
University of Milano–Bicocca
Department of Informatics, Systems and Communication (DISCo)

Enhanced XML Retrieval with
Flexible Constraints Evaluation

Ph.D dissertation of
Emanuele Panzeri

Supervisor: Prof. Gabriella Pasi
Tutor: Prof. Carla Simone

AA 2012/2013

Tell me and I forget,
Teach me and I may remember,

Involve me and I learn.

Benjamin Franklin

Abstract

Since its standardization by the World Wide Web Consortium (W3C) in 1998, the XML
(acronym for eXtensible Markup Language) has been acknowledged as the de-facto stan-
dard format for data, besides being a data format employed by a wide and increasing
number of application domains. XML allows data and textual contents to be structured;
the structural elements are specified in plain text using strings of characters that can be
easily read by computer programs, while maintaining human-readability.

XPath and XQuery represent the two main standard languages that have been defined
to inquire XML data; the two languages allow to select a subset of elements from an
XML document, and to further manipulate its contents and to restructure the document
tree form. Both XPath and XQuery are based on a Database perspective of XML
documents, where the evaluation of the query clauses is performed like in the database
query language SQL, from which both the XML languages took inspiration. The data-
centric perspective adopted by the XQuery and XPath languages has been recently
extended by an Information Retrieval oriented approach, where a new set of content-
based constraints have been defined that allow a full-text search in an IR-style, with an
element relevance scoring computation. This extension is called XQuery/XPath Full-
Text and has been standardized by the W3C.

In the Information Retrieval community other approaches have appeared that take into
account the document structure and propose a set of approximate structural matching
techniques, where the standard XQuery and XPath structural constraints are evaluated
by path relaxation algorithms. Such approaches, however, do not offer the user the
possibility to express vague structural constraints the approximate evaluation of which
produces a set of weighted fragments, where the weight express the relevance of the
fragment with respect to the structural constraints.

This thesis describes the definition and the implementation of a formal XQuery Full-Text
extension named FleXy, aimed at taking into account the user perspective in the formula-
tion of structure-based constraints, where vagueness can be associated to the specification
of such constraints. FleXy has been designed as an extension of the XQuery Full-Text
language to inherit both the full-text search features from the Full-Text extension, and
the standard element selection provided by XQuery.

The evaluation of two new vague structural constraints defined in the FleXy language,
named below and near, produces a set of weighted elements, where a structural-score
is computed by taking into account the distance from the user required target element
and the actually retrieved one. Thresholds variants of the below and near constraints

i

have also been defined which allow to specify the extent of the application of the vague
structural constraints.

The formal definition of the FleXy language is here provided through its syntax, its
semantics, and the algorithms that define the below and the near axes.

The language implementation has been performed on top of an Open Source XQuery
engine named BaseX, a fully featured XQuery and XPath engine with a complete ad-
herence to the Full-Text language specification. Performance evaluations have been
subsequently provided to compare the FleXy constraints with the standard XQuery
counterparts, when available.

Finally, a patent search application has been developed by leveraging the FleXy imple-
mentation provided on top of the BaseX engine: the XML structure of the US Patent
Collection (USPTO) has been exploited in conjunction with the textual contents of the
patents to help non-expert users to effectively retrieve relevant patents by also offering
a result categorization strategy.

ii

Contents

Abstract i

1 Introduction 1
1.1 Motivations . 1
1.2 Contributions . 2
1.3 Structure of the Thesis . 3

2 XML and XML Querying 5
2.1 XML . 5

2.1.1 XML Elements and Comments . 6
2.1.2 XML prolog, Declaration and Processing Instructions 8
2.1.3 Well-formed and Valid XML Documents 9
2.1.4 Document Type Definition (DTDs) 10
2.1.5 XML Document Example . 12
2.1.6 Summary . 13

2.2 Querying XML documents . 13
2.2.1 The XPath language . 14

2.2.1.1 The XPath Data Model 15
2.2.1.2 XPath Expressions . 16
2.2.1.3 XPath Axes . 17
2.2.1.4 XPath Node Test . 17
2.2.1.5 XPath Predicates . 17
2.2.1.6 XPath Functions . 20
2.2.1.7 Summary . 20

2.2.2 The XQuery language . 21
2.2.2.1 XQuery 1.0 (and XPath 2.0) Data Model (XDM) 22
2.2.2.2 XQuery Expressions . 22
2.2.2.3 XQuery functions . 25
2.2.2.4 XQuery 1.0 (and XPath 2.0) extensions 26
2.2.2.5 Summary . 27

2.2.3 The NEXI query language . 27
2.3 The XPath/XQuery Full-Text extensions 28

2.3.1 Introduction . 29
2.3.1.1 Full-Text contains expression 30

2.3.2 Syntax . 31
2.3.2.1 Connectives . 32

iii

2.3.2.2 Containment, Cardinality and Positional conditions . . . 32
2.3.2.3 Matching options . 33

2.3.3 The Relevance Score computation 34

3 Vagueness in querying the XML structure 37
3.1 Introduction . 38
3.2 Approaches to exact structural matching 40
3.3 Approximate structural matching . 43

3.3.1 Information Retrieval approaches to query XML documents 44
3.3.2 Vagueness in structural matching evaluation 45
3.3.3 User-based vagueness evaluations 48

3.4 Summary . 50

4 FleXy: The XQuery Full-Text extension 51
4.1 Motivations . 52
4.2 FleXy flexible axes . 53

4.2.1 The “below" axis . 54
4.2.2 The “near" axis . 56

4.3 The FleXy Syntax . 57
4.3.1 Axes Syntax . 57
4.3.2 The Structural Score Variable . 58

4.4 The FleXy Semantics . 61
4.4.1 Core XPath semantics . 61
4.4.2 The “below” axis semantics . 62
4.4.3 The “near” axis semantics . 63
4.4.4 The Score semantics . 64

4.5 The FleXy axes evaluations . 66
4.5.1 The “below" constraint evaluation function 66
4.5.2 The “near" constraint evaluation function 67
4.5.3 Flexible constraints aggregation . 67

5 Implementation 70
5.1 A preliminary FleXy implementation: multi-minPID 71

5.1.1 Introduction . 71
5.1.2 Flexy on top of XQuery/IR . 73
5.1.3 Summary . 74

5.2 XQuery engines analysis . 74
5.2.1 MonetDB/XQuery . 75
5.2.2 eXist-db Engine . 77
5.2.3 BaseX . 78
5.2.4 Zorba . 80
5.2.5 Other XQuery engines with Full-Text 81

5.2.5.1 MXQuery . 81
5.2.5.2 Nux query engine . 82

iv

5.2.6 XQuery and XQuery Full-Text engines comparison 83
5.3 FleXy implementation in BaseX . 85

5.3.1 BaseX Overview . 86
5.3.2 BaseX Data Structures . 87
5.3.3 FleXy Integration . 89

5.3.3.1 Language Interpreter Extension 91
5.3.4 The Below Axis . 93
5.3.5 The Above axis . 95
5.3.6 The Near axis . 96

6 Evaluations and FleXy User-Case 98
6.1 Evaluations . 98

6.1.1 Environment . 99
6.1.2 Data Collections . 100
6.1.3 The Below evaluation . 101
6.1.4 The near Evaluation . 110
6.1.5 Conclusions . 113

6.2 FleXy use-case: the PatentLigth application 114
6.2.1 Introduction . 114
6.2.2 Related Works . 116
6.2.3 The PatentLight tool . 117
6.2.4 Conclusions . 121

7 Conclusions 122

Publications 125

Bibliography 127

v

1 Introduction

1.1 Motivations

Since its first introduction, and its subsequent definition as a W3C (World Wide Web
Consortium) standard, the eXtensible Markup Language (XML) [1] has been acknowl-
edged as the de-facto standard format for industrial and scientific data exchange. The
semi-structured data representation defined by the XML format has been adopted from
a wide number of domains, ranging from business to digital libraries, including word
processing applications and communication protocols.

Standard XML query languages have been defined by the W3C for searching and manip-
ulating the hierarchical structure of XML documents; the XPath [2], and the XQuery
[3] languages have been explicitly defined to this aim. Both the XQuery and XPath
languages, mainly based on a data-centric perspective of XML documents, provide a
Database oriented and SQL-like specification of constraints: the evaluation of structure-
based and content-based constraints is performed by a strict matching.

The availability of large XML document-centric collections such as the MedLine1 medical
data collection or the Wikipedia corpus [4] raised the Information Retrieval (IR) com-
munity interest for XML documents, where full-text search and approximate constraints
evaluation approaches were introduced.

An important result obtained from a joint work between the Information Retrieval and
the Database communities is the definition of the XQuery/XPath Full-Text extension; it
has been recently defined and standardized by the W3C. The XQuery/XPath extension
provides an extensive set of features for defining and evaluating full-text search over the
textual contents of XML documents, such as the computation of relevance scores and
the definition of IR-style text handling and matching functions.

Besides the successful introduction of Information Retrieval search techniques as the
XQuery Full-Text extension, an important issue still remains open regarding the pos-
sibilities offered by standard XML query languages in querying XML documents. The
content based query formulation provided by the Full-Text language extension is not
coupled to the equally important possibility for the user to express vagueness in formu-
lating structural-based constraints. Some approximate evaluations of standard structural
constraints have been proposed in the literature, such as tree pattern relaxation [5, 6],

1 The MedLine database, available at http://www.ncbi.nlm.nih.gov/pubmed/ is constituted of more
then 22 millions of publication records regarding biomedicine and health.

1

http://www.ncbi.nlm.nih.gov/pubmed/

and approximate XML query tools like Juru [7] and FleXPath [8] have been defined By
leveraging the standard W3C languages, most of these approaches provide an approxi-
mate evaluation of standard structure-based constraints by means of a set of constraint
rewriting or other query modifications. The user query is thus taken into account as
a mere template during the query evaluation process. None of the approaches in the
literature, however, takes into account the approximate structural evaluation from a user
perspective: any of the proposals provides the user the ability to explicitly state which
structural constraint should be evaluated by means of a strict matching and which ones
with an approximate technique providing a structural relevance estimation. Vague con-
straint specifications and their related approximate evaluation would allow the users to
formulate queries where the structure-based constraints evaluation can produce a score
expressing the extent to which a retrieved fragment satisfies the structural constraint.
The research work undertaken during the Phd and reported in this thesis addressed
this specific issue: providing users the ability to express vagueness while formulating
structural constraints.

1.2 Contributions

In this thesis, a new proposal for querying XML documents by the formulation of vague
structural constraints is presented. To this aim the formal definition of the FleXy lan-
guage is here provided; this language, as outlined in the previous section, is aimed
at addressing the aspect of querying XML documents by allowing the user to express
vagueness while formulating structural constraints. The novelty of the FleXy language,
defined as an extension of the standard XQuery/XPath Full-Text, is the definition of
two new structural constraints, named below and near, that allow the users to express
vague structural requirements in a query. Differently from all the approximate techniques
proposed in the literature, the majority of which leverages tree pattern relaxation algo-
rithms, the approach defined in this work presents a user-centered structural constraint
formulation, with an associated approximate evaluation.

A relevance score for each retrieved element is also computed during the evaluation of
the below and the near constraints: such score represents the structural relevance of
the matched element given the vague constraints specified in the query. Furthermore,
the user may explicitly express a tolerance to the approximate evaluation of such new
constraints: parametric variants of the new FleXy axes have been defined to extend the
possibilities offered by the below and near constraints.

Finally, by extending the XQuery Full-Text language, the set of FleXy constraints, and
in particular the structural relevance scores, can be used to provide customized filtering
and ranking functions. Furthermore FleXy provides a clean and complete integration
with the set of FLWOR clauses of XQuery, thus allowing users to combine the full-
text relevance score and the structural score and to obtain query results ranked by an
aggregation of the two scores.

The main contributions of this thesis can be summarized as follows:

2

• The FleXy language has been formally defined as an extension of the XQuery
Full-Text language: the language syntax and the axes semantics have been defined
following the XQuery [3] standard, and the Core XPath [9] semantics. The scoring
algorithms and the integration of the structural relevance score with the textual
relevance score are also provided.

• A first implementation of the FleXy language and the scoring algorithms has been
performed on top of a state of the art XQuery engine named minPID. The work
has been aimed at evaluating the feasibility of the FleXy language by extending
the indexing data structure defined in the engine to verify its support to the FleXy
language requirements.

• The full implementation of the FleXy language on top of a fully featured XQuery
Full-Text engine named BaseX has been subsequently performed. After undertak-
ing an analysis of the state-of-the-art XQuery Full-Text engines and their charac-
teristics, the BaseX engine has been selected to guarantee an efficient evaluation
of the FleXy constraints. The FleXy language has been implemented on top of
this XQuery engine, by leveraging its efficient data structure and by integrating
the FleXy constraints in its XQuery parser.

• The efficiency of the FleXy language has been evaluated by its implementation on
top of the BaseX engine: time comparison tests have been performed to measure
the overhead introduced by the flexible axes, and by the evaluation of the structural
relevance score computation.

• Finally, the Flex-BaseX engine has been used to build a Patent Search appli-
cation: the structure-based evaluation of the FleXy language, combined with the
standard XQuery Full-Text search capabilities are leveraged to help users to query
XML patent documents, where result classification is also provided.

1.3 Structure of the Thesis

Besides the Introduction provided in this Chapter, the rest of the thesis is organized as
follows:

• Chapter 2 introduces the eXtensible Markup Language (XML), the standard
structured document format representation that has been the basic object of the
research reported in this thesis. It briefly presents the main characteristics of this
language and describes the most important, database-oriented, languages defined
to process documents written in XML format: XPath and XQuery. The NEXI
query language is also described as it proposes, from an Information Retrieval
perspective, a full-text search functionality on the textual contents of an XML
document. Finally, given the high relevance to the work undertaken in this thesis,
the XQuery/XPath Full-Text extensions, as recently defined by the W3C, are

3

discussed: in particular their features and relevance estimate computation are
detailed.

• Chapter 3 deals with the different perspectives of querying XML documents
as addressed by the Database community and the Information Retrieval commu-
nity: since they have different views on how an XML document is conceived, they
accordingly proposed different query paradigms. The chapter presents both the
strict querying paradigm proposed by the Database community, and the approxi-
mate textual content matching as defined by the Information Retrieval one. More
attention, given the subject of this thesis, is paid to the IR querying perspective
regarding the structural constraints evaluation, including the evaluation proposed
by the INEX[10] initiative.

• Chapter 4 presents the main contribution of the work undertaken in this thesis:
the FleXy language is presented and described by outlining its motivations, syntax,
semantics and structure-based constraints evaluation. The new constraints below
and near are here formally presented alongside their syntax and their integration
within the XQuery FLWOR clauses; the structural relevance score integration and
its coupling with the relevance score computed by the Full-Text extension are also
addressed. Finally, besides the examples of the FleXy usage, the semantics of the
vague constraints are defined in Chapter 4 by leveraging the Core XPath semantics
as introduced by Gottlob et al. in [9].

• In Chapter 5 the main activities performed in relation to the implementation of
the FleXy language are described: a first task aimed at identifying a data structure
able to offering an efficient evaluation strategy on top of which to provide a first
implementation and a feasibility evaluation of the FleXy language is here described.
A second activity aimed at providing a full integration of the FleXy language on
top of an existing, and fully compliant to the Full-Text extension, XQuery engine
is described in the second part of Chapter 5. In particular, the analysis and
the comparison of different XQuery engine alternatives are reported before the
description of the final implementation of the FleXy language performed on top
of the BaseX XQuery engine. The data structures, the algorithms defined to
efficiently evaluate the FleXy constraints, and the integration performed with the
BaseX XQuery engine are here detailed.

• Chapter 6 presents the efficiency evaluations conducted to provide a first com-
parison of the FleXy constraints implemented on top of the BaseX engine with
their standard XQuery counterparts, when available. The below axis has been
compared with the related descendant axis, while for the near axis, for which
there is no similar axis in the xtandard XQuery language, an alternative compari-
son solution is provided. Chapter 6 also presents a use case of the FleXy language
usage: the implementation performed on top of the BaseX engine is leveraged to
provide a flexible patent search application named PatentLigth.

• Chapter 7 summarizes the main contributions of this thesis.

4

2 XML and XML Querying

In this chapter the basic concepts of XML and the query languages for inquiring XML
document repositories are presented: in Section 2.1 the eXtensible Markup Language is
introduced and its specification is detailed. In Section 2.2 the most important languages
for querying and processing XML documents are described with particular attention to
the XPath and XQuery languages. Finally Section 2.3 presents the Full-Text extension,
defined for both the XQuery and the XPath languages, which allows querying of XML
documents in an Information Retrieval style, with keyword based constraint evaluation
(with scoring and ranking).

Particular details are provided for the XQuery Full-Text extension given its relevance to
the research activity reported in this manuscript.

2.1 XML

XML [1] is the acronym of eXtensible Markup Language; it is, in fact, a markup language
defined by the World Wide Web Consortium (W3C [14]) in 1998. The aim of W3C for
the XML design was to “meet the challenges of large-scale electronic publishing” and
to “play an increasingly important role in the exchange of a wide variety of data on
the Web and elsewhere.” [15]. XML is a text format derived from a previous markup
language named SGML [16] (Standard Generalized Markup Language) defined in 1986.
Both XML and SGML specify a set of rules for describing documents where their data
content can be structured in a tree form; both the document structure and the contents
are described in plain text using strings of characters that can be easily read by computer
programs, while maintaining human-readability. These aspects, among others such as
the highly adaptability of the language, motivated the wide adoption of the XML spec-
ification on an increasing number of domains. The XML data model has been used for
representing general semi-structured data and employed also for data-exchange between
applications. Web-Services, Content Managements Systems, smart-phones, ePublishing
systems, biology and chemistry are a brief list of domains where XML came to play an
important role for data representation and exchange.

5

2.1.1 XML Elements and Comments

As previously outlined, in an XML document the contents are represented in a tree form
using a conventional markup notation. The basic markup unit is called element, the
contents of which are enclosed in a pair of tags named start-tag and end-tag respectively.
Each element is identified by a label, that is generally related to the semantics of the ele-
ment itself; both the start-tag and the end-tag of an element are built with the following
syntax: ’<’ label ’>’ for the start-tag, and ’</’ label ’>’ for the end-tag.

As an example, the following code describes an element labeled name the content of
which is the text Andromeda1:

<name >Andromeda </name >

In XML documents there is a special element, called root-element, that defines the root
node of the document tree structure: it is usually the first node opening the document;
the XML specification allows only one root-element per document.

The XML definition allows elements to have attributes: they can be sets of attribute-
value pairs defined in the start-tag of an element in the form: attribute="value". In
the following example the element object includes two attributes: one named catalog
with the value "M31" and one named type with a text value "galaxy" associated with
it.

<object catalog =" M31" type =" galaxy ">

In an XML document the set of elements can be nested to create a tree-like structure for
the contained data; there is no limit to the nesting level that a document can have. In the
following Listing 2.1 an example of an XML document is shown: elements indentation
has been added to improve the readability.

<collection >
<object catalog =" M31" type =" galaxy ">

<name >Andromeda </name >
<position >

<latitude unit =" degrees " >80.893 </ latitude >
<longitude unit =" degrees " >69.756 </ longitude >

</position >
<distance unit =" meters " >7.92 E+23 </ distance >

</object >
</collection >

Listing 2.1: Example of element nesting in XML documents.

1In the following sections, the XML document examples are taken from the NASA Extragalactic
database http://ned.ipac.caltech.edu

6

In Fig. 2.1 a tree-representation of the previous XML document is provided: XML
elements are represented as circles paired with the corresponding label. Rectangles
represent the textual contents of elements, while attributes are represented as plain text
connected to the corresponding XML element with a circle-ended line.

Figure 2.1: XML Tree example

In an XML document not only tags or attributes can be defined: another important
markup is represented by the comment-tags. Comments can appear in any location of
the XML document outside other markup; they are enclosed in the two tags: ’<!––’ and
’––>’. Any textual content that is surrounded by the comment-tags is intended to be
read by humans, and thus it should not be taken into account by any XML processor.
An example of an XML comment is presented here below:

<!-- Data taken from NASA Extragalactic Database -->

When dealing with markup languages, as XML is, an important note should be made:
markup languages use particular symbols to special purposes, like the previous mentioned
’<’ and ’>’ characters, aimed at representing starting and ending tags.

It is thus required, for the markup language, to provide an escaping technique to allow the
specification of textual content that includes the special characters as simple characters
that will not be interpreted during the XML processing (for example, to define textual
contents to contain the ’<’ and ’>’ symbols). To this purpose XML provides a set of
entity references:

• < represents the ’<’ (lower-than) character;

• > represents the ’>’ (greater-than) character;

• & represents the ’&’ (ampersand) character;

• " represents the ’"’ (double quote) character;

7

• ' represents the ’’’ (single quote) character;

During the document processing the XML parser will take care of automatically changing
every instance of an entity reference back to its original representation. Taking as an
example an element labeled "text" with a textual content of "Is true that 5 < 6?", it
has to be written, following the XML format, as:

<text >Is true that 5 < 6?</text >

A second option provided by XML to avoid conflicts in special symbol usage are the so
called CDATA blocks: such block of text, enclosed by the tags "<![CDATA[" and "]]>",
provides the ability to write long chunks of text where no special symbols are identified
as markup data. The same example provided before, but with the use of CDATA block
is:

<text ><![CDATA[Is true that 5 < 6?]] > </ text >

2.1.2 XML prolog, Declaration and Processing Instructions

XML documents are usually introduced by an XML prolog: it is the information written
in an XML document the precedes the root-element; usually the XML prolog includes
processing instructions (PI) or the XML declaration. Processing instructions are ele-
ments, enclosed by the special start-tag ’<?’ and the end-tag ’?>’, that are intended to
provide information or commands to an application that is processing the XML docu-
ment. For such PI the element label represents the target application, while the element’s
attributes are set of instructions or commands.

An example of Processing Instructions is provided in the following code, where a target
application, called xml-stylesheet, is instructed on how to apply a particular style-
sheet2 to the current document.

<?xml - stylesheet type =" text/css" href =" docstyle .css "?>

Differently from a Processing Instruction element, that can be placed in any part of the
XML document, an XML Declaration must be, if present, placed in the XML prolog;
such declaration follows the same syntax of a PI element, but it does not target any appli-
cation. An XML Declaration encodes information about the subsequent XML contents;
its start-tag is <?xml, while the end-tag is ?>. In the following code the XML Declaration
defines the XML version (1.0) and the document charset encoding (UTF-8).

<?xml version ="1.0" encoding ="UTF -8"? >

2A stylesheet represents a set of instructions on how the XML document contents should be transformed
or rendered; for further details refer to CSS Specification [17] and XSL Transformation [18].

8

The information present in an XML Declaration is used by XML applications to correctly
handle the document format, structure and content.

2.1.3 Well-formed and Valid XML Documents

In addition to the formal syntax that has to be used for writing a correct XML document
(as described in Section 2.1.1), the XML format also defines a formal validation of XML
documents: documents that respect the allowed entities references names, the element
attributes positioning, and other specific aspects, are called well-written documents.
The XML language defines a document as well-formed when such document is both
well-written and conform to the following rules:

• the document has a unique root element;

• every start-tag has its corresponding end-tag;

• every element’s attribute value is quoted;

• element attributes can not be duplicated;

• the document does not contain overlapping elements: an element’s closing tag must
be placed after that all of its contained elements have been closed.

Furthermore a document can be labeled as valid if besides being well-written and well-
formed, its contents and structure adhere to a specific schema that defines rules and
guidelines regarding both the allowed markup (both for the elements and attributes
labels), and their correct nesting. An XML document can then be considered valid with
respect to a specific schema definition.

The Document Type Definitions (DTDs), as defined by the W3C, allow to formally define
an XML document structure by specifying the elements and attributes labels and a basic
content specification. The DTD allows to express, for each element and attribute, the
required cardinality in the document markup: an element (or attribute) can be defined
to be required or optional or to appear only in a certain position in the document
markup. Furthermore, for XML element contents, a DTD can specify the contained
data as composed of: a predefined subset of elements, plain text, a mixed content (text
mixed with other markup elements) or force an element not to have any content at all.
Documents that match against a given schema are said to be valid, or invalid in the
opposite case. Documents are not required to specify the schema they adhere to, in
many cases the applications that handle XML documents only require documents to be
well-formed.

An XML document can specify which Document-Type is associated with its markup
by using the reserved element named <!DOCTYPE provided in the document prolog; in
the following code, an example of XML document that specifies the associated DTD is
shown:

9

<?xml version ="1.0" encoding ="UTF -8"? >
<! DOCTYPE collection SYSTEM "http :// exampledtd .com/nasa/ned.dtd" >

The XML <!DOCTYPE markup (also described as Document Type Declaration [19]) in the
example above defines:

collection as the Root Element Type; this first parameter must match the document
root label in the current document;

SYSTEM specifies that the DTD is external to the document, the DTD is subsequently
specified in the following parameter;

http://../ned.dtd this last parameter explicitly states the URI location of the DTD
that matches the current document, the URI can specify a resource available online
(such as in the example) or available elsewhere ("file://" and other protocols can
be used).

In the following section a short description of the DTD specification is provided, along
with a discussion about other schema definition languages proposed in the literature to
solve some DTD limitations.

2.1.4 Document Type Definition (DTDs)

The Document Type Definition language defines the set of XML markup (such as el-
ements, attributes, notations and entities) that a document may use; furthermore the
DTD specifies the basic data validation, the element nesting and their composition.

As an example the following code shows the Document Type Definition for the XML
document introduced in Section 2.1.1:

1 <! ELEMENT collection (object +)>
2 <! ELEMENT object (name , position , distance ?, description *)>
3 <! ELEMENT name (# PCDATA)>
4 <! ELEMENT position (latitude , longitude)>>
5 <! ELEMENT distance (# PCDATA)>
6 <! ATTLIST distance unit (meters | centimeters | lightyear) #REQUIRED >

In the example the XML elements are defined by the <!ELEMENT symbol followed by the
element label and, enclosed by rounded brackets, the list of child element names or the
type of the element content. In case a list of elements is provided, such list can include
specific cardinality modifiers that define if an element can appear "one or more" times
(modifier ’+’), "zero or more" (modifier ’*’) or "zero or one" (modifier ’?’); if no modifier
is specified the element is assumed to appear exactly once.

For example the element object (defined in line 2) can appear one or more times as
a child of the collection element; the element distance is optional for the element

10

object (but can appear at most one time), while the element description can appear
zero or multiple times as a child of object.

Taking as an example the definition of the element distance in line 6, the DTD specifies
that its contents must be a Parsed Character Data (#PCDATA) that is a plain text without
any other child XML element.

The <!ATTLIST markup allows to define XML element’s attributes: the element name is
specified as the first parameter, followed by the list of the defined attributes. Attributes
are specified with a triple that corresponds to: attribute name, attribute data type and
the attribute value declaration (i.e. if the attribute is required, optional, fixed or has a
default value). The most used data types, as defined by DTD, are the following:

CDATA Character data, similar to the #PCDATA defined for elements contents;

ID the value represents a unique identifier for the containing element;

IDREF the value is a reference to a unique value ID that identifies an element;

IDREFS the value is a list of referenced IDs, separated by spaces;

Enumeration list This data type defines a list of admissible values for the attribute.

Other data types defined by DTD are: NMTOKEN (a string of characters without spaces),
NMTOKENS (a list of NMTOKENs separated by spaces), ENTITY (a space separated list of
entity or entity-reference values).

Regarding the attribute value declaration, the DTD allows the following attribute defi-
nition:

#IMPLIED the attribute value is optional, and no default value is provided;

#FIXED the attribute value is fixed, this means that if the attribute is specified in an
XML document its value must match the DTD one, if the attribute is not present
in the document, it is automatically added;

#REQUIRED the attribute is required, but no default value is provided.

Taking as an example the DTD provided above, the unit attribute for the element
distance is required and it can take one of the three provided values: meters, centimeters
and lightyear.

As previously outlined, and as shown from the list of data types provided above, the
DTD only allows a basic data type definition for element content and attribute values:
only plain text (such as #PCDATA and CDATA) is actually used for schema evaluation thus
limiting the DTD expressiveness. Such limitation does not allow, for example, to define
numeric data types or values representing dates.

After DTD, other languages that allow a more powerful schema specification for XML
documents have been defined such as RELAX NG (REgular LAnguage for XML Next

11

Generation) [20] or Schematron [21]. The W3C has defined the standard XML-Schema
[22] language that allows the definition of XML Document Type Definition with a more
detailed specification, thus allowing a more precise validation.

The main differences among the mentioned languages rely on the syntax for the schema
definition and on the XML document validation: RELAX NG adopts a simple syntax
inspired by regular expressions, Schematron is a rule-based validation language, while
XML-Schema adopts XML as the definition language for XML documents.

2.1.5 XML Document Example

In this section, as a short conclusion of the synthetic introduction to XML, the source
code of the XML document provided in the examples of the previous sections, is presented
in its complete form in Listing 2.2.

<?xml version ="1.0" encoding ="UTF -8"? >
<! DOCTYPE collection SYSTEM "http :// exampledtd .com/nasa/ned.dtd" >
<?xml - stylesheet type =" text/css" href =" docstyle .css "?>

<!-- Data taken from NASA Extragalactic Database -->
<collection >

<object catalog =" M31" type =" galaxy ">
<name >Andromeda </name >
<position >

<latitude unit =" degrees " >80.893 </ latitude >
<longitude unit =" degrees " >69.756 </ longitude >

</position >
<distance unit =" meters " >7.92 E+23 </ distance >
<description ><![CDATA[

NGC 224 - M 31: The M31 nucleus is highly compact , and is the
prototype of the central luminous star clusters found in many
galaxies . The bulk of its stellar population corresponds
to an old (& >~10 Gyr) metal -rich component (Bica et al. 1990).
This is also reproduced by our synthesis analysis .

]]></ description >
</object >
<object catalog =" LMC" type =" galaxy ">

<name >Large Magellanic Cloud </name >
<position >

<latitude unit =" degrees " >21.847 </ latitude >
<longitude unit =" degrees " >22.454 </ longitude >

</position >
<distance unit =" meters " >4.90 E+22 </ distance >
<description ><![CDATA[

This is the Large Magellanic Cloud. The plate was taken
by Dr. Karl Henize with the Mount Wilson 10- inch refractor
in the light of H{alpha }. Although the form of this galaxy [..]

]]></ description >
</object >
<object catalog =" virgo - cluster " type =" cluster ">

12

<name >Virgo Cluster </name >
[...]

</object >
</collection >

Listing 2.2: Example of XML document

In the above XML document code the XML prolog, CDATA, DTD, and the whole markup
correspond to the previously described XML language features; only the XML element
named description has been added to further illustrate the CDATA block usage when
the element contains XML entities such as “&” and “<”.

2.1.6 Summary

In Section 2.1 the main features of XML have been described: XML Elements, At-
tributes, Schema and Entities provide the building blocks for defining XML document
contents and their structure. An important aspect of XML is the implied user-readability
of an XML document and the high flexibility degree offered by the language: ad-hoc
structures can be defined to any purpose, from data exchange to document layout
and presentation. Not surprisingly XML is the de-facto standard for Web documents
(xHTML[23] and its variants), WebServices protocols (SOAP [24], WSDL [25]) and data
interchange formats such as websites syndication formats like RSS and Atom. Not lim-
ited to the above list, the adoption of XML is increasing, an example is the document
definition in wide used Office-Productivity tools (as Microsoft Office, LibreOffice) or a
standard for instant-messaging and VoIP communications systems with the XMPP [26]
protocol.

2.2 Querying XML documents

Processing XML documents contents and structure is another crucial part for the XML
language definition: huge structured data, once defined and stored, require appropriate
techniques to query and retrieve document contents and elements.

Several retrieval methods have been proposed in the literature to exploit the salient fea-
tures of XML documents, where the semantic information of contents may be conveyed
through the document structure and the provided element nesting. Such characteristic
is different from other markup formats, such as HTML, where tags are used mainly for
presentation and stylistic purposes.

The use of the structure associated with a document content is not always aimed at the
same intent in different documents: XML documents can be classified into two different
categories given their content organization. In the literature data-oriented documents
refers to XML documents that contain a highly structured organization of their data

13

contents, usually the XML components in such type of documents can be considered as
database records. The second type of XML documents is called text-oriented, in these
documents the structure is often irregular and contents are organized to be easily used
and read by humans.

Given this classification, document querying and content access have been proposed
in the literature from two different perspectives: the Information Retrieval and the
Database point of view. The Information Retrieval point of view considers approximate
matching of document fragments, and it focuses on ranking retrieved XML elements
according to their relevance to the query. On the other side, the Database point of view
deals with XML documents as database records, focusing on exact matching during
query evaluation instead of ranking and relevance assessment of retrieved elements.

Since the definition of XML documents and the widespread usage of XML, querying
highly structured documents has been considered by the database community as querying
semi-structured data, as opposite to the Information Retrieval community that talks
about structured text retrieval, by taking into consideration that the structure serves the
purpose to organize the textual contents in XML documents. The differences between
the two perspectives on querying XML documents are nowadays not sharply defined:
Baeza et al. [27, p. 2867], for example, summarize the relationship between the two
approaches as:

“From a terminology point of view, structured text retrieval and querying
semi-structured data, in terms of end goals, are the same, i.e., finding ele-
ments answering a given query. The difference comes from the fact that in
information retrieval, the structure is added, and in database, the structure
is loosened”.

In the following sections the two main standard languages for querying XML documents,
as defined by the World Wide Web Consortium (W3C), are described: XPath [2] (in
Section 2.2.1) and XQuery [3] (in Section 2.2.2). The XPath language allow users to
select and retrieve XML elements and attributes by the specification of structure-based
and content-based constraints. The XQuery language, subsequently defined on top of
the XPath language, provides techniques to manipulate XML documents by element
selection, ordering, and re-arrangement. Both languages have been mainly inspired
from a database perspective of XML documents and allow exact matching of query
constraints.

Furthermore, in Section 2.2.3 the most important query language proposed by the IR
community, named NEXI [28], is presented.

2.2.1 The XPath language

The XPath [2] language has been defined by the W3C to allow the selection of parts
(or fragments) of an XML document: XML nodes, XML attributes and textual contents

14

can be selected and retrieved using the XPath language.

The XPath constructs and expressions, and the XQuery ones described in Section 2.2.2,
have been conceived based on a highly structured view of an XML document content.
As further discussed in the XQuery language section, these languages adopt a database
like style for querying and matching XML elements.

The main components of the XPath language are:

• Expressions: they represent the XPath query, its components and the set of pred-
icates that constitute the query;

• Nodes and Node Sets: they specify the types of elements returned by the evaluation
of an XPath expression;

• Context: it represents the environment in which an expression is evaluated, it can
be the whole document tree or a sub-tree of the complete document;

When querying an XML document, and in particular when a set of nodes is retrieved,
such set of items is usually called Node-Set as it actually represents a set of XML nodes
of any type (text contents, attributes, comments, etc.). Every item in such set is also
informally called fragment as it represents a section of the entire XML document from
which it was selected; from now on the concept of document fragment is used with this
meaning.

Before describing the semantics and the complete syntax of the XPath language, the
main characteristics of the language are introduced in the following sub-sections.

2.2.1.1 The XPath Data Model

The XPath language handles both the structure and data of XML documents by us-
ing a Document Object Model (DOM) [29] that describes the document as a partic-
ular graph, in particular a tree of nodes, where a type is associated with each node.
XPath DOM defines seven different types of nodes, also called XPath Node Types,
which are: the Root-Node, Element-Nodes, Text-Nodes, Attribute-Nodes, Comment-
Nodes, ProcessingInstruction-Nodes, and Namespace-Nodes; such node types have a cor-
respondence with the XML language definition as provided in Section 2.1.

In the XPath Document Object Model each XML document has a single and unique
Root-Node that represents the root of the document elements hierarchy; it does not have
a name and it admits a single child that is the root element of the XML document
as described in Section 2.1.3. Subsequently, all the descending Element-Nodes of the
Root-Node represent, in turn, all the descending XML elements in the XML document.
Each Element-Node may have, following the XPath DOM, children nodes that identify
attributes, comments, descending XML elements or the contained text; such children
are represented by Attribute Nodes, Comment Nodes, Element-Nodes and Text-Node
respectively. Furthermore, any Attribute-Node, Comment-Node or Text-Node must not

15

have children as they are defined as leaf nodes in the XPath Document Object Model
and no tags can be defined, nor nested, in such elements.

2.2.1.2 XPath Expressions

An XPath Expression constitutes the main component of an XPath query: the evaluation
of an XPath expression results in a Node-Element or a Node-Set that matches the
constraints specified in the query.

