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Abstract

The construction of origin-destination matrixes is a necessary activity for most significant applications of pedestrian simulation

and it can be fruitfully supported by computer vision techniques. Pedestrians, in videos taken from fixed cameras, tend to appear

and disappear at precise locations (doors, gateways or edges of the scene): we refer to locations where pedestrians appear as

sources (potential origins) and the locations where they disappear as sinks (potential destinations). In this paper we propose an

original technique to identify these points and characterize dominant pedestrian flows. The paper presents the defined technique

and it discusses its application in a real-world scenario.
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1. Introduction

Urbanization is increasingly leading to crowding situations generating potential issues for architectural planning

and even public safety. Pedestrians and crowd studies, related both to the synthesis and automated analysis of the

implied dynamics, are growingly investigated as means to support decision makers, as discussed by Challenger et al.

(2009). Simulation studies require high quality data, as argued by Bandini et al. (2014) that call for an integrated

approach including both analysis and synthesis to provide valid and useful results: automated analysis techniques

employing computer vision approaches to tackle these problems are therefore ever more urgent. One of the activities

that could be fruitfully automated is the construction of the so-called origin-destination (O-D) matrixes. This kind

of characterization of pedestrian behavior in the analyzed scenario is a necessary condition for a proper initialization

of simulation systems in realistic conditions (see, e.g., a relevant work by Lee et al. (2001)). Due to the growing

availability of cameras, especially in the premises of train or subway stations, videos for performing this kind of

analysis are ever more available and this represents an interesting opportunity to investigate.

Pedestrians in videos taken from fixed cameras tend to appear and disappear at precise locations, such as doors,

gateways or edges of the scene. We refer to locations where pedestrians appear as sources (potential origins) and
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the locations where they disappear as sinks (potential destinations). Intuitively, detecting sources and sinks implies

detection and tracking: this kind of approach was adopted by Stauffer (2003), which analyses low density situations

and essentially relies on the performance of the tracking algorithm. However, in crowded scenes, where the number

of objects is often in the order of hundreds, these tasks usually fail due to (i) the variable and potentially low number

of pixels per object and (ii) frequent and severe occlusions related to the constant interaction among the objects

(pedestrians) in a crowded scene. Research in this area has therefore instead assumed that raw data about pedestrian

paths can be noisy or unreliable: Nedrich and Davis (2010), for instance, employ a so-called weak tracking system and

they aggregate raw tracklets through a mean-shift clustering technique allowing them to identify entry and exit zones

in the scene. More recently, research has focused on gathering global motion information at higher level, often based

on optical flow analysis. In this paper, we propose an algorithm in which a scene is overlaid by a grid of particles

initializing a dynamical system defined by optical flow, as discussed by Solmaz et al. (2012). Time integration of the

dynamical system over a segment of the video provides particle trajectories (tracklets) that represent motion patterns in

the scene for a certain time interval associated to the analysed segment. We detect sources, sinks and main flows in the

segment (for sake of brevity sometimes we will refer to this information as segment local track) by analyzing motion

patterns followed by clusters of tracklets, obtained using an unsupervised hierarchical clustering algorithm, where the

similarity is measured by the Longest Common Sub-sequence (LCSS). We also detect and analyse dominant motion

patterns representing multiple flows to further characterize detected origins and destinations. Finally, local segment

information is combined to achieve a global set of tracks identifying sources and sinks and characterizing the flow of

pedestrians connecting them. The overall framework is summarized in Fig. 1(a) and exemplified in Fig. 1(b). The

following Sections will introduce the various steps of the process and they will describe its application to a video

taken in a real-world case study in which several tens of perspective students reach the site where an admission test to

the University was being held, which is discussed by Federici et al. (2014). A discussion of the achieved results and

future works will end the paper.

2. Optical flow computation

The first step for the overall sources and sinks identification and motion flows characterization, given a video

sequence, is to divide the input video into N number of segments s, each containing K frames. Next, we compute

optical flow field between two consecutive frames of every segment. We employ the method proposed by Brox et al.

