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Abstract

Starting from the last century, the analysis and the graphical represen-
tation of the inequality play a very important role in economics. In the
literature, several curves have been proposed and developed to simplify the
description of the inequality. The aim of this paper is a review and a com-
parison of the most known inequality curves, evaluating the features of each,
with a particular focus on the interpretation.

Key words: Lorenz curve, Bonferroni curve, Zenga inequality curve, in-
equality index, income distribution.

1. Introduction

Inequality is an important characteristic of non-negative distributions. It is
mainly analysed in socio-economics sciences and in particular in relation to in-
come distributions. Inequality curves are graphical methods used to analyse this
characteristic and usually they are related to inequality indexes. The graphs of
inequality functions usually can be drawn in the unitary square.

In this paper three curves are presented. The Lorenz curve (Lorenz 1905) is the
oldest one and also the most used nowadays even if it has a forced behaviour. The
Bonferroni curve (Bonferroni 1930) is another classical curve. It is strictly related
to the Lorenz curve and it has a forced behaviour, too. Finally the I(p) curve
(Zenga 2007) is the most recent and even if it is related to the other two curves,
it can assume different shapes which allow to distinguish different situations in
terms of inequality.

These three curves have the common characteristic that they can be defined
using only the mean of the whole population and the means of particular sub-
groups. In the literature, other inequality curves have been introduced, studied
and applied in different fields. One of the first proposals is the §(p) of Gini which
has the important feature that it is uniform for the Pareto distribution, but it
does not lie in the unitary square. Another one which can be mentioned is the
Z(p) curve, proposed by Zenga (1984). Such curve is uniform for the Log-normal
distribution. It originates from a different approach because it is based on a ratio
of two quantiles, and therefore it is not included in this comparison.
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In this paper the curves are defined for continuous models, but they can be
also applied to discrete distributions and to empirical distributions.

An important application of the inequality curves is that they can be used to
define some orderings. Such orderings allow the comparison of distributions in
terms of inequality. This kind of comparison within the same model allows to
understand how the distribution parameters influence the inequality.

The article is structured as follows. First of all the main definitions are in-
troduced in Section 2. In such section are also described the distribution models
used to exemplify the inequality curves. Sections 3, 4, and 5 are devoted to the
description of the Lorenz curve, the Bonferroni curve and the I(p) curve, respec-
tively. In Section 6 the orderings based on the considered curves are introduced
and their relationship investigated. Section 7 provides a method to simplify the
comparison of the curves: an application of such comparison is performed by using
data from 2012 Bank of Italy sample survey. Finally Section 8 is devoted to some
final remarks.

2. Preliminary definitions

In this section some definitions that will be useful in the remaining of the paper,
are introduced. The first one is the following.

Definition 1 (Generalized inverse function). Let F' be a non-decreasing function
defined from R to the interval [0, 1]. The generalized inverse function of F' is the
function, denoted by F~!, defined as:

1y inf{y: F(y) >p} ifpe(0,1]
" (p){ inf{y: Fy) >0} ifp=0. M

In the remaining of the paper, given a distribution function F', F~! will denote
the inverse function of F' or, if needed, the generalized inverse function of F.

In the literature it is well-recognized that the inequality does not change in
case of scale-transformations, then the inequality curves must be not dependent
on the scale parameters of the distribution. The definition of scale parameter is
the next one.

Definition 2 (Scale parameter). Let {F,, o > 0} be a family of distribution
functions. Then « is a scale parameter of such family if

Fo(z) = Fy (2) ,  VzeR
In order to simplify the explanation, the ideas of lower and upper groups are
useful. Given a population and a statistic variable X evaluated on it, for each
p € (0,1), the population can be splitted into two groups: the first one, called
lower group that consists of the proportion p of people with the lowest values of
X, and the second one called upper group composed by all the others. Once the
population is splitted into the lower and the upper group, the means of X in these
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two groups can be computed, obtaining the lower and the upper mean. The two
following definitions refer to these two means.