The most used XPath expression is the Path Expression (also known as Location Path)
that allows to identify and retrieve an XML element, or a set of XML elements (or Node-
Set), given their path from the root XML element or from a context. A Path Expression
is composed of a sequence of one or more Location Step, that define the relation between
two XML elements. Let us take into consideration the following XPath Expression:

/ collection / object /name

The XPath expression would match all the XML elements <name> children of an <object>
elements that are, in turn, children of the root XML element labeled collection. Fol-
lowing the XML example document in Section 2.1.5 (Listing 2.2), the result of the
evaluation of such an expression would be the following set of elements:

<name >Andromeda </name >
<name >Large Magellanic Cloud </name >
<name >Virgo Cluster </name >

Listing 2.3: Node Set returned for the search /collection/object/name

The provided example is also called absolute location path given its starting ’/’ character
that identifies the context of the expression the Root Node in the XPath data model. If
the context of the evaluation is not specified, or if it is not the Root Node, the location-
path is called relative location path, and it is evaluated by using the current context of
the expression.

Path expressions are composed of a sequence of units called location steps that conform
to the following pattern: /axis::nodetest[predicate]. Before describing the formal
XPath language syntax, some further details are provided to better understand XPath
query components:

• an axis allows to define the location path in terms of the relationship that must
occur between two nodes;

• a nodetest allows to identify and match a set of XML nodes by their type (tag,
attribute, etc..) or their label name;

16

• a predicate allows to define boolean expressions that are matched against a given
context, such evaluation allows to filter nodes that do not match a given condition
such as the presence of a given child node or the exact value of an attribute.

2.2.1.3 XPath Axes

In the XPath language there are 13 different axes, usually classified as forward and
reverse axes that refer to the direction in which the nodes are visible relatively to the
actual context node. In Table 2.1 the complete list of the available axes, as defined in
the XPath language, is presented; for some axes the abbreviated form is also cited.

Regarding the implementation of the XPath language (recommendation 1.0) the W3C
does not require the availability of the following axes: following, following-sibling,
ancestor, ancestor-or-self, preceding, and preceding-sibling. Furthermore the
axis namespace has been deprecated in the subsequent versions of the XPath language.

2.2.1.4 XPath Node Test

The Node Test part of an XPath location step indicates which nodes have to be selected
by the axis evaluation: the selection can be by node name or by node type. A list of the
main node test available in XPath is presented in Table 2.2.

2.2.1.5 XPath Predicates

As previously outlined, the XPath language allows to include in any XPath expression
the predicates useful to filter the nodes based on specific constraints. A predicate is
simply an expression in square brackets ([and]), where an expression can contain zero
or more predicates.

If a predicate evaluation produces a false value (equivalent to the number 0, the empty
sequence, or a Not-a-Number value), the entire predicate is considered false, true oth-
erwise. Instead, if the expression evaluation produces a non-zero number, this number
is considered as the positional sequence of the item to be processed; in such case the
predicate is called positional predicate. An example of such type of predicate is shown
in the following expression, where to a path expression (/collection/object) a simple
positional predicate (in the form [2]) is added:

/ collection / object [2]

The expression will retrieve, if it exists, the second element labeled object from the set
of children of the collection element; given the example XML document in Listing 2.2,
the results of the previous query are presented in Listing 2.4.

17

Axis Description Direction

child
(abbreviated as “/”)

Matches all the children Element
Nodes of the context node (At-
tribute Nodes are excluded)

Forward

parent
(abbreviated as “..”)

Matches the parent Element Node
of the context node Reverse

descendant
(abbreviated as “//”)

Matches all the descending Ele-
ment Nodes from the context node,
including the children nodes

Forward

ancestor

Matches all the ancestors Element
Nodes of the context node, from
the parent element back to the root
element

Reverse

descendant-or-self
Selects all the descendants Ele-
ment Node of the context node, in-
cluding the context node itself

Forward

ancestor-or-self

Like the ancestor axis, it matches
all the ancestors Element Nodes,
also including the context node it-
self

Reverse

following

Selects all Element Nodes that fol-
low, in document order, the con-
text node in the document, exclud-
ing the context node’s descendants

Forward

preceding

Matches all nodes that precede, in
document order, the context node
in the document, excluding the
context node’s ancestors

Reverse

following-sibling
Selects all siblings Element Nodes
of the context node that appear be-
fore it (in document order)

Forward

preceding-sibling

Selects all preceding Element
Nodes of the context node that
appear after it (in document
order)

Reverse

attribute
(abbreviated as “@”)

Matches all the attributes of the
context node (if any) Forward

namespace
Selects the namespace of the con-
text node Forward

self
(abbreviated as “.”) The context node itself N/A

Table 2.1: List of XPath axes

18

Node Test Node type matched
node() Matches any node
text() Matches a text node
comment() Matches a comment node
name Matches an Element Node labeled name
@attr Matches an Attribute Node labeled attr
* Matches any Element Node

Table 2.2: Main list of Node Tests in XPath language

<object catalog =" LMC" type =" galaxy ">
<name >Large Magellanic Cloud </name >
<position >

<latitude unit =" degrees " >21.847 </ latitude >
<longitude unit =" degrees " >22.454 </ longitude >

</position >
<distance unit =" meters " >4.90 E+22 </ distance >
<description ><![CDATA[

This is the Large Magellanic Cloud. The plate was taken
by Dr. Karl Henize with the Mount Wilson 10- inch refractor
in the light of H{alpha }. Although the form of this galaxy [..]

]]></ description >
</object >

Listing 2.4: Node Set returned from the evaluation of the expression /collection/object[2]

An example of a simple XPath expression containing a predicate is the following, where
the predicate [@type="galaxy"] evaluation produces a true/false value:

/ collection / object [@type =" galaxy "]/ name

The evaluation of this expression retrieves, if querying the sample XML document in
Listing 2.2, the elements labeled name child of an object element that must have an
attribute named type the value of which must be “galaxy”. The set of retrieved elements
is shown in Listing 2.5.

<name >Andromeda </name >
<name >Large Magellanic Cloud </name >

Listing 2.5: The Node Set returned by evaluating the expression
/collection/object[@type="galaxy"]/name

Predicates can be applied to any node, and multiple predicates can be logically combined
by using the and and the or connectives. An example of an XPath expression with
multiple predicates is the following:

19

/ collection / object [@type =" galaxy " and @catalog =" M31 "]/ name

Like in the previous example, the expression selects only the elements labeled name, but
it requires that the parent object element has two attributes named type and catalog,
having the value of “galaxy” and “M31” respectively. The only retrieved element, in this
case, is the XML element having Andromeda as the textual content of the tag name.

Another example is the following expression, where the name node of object elements
that have a child element position are retrieved: this criterion only checks that the
element position exists as a child of the current context node (the object node).

/ collection / object [/ position]/ name

2.2.1.6 XPath Functions

The XPath language also includes a set of functions that may be used in predicates:
the most common functions operate on strings (like node content or attribute values)
or node sets. Here below, in Table 2.3 the most commonly used XPath functions are
briefly described; for a complete list of the available built-in functions in XPath please
refer to [2].

Function Description

contains(string1, string2)
Returns true if the text in string1 is contained in
string2, false otherwise

start-with(string1, string2)
Returns true if the the text in string1 starts with
the value in string2, false otherwise

count(nodeset)
Returns the count of elements in the given node-
set

position()
Returns the ordinal position of the current con-
text node within the context sequence being pro-
cessed

Table 2.3: Short list of built-in functions for the XPath language.

2.2.1.7 Summary

In Section 2.2.1 the XPath language has been introduced and its characteristics ana-
lyzed and described. XPath has been defined as a language for selecting elements and
attributes form an XML document while traversing its hierarchy and filtering out un-
wanted content. Given its simple syntax, it has been adopted and leveraged in other
languages that used XPath features for element selection; such languages, besides the

20

previously mentioned XQuery, include: XSLT [18], XPointer [30], XForms [31] and XML
Schema [22].

In December 2010 the W3C defined the first recommendation for a 2.0 version of the
XPath language [32], which includes a wide variety of expressions and functions (like
for, let, if, some, and every expressions, as well as type casts) shared with the XQuery
language; thus the new XPath language allows to express not just path expressions. The
new version of the XPath language has been defined to be compatible with the previous
1.0 version as possible: almost all the XPath 1.0 expressions are still valid in XPath 2.0,
slight differences are in some value handling functions.

The XPath 2.0 and the XQuery language (described in Section 2.2.2), share the same
underlying document object model called XQuery and XPath Object Model (XDM)
Core 3 [33]: it is a slightly different, and more powerful model than the aforementioned
DOM model. XDM extends the DOM by including the support for objects with type
(described by the W3C XML Schema), and items such as floating-point numbers. The
XQuery language is described in the next Section 2.2.2.

2.2.2 The XQuery language

The XQuery language [3], as initially defined by the W3C in 1999, allows to select,
reorganize, transform and finally return a set of XML elements in a structured form. It
is also indicated as an Information Processing Language [34] as it provides more features
than a pure query language.

The XQuery language, leveraging the XPath language to select and filter XML elements,
is a functional language that offer features such as:

• searching and joining information across multiple documents;

• sorting, grouping and aggregating data;

• transforming XML data into another XML structure;

• performing arithmetic computation on dates and numbers;

• updateing XML data in the source XML document3.

As it can be noticed from the set of features of XQuery, this language has several char-
acteristics in common with the SQL language (some designers of the XQuery language
were also involved in the design of the SQL language) and for this reason XQuery was
initially referred as the “SQL for XML”. This correlation between XQuery and SQL is
confirmed by the fact that the early adoption and implementation of the XQuery lan-
guage were on Native-XML Database products, where the data handling processes, as

3This feature has been defined for a future version of the XQuery language under the name of XQuery
Update Facility, its definition is available in [35]

21

opposite to traditional relational databases, are oriented towards XML and structured
documents.

Starting from its first versions the XQuery language has been defined as a collabora-
tive effort to integrate different XML query languages proposed in the literature into a
standard language. Some languages from which XQuery was inspired were: Quilt [36],
XQL [37], XML-QL [38] and Un-QL [39]. For a report of the main existing query lan-
guages proposed before the actual definition of the XQuery 1.0 language, a summary
and comparison is presented in [40] and [41].

One of the main characteristics of the XQuery language is that it can be extended,
similarly to object-oriented languages, with additional functions and modules; such ex-
tensions can be defined for the XQuery language to further reduce the query complexity
and to make the query more reusable and readable.

2.2.2.1 XQuery 1.0 (and XPath 2.0) Data Model (XDM)

The XQuery language adopts a slightly enhanced data model than the previous DOM
(also called Core 1) model; the XDM data model (XQuery 1.0 and XPath 2.0 Data
Model) was defined by the W3C in [33]. The XDM has added support for sequences
of elements and atomic values; such features were missing from the previous Document
Object Model 1.0.

An important difference between DOM and XDM relies on how the root element or root
node is handled by the two models: in XPath 1.0 the input of a query is expected to
be a well-formed and complete XML document, and only a root node is expected. In
the XDM (that allows the input to be a document fragment or a sequence of multiple
elements) the meaning of root node for inputs is not maintained, and the concept of
document node and root element have been introduced. Such differences between DOM
and XDM are due to the enhanced ability of XQuery 1.0 and XPath 2.0 to work on data
model instances (also called abstract trees) that could be constructed not only from
XML documents, but also from relational databases, RDF triple store, and more.

2.2.2.2 XQuery Expressions

The XQuery language expressions are named FLWORs expressions, an acronym that
stands for: “For, Let, Where, Order-by, Return”. The acronym describes, in a compact
way, all the features of the XQuery language. FLWOR expressions allow the query to
select, manipulate and transform the set of XML elements into a desired result such as
a new XML document or a set of XML elements.

The XQuery language leverages the XPath language to select XML elements using path
expressions; such dependency limits the manipulation power of the language: the selected
elements (XML nodes, content or attributes) can be only returned as matched by the

22

path expression, but neither manipulated nor re-ordered. A first difference with respect
to the XPath expressions is on the absence of the so called default context item: in
XPath the initial context of any expression is the entire XML document, while in XQuery
expressions such context must be always declared.

In Listing 2.6 a simple XQuery expression is presented; the result of its evaluation is the
same of Listing 2.5; the first difference is the required specification of the default context
of the expression, in this case it is returned by the evaluation of the function doc() that
loads the XDM data model from the given XML file.

doc ("nasa -ned - collection .xml ")/ collection / object /name[@type =" galaxy "]

Listing 2.6: Simple XQuery expression with default context speficied.

A more extensive example of XQuery FLWOR expression is readable in Listing 2.7,
where most features of the XQuery language are used to retrieve, manipulate and return
a new set of XML elements.

1 for $obj in doc ("nasa -ned - collection .xml ")/ collection / object
2 where $obj@type =" galaxy "
3 order by fn:lower -case($obj/name/text ()) descending
4 return
5 <galaxy catid ="{ $obj@catalog }">
6 <name >{ $obj/name/text ()} </ name >
7 <data >{ $obj/ position }</data >
8 </galaxy >

Listing 2.7: Example of XQuery expression with FLWOR clauses.

The example expression allows to select, from a local XML document named nasa-ned-
collection.xml (the content of which is shown in Listing 2.2), all the objects having a
type attribute containing the value galaxy. The results are then sorted in a descend-
ing lexicographic order (from Z to A) avoiding uppercase/lowercase mismatch, and the
elements are restructured as a new XML fragment having only a name element and all
data related to the element position.

As shown in Listing 2.7 an XQuery FLWOR expression is composed by multiple parts:

For The for clause, differently from the typical meaning in procedural languages such
as C or Java, generates a sequence of nodes retrieved from the evaluation of the
path expression doc("nasa-ned-collection.xml")/collection/object (in line
1); the subsequent FLWOR expression is evaluated once for each of the items in
the sequence, and its value is stored in the variable named $obj4.

4 In the XQuery language the dollar ($) sign is used to define variable names: all the variable’s names
must start with such symbol. XQuery variables may contain any sequence: nodes, numeric values,
strings, or any Atomic Value as defined in the XQuery XDM. Variables values can not be changed:
once the expression evaluation bounds a variable to a value, such value becomes unchangeable.

23

Let The let clause (not used in the example in Listing 2.7) allows to define variables and
assign values to them; path expressions or XQuery functions may be used to obtain
such value. The Let clause is often used to avoid repetitions in XQuery expressions
and to provide, in some XQuery engine implementations, better performances
during the query evaluation.

Where As in the SQL language from which XQuery has been defined, the where clause
filters and selects only elements matching given criteria, in the example in Listing
2.7 (line 2) only the items with an attribute named type having a galaxy value are
kept and not filtered out.

Order by This clause sorts the results; like the similar clause in the SQL language,
an ascending or descending sorting may be specified. In the example query
expression, at line 3, the fn:lower-case() function is applied to the contents of
the element name, and it provides the values for the sorting process; further details
about the XQuery functions are given in Section 2.2.2.3.

Return This clause allows to define which and how the elements retrieved by the expres-
sion should be returned from the evaluation: new XML elements with a customized
structure may be returned with textual contents or attributes values taken from
the current items and variables. In lines from 5 to 8 of Listing 2.7 the expression
defines a new XML structure for the retrieved elements. The variable $obj can be
accessed and queried by using a path expression to access the element attributes
or values by using the XQuery technique called enclosed expression.

<galaxy >
<name catid =" LMC">Large Magellanic Cloud </name >
<data >

<position >
<latitude unit =" degrees " >21.847 </ latitude >
<longitude unit =" degrees " >22.454 </ longitude >

</position >
</data >

</galaxy >
<galaxy >

<name catid =" M31">Andromeda </name >
<data >

<position >
<latitude unit =" degrees " >80.893 </ latitude >
<longitude unit =" degrees " >69.756 </ longitude >

</position >
</data >

</galaxy >

Listing 2.8: Results of the evaluation of the XQuery expression in Listing 2.7.

Listing 2.8 shows the result of the evaluation of the expression in Listing 2.7; each
matched element has a completely different structure than in the original XML docu-
ment: some elements have been kept (for instance the position element and its de-

24

scending nodes) and other have been reorganized (the new catid attribute have been
added to the name element).

The XQuery language allows to combine a query expression with a so called enclosed
expression: such an expression is enclosed in curly brackets “{” and “}” and, once
evaluated by an XQuery engine, its value is returned as one or more atomic values. As
an example, in Listing 2.7 at line 5 an enclosed expression is specified to access the item
data: the evaluation of {$obj@catalog} returns the value of the attribute catalog of
the item $obj, as shown in the obtained results.

2.2.2.3 XQuery functions

The XQuery 1.0 language defines more than 100 built-in functions, spanning from string
manipulation to date/time computation and Regular Expressions matching. The func-
tions have been defined by the W3C in [42], and they are shared by the XQuery 1.0,
XPath 2.0 [32] and XSLT 2.0 [43] languages.

Besides the built-in functions, XQuery 1.0 permits user defined functions to be provided
and used in any XQuery expression; this allows query fragments to be reused, and the
development of libraries that can be shared and reused by other parties.

Differently from the XPath functions described in Section 2.2.1.6, the XQuery 1.0 func-
tions are enclosed in a namespace named fn:; the user can invoke a function by calling
the function, for example, as fn:lower-case(//name/text()) to obtain a lowercase
representation of the textual contents of the //name node.

In Table 2.4 a short example of XQuery functions is provided; the XQuery function
signatures, as they employ the fn: namespace, differ from XPath also for the usage of
typed elements: as an example the input parameter for the function fn:round() must
be a numeric object, while the parameter for the fn:data() is a generic element.

For a complete list of the functions defined for XQuery 1.0 (and the related languages)
refer to [44].

The XQuery 1.0 functions, as defined in [42], are allowed to have a behavior either imple-
mentation dependent or implementation defined: such characteristics allow the XQuery
engines to behave differently given the same function. This point is of particular interest
for the XQuery/XPath Full Text extension (further described in Section 2.3), where the
computation of the score, related to a text relevance, is left to vendor implementations
without the need to conform to any standard or common algorithm.

25

Function Description
fn:contains($arg1 as xs:string?,
$arg2 as xs:string?)

Returns a boolean indicating whether the
value of $arg1 contains the value of $arg2.

fn:lower-case($arg as xs:string?)

Returns the string representation of the
given input where all characters have been
converted to their lowercase representa-
tion, adhering to the Unicode Standard
[45].

fn:data($arg as item()*)

Accepts a sequence of items and it returns
their typed values: for atomic values it re-
turns the value itself, for nodes it extracts
the typed value of the node.

fn:matches($input as xs:string?,
$pattern as xs:string)

Returns a boolean value if the given in-
put string matches the regular expression
provided in the pattern parameter.

fn:id($arg as xs:string*)
Returns the elements in the XML docu-
ment with the given ID, or the given set
of space separated list of IDs.

Table 2.4: Example list of built-in functions for the XQuery 1.0 language.

2.2.2.4 XQuery 1.0 (and XPath 2.0) extensions

Given the increasing areas of application of the XQuery language, from digital documents
to Scalable Vector Graphics (SVG [46]), the standard built-in functions that are available
in both XQuery 1.0 and XPath 2.0 have been devised to be not sufficient for some tasks.
For that reason the W3C created the EXPath Community Group [47] with the aim of
leading the definition of language extensions for all the XPath 2.0 related languages such
as XQuery 1.0, XProc [48], XForms [31], XSLT [43] and XML Schema [22]. The EXPath
defined a set of function libraries, also called modules, to extend the functions provided
by XQuery with commonly adopted solutions to the aim of reusing standard techniques,
and to provide a shared set of extensions. Such purpose is well described in the EXPath
website:

“EXPath exists to provide specifications for such missing features in a collaborative-
and implementation-independent way. EXPath also provides facilities to help
and deliver implementations to as many processors as possible, via extensi-
bility mechanisms from the XPath 2.0 Recommendation itself”.

The list of defined modules includes Filesystem I/O [49], Geospatial API [50], Crypt
functions [51], compressed (ZIP) archives handling [52], HTTP protocol communication
[53] and execution of SQL expressions on databases [54]. Please refer to the EXPath
[47] website for the complete list and details of EXPath defined modules.

26

Apart from EXPath functionality extensions, the XQuery language is being under a
review process from the W3C, and the definition of a 3.0 version [55] is, at the time of
writing, at a Last Call Working Draft status5. The new XQuery version is planned to
include:

• database-oriented clauses like the missing group by and count expressions and
allow empty clause to simulate SQL outer-joins;

• enhanced function declaration with the inclusion of: private and inline functions;

• execution flow controls with try/catch and switch expressions;

2.2.2.5 Summary

The XQuery 1.0 language has been defined as a joint work of Database and Information
Retrieval experts; the prominent influence from the database community is proven by
the similarities between the XQuery expressions with the SQL language. The XQuery
language has been integrated in many systems where the main aspect of manipulation
and element reorganization of XML documents played an important role in data handling
and data manipulation.

More and more companies are adopting the XML as a standard representation of their
data; this pushed both the implementation of XQuery engines, and the definition of
ad-hoc solutions for data handling when XML documents contain complex data (such
as compressed archives or geo-spatial data). The goal of the W3C EXpath community
is, in fact, to propose an extended set of functionalities to address such challenges by
leveraging the XQuery and XPath extendibility characteristics.

For those reasons a large number of companies started to adopt XML as the underlying
structure for their data management systems, and to integrate the XQuery language
as the main query language. Such XQuery engines go from commercial products like
Oracle 10g, IBM DB2 to open source project like Berkley DB XML, eXist and BaseX
only to mention some of the available systems that implement the XQuery language
specification6.

2.2.3 The NEXI query language

As mentioned in Section 2.2, the issue of querying XML documents has been addressed
by two communities: the Information Retrieval (IR) one and the Database one. The IR
community envisioned a twofold XML querying approach: by a first approach the XML

5 The XQuery 3.0 draft is available at http://www.w3.org/TR/2013/WD-xquery-30-20130723/, while,
regarding the version numbering, the W3C never worked on a XQuery 2.0 version, but just went
from the 1.0 to the 3.0 version release.

6A more complete and exhaustive list of XQuery 1.0 and XPath 2.0 implementations can be found at
the W3C website: http://www.w3.org/XML/Query/#implementations

27

http://www.w3.org/TR/2013/WD-xquery-30-20130723/
http://www.w3.org/XML/Query/#implementations

structure should be taken into account while evaluating a query, and the content part
of a document (XML text nodes, as referring to the XPath and XQuery data model)
should be evaluated with IR techniques for text matching.

The IR community outlined that in the XPath (and thus in the XQuery language) only
exact matching for content based constraint were defined: all the XPath functions for
selecting nodes given their content were based on exact matching of strings or substrings.
As an example the contains function, as described in Table 2.3 only provides an exact
containment matching for test nodes, without any score computation.

To allow a keyword based matching for XML documents Trotman and Sigurbjörns-
son proposed the NEXI [28] language; NEXI leverages the XPath 1.0 element selection
syntax (thus the set of XPAth axes, path-predicates and node-test) and adds the about
function, specified to express content constraints in a keyword-based IR style. The NEXI
language has been defined by its authors as the “[..] simplest query language that could
possibly work.” [56] as compared to the complete, but hard-to-learn, XPath or XQuery
languages.

An example of a NEXI query is presented in Listing 2.9, where all the target objects
having a descendant node description about the words “Magellan Cloud” should be
retrieved. The actual evaluation of such a query is highly dependent on the underlying
query system, where different selection and matching strategies could be applied.

/ collection / object [about (./ description , " Magellan Cloud ")]

Listing 2.9: Example of NEXI query, using the content constraint function about.

The NEXI language has been introduced during the campaign of the INitiative for the
Evaluation of XML retrieval (INEX) in 2004. In such initiative, the NEXI language
has been used to evaluate two different types of query: Content Only (CO) queries
and Content and Structure (CAS) queries. Apart from the CO queries, that aim at
querying structured documents in XML format using only a set of keywords, the CAS
queries provide both structured-based and content-based constraints using the XPath
element selection and the about constraint for content evaluation. The NEXI language
has also been extended and used for question answering by Olgivie [57] and for querying
multimedia documents [58] by the same authors of the NEXI language.

A more detailed description of the use of the NEXI language for evaluations performed
by the Information Retrieval community for querying XML documents is presented in
the next Section 3.

2.3 The XPath/XQuery Full-Text extensions

Given the increasing popularity of the XQuery and XPath languages, and also due to the
huge adoption of XML as a standard format for documents, in particular text-oriented

28

documents (as introduced in Section 2.2), the XML community required a standard def-
inition for full text search in XML documents. Such features were required to effectively
query XML documents that contain large texts, and where the exact string/substring
matching functions are not enough.

The definition of a standard XQuery 1.0 and XPath 2.0 Full-Text [59] (XQFT) language
extension by the W3C also represents a joint work from the Database community and
the Information Retrieval community: standard IR techniques have been added to the
XQuery 1.0 and the XPath 2.0 languages. The extensions include features such as
element relevance computation (element scoring), and full-text search capabilities like
tokenization, stop-word removal and stemming.

The W3C group also published a set of XQuery Full-Text Requirements [60] and Use
Cases [61] that lead to the Full-Text 1.0 specification, other than the definition of confor-
mance levels of XQuery Full-Text processors to the language. Finally a Test Suite [62]
with more than 650 test cases has been defined to support XQuery Full-Text processors
implementation.

In this section the Full-Text [59] extension of the XQuery 1.0 language is presented and
detailed. Given the high relevance of the XQuery Full-Text language extension to the
research activity undertaken during my doctoral period and described in this manuscript,
the XQuery Full-Text extension will be described at a deeper level of details than the
one adopted for presenting the other languages described in the previous sections.

The XQuery 1.0 Full-Text extension is introduced in the following Section 2.3.1, and its
syntax is detailed in Section 2.3.2. A formal and a semantic description of the relevance
score computation is finally given in Section 2.3.3.

2.3.1 Introduction

A Full-text search functionality was initially introduced as a language extension in dif-
ferent XML query engines with custom expressions or ad-hoc functions, thus lacking a
standard definition in both the XQuery and XPath languages by the W3C. The same re-
quests, and a subsequent standardization, already took place for the SQL language where
the ISO provided full-text search features in the SQL/MM Full-Text [63] standard in
2003.

The introduction of full-text search for XML documents has been studied by the In-
formation Retrieval community since the definition of text-oriented XML documents;
among the language proposals provided in the literature we cite the ones by Florescu et
al. [64], Chinenyanga et al. [65], Theobald et al. [66] and Fuhr et al. with the XIRQL
[67] language.

The proposal adopted (and further extended by the W3C) as the Full-Text extension of
the XQuery 1.0 and the XPath 2.0 languages was TexQuery [68] defined by Amer et al.:

29

the TexQuery language introduced a set of primitives for text search such as: boolean
connectives, phrase matching, and proximity distance as an extension of XQuery 1.0.

The full-text search differ from standard XQuery textual content string matching in
many ways; the first is that textual content and query input string are tokenized (split
into atomic chunks of text, such as words). The Tokenization, as in IR, may include
several operations before producing the actual set of tokens that will be handled during
a Full-Text search; such operations include uppercase/lowercase conversion, stop-words
removal, word stemming and diacritics handling.

An example of the differences between substring matching and the matching defined
in the XQuery Full-Text language are shown in the example reported in Listing 2.10:
the contains function, that allows substring matching, is compared to the Full-Text
expression contains text (further described in Section 2.3.2); as the reader can notice,
the Full-Text syntax is readable and intuitive even if its various matching options could
led to long and articulated expressions.

XQuery :
contains (" release ", "lease ") ==> true

XQuery Full -Text
" release " contains text "lease" ==> false

XQuery
contains (" Run", " running ") ==> false

XQuery Full -Text
"Run" contains text " running " using
stemming using case insensitive ==> true

Listing 2.10: Differences between contains and the Full-Text contains text.

The contains text keyword7 defines a Full-Text contains expression and may be used
as a comparison expression in any XQuery or XPath query. The Full-Text extension
also introduces a score variable in both let and for FLWOR clauses that express the
relevance of the matched element to the search conditions.

2.3.1.1 Full-Text contains expression

The more relevant part of the extension is called Full-Text contains expression, and it is
identified by the use of the contains text keyword, as shown in Listing 2.10. It may
be composed of different parts, such as:

Connectives used to logically combine Full-Text selections by the connectives and, or
and not;

7The XQuery Full-Text keyword is represented by the pair of the two words “contains” and “text”;
the formal syntax is described in the following subsection.

30

Containment, Cardinality and Positional Conditions define how the set of tokens have
to be searched and matched against textual content; to this purpose different search
strategies can be defined.

Matching Options define the tokenization and matching behavior of the evaluation of
the Full-Text expression, including stemming, stop-words removal, and language
defined tokenization.

Weights allow to express, when more than one Full-Text selection is provided, the im-
portance of each expression, thus affecting the final score computation. Weights
can be defined as floating-point values in the interval [0, 1000].

Ignore Options define the subset of elements that have to be omitted during the Full-
Text evaluation: XPath expressions may be used to fine-tune the textual contents
to be ignored.

More details about the XQuey Full-Text expressions syntax will be given in the subse-
quent section.

2.3.2 Syntax

In this section the main features of the Full-Text extension of both the XQuery 1.0 and
he XPath 2.0 languages will be introduced with their syntax 8 as described in [59].

The grammar of a Full-Text contains expression, introduced in the previous section, is
the following:

FTContainsExpr ::= RangeExpr (" contains " "text" FTSelection
FTIgnoreOption ?)?

A Full-Text contains expression returns a Boolean value: true is returned if some of the
items in the RangeExpr match the selection specified in the FTSelection expression,
false otherwise. The RangeExpr refers to the target element (direct text elements or
descendant text elements) that has to be taken into account for the full-text search; the
FTIgnoreOption selects, instead, the set of descendant elements that may be ignored.
The FTSelection allows the specification of the actual full-text search where all the
characteristics of the Full-Text extension come into play for the complete evaluation.

In the following the main options and expressions of the XQuery Full-Text extension are
described; for sake of clarity they have been grouped as previously described in Section
2.3.1.

8 More attention will be paid to the Scoring feature introduced by the extension, as the main focus
of this thesis is leveraging such characteristic to provide flexible structural matching with score
computation.

31

2.3.2.1 Connectives

The Full-Text selections may be combined with logical connectives to better express a
full-text search; four connectives have been defined in the XQuery Full-Text language
extension:

ftor the ftor, given two full-text selections, finds all matches that satisfy at least one
of the selections.

ftand the ftand, given two full-text selections, finds all matches that simultaneously
satisfy the selections.

ftnot the ftnot, placed before a full-text selection, finds all matches that do not satisfy
the selection.

ftnotin the ftnotin, given two full-text selections, finds all matches that satisfy the
first selection, but only when it is not a part of the second selection.

2.3.2.2 Containment, Cardinality and Positional conditions

This set of filters allows to specify how the token matching has to be performed against
the textual contents. The XQuery Full-Text extension supports the expression of two
different types of search: a first search allows users to specify a set of keywords, the second
type of search is the phrase search where the user may specify an entire phrase (as a
space separated list or words) that need to be matched against the textual contents.

Containment A Containment condition can define if all the given tokens (or set of
phrases) must occur in the matched content or if the matching could be satisfied
even if only some of the specified tokens or phrases are found in the textual content.
The available options are: any, all, any word, all words, phrase.

Cardinality A Cardinality condition allows to specify the number of times a full-text
expression must be satisfied in the evaluation; the grammar for the cardinality
selection is the following FTTimes production:

FTTimes ::= " occurs " FTRange "times"

Where FTRange may assume one of the following values: “at least N ”, “at most
N ” or “from N to M ”.

Positional A Positional condition specifies the distance between each single token or
phrase specified in the given set of full-text selections: (i) all selections have to
match in the specified order as the query (ordered); (ii) it allows selections to ap-
pear within a specified boundaries (window of words, phrases or paragraphs); (iii)
at a specified distance or (iv) within a given scope such as the same paragraph
or different sentence.

32

2.3.2.3 Matching options

A Matching Option defines how the tokenization and the matching algorithm have to be
handled; the XQuery Full-Text grammar production associated with the MatchOptions
is the following:

FTMatchOptions ::= (" using" FTMatchOption)+
FTMatchOption ::= FTLanguageOption | FTWildCardOption |

FTThesaurusOption | FTStemOption | FTCaseOption | FTDiacriticsOption |
FTStopWordOption | FTExtensionOption

Listing 2.11: XQuery Full-Text syntax for the Matching Options.

Where each FTMatchOption allows to specify a different aspect of the evaluation process,
in particular:

FTLanguageOption specifies, by the keyword language followed by the standard language-
code, the default language in which the full-text evaluation may be carried out:
this option influences the tokenization, the stemming and the selection of a default
set of stop-words/thesauri.

FTWildcardOption when the wildchard option is enabled (using wildchard), the string
contents of a full-text selection are treated as a wildchard expression, thus con-
taining a subset of a Regular Expression.

FTThesaurusOption The Thesaurus option specifies where the thesaurus is located,
through a URI reference, or if the default one (if provided by the used engine) may
be used.

FTStemOption If the stemming option is enabled (by specifying the option using
stemming), the full-text expression is evaluated by applying a stemming proce-
dure on the given set of tokens or phrases. By default the stemming is disabled
(using no stemming).

FTCaseOption The Case Option modifies the matching of tokens and phrases by speci-
fying how the uppercase and the lowercase characters are considered. The default
value of this option is to ignore tokens and phrases capitalization (using case
insensitive).

FTDiacriticsOption If the Diacritics option is enabled (using diacritics sensitive)
tokens and phrases are matched only if they contain the diacritics as they are
written in the query. By default this option is not enabled (using diacritics
insensitive).

FTStopWordOption The keywords stop words allows the specification of the list of
stop words either as a comma-separated list of strings or by a URI from which the
stop-words are loaded.

33

FTExtensionOption This particular option allows to define extended options that will
be recognized by some implementations and not by others. It allows to configure
particular matching mechanisms or non-standard options offered by a particular
XQuery Full-Text compliance engine.

2.3.3 The Relevance Score computation

Another important feature that the XQuery Full-Text extension adopts from the Tex-
Query language (besides the contains text expression and the set of matching options)
is the introduction of a score computation during a Full-Text contains expression eval-
uation. A special variable, defined by the special keyword score, can be accessed after
a full-text expression is evaluated, and its value represents the relevance estimate of
the result to the full-text expression. The relevance score is computed for each element
addressed by a Full-Text search, and then it is made available during the evaluation of
the FLWOR expression. Both XQuery 1.0 let and for clauses have been extended to
accept the new score variable definition. The grammar rules of the for and the let
clauses, extended with the new variable, are presented in Listing 2.12.

ForClause ::= "for" "$" VarName TypeDeclaration ? PositionalVar ?
FTScoreVar ? "in" ExprSingle ("," "$" VarName TypeDeclaration ?
PositionalVar ? FTScoreVar ? "in" ExprSingle)*

PositionalVar ::= "at" "$" VarName
FTScoreVar ::= "score" "$" VarName
LetClause ::= "let" (("$" VarName TypeDeclaration ?) | FTScoreVar)

":=" ExprSingle ("," (("$" VarName TypeDeclaration ?) | FTScoreVar)
":=" ExprSingle)*

Listing 2.12: XQuery syntax for the for and let clauses.

The score variable computation algorithm is not specified in the W3C standard, and it
is left to the XQuery Full-Text engine to provide a meaningful relevance computation.
The XQuery Full-Text standard only defines the following set of constraints that a score
computation algorithm must adhere to:

• the score must be typed as an xs:double9 value;

• the score values must be in the range [0, 1];

• the score must represents the relevance degree of the expression evaluation, and
the value must be directly proportional to the relevance estimate.

The score variable is computed once for each element addressed by the Full-Text expres-
sion, thus if multiple Full-Text clauses are defined in different parts of a path-expression,
only the score associated with the target element would be returned. This represents an

9 The xs:double value type corresponds to a Double precision float number as specified in the XQuery
1.0 XDM schema [33].

34

important behavior of the Full-Text score computation: to allow multiple full-text scores
computation for nested fragments the query must be fragmented into multiple let or
for clauses, thus defining different score variables.

An example is presented in Listing 2.13 where the XQuery expression includes two Full-
Text clauses: the first related to the name node (in line 2), and a second clause related
to the description node (in line 3). The FLOWR expression defines only one score
$score variable for the entire path-expression. In such case the returned $descr items
would be ordered by the relevance score computed for the description node and for
the node labeled name.

1 for $descr score $score in
2 // object
3 [./ name contains text " Magellan Cloud" using stemming]
4 / description [. contains text " refractor "]
5 order by $score descending
6 return $descr

Listing 2.13: XQuery FT with multiple Full-Text expressions and sorting by score.

