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INTERTWINING SEMICLASSICAL SOLUTIONS TO A

SCHRÖDINGER-NEWTON SYSTEM

SILVIA CINGOLANI, MÓNICA CLAPP, AND SIMONE SECCHI

Abstract. We study the problem
{

(−εi∇+ A(x))2 u+ V (x)u = ε−2

(

1

|x|
∗ |u|2

)

u,

u ∈ L2(R3,C), ε∇u+ iAu ∈ L2(R3,C3),

where A : R3 → R3 is an exterior magnetic potential, V : R3 → R is an exte-
rior electric potential, and ε is a small positive number. If A = 0 and ε = ~ is
Planck’s constant this problem is equivalent to the Schrödinger-Newton equa-
tions proposed by Penrose in [23] to describe his view that quantum state re-
duction occurs due to some gravitational effect. We assume that A and V are
compatible with the action of a group G of linear isometries of R3. Then, for
any given homomorphism τ : G → S1 into the unit complex numbers, we show
that there is a combined effect of the symmetries and the potential V on the
number of semiclassical solutions u : R3 → C which satisfy u(gx) = τ(g)u(x)
for all g ∈ G, x ∈ R3. We also study the concentration behavior of these
solutions as ε → 0.

MSC2010: 35Q55, 35Q40, 35J20, 35B06.
Keywords: Schrödinger-Newton system, nonlocal nonlinearity, electromag-
netic potential, semiclassical solutions, intertwining solutions.

1. Introduction

The Schrödinger-Newton equations were proposed by Penrose [23] to describe his
view that quantum state reduction is a phenomenon that occurs because of some
gravitational influence. They consist of a system of equations obtained by coupling
together the linear Schrödinger equation of quantum mechanics with the Poisson
equation from Newtonian mechanics. For a single particle of mass m this system
has the form

(1.1)

{
− ~

2

2m∆ψ + V (x)ψ + Uψ = 0,

−∆U + 4πκ|ψ|2 = 0,

where ψ is the complex wave function, U is the gravitational potential energy, V is a
given potential, ~ is Planck’s constant, and κ := Gm2, G being Newton’s constant.
According to Penrose, the solutions ψ of this system are the basic stationary states
into which a superposition of such states is to decay within a certain timescale, cf.
[22, 23, 18, 19, 24].
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After rescaling by

ψ(x) =
1

~

ψ̂(x)√
2κm

, V (x) =
1

2m
V̂ (x), U(x) =

1

2m
Û(x),

system (1.1) can be written as

(1.2)

{
−~

2∆ψ̂ + V̂ (x)ψ̂ + Û ψ̂ = 0,

−~2∆Û + 4π|ψ̂|2 = 0.

The second equation in (1.2) can be explicitly solved with respect to Û , so this
system is equivalent to the single nonlocal equation

(1.3) − ~
2∆ψ̂ + V̂ (x)ψ̂ =

1

~2

(∫

R3

|ψ̂(ξ)|2
|x− ξ| dξ

)
ψ̂ in R

3.

We shall consider a more general equation having a similar structure, namely

(1.4) (−εi∇+A(x))2 u+ V (x)u =
1

ε2

(
1

|x| ∗ |u|
2

)
u in R

3,

where A : R3 → R3 is an exterior magnetic potential, i is the imaginary unit and ∗
denotes the convolution operator. We are interested in semiclassical states, i.e. in
solutions of this equation for ε→ 0.

The existence of one solution can be traced back to Lions’ paper [15]. In the
nonmagnetic case A = 0 equation (1.4) and related equations have been inves-
tigated by many authors, see e.g. [2, 10, 11, 12, 13, 16, 17, 18, 20, 25, 26, 19]
and the references therein. Recently, Wei and Winter [27] showed the existence
of positive multibump solutions which concentrate at local minima, local maxima
or nondegenerate critical points of the potential V as ε → 0. The magnetic case
A 6= 0 was recently studied in [6] where it was shown that equation (1.4) has a fam-
ily of solutions having multiple concentration regions located around the (possibly
degenerate) minima of V .

In this paper we consider the situation where A and V are symmetric and we
look for semiclassical solutions of equation (1.4) having specific symmetries. The
absolute value of the solutions we obtain concentrates at points which need not
be local extrema, nor nondegenerate critical points of V (in fact, we do not even
assume that V is differentiable). We state our main results in the following section
and give some explicit examples.

2. Statement of results

2.1. The results. Let G be a closed subgroup of the groupO(3) of linear isometries
of R3, A : R3 → R

3 be a C1-function, and V : R3 → R be a bounded continuous
function with infR3 V > 0, which satisfy

(2.1) A(gx) = gA(x) and V (gx) = V (x) for all g ∈ G, x ∈ R
3.

Given a continuous homomorphism of groups τ : G→ S1 into the group S1 of unit
complex numbers, we look for solutions to the problem

(2.2)





(−εi∇+A)
2
u+ V (x)u = ε−2

(
1
|x| ∗ |u|2

)
u,

u ∈ L2(R3,C),

ε∇u+ iAu ∈ L2(R3,C3),
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which satisfy

(2.3) u(gx) = τ(g)u(x) for all g ∈ G, x ∈ R
3,

This implies that the absolute value |u| of u is G-invariant, i.e.

|u(gx)| = |u(x)| for all g ∈ G, x ∈ R
3,

whereas the phase of u(gx) is that of u(x) multiplied by τ(g). A concrete example
is given in subsection 2.2 below.

Note that if u satisfies (2.2) and (2.3) then eiθu satisfies (2.2) and (2.3) for every
θ ∈ R. We shall say that u and v are geometrically distinct if eiθu 6= v for all θ ∈ R.

We introduce some notation. For x ∈ R
3, we denote by Gx the G-orbit of x and

by Gx the G-isotropy subgroup of x, i.e.

Gx := {gx : g ∈ G} , Gx := {g ∈ G : gx = x}.
A subset X of R3 is G-invariant if Gx ⊂ X for every x ∈ X. The G-orbit space of
X is the set

X/G := {Gx : x ∈ X}
of G-orbits of X with the quotient topology.