Definition 3 (Lower mean). Let X be a continuous random variable, with distri-
bution function F, and support [a,b], where 0 < a < b < +o0. For any p € [0, 1],

the lower mean )M (p) is defined as

1 (P p—1 :
4w Jo F~1(t)at if p e (0,1]
) a if p=0.

Definition 4 (Upper mean). Let X be a continuous random variable, with distri-
bution function F, and support [a,b], where 0 < a < b < +o0. For any p € [0, 1],

Jr
the upper mean ) (,) is defined as

1 .
J\Z( - = J, FH(t)dt ifpe0,1)
P b ifp=1.

Remark 1. In the Definitions [B] and [ the lower mean and the upper mean have
been extended by continuity in p = 0 and in p = 1, respectively. It is easy to verify
that for a random variabile X with expected value p, the following formula holds
true:

— +
p=pMgp +(1—p) My, Vpel0,1],
with the convention that whether the support of X is not finite:

+ .
(1—=p) Mp=0 ifp=1.

In the next sections, in order to calculate the inequality curves for some distri-
bution models, the following ones are considered:

e the (non-negative) uniform model with distribution function

0 ifr<a(l-20)
F(z) = % if a(1-0) <z <a(l+0)
1 ifx>a(l+96),

where 0 < 6 < 1 is an direct inequality indicator and o > 0 is a scale
parameter;

e the exponential model with distribution function

_ o—x/a >
F(I):{l e ifx>0

0 otherwise,

where « > 0 is a scale parameter;
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e the Pareto model with distribution function

F(m)z{ 17(%)6 if x> g

0 otherwise,

where # > 1 (to guarantee a finite expectation) is an inverse inequality
indicator and zg > 0 is the lower bound of the support and a scale parameter;

e the Log-normal model with distribution function
o (ln(ar)—'y) if
Fla) = —=—) ifz>0
0 otherwise,

where § > 0 is a direct inequality indicator, e? is scale parameter and ®(x)
is the distribution function of the standard normal distribution;

e the Dagum model (see Dagum 1977) with distribution function

1+ (g)“’}fﬁ it >0

0 otherwise,

F(r) =

where f > 0 and # > 1 (to guarantee a finite expectation) are inverse
inequality indicators whenever the other one is fixed, and « > 0 is a scale
parameter.

3. The Lorenz curve

The Lorenz curve has been introduced in the very well-known paper by Lorenz
(1905). It is the most famous inequality curve used in the literature. There
are many equivalent definitions of it. The following one is due to Pietra (see
Pietra 1915) and it has been used also by Gastwirth (1972).

Definition 5. Let X be a non-negative continuous random variable, with positive
and finite expected value u, and distribution function F'. The Lorenz curve of X
is defined as

1 (7
L(p) = - F~(t)dt
HJo
M
= m, p €[0,1].
7

An inequality index that can be evaluated using the Lorenz curve is the Gini
index G (Gini 1914). Tt is worth highlighting that the defintion of such index does
not require the Lorenz curve: the relationship with this curve has been emphasized
only later. From the graphical point of view, the Gini index can be interpreted as
the ratio of the concentration area and its theoretical maximum. The concentration
area is the area between the bisector of the first quadrant and the Lorenz curve;
its theoretical maximum corresponds to the area below such bisector.
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Definition 6. Let X be a continuous random variable with Lorenz curve L(p). The
Gini index G is defined as

1
S
0

or equivalently as

G:/o p_TL(p)apdp:/O ”_TM(p)dep- (2)

The meaning of the Lorenz curve is not very immediate, since it compares the
lower mean and the total mean, using the “weight” p, which makes less clear the
interpretation of such comparison. However, if the random variable X represents
the income, and L(p) is the corresponding Lorenz curve, L(py) = Lo means that
the "bottom" proportion py of the population has the proportion Lg of the total
income.

