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Abstra
t

Starting from the last 
entury, the analysis and the graphi
al represen-

tation of the inequality play a very important role in e
onomi
s. In the

literature, several 
urves have been proposed and developed to simplify the

des
ription of the inequality. The aim of this paper is a review and a 
om-

parison of the most known inequality 
urves, evaluating the features of ea
h,

with a parti
ular fo
us on the interpretation.
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1. Introdu
tion

Inequality is an important 
hara
teristi
 of non-negative distributions. It is

mainly analysed in so
io-e
onomi
s s
ien
es and in parti
ular in relation to in-


ome distributions. Inequality 
urves are graphi
al methods used to analyse this


hara
teristi
 and usually they are related to inequality indexes. The graphs of

inequality fun
tions usually 
an be drawn in the unitary square.

In this paper three 
urves are presented. The Lorenz 
urve (Lorenz 1905) is the

oldest one and also the most used nowadays even if it has a for
ed behaviour. The

Bonferroni 
urve (Bonferroni 1930) is another 
lassi
al 
urve. It is stri
tly related

to the Lorenz 
urve and it has a for
ed behaviour, too. Finally the I(p) 
urve
(Zenga 2007) is the most re
ent and even if it is related to the other two 
urves,

it 
an assume di�erent shapes whi
h allow to distinguish di�erent situations in

terms of inequality.

These three 
urves have the 
ommon 
hara
teristi
 that they 
an be de�ned

using only the mean of the whole population and the means of parti
ular sub-

groups. In the literature, other inequality 
urves have been introdu
ed, studied

and applied in di�erent �elds. One of the �rst proposals is the δ(p) of Gini whi
h
has the important feature that it is uniform for the Pareto distribution, but it

does not lie in the unitary square. Another one whi
h 
an be mentioned is the

Z(p) 
urve, proposed by Zenga (1984). Su
h 
urve is uniform for the Log-normal

distribution. It originates from a di�erent approa
h be
ause it is based on a ratio

of two quantiles, and therefore it is not in
luded in this 
omparison.
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In this paper the 
urves are de�ned for 
ontinuous models, but they 
an be

also applied to dis
rete distributions and to empiri
al distributions.

An important appli
ation of the inequality 
urves is that they 
an be used to

de�ne some orderings. Su
h orderings allow the 
omparison of distributions in

terms of inequality. This kind of 
omparison within the same model allows to

understand how the distribution parameters in�uen
e the inequality.

The arti
le is stru
tured as follows. First of all the main de�nitions are in-

trodu
ed in Se
tion 2. In su
h se
tion are also des
ribed the distribution models

used to exemplify the inequality 
urves. Se
tions 3, 4, and 5 are devoted to the

des
ription of the Lorenz 
urve, the Bonferroni 
urve and the I(p) 
urve, respe
-
tively. In Se
tion 6 the orderings based on the 
onsidered 
urves are introdu
ed

and their relationship investigated. Se
tion 7 provides a method to simplify the


omparison of the 
urves: an appli
ation of su
h 
omparison is performed by using

data from 2012 Bank of Italy sample survey. Finally Se
tion 8 is devoted to some

�nal remarks.

2. Preliminary de�nitions

In this se
tion some de�nitions that will be useful in the remaining of the paper,

are introdu
ed. The �rst one is the following.

De�nition 1 (Generalized inverse fun
tion). Let F be a non-de
reasing fun
tion

de�ned from R to the interval [0, 1]. The generalized inverse fun
tion of F is the

fun
tion, denoted by F−1
, de�ned as:

F−1(p) =

{

inf{y : F (y) ≥ p} if p ∈ (0, 1]

inf{y : F (y) > 0} if p = 0.
(1)

In the remaining of the paper, given a distribution fun
tion F , F−1
will denote

the inverse fun
tion of F or, if needed, the generalized inverse fun
tion of F .

In the literature it is well-re
ognized that the inequality does not 
hange in


ase of s
ale-transformations, then the inequality 
urves must be not dependent

on the s
ale parameters of the distribution. The de�nition of s
ale parameter is

the next one.