(2004) where gray value constancy, gradient constancy, smoothness, and multi-scale constraints were used to compute

highly accurate optical flow. Consider a feature point i in frame associate to time t of a segment: its flow vector Zi,t

includes its location Xi,t = (xi,t, yi,t) and its velocity vector Vi,t = (vxi,t, vyi,t ), i. e. Zi,t = (Xi,t,Vi,t) where θi is the angle

or direction of Vi, where 0◦ ≤ θ ≤ 360◦. Then {Z1, Z2, . . . ,Zk} is the motion flow field of all the foreground points of

an image. We can thus initialize a continuous dynamical system in which the velocity of a point at time t is essentially

related to the optical flow in the same point:

Vi,t = F(Xi,t) (1)

3. Particle advection

The next step is to advect grid of particles over the optical flow field, that corresponds to the time interval 1 to

T for each segment. We launch a grid of particles over the first optical flow field of every segment and each initial

position of the particle represents the source point. Ideally, the grid should have the same resolution of the base frame,

but the computational cost would be extremely high. The trade-off choice we adopted it to overly particles on the

points which have non-zero optical flow which means, due to equation 1, non-zero velocity, i.e. foreground points.

An example of this mesh of particles placed over the flow field and their corresponding trajectories is provided in Fig.

1(b). The new position X(t+1) of a particle at time t + 1 is computed by numerically solving the system of equations 1

by using this approximation:

X(t+1) = F(X(t)) + X(t) (2)

During forward integration, a pair of flow maps, ψx and ψy, are maintained for every grid of particles. These flow

maps indicate the relation between the initial position of each particle to its later position obtained after the advection
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Fig. 1. The proposed framework for sources and sinks detection.

process. The flow maps integrate motion over longer durations of time. The flow map ψx keeps track of how x
coordinate is changing, and similarly, ψy keeps track of y coordinate. As a result of this evolution of particles, small

tracklets are generated as shown in Fig. 1(b), where the initial point (source point) marked with yellow and the last

point, where the particle stops (sink point) marked with red. The tracklet ends either when the analyzed sequence is

finished or in specific conditions, like an occlusion or the merging into a different flow.

Similar tracklets could be generated using Kanade-Lucas-Tomasi (KLT) as done by Cheriyadat and Radke (2008)

and by the already cited Stauffer (2003), or by SIFT features tracking, as discussed by Battiato et al. (2007). However,

these techniques are based on feature extraction and they may not able to capture whole motion information of a scene,

as argued by Wang et al. (2013).

4. Longest Common Sub-Sequence

Tracklets achieved as a result of the previous step represent a relatively raw kind of information, plausibly about

the movement of an individual, and they can be fruitfully grouped to provide a more concise description of overall

flows in the scene. In the next step, therefore, we cluster tracklets that are spatially close to each other and have

similar direction of motion. This procedure requires a similarity metric. A survey of different similarity measures

for trajectory clustering is reported by Zhang et al. (2006): Euclidean and Dynamic Time Warping (DTW) are more
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sensitive to noise whereas Longest Common Sub-Sequence is efficient for series of unequal lengths and it is more

robust to noise and outliers than DTW, as discussed by Vlachos et al. (2002) and by Cheriyadat and Radke (2007).

The key idea of LCSS is to match two time-series of tracklets by not considering all points of the tracklets, that

can, to a certain extent, have different lengths. The following procedure allows verifying to which extent two tra-

jectories can be considered similar (matching, according to a certain similarity measure) and therefore what is the

longest portion they have in common. Let T1 and T2 represent two tracklets with size n and m respectively: T1 =

{(xt, yt), t = 1, ...., n} and T2 having analogous structure but m elements; with T1(i) we denote (xi, yi) with 0 ≤ i ≤ n
and analogously for T2. We compute the similarity among two tracklets by recursively finding a matching M between

portions of these trajectories using a dynamic programming procedure that we will only briefly introduce for sake of

space. Two constants are needed, respectively Φ controlling matching sequences in time and Ω which is the spatial

matching threshold. Formally the matching matrix M comparing T1 and T2 can be computed recursively as follows:

Mi, j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if i or j are 0

1 + Mi−1, j−1, if ‖ T1(i) - T2( j) ‖2 < Ω and | i − j | < Φ
max(Mi−1, j, Mi, j−1), otherwise

The similarity measure between two tracklets T1 and T2 is therefore S (T1, T2) = LCSS(T1,T2)
min(n,m)

, where LCSS is the

number of matching points between T1 and T2, according to the above matching matrix.