Let #Gx denote the cardinality of Gx, and define

ℓG,V := inf
x∈R3

(#Gx)V 3/2(x),

Mτ :=
{
x ∈ R

3 : (#Gx)V 3/2(x) = ℓG,V , Gx ⊂ ker τ
}
.

Assumption (2.1) implies that Mτ is G-invariant. Observe that the points of Mτ

need not be neither local minima nor local maxima of V .
Given ρ > 0 we set BρMτ := {x ∈ R3 : dist(x,Mτ ) ≤ ρ}, and write

catBρMτ/G(Mτ/G)

for the Lusternik-Schnirelmann category of Mτ/G in BρMτ/G.
Finally, we denote by E1 the least energy of a nontrivial solution to problem

(2.4)

{
−∆u+ u = ( 1

|x| ∗ u2)u,
u ∈ H1(R3,R).

We shall prove the following results.

Theorem 2.1. Assume there exists α > 0 such that the set

(2.5)
{
x ∈ R

3 : (#Gx)V 3/2(x) ≤ ℓG,V + α
}

is compact. Then, given ρ, δ > 0, there exists ε̂ > 0 such that, for every ε ∈ (0, ε̂),
problem (2.2) has at least

catBρMτ/G(Mτ/G)

geometrically distinct solutions u which satisfy (2.3) and

(2.6)

∣∣∣∣
1

4

∫

R3

(
1

|x| ∗ |u|
2

)
|u|2 − ε5ℓG,VE1

∣∣∣∣ < ε5δ.
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The last inequality says that the energy of the solutions is arbitrarily close to
ε3ℓG,VE1 for ε small enough. So considering different groups G and G′ for which
ℓG,V 6= ℓG′,V will lead to solutions with energy in disjoint ranges.

For u ∈ H1(R3,R) set

‖u‖2ε :=

∫

R3

(ε2 |∇u|2 + u2).

The following theorem describes the module of the solutions given by Theorem 2.1
as ε→ 0.

Theorem 2.2. Let un be a solution to problem (2.2) which satisfies (2.3) and (2.6)
for ε = εn > 0, δ = δn > 0. Assume εn → 0 and δn → 0. Then, after passing to a
subsequence, there exists a sequence (ξn) in R3 such that ξn → ξ ∈Mτ , Gξn = Gξ,
and

ε−3
n

∥∥∥∥∥|un| −
∑

gξn∈Gξn

ωξ

( · − gξn
εn

)∥∥∥∥∥

2

εn

→ 0,

where ωξ is the unique ground state of problem

−∆u+ V (ξ)u =

(
1

|x| ∗ u
2

)
u, u ∈ H1(R3,R),

which is positive and radially symmetric with respect to the origin.

Next, we give an example which illustrates our results.

2.2. Rotationally invariant potentials. Let S1 act on R
3 ≡ C×R by eiθ(z, t) :=

(eiθz, t), and let A and V satisfy assumption (2.1) for the cyclic group Gm gener-
ated by e2πi/m, for some m ∈ N. For example, the standard magnetic poten-
tial A(x1, x2, x3) := (−x2, x1, 0) associated to the constant magnetic field B(x) =
(0, 0, 2) has this property for every m.

For each j = 0, 1, . . . ,m− 1 we look for solutions to problem (2.2) which satisfy

(2.7) u(e2πi/mz, t) = e2πij/mu(z, t) for all (z, t) ∈ C× R.

Solutions of this type arise in a natural way in some problems where the magnetic
potential is singular and the topology of the domain produces an Aharonov-Bohm
type effect, cf. [1, 8]. Taking τj(g) := gj we see that these are solutions of the type
furnished by Theorem 2.1.

If V satisfies

(2.8) V0 := inf
x∈R3

V < lim inf
|x|→∞

V (x) and mV
3/2
0 < inf

t∈R

V 3/2(0, t),

then assumption (2.5) in Theorem 2.1 is satisfied, ℓGm,V = mV
3/2
0 andMτ is simply

the set of minima of V,

M =
{
x ∈ R

3 : V (x) = V0
}
.

Thus, for each j = 0, 1, . . . ,m − 1 and ρ, δ > 0, Theorem 2.1 yields at least
catBρM/Gm

(M/Gm) geometrically distinct solutions to problem (2.2) satisfying
(2.7) and (2.6), for ε small enough.

For each k dividing m the potentials A and V satify assumption (2.1) for Gk

and V satisfies (2.8) with k instead of m. Property (2.6) implies that the solutions
obtained for Gk are different from those for Gm if k 6= m and ε is small enough.
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This paper is organized as follows. In section 3 we discuss the variational problem
related to the existence of solutions to problem (2.2) satisfying (2.3). We also
outline the strategy for proving Theorem 2.1. Sections 4 and 5 are devoted to
the construction of an entrance map and a local baryorbit map which will help
us estimate the Lusternik-Schnirelmann category of a suitable sublevel set of the
variational functional for ε small enough. Finally, in section 6 we prove Theorems
2.1 and 2.2.

3. The variational problem

Set ∇ε,Au := ε∇u+ iAu and consider the real Hilbert space

H1
ε,A(R

3,C) := {u ∈ L2(R3,C) : ∇ε,Au ∈ L2(R3,C3)}
with the scalar product

(3.1) 〈u, v〉ε,A,V := Re

∫

R3

(
∇ε,Au · ∇ε,Av + V (x)uv

)
.

We write

‖u‖ε,A,V :=

(∫

R3

(
|∇ε,Au|2 + V (x) |u|2

))1/2

for the corresponding norm.
If u ∈ H1

ε,A(R
3,C), then |u| ∈ H1(R3,R) and

(3.2) ε |∇|u(x)|| ≤ |ε∇u(x) + iA(x)u(x)| for a.e. x ∈ R
3.

This is called the diamagnetic inequality [14]. Set

D(u) :=

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy.

The standard Hardy–Littlewood–Sobolev inequality [14, Theorem 4.3] yields

(3.3)

∣∣∣∣
∫

R3

∫

R3

f(x)h(y)

|x− y| dx dy

∣∣∣∣ ≤ C‖f‖L6/5(R3)‖h‖L6/5(R3)

for all f, h ∈ L6/5(R3), where C is a positive constant independent of f and h. In
particular,

(3.4) D(u) ≤ C‖u‖4L12/5(R3)

for every u ∈ H1
ε,A(R

3,C).