As previously mentioned, the algorithm for computing the relevance score is not defined
in the XQuery Full-Text specification: the algorithm is defined to be implementation-
dependent and, thus, any of the numerous algorithms could be provided to an XQuery
engine: from the standard Cosine Similarity approach defined in Information Retrieval
by the Vector Space Model to more complex ones as proposed in the literature.

Most of the proposed scoring algorithms adopt a hybrid scoring technique: the computa-
tion of the relevance estimate is not entirely based on the textual content of an element,
but some details about the underlying structure are also taken into account in such
computation. This characteristic requires the scoring algorithm to know the structure
of the query, expressed as an XQuery expression, to estimate the relevance.

Such feature, regarding the semantic aspects of the scoring of the XQuery Full-Text
extension, poses an issue: the XQuery 1.0 formal semantics, specified in [69], defines
the evaluation of axis expressions as functions that, given a sequence of items, return
another sequence of items (called in XQuery a Node-Sets). For such reason, in any
axis evaluation function it is not possible to keep track of which function (or sequence of
functions) produced the actual Node-Set given as input, thus no axis evaluation function
is aware of the complete expression structure that is being evaluated.

The semantics of the scoring functions defined by the XQuery Full-Text language make
use of second-order functions 10 where the input argument of the algorithm is represented
by the XQuery functions that implement the expression that produces the query result.
This allows the scoring algorithm to be aware of the complete path expression that is
being evaluated.
10 Second order functions, or higher-order functions, are a set of functions that accepts functions as

input arguments and may return functions as result.

35

The semantic second-order functions defined for the XQuery Full-Text in [59] are named
fts:scoreSequence(Expr) and fts:score(Expr): the argument Expr represents a
XQuery expression. The two functions compute the relevance estimate score of the
expression: a sequence of scores is returned by fts:scoreSequence, while a single score
value is returned by the fts:score function.

As an example, if a for clause defines a score variable as:

for $item score $score in Expr
return ...

the expression is semantically evaluated by assuming the following replacements: two
new variables named $i and $scoreSeq are introduced and the the second-order fts:scoreSequence
function is used.

let $scoreSeq := fts: scoreSequence (Expr)
for $item at $i in Expr

let $score := $scoreSeq [$i]
return ...

In the same way the second order function fts:score is used when a let clause con-
taining a score variable is specified. As an example, the expression:

let score $score := Expr

is evaluated as if was written as:

let $score := fts:score(Expr)

The score variable, as described from the semantics given above, acts as a user defined
variable in the scope of a FLWOR expression; thus it can be specified, for instance, in
where, order by or return clauses.

As an example, in Listing 2.14, the XQuery expression extends the user query in Listing
2.13 by defining a score threshold of 0.5 (line 2) and by returning the matched description
along with the computed score as an attribute (line 6).

1 for $descr score $score in
2 // object [/ name contains text " Magellan Cloud" using stemming]/

description [. contains text " refractor "]
3 order by $score descending
4 where $score > 0.5
5 return
6 <hit score ="{ $score }">{ $descr /text ()}<hit >

Listing 2.14: XQuery Full-Text with multiple full-text expressions, where and sort-by clauses.

36

3 Vagueness in querying the XML structure

Querying XML documents and their tree-like hierarchy with path expressions, like in the
XPath and the XQuery languages, allows the specification of structural constraints that
are matched against the document structure. As seen in Section 2.2 such constraints
specification requires the user to have a complete knowledge of the underlying element
nesting and node hierarchy of the XML document.

An inaccurate path expression provided to an XQuery or XPath engine may lead to the
common search issue named “too few or too many results” [70] where a query evaluation
produces too few or too many results. Other cases of queries that lead to no results
at all are the ones that specify non-existing elements in the XML structure, or path
expressions where some node relationships have been changed or deleted.

Structure matching in XML documents has been addressed by the Database community
and the Information Retrieval one under two different perspectives: the DB community
provided exact matching solutions focusing on efficient algorithms, aimed at retrieving
relevant sets of fragments. The Information Retrieval community focused on providing a
relevance estimate for XML fragments with an approximate constraints evaluation (the
proposals in the literature mainly talk about vague evaluations).

In the following sections the main algorithms and techniques for structural constraints
evaluation are discussed from both the Database and the Information Retrieval point
of view. Due to the close relation with the flexible XQuery extension produced by the
research work presented in this thesis, more attention has been paid to the approaches
that tackle the structure-related constraints evaluation from an IR perspective, thus
providing an approximate evaluation of structure-based constraints.

This chapter is structured as follows: the main characteristics of structural constraint
evaluation and querying are introduced in Section 3.1, exact structural matching pro-
posals and algorithms are briefly presented in Section 3.2. The Information Retrieval
community proposals for querying XML documents with an approximate evaluation of
structural constraints are described in Section 3.3.

37

3.1 Introduction

Since the definition of XML and its main query languages XQuery and XPath, the
Database community addressed the issue of querying semi-structured documents as
loosely structured databases, while the Information Retrieval community identified such
documents as structured texts. The different interpretation of XML documents lead to
quite different evaluation and querying proposals by the two communities.

From an Information Retrieval perspective querying structured documents with the spec-
ification of structural constraints allows users to express, as stated by Trotman in [71],
more precise queries.

The aim of specifying a structural constraint in a user query that has to be run against
a semi-structured document collection may be twofold: a first goal is to limit the size of
the retrieved units by requiring to retrieve only a particular XML element or a limited
set of nodes. As an example, for a collection of books, the user may be only interested to
books titles instead of retrieving all the book information. A second purpose of structural
constraints is, in contrast to classical keyword-based search, to specify in which context
a set of keywords has to be searched: as an example a search of the keyword 1984, if
evaluated on the entire hierarchy of an XML document would produce a set of completely
different results than if the search would be evaluated only on a specific context, such
as in a Price, Year or even in a Title element. In conclusion, structural constraints
allow users to provide more precise queries by both increasing the retrieval precision and
by reducing the user effort to localize the exact piece of information that the user was
looking for.

Regarding the structure of an XML document, both the Database and Information
Retrieval communities model XML documents as ordered rooted labeled trees [33] where
XML elements represent the nodes, and the tree edges explicit the relations between
them.

A rooted labeled tree is denoted as T = (V,E, r, µ), where:

• V = {v1, v2, · · · , vn} is the finite set of nodes (corresponding to the finite set of
XML elements) of T ;

• E ⊂ V × V is the set of edges between the tree nodes such that every node can
be connected to another node by an edge (∀v ∈ V, ∃u 6= v ∈ V | {v, u} ∈ E), and
there are no cycles among edges;

• the element r ∈ V is a special node called the root node;

• µ : V → Σ is the labeling function that maps each node v ∈ V to its label, where
Σ is a finite labels alphabet.

The structural constraints evaluation in XML documents can, thus, be seen as a tree
matching process, where both the XML document structure and a user query are handled
by using tree graph theory.

38

In the following sections a state of the art is provided of the main techniques for evalu-
ating queries with structural constraints on XML documents.

The approaches in the literature have been divided into two groups: those techniques
aimed at an exact matching, and those defined for an approximate matching.

The first class of approaches is related to Database oriented evaluation strategies, where
the query constraints of the nodes hierarchy are evaluated in a strict way. The second
class of approaches refers, instead, to the Information Retrieval oriented evaluations,
where the structural-based constraints are usually evaluated as hints for the XML frag-
ment selection. It is important to outline that both classes of approaches work on the
same syntactic definition of structural constraints that will be called Standard Structural
Constraints (as defined in the XQuery and XPath languages). What is different is the
the way these constraints are evaluated: in the former approach the results of a struc-
tural constraint evaluation is a set of fragments, while in the second case the result is a
set of weighted fragments that can be ordered.

In the following the concept of Tree Pattern Query, or Tree Pattern, is used to indicate
a user query involving one or more structural constraints. A Tree Pattern is a “graphical
representation that provides an easy and intuitive way of specifying the interesting part
from an input data tree that must appear in query output.” as stated in Hachicha et al.
in [72]. A Tree Pattern (TP) p is formally defined in [72] as a pair p = (t, F) where t is
a labeled tree, as previously described, and F is a formula that specifies the constraints
on t nodes. The process of matching a tree pattern against a data tree g is defined by a
function f that maps nodes of p to nodes in g such that: (1) if two nodes n1, n2 in the
tree pattern are related through a relation n1 ♦ n2 (where the ♦ relation represents one
of the defined axis of XPath, also listed in Table 2.1), then also their mapped nodes in
g must be in the same relationship: f(n1) ♦ f(n2), and (2) the formula F of the tree
pattern must be satisfied on the mapped nodes in g.

Tree Patterns can be seen as a reformulation of single XPath expressions for fragment
selection in user queries [73]; such technique of rewriting XPath expressions to Tree
Patterns has been used for query optimization in both XPath and XQuery languages
[74].

39

3.2 Approaches to exact structural matching

Exact structural matching has been addressed by the Database community since the
introduction of XML documents. The initial approach adopted by the DB community
was to transform XML documents and their element hierarchy into database records,
thus allowing querying XML documents by using the SQL [75] language.

Querying XML data with a strongly structured language, such as SQL, over a relational
database provides an exact constraint matching by-design: path expressions are eval-
uated by matching node labels and their structural information, properly encoded in
database tuples.

The SQL query engines have been adapted to accept XML documents as input docu-
ments to be queried by using the SQL language, some examples include Oracle8i [76,
77], Monet/XQuery [78], STORED [79], SQLGenerator with MySQL [80] or PostgreSQL
[81].

Adopting a standard relational-database model for querying XML documents has been
the first direction of the Database community to allow querying semi-structured data
by leveraging a consolidated set of indexing strategies adopted in the DB field. The
different nature of XML documents with respect to database tuples, including the vary-
ing structure among homogeneous documents and the XML nodes hierarchy, required
database management systems to adapt XML documents to relational algebra [82, 83,
84], or to provide different indexing techniques to enhance path expression evaluation
over table joins [85, 86, 87].

Different techniques have been proposed for storing and indexing XML documents using
Relational Databases: from asking users to define the required XML elements to index,
to exploiting the document structure from its DTD [84], and constructing a database
ternary tuple for each element in the XML tree; or still to dynamically build a set of
tables for each XML element and content such the one proposed in [82]. A further
elaboration of the latter technique, proposed in [83], introduced six alternative methods
to build a relational schema to perform SQL queries on XML documents by building
data tables representing XML edges (axes), nodes, tags/labels and leaf-nodes.

By leveraging standard Relational Database Management Systems, such techniques do
not require any modification of the underlying database engine, but they introduce
costly table joins to evaluate path expressions. To overcome such complex evaluations,
indexes and XML tree summarization techniques have been proposed to efficiently eval-
uate XPath expressions including values filtering and branching path expressions.

DataGuides [88] are the first proposal that couples the traditional index data structures
of the database system with a succinct representation of the node hierarchy of an XML
document: such structure summary is dynamically built from the XML document source
and used for storing statistical values to enable query optimization over semi-structured
data due to its compact representation of the entire document structure. However,

40

handling huge and highly varying document structures with DataGuide may result in
having huge DataGuides, thus reducing their efficacy; such issue was taken into account
in [87] also for branching queries.

A second set of proposals introduced path-indexes that allow the query engine to perform
costly path evaluations using ad-hoc data structures that maintain tag names and node-
path relationships grouped for efficient structural matching. Such techniques includes
the 1-/2-/T- index structure set [89]; and the A(k) [90] and the D(k) [86] index data
structures aiming at reducing the complexity and the dimensions of the fined grained
T-index structures.

Other works proposing techniques involving indexes and data structures have been de-
fined to optimize path expressions evaluations, such as:

• string-based indexes representing the XML node hierarchy are divided into raw
paths and refined paths to improve data access and to optimize structure-based
queries in [85] by Cooper et al;

• efficient node identification schema coupled with extended DataGuides, proposed
by Bremer et al. in [91], allow to include parent/child relationship in the node
identification schema, thus avoiding costly structure lookups;

• positional and node identification schema to support XPath location step evalua-
tion by identifying XML document regions by a preorder and postorder XML tree
traversal as proposed by Grust [92] and integrated into the MontetDB/XQuery
[78] engine.

Subsequent works in path expressions matching for semi-structured data also included
methods for dealing with branching queries that require joins and merging between
intermediate results. The concept of structural-joins proposed by Alkhalifa et al. [93]
emerged as a first solution to provide an efficient evaluation of branching queries (also
called twig queries). Enhancements and variations of such approach ended up to different
techniques involving node joins and tree traversal optimization such as: StairCase Joins
[94], extended Binary trees [95], XML region encoding (XR-tree index) [96], Extended
Dewery encoding [97] and others.

Furthermore, not only compressed indexes and efficient data structures have been de-
fined by the database community, but also efficient algorithms for processing XPath and
XQuery queries have been elaborated by Chen et al. [74], Gou et al. [98] and Koch
[99].

An important contribution has been provided in [100, 9], where Gottlob et al., after
evaluating several XPath engines, proposed an efficient query processing algorithm. The
work comprised the Core XPath: a first formal definition of the semantics of XPath con-
forming to the W3C standardized language; it included the navigational path processing
and logical features of the language; the semantics only omits values manipulation such
as string and arithmetical functions computation. The formal definition provided also a

41

first evaluation of the language complexity, and it has been used for subsequent efficient
algorithms definition with top-down and bottom-up path expression evaluation. Gottlob
work was inspired by Wadler works in [101] and [102], where the semantics of XPath
and XSLT are given. Further research of Gottlob, Koch and Pichler in [103] provided a
deeper analysis of the XPath language from a theoretic perspective: both the query and
the validation complexity of XPath were addressed and defined.

The above researches in the language theory and algorithms have been coupled by re-
searches aiming at the definition of tree algebras for querying XML documents. Such
works include the algebra defined by Fernadez et al. in [104] that anticipates the subse-
quently defined XQuery language; the TreeAlgebra for XML (TAX) defined by Jagadish
et al. in [105], and the tree algebra defined by Paparizos et al. in [106].

With the increasing research on efficiently storing and querying XML documents and the
complexity introduced by the solutions that maps XML to SQL, more query engines that
natively handled XML documents arose since 2002. Some examples of such systems are
Timber XML [107] from the university of Michigan, eXist [108] by Meier et al., BaseX
[109] developed by the university of Kostanz.

For a complete overview of the techniques proposed for indexing, storing and query-
ing XML documents and semi-structured data a first survey was initially provided by
Luk et al.[110], where several indexing paradigms are presented; the work also covers
search models and results presentation for the shift from database to XML querying.
Krishnamurthy et al. [111] provide a comparative research over the set of engines and
approaches leveraging the SQL language for querying XML documents.

Gou et al. [98], instead, analyses both the relational-based and the native XML pro-
cessing techniques for path expression evaluation with particular interest to branching
queries, while Hachicha et al. in [72] focus on Tree Pattern evaluation from a native XML
storing and indexing prospective, complementing and updating Gou et al. work.

A third work by Haw et al. [112] focuses on trends of querying semi-structured data:
hybrid approaches that leverage both relational database and ad-hoc indexing strategies
are taken into account and their advantages and disadvantages described.

42

3.3 Approximate structural matching

In this section the evaluation of path expressions in an Information Retrieval perspec-
tive is considered, and the techniques proposed for defining an approximate structural
matching are analyzed. Only the IR approaches defined as path-based and clause-based
by Lalmas in [113, chapter 4.2] are discussed here: such approaches include the XPath
and XQuery based proposals that leverage the standard W3C languages for approxi-
mate structural constraints evaluation. Furthermore the described proposals, including
the NEXI language introduced in Section 2.2.3, represent the state-of-the-art propos-
als in the IR community for approximate evaluation of structural constraints, and they
constitute the contributions more strictly related to the research work reported in this
thesis.

From an Information Retrieval perspective, and as stated by in [114], the retrieval process
of XML document fragments can exploit the hierarchy of structural information in three
main areas: the Indexing, Query Processing and Retrieval steps. The first area covers
the indexing process of an XML search engine, i.e. the selection of structural elements
to handle. Query evaluation performances depend on the amount of indexed elements.
The Query Processing area represents the actual structural matching process executed
during the path expressions evaluation: the structural matching may be performed in
a strict way as described in Section 3.2, or by adopting relaxation techniques further
described in this section. The Retrieval area is related to provide the final results to the
user; techniques for presenting only the user required XML element, or for providing the
surrounding context have been proposed for text-oriented XML search engines.

Related to the Query Processing step for the evaluation of user defined structural con-
straints, in this section we focused on the various approaches that have been defined
to consider the path expressions not as strict constraints, but as hints for structural
retrieval.

In the following Section 3.3.1 an introduction to the approaches proposed by the Infor-
mation Retrieval community aimed at inquiring XML documents are shortly presented,
while Section 3.3.2 deals with the approaches that have been defined to provide an
approximate structural matching on XML documents by either defining new query lan-
guages or by defining an approximate matching of standard XQuery structural axes.

As it will be outlined, any approximate approach described in Section 3.3.2 allows users
to explicitly define which part of a query should be evaluated in an approximate way,
and which, instead, should be evaluated exactly as formulated. This aspect, besides
not providing a vague constraint formulation, also limits the ability to obtain a query
evaluation that exactly suits the users requirements.

Section 3.3.3 describes then the approaches aimed at introducing a user defined vague-
ness in query formulation coupled with an approximate evaluation; such works mainly
motivated the research presented in this thesis.

43

3.3.1 Information Retrieval approaches to query XML documents

The proposals in the literature that have been generated in the Information Retrieval
context for querying structured XML documents have been classified as content-only
CO and content-and-structure (CAS) search [10]. The CO/CAS classification has been
proposed in the context of the INitiative for the Evaluation of XML Retrieval (INEX)
[115], a community driven initiative for evaluating XML search engines; as the Text
REtrieval Conference (TREC)1 is aimed at evaluating standard search engines.

The approaches labeled as CO allow only keyword-based queries without any possibility,
for the user, to specify constraints on the document structure: neither to formulate a
more detailed query, nor to specify the required result granularity or structure to be
retrieved. The query evaluation is performed in an IR style, thus applying stop-word
removal, stemming and other classical information retrieval techniques [70], and a ranked
list of the retrieved XML elements is produced. Most CO approaches return query results
based on the notion of Lowest Common Ancestor 2 [118] (LCA): given a rooted tree T
and the set of its nodes V , the Lowest Common Ancestor node for a couple of nodes
u, v ∈ V is the node a ∈ V , chosen from all the common ancestors of u and v, that is
located farthest from the root element of the tree. CO approaches also adopted LCA
variants such as the one presented in XSearch [119] and in Li et al. [120] work.

CAS approaches, instead, were defined to allow the formulation of constraints on both
the document content and structure [121]: a first attempt to merge the IR and the DB
search paradigms was constituted by CAS approaches that were defined based on the
XPath language syntax for the path expression definition.

In [122] an analysis of different evaluation techniques for CAS queries is provided: CAS
queries are further classified by the techniques used to match the specified structural
constraints when branching queries are submitted: the classification takes into account
the difference between a target node (the XML element that the system should return)
and the elements that compose one of more selection conditions. The INEX initiative
allows systems to deal with the specified structural constraints by two distinct evaluation
strategies: Strict and Vague (the terminology vague adopted by the INEX initiative
corresponds, to an approximate constraints evaluation strategy as previously outlined).
Thus, a total of four different evaluation strategies for CAS queries3 are:

ssCAS strict-strict: both the target element and the elements in the predicate part must
be evaluated as a strict requirement;

1 The Text REtrieval Conference (TREC) documents, documentation and tests are available at http:
//trec.nist.gov website.

2 Some works named the problem of finding the Lowest Common Ancestor node also as the Least
Common Ancestor [116] problem, both abbreviated as LCA. A third name Nearest Common Ancestor
[117] is also used in literature, always referring to the same problem and set of algorithms.

3 An example query is the following: books/book[.//paragraph[contains(., "1984")]]/abstract,
where abstract is the target element, and the predicate [.//paragraph[contains(., "1984")]]
makes use of the NEXI contains() function.

44

http://trec.nist.gov
http://trec.nist.gov

svCAS strict-vague: only the target element must be exactly evaluated, elements in the
predicates could be approximately evaluated;

vsCAS vague-strict: opposite to the previous cases, only the target element should be
evaluated with a vague matching;

vvCAS vague-vague: both the target element and the elements in the predicates condi-
tions may be evaluated with approximate matching.

The NEXI [28] language represents the first research effort in this direction: its subset of
XPath language constructs, in addition to the contains constraint on element contents,
has represented the language adopted by INEX in 2002; more details about the language
have been already presented in Section 2.2.3. These approaches are based, differently
from the exact matching provided from DB proposals, on the notion of structural hint
which considers the query structure as a mere template of the information required by
the user; all the fragment similar to the template specified in the query are retrieved.
Examples of CAS approaches includes TopX [123], TeXQuery [68], FleXPath [8], ELIXIR
[65], JuruXML [7], XIRQL [67] and NEXI [28].

Most CAS approaches, like TopX [123] and ELIXIR [65], do not consider the content-
related and the structure-related constraints equally important; in fact, they employ a
two stage evaluation strategy by which the evaluation of the content predicates is first
performed (as done also for Content-Only approaches), and then the obtained results
are analyzed with respect to the structural constraints. The analysis of the preliminary
results obtained from the CO evaluation, includes a filtering process that removes XML
elements from the final result set depending on the structural constraints satisfaction.

In the following section the approaches in the literature that fully take into account the
structure requirements expressed in a user query are presented: such works adopt edit
distance techniques to compute a similarity between the document nodes hierarchy and
the path constraints in the query. Such similarity is handled by using tree matching algo-
rithms and techniques that, by using appropriate transformations, provide approximate
structural matching of XML fragments.

3.3.2 Vagueness in structural matching evaluation

A first set of contributions on path expression relaxation are those of Schlieder [124,
6] and Amer-Yahia [5]; Schlieder initially extended the XQL [37] structured query lan-
guage by an approximate structural matching in the approXQL language. The proposed
algorithm for tree matching works by first expanding the user query by providing a
similar set of queries where node deletion, node renaming and node insertion operations
replaced the original query constraints; finally all the transformed queries are simultane-
ously evaluated. Node renaming operations are executed over a list of labels provided in
advance by the user, but without any knowledge of the actual data stored in the XML
document. For each query transformation a cost based evaluation is performed; a score

45

is computed by taking into account the similarity between the query and the document
to produce a ranked list of XML elements.

JuruXML [7] adopts an extended Vector Space Model [125] to evaluate structural similar-
ity between a document and a user query expressed using a sample document fragment.
A fragment score is computed using a double weighting schema: a term and its context
(the XML node where the term appears) are combined by an adaptation of the Cosine
Similarity [70] formula.

The work of Amer-Yahia et al. in [5] presents a preliminary study of approximation on
XML query matching: weighted tree patterns are evaluated against the XML document
structure, two values are associated with each node and each edge and used to compute
the final scores for query answers. Different techniques of relaxation are introduced:
(1) node generalization, (2) leaf node deletion, (3) edge generalization and (4) sub-tree
promotion. These relaxation rules allow to exchange a node with its super-type value
(or its parent node), removing constraints on leaf nodes or the leaf nodes themselves,
altering axes from child-of to the more general descendant or changing query sub-trees
(or branching queries root nodes) context nodes respectively.

FleXPath [8] is the first approach proposing an approximate matching of query con-
straints by a formalization of the relaxations in the evaluation of the structure of the
specified queries; it constitutes the first algebraic framework for spanning the relaxations
space. The approach also defines three simple ranking schemes for the retrieved XML
fragments: plain keyword-search, structure similarity of the fragment to the query and
the third scheme is a simple sum of the two scores to combine structure and content
similarity.

The FlexPath approach has been further developed in [126] where the scoring computa-
tion is inspired by the classical tf · idf measure proposed in Information Retrieval [70].
The computation takes into account both content and structural scoring, while adopting
query relaxation. Two scoring techniques are proposed in [126]: twig scoring based on
tf · idf and its approximation computation named path scoring. Amer-Yahia et al. also
compares the two approaches with a binary scoring earlier proposed in [127].

Another CAS approach that partially takes into account the structural matching is the
one presented by Sauvagnat et al. in [128]; where the score computation of a retrieved
XML fragment takes into account the distance of the fragment (as the number of tree
edges) from the leaf node that actually contains the matched keyword search. Some
penalization strategies have also been defined that allow to assign a lower score to nodes
that do not directly contain a matched text, but that inherit content-scores from leaf
nodes; the aim of such penalization strategy, and its subsequent refinements, is to handle
branching queries and to propagate scores computed at leaf nodes level back to the target
node element.

The ApproXML tool [129], proposed by Damiani et al., performs a flexible matching
between a document and the standard structural constraints formulated in a query:
the evaluation is computed by creating a closure of the document graph by inserting a

46

so called virtual edge between document nodes that rely on the same path. During the
evaluation of the structural constraints in the user query, the nodes hierarchy is evaluated
with an exact approach against the extended document tree structure; different weights
are then assigned if a document fragment is retrieved by using the virtual edges or by
only using the original document edges.

A further work on adopting tree-edit distances to compute structural scores has been
proposed by Nierman et al. in [130], where approximate matching and path expressions
relaxations (like the ones defined by Amer-Yahia et al. in [5]) are adopted for heteroge-
neous XML document collections: the approach performs a partitioning of a collection of
documents based on their structural similarity computed on the given document DTD.
A minimum edit distance cost is computed between two trees (representing for example
an XML document and the structure-based set of constraints in an user query) by taking
into account a set of allowed sequence of tree edit operations. Such cost is then used as
the score for a subsequent XML fragment matching, pruning and ranking operations.

Another approach that uses a variant of the tree-edit distance computation is presented
by Laitang et al. in [131], where approximate answers are built in advance based on the
DTD of a XML document collection. Approximate answers are used to prune the set
of XML element candidates and subsequently matched against the the real set of XML
document; a final element score is computed by combining the tree-edit distance cost
and the content-based score.

Similarly to [130], the VXQL language proposed by Fazzinga et al. in [132] deals with
querying heterogeneous XML document collections spread across Peer-to-peer networks:
tree edit distances like [5] and [124] are further integrated into the XPath language
where node renaming operations are executed by taking into consideration the semantic
distance between the original and the replaced node label. A further refinement of the
approach, by the same authors, is presented in [133] where the XPath axes are evaluated
through a set of relaxation and generalization rules.

The approach defined by Buratti et al. in [134] adopts the path-edit distances and
includes an approximate value-based constraints evaluation, such approach is defined on
top of the standard XPath language. A Path Edit Distance (PED) algorithm is defined to
compute structural scores and to approximately evaluate path expressions; the algorithm
includes the path approximations defined in [126] and it implements a node similarity
measure like the classical String Edit Distance [135] defined by Levenshtein.

Another technique to provide an approximate evaluation of structural constraints is
presented in [136] by Tekli et al.; the approach, disregarding the element and attributes
values constraints, defines a structural similarity between two XML elements by taking
int account sub-tree similarities, an aspect not handled by most tree-edit or path-edit
distance algorithms. The approach also includes the evaluation of semantic similarity of
elements: the WordNet ontology is leveraged to compute a semantic distance between
tag and attribute labels; such distance is then used during the approximate evaluation
of structural constraints.

47

Another contribution that could be labeled as a CAS approach is the one presented
by Mazuran et al. in [137]; the proposed approach adopts an approximate structural
matching, coupled with the generation of collection summaries (or gists) which provide
approximate query answers to better support the user in further query specification.

It should be noted that all previous approaches introduce flexibility in the evaluation
process of the standard path expressions and axes (such as child or descendant XQuery
axes;) therefore these approaches do not allow users to specify structural constraints
that explicitly require the application of an approximate structural matching, which
would provide fragment scores distinct from the scores produced by the keyword-based
evaluations. This means that the user has no way of distinguishing between structural
constraints in the query the evaluation of which has to produce a set of fragments, and
flexible structural constraints the evaluation of which has to produce weighted fragments,
with structural fragment scores distinct from content related fragment scores usually
computed by CAS approaches.

3.3.3 User-based vagueness evaluations

Differently from the approaches described in Section 3.3.1 and 3.3.2 which address the
problem of defining an approximate matching of conventional and standard structural
constraints (such as the ones defined in the XPath and XQuery languages), only a few
contributions in the literature have considered the problem of introducing in the XML
query languages new flexible structural constraints.

In 2010 the work performed by Oro et al. called SXPath [138] aimed at allowing users
to formulate queries on semi-structured HTML documents by the specification of con-
straints on positional axes. The approach adopts the four cardinal axes and their com-
bination as constraints for retrieving XML elements given their visual position in the
HTML document. The proposal, unfortunately, does not tackle an important issue re-
lated to visual querying: given the nature of HTML documents the approach does not
consider the W3C standard CSS4 styles for document visual presentation and element
positioning with respect to different devices and browsers.

In [139], Zhang et al. propose the definition of a symmetrical evaluation of XPath
structural constraints by the introduction of a new closest axis. The proposed approach
allows the user to express a vague structural constraint by providing a structure invariant
query; the work does not, however, provide a score computation for the relaxed path
evaluation. Bhowmick et al. in [140] propose a similar approach that closely resembles
Zhang’s work, the only difference is that the defined rank-distance axis is evaluated
on-the-fly and not pre-computed and stored in an ad-hoc data structure. Furthermore
the approaches work in Relational Database management systems, thus rewriting the
user queries and their structural constraints from XPath to the SQL language.

4 Cascading Style-Sheet [17] represents a set of rules for visually present HTML documents: typographic
and layout positioning of document elements can be defined.

48

A similar and extended approach has been proposed by Damiani et al. in [141]: the work
presents a preliminary definition of two set of flexible constraints: the first related to the
hierarchy of the XML elements and the second related to the document textual contents.
While the content-related set of constraints has been partially superseded by the W3C
XQuery Full-Text language definition, the structural-based set of constraints has not
been further taken into account, neither updated nor formally defined as a complete
language extension. On the approach defined in [141] the work presented in this thesis
has taken its origin: with the aim of formally and semantically define the structural-
based flexible constraints the FleXy language was born. The FleXy language, formally
defined during the research work undertaken during my PhD period, has been designed
as an extension of the standard XQuery language. The FleXy language is formally
described, along with its syntax and semantics, in Chapter 4, while its implementation
is presented in Chapter 5.

49

3.4 Summary

In this Chapter the main issues related to querying XML documents have been pre-
sented and discussed: efficiency related algorithms and approximate structural matching
techniques have been analyzed as they have been proposed from a Database oriented
approach at first, and then from an Information Retrieval point of view.

In Section 3.2, Database community approaches including indexing data structures, ef-
ficient tree-pattern-matching and relational-database oriented techniques for querying
XML documents have been presented.

Section 3.3, instead, has tackled the issue of querying XML documents from an Informa-
tion Retrieval point of view, where query evaluation efficiency comes slightly in second
order with respect to the ability of retrieving the most relevant document fragments
given a user query, handled as a template for the retrieval engine.

The proposed approaches from the Information Retrieval community are mostly focused
at providing approximate matching of the standard structural constraints formulated in a
user query. Tree-Edit or Path-Edit distances, tree- and sub-tree similarity computation,
and XML element label semantic comparison have been proposed in the literature to
provide a fragment relevance computation during the XML retrieval evaluation.

Most of the recent IR oriented approaches propose approximate structural constraints
evaluation on top of the standard XQuery and XPath query languages, where the exact
user query is evaluated by the use of constraint relaxation techniques. Few approaches,
described in Section 3.3.3, take into account the possibility to allow users to explicitly
formulate a query where vague constraints can be expressed and evaluated. Such vague-
ness, as outlined in Section 3.3.1 and 3.3.3, would provide users the ability to specify
the desired evaluation that has to be performed for structural constraints, and thus, it
would avoid the engine to consider the user query as a mere template of a retrieved XML
fragment.

One of the most important contributions to vague constraints specification has been envi-
sioned by Damiani et al. in [141]; based on such approach the FleXy language (acronym
for Flexible XQuery) has been formally defined during the research work described in
this thesis. The FleXy language, described in Chapter 4, extends the standard XQuery
Full-Text language by adding two new vague structure-based constraints that allow users
to express the desired approximation degree that has to be considered during the query
evaluation process.

50

4 FleXy: The XQuery Full-Text extension

In this chapter the main contributions of the research activities reported in this thesis
are presented. As initially mentioned in Chapter 3, the work presented in this thesis has
been originated from the work by Damiani et al. in [141] (described in Section 3.3.3),
where a preliminary definition of flexible constraints was proposed.

The research work reported in this thesis was mainly aimed at formally defining and
implementing a formal XQuery extension called FleXy (Flexible XQuery) that adds
flexibility to the XQuery Full-Text language.

By including two new axes constraints, FleXy allows a fine grained query formulation
by users. Differently from the approximate approaches defined in Section 3.3.1, FleXy
allows users to explicitly express the structural constraints that have to be evaluated in
an approximate way (by using the new flexible axes), and those that have to be evaluated
in an exact way (by using the standard XQuery expressions). The evaluation of the new
flexible axes produces a score that can be combined with the XQuery Full-Text content-
based constraints evaluation score; this combination may be directly specified by the
user.

The FleXy language has been defined as fully compatible with the standard XQuery Full-
Text language; this gives to the new language three important qualities: a first peculiarity
is that a query specified by using the standard XQuery language will not return different
results from the standard implementation. Second, the FleXy language benefits from the
standard XQuery Full-Text constructs and infrastructure for XML element selection and
Full-Text search, in particular users can specify full-text and structural score variables as
in standard XQuery FLWOR clauses. A third characteristic is that the FleXy language
does not require the formulation of complex constraints: the syntax of the new axes has
been kept simple and similar, where possible, to the standard XQuery axes.

These characteristics allow the FleXy language to be implemented in any XQuery Full-
Text compliant engine: as it will be shown in Chapter 5, a particular attention was
paid to the choice of the underlying data structures for an efficient query and axes
evaluation.

The FleXy language syntax and semantics have been published in [142] as an intermedi-
ate result of the work undertaken in this thesis. Differently from the definitions provided
in [142], the work here presented includes further refinements that take into account the
comments received during recent conferences participation and demonstrations.

51

In the following Section 4.1 the motivations and the flexible axes defined in the FleXy
language are discussed, while Section 4.2 introduces the two flexible constraints.

Section 4.3 describes the syntax of both axes, and how the structural scores can be
accessed. Section 4.4 deals with the definition of the axes semantics, and it discusses the
nesting and score inheritance of the introduced scores computation. Finally, in Section
4.5 the evaluation of the axes and the structural score computation are presented.

4.1 Motivations

Querying highly structured databases or document repositories via structured query
models (as XQuery and XPath) forces the users to be well aware of the underlying
structure, which is not trivial. In the above cases, users could benefit of a query language
that allows a direct specification of flexible structural constraints that easily allow to
require the relative position of important nodes, independently of an exact knowledge
of the underlying structures. Such an issue is also outlined by Yu et al. in [143] and
Bhowmick et al. [140] works: both aimed at supporting user queries over complex
semi-structured document collections.

To achieve this aim and thus to support users in querying structured document col-
lections without a strong knowledge of their underlying structure, a formal extension
of the XQuery Full-Text language is presented. The extension, named FleXy, features
the introduction of two new flexible structural axes, specified by the axes below and
near, that allow users to explicitly specify their tolerance to an approximate structural
matching, while not forcing them to be aware of all the possible structural variations of
the data/document structure.

The FleXy language defines also an ad-hoc approximate matching of the flexible struc-
tural constraints, thus allowing both a ranking only based on approximate structure
matching, and a ranking based on a combination of content predicates and the new
flexible structural predicates (while preserving a ranking based only on content predi-
cates).

The work done in this thesis bases its grounds on a previous research where a flexible
extension of the XQuery language was advocated and informally sketched [141, 144].
The work presented in this chapter, as introduced in Section 1, consists of the formal
definition of the FleXy syntax and semantics of the XQuery Full-Text extension.

Differently from all the approaches defined in previous works, including the ones pre-
sented in Section 3, this extension gives to the user the ability to express flexible struc-
tural constraints with an approximate matching, and to obtain a weighted set of frag-
ments as the result of the axes evaluation. For a given query the user can also specify
how to combine the scores produced by the structural constraints evaluation and the

52

keyword-based evaluation (as provided by the XQuery Full-Text extension). The com-
bination can be formulated by using the set of standard arithmetic operators defined in
the XQuery language.

The FleXy extension allows the users to exploit their, even limited, structural knowledge
of the XML document collection structure to formulate successfully queries. The use
of flexible axes such as near and below and their structural relevance scores, allow the
user to obtain, in conjunction with the Full-Text features and search functionality:

1. element matching and ranking based on content predicates evaluation only as in
the original XQuery Full-Text with the usage of the Full-Text score variable;

2. an element ranking based on the flexible structural constraints evaluation (based
on the FleXy axes);

3. an element ranking based on a linear combination of the two above scores, which
the user may also specify via the order-by FLWOR clause.