It is easy to verify that the Lorenz curve is always zero if p = 0 and equals 1
if p = 1: such restrictions highlight that the behavior of L(p) is a priori fixed. For
this reason the explaining power of the Lorenz curve vanishes for values of p close
to 0 or to 1. Moreover, it is well-known that the Lorenz curve is always convex.
An interesting characteristic of the Lorenz curve is that the maximum length of
the vertical segment between it and the bisector of the first quadrant is known as
the Pietra index P and it corresponds to the value p = F(p):

p E(X —pl)
2

Moreover the derivative of the Lorenz curve at p = F(u) is equal to 1.

= F(u) — LIF(p)].

Following the approach developed in Zenga (1984), using the Lorenz curve, it
is possible to define a random variable which tends to the situation of maximal
inequality as follows. Let X be a random variable depending on the parameter 6.
X is said to tend to the situation of maximal inequality as 6 tends to 6 if

. o (0 ifpelo1)
elggoLX(p’e)_LM(p)_{ 1 ifp=1.

In such case, G is equal to 1. Analogously, X is said to tend to the situation of
minimal inequality as 6 tends to 6 if

lim Lx(p;0) = L..(p) = p, Vp € [0,1],
9—>90

which means that the Lorenz curve tends to the bisector of the first quadrant, and
therefore G tends to 0.

In Table[dlare reported the Lorenz curve and the Gini index for the distribution
models described in Section 2l where

Jot A =) dt

B(x; a, b) =1
Jo tom (1 —t)btdt

x €[0,1],a>0,b>0
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Model Lorenz curve Gini Index

Uniform L(p) =p(1 — 0+ 6p) G=0/3

Exponential L(p) =p+ (1 — p)In(1 — p) G=0.5

Pareto L(p) =1~ (1—p)@-1/0 G=1/(20-1)
Log-normal  L(p) = ®[®~!(p) — 4] G =20(5/v2) -1
Dagum L(p) =B (p"/#; 8+ 1/6;1—1/0) G:Wfl

TABLE 1: Lorenz curves and Gini indices for the considered models

is the incomplete Beta function ratio, and

F(x):/ t* e tat
0

is the Gamma, function. Figure [Ilshows some examples of the Lorenz curves from
Table [

4. The Bonferroni curve

The curve has been introduced by Bonferroni (1930) and has been analysed
and studied by various authors up to nowadays: see for instance De Vergottini
(1940), Tarsitano (1990), Giorgi & Crescenzi (2001) and Zenga (2013).

The definition of the Bonferroni curve is the following one.

Definition 7. Let X be a non-negative continuous random variable with positive
and finite expected value p, and distribution function F'. The Bonferroni curve of
X is defined as

By = L [ Fiwa
P Jo
M
= =2 pe(]
1

The Bonferroni inequality index B represents the area above the Bonferroni
curve in the unitary square, in other words it is the complement to 1 of the mean
value of the Bonferroni curve.

Definition 8. Let X be a non-negative continuous random variable with Bonferroni
curve B(p). The Bonferroni index is defined as

B=1 —/OlB(p)dp.

The Bonferroni curve compares the mean of the lower group with the total
mean. Differently from the Lorenz curve no “weight” is applied. In other words,
if the random variable X represents the income, and B(p) is the corresponding
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Bonferroni curve, B(pg) = By means that the average income of the "bottom"
proportion pg of the population is By times the average income of the whole
population.

Using the Definitions Bl and [ it is easy to see that

a
lim B(p) = — d  B@1)=1
Jim Bp) == an 1) =1,

where a denotes the lower bound of the support of the random variable originating
the Bonferroni curve. Moreover, differently from the Lorenz one, the Bonferroni
curve is not, necessary convex.

If the random variable X tends to the situation of maximal inequality, the B(p)
curve tends to the function Bys(p), defined as:

0 ifpe (0,1

and consequently the inequality index is B = 1.