The energy functional Jε,A,V : H1
ε,A(R

3,C) → R associated to problem (2.2),
defined by

Jε,A,V (u) :=
1

2
‖u‖2ε,A,V − 1

4ε2
D(u),

is of class C2, and its derivative is given by

J ′
ε,A,V (u)v := 〈u, v〉ε,A,V − 1

ε2
Re

∫

R3

(
1

|x| ∗ |u|
2

)
uv.

Therefore, the solutions to problem (2.2) are the critical points of Jε,A,V . We write
∇εJε,A,V (u) for the gradient of Jε,A,V at u with respect to the scalar product (3.1).

The action of G on H1
ε,A(R

3,C) defined by (g, u) 7→ ug, where

(ug)(x) := τ(g)u(g−1x),
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satisfies

〈ug, vg〉ε,A,V = 〈u, v〉ε,A,V and D(ug) = D(u)

for all g ∈ G, u, v ∈ H1
ε,A(R

3,C). Hence, Jε,A,V is G-invariant. By the principle of

symmetric criticality [21, 28], the critical points of the restriction of Jε,A,V to the
fixed point space of this G-action, denoted by

H1
ε,A(R

3,C)τ =
{
u ∈ H1

ε,A(R
3,C) : ug = u

}

=
{
u ∈ H1

ε,A(R
3,C) : u(gx) = τ(g)u(x) ∀x ∈ R

3, g ∈ G
}
,

are the solutions to problem (2.2) which satisfy (2.3). Those which are nontrivial
lie on the Nehari manifold

N τ
ε,A,V :=

{
u ∈ H1

ε,A(R
3,C)τ : u 6= 0, ε2 ‖u‖2ε,A,V = D(u)

}
,

which is a C2-manifold radially diffeomorphic to the unit sphere in H1
ε,A(R

3,C)τ .
The critical points of the restriction of Jε,A,V to N τ

ε,A,V are precisely the nontrivial

solutions to (2.2) which satisfy (2.3).
The radial projection πε,A,V : H1

ε,A(R
3,C)τ \ {0} → N τ

ε,A,V is given by

(3.5) πε,A,V (u) :=
ε ‖u‖ε,A,V√

D(u)
u.

Note that

(3.6) Jε,A,V (πε,A,V (u)) =
ε2 ‖u‖4ε,A,V

4D(u)
for all u ∈ H1

ε,A(R
3,C)τ \ {0}.

Recall that Jε,A,V : N τ
ε,A,V → R is said to satisfy the Palais-Smale condition

(PS)c at the level c if every sequence (un) such that

un ∈ N τ
ε,A,V , Jε,A,V (un) → c, ∇N τ

ε,A,V
Jε,A,V (un) → 0,

contains a convergent subsequence. Here ∇N τ
ε,A,V

Jε,A,V (u) denotes the orthogonal

projection of ∇εJε,A,V (u) onto the tangent space to N τ
ε,A,V at u. The following

holds.

Proposition 3.1. For every ε > 0, the functional Jε,A,V : N τ
ε,A,V → R satisfies

(PS)c at each level

c < ε3 min
x∈R3\{0}

(#Gx)V 3/2
∞ E1,

where V∞ := lim inf |x|→∞ V (x).

Proof. This was proved in [5] for ε = 1. For ε > 0 the assertion follows after per-
forming the change of variable uε(x) := u(εx) since a straightforward computation
shows that

ε−3Jε,A,V (u) = J1,Aε,Vε(uε) and ε−3/2∇N τ
ε,A,V

Jε,A,V (u) = ∇N τ
1,Aε,Vε

J1,Aε,Vε(uε),

where Aε(x) := A(εx) and Vε(x) := V (εx). �

S1 acts on H1
ε,A(R

3,C)τ by scalar multiplication: (eiθ, u) 7→ eiθu. The Nehari
manifold N τ

ε,A,V and the functional Jε,A,V are invariant under this action. Two

solutions of (2.2) are geometrically distinct iff they lie on different S1-orbits. Equi-
variant Lusternik-Schnirelmann theory yields the following result, see e.g. [7].
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Proposition 3.2. If Jε,A,V : N τ
ε,A,V → R satisfies (PS)c at each level c ≤ c, then

Jε,A,V has at least

cat
[(
N τ

ε,A,V ∩ Jc
ε,A,V

)
/S1
]

critical S1-orbits in N τ
ε,A,V ∩ Jc

ε,A,V .

Here (N τ
ε,A,V ∩ Jc

ε,A,V )/S
1 denotes the S1-orbit space of N τ

ε,A,V ∩ Jc
ε,A,V , where,

as usual, Jc
ε,A,V :=

{
u ∈ H1

ε,A(R
3,C) : Jε,A,V (u) ≤ c

}
.

To prove Theorem 2.1 we will show that

(3.7) catBρMτ/GMτ/G ≤ cat
[(
N τ

ε,A,V ∩ Jd
ε,A,V

)
/S1
]

for some d = d(ε) ∈ (cτε,A,V , ε
3 minx∈R3\{0}(#Gx)V

3/2
∞ E1), where

(3.8) cτε,A,V := inf
N τ

ε,A,V

Jε,A,V .

To obtain inequality (3.7) we shall construct maps

Mτ/G
ιε−→ C/S1 βε−→ BρMτ/G,

whose composition is the inclusion Mτ/G →֒ BρMτ/G, where C is a union of
connected components of N τ

ε,A,V ∩ Jd
ε,A,V . A standard argument then yields

catBρMτ/GMτ/G ≤ cat
(
C/S1

)
≤ cat

[(
N τ

ε,A,V ∩ Jd
ε,A,V

)
/S1
]
.

The main ingredients for defining these maps are contained in the following two
sections.

4. The entrance map

For any positive real number λ we consider the problem

(4.1)

{
−∆u+ λu = ( 1

|x| ∗ u2)u,
u ∈ H1(R3,R).