Furthermore, the language FleXy is defined as fully-compliant with the XQuery Full-
Text extension: the two axes are introduced in the XQuery language among standard
axes and path constraints described in Section 2.2.1 and 2.2.2.

4.2 FleXy flexible axes

The main novelty of the FleXy language is the definition of two new axes in the XQuery
axis expressions, named below and near: the constraint below is defined as an XPath
axis and its evaluation allow to match elements (called target nodes) that are direct
descendants of a node (called the context node). Although the below axis evaluation
selects the same node set identified by the descendant axis evaluation, differently from
the descendant axis evaluation the below constraint evaluation computes a numeric
score for each retrieved target-node.

The near axis evaluation allows to identify XML nodes (target nodes) connected through
any path to the context node. A numeric value can be specified in association with the
near axis: it defines the maximum number of arcs between the context node and the
target node to be taken into account during the axis evaluation: nodes the distance of
which is greater than n arcs are filtered out from the possible results.

As mentioned in Section 4.1, a score in the interval [0, 1] is assigned to each XML node
identified by the below and the near axes evaluation: this score is proportional to the
closeness of the target node to the context node in the query expression, which represent
the closeness of the real-path to the ideal-path corresponding to the query expression.

It is important to notice that the integration of the below and the near axes in the
XQuery Full-Text syntax allows to specify them in any XQuery predicate, as it will be
explained in Section 4.3. Furthermore the flexible axes can also be used in conjunction

53

with positional predicates: as the matched elements are returned in decreasing order
of their estimated relevance, the positional predicates are referred to the rank of the
fragment sequence.

In the following sections some examples and the syntax specification of the below and
the near axes will be provided by using the unabbreviated axes nomenclature, where each
XQuery axis is explicitly specified without using any abbreviated form. For example,
the descendant axis applied to the node-label t will be written as “/descendant::t ”
and not using the abbreviated form “//t ”.

4.2.1 The “below" axis

The below axis is defined as an extension of the XQuery descendant axis, and it is
aimed at requiring an approximate matching of the query with the descendants Element
Nodes of the context-node. The approximate matching of the query fragment containing
the below axis with a retrieved element associates with the latter a relevance score. For
a retrieved element, the relevance score is inversely proportional to the distance between
the element and the ideal-path expressed by the query: such an ideal path is the one
where the target node is a direct child of the context node.

Like any standard XQuery/XPath axis (the standard axes are listed in Table 2.1, the
below axis can be specified in the form /below::t , where t is a node label; this new
axis, due to its descending direction evaluation, is grouped in the set of forward axes.

In Fig. 4.1 a simple example of the below axis evaluation is shown for the query
person/below::name; in the figure the node person (with a bold border) is the context
node, while the nodes with gray filling are the identified target elements.

As previously mentioned, the below axis evaluation returns the same set of nodes re-
turned by the standard descendant axis evaluation, as it can be seen in Fig. 4.1a. In
Fig. 4.1b the ideal path identified by the below axis is shown: the highlighted name node,
having a direct descendant relationship with the context node, will obtain the highest
path relevance score (perfect matching). In Fig. 4.1c the evaluation process performed
to match the other name nodes is shown. Finally in Fig. 4.1d the complete evaluation
process of the below axis is shown.

Based on the example in Fig. 4.1 the elements retrieved in decreasing order of relevance
estimate, are:

1. the node person/name that represents the ideal path (in this path the distance
between the target node name and the the context node person is one, i.e. name
is a child node of person);

2. the two nodes having the path person/overview/other_names/name; their lower
score is due to their higher distance (3 arcs) from the person context node.

54

(a) Nodes matched by the below axis (b) Ideal path for the below axis eval-
uation

(c) Deeper nodes matched by the
below axis evaluation excluding
the ideal path

(d) The complete set of nodes matched
by the below axis evaluation

Figure 4.1: Examples of the below axis evaluation

A numeric threshold n has been introduced in the below axis definition; this allow users
to better express how the axis evaluation has to be performed: the threshold limits the
maximum distance at which the target nodes must lay. The threshold specification can
be provided alongside the axis itself, appending to the axis name the numeric value, thus
resulting in multiple axes of the form: /belown ::t , where n ∈ N and N = {1, 2, · · · }.

A particular configuration of the below axis is provided when the threshold is set to the
value 1: in this case the axis evaluation would match only children nodes of the current
context node, so that the scores of the retrieved elements would always be evaluated to
1. For the complete axis syntax refer to Section 4.3.1, while the below axis relevance
score computation will be presented in Section 4.5.

Like other XPath axes, also the below axis supports the definition of a relative inverted
axis, referred as below−1. For sake of simplicity the reverted axis is named above and
it supports both the plain and the limited (with the threshold parameter) evaluation.
Also the evaluation of the reverted axis above::t , and the one of its threshold variant
aboven ::t , compute a path relevance score for each of the retrieved target nodes.

An important observation is that, although the XQuery standard expressions and func-
tions may allow to formulate complex queries with a behavior similar to the one as-
sociated with the below axis, the use of explicit flexible constraints is clearly more

55

user-oriented and better complies and integrates with the XQuery Full-Text scoring
mechanism.

Furthermore, the definition of a set of XQuery functions aimed at providing the same
element matching and the same structural score computation as defined for the below
axis would introduce a non-trivial overhead to the query evaluation process. In par-
ticular such functions would require the evaluation of a set of sub-queries and other
computations that would not benefit from a native axis implementation that directly
accesses to the engine data structures.

4.2.2 The “near" axis

The second flexible axis introduced by the FleXy language extension is the near axis,
which allows to retrieve target nodes that are “in the neighborhoods” of the context node,
in all directions including the descendant, siblings and ancestors axes.

A threshold parameter can be associated with the near constraint to indicate the max-
imum distance between the context node and the target node: nodes reachable with
more than n arcs from the context node will be excluded from the retrieved elements.
The parameter allows users to control the near evaluation by avoiding to search in the
whole XML graph for matching target nodes.

The axis can be specified in the form: /nearn ::t, where t is a node label and n the
threshold parameter. Like for the below axis, the parameter n can be specified as a
positive natural number. If the threshold parameter is not set, a default value of 1 is
assumed.

Like the previously described below axis evaluation, also the near constraint evaluation
computes a relevance score for each matching node. In this case the ideal paths for the
near axis evaluation are considered those node directly connected to the current context
node (the immediate father and the immediate children of the context node).

In Fig. 4.2 two examples of queries that specify the near axis are shown. In Fig. 4.2a
the evaluation of the query a/near2::e is shown: the node labeled a with bold border
is the context node, while the e nodes with the filled background are the nodes matched
by the example query. Note that in this case, only the node labeled e with path r/a/d/e
will be retrieved because all the other nodes labeled e have a distance from the context
node greater than 2 arcs.

In the same way in Fig. 4.2b the evaluation of the query a/near3::e matches the three
nodes labeled e, while the node having path r/b/h/e is not matched due to its distance
of 4 arcs from the context node a. To summarize the example in Fig. 4.2b the nodes
matched by the query a/near3::e, in decreasing order of relevance estimate, are:

1. node r/a/d/e

2. node r/b/e and node r/c/e.

56

(a) Example of the a/near2::e query
evaluation

(b) Evaluation Example of the
a/near3::e query evaluation

Figure 4.2: Examples of the near axis evaluation

The actual score computation function for the near and nearl axes evaluation is de-
scribed in Section4.5.

Differently from the below and the belowl axes, the near axis specification does not
support the definition of a reversed path axis: due to the mixed matching strategy used
in the near axis where both upward and downward edge traversal strategies are used,
such axis inversion can not be defined.

4.3 The FleXy Syntax

The FleXy language extension has been defined to be fully compliant with the lat-
est XQuery Full-Text language clauses; furthermore as described in Section 2.2.2, the
XQuery 1.0 language leverages the XPath 2.0 specification for nodes selection, thus the
FleXy extension supports both languages. FleXy introduces in fact the two new axes
below and near, and it includes a new structural score variable to let users define a cus-
tomized element ranking and sorting, based on the evaluation of the two flexible axes,
as it will be explained in Section 4.3.2.

4.3.1 Axes Syntax

Following the XQuery syntax definition provided in [3] and the Core-XPath grammar
defined in [9], the Extended Backus–Naur Form (EBNF) representation of the FleXy
language extension is specified in Listing 4.1.

1 AxisStep ::= (ReverseStep | ForwardStep | NearStep) PredicateList
2 ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep
3

57

4 NearStep ::= AxisNear NodeTest
5 AxisNear ::= "near" intNumber ? "::"
6
7 ForwardAxis ::= (" child" "::")
8 | (" descendant " "::")
9 | (" attribute " "::")

10 | (" self" "::")
11 | (" descendant -or -self" "::")
12 | (" following - sibling " "::")
13 | (" following " "::")
14 | (" namespace " "::")
15 | AxisBelow
16
17 AxisBelow ::= "below" intNumber ? "::"

Listing 4.1: FleXy below and near axes syntax.

In the previous grammar, the axes threshold values are defined by the grammar produc-
tion named intNumber, and they are evaluated as XQuery atomic values of xs:integer
type.

In Listing 4.1 the salient modifications to the standard XQuery language are related to
the below and near axes definition; in particular:

line 1 the AxisStep is extended with the NearStep production, since the behavior of
the near axis may follow both a forward and a reverse hierarchy traversal, the
NearAxis is not simply added to any of the ForwardAxis or the ReverseAxis
grammar generators.

line 5 The near axis is defined in both forms: simple axis specification with no threshold,
or axis specification with the numeric threshold parameter;

lines 15,17 the below axis is added to the set of ForwardAxis generators, following the
AxisNear definition; also a new BelowAxis grammar generator is added for clarity.

As outlined in Section 4.1 the below axis evaluation produces the same node-set of the
descendant axis; however the evaluation of the below constraint associates a score with
each node in the retrieved node-set.

4.3.2 The Structural Score Variable

Defined as an XQuery Full-Text extension, the FleXy language benefits from the score
variable availability (cfr. Section 2.3.3), and it further extends such feature by adding a
new Score Variable, called structural score, the value of which is computed during the
below and the near axes evaluation.

The structural score variable has been added into the FLWOR clause by defining an
optional Score Variable identified by the keyword score-structure, in conjunction to

58

the XQuery Full-Text score variable, in both the for and let clauses. In Listing 4.2
the extended XQuery for clause, is presented (as defined in rule number 35 of [59]): the
score variable StructScoreVar grammar generator is added to the FTScoreVar origi-
nally defined in the XQuery Full-Text extension. Varname is a variable name definition,
TypeDeclaration is a variable type declaration; and ExprSingle is the actual query for
node selection as defined in the XQuery language.

1 ForClause ::= "for" "$" VarName TypeDeclaration ? PositionalVar ?
FTScoreVar ? StructScoreVar ? "in" ExprSingle ("," "$" VarName
TypeDeclaration ? PositionalVar ? FTScoreVar ? StructScoreVar ? "in"
ExprSingle)*

2 FTScoreVar ::= "score" "$" VarName
3 StructScoreVar ::= "score - structure " "$" VarName

Listing 4.2: FleXy structural score variable syntax in for clause.

The same score definition has been added to the let expression of the XQuery Full-Text
extension, originally defined in rule number 38 in [59]. The grammar is shown in Listing
4.3; the same definitions provided in the for clause also apply.

LetClause ::= "let" (("$" VarName TypeDeclaration ?) | FTScoreVar |
StructScoreVar) ":=" ExprSingle ("," (("$" VarName TypeDeclaration ?)

| FTScoreVar | StructScoreVar ?) ":=" ExprSingle)*

Listing 4.3: FleXy structural score variable syntax in for clause.

An example of XQuery expression that uses both the Full-Text and the structural scores
computed by the below axis evaluation is presented in Listing 4.4. By this query the user
declares her/his interest in all nodes labeled name that contain the text dicaprio; such
nodes must have a person node as ancestor. The resulting name nodes are then ranked
based on the numeric score computed on the basis of their distance from the context
node person (as obtained by the below axis evaluation), and stored in the $scoreST
variable.

In particular in line 2 and 3 the Full-Text score and the structural score are defined,
respectively; while in line 6 the clause order by in the user query specifies how the
returned elements must be sorted.

Finally, in line 7 the structure of each retrieved result is defined: it will be built as a
single XML element labeled hit containing the textual contents of the matched name
target node; furthermore two attributes of the hit element, labeled sST and sFT will
contain the computed structural score and the Full-Text score respectively.

The results are then returned from the FleXy expression evaluation in an XML form,
where both structural and Full-Text scores are displayed as well as the name node textual
contents.

59

1 for $item
2 score $scoreFT
3 score - structure $scoreST
4 in person / below :: name[text () contains text " dicaprio "]
5
6 order by $scoreST
7 return <hit sST ="{ $scoreST }" sFT ="{ $scoreFT }">{ $item/text ()} </hit >

Listing 4.4: Example of a FleXy expression using Full-Text and Structural scores

The results obtained by the evaluation of the previous query on the XML document
fragment1 in Listing 4.6 are shown in Listing 4.5. It is important to notice that if the
structural score would not be taken into account for scoring and sorting the retrieved
results, the best ranked results would be instead those in lines 2 and 3 (with a full-text
score of 0.62) followed by those in lines 1 and 4 (with a score of 0.45). The below axis
score computation allows to retrieve as the first query answer the actual actor name,
followed by other, and maybe less important, names or nicknames.

1 <hit sST ="1" sFT ="0.45" > Leonardo Wilhelm DiCaprio </hit >
2 <hit sST ="0.33" sFT ="0.62" > Leo DiCaprio </hit >
3 <hit sST ="0.33" sFT ="0.62" > Lenny DiCaprio </hit >
4 <hit sST ="0.33" sFT ="0.45" > Leo W. Dicaprio </hit >

Listing 4.5: Results of the evaluation of the FleXy query in Listing 4.4

A linear combination of the two scores can be provided by the user to obtain an overall
score, by using the standard XQuery numeric functions. Further details on the below
axis evaluation and on its scoring function will be given in Section 4.5.

<person >
<name > Leonardo Wilhelm DiCaprio </name >
<overview >

<other_names >
<name >Leo DiCaprio </name >
<name >Lenny DiCaprio </name >
<name >Lenny D</name >
<name >Leo W. Dicaprio </name >

</ other_names >
</overview >

</person >

Listing 4.6: Fragment of an XML document containing the actor details

It is important to notice that the score assigned by the Full-Text evaluation (as described
in Section 2.3) is defined as Implementation Dependent: the Flexy language has been

1 The document fragment has been taken from the Internet Movie DataBase (IMBD) collection that
composes the INEX Data-Centric evaluation track.

60

implemented on top of the XQuery engine BaseX2. The implementations details will be
provided in Section 5.3.

4.4 The FleXy Semantics

In this section the formal definition of the semantics of the FleXy axes below and near is
presented. The semantics of the new axes is defined in compliance with the XQuery Full-
Text language by extending the semantics defined by Gottlob et al. in [9]. Furthermore,
the score semantics for the path relevance estimation is provided following the XQuery
Full-Text definition, thus using second order functions.

Before introducing the FleXy semantics, the Core XPath semantics from Gottlob et al.,
defined in [9] is shortly presented in Section 4.4.1; the subsequent sections 4.4.2 and 4.4.3
define the below and the near axes semantics, respectively. Section 4.4.4 concludes the
semantic definitions by presenting the second order functions defined in FleXy for the
structure score computation.

4.4.1 Core XPath semantics

The semantics of the new flexible axes has been defined by extending the Core XPath
semantics defined in by Gottlob et al. in [9]; the Core XPath semantics formally describes
the semantics of the XPath language and the manipulation of set of nodes: in particular
the Core XPath does not defines arithmetical and string functions. In the following, the
Core XPath is shortly introduced: only the main aspects of the semantics are described,
in particular the axes evaluation semantics. For a detailed description of the Core XPath
semantics, please refer to Gottlob et al. work.

The same conventions adopted in [9] are used here below, in particular Gottlob et al.
make use of a particular equivalent notation to design functions and relations. In [9]
binary relations are used instead of functions; for sake of simplicity, binary relations share
the same name of the related functions; i.e., a function f of one argument (y = f(x)
with x ∈ Dom) is equivalently replaced by the binary relation defined as {〈x, f(x)〉 | x ∈
Dom, f(x) 6= null}, where Dom is the set of nodes of an XML document.

The Core XPath semantics describes an XPath axis as a binary relation χ defined as:
χ ⊆ dom× dom. As an example, the self axis is described by the binary relation self
defined as {〈x, x〉 | x ∈ dom}; the other XPath axes, listed in Table 2.1, are defined by
a combination of two primitive binary relations (defined in [100]) named firstchild and
nextsibling that, given a node x, represent the first child of x, and the next sibling node
of x respectively. Finally, the Core XPath describes the generic axis function named

2 BaseX - The XML Database (http://www.basex.org): An Open Source XQuery engine that im-
plements the Full-Text language extension, and the early XQuery 3.0 language definition. Further
details of the BaseX system are provided in Section 5.3

61

χ : 2Dom → 2Dom defined as: χ(X0) = {x | ∃x0 ∈ X0 : x0χx}, where X0 ⊆ Dom is a
set of nodes. Please notice that the Core XPath Semantics provided in [9] deliberately
choose to overload the the relation name χ previously defined.

A function T is defined to complete the semantics of the evaluation of a XPath location
path expression (described in Section 2.2.1.2); the function T : Σ → Dom (where Σ is
the set of node labels and Dom the set of nodes in the XML document) maps each
node-label to the set of nodes having that label.

The semantics of the evaluation of an XPath query is defined by the semantic function
S. The axis χ evaluation is defined in Equation (4.1) where: N0 is the set of context
nodes, the evaluation of a path expression π given a context node N0 is denoted as
SJπK(N0), and the element root corresponds to the document root node defined in the
XPath DOM.

SJχ :: tK(N0) := χ(N0) ∩ T (t)
SJ/χ :: tK(N0) := χ({root}) ∩ T (t)
SJπ/χ :: tK(N0) := χ(SJπK(N0)) ∩ T (t)

(4.1)

In the following sections, the semantics of the new axes below and near is provided
by integrating and extending the Core XPath semantics. For the complete Core XPath
semantics description please refer to Gottlob et al. work in [9].

4.4.2 The “below” axis semantics

As previously outlined the definitions provided in this section are finalized to identify the
set of nodes retrieved by the below axis evaluation. In this sense, the formal semantics
of the axis below is the same formal semantics of the descendant constraint, as both of
them identify the same set of target nodes; in fact both of them allow to match all the
descending nodes of the context node n0 ∈ N0 with a given label t that identifies the
target node. The only and crucial difference between the below and the descendant
constraints is the computation of path relevance scores that are produced by the below
constraint evaluation and not by the descendant axis evaluation: for each fragment
matching the below constraint (and thus returned in the set of retrieved fragments) a
score is computed, as it will be described at an operational level in section 4.5.1.

Based on this assumption, the definition of the semantics of the below axis is simply
inherited by the descendant axis semantics as shown in (4.2).

SJbelow :: tK(N0) = SJdescendant :: tK(N0) (4.2)

As defined in Section 4.2, the below axis constraint may be inserted in any query with
an unlimited nesting. If more than a single flexible constraint is specified in a query,

62

the relevance score of a retrieved fragment is computed as an aggregation of all the
nested below axes evaluation. This approach differs from standard XQuery Full-Text
score computation in case of multiple full-text constraints: as described in Section 2.3.3
a Full-Text score variable contains only the score computed for the target node, even if
multiple Full-Text expressions are provided. The aggregation function applied in case of
nested below axes is the function min(): this supposes that all the flexible constraints
are satisfied, and that if a nested ideal-path is matched during the below evaluation, it
receives the highest structural score.

Regarding the semantics of the below axis when a threshold parameter is specified, the
proposed formal definition makes use of a function Below(N0, l) that returns all the
descendant nodes of N0 that are at most l arcs far from the context node N0. The
corresponding generic semantics of belowl ::t is shown in Equation (4.3); please notice
that, differently from Section 4.2.1, the threshold parameter name has been changed to
l to avoid confusion with context nodes items n ∈ N0.

SJbelowl :: tK(N0) := Belowl(N0) ∩ T (t) (4.3)

Like all the axes in the Core XPath, the function Belowl(N0) is defined by using the Core
XPath primitive functions: in particular the evaluation of the below axis with a threshold
specification is a composition of a finite composition of the child relation, where the
below threshold defines the number of sequential compositions. As an example, the
Below2 function is defined as follows:

Below2 (N0) := {〈x, z〉 | x ∈ N0 ∧ y, z ∈ Dom,
(x χchild y ∧ y χchild z) ∨ (x χchild z)}

(4.4)

where χchild identifies the child axis relation.

4.4.3 The “near” axis semantics

The near axis, as initially described in Section 4.2.2, allows to match all nodes in the
document tree having a maximum distance from the context node of l arcs. Nodes the
distance of which is more then l arcs are filtered out from the possible results. Following
the CoreXPath semantics previously introduced, and by using the same approach for
defining the axis threshold, the near axis semantics is defined in Equation (4.5).

SJnearl :: tK(N0) := Nearl(N0) ∩ T (t) (4.5)

where Nearl(N0) is the function that returns all nodes with a maximum distance of
l from each context node in N0. The near axis may be defined without a threshold

63

specification; in this case the default threshold value of 1 is provided, and the associated
semantics is defined by Equation (4.6).

SJnear :: tK(N0) := Near1(N0) ∩ T (t) (4.6)

Similarly to the Belowl(N0), the function Nearl(N0) is defined by a composition of Core
XPath function primitives, where the threshold value acts as a composition threshold.
As an example, in Equation (4.7) the Near2 function is provided:

Near2 (N0) := {〈x, z〉 | x ∈ N0 ∧ y, z ∈ Dom ∧ x 6= y 6= z,

(x χbelow2 z) ∨ (x χparent z)
(x χparent y ∧ y χchild z) ∨ (x χparent y ∧ y χparent z)}

(4.7)

where χchild, χparent and χbelow2 identify the child, parent and below2 axes relations
respectively. As shown, the near2 axis function matches all the elements at a distance
of 2 arcs from the x context node by decomposing its evaluation in simpler axes func-
tions. It should be noticed that this function definition imposes that no duplicate nodes
are retrieved since the near axis involves a combination of both reverse and forward
evaluation directions.

In the same way, the Near1 function is defined in Equation (4.8): in this case the nodes
matched are only the ones at a distance of one arc from the context node, thus following
only the child and the parent axes.

Near1 (N0) :={〈x, y〉 | x ∈ N0 ∧ y ∈ Dom, (x χchild y) ∨ (x χparent y)} (4.8)

As for the below axis, also for the near axis evaluation a score is computed that rep-
resents the path relevance of the matched element to the axis ideal path described in
Section 4.2.2.

4.4.4 The Score semantics

The score semantics for the structural-score computed by the below and the near axes
evaluation has been defined following the score semantics of the XQuery Full-Text ex-
tension, as explained in Section 2.3.3. Also the structural score semantics make use
of second order functions, thus allowing to compute and return the structural score
similarly to the definition of the full-text scores given in [59].

The two second order functions that have been defined to compute the structural rele-
vance score of a FleXy expression are: sts:scoreSequence(Expr) and sts:score(Expr),

64

where the prefix sts: has been used to distinguish the newly introduced functions from
the Full-Text correspondent functions, and it stands for StructureScore.

Both functions compute the relevance score of a considered element to the given query
expression Expr: the function sts:score returns the structural score computed for the
single element given in Expr. The function sts:scoreSequence, instead, accepts as
input a sequence of elements: a sequence of scores is then returned that represents the
structural score computed for each one of the elements provided as input.

Similarly to the second order functions introduced by the Full-Text extension (described
in Section 2.3.3), the sts:scoreSequence and the sts:score functions are used when
a for or let FLWOR expression is evaluated. Like in the example provided for the
score variable type in Section 2.3.3, the function sts:scoreSequence is introduced in
for clauses, while the function sts:score is applied in let clauses.

The following query:

for $item score - structure $scoreST in Expr
return ...

is semantically evaluated as if it was rewritten as:

1 let $STScoreSeq := sts: scoreSequence (Expr)
2 for $item at $i in Expr
3 let $scoreST := $STScoreSeq [$i]
4 return ...

The score variable $scoreST, defined as a score-structure type, is computed using
the sts:scoreSequence function; two new variables are used to process the evaluation
of the expression: one to store the set of scores (the variable $STScoreSeq defined in
line 1) and one to identify the index position of the currently evaluated element (the
variable $i defined in line 2). Finally, each score is acquired during the for iteration by
accessing the set of scores computed by the sts:scoreSequence function and stored in
the $STScoreSeq variable as shown in line 3.

In the same way the second order function sts:score is introduced when a let clause
defines a score-structure variable; the XQuery expression

let score - structure $scoreST := Expr

is semantically equivalent to the following form, where the second-order function sts:score
is used:

let $scoreST := sts:score(Expr)

65

4.5 The FleXy axes evaluations

In this section the evaluation functions of the new axes below and near are defined; each
function computes the path relevance score of a target node, given a context node.

Each score is computed in the interval [0, 1] where the value 1 represents a full satisfaction
of the axis constraint evaluation (this value is produced when the target node matches
the ideal-path definition). Score values less than 1 are assigned to target nodes that do
not fully satisfy the axis evaluation; the more a target node is far from the context node
the lower the score. A score value of zero is associated with target nodes that are not
relevant to the flexible axis evaluation; such nodes are then not retrieved and filtered
out from the returned node set.

As previously outlined the notion of ideal-path, or path-closeness, is related to the con-
cept of node distance intended as the number of arcs connecting two nodes following the
shortest path. The definitions of the below and the near axes evaluation functions are
based on a count of the of arcs between the context node and the target node to com-
pute the path relevance score; however, it is very important to outline that alternative
evaluation functions could be defined and easily integrated in the Flexy definition and
implementation.

4.5.1 The “below" constraint evaluation function

As previously stated, the below axis evaluation produces the same node-set result pro-
duced by the XPath descendant axis evaluation; however, for each retrieved node a
score is computed based on the distance between the context node and the target node.
The path relevance score for the below axis evaluation Wbelow with a context node c and
a target node t is computed as:

Wbelow(c, t) = 1
|descArcs(c, t)| (4.9)

Where descArcs(c, t) is a function that, given two XML nodes c and t, returns the set
of arcs connecting node c with t following the shortest path. Based on the semantics
provided in section 4.4.2, the below axis evaluation requires that the node t must be a
descendant of node c, or, more formally, that t ∈ χdescendant(c).

When the axis below is used by specifying a threshold value the associated scoring
function is defined in Equation (4.10) (it extends the definition provided in Equation
(4.9) by introducing the threshold l).

Wbelow(c, t, l) =
{ 1
|descArcs(c,t)| if |descArcs(c, t)| ≤ l

0 else.
(4.10)

66

The score computed by the below axis evaluation is inversely proportional to the distance
of the nodes c and t, thus giving to nodes t that are closer to the context node c a higher
score than the score given to target nodes far from the context node.

Other decreasing functions could be defined to compute the below axis structural scores,
like negative exponential functions providing a smoother decreasing curve for score com-
putation given the distance between the two nodes.

4.5.2 The “near" constraint evaluation function

As defined in Section 4.4.3, the near axis evaluation allows to retrieve nodes that are
close to the given context node in every path direction; in the near axis evaluation
the maximum allowed distance that can occur between the two nodes is taken into
account. Furthermore, if no threshold is specified the maximum allowed distance between
a context node and a target node is set to the default value of 1.

In Equation (4.11) the function proposed to compute the path relevance score based on
the near axis is defined, where c is a context node, t is the a target node and l is the
maximum allowed distance threshold. The function arcs(c, e) returns the set of arcs
between the node c and the node t in the shortest path.

Wnear(c, t, l) =
{ 1
|arcs(c,t)| if |arcs(c, t)| ≤ l

0 else.
(4.11)

Like for the below scoring, the score is inversely proportional to the distance of the
context node from the target node. The function assigns higher values if the target node
is closer to the context node, while the relevance score approaches the zero value as the
distance increases.

4.5.3 Flexible constraints aggregation

An important issue related to the flexible axes evaluation concerns the aggregation of
queries involving multiple flexible constraints and branching in fragment selection. As
described in Section 4.3, the flexible constraints evaluation allows to associate with each
node involved in the flexible part of the query a relevance score in the range [0, 1], which
is used to compute a ranking of the selected fragments.

While in flat queries this can be done without any difficulties, a particular observation
should be made for branching queries where the selection node that needs to be ranked
appears in a different branch than the one/ones that use the flexible constraints, thus
obtaining a path relevance score.

Let us consider the following complex query:

67

for $item score $sft score - structure $sst in
/ person [descendant :: act/near4 :: title[contains (.," gran torino ")]]

/child :: name

order by $sst descending
return

<hit >{ $item/text ()}</hit >

and the XML document fragment shown in Fig. 4.3a. Let us suppose that the user is
interested in finding the names of people involved in the movie entitled “Gran Torino.”
The user interest is mainly in, but not limited to, people who acted in such movie: by
using the constraint near the user requires also to find people who worked as director,
producer, etc. (even if with a lower structural relevance).

(a) Example document fragment for the
branching query example.

(b) The tree-representation for
the branching query exam-
ple.

In Fig. 4.3b, the tree representation of the query is shown: the underlined name element
identifies the target node; the edges between two nodes identify the axes-constraints
(the label explicit the specified axis, i.e., child, near and descendant). Dotted lines
represent filtering functions, in this example the contains function. The element person
is also called branching point.

From the above example it may be noticed how the evaluation of the right branch of Fig.
4.3b can produce a set of more than one element for a single person (i.e., Clint Eastwood
was involved in the movie as the main actor, the director and the producer).

In this case, each retrieved fragment has a score associated, and it is not clear how the
final score should be computed and assigned to the branching point to allow a ranking
of the elements matched in the left branch of the example.

The proposed solution to address this situation adopts an optimistic aggregation in-
terpretation: the axis evaluation assigns in fact to the branching point element (in the
example the person element) a score which is the maximum value among those obtained
by evaluating the right branches.

68

Although the choice of applying the max() aggregation is quite natural to obtain an
optimistic aggregation, it is important to outline that other aggregation schemes could
be defined by the user, by means of nested for and let queries, where the computed
scores are aggregated based on the user indications by using either XQuery arithmetic
operations or the fn:min() and fn:max() functions.

69

5 Implementation

In this chapter the main issues addressed and the main activities undertaken in relation
to the implementation of the FleXy language are presented. To the aim of implementing
the Flexy language as an extension of the XQuery Full-Text language two main directions
have been undertaken: (1) to modify an existing XML query engine with a highly efficient
data structure capable of efficiently processing Flexy queries, (2) to implement the Flexy
language as a full extension of an existing open source engine that efficiently implements
the XQuery Full-Text language.

The first research direction started with an analysis of the syntax and the semantics de-
scribed in the previous sections to clearly identify the data-structure that could provide
an efficient language parsing and evaluation strategy on top of which to implement the
FleXy axes constraints and the structural relevance score computation. In Section 5.1
the research activities undertaken to achieve these objectives are reported, by illustrat-
ing the data structure, named multi-µPID, designed for providing an efficient flexible
axes evaluation as defined by the FleXy language. Such work has represented a first
attempt to efficiently integrate the below and the near axes evaluation on top of an
XML query engine. The work undertaken in this first phase has confirmed the feasibil-
ity of introducing such flexibility in XML querying, without affecting the overall system
performances.

The outcomes of the first research direction, and the consequent need to define an in-
tegrated and standard implementation of the Flexy language on the top of an XQuery
FullText engine has motivated the definition of a second research direction, which has
concerned the implementation of the FleXy constraints on top of an existent, fully fea-
tured and XQuery Full-Text compliant engine. The main aim has been to extend an
open source engine by including the Flexy constraints, thus defining a new open source
engine, highly efficient and available to a wider numeber of users. A first phase of this
second implementation strategy has concerned the analysis of the available open source
XQuery engines, in order to select the one on which to implement the XQuery Full-Text
extensions; this analysis is shortly reported on Section 5.2, where a summary of the
considered system features, adaptability and adherence to the XQuery and the XQuery
Full-Text languages are reported. The pros and cons of each system are summarized in
Section 5.2.6 where the BaseX XML engine, that fully supports the XQuery Full-Text
language and implements an efficient node encoding schema, has been selected as the
implementation framework for the FleXy language.

70

Finally in Section 5.3 the software developments performed on top of the BaseX engine
are described: details about the implemented functionalities, the integration performed
on top of the BaseX query parser and the evaluation algorithms of the FleXy axes are
also presented.

5.1 A preliminary FleXy implementation: multi-minPID

In this section a first research activity aimed at efficiently implementing the FleXy
language constraints and score computation on an XQuery engine is presented. Such
work, called multi-minPID has been inspired by and has extended a proposal in the
literature to integrate XQuery structural constraints with content matching and ranking
proposed. Such proposal, defined by Bremer et al. [145], was named XQuery/IR. My
contribution has leveraged the XML node identification schema proposed by the same
authors, called minPID [91].

As it will be discussed later, even if providing a good infrastructure for the flexible
constraints evaluation, the multi-minPID has been replaced by a more feature complete
and performing system subsequently implemented during the research performed in my
PhD period, and presented in Section 5.3. In particular, the XQuery/IR engine and
the preliminary FleXy constraints implementation have been developed when the W3C
definition of the Full-Text extension was still in an early stage and no XQuery Full-Text
engine was released yet.

In Section 5.1.1 the encoding schema minPID is described, while Section 5.1.2 presents
the preliminary evaluation of the FleXy constraints on top of the XQuery/IR engine.
Section 5.1.3 summarizes the findings of such preliminary work.

5.1.1 Introduction

The work presented in [145] represents one of the first approaches aimed at integrating
in the XQuery language a result ranking based on a keyword-based search performed
with Information Retrieval techniques. In particular, a fragment score computation
was there implemented by introducing a rank by operator in the XQuery language that
offered a simple tf · idf element score computation. Such system, named XQuery/IR
[146], has been provided by the authors as a prototype, and it has been subsequently
extended within my PhD research to provide a preliminary implementation of the FleXy
features.

As previously outlined, the XQuery/IR prototype includes an ad-hoc node encoding
schema, called minPID, which has been used to index and store both the structure and
the content of a single XML document. Such encoding schema allows, as stated in Bremer
et al. work, to efficiently evaluate the set of XQuery Path Expressions and queries that
include branching. The approach uses the notion ofMinimal Path Identifiers (minPID),

71

and an efficient encoding schema for such identifiers. A Minimal Path Identifier is a way
to encode XML paths based on an enriched variant of a DataGuide [88] called XDG,
an acronym that stands for eXtended DataGuides, as defined by Bremer et al. in [145].
Similarly to a DataGuide structure, an XDG represents a concise description of an XML
document structure, as it is a looser representation than both DTDs and XML Schema.
An eXtended DataGuide, like its predecessor DataGuide, can be directly derived from
a document, and it enumerates all the rooted label paths (the sequence of labels that
connects the document root node to any of the nodes in the document tree) that are
present in the node hierarchy of an XML document. For each path in the document a
unique identifier is assigned and called XDG node number (or XDGNode#); the maximum
number of instances of each node label (sibling fanout) in the source document hierarchy
is also stored.

(a) An example XML document. (b) The eXtended DataGuide (XDG) for
the XML document in Fig. 5.1a.

Figure 5.1: An XML document and its corresponding eXtended DataGuide.

In Fig. 5.1 an example of an XML document is shown with the corresponding eXtended
DataGuide graph; each rooted label path in the document hierarchy is represented once,
and for each node in the XDG the maximum sibling node fanout is shown between round
brackets. In the example in Fig. 5.1b, the node labeled bk has a maximum number of 4
siblings in the entire XML tree, while the number displayed inside each node represents
the assigned XDG node number based on a pre-left order node visit.

Based on such eXtended DataGuide definition a Minimal Path Identifier of a node
n ∈ D is a pair minPID(n) = (p, s), where p is the sequence of XDG nodes identifiers
that represent the rooted label path of the node n in the XDG, while s is the sequence
of sibling position of each node pi ∈ p. For example, consider the path expression
library/location/books/bk[4]/author[3] (highlighted in Fig. 5.1a), and its corresponding
rooted label path library/location/books/bk/author; a sibling position is specified for
the bk (position 4) node and the author (position 3) node. Following the XDG shown
in Fig. 5.1b, the minPID for such path expression is (< 0, 1, 3, 4, 6 >,< 1, 1, 1, 4, 3 >).