If the random variable X tends to the situation of minimal inequality, the
corresponding Bonferroni curve tends to

Bn(p)=1  Vpe(0,1],

and consequently the corresponding inequality index is B = 0.

A particular shape of the Bonferoni curve is obtained when the random variable
X has a uniform distribution, since in such case, it is a linear function. More in
detail, if X has a uniform distribution with support [p(1—8), u(1+0)] (see Section
[2)), then the corresponding Bonferroni curve is given by

B(p) = (1 -0) + 0p,

and the inequality index is B = /2.

The Bonferroni curve is related with the Lorenz curve: if L(p) is the Lorenz
curve of X, then the Bonferroni curve can be obtained throught the simple trans-
formation

L(p)

In Table 2] are reported the Bonferroni curve and the Bonferroni index for the
distribution models presented in Section 2] where

W(z) = % InT(z) = I;((;”))

denotes the Digamma function, that is the logarithmic derivative of the Gamma
function. Figure 2 shows some examples of the Bonferroni curves from Table
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Model Bonferroni curve Bonferroni Index

Uniform Blp)=(01-0)+6p B=20/2

Exponential  B(p) =1+ (=2 In(1—p) B =0.644934

Pareto B(p) = W B=1-w(2-1/0)+¥(1)

—1 _ -1 _

Log-normal  B(p) = M B=1- 01 Mdp
B(p'/?;84+1/0;1—1/0

Dagum  Bp) = "G B0 (34 ) ~w(6)

TABLE 2: Bonferroni curves and Bonferroni indices for the considered models

5. The I(p) curve

The I(p) curve has been introduced in Zenga (2007). It is the most recent
inequality curve among the three ones considered in this paper; nevertheless, the
number of papers about it and the related index [ is increasing, see for instance
Greselin & Pasquazzi (2009), Radaelli (2010), Langel & Tillé (2012) and Greselin,
Pasquazzi & Zitikis (2013). The definition this curve is the next one.

Definition 9. Let X be a non-negative continuous random variable, with positive
and finite expected value p, and distribution function F. The I(p) curve of X is
defined as

| Q=p) fy e

I(p) =
p [, F-\(t)dt
_ ]\_4(10)
= 1- Jr—’ pe (Oa 1)
M (p)

Similarly to the Bonferroni index, the inequality index I can be obtained from
the mean value of the I(p) curve but it represents the area below the I(p) curve.

Definition 10. Let X be a continuous random variable and let I(p) denotes its
inequality I(p) curve. The inequality index I is defined as

I= /01 I(p)dp.

The I(p) curve can be easily interpreted, and its information is immediate and
intuitive. If the random variable X models the income distribution, it follows by
the defnition that if the I(p) curve is equal to Iy at p = po, it means that the
average income of the “bottom” proportion py of the population is (1 — Iy)-times
the average income of the remaining population.

In the previous sections it is mentioned that the Lorenz curve assumes prefixed
values for p = 0 and p = 1, while the Bonferroni curve is always equal to 1 for
p = 1. The I(p) curve is more flexible, since the values it assumes for the extreme
values of p depend on the distribution function which originates the curve. In
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Polisicchio (2008) it is proved that if X is a random variable with support [a, 0],
where 0 < a < b < +00 and with finite and positive expected value p, then

. a i 1
lim I(p)=1-—— and lim I(p)=1-——,
p—0+ (p) o p—1— (p) b
with the convention that /b = 0 if b is not finite. Moreover, also the I(p) curve
is not, necessary convex.
If the random variable X tends to the situation of maximal inequality, then
the I(p) curve tends to the function In;(p), defined as

In(p) =1, Vpe(0,1),

while, whether the random variable X tends to the situation of minimal inequality,
the I(p) curve tends to zero for all p € (0, 1), that is

I,(p) =0, Vp € (0,1).