5. Particle’s Trajectories Clustering

The classical supervised clustering algorithms can not be used as the number of flows (and therefore desired

clusters) are unknown. Therefore, we propose a novel hierarchical clustering algorithm, based on the following

procedure.

1. We sort the tracklets in descending order on the basis of their length. Let L = {T1, T2, . . . ,Tk} represent sorted list

of tracklets and {N1,N2, . . . ,Nk} represents length of tracklets. Tracklets with length lower than a fixed threshold

are removed from the list, because considered noise.

2. We set up a list of tracklets to be considered LT , initially the complete list of tracklets excluding T1; we also set

up a list of clusters LC , initially containing a cluster associated to the first tracklet T1 (the longest one) that is also

used as initial cluster center;

3. We select shortest tracklet from the list, say Ts, and compare it with the centers of all clusters present in LC

using longest common sub-sequence to compute similarity measure. If the similarity measure is greater than a

threshold, then tracklet Ts is assigned to the currently considered cluster, and the center is updated by using Kth

order least square polynomial regression. Otherwise, a new cluster is inserted in LC , tracklet Ts is assigned to it

and set as its center. We delete the tracklet Ts from the list LT after assignment to a cluster.

4. We repeat the previous step until LT is not empty.

We employ this clustering procedure in two different phases: (i) when analyzing tracklets inside a sequence, to

achieve local tracks within the related time interval; (ii) when combining local tracks into the global one, describing

the motion pattern of the total length of the video. In the first phase, as exemplified in Fig. 1(b), the clustering

aggregates a number of raw tracklets to generate a lower number of more significant tracks; in the second phase, as

shown in Fig. 2, it combines portions of tracks into longer ones.

In particular, we can see that:

• the identified tracks are relatively robust to occlusions: for instance, the pole and tree in the middle of the scene

and the signboard at the bottom do not prevent the identification of flows behind these obstacles; locally, the

occlusion can cause the loss of particles but the overall integration procedure is often able to compensate if the

particles appear at a later stage;

• tracks can be associated to a weight representing the number of clustered tracklets so they can be characterized

according to how many pedestrians follow that macro-trajectory;

• sources and sinks are identified in a robust way, nonetheless, a commonsense form of spatial reasoning cor-

relating the implied flows could further improve the results: for instance, two of the identified flows moving
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Fig. 2. Clustering of local tracks into global one in the case study.

towards the bottom-left part of the scene actually start very close to intermediate points of the rightmost flow.

Actually, these flows are generated by this large flow whose source is located in the upper-right part of the

scene. Heuristic rules for the identification of bifurcations, junctions or crossings could be easily defined and

they are object of future works.

6. Conclusions and future developments

In this paper we proposed an algorithm for the automated detection of starting points (sources), dominant motion

patterns and ending points (sinks) of pedestrian flows in videos taken from fixed cameras. The procedure employs a

grid of particles initializing a dynamical system defined by optical flow, a high level global motion information. The

dynamical system is integrated through time and this process provides particle trajectories (tracklets) that represent

motion patterns in segments of the scene. Sources and sinks are detected and characterized by analyzing motion

patterns followed by clusters of tracklets, obtained using a hierarchical unsupervised clustering algorithm, where the

similarity is measured by the Longest Common Subsequence metric. Local segment information are combined to

achieve a global set of traces identifying sources and sinks, and characterizing the flow of pedestrians connecting

them. Current results are encouraging and future works are aimed at, on the one hand, completing the process with

a commonsense spatial reasoning step or other semantical processing to correlate identified tracks, identifying bifur-

cations, junctions and crossings. In general, this kind of approach can support the identification and understanding of

crowd behavior and it represents a starting point for multi-camera approaches.
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