De�nition 2 (S
ale parameter). Let {Fα, α > 0} be a family of distribution

fun
tions. Then α is a s
ale parameter of su
h family if

Fα(x) = F1

(x

α

)

, ∀x ∈ R.

In order to simplify the explanation, the ideas of lower and upper groups are

useful. Given a population and a statisti
 variable X evaluated on it, for ea
h

p ∈ (0, 1), the population 
an be splitted into two groups: the �rst one, 
alled

lower group that 
onsists of the proportion p of people with the lowest values of

X , and the se
ond one 
alled upper group 
omposed by all the others. On
e the

population is splitted into the lower and the upper group, the means of X in these
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two groups 
an be 
omputed, obtaining the lower and the upper mean. The two

following de�nitions refer to these two means.

De�nition 3 (Lower mean). Let X be a 
ontinuous random variable, with distri-

bution fun
tion F , and support [a, b], where 0 ≤ a < b ≤ +∞. For any p ∈ [0, 1],

the lower mean

−

M (p) is de�ned as

−

M (p)=

{

1
p

∫ p

0 F−1(t)dt if p ∈ (0, 1]

a if p = 0.

De�nition 4 (Upper mean). Let X be a 
ontinuous random variable, with distri-

bution fun
tion F , and support [a, b], where 0 ≤ a < b ≤ +∞. For any p ∈ [0, 1],

the upper mean

+

M (p) is de�ned as

+

M (p)=

{

1
1−p

∫ 1

p
F−1(t)dt if p ∈ [0, 1)

b if p = 1.

Remark 1. In the De�nitions 3 and 4 the lower mean and the upper mean have

been extended by 
ontinuity in p = 0 and in p = 1, respe
tively. It is easy to verify
that for a random variabile X with expe
ted value µ, the following formula holds

true:

µ = p
−

M (p) +(1− p)
+

M (p), ∀p ∈ [0, 1],

with the 
onvention that whether the support of X is not �nite:

(1 − p)
+

M (p)= 0 if p = 1.

In the next se
tions, in order to 
al
ulate the inequality 
urves for some distri-

bution models, the following ones are 
onsidered:

• the (non-negative) uniform model with distribution fun
tion

F (x) =











0 if x < α(1− θ)
x−(1−θ)α

2θα if α(1− θ) ≤ x < α(1 + θ)

1 if x ≥ α(1 + θ),

where 0 ≤ θ ≤ 1 is an dire
t inequality indi
ator and α > 0 is a s
ale

parameter;

• the exponential model with distribution fun
tion

F (x) =

{

1− e−x/α
if x ≥ 0

0 otherwise,

where α > 0 is a s
ale parameter;
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• the Pareto model with distribution fun
tion

F (x) =

{

1−
(

x0

x

)θ
if x ≥ x0

0 otherwise,

where θ > 1 (to guarantee a �nite expe
tation) is an inverse inequality

indi
ator and x0 > 0 is the lower bound of the support and a s
ale parameter;

• the Log-normal model with distribution fun
tion

F (x) =

{

Φ
(

ln(x)−γ
δ

)

if x > 0

0 otherwise,

where δ > 0 is a dire
t inequality indi
ator, eγ is s
ale parameter and Φ(x)
is the distribution fun
tion of the standard normal distribution;

• the Dagum model (see Dagum 1977) with distribution fun
tion

F (x) =







[

1 +
(

x
α

)

−θ
]

−β

if x > 0

0 otherwise,

where β > 0 and θ > 1 (to guarantee a �nite expe
tation) are inverse

inequality indi
ators whenever the other one is �xed, and α > 0 is a s
ale

parameter.

3. The Lorenz 
urve

The Lorenz 
urve has been introdu
ed in the very well-known paper by Lorenz

(1905). It is the most famous inequality 
urve used in the literature. There

are many equivalent de�nitions of it. The following one is due to Pietra (see

Pietra 1915) and it has been used also by Gastwirth (1972).

De�nition 5. Let X be a non-negative 
ontinuous random variable, with positive

and �nite expe
ted value µ, and distribution fun
tion F . The Lorenz 
urve of X
is de�ned as

L(p) =
1

µ

∫ p

0

F−1(t)dt

=
p

−

M (p)

µ
, p ∈ [0, 1].