Its associated energy functional Jλ : H
1(R3,R) → R is given by

Jλ(u) =
1

2
‖u‖2λ − 1

4
D(u), with ‖u‖2λ :=

∫

R3

(
|∇u|2 + λu2

)
.

Its Nehari manifold will be denoted by

Mλ : =
{
u ∈ H1(R3,R) : u 6= 0, ‖u‖2λ = D(u)

}
.

We set
Eλ := inf

u∈Mλ

Jλ(u).

The critical points of Jλ on Mλ are the nontrivial solutions to (4.1). Note that u

solves (2.4) if and only if uλ(x) := λu(
√
λx) solves (4.1). Therefore,

Eλ = λ3/2E1.

Minimizers of Jλ on Mλ are called ground states. Lieb established in [13] the
existence and uniqueness of ground states up to sign and translations. Recently
Ma and Zhao [17] showed that every positive solution to problem (4.1) is radially
symmetric, and they concluded from this fact that the positive solution to this
problem is unique up to translations. We denote by ωλ the positive solution to
problem (4.1) which is radially symmetric with respect to the origin.
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Fix a radial function ̺ ∈ C∞(R3,R) such that ̺(x) = 1 if |x| ≤ 1
2 and ̺(x) = 0

if |x| ≥ 1. For ε > 0 set ̺ε(x) := ̺(
√
εx), ωλ,ε := ̺εωλ and

(4.2) υλ,ε =
‖ωλ,ε‖λ√
D(ωλ,ε)

ωλ,ε.

Note that supp(υλ,ε) ⊂ B(0, 1/
√
ε) := {x ∈ R3 : |x| ≤ 1/

√
ε} and υλ,ε ∈ Mλ. An

easy computation shows that

(4.3) lim
ε→0

Jλ(υλ,ε) = λ3/2E1.

Observe that

ℓG,V := inf
x∈R3

(#Gx)V 3/2(x) < V 3/2(0) <∞.

We assume from now on that there exists α > 0 such that the set{
y ∈ R

3 : (#Gy)V 3/2(y) ≤ ℓG,V + α
}

is compact. Then

MG,V :=
{
y ∈ R

3 : (#Gy)V 3/2(y) = ℓG,V

}

is a compact G-invariant set and all G-orbits inMG,V are finite. We splitMG,V ac-
cording to the orbit type of its elements as follows: we choose subgroupsG1, . . . , Gm

of G such that the isotropy subgroup Gx of every point x ∈ MG,V is conjugate to
precisely one of the Gi’s, and we set

Mi :=
{
y ∈MG,V : Gy = gGig

−1 for some g ∈ G
}
.

Since isotropy subgroups satisfy Ggx = gGxg
−1, the sets Mi are G-invariant and,

since V is continuous, they are closed and pairwise disjoint, and

MG,V =M1 ∪ · · · ∪Mm.

Moreover, since

|G/Gi|V 3/2(y) = (#Gy)V 3/2(y) = ℓG,V for all y ∈Mi,

the potential V is constant on each Mi. Here |G/Gi| denotes the index of Gi in G.
We denote by Vi the value of V on Mi.

Let υi,ε := υVi,ε be defined as in (4.2) with λ := Vi. For ξ ∈Mi set

φε,ξ(x) := υi,ε

(
x− ξ

ε

)
exp

(
−iA(ξ) ·

(
x− ξ

ε

))
.

The proofs of the following two lemmas are similar to those of Lemmas 1 and 2 in
[3], so we shall omit them.

Lemma 4.1. Uniformly in ξ ∈Mi, we have that

lim
ε→0

ε−3Jε,A,V [πε,A,V (φε,ξ)] = V
3/2
i E1,

where πε,A,V is as in (3.5).

It is well known that the map G/Gξ → Gξ given by gGξ 7→ gξ is a homeomor-
phism, see e.g. [9]. So, if Gi ⊂ ker τ and ξ ∈Mi, then the map

Gξ → S
1, gξ 7→ τ(g),



SEMICLASSICAL SOLUTIONS TO A SCHRÖDINGER-NEWTON SYSTEM 9

is well defined and continuous. Set

(4.4) ψε,ξ(x) :=
∑

gξ∈Gξ

τ(g)υi,ε

(
x− gξ

ε

)
e−iA(gξ)·(x−gξ

ε ).

Lemma 4.2. Assume that Gi ⊂ ker τ . Then, the following hold:
(a) For every ξ ∈Mi and ε > 0, one has that

ψε,ξ(gx) = τ(g)ψε,ξ(x) ∀g ∈ G, x ∈ R
3.

(b) For every ξ ∈Mi and ε > 0, one has that

τ(g)ψε,gξ(x) = ψε,ξ(x) ∀g ∈ G, x ∈ R
3.

(c) One has that
lim
ε→0

ε−3Jε,A,V [πε,A,V (ψε,ξ)] = ℓG,VE1.

uniformly in ξ ∈Mi.

Let
Mτ := {y ∈MG,V : Gy ⊂ ker τ} =

⋃

Gi⊂ker τ

Mi.

Proposition 4.3. The map ι̂ε :Mτ → N τ
ε,A,V given by

ι̂ε(ξ) := πε,A,V (ψε,ξ)

is well defined and continuous, and satisfies

τ(g)ι̂ε(gξ) = ι̂ε(ξ) ∀ξ ∈Mτ , g ∈ G.

Moreover, given d > ℓGE1, there exists εd > 0 such that

ε−3 Jε,A,V (ι̂ε(ξ)) ≤ d ∀ξ ∈Mτ , ε ∈ (0, εd).

Proof. This follows immediately from Lemma 4.2. �

5. A local baryorbit map

Let W : R3 → R be a bounded, uniformly continuous function with infR3 W > 0
and such that W (gx) =W (x) for all g ∈ G, x ∈ R3. We assume that the set

(5.1)
{
y ∈ R

3 : (#Gy)W 3/2(y) ≤ ℓG,W + α
}

is compact, where ℓG,W := infx∈R3(#Gx)W 3/2(x), and consider the real-valued
problem

(5.2)





−ε2∆v +W (x)v = 1
ε2

(
1
|x| ∗ u2

)
u,

v ∈ H1(R3,R),
v(gx) = v(x) ∀x ∈ R3, g ∈ G.