The relationship between two nodes n1, n2 ∈ D in an XML document D, can be easily
determined based on their minPIDs encoding: descendant and child relationships can be

72

easily determined first by comparing the corresponding XDG node identifier of the two
nodes, and then by their sibling positions. In the same way the parent and ancestor rela-
tionship are evaluated by combining the information stored in the eXtended DataGuide
about the rooted label path and the sequence of sibling positions.

5.1.2 Flexy on top of XQuery/IR

Based on the previously described eXtended DataGuide and the minPID encoding
schema adopted by Bremer et al.’s prototype, the FleXy language extension has been
implemented by leveraging such data structures. Furthermore, the original system has
been extended to allow the indexing and the querying of multiple document collections,
as the original design of the tool was only conceived to handle a unique XML document
representing the entire document collection. The definition of minPID has been then
extended to the following definition in which the minPID of a node n ∈ D is composed
of a tuple minPID(n) = (d, p, s), where d is the document identifier, p is the sequence
of XDGnodes# from the XDG built on the document D, and s is the sequence of sibling
position of each node pi ∈ p. Document collections with slight hierarchy differences
between each document can in this way share a unique XDG across the whole collection,
thus reducing the overhead of having an XDG for each single document.

Both the below and the near axes, alongside their parametric variants, have been im-
plemented in the XQuery/IR tool, where the eXtended DataGuide has been strongly
used to identify the set of relevant nodes that have to be retrieved by the flexible axes.
In particular, the evaluation of a FleXy axis is performed by first identifying the labels
of the target and the context nodes from the path expression query, then subsequently,
for each XDG defined in the system, the following steps are executed:

1. retrieve the set of XDGNode# corresponding to the context and target labels;

2. for each of the matched XDGNode#, identify the set of target XDGNode# that satisfy
the flexible axis by a substring matching between the corresponding rooted label
paths, and compute the structural score for each target XDG node;

3. finally, retrieve the set of XML nodes having a minPID that matches the identified
set of XDGNode# and that belongs to the current XDG.

The simple iterative process here described performs a costly string comparison between
the identified set of rooted label paths to identify the correct set of candidate target nodes.
Furthermore the implementation provided on top of the XQuery/IR engine inherits the
disadvantage of the system structure where a high number of intermediate results have
to be computed when branching queries are formulated.

Unfortunately, during the FleXy integration, different issues arose regarding the un-
derlying XQuery/IR data structure implementation, where different bugs have been
discovered and, although with an insufficient code documentation, fixed.

73

Besides being unmaintained and thus no support has been provided for bug fixing from
the authors, theXQuery/IR engine also lacked a, either partial, support for the XQuery
FLWOR clauses parsing and no query execution component was implemented. For these
reasons, besides proving the feasibility of the implementation of the FleXy language con-
straints, no further development has been provided on top of the XQuery/IR engine.

5.1.3 Summary

Some evaluation tests have been performed with the FleXy implementation previously
described, but the timings for computing the below and the near axis evaluation in-
troduced an high overhead to the entire system. While the implementation showed the
feasibility of the FleXy approach and the value added by the structural score computa-
tion, the prototype extended by the original Bremen et al. [145], lacked of some of the
important features of a complete XQuery engine.

Furthermore, although described as a complete and fully working system, the available
prototype released by the XQuery/IR authors only included the index building module
and an incomplete set of FLWOR matching functions. In particular the XQuery parsing
and evaluation components were not implemented, while the described text index was
not extensible to match the upcoming W3C Full-Text features (and its content scoring
technique).

For that reason the subsequent FleXy implementation has been proceeded by a deep anal-
ysis of the state of the art XQuery engines that both adopts efficient encoding schemes
suitable for the FleXy axes evaluation, and that were moving toward the integration,
and the at most complete support, of the XQuery/XPath Full-Text extension.

5.2 XQuery engines analysis

In this section the main XQuery engines that have been considered as candidates for the
FleXy language integration are shortly introduced, by describing their main characteris-
tics and peculiarities. In particular, the adherence to the standard XQuery, XPath and
XQuery/XPath Full-Text languages syntax and semantics have been taken into account
to identify which XQuery engine would provide a better environment on top of which to
implement the set of FleXy axes and structural score computation.

It is important to outline that the list of engines here presented does not represent
a complete and exhaustive analysis of the wide number of available XQuery engines;
moreover, for some of the presented systems, some information could not not be fully
updated at the moment of reading this manuscript, due to the intensive and continous
activity performed by the underlying developer community.

A particular note should be made regarding the functionalities and characteristics of the
XQuery engines presented here: some of them could have released updated versions of

74

their core system that, at time of writing, could not have been evaluated, analyzed, nor
adopted for the implementation of the Flexy constraints. In particular, the collection
and the analysis of XQuery compliant systems has been performed during the spring of
2012, while the implementation took place during the subsequent months.

The engines have been selected as the most relevant representatives of full compliant
XQuery systems, and they have been analyzed by taking into account, as the most
relevant, the following characteristics:

• Open Source: the systems must be open sourced, to provide a better understanding
of their internal evaluation and to perform the integration with the extended FleXy
constraints; furthermore a current active development of the system would be
beneficial.

• Full compliance with the XQuery and XPath languages syntax and semantics, in
particular for the path expressions and the axis-step evaluation;

• the systems must provide and adhere to the W3C Full-Text language extension
syntax; a minimal conformance as defined by the W3C test suite [62] must be
provided, in particular the score computation and the score value access.

In the following sections the XQuery engines MonetDB, eXist-DB, BaseX, Zorba
and others are presented and described; Section 5.2.6 provides an overview and a sum-
mary of the analyzed set of query systems and other engines that have been encountered
during this work. Section 5.2.6 also summarizes the motivations that lead to the adoption
of BaseX as the base engine on top of which the FleXy language has been implemented
and evaluated.

5.2.1 MonetDB/XQuery

The MonetDB/XQuery1 is an Open Source XQuery engine developed by combining
the relational database engine MonetDB and the PathFinder [147] project; both sys-
tems have been implemented in C language. Pathfinder, developed by the university of
Kostanz, is a project aimed at providing a Purely Relational XQuery Processor on top of
relational databases: it performs a compilation process that transforms XQuery expres-
sions into SQL code (or to other variants), thus allowing relational database management
systems, where both XML elements and contents have been opportunely encoded and
stored as tabular data, to act as XQuery processors. The PathFinder goal is to lever-
age standard and consolidated database engines to evaluate XQuery expressions without
requiring to build a specifically built XQuery engine.

The PathFinder system requires that the set of XML elements that compose an XML
document are stored in the underlying database tables by adopting a tree encoding

1 The MonetDB/XQuery engine is available at http://www.menetdb.org/XQuery

75

http://www.menetdb.org/XQuery

schema that efficiently provides the ability to maintain the document order of the ele-
ments and to evaluate XQuery node-test and location-step expressions.

The XML-to-tables translation performed by PathFinder uses a variation of the tree
node encoding schema proposed in [92] where Preorder and Postorder node traversal
techniques [148] are adopted to compute a tabular representation of XML elements and
its hierarchy. Such tabular representation comprises, for each node v the pre-oder visit
value of the node in the tree (pre(v)), the number of descendant nodes (size(v)), the
node type as specified by the XQuery DOM such as element, attribute or text node kind
(kind(v)) and the distance of the node v to the root element node (level(v)). The encod-
ing schema used by the PathFinder system, and implemented in the MonetDB/XQuery
query engine, is thus called pre/size/level.

Given such encoding schema, the XPath and the XQuery axes can be characterized by
the four functions pre(), size(), kind() and level(); for example, given a context node v,
the set of descendant nodes y can be defined as Equation (5.1), while the set of child
nodes of v as Equation (5.2).

descendant(v) := {x | pre(x) > pre(v) ∧ pre(x) < pre(v) + size(v)} (5.1)

descendant(v) :={x | pre(x) > pre(v) ∧ pre(x) < pre(v) + size(v)
∧ level(x) = level(v) + 1} (5.2)

Although the encoding schema adopted by the PathFinder system looks promising for
the evaluation of the FleXy constraints below and near, due to both the presence of
the level attribute for each node and the possibility to access descendant elements in
constant time, such encoding would require an expensive set of computations to access
parent and ancestors nodes. A solution has been proposed by the BaseX engine,
described in Section 5.2.3, that provides constant time access also to ancestors nodes.

As MonetDB/XQuery leverages the underlying relational database representation of
XML documents, the MonetDB/XQuery engine also includes a preliminary implemen-
tation of the XQuery Update Facility [35] feature coupled with transactional safe update
capabilities, query caches and user-defined functions.

The current development of MonetDB, unfortunately, has stopped the support and the
integration of the MonetDB relational database engine with the PathFinder system due
to a lack of resources2. The latest available MonetDB/XQuery engine has been released

2 On the MonetDB/XQuery webpage, the following message announces that the development and
integration of PathFinder with the current releases of MonetDB have stopped: March 2011: Mon-
etDB/XQuery project is frozen. Due to lack of development and manpower to port the software
to MonetDB version 5, we had to freeze the code base. We do not fix any bugs or problems with
MonetDB/XQuery”, no more updates have been published recently.

76

on March 2011, that integrates the PathFinder system with the MonetDB version 4;
although the encoding schema adopted by PathFinder provides good performances in
evaluating XQuery expressions, the Full-Text extension was not integrated in Monet-
DB/XQuery. For that reason the MonetDB/XQuery engine was discarded from the
candidates of possible engines where the FleXy constraints could be integrated.

5.2.2 eXist-db Engine

The eXist-db engine3 is an open source XQuery processor written in Java language
that has been extended, since its first definition by Meier [108], to integrate the XQuery
language up to the latest 3.0 W3C recommendation.

The eXist-db engine adopts a different XML element encoding schema from the pre/-
size/level used in MonetDB/XQuery and the pre/size/dist of BaseX. A variation of the
level-order numbering schema proposed by Lee et al. [149] is adopted in eXist: the
original encoding technique is defined for complete k-trees, where spare node identi-
fiers are assigned in case of incomplete or unbalanced trees branches. The Lee et al.
constraint of k-ary tree completeness has been partially altered in the eXist encoding
schema: Meier’s observation is that in typical XML documents the maximum number
of children can greatly vary at different hierarchy levels, thus requiring, in a worst case
scenario, to insert (and waste) a huge number of spare node identifiers. In the eXist
encoding schema, instead, the k-ary completeness is computed at each tree level, thus
minimizing the number of virtual node identifiers to add in the tree representation.

Subsequent works carried by community efforts on the open source eXist-db project
provided the integration of the engine with different XQuery extended modules and the
ability to invoke Java methods within an XQuery expression.

The current development status of the eXist-DB engine, unfortunately, lacks a Full-
Text compliance integration: a full-text search functionality is provided by an external
module called ft: 4 by leveraging the community driven and open source Apache Lucene
framework [150]. The Lucene framework provides a set of capabilities for text search
engines, in particular features as document and terms indexing, advanced text analysis,
and a specially defined query language are available from a Java based set of methods,
classes and APIs. The advantages obtained by integrating such framework, such as the
usage of a solid search framework as Lucene is, are however affected by the missing
coherence of the Lucene query syntax with the one defined by W3C and included in the
Full-Text standard.

Another important discrepancy between the eXist and the Full-Text extension resides
on how the score of a full text search is computed: the W3C definition requires the scores
to be computed in the interval [0, 1] (see Section 2.3.3 for details), but in a Lucene query

3 The eXist-db query engine is available at http://exist-db.org webpage.
4 The eXist full-text search module named ft: is described in the eXist documentation available at

http://exist-db.org/exist/apps/doc/lucene.xml.

77

http://exist-db.org
http://exist-db.org/exist/apps/doc/lucene.xml

evaluation the relevance score is not bounded in such interval. As also shown in the
online demo of the engine5: the execution of the query in Listing 5.1 by the eXist
engine produces the results (partially shown) in Listing 5.2, where the computed scores
outside the [0, 1] interval are shown.

for $m in // SPEECH [ft:query (., "boil bubble ")]
let $score := ft:score($m)
order by $score descending

return <m score ="{ $score }">{$m}</m>

Listing 5.1: Full-Text search specified using eXist ft: search module.

<m score ="2.572969" >
<SPEECH >

<SPEAKER > Second Witch </ SPEAKER >
<LINE > Fillet of a fenny snake ,</LINE >
<LINE >In the cauldron boil and bake ;</LINE >

(...)
</m>
<m score ="1.0049098" >

<SPEECH >
<SPEAKER >ALL </ SPEAKER >
<LINE >Double , double toil and trouble ;</LINE >

(...)

Listing 5.2: Results obtained by the eXist evaluation of query in Listing 5.1

Furthermore the Lucene framework works on a fielded document representation, where
no hierarchy or structure is taken into account; this requires the eXist-db engine to
internally index and process a set of mappings between a processed XML document and
the Lucene XML-agnostic document representation. In particular, as examplified in the
eXist-db full-text documentation, the adopted indexing procedure requires a manual
intervention of the user to configure the set of indexed and ignored XML elements.

From the documentation of eXist-db a note is provided regarding the adoption of the
XQuery Full-Text in the engine; such note simply states that the Lucene index will be
used to provide the standard W3C extension, but no more updates are given about the
development or the estimated implementation plan.

5.2.3 BaseX

As cited on its website, BaseX is an XML Database engine and XPath/XQuery proces-
sor ; it was initially developed by the University of Konstanz, and it has been further

5 The Full-Text example is taken from the online demo available at: http://exist-db.org/exist/
apps/demo/examples/basic/fulltext.html.

78

http://exist-db.org/exist/apps/demo/examples/basic/fulltext.html
http://exist-db.org/exist/apps/demo/examples/basic/fulltext.html

developed as an open source product with commercial support6.

The constant and continuous development of the BaseX engine is proved by its adoption
and by the implementation of the most recent XQuery and XML related technologies
and standards on top of this engine: examples are the the XQuery Update Facility and
the XQuery 3.0 language that were introduced, and then consolidated, in BaseX since
their initial W3C drafts; furthermore the set of available XQuery modules is continuously
updated.

BaseX has been distinguished as being the first XQuery engine to integrate, and fully
adhere, to the XQuery/XPath Full-Text language extension, where other engines only
provided a customized and reduced variant for full-text searches. BaseX supports the
full set of Full-Text options, such as wildcards, stemming and stop words and more than
20 languages. Most notably, the founder and the main developer of BaseX, Christian
Grüen, is also one of the few members of the XQuery and XPath Full Text 1.0 Test Suite
[62] project.

The first engine prototype has been presented in Grüen et al. work [109], where the first
BaseX core was presented, and some comparisons were provided; a subsequent work
[151] of the same authors further extended BaseX’s data structures to allow the XQuery
Full-Text extension evaluation. The main characteristic of BaseX is the adoption of an
ad-hoc indexing schema inherited from the pre/size proposed by Grust et al. [92] and
implemented in the MonetDB/XQuery [78]. The difference resides on the optimization
introduced for the parent and child axis evaluation, where a third value, called dist,
allows to access parent and child nodes in constant time, thus improving the query
evaluation efficiency.

BaseX also represents the first approach to implement the state of the art of XML
data storage and handling by integrating both an in-memory query processing, and an
efficient and compressed indexing schema. The integration of query optimization and
query rewriting techniques, coupled with the index optimization, resulted in an efficient
and highly scalable XQuery engine, able to index up to 500Gb of XML data.

Some efficiency evaluations are provided in Grün work [152], where the BaseX engine is
compared against other open-source XQuery engines such as MonetDB/XQuery, eXist
and Zorba: the provided results show how both the XML indexing and the query eval-
uation of BaseX outperform the mentioned systems, thus enforcing the efficiency of the
BaseX encoding and query evaluation systems.

BaseX has been primarily chosen for being the first system to implement the full XQuery
Full-Text extension languages. Other aspects of the BaseX project that motivated this
choice rely on the availability of its source code, and the active community behind the
BaseX development.

6 BaseX, The XML Database. website is available at www.basex.org

79

www.basex.org

5.2.4 Zorba

The query engine Zorba7 is a C/C++ based open source system that implements the
standard W3C query languages such as XQuery and XPath with the latest standard
extensions and language modules; it was initially presented by Bamford et al. in the
XQuery Reloaded [153] article. The project is supported by the FLWOR Foundation8:
a non-profit organization for promoting the adoption of the XQuery technology and
supporting open source projects for commercial products.

An important aspect of the Zorba XQuery processor engine resides on the possibility
offered by the system to query not only XML documents, but also JSON (JavaScript
Object Notation) [154] structured data that share a wide set of commonalities with XML
documents. Zorba, alongside XQuery, also integrates the JSONiq [155] query language,
a language for JSON documents and inspired by the XQuery syntax and constructs9.

The Zorba system is structured differently from other XQuery engines where both in-
dexing and querying facilities are bounded together: Zorba provides an overlay query
engine where different storage and indexing methods can be plugged in and used as
the underlying storage engine. This aspect, although simplifying the introduction of
the FleXy axis constraints in the Zorba language parser and interpreter, would def-
initely require both to provide the implementation and the evaluation of the XQuery
flexible extension on top of the different storage engines available for the Zorba system,
varying from in-memory storage (default Zorba implementation) to disk or DB stor-
age approaches. All the implemented storage systems do not tackle neither the storage
of unstructured data with ad-hoc data structures, nor encoding schemas that support
efficient node traversal: the Zorba engine purely acts as an overlay framework to pro-
vide XQuery/JSONiq support, but it delegates to the underlying storage platform the
complete evaluation of the query constraints.

The Zorba engine, probably due to the different types of supported storage engines, only
partially supports the W3C XQuery Full-Text extension: although the engine obtained
a high conformance score in the W3C Full-Text conformance evaluation, the Zorba
engine neither support, nor provides, the Full-Text relevance score computation in any
FLWOR expression.

for $item score $s
in doc (" books.xml ")/bib/book[author contains text " Melton "]

return <hit score ="{ $score }">{ $item }</hit >

Listing 5.3: A Full-Text search provided for testing the Zorba XQuery engine.

7 The “Zorba NoSQL Query Porcessing” engine documentation, source-code and development blog is
located at: http://www.zorba.io/.

8 The FLWOR Foundation homepage is available at www.flworfound.org.
9 More details about the JSONiq query language and its commonalities with XQuery can be found on
the JSONiq website: http://jsoniq.org.

80

http://www.zorba.io/
www.flworfound.org
http://jsoniq.org

An example of such missing feature is also shown in the online Zorba demonstration
tool10 , where if the the query in Listing 5.3 is formulated, the system would not execute
the query, and only the following error message is reported:

Zorba error [zerr: ZXQP0004]: not yet implemented : score

The missing conformance to the XQuery Full-Text extension, in particular the unavail-
ability of a relevance score computation and the ScoreVariable in any FLWOR clause,
further motivated the choice of not to adopt the actual Zorba 2.9 system for the FleXy
language implementation.

5.2.5 Other XQuery engines with Full-Text

Other Open-Source XQuery engines exist implementing full-text search capabilities over
XML documents; these include MXQuery [156], Nux [157] and others.

As previously described, a query engine candidate for the FleXy language integration
must have three characteristics to be taken into account, and then to be further inte-
grated with the flexible language: the engines described here below miss one or same of
the requirements. These engines have then not been conisdered as a suitable candidates,
given their missing strict adherence with the XQuery and XQuery/XPath Full-Text stan-
dards syntax and evaluation. In the following sections the main characteristics and the
reasons that lead to excluding such systems from the evaluation and the implementation
of the FleXy language are described.

5.2.5.1 MXQuery

The MicroXQuery (MXQuery) [156] engine is a Java-based and open-source11 engine
that implements (most of) the features of the standard XQuery language.

The MXQuery engine has been developed within a collaboration between Siemens
and ETH Zurich; the MXQuery system is designed as a streaming XQuery engine: in
such kind of systems the evaluation of queries is not performed on a DOM document
representation, but on XML data that are streamed and parsed serially at application
runtime.

Furthermore the engine has been designed by adopting techniques that allow the system
to be integrated in small and embedded devices like mobile phones and computers with
limited resources as demonstrated in [158], where MXQuery has been integrated on a
small integrated circuit board.

10 The Zorba online demonstration tool is available at http://zorbawebsite2.my28msec.com/html/
demo; the tool is based on the latest version 2.9.0 of the engine.

11 MXQuery engine is hosted at http://www.mxquery.org, while its source code is available under the
SourceForce repository: http://sourceforge.net/projects/mxquery/

81

http://zorbawebsite2.my28msec.com/html/demo
http://zorbawebsite2.my28msec.com/html/demo
http://www.mxquery.org
http://sourceforge.net/projects/mxquery/

The XQuery parser applies query normalization using the rules of the Query formal se-
mantics, and query expressions are optimized by using techniques such as query rewrit-
ing rules and duplicates elimination. Advanced algorithms, like the query optimizer and
cost-based query rewriting available in BaseX, are not implemented inMXQuery. Fur-
thermore, MXQuery has also been used as a reference implementation for the XQuery
Update language [35] and the XQuery Scripting [159] extensions in 2009.

Unfortunately the MXQuery development has stopped in latest years apart from some
porting of the library to the Android OS. The latest MXQuery release, at time of writing,
dates back to March 2009 with release 0.6 that, from its change-log, provides only a
partial and experimental support for the XQuery Full-Text language extension, the main
issues12 reported regarding XQuery Full-Text are: (1) the missing support of the scoring
computation in for clauses and (2) the availability of English text parsing only. The
important issue about the missing score computation, the support for XQuery Full-Text
defined as experimental, and the stopped development of the tool, prevented the tool to
be taken into account for implementing the FleXy language.

Some discrepancy were found during the evaluation of the MXQuery engine: the latest
available release reported online is 0.6.0, while the results provided in the W3C XQuery
Full-Text Test Suite [160] refer to a 0.7.0 release version. The source code of such
updated release could not been found on the MXQuery website, neither under the
SVN source code tracking provided by SourceForge, nor on the (broken since March
2012) continuous integration system, intended to provide pre-compiled versions of the
MXQuery engine, available at http://sgv-jenkins-01.ethz.ch/job/MXQuery/.

5.2.5.2 Nux query engine

The Nux [157] query engine, similarly to MXQuery, is a XQuery engine built for
streaming querying XML data written in Java. While supporting standard XQuery and
XPath languages, it introduces a full-text matching feature by integrating the Apache
Lucene [150] search framework in query formulation as an extended set of functions for
the XQuery and XPath languages.

The Nux engine leverages the Apache Lucene framework to provide full text search
capabilities while querying XML documents similarly to the eXist-db engine described
in Section 5.2.2. The same observation made for the eXist engine also apply here for the
Nux integration with the Lucene framework: the relevance extimation score computed
by the Apache framework does not adhere to the W3C Full-Text definition where the
full-text relevance score must be in the interval [0, 1].

Although the technique proposed by Nux to integrate a full-text search seems promising
as shown in the example in Listing 5.4, the tool does not support the Full-Text language
extension as defined by the W3C. Nux misses the syntax and the features defined by
12 The list of known issues and bugs of MXQuery are available online at the Bugs section of the MXQuery

webstite: http://mxquery.org/?page_id=63.

82

http://sgv-jenkins-01.ethz.ch/job/MXQuery/
http://mxquery.org/?page_id=63

the standardized language, for example stop-word removal and the definition of a the-
saurus. Furthermore, the constraints evaluation using a function wrapper to the Lucene
framework, requires the user to: (1) specify to retrieve only elements having a non zero
relevance score, and (2) to compute the full-text score twice to access the score value.

declare namespace lucene = "java:nux.xom.pool. FullTextUtil ";
declare variable $query := "+ salmon ~ +fish* manual ~";
(: declare variable $query as xs: string external ; :)

for $book in /books/book[author =" James" and lucene :match(abstract ,
$query) > 0.0]

let $score := lucene :match($book/abstract , $query)
order by $score descending

return $book

Listing 5.4: Example of full-text search in Nux XQuery engine

The Nux development, as for the MXQuery engine, has stopped since 2006 and the
non strict adherence to the Full-Text language definition has prevented the engine to be
considered as a candidate tool for the integration with the FleXy language.

5.2.6 XQuery and XQuery Full-Text engines comparison

In this section a summary and a comparison of the main features of the previously
described XQuery systems is provided: the comparison here presented is not intended as
a complete deep analysis of each system’s performance, indexing and querying timings.
Other works have envisioned a benchmark tool for XQuery engines, an example is the
XQBench system proposed by Fisher [161], where a complete CPU, RAM and Disk
I/O performance evaluation and benchmark should be provided for XQuery engines;
such tool, unfortunately, has not been finalized into an online tool as initially promised.
Other works in that direction have been further carried out by the same group in [162],
but they only focus on Database related systems.

The system comparison provided here is, instead, a feature-oriented evaluation of XQuery
engines, in particular for the engines described in the previous sections, and concerning
the set of features listed in Section 5.2. Such required features are the ones taken into
account as discriminators for selecting the candidate system on top of which the FleXy
language would be implemented.

In Table 5.1 the system characteristics of the engines analyzed are reported. The systems
information here presented have been updated at October 2013, while the final decision,
as subsequently motivated, of adopting the BaseX engine as the FleXy implementation
candidate, has been taken in spring 2012.

83

Name Status Language XQuery Full-Text
MonetDB/XQuery Unmaintained C/C++ None
BaseX Actively developed Java Complete
Zorba Actively developed C/C++ Partial, no scores
eXist Actively developed Java Apache Lucene syntax
Nux Unmaintained Java Apache Lucene syntax
MXQuery Unmaintained Java Partial, no scores
Qizx/Open Unmaintained Java Custom FT syntax
Name License Latest Release Homepage
MonetDB/XQuery Public/Unknown 4.0 (2011-03-01) www.monetdb.org/XQuery
BaseX BSD 7.7.2 (2013-10-07) www.basex.org
Zorba Apache 2.0 2.9.0 (2013-05-15) www.zorba.io
eXist GNU L-GPL 2.1 (2013-07-18) www.exist-db.org
Nux Public/Unknown 1.6 (2006-06-18) acs.lbl.gov/software/nux/
MXQuery Apache 2.0 0.6.0 (2009-05-04) www.mxquery.org
Qizx/Open Mozilla/Public 4.1 (2010-10-12) www.axyana.com/qizxopen

Table 5.1: XQuery engines summary

As visible from Table 5.1, only few open source XQuery engines strives to provide a
standard Full-Text extension implementation, while other systems that provide full text
search features rely on the Apache Lucene framework syntax and indexing capabilities.

Regarding the XQuery Full-Text extension comparison, in Table 5.2 a summary of the
Full-Text test suite results, as taken from the W3C Test suite page13 is provided to show
how each engine complies with the standard Full-Text syntax and evaluation options.
The three columns of Table 5.2 represent: (1) theMinimal conformance as the adherence
of the engine to the required features of the Full-Text specification, (2) the support of the
full set of Full-Text Expressions such as scoring variables and the comparison operators,
and (3) the implementation of the Optional features of the Full-Text extension, such as
the stop-word, language and other operators.

Some notes should be made about the compatibility levels shown in the Test Suite
results: only the BaseX and MXQuery engines are reported to obtain a complete
conformance with the XQuery Full-Text extension, while other engines only partially
adhere to the Full-Text definition. An incoherence between the results reported by the
W3C and the MXQuery engine exists: the evaluation performed on the MXQuery is
reported for the release 0.7.0; such release, instead, could not be found online and thus
the evaluation could not be reproduced. As also described in Section 5.2.5.1. the latest

13 The XQuery Full-Text Test Suite results are available from the W3C webpage http://dev.
w3.org/2007/xpath-full-text-10-test-suite/PublicPagesStagingArea/ReportedResults/
XQFTTSReport.html; while the Zorba results have been taken from the engine documen-
tation available at the following address: http://www.zorba.io/documentation/2.9/zorba/
conformanceXQFTTS.html.

84

http://dev.w3.org/2007/xpath-full-text-10-test-suite/PublicPagesStagingArea/ReportedResults/XQFTTSReport.html
http://dev.w3.org/2007/xpath-full-text-10-test-suite/PublicPagesStagingArea/ReportedResults/XQFTTSReport.html
http://dev.w3.org/2007/xpath-full-text-10-test-suite/PublicPagesStagingArea/ReportedResults/XQFTTSReport.html
http://www.zorba.io/documentation/2.9/zorba/conformanceXQFTTS.html
http://www.zorba.io/documentation/2.9/zorba/conformanceXQFTTS.html

available MXQuery release is the version number 0.6.0, and it lacks the relevance score
computation (as also described in the list of missing features of such version); thus it
could not obtain a complete conformance to the set of Full-Text Expressions.

Name Min. Conformance FT Expressions Opt. Features
BaseX 6.3 Complete Complete Complete
MXQuery 0.7 Complete Complete? (See notes) Complete
Qizx 4.1 99.1% Partial (with errors) 98.2%
Zorba 2.5 89.51% Partial (with errors) 84.8%

Table 5.2: XQuery Full-Text Test Suite Result Summary for the selected XQuery engines

A final remark regards the actively maintained and developed projects: only two of the
three active projects, namely the BaseX and the Zorba engines, implement the XQuery
Full-Text extension, while eXist-db adopted the Lucene framework to provide full-text
search, thus not adhering to the W3C standardized language.

From the above considerations and query engines comparison, the solely, at time of
writing, engine that would entirely support the W3C standard Full-Text language is
BaseX; it is available under an open source license and it is actively maintained and
developed as confirmed by the recent releases and the frequent improvements introduced
in the engine.

The BaseX engine also adopts an efficient encoding schema that is proven to provide
an efficient and optimized XML node traversal; in particular, for the descendant and
ancestor axes, the pre/size/dist schema, as previously described in Section 5.2.3 and
further detailed in Section 5.3.2, it supports direct access at a constant time traversal
for parent and child nodes. This aspect is crucial and it represents an important
characteristic for an efficient evaluation of the below and the near axes as defined in the
FleXy language: for the above reasons the BaseX engine has been chosen as the main
framework for the implementation of the FleXy language.

5.3 FleXy implementation in BaseX

In this section the implementation of the FleXy axes on top of the BaseX query engine are
presented: in particular the algorithms defined for processing the FleXy constraints, and
those for computing the structure relevance score leveraging the index data structure
of BaseX are described. The resulting XQuery engine, including both the Full-Text
extension and the FleXy evaluation has been named Flex-BaseX [163].

In Section 5.3.1 the BaseX engine is presented, while Section 5.3.2 provides further
details about the encoding and indexing schema adopted by BaseX. Details are provided
regarding the efficient query evaluation process that is performed by the engine, such as
query rewriting and query optimization.

85

Section 5.3.3 describes the Below and Near axes integration on the BaseX engine and
the extension provided for the Query syntax interpreter. Finally the algorithms for the
below and the near axes are described in Section 5.3.4 and Section 5.3.6 respectively,
by taking into account the algorithms for the evaluation of the parametric variants of
the axes. The algorithm that computes the below reverse axis named above is described
after the below algorithm, in Section 5.3.5.

5.3.1 BaseX Overview

BaseX, as previously introduced in Section 5.2.3, is Java-based Open Source XQuery
engine, supported by community driven development and available for commercial and
ad-hoc support.

The BaseX query engine is leveraged by an efficient XML documents storage repository
with efficient indexing and representation schema, on top of which all the major features
of XML querying languages have been implemented. BaseX supports the execution
of queries expressed in standard W3C languages such as XQuery, XPath, XQuery 3.0,
XSLT; recently defined standards as XQuery/XPath Full-Text, XQuery Update Facility
and EXPath modules are included in the standard BaseX distribution. Furthermore
the engine exposes different functionality to interact with common data and document
formats such as JSON, binary files, SQL and Databases connection and so on.

The BaseX engine has been designed to be used in a client/server infrastructure by
the numerous API exposed by the BaseX server, or as a standalone engine; BaseX also
includes a command line interface (CLI) and a full-featured Graphical User Interface
(GUI).

The availability of a wide set of supported languages and extensions, coupled by the
rich user interface that includes document navigation and visualization tools (such as
a document explorer, an XML tree view and a XML map visualization) further extend
the set of functionality provided by the engine, thus offering an improved XML querying
experience to the BaseX users.

The BaseX engine that has been initially used for the FleXy implementation was the
BaseX version 7.2 released on Match 2012; the FleXy implementation has than been
updated following the subsequent releases of BaseX source code and index structure
changes, until the 7.7 engine version (released on August 2013).

BaseX source code is available under the GitHub repository at https://github.com/
BaseXdb/basex, while the list of previous releases are can be found at https://github.
com/BaseXdb/basex/releases. Further details about the FleXy-BaseX implementation
are provided in Section 5.3.3.

86

https://github.com/BaseXdb/basex
https://github.com/BaseXdb/basex
https://github.com/BaseXdb/basex/releases
https://github.com/BaseXdb/basex/releases

5.3.2 BaseX Data Structures

The BaseX query engine was initially presented in Grün et al. article [109] entitled
“Pushing XPath Accelerator to its limits”, where the authors presented an improved
encoding schema for XML databases that outperforms the state of the art XML storage
and querying techniques. The proposed XML storage model was based on a Pre/Post-
order encoding schema variation as initially proposed by Grust [92] and subsequently
extended by Grüen et al. work.

The two techniques are based on tree traversal approaches defined by Knuth [148] named
preorder and postorder ; in the preorder node traversal the root node is first visited,
while a recursive preorder visit is applied to its child nodes, from the leftmost node to
the rightmost one. Such node traversal is also addressed as the natural document order
of the tree nodes, and it corresponds also to the order in which the XML elements are
sequentially parsed. In the Postorder traversal, instead, a root note is visited only after
all of its descendant nodes; also in postorder traversal the children visit is performed
from left to right. In both traversal approaches a node pre/post value can be assigned
by sequentially increasing such value every time a node is visited; both assignments and
encoding computation can be performed in linear time by a single tree traversal.

The pre- and post- order values, and their correlation can be utilized to determine de-
scendant and ancestor relationships between nodes in a tree; based on this observation
Grust et al. [92] proposed a first pre/size/level encoding schema, that provides an
efficient node traversal by identifying node set and node regions. This approach, imple-
mented in MonetDB/XQuery engine, encodes in the the size parameter the number of
descendant nodes, while level represents the number of levels between a node and the
root node.

While the presence of the level attribute would be beneficial to the computation of
the path relevance score as defined by the FleXy language, such pre/size/level encoding
schema presents a high cost associated with the evaluation of the parent axis that requires
a set of expensive operations with the pre and level values. The inclusion of a direct
reference to the parent pre value in the encoding schema would require, in case of updates
of the XML tree structure, a complete renumbering of all the pre values.

The BaseX encoding schema, instead, uses a pre/size/dist encoding for each XML node,
where the dist attribute represents the relative distance between the node and its parent
pre value, thus providing a direct access to the parent node, while minimizing the cost for
XML tree updates. The size property is used in combination with a sequential storage
of nodes to provide a sequential and constant time access to children and descendant
elements.

A simplified example of parent, descendant and child axis evaluation as performed
by the BaseX pre/size/dist encoding schema is presented in Algorithms 5.1, 5.3 and 5.2
respectively. A complete analysis and description of encoding and evaluation schemes
based on pre- and post- order node traversal, including pre/size/level and pre/size/dist,

87

Algorithm 5.1 Axis.Parent(node: Node): Node
parent = node.pre − node.dist
if parent > 0 then

return new Node(parent)
else

return null
end if

Algorithm 5.2 Axis.Child(node: Node): NodeSet
result := new NodeSet()
child := new Node(node.pre +1)
while (child.pre < node.pre + node.size) do
result.add(child)
child := new Node(child.pre + child.size)

end while
return result

are beyond the scope of this thesis work and can be looked up in Grust [92] and Grün
[109, 152] works.

By leveraging the encoding schema previously described, the BaseX engine implements
a set of indexes and data-structures to perform all the evaluations required to efficiently
process the provided queries; The BaseX data-structures include:

Name Indexes that store and convert attributes names and tag names from a variable-
length representation to fixed-size references;

Path Summary that represents a summary of the internal document structure for query
rewriting and constraints optimization;

Values Index to map element attributes to the corresponding values;

Full-Text index that allows to efficiently process the XQuery Full-Text extension and
its set of parsing and matching parameters.

Further details about the BaseX data-structures are available in Grün [152], where an
analysis of optimization and rewriting techniques on pre/size/dist encoding schema,
alongside the description of the BaseX low-level data handling are provided.

More details about the XQuery Full-Text implementation on top of BaseX indexes, as
well as its complex and articulated processing strategies are available in [151].

88

Algorithm 5.3 Axis.Descendant(node: Node): NodeSet
result := new NodeSet()
desc := new Node(node.pre +1)
while (desc.pre < node.pre + node.size) do
result.add(desc)
desc := new Node(desc.pre +1)

end while
return result

5.3.3 FleXy Integration

As described in Section 5.3.3, the main characteristic of the BaseX data structures is
the usage of pre/dist/size triplets to efficiently evaluate XPath and XQuery structural
axes such as descendant, parent, child and ancestor.