An inequality index that 
an be evaluated using the Lorenz 
urve is the Gini

index G (Gini 1914). It is worth highlighting that the de�ntion of su
h index does

not require the Lorenz 
urve: the relationship with this 
urve has been emphasized

only later. From the graphi
al point of view, the Gini index 
an be interpreted as

the ratio of the 
on
entration area and its theoreti
al maximum. The 
on
entration

area is the area between the bise
tor of the �rst quadrant and the Lorenz 
urve;

its theoreti
al maximum 
orresponds to the area below su
h bise
tor.
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De�nition 6. Let X be a 
ontinuous random variable with Lorenz 
urve L(p). The
Gini index G is de�ned as

G = 1− 2

∫ 1

0

L(p)dp,

or equivalently as

G =

∫ 1

0

p− L(p)

p
· 2p dp =

∫ 1

0

µ−
−

M(p)

µ
· 2p dp. (2)

The meaning of the Lorenz 
urve is not very immediate, sin
e it 
ompares the

lower mean and the total mean, using the �weight� p, whi
h makes less 
lear the

interpretation of su
h 
omparison. However, if the random variable X represents

the in
ome, and L(p) is the 
orresponding Lorenz 
urve, L(p0) = L0 means that

the "bottom" proportion p0 of the population has the proportion L0 of the total

in
ome.

It is easy to verify that the Lorenz 
urve is always zero if p = 0 and equals 1

if p = 1: su
h restri
tions highlight that the behavior of L(p) is a priori �xed. For
this reason the explaining power of the Lorenz 
urve vanishes for values of p 
lose

to 0 or to 1. Moreover, it is well-known that the Lorenz 
urve is always 
onvex.

An interesting 
hara
teristi
 of the Lorenz 
urve is that the maximum length of

the verti
al segment between it and the bise
tor of the �rst quadrant is known as

the Pietra index P and it 
orresponds to the value p̃ = F (µ):

P =
E(|X − µ|)

2µ
= F (µ)− L[F (µ)].

Moreover the derivative of the Lorenz 
urve at p̃ = F (µ) is equal to 1.

Following the approa
h developed in Zenga (1984), using the Lorenz 
urve, it

is possible to de�ne a random variable whi
h tends to the situation of maximal

inequality as follows. Let X be a random variable depending on the parameter θ.
X is said to tend to the situation of maximal inequality as θ tends to θ0 if

lim
θ→θ0

LX(p; θ) = LM (p) =

{

0 if p ∈ [0, 1)

1 if p = 1.

In su
h 
ase, G is equal to 1. Analogously, X is said to tend to the situation of

minimal inequality as θ tends to θ0 if

lim
θ→θ0

LX(p; θ) = Lm(p) = p, ∀p ∈ [0, 1],

whi
h means that the Lorenz 
urve tends to the bise
tor of the �rst quadrant, and

therefore G tends to 0.

In Table 1 are reported the Lorenz 
urve and the Gini index for the distribution

models des
ribed in Se
tion 2, where

B(x; a, b) =

∫ x

0
ta−1(1 − t)b−1dt

∫ 1

0 ta−1(1− t)b−1dt
x ∈ [0, 1], a > 0, b > 0
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Model Lorenz 
urve Gini Index

Uniform L(p) = p(1− θ + θp) G = θ/3

Exponential L(p) = p+ (1 − p) ln(1− p) G = 0.5

Pareto L(p) = 1− (1− p)(θ−1)/θ G = 1/(2θ− 1)

Log-normal L(p) = Φ[Φ−1(p)− δ] G = 2Φ(δ/
√
2)− 1

Dagum L(p) = B
(

p1/β ;β + 1/θ; 1− 1/θ
)

G = Γ(β)Γ(2β+1/θ)
Γ(2β)Γ(β+1/θ) − 1

Table 1: Lorenz 
urves and Gini indi
es for the 
onsidered models

is the in
omplete Beta fun
tion ratio, and

Γ(x) =

∫

∞

0

tx−1e−tdt

is the Gamma fun
tion. Figure 1 shows some examples of the Lorenz 
urves from

Table 1.