We write

〈v, w〉ε,W :=

∫

R3

(
ε2∇v · ∇w +W (x)vw

)
, ‖v‖2ε,W :=

∫

R3

(
|ε∇v|2 +W (x)v2

)
,

and set

H1(R3,R)G := {v ∈ H1(R3,R) : v(gx) = v(x) ∀x ∈ R
3, g ∈ G}.

The nontrivial solutions of (5.2) are the critical points of the energy functional

Jε,W (v) =
1

2
‖v‖2ε,W − 1

4ε2
D(v)
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on the Nehari manifold

MG
ε,W := {v ∈ H1(R3,R)G : v 6= 0, ‖v‖2ε,W = ε−2

D(v)}.
Set

(5.3) cGε,W := inf
MG

ε,W

Jε,W = inf
v∈H1(R3,R)G

v 6=0

ε2 ‖v‖4ε,W
4D(v)

.

We wish to study the behavior of ”minimizing sequences” for the family of prob-
lems (5.2), parametrized by ε, as ε→ 0. This is described in Proposition 5.4 below.
We start with some lemmas.

Lemma 5.1. 0 < (infR3 W )3/2E1 ≤ ε−3cGε,W for every ε > 0, and

lim sup
ε→0

ε−3cGε,W ≤ ℓG,WE1,

Proof. Set W0 := infR3 W and write vε(x) := v(εx). Then ‖vε‖2W0
= ε−3 ‖v‖2ε,W0

and D(vε) = ε−5D(v). If follows immediately from (5.3) that

W
3/2
0 E1 ≤ cG1,W0

= ε−3cGε,W0
≤ ε−3cGε,W .

To prove the second inequality, take ξ ∈ R3 such that (#Gξ)W 3/2(ξ) = ℓG,WE1.
WriteGξ := {ξ1, ..., ξm}. Fix 0 < ρ < 1

2 mini6=j |ξi − ξj | , and letWρ := supB(ξ1,ρ)W .

Let υρ,ε := υWρ,ε be defined as in (4.2) with λ :=Wρ. Set

wρ,ε(x) :=
m∑
i=1

υρ,ε

(
x− ξi
ε

)
.

If
√
ε ≤ ρ, then supp(wρ,ε) ⊂ ∪m

i=1B(ξi, ρ). Therefore wρ,ε ∈ MG
ε,Wρ

and

ε−3cGε,W ≤ ε−3Jε,W (wρ,ε) ≤ ε−3Jε,Wρ(wρ,ε) = mJWρ(υρ,ε).

It follows from (4.3) that

lim sup
ε→0

ε−3cGε,W ≤ mW 3/2
ρ E1.

Letting ρ→ 0, we conclude that

lim sup
ε→0

ε−3cGε,W ≤ (#Gξ)W 3/2(ξ)E1 = ℓG,WE1,

as claimed. �

Lemma 5.2. Let εn > 0 and ξn ∈ R
3 such that εn → 0 and (W (ξn)) converges.

Set Ŵn(x) := W (εnx + ξn) and Ŵ := limn→∞W (ξn). Then, for every sequence
(un) in H

1(R3,R) such that un ⇀ u weakly in H1(R3,R) and every w ∈ H1(R3,R),
the following hold:

lim
n→∞

(
〈un, w〉1,Ŵn

− 〈un − u,w〉
1,Ŵn

)
= 〈u,w〉

1,Ŵ

and

lim
n→∞

(
‖un‖21,Ŵn

− ‖un − u‖2
1,Ŵn

)
= ‖u‖2

1,Ŵ
.
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Proof. The argument is similar for both equalities. We prove the second one. Since
(un) is bounded in L2(R3) there exists C > 2 ‖u‖L2(R3) such that

∣∣∣‖un‖21,Ŵn
− ‖un − u‖2

1,Ŵn
− ‖u‖2

1,Ŵ

∣∣∣

≤
∣∣∣‖un‖21,Ŵ − ‖un − u‖2

1,Ŵ
− ‖u‖2

1,Ŵ

∣∣∣+
∫

R3

∣∣∣(Ŵn − Ŵ )(2unu− u2)
∣∣∣

≤ o(1) + C
∥∥∥(Ŵn − Ŵ )u

∥∥∥
L2(R3)

.

Given ε > 0 we fix R > 0 such that∫

|x|≥R

(Ŵn − Ŵ )2u2 ≤ (2 sup
x∈R3

W )2
∫

|x|≥R

u2 < ε2.

Since W is uniformly continuous, there exists δ > 0 such that

|W (εnx+ ξn)−W (ξn)| <
ε

C
if |x| < δ

εn
.

Fix n0 ∈ N such that |W (ξn)− Ŵ | < ε
C and δ

εn
> R if n ≥ n0. Then,

∫

|x|≤R

(Ŵn − Ŵ )2u2 < ε2 for all n ≥ n0.

Therefore,

lim
n→∞

∥∥∥(Ŵn − Ŵ )u
∥∥∥
L2(R3)

= 0.

This concludes the proof. �

Lemma 5.3. Let (zn) be a sequence in RN . Then, after passing to a subsequence,
there exist a closed subgroup Γ of G and a sequence (ζn) in RN such that
(a) (dist(Gzn, ζn)) is bounded,
(b) Gζn = Γ,
(c) if |G/Γ| <∞ then |gζn − g̃ζn| → ∞ for all g, g̃ ∈ G with g̃g−1 /∈ Γ,
(d) if |G/Γ| = ∞, there exists a closed subgroup Γ′ of G such that Γ ⊂ Γ′, |G/Γ′| =
∞ and |gζn − g̃ζn| → ∞ for all g, g̃ ∈ G with g̃g−1 /∈ Γ′.