The BaseX engine defines, for path-traversal processes, a set of constructs that facilitate
the iterative process of path evaluation and the access to each node elements, attributes
and value or textual contents stored in an indexed permanent database structure or
stored in the main memory.

In Fig. 5.2 the BaseX class diagram of the path traversal evaluation is presented: the
Java class naming scheme reflects the standard XQuery and XPath axis and their expres-
sion names. In particular, a LocationPath is defined as composed of one or more AxisStep,
where an AxisStep consists of an Axis, a nodeTest and a set of optional Expressions as
predicates [152]. As previously described, BaseX performs an iterative processing to
perform path-traversals: the set of nodes are obtained from the current context node
by the evaluation of the Axis expression; such nodes are then further filtered out by the
evaluation of the NodeTest and the optional Expression, if present.

As depicted in the class diagram, each Node object stores its pre/dist/size values for
tree evaluation, as well as the score variable to store the value of the Full-Text relevance
evaluation (if performed).

By leveraging the standard Java language constructs, the evaluation of a path expression
provides a generic node Iterator ; in particular, for the Axis class, an Iterator is specified
that returns all nodes that match such axis evaluation, and the method Next() allows
an iterative evaluation and retrieval of such items.

With the goal of integrating the below and the near axes evaluation in the BaseX engine,
the definition of both axes has been included in the class Axis, and their implementation
has been provided by adopting the pre/dist/size encoding schema.

In Fig. 5.3 the extension of the class diagram in Fig. 5.2 is presented: it includes both
the new axes defined by the FleXy language and the variable to store the structural
relevance score.

89

Figure 5.2: The Class Diagram for the path expressions part of the BaseX engine, it also in-
cludes the Full-Text extension, as visible from the Item class that contains the score
variable.

The variable named scoreST, added to the Node class, stores the structural score com-
puted by the near and below axes evaluation; such score is then used to acquire and
to evaluate the ScoreVariable when formulated in a FLWOR clause expression. The
structural-score has been added by following the same approach as performed in [151],
where the Full-Text extension of XQuery has been integrated into BaseX, and each Node
object has been extended with the full-text relevance score.

Regarding the axes that have been integrated in the BaseX code, a specific nomenclature
has been adopted:

• the below and the belowLimited methods compute the Below axis matching and
its parametric variant respectively;

• the above performs the below inverse axis evaluation, while the aboveLimited its
parametric counterpart;

• the Near and its parametric variant axes evaluation have been integrated by the
near and nearLimited methods: the near represents a simple invocation of the
nearLimited function where a default value for the threshold parameter is sup-
plied. Furthermore, a NearBelowLimited helper function has been added: it is
used during the iterative evaluation of the near axis.

• Finally the class ScoreStructure contains the score computation algorithms for
the three axes, as described in Section 4.5.

90

Figure 5.3: Class Diagram for the extended BaseX engine as implemented with the FleXy lan-
guage extension: it includes the new axes evaluation, the structural relevance score
and the score computation algorithms.

5.3.3.1 Language Interpreter Extension

The BaseX language interpreter, responsible of query checking and query execution
planning, allows BaseX to parse, build and evaluate queries expressed using XQuery 1.0,
XPath 1.0, XPath 2.0, XQuery/XPath Full-Text and the new constructs of the XQuery
3.0 language; such list of accepted languages only represents the main features of the
system, where different XQuery modules, as described in the XQuery Extensions part
of the Section 2.2.2, have been integrated in the BaseX query engine.

The BaseX language interpreter, thus, plays an important role during the query eval-
uation: each query expression is parsed and checked for its syntactic correctness, and
the corresponding evaluation plan is build. Such BaseX component integrates the set
of classes defined in the query engine to represent a generic FLWOR expression; such
classes are depicted in Fig. 5.4.

The class diagram presents the main components that have been extended to integrate
the FleXy language evaluation: besides the axes classes and the QueryParser class, also
the for and the let clauses have been be modified. In particular the score-structure
variable has been be defined and its value made available during a query evaluation; this
allows the complete integration with the full set of FLWOR clauses, from the for/let to
the order by and return clauses, including the upcoming group-by clause introduced
in XQuery 3.0 language.

The most important modifications that have been made to the BaseX language inter-
preter are summarized in the following. For the complete list of changes performed on

91

Figure 5.4: The BaseX class diagram for the language interpreter as extended with the FleXy
axes evaluation classes.

the BaseX engine source code, please refer to the online repository of the FlexBaseX
engine as specified later.

QueryParser.java and QueryText.java These two classes are responsible of parsing
and checking for the query validity; the QueryParser class is also responsible of
a first building of the query evaluation tree for the BaseX engine, the two classes
have has been extended to allow the score-structure definition in the let and the
for clauses.

GFLWOR.java This class represents the main core of a FLWOR expression (the
class name stands for General FLWOR expressions), and it handles the variables
definition and their computation during all the evaluation process; it has been
extended to handle the score-structure processing and computation in the set
of FLWOR clauses.

Let.java and For.java: the two classes, as their names suggest, represent the let
and the for clauses evaluations: their are responsible for the evaluation of the
expressions and the correct variable values binding in the let clause.

NodeSequenceBuilder.java and Preds.java are the two main classes where the
structural scores aggregation is computed for query predicates and for Node Sets;
the classes implement the aggregation as described in Section 4.5.3.

ScoreStructure.java this class implements the main scoring algorithms for the FleXy
axes below, near and above, alongside their parametric variants.

92

5.3.4 The Below Axis

The below axis, as described in Section 4.4, computes the same Node Set returned by the
descendant XQuery axis. For that reason the algorithm for accessing all the below nodes
of a context node has been taken from the descendant axis one, while the algorithm for
the parametric variant of the axis has been defined to take into account the threshold
parameter specified by the query path expression.

In Algorithm 5.4 the iterative process of matching and scoring XML nodes for the below
axis is presented: it describes the NodeIterator.Next() method invocation for the NodeIt-
erator class that performs the actual axis node matching and iteration. The algorithm
has been extended from the descendant axis by adding the scoring feature needed for
the below axis evaluation.

Algorithm 5.4 Below.Next() : Node
Require: data (the database reference)
Require: contextPre (context node pre value)
Require: pre := contextPre (a cursor for the context node pre value)
1: pre := pre + data.AttributesSize(pre)
2: if pre = contextPre + data.Size(contextPre) then
3: return null
4: end if
5: aNode := new Node(pre)
6: aNode.scoreStructure := BelowScore(NodeDistance(contextPre, pre))
7: return aNode

In Algorithm 5.4 the function data.AttributesSize() returns the size of the given
element’s attributes set, thus allowing to consider only the child and descendant XML
elements skipping elements attributes. The function Data.Size() returns the element
size, thus obtaining the size of the element given as a parameter, in line 2 this allow
to iterate only over the actual set of elements contained in the contextPre element,
thus retrieve only the descendants elements of the context node without accessing other
nodes.

The functions BelowScore() and the NodeDistance() applied to contextPre and pre
at line 6 performs the structural relevance score computation for the below axis: where
the contextPre and pre identifiers represents the parent node (or context node) and
a descendant node respectively. The computation is performed by first retrieving the
distance from the context node and the target node, and then by applying the scoring
function described in Section 4.5.1. An observation related to the NodeDistance()
function should be made: due to the data structure implementation of BaseX, where
for each node only the triplet pre/dist/size is stored and no information about the
depth of a node is provided, the node nesting must be kept for depth computation. In
particular that required to implement a stack of nodes pre values to exactly identify, for
each target node, its depth level, and to compute the distance from the context node.

93

The NodeDistance() function described in the Algorithm 5.4 and the algorithms pre-
sented in the following sections, represents a simplified variant of the actual code imple-
mented in the BaseX engine: the NodeDistance computation would require, in fact, a
second iteration over all the descendant nodes of the context node down to the current
target node, thus requiring a double elements traversing procedure. The implemented
distance computation has been inlined with axis below computation: an efficient dist-
values stack is implemented to keep track of the node hierarchy while traversing the
set of descendant nodes. This technique is required given the pre/dist/size schema of
BaseX and has been adopted for all the following above and near axis matching and
score computation.

Algorithm 5.5 BelowLimited.Next() : Node
Require: data (the database reference)
Require: contextPre (context node pre value)
Require: threshold (the threshold parameter)
Require: pre := contextPre (a cursor for the context node pre value)
1: contextSize := contextPre + data.Size(contextPre)
2: pre := pre + data.AttributesSize(p)
3: while nodeDistance(contextPre, pre) ≥ threshold and pre ≤ contextSize do
4: skip node P and its descendants
5: pre := pre + data.size(pre)
6: end while
7: if pre = contextSize then
8: return null
9: end if

10: aNode := new Node(pre)
11: aNode.scoreStructure := BelowScore(NodeDistance(contextPre, pre), threshold)
12: return aNode

Regarding the belowLimited axis implementation, the Algorithm 5.5 describes the eval-
uation performed: the difference between the Below and the BelowLimited is the thresh-
old parameter called threshold and the slightly different BelowScore() function invo-
cation, where a second parameter allow the score computation to take into account also
the threshold. This feature allows to define fine grained scoring functions for the axis by
computing a structural score with a more smoothing factor when the distance between
the context node and the target reaches the specified threshold. The currently provided
BaseX implementation provides the score computation as defined in Section 4.5.1. In
future works a more configurable axis evaluation is envisioned, where the user, other
than giving a threshold, may choose the preferred scoring function; providing such fea-
ture, unfortunately, would compromise the aimed simplicity of the FleXy language and
should be further investigated.

94

5.3.5 The Above axis

To more efficiently integrate the below axis evaluation in the query engine, thus leverag-
ing the query rewriting and optimization features that allow BaseX to efficiently execute
queries, the below inverse axis evaluation has also been implemented: the scoring func-
tion applied to the above evaluation is the same described in Equation (4.9).

The algorithm for the above axis evaluation is described in Algorithm 5.6: the BaseX
pre/dist/size encoding scheme allow to directly access the parent node by simply sub-
tracting, from the current node pre identifier its distance dist from the parent node.
As mentioned before, the node distance stored by BaseX corresponds to the difference
between a parent and child pre values, and should not be confused with the number of
arcs that separates two tree nodes.

Algorithm 5.6 Above.Next() : Node
Require: data (the database reference)
Require: contextPre (context node pre value)
Require: pre := contextPre (a cursor for the context node pre value)
1: pre := pre - data.Dist(pre)
2: if pre = -1 then
3: return null
4: end if
5: aNode := new Node(pre)
6: aNode.scoreStructure := AboveScore(NodeDistance(pre, contextPre))
7: return aNode

Lines 1 and 2 the actual identification of the parent node is performed, the check avoids
to retrieve a non-existent node in the case of reaching the root tree node. In line 6,
instead, the score computation is performed by the use of the AboveScore() function
coupled with the previously defined NodeDistance() function. The computation per-
formed by the AboveScore() function assigns a path relevance score given the distance
between the context node and the current target node by applying the function defined
in Section 4.5.1. The definition of two different functions, the BelowScore() and the
AboveScore(), that compute the same scoring is due to provide users and future ex-
tensions of the FleXy language, an easy way to define and implement different scoring
algorithms given the traversed path that connects a context node to a target node. In
Algorithm 5.7 the evaluation performed for the axis above, with a threshold parameter,
is provided: the same observations apply as for the belowLimited score and distance
computation.

95

Algorithm 5.7 AboveLimited.Next() : Node
Require: data (the database reference)
Require: contextPre (context node pre value)
Require: threshold (the threshold parameter)
Require: pre := contextPre (a cursor for the context node pre value)
1: pre := pre - data.Dist(pre)
2: if pre = -1 or NodeDistance(pre, contextPre) ≥ threshold then
3: return null
4: end if
5: aNode := new Node(pre)
6: aNode.scoreStructure := AboveScore(NodeDistance(pre, contextPre), threshold)
7: return aNode

5.3.6 The Near axis

The near axis implementation required to identify, for a given context node, the clos-
est nodes corresponding to target nodes. The near algorithm has been developed to
incrementally evaluate close nodes starting from the context node descendants, and
proceeding with ancestor (and their descendants) nodes. The evaluation handles the
specified maximum allowed distance from the context node and the set of target nodes
by sequentially iterating over the context’s ancestors and by repeating the target nodes
identification and scoring. As visible in Algorithm 5.8, the set of nodes identified as tar-
get nodes can contain repeated elements: such elements are filtered out in a subsequent
BaseX evaluation, where only the best candidates are kept as the resulting Node Set.

The idea behind the algorithm that evaluates the near axis is to leverage a function simi-
lar to the BelowLimited axis evaluation to provide an iterative retrieval of the candidate
near nodes. Given the possibility to provide different scoring functions between the
below and the near axis evaluation, a new algorithm called NearBelowLimited is used
instead of BelowLimited. The new algorithm differs from the BelowLimited only by the
scoring function used: a NearScore(distance) is applied during the NearBelowLimited
that implements the near axis score computation as described in Section 4.5.2.

The process performed in the Near matching algorithm for a given context node is
composed by an iterative two step evaluation procedure: as a first instance the iterator
retrieves all the descendant nodes that can be reached by the given threshold, thus using
the same BelowLimited matching algorithm. The second evaluation step is performed
when all the candidate descendants nodes have been visited: a temporary context node
is set to the parent of the actual context node and the evaluation is carried on by
matching all the descendants node from the newly identified context node. In this case
the NearBelowLimited is evaluated by decreasing the threshold value, given the change of
the current context node. The iterative process is performed until the threshold reaches
a zero value, or the temporary context node is does not have a parent, thus the root
element node has been reached. In particular the Near iterator wraps a second iterator

96

that iterates through the node candidates retrieved by the NearBelowLimited iterator
evaluation. The NearBelowLimitedIterator provides a third parameter, other than
the contextNode and the threshold value, that allow to adjust the distance computation
by taking into account an additional path traversal performed outside its evaluation.

Algorithm 5.8 Near.Next() : Node
Require: data (the database reference)
Require: contextPre (context node pre value)
Require: threshold (the threshold parameter)
Require: tempPre := contextPre (a cursor for the context node pre value)
Require: backSteps The number of backward steps performed, initially 0
Require: iterator (The current node iterator, initially set to the NearBelowLimited

iterator: NearBelowLimitedIterator(contextPre, threshold))
1: if not iterator.hasMore() then
2: while threshold ≥ 1 and not iterator.hasMore() do
3: Track of previous pre node value
4: prevPre = tempPre
5: Move to the parent context-node
6: tempPre = tempPre - data.Dist(tempPre)
7: Update the correct threshold, to match the context node change
8: threshold := threshold −1
9: backSteps := backSteps +1

10: iterator := NearBelowLimitedIterator(tempPre, threshold, backSteps, prevPre)
11: end while
12: end if
13: return iterator.Next()

In Algorithm 5.8 at line 1 the current node iterator, initialized during the construction
of the Near axis to a NearBelowLimitedIterator iterator, is checked if more nodes
are available, if not (thus the current limited descendant axis have been completely
traversed), the temporary context node is replaced by its parent (line 6) and the threshold
updated to reflect such context change (line 8). Line 4 the prevPre variable allow to track
the previous child element and skip the node subtree that has already been traversed,
this allow to avoid duplicated node retrieval. Finally, in line 9 the distance correction is
computed to account for the parent traversal execution; such backStep is then summed
during the actual distance computation performed in NearBelowLimitedIterator.

97

6 Evaluations and FleXy User-Case

In this section the evaluation of the Flex-BaseX engine are presented, along with a
preliminary user-case of such engine applied to Patent Retrieval tasks.

In Section 6.1 the performed evaluations of the below and near axes are provided;
the experiments have been conducted to compare the FleXy axes performances against
standard XQuery axes.

Finally in Section 6.2 a preliminary implementation of a Patent Retrieval tool, named
PatentLight is described: it uses the FleXy language implemented in the Flex-BaseX
engine to provide an easy categorization of patents by leveraging the XML format of
patents and their internal hierarchy.

6.1 Evaluations

In this section the evaluations performed to examine the efficiency of the flexible axes
described in the previous sections are presented.

As described in Section 5.3, both the below and the near axes have been implemented
on top of the BaseX XML Database system, where the XQuery Full-Text language
has been extended to include: the evaluation of the below and near flexible axes, the
computation of the structural relevance score and the aggregation of structural scores
when a branching query is provided.

In Section 6.1.1 the environment used to perform the evaluations is presented, alongside
the tools and the evaluation strategies adopted; while the collections and their structure
are described in Section 6.1.2.

In the following sections 6.1.3 and 6.1.4 the performed evaluations and the obtained
results, rispectively for the below and the near axes, are presented as well as the de-
scription of the executed queries.

In particular the evaluations have been performed to evaluate two main aspects of the
FleXy language as implemented on top of the BaseX query engine: a first evaluation
is carried to measure the overhead introduced by the axes and the structural relevance
score computation, while the second aspect evaluated is a comparison of the below and
the near axes against their XQuery counterparts.

98

In particular for the below axis the evaluations are executed by comparing the evaluation
time of the flexible axis with the descendant standard XQuery counterpart. Concern-
ing the near axis evaluation, instead, no standard XQuery axis counterpart could be
identified due to the innovative nature of the proposed flexible axis. The evaluations
have been carried by comparing the near axis evaluation against the set of equivalent
queries expressed with standard XQuery constraints and merging them with the union
operator.

Of course, given the novelty of the structural scoring approach, the FleXy axes evalua-
tions are expected to provide reasonably higher evaluation times, for example in com-
parison to the descendant axis evaluation.

Finally Section 6.1.5 concludes the evaluations and summarizes the obtained results.

6.1.1 Environment

The environment where the new flexible axes have been tested is composed of an Intel i7
3GHz with 4GByte of RAM; the Operative System is Ubuntu/Linux Server LTS version
12.04 64Bit with kernel 3.2.0− 49, mounting a Saegate 500 GByte S-ATA Hard Disk at
7200 rpm.

The BaseX engine, and the FleXy integration, have been developed using the Java lan-
guage and, thus, the server is also equipped with the Java Virtual Machine (JVM) version
number 1.7.0− 25 and using the OpenJDK Runtime Environment version 2.3.10.

The evaluations have been performed by using the Server/Client architecture offered by
the BaseX engine, thus avoiding engine start-up and configuration loading overheads.
Furthermore the BaseX server has been configured to use the whole amount of available
main memory by using the Java Virtual Machine parameter -Xmx=4G.

The Flex-BaseX engine has been initially implemented on top of the 7.2 release of
the BaseX engine; subsequently the flexible axes, the structural score computation and
the aggregation algorithms have been updated with the latest BaseX releases. The
evaluations performed have been executed with the latest BaseX engine code-base,
updated at the 7.7 development version1.

During each evaluation, the set of queries defined for each task have been executed 7
times each, by using the BaseX parameter RUN that allows to specify the number of
times a given query must be performed. The average execution time is then stored for
the subsequent analysis. A note should be made on the reported timings: BaseX splits
a query execution in four different stages: named Parsing, Compiling, Evaluating and
result Printing. The performed evaluations take into account all of these aspects, in
particular the most relevant timing, and the compared one, is the Evaluation execution

1 The BaseX 7.7 development version refers to the latest development branch of the query engine
released on 2013-07-10, the source code is available from the BaseX online repository at https:
//github.com/BaseXdb/basex.

99

https://github.com/BaseXdb/basex
https://github.com/BaseXdb/basex

step, while the Printing step has been ignored given its solely dependency on the number
of retrieved results. Also the Parsing and the Compiling step timings have been disre-
garded given the fact that they rely on the BaseX query parsing and query execution
planning; for each query, in fact, the internal query optimization has been checked to
not rewrite the user query, but to exactly execute the provided query.

Moreover, due to the nature of the BaseX indexing system that caches both queries
and the opened databases, the evaluations have also been performed by unloading the
BaseX server system between each run to avoid caching. Such techniques, as shown in
the subsequent sections, do not show noticeable differences during the execution of each
query.

6.1.2 Data Collections

The set of collections used to evaluate the Flex-BaseX engine have been taken from the
INEX DataCentric collection, in particular from the IMBD (Internet Movie DataBase)
XML collection. Performance tests have been executed with an increasing number of
documents and collection size to verify the overhead introduced by the flexible axis
evaluation in comparison with standard XQuery axes constraints.

In Table 6.1 an overview of the different collections built from the INEX IMDB collection
is reported: the collection size, the number of documents and the number of XML
elements are shown. Such collections have been used to evaluate both the below and the
near axes evaluations and score computations, with and without expressing a desired
threshold parameter. The last collection C9, unfortunately has shown some difficulties
during the evaluation in the BaseX engine. As further shown in the evaluation sections,
the collection size and the number of retrieved results during the evaluation of the below
and descendant queries exceeds the 4Gb of memory allocated for the server engine,
and thus it requires the system to use an on-disk temporary swap storage. This issue
highly influences the execution time of the affected queries resulting in a partial system
slowdown that prevents the effectiveness of the comparison.

Name Documents Size (Mb) XML Elements
C1 29,487 137.20 2,232,122
C2 58,974 272.73 4,556,070
C3 117,947 545.89 9,060,745
C4 235,893 1,091.06 18,237,678
C5 471,785 2,179.22 36,529,019
C6 629,046 2,924.00 48,751,225
C7 754,849 3,511.34 58,021,829
C8 943,561 4,359.34 71,606,796
C9 1,887,121 8,710.38 143,287,407

Table 6.1: Summary of the INEX-IMDb collections.

100

A second collection of documents named XMark has been generated by using the XML-
Gen tool that is the utility, from the XMark project2 , that builds XML documents for
testing purposes. Such set of documents has been used to evaluate and compare the
below and the descendant axis: the documents total sizes are shown in Table 6.2, but
despite the smaller document sizes, if compared to the latest collections in the previous
table, they show a higher number of elements and the document hierarchy spans to a
maximum of 13 depth levels, in contrast to the maximum depth of 5 reached by the
elements in the IMDB collection.

Name Size (Mb) XML Elements XMark -f
xmarkC1 116.20 3,355,270 1
xmarkC2 1,030.43 29,730,814 10
xmarkC3 2,016.21 58,177,822 18
xmarkC4 3,024.12 87,256,566 37

Table 6.2: Summary of the XMark document collections and the XMLGen tool -f parameter
used to generate the document.

Furthermore an ad-hoc document collection, built with a simple but at the same time
articulated node hierarchy, has been defined to provide a first evaluation and comparison
for the near axis evaluation; such collection has been named CollectionNodeE, given the
root node labeled NodeE and the presence of multiple nodes that share such label in
different positions of the XML tree. An example document in the collection is presented
in Fig. 6.1, where the XML elements (drawn as circles), the textual contents (drawn as
rectangles) and their pre/dist/size encoding numbers, as assigned by the BaseX engine,
are elicited. In particular the collection has been generated from a modified version
of the XMLGen tool where the generated document structure has been defined to be
like the one shown in Fig. 6.1, in particular each node in the structure has randomly
repeated from 1 to 4 times. Such decision has been taken after comparing the IMDB
document structure and the one generated in the XMark documents: the node hierarchy
of such collections does not contain a set of repeated node label and a node distribution
that would avoid the BaseX query optimized strategies: the CollectionNodeE has been
designed to take into account such features. In summary the collection is composed of
400200 different XML documents, for a total size of 1.62 GBytes; the number of XML
elements is 31, 980, 739.

6.1.3 The Below evaluation

The first set of evaluations are related to the below axis: a set of queries have been
defined to allow a correct comparison between the below axis and the standard XQuery

2 The XMark tool is an XML benchmark that provides an XML generator software that built arbitrary
sized documents, the tool is available at www.xml-benchmark.org.

101

www.xml-benchmark.org

Figure 6.1: CollectionNodeE : an example document in the collection.

descendant axis. The queries take into account two aspects of the Flex-BaseX en-
gine: query optimization and engine caches. Before actually executing a query, the
BaseX engine performs a query optimization and constraints rewriting based on some
collection statistics computed at index time as described in [152]. One of the most
important rewriting rules implemented in BaseX is the identification, by using a struc-
ture summary built at indexing time, of unique paths in the collection, thus if the
path expression nodeA//nodeC is provided and the nodeC only exists with the hierarchy
nodeA/nodeB/nodeC, then the query is internally rewritten by using only the child::
axis traversal, thus allowing a faster bottom-up or top-down evaluation for the resulting
query nodeA/child::nodeB/child::nodeC.

For this reason the evaluation queries have been designed to address elements that would
not trigger the query rewriting process, thus requiring the complete execution of the
descendant axis traversal when specified. To verify that both queries with the below
and the descendant axes are not treated differently in the BaseX due to the internal
query rewriting, further checks on the query plan provided by the BaseX engine have
been performed. An example of the set of performed queries has been provided in Listing
6.1, the queries in this example match and retrieve the same set of nodes, this to avoid
to compute evaluation timings that depend on the number of actually matched items.

1 person / descendant :: name
2 person /below :: name
3 person / below3 :: name
4 person / below4 :: name
5 person / below5 :: name

Listing 6.1: Set of queries executed for the below axis evaluation for the IMDB collection.

The queries are executed on all the available collections and their timings used for the
evaluation. As described in Section 6.1.1 all the queries have been executed 7 times for

102

each collection and the average execution time acquired. It is important to notice that
the name element is located, for each document in the IMDB collection, under three
different paths:

• person/name;

• person/overview/alternate_names/name;

• person/overview/nicknames/name.

For this reason the BaseX optimization algorithms are not able to rewrite the provided
query person/descendant::name to a simpler expression that makes use, as an example,
of the child axis.

In Table 6.3 the number of retrieved results, and the size of the returned data are shown
for each collection given the reference descendant query. In this case the retrieved el-
ements are returned by the system without explicitly involving any XQuery FLWOR
expression, but the structural score is always computed whenever a FleXy axis is spec-
ified. No score re-ranking, nor score display have been added in the set of evaluated
queries to the aim of providing a comparable timing results, where no other computa-
tions are required with the exception of the solely axis evaluation.

Collection Query Results Size (Mb)
C1 person/descendant::name 17907 0.50
C2 person/descendant::name 35858 1.01
C3 person/descendant::name 71833 1.99
C4 person/descendant::name 143473 3.98
C5 person/descendant::name 285564 7.91
C6 person/descendant::name 381438 10.57
C7 person/descendant::name 477722 13.25
C8 person/descendant::name 637137 17.67
C9 person/descendant::name 1274842 35.07

Table 6.3: Number of results retrieved for each IMDB collection by the descendant axis evalu-
ation.

In Table 6.4 the evaluation timings obtained from the execution of the query set are
presented: as expected the below axis evaluation performance results with higher timings
than the counterpart descendant axis. given the added costs for the computation of the
structural relevance score.

Regarding the threshold variants of the below axis, the behaviour shown reflects the
lower number of nodes that have to be visited by the below3, and the below4 axes,
thus reducing their execution time, while retrieving the same set of results as discussed
previously.

103

Collection Below Below3 Below4 Below5 Descendant
C1 0.16 0.10 0.15 0.16 0.12
C2 0.31 0.16 0.28 0.32 0.23
C3 0.60 0.28 0.51 0.62 0.44
C4 1.14 0.52 0.98 1.18 0.86
C5 2.33 1.00 1.93 2.39 1.73
C6 3.16 1.34 2.55 3.19 2.30
C7 3.91 1.61 3.14 3.91 2.78
C8 5.18 2.17 4.18 5.17 3.69
C9 13.77 8.84 10.45 14.11 10.56

Table 6.4: The below and the descendant axes evaluation timings (in seconds).

The below5 variant, instead provides equal, or in some cases worst timings than the
below axis evaluation: this aspect is motivated by the structure of the documents in
the IMDB collection, where the maximum tree height, thus the maximum distance of a
leaf node from the root node, is exactly 5. The evaluation of below5, in fact, has been
provided in the set of relevant evaluations exactly to evaluate the overhead introduced
by the threshold evaluation of the BelowLimited algorithm, in comparison to the below
axis evaluation where no threshold has to be checked at each node visiting.

In Fig. 6.2 the comparison of the evaluation timings between the descendant, and the
below axes variants are shown, furthermore in Fig. 6.3 the percentage of performances
improvement, or decrease, are illustrated as the ratio of the flexible axis timings over
the descendant axis evaluation timing.

As shown from the graph in Fig. 6.3, the below3 axis evaluation allows to obtain a
reduction of the computation times on average of the 40% if compared to the descendant
axis evaluation. This fact is motivated by the great number of nodes that are filtered
out from the sequential evaluation performed by the BaseX engine. Regarding the
below and below5 axes their evaluation requires, on average, a 40% more time than the
descendant counterpart, this is caused by the node distance and the score computation
as performed by both axes, and by the threshold evaluation of the parametric variant of
the below axis.

The slight performances variations are related to the nodes distributions in the collec-
tions: greater improvements are shown for collections having higher number of nodes at
deeper levels, while lower improvements (or even decreases) are obtained if all the nodes
are in average distributed at the same level of the applied threshold. The case of lower
performances when all the nodes are at the same level of the threshold, thus no nodes
are filtered out given their distance from a context node, is showed for the below5 axis
evaluation in the previous graph.

Another important behavior that can be observed from the graph in Fig. 6.3 is that the
performances measured for the collection C9 show that all the below axis variants tend

104

Figure 6.2: Evaluation timings comparison between the descendant and the below axis set.

Figure 6.3: Performance ratio for the below, below3, below4 and the below5 axes evaluation as
compared to the baseline descendant axis evaluation on the IMDB collection.

105

to perform as the standard descendant axis. This could be, at a first glance, addressed
as a strange behavior of the system, where linear evaluation timings have been measured
for all the previous collections. Further and deep investigations, instead, confirms that
this issue is related to the size of the handled collection and the number of visited and
matched nodes (in this case 1274842) that consumed the available main RAM memory
of the server and forced both the Java Virtual Machine to frequently execute its Garbage
Collector routines, and the system BaseX system to use a temporary on-disk storage
to complete the evaluation. Such finding is also confirmed by the number of nodes that
each axis visited during its evaluation: given a linear growth of the number of visited
nodes from the previous collections, the evaluations of all the axes performed on the
C9 collection shows, instead, a high fluctuation of the evaluation timings, including
the descendant axis evaluation. For that reason the evaluations performed on the
collection C9 would not be taken into account, given their incomparable and unstable
timing results.

As a subsequent evaluation the Compiling and the Parsing tasks have been compared
between the set of below axes and the descendant axis. In Fig. 6.4 and Fig. 6.5 both
the Compiling and Parsing timing graphs are shown; their exact timings are shown
in Table 6.5 and in Table 6.6 respectively. As the graphs show, no relevant overheads
are shown in the two tasks for the set of below variant axes in comparison with the
descendant axis compiling and parsing timings.

Figure 6.4: Compiling time comparison between the descendant axis and the set of below axes.

A second set of evaluations has been conducted with the XMark collection reported in

106

Figure 6.5: Parsing time comparison between the descendant axis and the set of below axes.

Table 6.2. In this case the higher depth levels of the documents if compared to the
IMDB collection, would represent a good benchmark also for the threshold variants of
the below axis. The set of queries executed by the Flex-Basex engine are presented
in Listing 6.2, where the descendant query (at line 1) represents the baseline timing of
the subsequent below queries. The set of queries, also in this case, has been designed
to avoid the BaseX optimization techniques and, thus, provide a correct comparison
between the FleXy axes and the standard descendant axis.

The set of matching tags in the XMark collection are found in different paths: a first
name tag is under the path site/people/person/name, a second tag labeled name can
be found for each item under the hierarchy site/regions/X /item/name where X rep-
resents one of the XMark defined regions such as Africa, Asia, Europe and so on. A
third tag name is found under the site/categories/category/name path. Given this
triple location for the name tag, the query optimizer could not effectively rewrite the
descendant, nor the below, query into a simpler query evaluation plan.

1 site/ descendant :: name
2 site/below :: name
3 site/ below4 :: name
4 site/ below5 :: name

Listing 6.2: Queries executed for the evaluation of the below and the descendant axes compar-
ison for the XMark collection.

107

Collection Below Below3 Below4 Below5 Descendant
C1 0,53 0,53 0,53 0,53 0,46
C2 0,60 0,58 0,58 0,57 0,51
C3 0,64 0,66 0,63 0,64 0,58
C4 0,77 0,78 0,77 0,76 0,75
C5 1,10 1,11 1,09 1,08 1,08
C6 1,39 1,38 1,39 1,38 1,33
C7 2,29 2,36 2,22 2,27 2,17
C8 2,82 2,84 2,91 2,91 2,71
C9 40,11 38,99 39,71 38,98 38,58

Table 6.5: The Below and Descendant compiling timings (ms)

Collection Below Below3 Below4 Below5 Descendant
C1 14,36 14,38 14,31 14,43 14,45
C2 14,52 14,86 14,37 14,36 14,58
C3 15,77 15,79 16,01 16,36 15,91
C4 14,50 14,32 14,48 14,35 14,35
C5 18,42 17,52 17,01 17,63 17,80
C6 15,17 15,83 15,13 15,03 16,09
C7 15,88 15,90 15,29 15,84 15,80
C8 21,16 22,32 22,88 22,02 22,49
C9 55,94 56,26 54,36 56,97 56,28

Table 6.6: The Below and Descendant parsing timings (ms) for the IMDB Collection.

Collection Query Results Size (Mb)
xmarkC1 site/descendant::name 50180 1.44
xmarkC2 site/descendant::name 443898 12.79
xmarkC3 site/descendant::name 868500 25.02
xmarkC4 site/descendant::name 1302750 37.40

Table 6.7: Number of results retrieved for each XMark collection by the descendant axis evalu-
ation.

In Fig. 6.6 the evaluation timings are shown for the tests executed against the XMark
collections. As expected the below4 evaluation, given the threshold parameter, is eval-
uated in less time than the other axes for the first three XMark collections, while its
performances decrease in the latest xmarkC4 collection.

This behavior also affects the below5 and the below axes that increasingly reduce their
performances: differently from the IMDB collection where the degradation stabilized
around the 40%, in the XMark test the below axis required at most the double of the
time of the descendant axis to finish the evaluation as shown in Fig. 6.6. This aspect

108

is caused by the data structure (more specifically an array of integer values used as a
stack) used in the Flex-BaseX engine to maintain the current node deep level while
iterating trough the set of candidate nodes: the iterative process implemented in BaseX
build a new Below axis iterator for each document in the collection and while the IMDB
collection is composed of a great number of medium sized XML documents the XMark
test is composed of a single huge XML document and the Below iterator is built once.
This impacts on the memory allocation of the integer value stack and the performances
and the scalability of the entire evaluation of the flexible axes highly depends on the
overhead introduced by such stack data structure: improvements have been observed if
the standard and general purpose Java Stack class implementation is substituted with a
tailored and ad-hoc stack solution, like the one actually developed for the Flex-BaseX
engine.

Figure 6.6: Evaluation timings comparison between the descendant and the below axes set for
the XMark collections.

Collection Below Below4 Below5 Descendant
xmarkC1 0.44 0.26 0.31 0.27
xmarkC2 3.28 1.89 2.27 1.96
xmarkC3 6.64 3.93 4.51 3.87
xmarkC4 10.41 6.80 7.48 5.75

Table 6.8: XMark evaluation timings for the below, below4, below5 and descendant axes (tim-
ings in seconds)

109

Figure 6.7: Performance comparison between the descendant and the below axes variants for
the XMark collection.

6.1.4 The near Evaluation

In this subsection the near axis evaluations are presented. It is important to notice
that, as previously outlined, no equivalent axes exist that mimic the behavior of the
flexible axis defined in the FleXy language. Differently from the below axis that has
been compared with the descendant axis, excluding the structural score computation,
the near axis could not be directly compared with standard XQuery axes.

A first evaluation could be the comparison of the near axis, and its parametric variants,
with a set of XQuery expressions that allow to match the same Node-Set matched by the
flexible near axis. In Listing 6.3 a first example of such constraint rewriting is presented:
the path expression nodeA//nodeB/near::nodeE that includes the axis near constraint,
identically evaluated as the near1 axis, is rewritten into an XQuery expression composed
by two distinct sub-expressions: the first (in line 1) allows to match a child node, thus at
distance of 1 arc, labeled nodeE from the context node nodeB, while the second expression
in line 3 follows the backward traversal of the document tree matching a parent node
labeled nodeE from the context node nodeB. The two XQuery sub-expressions are joint
together by the standard XQuery union operator; it allows to produce a single Node-
Set as the concatenation of the Node-Sets produced by the evaluation of two XQuery
expressions; such operator strictly resembles the union operator as defined in the SQL
language.