4. The Bonferroni 
urve

The 
urve has been introdu
ed by Bonferroni (1930) and has been analysed

and studied by various authors up to nowadays: see for instan
e De Vergottini

(1940), Tarsitano (1990), Giorgi & Cres
enzi (2001) and Zenga (2013).

The de�nition of the Bonferroni 
urve is the following one.

De�nition 7. Let X be a non-negative 
ontinuous random variable with positive

and �nite expe
ted value µ, and distribution fun
tion F . The Bonferroni 
urve of
X is de�ned as

B(p) =
1

pµ

∫ p

0

F−1(t)dt

=

−

M (p)

µ
p ∈ (0, 1].

The Bonferroni inequality index B represents the area above the Bonferroni


urve in the unitary square, in other words it is the 
omplement to 1 of the mean

value of the Bonferroni 
urve.

De�nition 8. LetX be a non-negative 
ontinuous random variable with Bonferroni


urve B(p). The Bonferroni index is de�ned as

B = 1−
∫ 1

0

B(p)dp.

The Bonferroni 
urve 
ompares the mean of the lower group with the total

mean. Di�erently from the Lorenz 
urve no �weight� is applied. In other words,

if the random variable X represents the in
ome, and B(p) is the 
orresponding
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Figure 1: Graphs of di�erent Lorenz 
urves for the 
onsidered models
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Bonferroni 
urve, B(p0) = B0 means that the average in
ome of the "bottom"

proportion p0 of the population is B0 times the average in
ome of the whole

population.

Using the De�nitions 3 and 4 it is easy to see that

lim
p→0+

B(p) =
a

µ
and B(1) = 1,

where a denotes the lower bound of the support of the random variable originating

the Bonferroni 
urve. Moreover, di�erently from the Lorenz one, the Bonferroni


urve is not ne
essary 
onvex.

If the random variableX tends to the situation of maximal inequality, the B(p)

urve tends to the fun
tion BM (p), de�ned as:

BM (p) =

{

0 if p ∈ (0, 1)

1 if p = 1,

and 
onsequently the inequality index is B = 1.

If the random variable X tends to the situation of minimal inequality, the


orresponding Bonferroni 
urve tends to

Bm(p) = 1 ∀p ∈ (0, 1],

and 
onsequently the 
orresponding inequality index is B = 0.

A parti
ular shape of the Bonferoni 
urve is obtained when the random variable

X has a uniform distribution, sin
e in su
h 
ase, it is a linear fun
tion. More in

detail, if X has a uniform distribution with support [µ(1−θ), µ(1+θ)] (see Se
tion
2), then the 
orresponding Bonferroni 
urve is given by

B(p) = (1− θ) + θp,

and the inequality index is B = θ/2.

The Bonferroni 
urve is related with the Lorenz 
urve: if L(p) is the Lorenz


urve of X , then the Bonferroni 
urve 
an be obtained throught the simple trans-

formation

B(p) =
L(p)

p
, ∀p ∈ (0, 1]

In Table 2 are reported the Bonferroni 
urve and the Bonferroni index for the

distribution models presented in Se
tion 2, where

Ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)

denotes the Digamma fun
tion, that is the logarithmi
 derivative of the Gamma

fun
tion. Figure 2 shows some examples of the Bonferroni 
urves from Table 2.
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Figure 2: Graphs of di�erent Bonferroni 
urves for the 
onsidered models
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Model Bonferroni 
urve Bonferroni Index

Uniform B(p) = (1− θ) + θp B = θ/2

Exponential B(p) = 1 + (1−p)
p ln(1− p) B = 0.644934

Pareto B(p) = 1−(1−p)(θ−1)/θ

p B = 1− Ψ(2− 1/θ) + Ψ(1)

Log-normal B(p) =
Φ[Φ−1(p)−δ]

p B = 1−
∫ 1

0

Φ[Φ−1(p)−δ]
p dp

Dagum B(p) =
B(p1/β ;β+1/θ;1−1/θ)

p B = β
[

Ψ
(

β + 1
θ

)

