?dp2 ?dp3 -
phase)
:duration (and (<= ?duration
(upper_bound ?p)))
:condition (and

(at start (todo ?p))
(at start (running_project))
(at start (depends ?p ?dp1 ?dp2
?dp3))

(at start (completed ?dp1))
(at start (completed ?dp2))
(at start (completed ?dp3))
(at end (completed_DE ?p))
(at end (completed_SA ?p))
(at end (completed_TA ?p)))

:effect (and
(at start (doing ?p))
(at end (completed ?p))
(at end (not (doing ?p)))
(at end (not (todo ?p)))))

(a)

(:durative-action task-execution_DE
:parameters (?p - phase
?nT - somenumber)

:duration (= ?duration
(/ (duration_task_DE ?p)
(value_of ?nT)))

:condition (and
(at start (todotask_DE ?p))
(over all (doing ?p))
(over all (= (allocated_DE ?p)
(value_of ?nT)))
(at end (>= (employed_DE)
(value_of ?nT))))

:effect (and
(at start (not (todotask_DE ?p)))
(at end (completed_DE ?p))
(at end
(increase
(total_project_cost)
(* (* (value_of ?nT) ?duration)
(per_day_cost_DE))))))

(b)

(is_first_phase RE) (is_last_phase END)
(= (budget) 1500) (= (total_project_cost) 0)
;; Developer
(= (employed_D) 0) (= (max_D) 5)
(= (available_D) 0) (= (employment_cost_D) 12.5)
(= (per_day_cost_D) 1.25)

;; columns R(s) of Tab. 1 for a Developer
(todotask_D CCI) (todotask_D MBCG)
(todotask_D DSLT) (todotask_D COMP)
(todotask_D UT) (todotask_D CA)
(depends COMP CIA MBCG DSLT) ;; graph of Fig.1

;; COMP PHASE
(completed_DE COMP) (completed_TA COMP)
(completed_TE COMP) (completed_ME COMP)
(completed_M COMP) (completed_T COMP)
(completed_SA COMP) (= (duration_task_D COMP) 5)

(:goal (and (project_completed)
(<= (total_project_cost) (budget)))

(:metric minimize (total-time)))

(c)

Figure 3: (a) An example of execute phase action. (b) An example of task-execution action. (c) An extraction of
PDDL problem for the COMP phase

p

p

pB,

pA, pB, pC

p

p

pA,

pC,

release−res−skillB

release−res−skillC

release−res−skillA
update−people−cost,

update−people−cost,

update−people−cost,

execute−phase

task−skillA

task−skillB

task−skillC

Figure 4: Envelope action for task execu-
tion

6 7 8 9

Phase CCI
TaskSA CCI 4

Phase CIA
TaskSA CIA 1
Phase MCM

TaskME CIA 3
TaskM MCM 2
TaskSA MCM 1

TaskM CIA 3
TaskD CCI 5

TaskME MCM 5

Figure 5: A fragment of the Gannt Chart of Solution P . Relevant tasks are high-
lighted with a green vertical texture, an orange crosshatched texture or a blue
slanted texture, to refer to Software Architects (SA), MDE Experts (ME) or Mod-
ellers (M), respectively.

agers is to move a resource to a different phase only when
the current phase is finished, as the switching of resources
between ongoing phases is hard to be planned manually. To
model such a scenario, we modify the deallocate (?p
- phase) action requiring the whole phase to be finished
to release a resource. The best solution found by the planner
is plan PB shown in Figure 7 in comparison with P . As ex-
pected, each phase duration is much longer than in plan P ,
and the whole project takes 41 days longer than in P , when
faced with the same budget.

Note that dependencies between phases do not limit the
planner in deciding the order in which phases are executed.
Indeed, both PA and PB solutions present a different execu-
tion flow, while continuing to satisfy the dependency graph3.