1 nodeA // nodeB/child :: nodeE
2 union
3 nodeA // nodeB/ parent :: nodeE

Listing 6.3: An XQuery expression that mimic the near1 axis matching evaluation by using the
union operator.

110

In Listing 6.4 the near2 axis evaluation has been rewritten by using only standard
XQuery axes such as the child and the parent axes; in line 1 the set of nodes at a
distance 1 are matched (like the near1 axis evaluation, while lines from 3 to 7 match the
target nodes labeled nodeE at a distance 2 from the context node nodeB. In particular,
line 3 matches the descending nodes at level 2, in line 5 the grandfather is taken into
account, while in line 7 the target node labeled nodeE is looked for in the sibling nodes
of the context node.

1 nodeA // nodeB/child :: nodeE union nodeA // nodeB/ parent :: nodeE
2 union
3 nodeA // nodeB/child ::*/ child :: nodeE
4 union
5 nodeA // nodeB/ parent ::*/ parent :: nodeE
6 union
7 nodeA // nodeB/ parent ::*/ child :: nodeE

Listing 6.4: An XQuery expression that mimics the near2 axis matching evaluation by using
the union operator.

Such simple near axis rewriting examples, however, introduce an issue related to the
definition of an equivalent evaluation of the near axis where only standard XQuery axes
are involved: not considering the missing computation of a structural relevance score,
the use of the union operator would produce duplicated results in the final Node-Set.
Such issue is more and clearly noticeable when a distance of 3, or greater, is specified
as the neat threshold parameter: in such case the rewriting production would provide
a parent-child-child path traversal sequence starting from the context node, that
would partially cover the same node set matched by the child axis.

A second issue that compromises an effective comparison of the near axis, and its vari-
ants, against a standard XQuery expression is, other than the node duplication previ-
ously otlined, the evaluation process applied when union operators are formulated. In
particular most XQuery engines, including the BaseX engine on top of which the FleXy
constraints have been implemented, would evaluate each distinct sub-query separately
and the set of results merged together. This would require the system to evaluate more
than one query in contrast to a single XQuery expression provided by the near axis
formulation; in particular 2 sub-expressions are needed for the near1 axis, 5 for the
equivalent of the near2 and 8 for the near3 axis. In Listing 6.5 the query used for the
near2 axis evaluation is presented, while in Listing 6.6 the rewritten XQuery is shown.
Both the query expressions return the actual path of the selected item by using the
standard function path(), thus no different evaluation is provided, but the axis itself.

for $i in
nodeE/nodeA/near2 :: nodeE

return <hit >{$i/path ()} </hit >

Listing 6.5: One of the FleXy/XQuery expressions used to evaluate the near2 axis.

111

Name Parsing (ms) Compiling (ms) Evaluating (s)
near1 134.34 7.73 2.01
near1-rewritten(2) 139.37 7.75 2.07
near2 133.13 7.65 2.11
near2-rewritten(5) 140.92 7.64 2.62
near3 134.75 7.78 2.21
near3-rewritten (8) 148.56 7.77 3.59

Table 6.9: Parsing, compiling and evaluating timings for the near variants and the equivalent
rewritten expressions.

for $i in
nodeE/nodeA/child :: nodeE
union
nodeE/nodeA/ parent :: nodeE
union
nodeE/nodeA/child ::*/ child :: nodeE
union
nodeE/nodeA/ parent ::*/ parent :: nodeE
union
nodeE/nodeA/ parent ::*/ child :: nodeE

return <hit >{$i/path ()} </hit >

Listing 6.6: The rewritten query executed as a near2 axis equivalent.

A first comparison performed between the near axis variants and their XQuery equiv-
alent set of expressions confirmed that such evaluation is not fair: the system overhead
introduced by the multiple sub-expressions does not play in favor for the axis rewrite ap-
proach. In Table 6.9 the Parsing, Compiling and Evaluating timings are shown for each
near axis variant and their rewritten counterpart, where the number of sub-expressions
are indicated between rounded brackets. The results confirm that the evaluation of the
rewritten counterpart of the near axis variants requires more time than the near axis.
Such increment is related to the number of arcs that need to be evaluated, in particu-
lar to the number of sub-expressions that are generated in each rewritten counterpart.
Regarding the Parsing and the Compiling timings, the same trend identified for the Eval-
uating is shown, in this case such differences, however, are only of a few milliseconds
and, thus, they are negligible.

The evaluation have been performed on top of the collection named CollNodeE, and pre-
viously described in Section 6.1.2; this choice has been motivated by the lower variability
in the document structure found in the IMDb collection, such feature and the presence
of nodes having the same label and placed in different hierarchy level are required to
better evaluate the near axis and to avoid the BaseX query optimization and rewriting
process.

112

6.1.5 Conclusions

In this section the axes below and near, alongside their parametric variants, have been
evaluated in comparison, if available, to the standard set of the XQuery language axes.
The axis below has been compared to the descendant axis, while for the near axis, for
which no standard counterparts exists, an axis rewriting strategy is proposed.

The below axis comparison shows how the score computation introduced by the FleXy
language, in addition to the required distance computation implemented in the BaseX
query engine, produces an overhead, as shown in Fig. 6.3 and in Fig. 6.7. Such overhead,
of course is proportional both to the number of nodes that are traversed during the
evaluation and the structure of the collection: an overhead of 40% is measured for
collections composed of several medium documents, while higher performance loss can
be noticed if a single huge XML file with a complex structure is queried.

The score computation overhead can be considered acceptable as a constant comparison
ratio is noticeable during the evaluations performed on the IMDB collection. In the worst
case scenario, represented by the xmarkC4 collection, the below performance can still
be considered acceptable, as a linear increment in the evaluation timings is measured,
while the obtained results contains the important information computed regarding their
structural relevance, information missing from the results obtained with the descendant
evaluation.

The near axis evaluation, however, presented some issues as no other standard XQuery
axis could provide the same result set of the FleXy constraint. A preliminary comparison
has been proposed by rewriting the near axis, and its parametric variants, by a set of
queries involving a combination of the standard parent and child XQuery axes. As
discussed in Section 6.1.4, such comparison has been confirmed to provide unfair results
as the rewriting technique would require the XQuery engine to evaluate an increasing
number of sub-queries to obtain the same result of the specified near axis, thus a correct
timing comparison and evaluation of the near axis can not be performed.

An important result, however, is shown in the below3 axis evaluation shown in Fig. 6.3
on the IMDB collection, where the threshold provided by the user allows to effectively
reduce the number of traversed nodes and to perform, on average, the evaluation with
a 20% less time if compared to the standard descendant axis evaluation. The same
result is marginally noticeable for the below4 axis evaluation performed on the XMark
collection shown in Fig. 6.7, where a reduced evaluation timing shown up to the xmarkC3
collection.

Such behaviour, besides providing the vague evaluation of the user constraints and the
structural relevance score computation, could be leveraged by the query engine during
the query optimization phrase. As shown in Fig. 6.3, when the threshold value provided
to the below axis exactly matches the maximum distance where a target node can be
found in the document node hierarchy, a performance gain in the query evaluation can be
measured (in particular in the below3 axis evaluation). Such aspect may be leveraged

113

by the BaseX query engine, in particular in the query optimization phase where a
descendant axis could be rewritten into a belown axis, when the threshold parameter n
is computed on the path summary already available in the query system. Such rewrite
technique involving the below axis, of course, should take into account the maximum
distance parameter to avoid the distance computation overhead and eventually provide
a score-less below evaluation to better improve the axis evaluation.

6.2 FleXy use-case: the PatentLigth application

In this section a use case of the FleXy language (as implemented on the Flex-BaseX
engine) is presented: by adopting the flexibility introduced by the FleXy below and
near axes evaluation with the associated computation of the structural relevance score,
the PatentLight [164] search application has been designed to help non-expert users
to easily identify and retrieve patents relevant to their needs. With the PatentLight
application, the patent retrieval task has been addressed as a particular XML retrieval
task, given the highly structured XML format in which the online patents collections
are available.

Section 6.2.1 introduces the patent retrieval task as addressed by PatentLight, and
the set of the novel features proposed. Section 6.2.2 describes the related works in the
patent retrieval field: the techniques and the currently available patent search tools
are described with their characteristics and limitations. Section 6.2.3 describes the
PatentLight tool and the flexible approach adopted, while, Section 6.2.4 concludes
this Section.

6.2.1 Introduction

Patent Retrieval is a challenging research problem with important open issues; the re-
search contributions related to this task stress in fact the point that expert users spend
hours, even days, trying to localize relevant patents from a large set of search results;
such behavior is also reported by a survey conducted by Azzopardi et al. in [165]. More-
over, in the last decade patent collections are available on the Internet such as the United
States Patent and Trade Office3 (USPTO), the European Patent Office 4 (EPO) and the
World Intellectual Property Organization5 (WIPO); this way, also non-patent specialists
can access patents online. Thus, it is becoming more and more important to develop
effective patent search applications for both experts and non-specialists users.

Usual approaches to patent retrieval guide the users in query formulation by giving them
the possibility to search patents only based on specific contents: CARROT4Marec6,

3 The USPTO patent registry is available at: www.uspto.gov.
4 The European Patent Office is available at www.epo.org website.
5 Available at the following page: swww.wipo.int/pctdb/en/.
6 Available at www.ir-facility.org/prototypes/carrot4marec/ (accessed on 2012-04-12).

114

www.uspto.gov
www.epo.org
swww.wipo.int/pctdb/en/
www.ir-facility.org/prototypes/carrot4marec/

for example, allows to evaluate queries only on specific patent fields such as the En-
glish title and the English abstract. A web portal dedicated to patent search named
PatentSearcher is presented in [166], where multiple patent fields, such as such as
abstract, claims, description and images descriptions, and other features are used to to
retrieve and rank patents. The PatentSearcher search engine evaluates a keyword based
query by giving more importance to a keyword if it is matched in the Abstract field, than
if it is matched in other sections such as Description or Claims.

In XML-patents some tags are also used to indicate the roles of people involved in
the patent. The USPTO patent collection, used as the main patent collection for the
PatentLight application evaluation here described, structures the information related
to a person by using the following elements: a last-name and a first-name tags. Their
position in the XML document nodes hierarchy defines the person’s role in the patent
such as Applicant, Examiner, Agent or Assignee. Other details about the patent, such
as the claims, the invention title, and the invention description are structured as shown
in the example document of Fig. 6.8.

Figure 6.8: A fragment of an USPTO Patent document.

It is important to notice that not only the tag labels are used to represent the semantics
of their contents, but also their structural position carries important details about an
element semantic content; both of such structural and label semantics should be taken
into account when querying XML documents. This aspect is indeed leveraged by the
PatentLight application to provide its novel search features.

In fact none of the above systems is able to guess the user search intent, and in case
of ambiguous queries some useful search results could not be retrieved. Let us suppose
that a user formulates a query with the following ambiguous keyword: "Bell" with the
intent of searching patents where the examiner is named Bell7 Such ambiguous query

7 The example query could be argued to be too simple, but well represents an ambiguous user need.
Such keyword query could be, as well, specified in a more complex query where multiple keywords

115

has been evaluated with both CARROT4Marec and the PatentsSearcher applications;
the obtained results do not respect the user search intent: both systems search, in fact,
the specified keyword in the predefined fields (i.e., title and description respectively),
and do not take into account the examiner field. Thus the retrieved patents deal with
the concept Bell as an invention, and not as a person.

With respect to the other existing patent search engines, the patent search application
PatentLight allows to: (1) categorize search results according to the information on the
document structure, (2) rank the retrieved patents related to each category by analyzing
information on both the document structure and the document content. The two main
characteristics of the PatentLight are here briefly listed:

Patent Categorization The PatentLight application allows to categorize the results of
the evaluation of a keyword based query by activating distinct pre-defined queries;
each pre-fedined query corresponds to a category. For each category a different
set of elements is analyzed and the matching patents are retrieved and ranked
accordingly. This is a novel strategy with respect to the other patent applications
that analyze only the content of some predefined elements as explained above. By
selecting one of these categories the user is guided in locating patents according to
a specific search task. In particular the categories identified by the PatentLight
application are: Titles, People, Descriptions and Claims. For example, patents
will be retrieved in the category Titles if the keywords specified by the user match
the contents of the tag title; while the category People will contain patents for
which the given keywords match the textual contents of tags related to people,
such as the Applicant or the Agents tags.

Patent Ranking Patents contents are internally represented by using the XML format;
this means that standard XML query languages, like XQuery or XPath, can be used
to search patents. PatentLight is based on the FleXy extension of the XQuery
Full-Text language, where the below and near axes are defined: this characteristic
allows to produce a ranked list of patents (and patent fragments) by considering
both the content relevance (by leveraging the XQuery Full-Text extension) and the
XML element structural position in the XML patent document (by leveraging the
FleXy extension).

6.2.2 Related Works

Patent retrieval is a very complex task, and in the literature several applications have
been developed to help and support users in the patent search task. A patent is a
structured document composed of several sections such as descriptions, claims, title,
agents, assignees, examines, classifications, etc. Usually, patents documents are defined
in the XML format, and patent applications make use of IR techniques to index patents
by considering some tags and their textual content.

are specified, but the same subsequent observations about current patent engines apply.

116

In the literature some patent applications have been defined in order to search patents
only on specific tags content. For example the technique proposed by Mase et al. in
[167] analyzes only the claims XML element contents. In fact, a frequent and important
inquiring is the one aimed at the retrieval of patents that may invalidate an invention.
In particular, a keyword-based retrieval method is defined, and the following four steps
are applied: (1) query terms extraction from the claim text by applying standard text
analysis such as tokens identification and stop words removal, (2) query term-weighting
by only using document frequency, df , (3) patent retrieval using the claims element as
the only target, and (4) ranking of the retrieved patents.

In the approach proposed by Xue et al. [168] the problem of an automatic query gen-
eration for patent search is studied: a query manipulation technique that takes into
account several patent features is proposed and analyzed. A first technique consists at
indexing the textual contents of six different patent tags such as title, abstract, a brief
summary, descriptions of the figures, detailed text descriptions, and claims. A standard
Information Retrieval indexing technique is adopted, while the set of extracted terms are
subsequently weighted by considering three different formulas based on term frequency,
inverse document frequency and a combination of the two. Another feature takes into
account the International Patent Classification (IPC) class assigned to a patent: by an-
alyzing the class tag, where patents are categorized into two levels: primary class code
and secondary class code. Each feature and their combination have been evaluated by
the authors on the USPTO collection. The evaluations have shown better performances
in case of a joint use of all the features.

This is an evidence of the fact that a patent application can achieve a good performance
when patents search is simultaneously executed on several tags. For example, important
patents applications, such as Google Patents, Delphion8, PatentsSearcher, and CAR-
ROT4Marec, search for patents by jointly analyzing the content of title, and abstract
tags when a user formulates keyword-based queries.

The PatentLight application proposed within this research activity allows to search,
as described in the subsequent Section 6.2.3, for patents by simultaneously considering
a greater number of XML tags than the above applications such as inventors, agents,
assignees, classifications, claims, etc. The objective is to satisfy all the possible user
search topical interests and not to limit patent retrieval by analyzing only the information
in the title and in the abstract sections.

6.2.3 The PatentLight tool

The PatentLight application, as previously outlined, has been developed by leveraging,
as the underlying patent query engine the Flex-BaseX XQuery engine as described in
Section 5. In particular the patent search application has been defined and tested on

8 The Delphion search engine, available at www.delphion.com (accessed 2012-04-12) requires a manda-
tory subscription.

117

www.delphion.com

the USPTO patent collection, freely available online. The USPTO collection is the
patent corpus adopted by most patent search applications such as Google Patents
and Patents Searcher. The newly defined patent engine, besides allowing users to
perform a classic advanced search where queries may be formulated through an ad-
hoc interface on specific tags such as inventor, country, claims and so on, consists in a
basic keyword-based search where, differently from other approaches, the set of retrieved
patents are organized according to thematic categories. Such categories are defined to
better help users in locating relevant patents and they have been defined by exploiting
the structure of the XML-patents documents.

The keyword-based query is automatically re-written into four distinct FleXy queries,
one for each of the four thematic categories defined based on the structure of the patents
belonging to the USPTO patent collection. The aim of the categorization is to organize
the XML-patents into meaningful semantic XML-elements, i.e. such XML-elements have
to cover the main information defined into a patent. This way, when a user formulates
an ambiguous query, the categorization process allows to easily capture what the user
topical search intent is by individuating all the possible interpretations associated with
a patent.

The definition of the right set of categories assumes a key aspect during the categorization
process. The four thematic categories that have been defined by analyzing the XML
structure of the patents and are: People, Titles, Descriptions, and Claims. The choice
of these categories has been made by considering the main, possibly useful information
defined in the patents.

Furthermore, by analyzing other patents collections such as EPO and WIPO we have
noticed that the same meaningful information individuated in the USPTO patents are
also present in these collections, even if in different tags. This enforces our categories
selection, and confirms that our system can be easily adapted to those collections.

Formally, let E be the set of XML-elements defined in the USPTO-patents, E be a
subset of elements E ⊂ E, and Cat be a set of categories, then one or more elements
e1, e2, ..., en ∈ E are mapped into a category c ∈ Cat, i.e. {e1, ..., em} 7→ c with m 6= n.
The subset of elements E has been selected from E in order to cover important aspects
from patents. In Listing 6.7 the considered categories along with the corresponding
XML-elements, enclosed in curly brackets, are presented.

People : {Applicants ,Agents ,Assignees , Examiners }
Titles : {Invention -title}
Descriptions : { Description }
Claims : { Claims }

Listing 6.7: The set of defined categories and the corresponding XML elements.

For each category a FleXy query is defined in order to search the query terms in pre-
established elements as shown in the following Listing 6.8.

118

People : // Applicants /near ::Last -Name[text () contains text "query terms "]
Titles : // invention -title[text () contains text "query terms "]
Descriptions : // description /below ::p[text () contains text "query terms "]
Claims : // claims /below :: claim -text[text () contains text "query terms "]

Listing 6.8: The set of defined categories and the corresponding XML elements.

It can be noticed that the FleXy query related to the category People uses the near
axis constraint, and the considered context node is the tag Applicants; this means
that the applicant role (corresponding to the inventor role) is assumed to have more
importance with respect to the other roles defined in the patent such as agent, examiner,
and assignee. This choice has been motivated to be coherent with respect to standard
patents search applications (i.e., Google Patents, Patents Searcher, etc.). In fact,
by analyzing the advanced search of these applications (where a user is able to search
patents through specific tags), it is possible to search patents by considering the role of
inventor (or the one of assignee). In case of user queries formulated by the standard
textual search area, when a user writes a name of a person it is supposed that he/she
interested in finding inventors of patents. However, it is important to note that by the
PatentLight approach also patents containing a person name with a different role will
be retrieved given the use of the near axis for flexibly evaluating the query.

An example query

In the following an example of the FleXy query generated by the keywords specified by
a user are described; let us suppose that the ambiguous keyword-based query Bell is
formulated by the user, and the search results are categorized as previously outlined.

In Listing 6.9 the complete syntax of the XQuery expression used for retrieving the
results of the category People is shown, while in Listing 6.10 the XQuery expression to
match the category Descriptions is provided.

for $item score $sft score - structure $sst in
// Applicants /near ::last -name[text () contains text "Bell"

or ../ first -name/text () contains text "Bell "]
order by $sst descending , $sft descending

return
<result scoreST ="{ $ss }" scoreFT ="{ $sft }">

<text >{ $item/text ()}, {$item/ parent ::*/ first -name/text ()} </ text >
<path >{ $item/fn:path ()} </ path >
<patent -file >{ data($item/root ()/us -patent -grant/@file)}</ patent -file >

</result >

Listing 6.9: FleXyXQuery expression for the People category matching.

In both query expressions the standard XQuery Full-Text score and the FleXy structural
score are computed and used to sort the set of obtained results in each category.

119

Furthermore, the matched results have been designed to share the same XML structure:
an element labeled result contains three tags, namely text, path, and patent-file
that in turn contain the matched text (as the concatenation of the person name and
surname for the category People, or the matched paragraph text for the category De-
scriptions), the rooted label path of the XML element where the content has been
found, and the file-name of the patent document. This allows to provide a uniform re-
sult structure for the retrieved set of patents, furthermore it facilitates the PatentLight
backend/frontend communication and the display of the results.

for $item score $sft score - structure $ss in
description /below ::p[text () contains text "Bell "]

order by $sst descending , $sft descending

return
<result scoreST ="{ $ss }" scoreFT ="{ $sft }">

<text >{ $item/text ()} </ text >
<path >{ $item/fn:path ()} </ path >
<patent -file >{ data($item/root ()/us -patent -grant/@file)}</ patent -file >

</result >

Listing 6.10: FleXyXQuery expression for the Descriptions category matching.

In Fig. 6.9 the graphical user interface for the standard keyword-based search of the
PatentLight application is shown: in the example the user query and its results have
also been displayed.

Figure 6.9: The PatentLight application user interface with query result categorization.

120

6.2.4 Conclusions

In this section the PatentLight application has been described: it represents a first
use case of the FleXy language extension applied to the Patent Retrieval search task
aimed at helping the user in finding relevant patents, represented in the XML format,
in a simple way. In particular the Flex-BaseX engine has been leveraged to provide a
preliminary result categorization while querying the structured format of the US patents
collection.

In the PatentLight application several strategies that allow to search and explore
patents from an innovative point of view with respect to the works proposed in the
literature have been studied. According to the information searched by the user, the main
advantages of the proposed strategy are: (1) to categorize search results by considering
the tags in the XML structure, and (2) to rank the search-results by considering the
flexible constraints on both structure and content.

In particular the FleXy axes below and near have been combined with the XQuery Full-
Text language search features to match XML elements of a patent document by a double
search criterion: the standard full-text search computes the relevance estimate score for
a fragment given the user keyword-based query, while the flexible axes evaluation is
leveraged to provide both the results categorization and the result ranking computation
by the structural position of each retrieved fragment.

Further analyses and evaluations are planned to be performed on the search and cate-
gorization approach defined by the PatentLight tool by taking into account, besides
the relevance computation of the results, the user search behavior and the impact of the
patent categorization on user search satisfaction.

121

7 Conclusions

The eXtensible Markup Language allows data and textual contents to be structured in a
hierarchical form; its simple and powerful labeled tree structure has been adopted by an
increasing number of domains: office productivity tools and communication protocols
are only few of the fields where XML has been used.

The two main languages defined by the W3C to query XML documents, XPath and
XQuery, allow users to inquiry XML document contents and their structure to select
a subset of the document elements; the XQuery language further extends the XPath
features by providing data manipulation and XML elements restructuring capabilities.
Both languages, coming from a data-centric perspective of XML documents, provide
an SQL-like evaluation of the query clauses: an exact matching of content-based and
structure-based constraints is performed by XPath and XQuery.

Such Database oriented point of view adopted by the two languages has been opposed by
the approaches defined by the Information Retrieval community, where XML documents
are treated from a document-oriented perspective. Information Retrieval approaches
tackled user formulated queries as imprecise requirements, and both content-based and
structure-based constraints are conceived as a mere template during the constraints
evaluation, where an approximate matching is performed. A joint work of both commu-
nities culminated into the definition of an extension of the XPath and XQuery languages
named Full-Text and subsequently standardized by the W3C. The XQuery/XPath Full-
Text extension defines a rich set of keyword-based search capabilities, the evaluation of
which produces a set of weighted set of elements: a score is computed and assigned to
each retrieved XML element expressing the relevance of its textual contents to the given
user query. The Full-Text extension also embraces the IR full-text matching style, where
stop-words removal, thesauri and other operations can be performed during the query
evaluation and element retrieval process.

Regarding the document structure, the IR approaches proposed a set of approximate
structural matching techniques, where the standard structure-based constraints, as for-
mulated in an XQuery or XPath expression, are evaluated by adopting path relaxation
algorithms. The approximate IR approaches, however, do not take into account the user
perspective, and they mainly hide the underlying approximate evaluation performed:
the user does not have any possibility neither to specify the desired extent of the ap-
proximation, nor which constraints should be, instead, strictly evaluated.

The FleXy language, defined by the research undertaken during the development of this
thesis, has been designed to fill this gap: to allow users to effectively express and formu-

122

late vague structure-based constraints. FleXy has been formally defined as an extension
of the XQuery Full-Text language, thus leveraging the standard XML element selection
and manipulation characteristics of XQuery, and the full-text capabilities offered by the
Full-Text extension.

The two new axes named below and near provide a vague specification of structural
constraints, the evaluation of which produces, similarly to the Full-Text extension, a set
of weighted elements: in this case a structural relevance score is computed by taking into
account the distance from the user required target element and the actually retrieved
one. Thresholds variants of the FleXy constraints have also been defined; they allow the
user to specify the extent of the application of the vague structural constraints.

The XPath and XQuery structure-based constraints, and their strict evaluation, force the
users to be well aware of the underlying structure of an XML document collection before
formulating a successfully query. This aspect is not trivial, in particular for complex
XML element structures. The below and near axes can thus be specified by users to
exploit their, even limited, structural knowledge of the structure of the XML document
collection to formulate vague queries that can retrieve relevant results even if an inexact
structural constraint is specified.

The work performed in this thesis can be summarized by the following contributions:

• the FleXy language has been formally defined as an extension of the XQuery/X-
Path Full-Text language: the new axes below and near (and their parametric
variants) have been defined by their syntax and semantics in Chapter 4. The
complete FleXy syntax has been described as fully compatible with the XPath
and XQuery language, while the formal semantics of the axes has been defined by
extending the Core XPath semantics [9] as defined by Gottlob et al. The FleXy
structural scoring is further described in detail through the associated algorithms,
and the definition of the structural relevance score variable has been provided to
integrate it with the Full-Text content relevance score;

• the implementation of the FleXy language including the vague axis below and
near, the scoring algorithms and the complete vague evaluation are described
in Chapter 5. A preliminary implementation was provided as a feasibility study
of the vague constraints evaluation, in terms of data structures adaptability and
computation efficiency. A complete integration of the FleXy language has been
subsequently conducted on top of a fully featured XQuery engine after an accurate
analysis of different XQuery compliant alternatives. The BaseX engine has been
selected as the basis for the FleXy integration due to its efficient data structures, to
the availability of its source code and, most importantly, to its complete adherence
to the XQuery Full-Text extension;

• the efficiency of the FleXy language, as implemented on top of the BaseX engine,
has been evaluated by comparing the timings of the axes below and near against
their non-vague counterparts in XQuery to the aim of measuring the overhead

123

introduced by the flexible evaluation. The below axis has been compared with
the standard descendant axis; for the near axis, which does not have any stan-
dard alternative in XQuery, a query rewriting technique has been provided. As
expected, the obtained results outlined that the evaluation of the FleXy axes intro-
duces a noticeable overhead: a linear increasing evaluation timing is shown when
a single huge document composes the queried collection (test performed with a set
of increasing size XMark documents), while a constant performance ratio is mea-
sured for collections composed of multiple small/medium XML documents (test
performed with the IMDB collection).
A quite important outcome of the performed evaluations is that a performance
gain has being measured with the threshold axis variants, where the number of
traversed elements of the collection is significantly reduced with respect to the
standard XQuery descendant axis evaluation.

• On top of the BaseX engine extended with the FleXy language, a patent search
application named PatentLight has been developed to exploit the structure of
the patents XML documents and their textual contents. By leveraging the Full-
Text extension and the vague structure-based constraints evaluation of the FleXy
language, the system helps non-expert users to effectively retrieve relevant patents
by offering a result categorization strategy.

In short, we believe that the proposed FleXy language represents the missing link be-
tween the Database and Information Retrieval perspectives of XML documents querying.
With the ability to express vagueness in structural constraints, besides the possibility
of formulating keyword-based search as addressed by the XQuery Full-Text extension,
the user can finally formulate queries that explicitly represent her/his needs, in a way
tolerant to imprecision, thus having the full control on the desired evaluation process.

124

Publications

[1] Marrara Stefania, Panzeri Emanuele, and Pasi Gabriella. “A double layer indexing
structure for flexible querying of XML documents”. In: Proceedings of 9th Inter-
national Conference on Adaptivity, Personalization and Fusion of Heterogeneous
Information. RIAO ’10. Paris, France, France, 2010, pp. 130–131.

[2] Marrara Stefania, Panzeri Emanuele, and Pasi Gabriella. “An Analysis of an Ef-
ficient Data Structure for Evaluating Flexible Constraints on XML Documents”.
In: Proceedings of the 9th International Conference on Flexible Query Answering
Systems (FQAS). Vol. 7022. Lecture Notes in Computer Science. 2011, pp. 294–
305.

[3] Stefania Marrara, Emanuele Panzeri, and Gabriella Pasi. “A Flexible XML Query
Language for NON Dummies”. In: Proceedings of the 2nd Italian Information
Retrieval (IIR) Workshop. Vol. 704. CEUR Workshop Proceedings. 2011.

[4] Silvia Calegari, Emanuele Panzeri, and Gabriella Pasi. “PatentLight: A Patent
Search Application”. In: Proceedings of the 4th Information Interaction in Context
Symposium (IIIX). Nijmegen, The Netherlands, 2012, pp. 242–245.

[5] Emanuele Panzeri and Gabriella Pasi. “An Approach to Define Flexible Structural
Constraints in XQuery”. In: Proceedings of the 8th International Conference on
Active Media Technology (AMT). Vol. 7669. Lecture Notes in Computer Science.
2012, pp. 307–317.

[6] Emanuele Panzeri and Gabriella Pasi. “A flexible extension of XQuery Full-Text”.
In: Proceedings of the 4th Italian Information Retrieval (IIR) Workshop. Vol. 964.
CEUR Workshop Proceedings. 2013, pp. 29–32.

[7] Emanuele Panzeri and Gabriella Pasi. “Flexible structural constraints in XQuery
Full-Text”. In: Proceedings of the 10th Conference on Open Research Areas in
Information Retrieval (OAIR). Paris, France, France, 2013, pp. 51–54.

[8] Elio Masciari, Emanuele Panzeri, and Gabriella Pasi. “An approach to define
flexible structural constraints in XQuery (Discussion Paper)”. In: In Proceedings
of the 21st Italian National Conference on Advanced Data Base Systems (SEBD).
2013.

[9] Emanuele Panzeri and Gabriella Pasi. “Flex-BaseX: An XML engine with a flex-
ible extension of XQuery Full-Text”. In: Proceedings of the 36th international
ACM SIGIR conference on Research and development in Information Retrieval
(SIGIR). 2013.

125

[10] Calegari Silvia, Comerio Marco, Maurino Andrea, Panzeri Emanuele, and Pasi
Gabriella. “A Semantic and Information Retrieval Based Approach to Service
Contract Selection”. In: Proceedings of the 9th International Conference on Service-
Oriented Computing (ICSOC). Vol. 7084. Lecture Notes in Computer Science.
2011, pp. 389–403.

126

Bibliography

[1] W3C. Extensible Markup Language (XML). Recommendation 1.0. World Wide
Web Consortium (W3C), Jan. 1996. url: http://www.w3.org/TR/xml/.

[2] W3C. XML Path Language (XPath). Recommendation 1.0. World Wide Web
Consortium (W3C), Nov. 1999. url: http://www.w3.org/TR/xpath/.

[3] W3C. XQuery: An XML Query Language. Recommendation 1.0. World Wide
Web Consortium (W3C), Nov. 2007. url: www.w3.org/TR/xquery.

[4] Ludovic Denoyer and Patrick Gallinari. “The Wikipedia XML Corpus”. In: SIGIR
Forum 40.1 (June 2006), pp. 64–69.

[5] Sihem Amer-Yahia, SungRan Cho, and Divesh Srivastava. “Tree Pattern Relax-
ation”. In: Proceedings of the 8th International Conference on Extending Database
Technology: Advances in Database Technology. EDBT ’02. London, UK, UK, 2002,
pp. 496–513.

[6] Torsten Schlieder. “Similarity Search in XML Data using Cost-Based Query
Transformations”. In: Proceedings of the Fourth International Workshop on the
Web and Databases. WebDB ’01. Santa Barbara, California, USA, 2001, pp. 19–
24.

[7] Yosi Mass, Matan Mandelbrod, Einat Amitay, David Carmel, Yoëlle S. Maarek,
and Aya Soffer. “JuruXML - an XML Retrieval System at INEX’02”. In: Proceed-
ings of the First Workshop of the INitiative for the Evaluation of XML Retrieval
(INEX). Schloss Dagstuhl, Germany, 2002, pp. 73–80.

[8] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Shashank Pandit. “FleXPath:
Flexible Structure and Full-text Querying for XML”. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data. SIGMOD ’04.
New York, NY, USA, 2004, pp. 83–94.

[9] Georg Gottlob, Christoph Koch, and Reinhard Pichler. “Efficient Algorithms for
Processing XPath Queries”. In: ACM Transactions on Database Systems 30.2
(June 2005), pp. 444–491.

[10] Gabriella Kazai, Norbert Gövert, Mounia Lalmas, and Norbert Fuhr. “The INEX
Evaluation Initiative”. In: Intelligent Search on XML Data. Vol. 2818. Lecture
Notes in Computer Science. 2003, pp. 279–293.

[11] Priscilla Walmesley. XQuery. 1st. O’Reilly, 2007, p. 511. isbn: 978-0-596-00634-1.
[12] Joe Fawcett, Danny Ayers, and Liam R. E. Quin. Beginning XML. 5th. Wrox,

2008, p. 864. isbn: 978-1-1181-6213-2.

127

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xpath/
www.w3.org/TR/xquery

[13] John Simpson. XPath and XPointer. 1st ed. O’Reilly, 2002, p. 208. isbn: 978-0-
596-00291-6.

[14] W3C. World Wide Web Consortium webpage. http://www.w3.org.
[15] W3C. Extensible Markup Language (XML). Tech. rep. World Wide Web Consor-

tium (W3C), 2013. url: http://www.w3.org/XML.
[16] ISO. ISO 8879:1986 Information processing - Text and Office Systems - Standard

Generalized Markup Language (SGML). Recommendation. International Organi-
zation for Standardization (ISO), Oct. 1986. url: http://www.iso.org/iso/
catalogue%5C_detail.htm?csnumber=16387.

[17] W3C. Cascading Style Sheets (CSS). Recommendation 2.1. World Wide Web
Consortium (W3C), June 2011. url: http://www.w3.org/TR/CSS2/.

[18] W3C. XSL Transformations (XSLT). Recommendation 1.0. World Wide Web
Consortium (W3C), Nov. 1999. url: http://www.w3.org/TR/xslt/.

[19] W3C. XML Document Type Declaration. Tech. rep. World Wide Web Consortium
(W3C), Oct. 2004. url: http://www.w3.org/TR/xml/%5C#dt-doctype.

[20] James Clark and Murata Makoto. RELAX NG. Recommendation. The Organi-
zation for the Advancement of Structured Information Standards (OASIS), Dec.
2001. url: http://relaxng.org/spec-20011203.html.

[21] ISO. ISO/IEC 19757-3:2006 Information technology - Document Schema Defini-
tion Language (DSDL) - Part 3: Rule-based validation - Schematron. Tech. rep.
International Organization for Standardization (ISO), June 2006. url: http:
//schematron.com.

[22] W3C. XML Schema. Recommendation 1.0. World Wide Web Consortium (W3C),
Oct. 2004. url: http://www.w3.org/TR/xmlschema-1/.

[23] W3C. XHTML The Extensible HyperText Markup Language. Recommendation
1.0. World Wide Web Consortium (W3C), Aug. 2002. url: http://www.w3.
org/TR/xhtml1/.

[24] W3C. SOAP: Messaging Framework (Second Edition). Recommendation 1.2. World
Wide Web Consortium (W3C), Apr. 2007.

[25] W3C. Web Services Description Language (WSDL). Recommendation 1.1. World
Wide Web Consortium (W3C), Mar. 2001.

[26] IETF. RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core.
Recommendation. Internet Engineering Task Force (IETF), Oct. 2004. url: http:
//www.ietf.org/rfc/rfc3920.txt.

[27] Mounia Lalmas and Ricardo Baeza-Yates. “Structured Document Retrieval”. In:
Encyclopedia of Database Systems. 2009, pp. 2867–2868.

[28] Andrew Trotman and Börkur Sigurbjörnsson. “Narrowed extended XPath i (NEXI)”.
In: Proceedings of the Third international conference on Initiative for the Evalua-
tion of XML Retrieval (INEX 2004). Lecture Notes in Computer Science. Berlin,
Heidelberg, 2005, pp. 16–40.