− Ψ(β)
]

Table 2: Bonferroni 
urves and Bonferroni indi
es for the 
onsidered models

5. The I(p) 
urve

The I(p) 
urve has been introdu
ed in Zenga (2007). It is the most re
ent

inequality 
urve among the three ones 
onsidered in this paper; nevertheless, the

number of papers about it and the related index I is in
reasing, see for instan
e

Greselin & Pasquazzi (2009), Radaelli (2010), Langel & Tillé (2012) and Greselin,

Pasquazzi & Zitikis (2013). The de�nition this 
urve is the next one.

De�nition 9. Let X be a non-negative 
ontinuous random variable, with positive

and �nite expe
ted value µ, and distribution fun
tion F . The I(p) 
urve of X is

de�ned as

I(p) = 1− (1 − p)
∫ p

0
F−1(t)dt

p
∫ 1

p F−1(t)dt

= 1−
−

M (p)

+

M (p)

, p ∈ (0, 1).

Similarly to the Bonferroni index, the inequality index I 
an be obtained from

the mean value of the I(p) 
urve but it represents the area below the I(p) 
urve.

De�nition 10. Let X be a 
ontinuous random variable and let I(p) denotes its

inequality I(p) 
urve. The inequality index I is de�ned as

I =

∫ 1

0

I(p)dp.

The I(p) 
urve 
an be easily interpreted, and its information is immediate and

intuitive. If the random variable X models the in
ome distribution, it follows by

the defnition that if the I(p) 
urve is equal to I0 at p = p0, it means that the

average in
ome of the �bottom� proportion p0 of the population is (1 − I0)-times

the average in
ome of the remaining population.

In the previous se
tions it is mentioned that the Lorenz 
urve assumes pre�xed

values for p = 0 and p = 1, while the Bonferroni 
urve is always equal to 1 for

p = 1. The I(p) 
urve is more �exible, sin
e the values it assumes for the extreme

values of p depend on the distribution fun
tion whi
h originates the 
urve. In
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Polisi

hio (2008) it is proved that if X is a random variable with support [a, b],
where 0 ≤ a < b ≤ +∞ and with �nite and positive expe
ted value µ, then

lim
p→0+

I(p) = 1− a

µ
and lim

p→1−
I(p) = 1− µ

b
,

with the 
onvention that µ/b = 0 if b is not �nite. Moreover, also the I(p) 
urve
is not ne
essary 
onvex.

If the random variable X tends to the situation of maximal inequality, then

the I(p) 
urve tends to the fun
tion IM (p), de�ned as

IM (p) = 1, ∀p ∈ (0, 1),

while, whether the random variable X tends to the situation of minimal inequality,

the I(p) 
urve tends to zero for all p ∈ (0, 1), that is

Im(p) = 0, ∀p ∈ (0, 1).

In Polisi

hio (2008) it is proved that if the I(p) 
urve of the random variable

X is uniform and equal to 1− k, then X has a trun
ated Pareto distribution with

parameters θ = 0.5, x0 = µk, and µ/k as trun
ation point. That means that the

distribution fun
tion of X is

F (x) =















0 if x ≤ µk

1
1−k

[

1−
√

µk
x

]

if µk < x < µ/k

1 if x ≥ µ/k.

Su
h Pareto trun
ated has been analysed and from that model, a new distribution

model, whi
h seems to be very promising for modelling in
ome distributions has

been de�ned, for instan
e see Zenga (2010), Ar
agni & Porro (2013) and Ar
agni

& Zenga (2013).

As the Bonferroni 
urve, also the I(p) 
urve is related to the Lorenz 
urve, and

therefore to the Bonferroni 
urve itself. The relationships are (see Zenga 2007)

I(p) =
p− L(p)

p[1− L(p)]
∀p ∈ (0, 1)

I(p) =
1−B(p)

1− pB(p)
∀p ∈ (0, 1).

In Table 3 are reported the I(p) 
urve and the index I for the distribution

models des
ribed in Se
tion 2. Figure 3 shows some examples of them.