Discussion and Related Work
A number of P&S techniques as well as CP-based ap-
proaches have been applied to the domain of BPM, aiming to
help workflow designers. In particular, FlowOpt (Barták et

3The complete set of PDDL domain/problems/plans have been
made publicly available at http://goo.gl/OlUDWS

al. 2011; 2012) is a tool for workflow optimisation, based
on constraint satisfaction techniques. The user can visu-
ally model a workflow, and the tool automatically gener-
ates a production schedule represented as a Gantt chart. The
user can then vary the quantities of items to be produced
and the tool will modify the schedule accordingly also sug-
gesting some improvements such as buying new resources.
On the other hand, JABBAH (Gonzalez-Ferrer, Fernandez-
Olivares, and Castillo 2013) provides a mapping between
BPM and the HTN planning paradigm. The tool takes as in-
put a workflow graph (described in the BPMN notation) and
translates it into HTN-PDDL code. Then the planner IAC-
TIVE is used to find a valid plan, i.e., a valid Gantt chart for
the given BPM. In the work by Senkul and Toroslu (Senkul
and Toroslu 2005), workflows described in the WSL lan-
guage are translated into constraint programs in Oz, and then
CP techniques are used to find valid resource allocations.
Other related approaches include (Lombardi and Milano
2009; Valls, Pérez, and Quintanilla 2009; Wang et al. 2011;
Wang and Smith 2005).

Although these papers are all relevant, a key issue that
differentiates our work is the temporal optimisation. In par-

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 7

ticular, we consider tasks with flexible durations whose val-
ues are optimised by the planner. Furthermore, the order of
tasks is not fixed, but is chosen by the planner, too. This mo-
tivates the exploration of using a planner to minimise time-
to-market while respecting budget constraints. Furthermore,
users have to define only dependencies among phases, leav-
ing to the planner the decision on how to better schedule
the activities for improving efficiency while respecting the
dependencies.

BPM has also been modelled as a resource-constrained
project scheduling problem (RCPSP), where a set of tasks
(activities) with fixed start times and durations, have to be
executed without interruption using a given set of resources.
But again, existing works consider activities with fixed du-
rations (Hartmann and Briskorn 2010). Recently the multi-
mode RCPSP framework has been proposed, where an ac-
tivity can be associated with several modes, each modelling
a feasible pair (resource allocation/duration) for the activity.
This approach, however, requires the set of possible modes
to be enumerated by the user, which represents a significant
issue for BPM designers when faced with large projects. In-
stead, in the planning based approach, this issue is left to the
planner which can look for efficient solutions going beyond
the limited set of possibilities provided by the user.
Finally, it is worth mentioning the work (Hoffmann, Weber,
and Kraft 2012) developed in collaboration with SAP where
the planner FF is used for process composition.

Conclusion and Future Work
In this paper we described how the problem of designing
and optimising a business process can be cast as a temporal
planning problem. Our experience at Tata Consultancy Ser-
vices over nearly two decades has shown that the correct de-
sign of business processes can make the difference between
successful and unsuccessful projects. However, in spite of
the large body of work available for the generation and ver-
ification of business processes (see for instance (Bianculli,
Ghezzi, and Spoletini 2007) and references therein), the sup-
port for the automatic optimisation of business processes is
still at an early stage. We presented a contribution on this
direction, modelling the design and the optimisation of the
business process as a temporal planning domain. We then
provided an effective solution for an industrial case study
using a temporal planner to find plans that minimise time-
to-market for a given project budget.

The domain, as such, represents a challenging problem
for planning as it requires concurrency and the handling of
durative actions with duration-dependent costs. Beyond that,
we hope that the problem we consider in this paper, where
activities to be scheduled have a flexible duration depen-
dent on resource allocation and time-to-market needs to be
minimised, can represent an interesting benchmark for the
community and foster the application of P&S and CP-based
techniques to the domain of BPM optimisation.

A natural future work for extending the proposed model
is to exploit the expressive power of PDDL3 (Gerevini
and Long 2006) and use preferences to take into account
soft constraints. Furthermore, it will be challenging to deal

with the multi-objective optimisation involved in this prob-
lem (such as time-to-market vs budget tradeoff) and pro-
vide richer suggestions to business organisations. Finally,
we want to explore the use of mixed approach where plan-
ning and scheduling techniques can be interleaved to find
efficient solutions.