In Polisicchio (2008) it is proved that if the I(p) curve of the random variable
X is uniform and equal to 1 — k, then X has a truncated Pareto distribution with
parameters 6 = 0.5, zo = pk, and p/k as truncation point. That means that the
distribution function of X is

0 if © < puk
F(z)=1¢ 1= {1 “Tk] if uk < < p/k
1 if & > u/k.

Such Pareto truncated has been analysed and from that model, a new distribution
model, which seems to be very promising for modelling income distributions has
been defined, for instance see Zenga (2010), Arcagni & Porro (2013) and Arcagni
& Zenga (2013).

As the Bonferroni curve, also the I(p) curve is related to the Lorenz curve, and
therefore to the Bonferroni curve itself. The relationships are (see Zenga 2007)

_ p—L@)
=y PO
I(p)fTi%)) vp € (0,1).

In Table B are reported the I(p) curve and the index I for the distribution
models described in Section 21 Figure [B] shows some examples of them.

6. The partial orders

In the literature, an important application related to the inequality curves, is
the possibility to rank the distributions. Such ranking is obtained by a partial
order which can be defined from a inequality curve. The following one, is the
definition of the well-known ordering based on Lorenz curve.
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FIGURE 3: Graphs of different I(p) curves for the considered models
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Model I(p) curve I index
Uniform I(p) =0(1+6p)~* I=In(6+1)
Exponential  I(p) = stk I = 0.843302
Pareto I(p) = =" I=w(1/0+1)—w(l)
_o[e " (p)—d 1 p—@[@ '(p)—¢
Logmormal  1(p) = ;fi=aa—fr- I=Jy st=aia—trandp
D I(p) — p—B(p'/?8+1/0;1-1/0) 1 p=B(p'/%B+1/0;1-1/0) d
agum (p) pl1—B(p'/3;8+1/0;1-1/0)] ~ )0 pl1=B(p/#;8+1/6;1-1/0)] P

TABLE 3: I(p) curves and [ indices for the considered models

Definition 11 (Partial order based on the Lorenz curve). Let X and Y be two
continuous non-negative random variables, both with finite and positive expected
value. Let Lx and Ly denote their Lorenz curves. X is said to be larger (or more
unequal) than Y in the order based on the Lorenz curve (and it is denoted by
X ZL Y)7 if

Lx(p) < Ly(p)  Vpe(0,1).

From the graphical point of view, the random variable X is larger than Y in
this order, if its Lorenz curve lies below the Lorenz curve of Y for all p € (0,1).
In analogy to the ordering based on the Lorenz curve, the following one can be
defined.

Definition 12 (Partial order based on the Bonferroni curve). Let X and Y be two
continuous non-negative random variables, both with finite and positive expected
value. Let Bx and By denote their Bonferroni curves. X is said to be larger

(or more unequal) than Y in the order based on the Bonferroni curve (and it is
denoted by X >pY), if

Bx(p) < By(p) Vpe(0,1).

Even if it less used, such ordering is well-known and studied in the literature,
see for example Tarsitano (1990), Giorgi & Crescenzi (2001), Pundir, Arora & Jain
(2005).

The third partial order considered has been introduced in Porro (2008).

Definition 13 (Partial order based on the I(p) curve). Let X and Y be two contin-
uous non-negative random variables, both with finite and positive expected value.
Let Ix and Iy denote their inequality I(p) curves. X is said to be larger (or
more unequal) than Y in the ordering based on I(p) curve (and it is denoted by
X > Y)7 if
Ix(p) = Iy(p)  Vpe(0,1)

The relationship among these three orderings is summarized in the following

result (for a partial proof, see Polisicchio & Porro 2011).

Lemma 1 (Lemma of equivalence). Let X and Y be two continuous non-negative
random variables X and Y, both with finite and positive expected value. Then:

X>1 Y& X>pY S X >Y.