128

http://www.w3.org/XML
http://www.iso.org/iso/catalogue%5C_detail.htm?csnumber=16387
http://www.iso.org/iso/catalogue%5C_detail.htm?csnumber=16387
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/xslt/
http://www.w3.org/TR/xml/%5C#dt-doctype
http://relaxng.org/spec-20011203.html
http://schematron.com
http://schematron.com
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.ietf.org/rfc/rfc3920.txt
http://www.ietf.org/rfc/rfc3920.txt

[29] W3C. DOM level 1 (Document Object Model). Recommendation 1.0. World Wide
Web Consortium (W3C), Oct. 1998. url: http://www.w3.org/TR/REC-DOM-
Level-1/.

[30] W3C. XML Pointer Language (XPointer). Working Draft. World Wide Web Con-
sortium (W3C), Aug. 2002. url: www.w3.org/TR/xptr/.

[31] W3C. XForms. Recommendation 1.1. World Wide Web Consortium (W3C), Oct.
2009. url: www.w3.org/TR/xforms/.

[32] W3C. XML Path Language (XPath). Recommendation 2.0. World Wide Web
Consortium (W3C), Nov. 2007. url: www.w3.org/TR/xpath20.

[33] W3C. DOM level 3 (Document Object Model) Core Specification. Recommenda-
tion 1.0. World Wide Web Consortium (W3C), Apr. 2004. url: http://www.w3.
org/TR/DOM-Level-3-Core/.

[34] Cezar Andrei, Matthias Brantner, Daniela Florescu, David Graf, Donald Koss-
mann, and Zacharioudakis Markos. Extending XQuery with Collections, Indexes,
and Integrity Constraints. Working Draft. http://www.flworfound.org/pubs/xqddf.pdf:
Flowr Foundation, 2009.

[35] W3C. XQuery Update Facility 1.0. Recommendation. World Wide Web Consor-
tium (W3C), Mar. 2011. url: http://www.w3.org/TR/xquery-update-10/.

[36] Donald D. Chamberlin, Jonathan Robie, and Daniela Florescu. “Quilt: An XML
Query Language for Heterogeneous Data Sources”. In: Selected papers from the
Third International Workshop WebDB 2000 on The World Wide Web and Databases.
London, UK, UK, 2001, pp. 1–25.

[37] Jonathan Robie, Joe Lapp, and David Schach. XML Query Language (XQL).
Technical Report. World Wide Web Consortium (W3C), 1998. url: http://
www.w3.org/TandS/QL/QL98/pp/xql.html.

[38] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu.
XMLQL: a query language for XML. Technical Report. World Wide Web Con-
sortium (W3C), Aug. 1998. url: http://www.w3.org/TR/NOTE-xml-ql/.

[39] Peter Buneman, Mary Fernandez, and Dan Suciu. “UnQL: a query language and
algebra for semistructured data based on structural recursion”. In: The VLDB
Journal 9.1 (Mar. 2000), pp. 76–110.

[40] Angela Bonifati and Stefano Ceri. “Comparative Analysis of Five XML Query
Languages”. In: SIGMOD Rec. 29.1 (Mar. 2000), pp. 68–79.

[41] W3C. XML Query Languages: Experiences and Exemplars. Technical Report.
World Wide Web Consortium (W3C), Sept. 1999. url: http://www.w3.org/
1999/09/ql/docs/xquery.html.

[42] W3C. XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition).
Recommendation 2.0. World Wide Web Consortium (W3C), Dec. 2010. url:
http://www.w3.org/TR/xpath-functions/.

129

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
www.w3.org/TR/xptr/
www.w3.org/TR/xforms/
www.w3.org/TR/xpath20
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TandS/QL/QL98/pp/xql.html
http://www.w3.org/TandS/QL/QL98/pp/xql.html
http://www.w3.org/TR/NOTE-xml-ql/
http://www.w3.org/1999/09/ql/docs/xquery.html
http://www.w3.org/1999/09/ql/docs/xquery.html
http://www.w3.org/TR/xpath-functions/

[43] W3C. XSL Transformations (XSLT) Version 2.0. Recommendation 2.0. World
Wide Web Consortium (W3C), Jan. 2007. url: http : / / www . w3 . org / TR /
xslt20/.

[44] W3C. XQuery, XPath, and XSLT Functions and Operators Namespace Docu-
ment. Technical Report. World Wide Web Consortium (W3C), Dec. 2011. url:
http://www.w3.org/2005/xpath-functions/.

[45] Unicode. The Unicode Standard. http://www.unicode.org/standard/versions/.
[46] W3C. Scalable Vector Graphics (SVG). Recommendation 1.1. World Wide Web

Consortium (W3C), Aug. 2011. url: http://www.w3.org/TR/wsdl/.
[47] W3C EXPath. EXPath Community Group. http://www.w3.org/community/expath/.
[48] W3C. XProc: An XML Pipeline Language. Recommendation 1.0. World Wide

Web Consortium (W3C), May 2010. url: http://www.w3.org/TR/xproc/.
[49] W3C EXPath. File Module. EXPath Candidate Module. EXPath Community

Group, June 2012. url: http://expath.org/spec/file.
[50] W3C EXPath. Geospatial API Module. EXPath Candidate Module. EXPath

Community Group, Sept. 2010. url: http://expath.org/spec/geo.
[51] W3C EXPath. Cryptographic Module. EXPath Candidate Module. EXPath Com-

munity Group, Aug. 2011. url: http://expath.org/spec/crypto.
[52] W3C EXPath. ZIP Module. EXPath Candidate Module. EXPath Community

Group, Oct. 2010. url: http://expath.org/spec/zip.
[53] W3C EXPath. HTTP Client Module. EXPath Candidate Module. EXPath Com-

munity Group, Jan. 2010. url: http://expath.org/spec/http-client.
[54] W3C EXPath. SQL Client Module. EXPath Candidate Module. EXPath Com-

munity Group, Sept. 2011. url: http://expath.org/spec/sql.
[55] W3C. XQuery 3.0: An XML Query Language. Working Draft 3.0. World Wide

Web Consortium (W3C), Dec. 2011. url: http://www.w3.org/TR/xquery-30/.
[56] Andrew Trotman and Richard A. O’Keefe. “he Simplest Query Language That

Could Possibly Work”. In: Proceedings of the Second international conference on
Initiative for the Evaluation of XML Retrieval (INEX 2003). Lecture Notes in
Computer Science. Berlin, Heidelberg, 2003, pp. 167–174.

[57] Paul Ogilvie. “Retrieval Using Structure for Question Answering”. In: First Twente
Data Management Workshop (TDM 2004) on XML Databases and Information
Retrieval. CTIT Workshop Proceedings Series. University of Twente, Enschede,
The Netherlands, 2004, pp. 17–25.

[58] Andrew Trotman and Börkur Sigurbjörnsson. “NEXI, Now and Next”. In: Ad-
vances in XML Information Retrieval. Vol. 3493. Lecture Notes in Computer
Science. Berlin, Heidelberg, 2005, pp. 41–53.

[59] W3C. XQuery/XPath FullText. Recommendation 1.0. World Wide Web Consor-
tium (W3C), Mar. 2011. url: www.w3.org/TR/xpath-full-text-10.

130

http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://www.w3.org/2005/xpath-functions/
http://www.w3.org/TR/wsdl/
http://www.w3.org/TR/xproc/
http://expath.org/spec/file
http://expath.org/spec/geo
http://expath.org/spec/crypto
http://expath.org/spec/zip
http://expath.org/spec/http-client
http://expath.org/spec/sql
http://www.w3.org/TR/xquery-30/
www.w3.org/TR/xpath-full-text-10

[60] W3C. XQuery and XPath Full Text requirements. Working Group Note. World
Wide Web Consortium (W3C), Jan. 2011. url: http://www.w3.org/TR/xpath-
full-text-10-requirements/.

[61] W3C. XQuery and XPath Full Text 1.0 Use Cases. Working Group Note. World
Wide Web Consortium (W3C), Jan. 2011. url: http://www.w3.org/TR/xpath-
full-text-10-use-case/.

[62] W3C. XQuery and XPath Full Text 1.0 Test Suite (XQFTTS). World Wide Web
Consortium (W3C), Dec. 2010. url: http://dev.w3.org/cvsweb/2007/xpath-
full-text-10-test-suite/.

[63] ISO. ISO/IEC 13249-2 Information technology - Database languages - SQL Mul-
timedia and Application Packages - Part 2: Full-Text, SQL/MM. Tech. rep. 2.0.
International Organization for Standardization (ISO), 2003.

[64] Daniela Florescu, Donald Kossmann, and Ioana Manolescu. “Integrating Key-
word Search into XML Query Processing”. In: Proceedings of the 9th Interna-
tional World Wide Web Conference on Computer Networks. Amsterdam, The
Netherlands, 2000, pp. 119–135.

[65] Taurai Tapiwa Chinenyanga and Nicholas Kushmerick. “Expressive Retrieval
from XML Documents”. In: Proceedings of the 24Th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. SIGIR
’01. New York, NY, USA, 2001, pp. 163–171.

[66] Anja Theobald and Gerhard Weikum. “Adding Relevance to XML”. In: Proceed-
ings of the Third International Workshop on the Web and Databases (WebDB).
Vol. 1997. Lecture Notes in Computer Science. 2000, pp. 105–124.

[67] Norbert Fuhr and Kai Großjohann. “XIRQL: A Query Language for Information
Retrieval in XML Documents”. In: Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). 2001, pp. 172–180.

[68] Shiem Amer-Yahia, Chavdar Botev, and Jayavel Shanmugasundaram. “Texquery:
a full-text search extension to xquery”. In: Proceedings of the 13th international
conference on World Wide Web. WWW ’04. New York, NY, USA, 2004, pp. 583–
594.

[69] W3C. XQuery 1.0 and XPath 2.0 Formal Semantics (Second Edition). Recom-
mendation 2.0. World Wide Web Consortium (W3C), Dec. 2010. url: http:
//www.w3.org/TR/xquery-semantics/.

[70] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. 1st ed. Cambridge University Press, 2008.

[71] Andrew Trotman. “Processing Structural Constraints”. In: Encyclopedia of Database
Systems. 2009, pp. 2191–2195.

[72] M. Hachicha and J. Darmont. “A Survey of XML Tree Patterns”. In: IEEE Trans-
actions on Knowledge and Data Engineering 25.1 (2013), pp. 29–46.

131

http://www.w3.org/TR/xpath-full-text-10-requirements/
http://www.w3.org/TR/xpath-full-text-10-requirements/
http://www.w3.org/TR/xpath-full-text-10-use-case/
http://www.w3.org/TR/xpath-full-text-10-use-case/
http://dev.w3.org/cvsweb/2007/xpath-full-text-10-test-suite/
http://dev.w3.org/cvsweb/2007/xpath-full-text-10-test-suite/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/

[73] Sergio Flesca, Filippo Furfaro, and Elio Masciari. “On the minimization of XPath
queries”. In: Proceedings of 29th International Conference on Very Large Data
Bases. VLDB ’03. 2003, pp. 153–164.

[74] Zhimin Chen, Laks V. S. Jagadish H. V.and Lakshmanan, and Stelios Paparizos.
“From Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation of
XQuery”. In: Proceedings of 29th International Conference on Very Large Data
Bases. VLDB ’03. 2003, pp. 237–248.

[75] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A Structured English
Query Language”. In: Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control. SIGFIDET ’74. New York,
NY, USA, 1974, pp. 249–264.

[76] Sandeepan Banerjee, Vishu Krishnamurthy, Muralidhar Krishnaprasad, and Ravi
Murthy. “Oracle8i-the XML enabled data management system”. In: Proceedings
of the 16th International Conference on Data Engineering. 2000, pp. 561–568.

[77] Zhen Hua Liu, Muralidhar Krishnaprasad, and Vikas Arora. “Native XQuery pro-
cessing in oracle XMLDB”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. SIGMOD Conference. 2005, pp. 828–833.

[78] Peter Boncz, Torsten Grust, Maurice Van Keulen, Stefan Manegold, Jan Rit-
tinger, and Jens Teubner. “MonetDB/XQuery: A Fast XQuery Processor Powered
by a Relational Engine”. In: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’06. New York, NY, USA, 2006,
pp. 479–490.

[79] Alin Deutsch, Mary Fernandez, and Dan Suciu. “Storing Semistructured Data
with STORED”. In: SIGMOD Rec. 28.2 (June 1999), pp. 431–442.

[80] Rebecca J. Cathey, Steven M. Beitzel, Eric C. Jensen, David Grossman, and
Ophir Frieder. “Using a Relational Database for Scalable XML Search”. In: The
Journal of Supercomputing 44.2 (May 2008), pp. 146–178.

[81] Sabine Mayer, Torsten Grust, Maurice Van Keulen, and Jens Teubner. “An In-
jection of Tree Awareness: Adding Staircase Join to PostgreSQL”. In: Proceedings
of the Thirtieth International Conference on Very Large Data Bases. VLDB ’04.
2004, pp. 1305–1308.

[82] Daniela Florescu and Donald Kossmann. “Storing and Querying XML Data using
an RDMBS”. In: Bulletin of the Technical Committee on Data Engineering 22.3
(1999), pp. 27–34.

[83] Daniela Florescu and Donald Kossmann. A Performance Evaluation of Alterna-
tive Mapping Schemes for Storing XML Data in a Relational Database. Technical
Report RR-3680. Projet RODIN. INRIA, 1999. url: http://hal.inria.fr/
inria-00072991.

132

http://hal.inria.fr/inria-00072991
http://hal.inria.fr/inria-00072991

[84] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. De-
Witt, and Jeffrey F. Naughton. “Relational Databases for Querying XML Docu-
ments: Limitations and Opportunities”. In: Proceedings of the 25th International
Conference on Very Large Data Bases. VLDB ’99. San Francisco, CA, USA, 1999,
pp. 302–314.

[85] Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and Moshe
Shadmon. “A Fast Index for Semistructured Data”. In: Proceedings of the 27th
International Conference on Very Large Data Bases. VLDB ’01. Rome, Italy,
2001, pp. 341–350.

[86] Qun Chen, Andrew Lim, and Kian Win Ong. “D(K)-index: An Adaptive Struc-
tural Summary for Graph-structured Data”. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’03. New
York, NY, USA, 2003, pp. 134–144.

[87] Radim Bača, Michal Krátký, and Václav Snášel. “On the Efficient Search of
an XML Twig Query in Large DataGuide Trees”. In: Proceedings of the 2008
International Symposium on Database Engineering & Applications. IDEAS
’08. New York, NY, USA, 2008, pp. 149–158.

[88] Roy Goldman and Jennifer Widom. “DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases”. In: Proceedings of the 23rd In-
ternational Conference on Very Large Data Bases. VLDB ’97. San Francisco, CA,
USA, 1997, pp. 436–445.

[89] Tova Milo and Dan Suciu. “Index Structures for Path Expressions”. In: Proceed-
ings of the 7th International Conference on Database Theory. ICDT ’99. London,
UK, UK, 1999, pp. 277–295.

[90] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. “Exploiting local similarity
for indexing paths in graph-structured data”. In: Proceedings of the 18th Inter-
national Conference on Data Engineering. 2002, pp. 129–140.

[91] Jan-Marco Bremer and Michael Gertz. An efficient XML node identification and
indexing scheme. Technical Report CSE-2003-04. Department of Computer Sci-
ence, University of California at Davis, 2003.

[92] Torsten Grust. “Accelerating XPath location steps”. In: Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data. SIGMOD ’02.
2002, pp. 109–120.

[93] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas,
and Divesh Srivastava. “Structural Joins: A Primitive for Efficient XML Query
Pattern Matching”. In: Proceedings of the 18th International Conference on Data
Engineering. ICDE ’02. San Jose, CA, USA, 2002, pp. 141–152.

[94] Torsten Grust, Maurice van Keulen, and Jens Teubner. “Staircase Join: Teach
a Relational DBMS to Watch Its (Axis) Steps”. In: Proceedings of the 29th In-
ternational Conference on Very Large Data Bases. Vol. 29. VLDB ’03. Berlin,
Germany, 2003, pp. 524–535.

133

[95] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and Carlo
Zaniolo. “Efficient structural joins on indexed XML documents”. In: Proceedings
of the 28th international conference on Very Large Data Bases. VLDB ’02. Hong
Kong, China, 2002, pp. 263–274.

[96] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng-Chin Ooi. “XR-tree: indexing
XML data for efficient structural joins”. In: Data Engineering, 2003. Proceedings.
19th International Conference on. 2003, pp. 253–264.

[97] Jiaheng Lu, Tok Wang Ling, Chee-Yong Chan, and Ting Chen. “From Region
Encoding to Extended Dewey: On Efficient Processing of XML Twig Pattern
Matching”. In: Proceedings of the 31st International Conference on Very Large
Data Bases. VLDB ’05. Trondheim, Norway, 2005, pp. 193–204.

[98] Gang Gou and Rada Chirkova. “Efficiently Querying Large XML Data Repos-
itories: A Survey”. In: IEEE Transactions on Knowledge and Data Engineering
19.10 (2007), pp. 1381–1403.

[99] Christoph Koch. “Processing queries on tree-structured data efficiently”. In: Pro-
ceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems. Chicago, Illinois, USA, 2006, pp. 213–224.

[100] Georg Gottlob, Christoph Koch, and Reinhard Pichler. “Efficient algorithms for
processing XPath queries”. In: Proceedings of the 28th international conference
on Very Large Data Bases. VLDB ’02. Hong Kong, China, 2002, pp. 95–106.

[101] Philip Wadler. Two semantics of XPath. http://homepages.inf.ed.ac.uk/wadler/
papers/xpath-semantics/xpath-semantics.pdf. 2000.

[102] Philip Wadler. “A formal semantics of patterns in XSLT”. In: Markup Technolo-
gies. 2000, pp. 183–202.

[103] Georg Gottlob, Christoph Koch, Reinhard Pichler, and Luc Segoufin. “The Com-
plexity of XPath Query Evaluation and XML Typing”. In: Journal of ACM 52.2
(Mar. 2005), pp. 284–335.

[104] Mary Fernandez, Jerome Simeon, and Philip Wadler. “An Algebra for XML
Query”. In: FST TCS 2000: Foundations of Software Technology and Theoretical
Computer Science. Vol. 1974. Lecture Notes in Computer Science. 2000, pp. 11–
45.

[105] H.V. Jagadish, LaksV.S. Lakshmanan, Divesh Srivastava, and Keith Thomp-
son. “TAX: A Tree Algebra for XML”. In: Database Programming Languages.
Vol. 2397. Lecture Notes in Computer Science. 2002, pp. 149–164.

[106] Stelios Paparizos and H.V. Jagadish. “The Importance of Algebra for XML Query
Processing”. In: Current Trends in Database Technology – EDBT 2006. Vol. 4254.
Lecture Notes in Computer Science. 2006, pp. 126–135.

[107] H.V. Jagadish et al. “TIMBER: A native XML database”. In: The VLDB Journal
11.4 (2002), pp. 274–291.

134

[108] Wolfgang Meier. “eXist: An Open Source Native XML Database”. In: Web, Web-
Services, and Database Systems. Vol. 2593. Lecture Notes in Computer Science.
2003, pp. 169–183.

[109] Christian Grün, Alexander Holupirek, Marc Kramis, Marc H. Scholl, and Marcel
Waldvogel. “Pushing XPath Accelerator to its Limits”. In: Proceedings of the First
International Workshop on Performance and Evaluation of Data Management
Systems. ExpDB ’06. 2006.

[110] Robert W.P. Luk, H.V. Leong, Tharam S. Dillon, Alvin T.S. Chan, W. Bruce
Croft, and James Allan. “A survey in indexing and searching XML documents”.
In: Journal of the American Society for Information Science and Technology.
JASIST ’02 53.6 (2002), pp. 415–437.

[111] Rajasekar Krishnamurthy, Raghav Kaushik, and JeffreyF. Naughton. “XML-to-
SQL Query Translation Literature: The State of the Art and Open Problems”. In:
Database and XML Technologies. Vol. 2824. Lecture Notes in Computer Science.
2003, pp. 1–18.

[112] Su-Cheng Haw and Chien-Sing Lee. “Evolution of Structural Path Indexing Tech-
niques in XML Databases: A Survey and Open Discussion”. In: Proceedings of the
10th International Conference on Advanced Communication Technology. Vol. 3.
ICACT ’08. 2008, pp. 2054–2059.

[113] Mounia Lalmas. XML retrieval. San Rafael, California: Morgan & Claypool Pub-
lishers, 2009. isbn: 9781598297874 1598297872 1598297864 9781598297867. url:
http://www.morganclaypool.com/doi/abs/10.2200/S00203ED1V01Y200907ICR007
(visited on 09/19/2013).

[114] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval:
the concepts and technology behind search. Second. New York: Addison Wesley,
2011. isbn: 9780321416919-0321416910.

[115] Proceedings of the First Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX). Schloss Dagstuhl, Germany, 2002.

[116] Michael A. Bender and Martín Farach-Colton. “The LCA Problem Revisited”.
In: LATIN 2000: Theoretical Informatics. Vol. 1776. Lecture Notes in Computer
Science. 2000, pp. 88–94.

[117] Dov Harel and Robert Andre Tarjan. “Fast Algorithms for Finding Nearest Com-
mon Ancestors”. In: SIAM Journal on Computing 13.2 (1984), pp. 338–355.
eprint: http://epubs.siam.org/doi/pdf/10.1137/0213024.

[118] Michael A. Bender, Martín Farach-Colton, Giridhar Pemmasani, Steven Skiena,
and Pavel Sumazin. “Lowest common ancestors in trees and directed acyclic
graphs”. In: Journal of Algorithms 57.2 (2005), pp. 75–94.

[119] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv. “XSEarch:
A Semantic Search Engine for XML”. In: Proceedings of the 29th International
Conference on Very Large Data Bases. Vol. 29. VLDB ’03. Berlin, Germany, 2003,
pp. 45–56.

135

http://www.morganclaypool.com/doi/abs/10.2200/S00203ED1V01Y200907ICR007
http://epubs.siam.org/doi/pdf/10.1137/0213024

[120] Guoliang Li, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. “Effective Keyword
Search for Valuable LCAS over XML Documents”. In: Proceedings of the Sixteenth
ACM Conference on Conference on Information and Knowledge Management.
CIKM ’07. New York, NY, USA, 2007, pp. 31–40.

[121] Michal Cutler, Yungming Shih, and Weiyi Meng. “Using the structure of HTML
documents to improve retrieval”. In: Proceedings of the USENIX Symposium on
Internet Technologies and Systems on USENIX Symposium on Internet Tech-
nologies and Systems. USITS’97. Berkeley, CA, USA, 1997, pp. 22–22.

[122] Andrew Trotman and Mounia Lalmas. “The Interpretation of CAS”. In: Advances
in XML Information Retrieval and Evaluation. Vol. 3977. Lecture Notes in Com-
puter Science. 2006, pp. 58–71.

[123] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. “TopX and XXL at INEX
2005”. In: Advances in XML Information Retrieval and Evaluation. Vol. 3977.
Lecture Notes in Computer Science. 2006, pp. 282–295.

[124] Torsten Schlieder. “Schema-Driven Evaluation of Approximate Tree-Pattern Queries”.
In: Advances in Database Technology — EDBT 2002. Vol. 2287. Lecture Notes
in Computer Science. 2002, pp. 514–532.

[125] David Carmel, Yoelle S. Maarek, Matan Mandelbrod, Yosi Mass, and Aya Soffer.
“Searching XML Documents via XML Fragments”. In: Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and Development in
Informaion Retrieval. SIGIR ’03. New York, NY, USA, 2003, pp. 151–158.

[126] Sihem Amer-Yahia, Nick Koudas, Amélie Marian, Divesh Srivastava, and David
Toman. “Structure and Content Scoring for XML”. In: Proceedings of the 31st
International Conference on Very Large Data Bases. VLDB ’05. Trondheim, Nor-
way, 2005, pp. 361–372.

[127] Amelie Marian, Sihem Amer-Yahia, Nick Koudas, and Divesh Srivastava. “Adap-
tive Processing of Top-k Queries in XML”. In: Proceedings of the 21st Interna-
tional Conference on Data Engineering. ICDE ’05. Washington, DC, USA, 2005,
pp. 162–173.

[128] Karen Sauvagnat, Lobna Hlaoua, and Mohand Boughanem. “XFIRM at INEX
2005: Ad-Hoc and Relevance Feedback Tracks”. In: Advances in XML Information
Retrieval and Evaluation. Vol. 3977. Lecture Notes in Computer Science. 2006,
pp. 88–103.

[129] Ernesto Damiani et al. “The APPROXML Tool Demonstration”. In: Proceedings
of the 8th International Conference on Extending Database Technology: Advances
in Database Technology. EDBT ’02. London, UK, UK, 2002, pp. 753–755.

[130] Andrew Nierman and H. V. Jagadish. “Evaluating Structural Similarity in XML
Documents”. In: Proceedings of the Fifth International Workshop on the Web and
Databases. WebDB ’02. Madison, Wisconsin, USA, 2002, pp. 61–66.

136

[131] Cyril Laitang, Karen Pinel-Sauvagnat, and Mohand Boughanem. “DTD Based
Costs for Tree-Edit Distance in Structured Information Retrieval”. In: Proceedings
of the 35th European Conference on Advances in Information Retrieval (ECIR).
Lecture Notes in Computer Science. 2013, pp. 158–170.

[132] Bettina Fazzinga, Sergio Flesca, and Andrea Pugliese. “Retrieving XML data
from heterogeneous sources through vague querying”. In: ACM Transactions on
Internet Technology. TOIT ’09 9.2 (2009).

[133] Bettina Fazzinga, Sergio Flesca, and Filippo Furfaro. “XPath Query Relaxation
through Rewriting Rules”. In: IEEE Transactions on Knowledge and Data Engi-
neering 23.10 (2011), pp. 1583–1600.

[134] Giacomo Buratti and Danilo Montesi. “Ranking for Approximated XQuery Full-
Text Queries”. In: Sharing Data, Information and Knowledge. Vol. 5071. Lecture
Notes in Computer Science. 2008, pp. 165–176.

[135] V.I. Levenshtein. “Binary Codes Capable of Correcting Deletions, Insertions and
Reversals”. In: Soviet Physics Doklady 10 (1966), pp. 707–710.

[136] Joe Tekli and Richard Chbeir. “A novel XML document structure comparison
framework based-on sub-tree commonalities and label semantics”. In: Web Se-
mantics 11 (Mar. 2012), pp. 14–40.

[137] Mirjana Mazuran, Elisa Quintarelli, and Letizia Tanca. “Data Mining for XML
Query-Answering Support”. In: IEEE Transactions on Knowledge and Data En-
gineering 24.8 (2012), pp. 1393–1407.

[138] Ermelinda Oro, Massimo Ruffolo, and Steffen Staab. “SXPath: extending XPath
towards spatial querying on web documents”. In: Proceedings of the Very Large
Data Bases Endowment 4.2 (Nov. 2010), pp. 129–140.

[139] Shuohao Zhang and Curtis Dyreson. “Symmetrically Exploiting XML”. In: Pro-
ceedings of the 15th International Conference on World Wide Web. WWW ’06.
New York, NY, USA, 2006, pp. 103–111.

[140] Sourav S. Bhowmick, Curtis Dyreson, Erwin Leonardi, and Zhifeng Ng. “Towards
Non-directional Xpath Evaluation in a RDBMS”. In: Proceedings of the 18th ACM
Conference on Information and Knowledge Management. CIKM ’09. New York,
NY, USA, 2009, pp. 1501–1504.

[141] Ernesto Damiani, Stefania Marrara, and Gabriella Pasi. “A Flexible Extension
of XPath to Improve XML Querying”. In: Proceedings of the 31st Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’08. New York, NY, USA, 2008, pp. 849–850.

[142] Emanuele Panzeri and Gabriella Pasi. “An Approach to Define Flexible Structural
Constraints in XQuery”. In: Proceedings of the 8th International Conference on
Active Media Technology (AMT). Vol. 7669. Lecture Notes in Computer Science.
2012, pp. 307–317.

137

[143] Cong Yu and H. V. Jagadish. “Querying complex structured databases”. In: Pro-
ceedings of the 33rd international conference on Very large data bases. VLDB ’07.
Vienna, Austria, 2007, pp. 1010–1021.

[144] Alessandro Campi, Ernesto Damiani, Sam Guinea, Stefania Marrara, Gabriella
Pasi, and Paola Spoletini. “A fuzzy extension of the XPath query language”. In:
Journal of Intelligent Information Systems 33.3 (Dec. 2009), pp. 285–305.

[145] Jan-Marco Bremer and Michael Gertz. “Integrating document and data retrieval
based on XML”. In: The VLDB Journal 15.1 (Jan. 2006), pp. 53–83.

[146] Jan-Marco Bremer and Michael Gertz. “XQuery/IR: Integrating XML Document
and Data Retrieval”. In: Proceedings of the Fifth International Workshop on the
Web and Databases. WebDB ’02. Madison, Wisconsin, USA, 2002, pp. 1–6.

[147] Stefan Klinger. “Pathfinder - Full Text or Extending a Purely Relational XQuery
Compiler with a Scoring Infrastructure for XQuery Full Text”. PhD thesis. 2010.

[148] Donald E. Knuth. The art of Computer Programming, Volume 1: Foundametal
Algorithms. Addison-Wesley, 1997. isbn: 0201896834 9780201896831 0201485419
9780201485417 0201038099 9780201038095.

[149] Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon, and P. Bruce Berra. “Index
Structures for Structured Documents”. In: Proceedings of the First ACM Inter-
national Conference on Digital Libraries. DL ’96. New York, NY, USA, 1996,
pp. 91–99.

[150] Apache Software Foundation. Apache Lucene: a high-performance, full-featured
text search engine library. http://lucene.apache.org/.

[151] Christian Grün, Sebastian Gath, Alexander Holupirek, and Marc H. Scholl. “XQuery
Full Text Implementation in BaseX”. In: Proceedings of the 6th International
XML Database Symposium on Database and XML Technologies (XSym 2009).
Vol. 5679. Lecture Notes in Computer Science. Lyon, France, 2009, pp. 114–128.

[152] Christian Grün. “Storing and querying large XML instances”. PhD thesis. Uni-
versität Konstanz, Dec. 2010.

[153] Roger Bamford et al. “XQuery Reloaded”. In: Proceedings of the 35rd Interna-
tional Conference on Very Large Data Bases. VLDB ’09 2.2 (2009), pp. 1342–
1353.

[154] ECMA International. JSON (JavaScript Object Notation, Standard ECMA-262.
Technical Report 3rd edition. European Association for Standardizing Informa-
tion and Communication Systems, 2011. url: http://www.json.org.

[155] Daniela Florescu and Ghislain Fourny. “JSONiq: The History of a Query Lan-
guage”. In: IEEE Internet Computing 17.5 (2013), pp. 86–90.

[156] MXQuery. MXQuery (MicroXQuery): A lightweight, full-featured XQuery En-
gine. http://mxquery.org/.

[157] MXQuery. MXQuery (MicroXQuery): A lightweight, full-featured XQuery En-
gine. http://acs.lbl.gov/software/nux/.

138

http://www.json.org

[158] P.M. Fischer and J. Teubner. “MXQuery with Hardware Acceleration”. In: Data
Engineering (ICDE), 2012 IEEE 28th International Conference on. 2012, pp. 1293–
1296.

[159] W3C. XQuery Scripting Extension 1.0. Working Draft. World Wide Web Con-
sortium (W3C), Apr. 2010. url: http://www.w3.org/TR/xquery-sx-10/.

[160] W3C. XQuery and XPath Full Text 1.0 Test Suite Result Summary. Technical
Report. World Wide Web Consortium (W3C), Jan. 2011. url: http://dev.
w3.org/2007/xpath-full-text-10-test-suite/PublicPagesStagingArea/
ReportedResults/XQFTTSReport.html.

[161] Peter M. Fischer. “XQBench - A XQuery Benchmarking Service”. In: Proceedings
of the international conference XML Prague 2010. XML PRague 2010. Prague,
Czech Republic, 2010, pp. 341–355.

[162] Martin Kaufmann, Peter M. Fischer, Donald Kossmann, and Norman May. “A
generic database benchmarking service”. In: Proceedings of the 29th IEEE Inter-
national Conference on Data Engineering (ICDE). 2013, pp. 1276–1279.

[163] Emanuele Panzeri and Gabriella Pasi. “Flex-BaseX: An XML engine with a flex-
ible extension of XQuery Full-Text”. In: Proceedings of the 36th international
ACM SIGIR conference on Research and development in Information Retrieval
(SIGIR). 2013.

[164] Silvia Calegari, Emanuele Panzeri, and Gabriella Pasi. “PatentLight: A Patent
Search Application”. In: Proceedings of the 4th Information Interaction in Context
Symposium (IIIX). Nijmegen, The Netherlands, 2012, pp. 242–245.

[165] Hideo Joho, Leif A. Azzopardi, and Wim Vanderbauwhede. “A survey of patent
users: an analysis of tasks, behavior, search functionality and system require-
ments”. In: Proceedings of the third symposium on Information interaction in
context,IIiX ’10. IIiX ’10. New Brunswick, New Jersey, USA, 2010, pp. 13–24.

[166] Vagelis Hristidis, Eduardo Ruiz, Alejandro Hernández, Fernando Farfán, and Ra-
makrishna Varadarajan. “Patentssearcher: a novel portal to search and explore
patents”. In: Proceedings of the 3rd international workshop on Patent information
retrieval. PaIR ’10. Toronto, ON, Canada, 2010, pp. 33–38.

[167] Hisao Mase, Tadataka Matsubayashi, Yuichi Ogawa, Makoto Iwayama, and Tadaaki
Oshio. “Proposal of two-stage patent retrieval method considering the claim struc-
ture”. In: 4.2 (June 2005), pp. 190–206.

[168] Xiaobing Xue and W. Bruce Croft. “Automatic query generation for patent
search”. In: Proceedings of the 18th ACM conference on Information and knowl-
edge management. CIKM ’09. Hong Kong, China, 2009, pp. 2037–2040.

139

http://www.w3.org/TR/xquery-sx-10/
http://dev.w3.org/2007/xpath-full-text-10-test-suite/PublicPagesStagingArea/ReportedResults/XQFTTSReport.html
http://dev.w3.org/2007/xpath-full-text-10-test-suite/PublicPagesStagingArea/ReportedResults/XQFTTSReport.html
http://dev.w3.org/2007/xpath-full-text-10-test-suite/PublicPagesStagingArea/ReportedResults/XQFTTSReport.html

	Abstract
	Introduction
	Motivations
	Contributions
	Structure of the Thesis

	XML and XML Querying
	XML
	XML Elements and Comments
	XML prolog, Declaration and Processing Instructions
	Well-formed and Valid XML Documents
	Document Type Definition (DTDs)
	XML Document Example
	Summary

	Querying XML documents
	The XPath language
	The XPath Data Model
	XPath Expressions
	XPath Axes
	XPath Node Test
	XPath Predicates
	XPath Functions
	Summary

	The XQuery language
	XQuery 1.0 (and XPath 2.0) Data Model (XDM)
	XQuery Expressions
	XQuery functions
	XQuery 1.0 (and XPath 2.0) extensions
	Summary

	The NEXI query language

	The XPath/XQuery Full-Text extensions
	Introduction
	Full-Text contains expression

	Syntax
	Connectives
	Containment, Cardinality and Positional conditions
	Matching options

	The Relevance Score computation

	Vagueness in querying the XML structure
	Introduction
	Approaches to exact structural matching
	Approximate structural matching
	Information Retrieval approaches to query XML documents
	Vagueness in structural matching evaluation
	User-based vagueness evaluations

	Summary

	FleXy: The XQuery Full-Text extension
	Motivations
	FleXy flexible axes
	The ``below" axis
	The ``near" axis

	The FleXy Syntax
	Axes Syntax
	The Structural Score Variable

	The FleXy Semantics
	Core XPath semantics
	The ``below'' axis semantics
	The ``near'' axis semantics
	The Score semantics

	The FleXy axes evaluations
	The ``below" constraint evaluation function
	The ``near" constraint evaluation function
	Flexible constraints aggregation

	Implementation
	A preliminary FleXy implementation: multi-minPID
	Introduction
	Flexy on top of XQuery/IR
	Summary

	XQuery engines analysis
	MonetDB/XQuery
	eXist-db Engine
	BaseX
	Zorba
	Other XQuery engines with Full-Text
	MXQuery
	Nux query engine

	XQuery and XQuery Full-Text engines comparison

	FleXy implementation in BaseX
	BaseX Overview
	BaseX Data Structures
	FleXy Integration
	Language Interpreter Extension

	The Below Axis
	The Above axis
	The Near axis

	Evaluations and FleXy User-Case
	Evaluations
	Environment
	Data Collections
	The Below evaluation
	The near Evaluation
	Conclusions

	FleXy use-case: the PatentLigth application
	Introduction
	Related Works
	The PatentLight tool
	Conclusions

	Conclusions
	Publications
	Bibliography