6. The partial orders

In the literature, an important appli
ation related to the inequality 
urves, is

the possibility to rank the distributions. Su
h ranking is obtained by a partial

order whi
h 
an be de�ned from a inequality 
urve. The following one, is the

de�nition of the well-known ordering based on Lorenz 
urve.
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Figure 3: Graphs of di�erent I(p) 
urves for the 
onsidered models
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Model I(p) 
urve I index

Uniform I(p) = θ(1 + θp)−1 I = ln(θ + 1)

Exponential I(p) = ln(1−p)
p[ln(1−p)−1] I = 0.843302

Pareto I(p) = 1−(1−p)1/θ

p I = Ψ(1/θ + 1)− Ψ(1)

Log-normal I(p) = p−Φ[Φ−1(p)−δ]
p[1−Φ(Φ−1(p)−δ)] I =

∫ 1

0
p−Φ[Φ−1(p)−δ]

p[1−Φ(Φ−1(p)−δ)]dp

Dagum I(p) =
p−B(p1/β ;β+1/θ;1−1/θ)

p[1−B(p1/β ;β+1/θ;1−1/θ)]
I =

∫ 1

0

p−B(p1/β ;β+1/θ;1−1/θ)
p[1−B(p1/β ;β+1/θ;1−1/θ)]

dp

Table 3: I(p) 
urves and I indi
es for the 
onsidered models

De�nition 11 (Partial order based on the Lorenz 
urve). Let X and Y be two


ontinuous non-negative random variables, both with �nite and positive expe
ted

value. Let LX and LY denote their Lorenz 
urves. X is said to be larger (or more

unequal) than Y in the order based on the Lorenz 
urve (and it is denoted by

X ≥L Y ), if
LX(p) ≤ LY (p) ∀p ∈ (0, 1).

From the graphi
al point of view, the random variable X is larger than Y in

this order, if its Lorenz 
urve lies below the Lorenz 
urve of Y for all p ∈ (0, 1).
In analogy to the ordering based on the Lorenz 
urve, the following one 
an be

de�ned.

De�nition 12 (Partial order based on the Bonferroni 
urve). Let X and Y be two


ontinuous non-negative random variables, both with �nite and positive expe
ted

value. Let BX and BY denote their Bonferroni 
urves. X is said to be larger

(or more unequal) than Y in the order based on the Bonferroni 
urve (and it is

denoted by X ≥B Y ), if

BX(p) ≤ BY (p) ∀p ∈ (0, 1).

Even if it less used, su
h ordering is well-known and studied in the literature,

see for example Tarsitano (1990), Giorgi & Cres
enzi (2001), Pundir, Arora & Jain

(2005).

The third partial order 
onsidered has been introdu
ed in Porro (2008).

De�nition 13 (Partial order based on the I(p) 
urve). Let X and Y be two 
ontin-

uous non-negative random variables, both with �nite and positive expe
ted value.

Let IX and IY denote their inequality I(p) 
urves. X is said to be larger (or

more unequal) than Y in the ordering based on I(p) 
urve (and it is denoted by

X ≥I Y ), if
IX(p) ≥ IY (p) ∀p ∈ (0, 1)

The relationship among these three orderings is summarized in the following

result (for a partial proof, see Polisi

hio & Porro 2011).

Lemma 1 (Lemma of equivalen
e). Let X and Y be two 
ontinuous non-negative

random variables X and Y , both with �nite and positive expe
ted value. Then:

X ≥L Y ⇔ X ≥B Y ⇔ X ≥I Y.
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This lemma makes it evident the 
oheren
e of the three 
urves, in fa
t two

distributions are ordered for one ordering if and only if they are ordered for the

other two. It is important to remark that all these orderings are only partial

orders, as there are some distributions with 
rossing L(p) 
urves and therefore

with 
rossing B(p) and I(p) 
urves, that 
an not be ordered for all p ∈ (0, 1).
But, if the distributions belong to the same parametri
 model, these partial orders

may allows to explain how the parameters in�uen
e them in terms of inequality.