14 Alberto Arcagni & Francesco Porro

This lemma makes it evident the coherence of the three curves, in fact two
distributions are ordered for one ordering if and only if they are ordered for the
other two. It is important to remark that all these orderings are only partial
orders, as there are some distributions with crossing L(p) curves and therefore
with crossing B(p) and I(p) curves, that can not be ordered for all p € (0,1).
But, if the distributions belong to the same parametric model, these partial orders
may allows to explain how the parameters influence them in terms of inequality.
This is the case of the models defined in Section 2} Their parameters are classified
in scale parameter or direct and indirect inequality indicators. As defined in the
same section the scale parameters do not influence the inequality. How the other
parameters influence the inequality curves is shown in Figures [l Bl and Bl and it
can be observed that the curves do not cross each other.

7. A unified point of view

All the curves presented in the previous sections are defined as they have been
introduced in the literature. As the partial orders defined in the previous section
show, it does not always happen that, given two inequality curves, the one related
to the situation of more inequality lies above the latter one. From the graphical
point of view, the inequality curves can be more intuitive if they satisfy such
restriction, meaning that for a fixed p € (0,1), the curve related to the situation
with more inequality takes on a greater value than the curve related to the situation
with less inequality.

Following the same approach used by Zenga (1984), such “increasing ranking”
can be achieved by performing a suitable transformation on the inequality curves.
In Zenga (1984) through a simple transformation on the d(p) of Gini, the new
A(p) curve is obtained: such new curve lies in the unitary square and satisfies the
aforementioned “increasing ranking”.

Then, from the Lorenz curve, the curve G(p) can be obtained as:

G(p) =2[p—L(p)] pe(0,1),

which coincides with the function in the first integral in formula (). Analogously
from the Bonferroni curve, the V(p) curve can be otained as:

V(p)=1-B(p) pe(0,1).

From the definition of the Bonferroni curve and formula (@) it follows that
Glp)=Vp)-2p  pe(01).

The inequality I(p) curve needs no transformation, since it already satisfies the
“increasing ranking”.

Another interesting result of these transformations is that the new curves have
the following feature: the related inequality indexes are the areas below the curves.
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F1GURE 4: Unified representation of the inequality curves
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As mentioned in the introduction, the curves presented for continuous models
can be applied to empirical distributions. It is enough to replace the distribution
function F of the model by the empirical cumulative distribution function (ECDF).
The empirical quantile function is the generalized inverse function F~! of the
ECDF as defined in formula (). The result is a step-function with integral between
0 and 1 clearly equal to the empirical mean.

For example the formulae presented in this section can be applied to the data
provided by the Bank of Ttaly (2012). The 2012 sample survey has been analyzed
with the R software (R Core Team 2013). The considered dataset consists of 8114
non-negative household incomes with mean equal to EUR 30481.01. In Figure @
the empirical curves G(p), V(p) and I(p), that satisfy the “increasing ranking”, are
drawn. The three curves are drawn together in the unitary square. In the legend
are reported the values of the related indexes that correspond to the areas below
the curves.

By using this unified representation it is easy to understand why the three
indexes assume so different values. In fact, the index I is sensitive to the inequality
in both the tails, the index B is sensitive to the inequality due to the poorest units
but it does not catch the inequality due to the richest ones, while the index G does
not capture the inequality of both the tails.

8. Final remarks

This paper is a review of the most known inequality curves. The considered
curves are the Lorenz curve, the Bonferroni curve and the I(p) curve. For each of
them the main features are described with particular focus to their interpretation.
Such curves are graphical methods used to analyse and compare inequality of
non-negative distributions. For instance, inequality curves are used to rank the
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distributions through partial orders. The aforementioned curves are exemplified
through five well-known non-negative distribution models, some of which can be
used to describe income distributions. In the last section, a transformation of the
Lorenz curve and a transformation of the Bonferroni curve allow an easier and
more intuitive representation of such graphical tools.
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