Proof. See Lemma 3.2 in [5]. �

Set

MG,W :=
{
y ∈ R

3 : (#Gy)W 3/2(y) = ℓG,W

}

Abusing notation we write again Gi and Mi for the groups and the sets defined as
in Section 4 but now for W instead of V . So the value of W on Mi is constant and
we denote it by Wi. We fix ρ̂ > 0 such that

(5.4)
|y − gy| > 2ρ̂ if gy 6= y ∈MG,W ,
dist(Mi,Mj) > 2ρ̂ if i 6= j,

For ρ ∈ (0, ρ̂), let

Mρ
i := {y ∈ R

3 : dist(y,Mi) ≤ ρ, Gy = gGig
−1 for some g ∈ G},

and for each ξ ∈Mρ
i and ε > 0, define

θε,ξ(x) :=
∑

gξ∈Gξ

ωi

(
x− gξ

ε

)
,
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where ωi is unique positive ground state of problem (4.1) with λ := Wi which is
radially symmetric with respect to the origin. Set

Θρ,ε := {θε,ξ : ξ ∈Mρ
1 ∪ · · · ∪Mρ

m}.
The following holds.

Proposition 5.4. Let εn > 0 and vn ∈ H1(R3,R)G be such that

(5.5) εn → 0, ε−3
n Jεn,W (vn) → ĉ, ε−3

n ‖∇εnJεn,W (vn)‖2εn,W → 0,

where ĉ := lim infε→0 ε
−3cGε,W and ∇εnJεn,W is the gradient of Jεn,W with respect

to the scalar product 〈·, ·〉εn,W . Then, passing to a subsequence, there exist an i ∈
{1, ...,m} and a sequence (ξn) in R3 such that
(i) Gξn = Gi,
(ii) ξn → ξ ∈Mi,

(iii) ε−3
n ‖|vn| − θεn,ξn‖2εn,W → 0,

(iv) ĉ = limε→0 ε
−3cGε,W = ℓG,WE1.

Proof. A standard argument shows that the sequence (ε−3
n ‖vn‖2εn,W ) is bounded

and that
lim
n→∞

ε−3
n ‖vn‖2εn,W = lim

n→∞
ε−5
n D(vn) = 4ĉ =: c > 0.

Let ṽn ∈ H1(R3,R)G be given by ṽn(z) := vn(εnz). Then,

‖ṽn‖21,Wn
= ε−3‖vn‖2εn,W and D(ṽn) = ε−5

n D(vn),

where Wn(z) :=W (εnz). Set

δ := lim sup
n→∞

sup
y∈R3

∫

B(y,1)

|ṽn|2 .

Since c > 0, Lions’ lemma [28, Lemma 1.21], together with inequality (3.4), yields
that δ > 0. Choose zn ∈ R3 such that∫

B(zn,1)

|ṽn|2 ≥ δ

2

and replace (zn) by a sequence (ζn) having the properties stated in Lemma 5.3. Set
v̂n(z) := ṽn(z + ζn). After passing to a subsequence, we may assume that v̂n ⇀ v̂
weakly in H1(R3,R), v̂n(x) → v̂(x) a.e. on R3 and v̂n → v̂ in L2

loc(R
3,R). Choosing

C ≥ dist(ζn, Gzn) for all n, we obtain
∫

B(0,C+1)

|v̂n|2 =

∫

B(ζn,C+1)

|ṽn|2 ≥
∫

B(zn,1)

|ṽn|2 ≥ δ

2
.

Therefore, v̂ 6= 0.

Set ξn := εnζn and Ŵn(x) := W (εnx + ξn). Since W is bounded, a subsequence

of W (ξn) converges. We set Ŵ := limn→∞W (ξn). The weak continuity of D′ [2,
Lemma 3.5], together with Lemma 5.2 and assumption (5.5) imply that v̂ is a so-

lution to problem (4.1) with λ := Ŵ .

Since vn andW areG-invariant we have that v̂n(g
−1x) = vn(εnx+gξn), Ŵn(g

−1x) =

W (εnx + gξn), and Ŵ := limn→∞W (gξn) for each g ∈ G. Fix g1, ..., gk ∈ G such
that |giζn − gjζn| → ∞ if i 6= j. Then,

(5.6) v̂ng
−1
j −

k∑
i=j+1

v̂g−1
i (· − giζn + gjζn)⇀ v̂g−1

j
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weakly in H1(R3,R). Applying Lemma 5.2 we obtain
∥∥∥∥∥v̂ng

−1
j −

k∑
i=j+1

v̂g−1
i (· − giζn + gjζn)

∥∥∥∥∥

2

1,Ŵng
−1

j

=

∥∥∥∥∥v̂ng
−1
j − v̂g−1

j −
k∑

i=j+1

v̂g−1
i (· − giζn + gjζn)

∥∥∥∥∥

2

1,Ŵng
−1

j

+
∥∥v̂g−1

j

∥∥2
1,Ŵ

+ o(1),

and performing the change of variable y = εnx+ gjξn we conclude that

ε−3
n

∥∥∥∥∥vn −
k∑

i=j+1

v̂g−1
i

( · − giξn
εn

)∥∥∥∥∥

2

εn,W

= ε−3
n

∥∥∥∥∥vn −
k∑

i=j

v̂g−1
i

( · − giξn
εn

)∥∥∥∥∥

2

εn,W

+ ‖v̂‖2
1,Ŵ

+ o(1).

Iterating these equalities we conclude that

4ĉ = lim
n→∞

ε−3
n ‖vn‖2εn,W = lim

n→∞
ε−3
n

∥∥∥∥∥vn −
k∑

i=1

v̂g−1
i

( · − giξn
εn

)∥∥∥∥∥

2

εn,W

+ k ‖v̂‖2
1,Ŵ

.

This implies that 4ĉ ≥ k ‖v̂‖2
1,Ŵ

which, together with property (d) in Lemma 5.3,

implies |G/Γ| <∞. Property (c) allows us to take k := |G/Γ|. Then, property (b)
and Lemma 5.1 yield

ℓG,WE1 ≤ lim
n→∞

(#Gξn)W
3/2(ξn)E1 = |G/Γ| Ŵ 3/2E1

≤ |G/Γ| 1
4
‖v̂‖2

1,Ŵ
≤ ĉ ≤ lim sup

ε→0
ε−3cGε,W ≤ ℓG,WE1.

This proves (iv) and gives also

(5.7) lim
n→∞

ε−3
n

∥∥∥∥vn −
k∑

i=1

v̂g−1
i

( · − giξn
εn

)∥∥∥∥
2

εn,W

= 0.