References
Barták, R.; Jaska, M.; Novák, L.; Rovensky, V.; Skalicky, T.; Cully,
M.; Sheahan, C.; and Thanh-Tung, D. 2011. Workflow optimiza-
tion with FlowOpt: On modelling, optimizing, visualizing, and
analysing production workflows. In Proc. TAAI’11, 167–172.
Barták, R.; Jaska, M.; Novák, L.; Rovensky, V.; Skalicky, T.; Cully,
M.; Sheahan, C.; and Thanh-Tung, D. 2012. FlowOpt: Bridging the
gap between optimization technology and manufacturing planners.
In Proc. ECAI’12, 1003–1004.
Bianculli, D.; Ghezzi, C.; and Spoletini, P. 2007. A model checking
approach to verify BPEL4WS workflows. In Proc. SOCA’07, 13–
20.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In Proc. ICAPS.
Della Penna, G.; Intrigila, B.; Magazzeni, D.; and Mercorio, F.
2009. UPMurphi: a tool for universal planning on PDDL+ prob-
lems. In Proc. ICAPS’09, 106–113. AAAI Press.
Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic construc-
tion of efficient multiple battery usage policies. In Proc. ICAPS’11,
74–81.
Fox, M.; Long, D.; and Magazzeni, D. 2012. Plan-based policies
for efficient multiple battery load management. J. Artif. Intell. Res.
(JAIR) 44:335–382.
Gerevini, A., and Long, D. 2006. Preferences and soft constraints
in PDDL3. In Proceedings of ICAPS Workshop on Planning with
Preferences and Soft Constraints.
Gonzalez-Ferrer, A.; Fernandez-Olivares, J.; and Castillo, L. 2013.
From business process models to hierarchical task network plan-
ning domains. The Knowledge Engineering Review 28(2):175–193.
Hartmann, S., and Briskorn, D. 2010. A survey of variants and
extensions of the resource-constrained project scheduling problem.
European Journal of Operational Research 207(1):1–14.
Hoffmann, J.; Weber, I.; and Kraft, F. 2012. SAP speaks PDDL:
Exploiting a software-engineering model for planning in business
process management. J. Artif. Intell. Res. (JAIR) 44:587–632.
Lombardi, M., and Milano, M. 2009. A precedence constraint
posting approach for the rcpsp with time lags and variable dura-
tions. In Principles and Practice of Constraint Programming-CP
2009. Springer. 569–583.
Senkul, P., and Toroslu, I. H. 2005. An architecture for workflow
scheduling under resource allocation constraints. Information Sys-
tems 30(5):399–422.
Valls, V.; Pérez, Á.; and Quintanilla, S. 2009. Skilled workforce
scheduling in service centres. European Journal of Operational
Research 193(3):791–804.
Wang, X., and Smith, S. F. 2005. Retaining flexibility to max-
imize quality when the scheduler has the right to decide activity
durations. In ICAPS, 212–221.
Wang, X.; Policella, N.; Smith, S. F.; and Oddi, A. 2011.
Constraint-based methods for scheduling discretionary services. Ai
Communications 24(1):51–73.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RE 19.78%
TCP 0.00%
HLD 24.67%
LLD 4.69%
CIM 20.13%
CGP 20.32%
CIV 18.39%
CCI 107.94%
CIA 0.00%

MCM 19.93%
DSLTPA
VCIMP 18.88%

VCIMPA
DSLTP 13.11%
MBCG 18.93%
COMP 19.76%

UT 19.76%
CA 18.90%
IT 19.81%

UAT 19.47%
SO 22.86%

Figure 6: Solution PA. Plan P (red) using at most 5 workers costs 1,202.405 with time-to-market 15.289. Plan PA (blue) using
at most 6 workers costs 1,338.672 with time-to-market 12.755. The duration of each phase for solution PA is compared with
the corresponding phase of solution P . The difference is shown in percentage with respect to P .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

RE -69.42%
TCP -66.56%
HLD -66.28%
LLD -77.66%

CGPPB
CIMP -35.25%

CIMPB
CGPP -78.50%

CIV -79.43%
CCI -58.11%

MCMPB
CIAP 0.00%

CIAPB
MCMP -50.01%

VCIM -79.86%
DSLT -79.77%

MBCG -79.66%
COMP -79.89%

UT -79.89%
CA -79.59%
IT -79.93%

UAT -79.80%
SO -57.21%

Figure 7: Solution PB . Plan P (red) using at most 5 workers costs 1,202.405 with time-to-market 15.289. Plan PB (blue) with
no resource exchange between phases costs 1,205.979 with time-to-market 55.851. The duration of each phase for solution PB

is compared with the corresponding phase of solution P . The difference is shown in percentage with respect to P .

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 9