This is the 
ase of the models de�ned in Se
tion 2. Their parameters are 
lassi�ed

in s
ale parameter or dire
t and indire
t inequality indi
ators. As de�ned in the

same se
tion the s
ale parameters do not in�uen
e the inequality. How the other

parameters in�uen
e the inequality 
urves is shown in Figures 1, 2 and 3, and it


an be observed that the 
urves do not 
ross ea
h other.

7. A uni�ed point of view

All the 
urves presented in the previous se
tions are de�ned as they have been

introdu
ed in the literature. As the partial orders de�ned in the previous se
tion

show, it does not always happen that, given two inequality 
urves, the one related

to the situation of more inequality lies above the latter one. From the graphi
al

point of view, the inequality 
urves 
an be more intuitive if they satisfy su
h

restri
tion, meaning that for a �xed p ∈ (0, 1), the 
urve related to the situation

with more inequality takes on a greater value than the 
urve related to the situation

with less inequality.

Following the same approa
h used by Zenga (1984), su
h �in
reasing ranking�


an be a
hieved by performing a suitable transformation on the inequality 
urves.

In Zenga (1984) through a simple transformation on the δ(p) of Gini, the new

λ(p) 
urve is obtained: su
h new 
urve lies in the unitary square and satis�es the

aforementioned �in
reasing ranking�.

Then, from the Lorenz 
urve, the 
urve G(p) 
an be obtained as:

G(p) = 2[p− L(p)] p ∈ (0, 1),

whi
h 
oin
ides with the fun
tion in the �rst integral in formula (2). Analogously

from the Bonferroni 
urve, the V (p) 
urve 
an be otained as:

V (p) = 1−B(p) p ∈ (0, 1).

From the de�nition of the Bonferroni 
urve and formula (2) it follows that

G(p) = V (p) · 2p p ∈ (0, 1).

The inequality I(p) 
urve needs no transformation, sin
e it already satis�es the

�in
reasing ranking�.

Another interesting result of these transformations is that the new 
urves have

the following feature: the related inequality indexes are the areas below the 
urves.
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Figure 4: Uni�ed representation of the inequality 
urves
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As mentioned in the introdu
tion, the 
urves presented for 
ontinuous models


an be applied to empiri
al distributions. It is enough to repla
e the distribution

fun
tion F of the model by the empiri
al 
umulative distribution fun
tion (ECDF).

The empiri
al quantile fun
tion is the generalized inverse fun
tion F−1
of the

ECDF as de�ned in formula (1). The result is a step-fun
tion with integral between

0 and 1 
learly equal to the empiri
al mean.

For example the formulae presented in this se
tion 
an be applied to the data

provided by the Bank of Italy (2012). The 2012 sample survey has been analyzed

with the R software (R Core Team 2013). The 
onsidered dataset 
onsists of 8114

non-negative household in
omes with mean equal to EUR 30481.01. In Figure 4

the empiri
al 
urves G(p), V (p) and I(p), that satisfy the �in
reasing ranking�, are
drawn. The three 
urves are drawn together in the unitary square. In the legend

are reported the values of the related indexes that 
orrespond to the areas below

the 
urves.

By using this uni�ed representation it is easy to understand why the three

indexes assume so di�erent values. In fa
t, the index I is sensitive to the inequality
in both the tails, the index B is sensitive to the inequality due to the poorest units

but it does not 
at
h the inequality due to the ri
hest ones, while the index G does

not 
apture the inequality of both the tails.

8. Final remarks

This paper is a review of the most known inequality 
urves. The 
onsidered


urves are the Lorenz 
urve, the Bonferroni 
urve and the I(p) 
urve. For ea
h of

them the main features are des
ribed with parti
ular fo
us to their interpretation.

Su
h 
urves are graphi
al methods used to analyse and 
ompare inequality of

non-negative distributions. For instan
e, inequality 
urves are used to rank the
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distributions through partial orders. The aforementioned 
urves are exempli�ed

through �ve well-known non-negative distribution models, some of whi
h 
an be

used to des
ribe in
ome distributions. In the last se
tion, a transformation of the

Lorenz 
urve and a transformation of the Bonferroni 
urve allow an easier and

more intuitive representation of su
h graphi
al tools.
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