Moreover, (#Gξn)W
3/2(ξn) ≤ ℓG,W +α for n large enough. Thus, assumption (2.5)

implies, after passing to a subsequence, that ξn → ξ. Hence, W (ξ) = Ŵ and

ℓG,WE1 ≤ (#Gξ)W (ξ)E1 ≤ |G/Γ| Ŵ 3/2E1 ≤ |G/Γ| 1
4
‖v̂‖2

1,Ŵ
≤ ℓG,WE1.

We conclude that ξ ∈ Mi for some i = 1, ...,m, as claimed in (ii). Then, Ŵ =Wi,
Γ = Gξ = gGig

−1 for some g ∈ G, and v̂ is a ground state of problem (4.1) with
λ =Wi.
Since the ground state is unique up to sign and translation we must have that
v̂(z) = ±ωi(z − z0) for some z0 ∈ R3. Observe that v̂ is Γ-invariant. So, if Γ is
nontrivial, then z0 = 0 and, since ωi is radial, equation (5.7) becomes (iii). If, on the
other hand, Γ is the trivial group, we replace ξn by ξ′n := ξn + εnz0. Since Gξn ∼= G
and εn → 0, ξ′n has the same properties as ξn for n large enough. Moreover, since
ωi is radially symmetric,

v̂

(
g−1z − ξn

εn

)
= ±ωi

(
g−1z − ξ′n

εn

)
= ±ωi

(
z − gξ′n
εn

)
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and, again, equation (5.7) yields (iii). This completes the proof. �

Proposition 5.5. Given ρ ∈ (0, ρ̂) there exist dρ > ℓG,WE1 and ερ > 0 with the
following property: For every ε ∈ (0, ερ) and every v ∈ MG

ε,W with Jε,W (v) ≤ ε3dρ
there exists precisely one G-orbit Gξε,v with ξε,v ∈Mρ

1 ∪ · · · ∪Mρ
m such that

ε−3
∥∥|v| − θε,ξε,v

∥∥2
ε,W

= min
θ∈Θρ,ε

‖|v| − θ‖2ε,W .

Proof. The proof is analogous to that of Proposition 5.3 in [4]. We omit the details.
�

Fix ρ ∈ (0, ρ̂) and ε ∈ (0, ερ). Proposition 5.5 allows us to define a map

(5.8) β̂ρ,ε,0 : MG
ε,W ∩ Jε3dρ

ε,W −→ (Mρ
1 ∪ · · · ∪Mρ

m) /G

by taking

β̂ρ,ε,0(v) := Gξε,v.

Here, as usual, Jc
ε,W := {v ∈ H1(R3,R) : Jε,W (v) ≤ c}. The map β̂ρ,ε,0 is the G-

equivariant analogon to the usual baricenter map. It is only defined for functions in
MG

ε,W with small enough energy. We call it the local baryorbit map. It reflects the
fact that such functions concentrate at a unique G-orbit with minimal cardinality
as ε→ 0.

6. Proofs of the main results

Let V∞ := lim inf |x|→∞ V (x). Assumption (2.5) implies that

ℓG,V < min
x∈R3\{0}

(#Gx)V 3/2
∞ .

We fix δ0 > 0 and λ ∈ (0, V∞) such that

(6.1) ℓG,VE1 + δ0 < min
x∈R3\{0}

(#Gx)λ3/2E1 < min
x∈R3\{0}

(#Gx)V 3/2
∞ E1,

and define W (x) := min{V (x), λ}. This W has all properties stated in section 5, in
particular, it is uniformly continuous. Moreover, ℓG,W = ℓG,V and MG,W =MG,V .

Let πε,W : H1(R3,R)G \ {0} → MG
ε,W denote the radial projection onto the

Nehari manifold, which is given by

(6.2) πε,W (v) :=
ε ‖u‖ε,W√

D(u)
v.

Observe that

(6.3) Jε,W (πε,W (v)) =
ε2 ‖v‖4ε,W
4D(v)

for all v ∈ H1(R3,R)G \ {0}.

Let ι̂ε be the map defined in Proposition 4.3 and β̂ρ,ε,0 be as in (5.8). Then, for
dρ > ℓG,VE1 and ερ > 0 as in Proposition 5.5 the following holds.

Proposition 6.1. For each ρ ∈ (0, ρ̂) and ε ∈ (0, ερ), the map

β̂ρ,ε : N τ
ε,A,V ∩ Jε3dρ

ε,A,V → (Mρ
1 ∪ · · · ∪Mρ

m) /G, β̂ρ,ε(u) := β̂ρ,ε,0(πε,W (|u|)),
is well defined and continuous and satisfies

(i) β̂ρ,ε(γu) = β̂ρ,ε(u) for all γ ∈ S1,

(ii) β̂ρ,ε(ι̂ε(ξ)) = Gξ for all ξ ∈Mτ with Jε,A,V (ι̂ε(ξ)) ≤ ε3dρ.
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Proof. If u ∈ N τ
ε,A,V then |u| ∈ H1(R3,R)G \ {0} and, since W ≤ V, formulas (6.3)

and (3.6), together with the diamagnetic inequality (3.2) yield

(6.4) Jε,W (πε,W (|u|)) ≤ Jε,V (πε,V (|u|)) ≤ Jε,A,V (u).

So Jε,W (πε,W (|u|)) ≤ ε3dρ if Jε,A,V (u) ≤ ε3dρ. Therefore, β̂ρ,ε is well defined. It is
straightforward to verify that it has the desired properties. �

Let

Mρ
τ :=

⋃
Gi⊂ker τ

Mρ
i .

Propositions 4.3 and 6.1 allow us to estimate the Lusternik-Schnirelmann category
of low energy sublevel sets as follows.

Corollary 6.2. For every ρ ∈ (0, ρ̂) and d ∈ (ℓG,VE1, dρ) there exists ερ,d > 0
such that

catMρ
τ /GMτ/G ≤ cat

(
(N τ

ε,A,V ∩ Jε3d
ε,A,V )/S

1
)

for every ε ∈ (0, ερ,d).

Proof. Set ερ,d := min{εd, ερ} where εd is as in Proposition 4.3. Fix ε ∈ (0, ερ,d).
Then,

Jε,A,V (ι̂ε(ξ)) ≤ ε3d and β̂ρ,ε(ι̂ε(ξ)) = ξ for all ξ ∈Mτ .

Since Mρ
1 , ...,M

ρ
m are G-invariant and pairwise disjoint, the set

C := {u ∈ N τ
ε,A,V ∩ Jε3d

ε,A,V : β̂ρ,ε(u) ∈Mρ
τ /G}

is a union of connected components of N τ
ε,A,V ∩ Jε3d

ε,A,V . Therefore,

cat
(
C/S1

)
≤ cat

(
(N τ

ε,A,V ∩ Jε3d
ε,A,V )/S

1
)
.

By Propositions 4.3 and 6.1, the maps

Mτ/G
ιε−→ C/S1 βρ,ε−→Mρ

τ /G,

given by ιε(Gξ) := ι̂ε(ξ) and βρ,ε(S
1u) := β̂ρ,ε(u), are well defined and satisfy

βρ,ε(ιε(ξ)) = ξ for all ξ ∈Mτ . Therefore,

catMρ
τ /GMτ/G ≤ cat

(
C/S1

)
.

This finishes the proof. �

Another consequence of our previous results is the following.

Corollary 6.3. If there exists ξ ∈ R3 such that (#Gξ)V 3/2(ξ) = ℓG,V and Gξ ⊂
ker τ , then

lim
ε→∞

ε−3cτε,A,V = ℓG,VE1,

where cτε,A,V := infN τ
ε,A,V

Jε,A,V .

Proof. Inequality (6.4) yields cGε,W := infMG
ε,W

Jε,W ≤ infN τ
ε,A,V

Jε,A,V =: cτε,A,V .

By Proposition 5.4 and Lemma 4.2(c),

ℓG,WE1 = lim
ε→∞

ε−3cGε,W ≤ lim inf
ε→0

ε−3cτε,A,V ≤ lim sup
ε→∞

ε−3cτε,A,V ≤ ℓG,VE1.

Since ℓG,WE1 = ℓG,VE1, our claim follows. �
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Proof of Theorem 2.1. Let ρ, δ > 0 be given. We may assume that ρ ∈ (0, ρ̂)
with ρ̂ as in (5.4) and that δ ∈ (0, δ0) with δ0 as in (6.1). By Corollary 6.3 there
exists εδ > 0 such that

ℓG,VE1 − δ < ε−3cτε,A,V for all ε ∈ (0, εδ).

Fix d ∈ (ℓG,VE1,min{dρ, ℓG,VE1 + δ}) and set ε̂ := min{εδ, ερ,d} with ερ,d as in
Corollary 6.2. Since (6.1) holds, Proposition 3.1 asserts that Jε,A,V : N τ

ε,A,V → R

satisfies (PS)c for every c ≤ ε3d. Applying Proposition 3.2 and Corollary 6.2 we
conclude that Jε,A,V has at least

catMρ
τ /GMτ/G

geometrically distinct solutions u ∈ N τ
ε,A,V satisfying

ε3ℓG,VE1 − ε3δ < Jε,A,V (u) =
1

4ε2
D(u) ≤ ε3d < ε3ℓG,VE1 + ε3δ,

for each ε ∈ (0, ε̂), as claimed. �

Proof of Theorem 2.2. After passing to a subsequence, we may assume that
ℓG,VE1 − 1

2n ≤ ε−3
n cGεn,W and δn ≤ 1

2n . Then, inequality (6.4) yields

(6.5) cGεn,W ≤ Jεn,W (πεn,W (|un|)) ≤ Jεn,A,V (un) ≤ ε3n(ℓGE1+δn) ≤ cGεn,W+ε3n/n.

By Ekeland’s variational principle [28, Theorem 8.5] we may choose vn ∈ MG
εn,W

such that

(6.6) ε−3
n ‖πεn,W (|un|)− vn‖2εn,W → 0,

ε−3
n Jεn,W (vn) → ℓGE1 and ε−3

n ‖∇εnJεn,W (vn)‖2εn,W → 0.

After passing again to a subsequence, Proposition 5.4 gives a sequence (ξn) in R3

such that ξn → ξ ∈Mτ , Gξn = Gξ, and

(6.7) ε−3
n

∥∥∥∥∥vn − ∑
gξn∈Gξn

ωξ

( · − gξn
εn

)∥∥∥∥∥

2

εn,W

→ 0.

Since un ∈ N τ
εn,A,V ,multiplying inequality (6.5) by 4ε2n [D(|un|)]−1

= 4ε2n [D(un)]
−1

=

[Jεn,A,V (un)]
−1
, using (6.3) and (3.6), and observing that ε−3

n Jεn,A,V (un) → ℓGE1,
we get

∣∣∣∣∣∣
1−

(
εn‖ |un| ‖εn,W√

D(|un|)

)4
∣∣∣∣∣∣
=

∣∣∣∣∣∣

(
ε2n‖un‖2εn,A,V

D(un)

)2

−
(
ε2n‖ |un| ‖2εn,W

D(|un|)

)2
∣∣∣∣∣∣

≤
(
ε−3
n Jεn,A,V (un)

)−1 1

n
→ 0.

Recalling (6.2) and using the diamagnetic inequality (3.2), we then obtain

ε−3
n ‖ |un| − πεn,W (|un|) ‖2εn,W =

∣∣∣∣∣1−
εn‖ |un| ‖εn,W√

D(|un|)

∣∣∣∣∣

2

ε−3
n ‖ |un| ‖2εn,W

≤
∣∣∣∣∣1−

εn‖ |un| ‖εn,W√
D(|un|)

∣∣∣∣∣

2

4ε−3
n Jεn,A,V (un) → 0.(6.8)
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Finally, combining (6.6), (6.7), and (6.8) we conclude that

ε−3
n

∥∥∥∥∥|un| −
∑

gξn∈Gξn

ωξ

( · − gξn
εn

)∥∥∥∥∥

2

εn,W

→ 0.

Since ‖v‖2ε ≤ C ‖v‖2ε,W for some constant independent of ε, our claim follows. �
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