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Chromosome instability for tumor progression inference
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Motivation and Objectives
The development and progression of Colorectal 
Cancer (CRC) - as for most other solid cancers, 
is a multi-step process leading to the accumu-
lation of chromosomal instability (CIN) that oc-
curs over the lifetime of a tumor (Shen et al, 2007; 
Vogelstein et al, 1988; Fearon et al, 1990). CINs 
include DNA copy number alterations (CNAs), 
i.e., regions of aberrantly increased or decreased 
DNA. For this reason, it is a challenge to identify 
both the regions that have CNAs and the genes 
whose expression could be deregulated (i.e., in-
creased or decreased) because of gain or loss 
of their copies. 

In this paper we focus on the role of copy 
number alteration in assessing prognosis of pa-
tients with CRC. Specifically, we show that the 
inference of the CRC progression benefits from 
exploiting CNA information when a particular re-
lational representation of patients is given. The 
employed framework outperforms standard ap-
proaches where patients are represented through 
a set of available attributes. Documentation and 
software are available at http://bimib.disco.un-
imib.it/people/claudia.cava/soft. The data set 
for this analysis was provided by IRCCS Istituto 
Nazionale dei Tumori Milano (INT) and deposited 
at NCBI Gene Expression Omnibus (GSE16125).

Methods
Tissue specimens from 53 consecutive sporadic 
CRCs were obtained from previously untreated 
patients lacking family history and high-frequency 
microsatellite instability (MSI) who underwent sur-
gical resection at the “Fondazione IRCCS Istituto 
Nazionale dei Tumori” (INT) Milano, between 1998 
and 2000. After surgery all patients continued to 
be treated in INT, where their clinical course was 
constantly recorded. Tumor specimens contain-
ing more than 70% neoplastic cells and their 
surrounding normal mucosa were selected by 

an experienced pathologist from cryopreserved 
tissue and used in a previous study of genetic 
features associated to colorectal carcinogen-
esis (Frattini et al, 2004). Microarray production 
was done following standard protocols by AROS 
Applied Biotechnology AS (Aarhus, Denmark). 
51 DNA samples were hybridized to Affymetrix 
GeneChipVR Human Mapping 250K NspI (SNP 
arrays). Raw intensity CEL files of the SNP arrays 
were processed with CNAG program v.2.0 (Copy-
Number Analysis for Affymetrix GeneChips; Santa 
Clara, CA (Nannya et al, 2005) to detect chro-
mosomal CNAs . Some samples were excluded 
due to poor quality hybridizations and unknown 
stage tumor progression (Reid et al, 2009). Also, 
stage-I patients were excluded because of the 
lack of instances in the considered data set. The 
selected cohort can be finally summarized as 
follows: 10 type-II patients, 10 type-III patients 
and 23 type-IV patients.

In order to quantify relationships between 
patients expressing the CCR progression, we 
first define a dissimilarity function over both an 
“advanced-stage” patient group and a specific 
“representative” base group e.g., patients with 
the lowest stage (“prototype”), then we classify 
patients according to the induced representa-
tions. In other words, the considered dissimilarity 
values quantify, by construction, subject differ-
ences due to different CNA information belong-
ing to each subject. While in a “standard” case-
control classification subjects are discriminated 
on its own set of attribute values, the dissimilarity 
function D(fx, fy) is given through an estimation of 
the difference between the obtained CNA mean 
value frequency distributions fx and fy. In order to 
give a definition for D which can express dissimi-
larity between any pair of patients x and y (based 
on the CNA mean value frequency distribution 
fx and fy), we employ the symmetrised Kullback-
Leibler (KL) divergence (Cover et al, 1991) be-
tween any pair of distribution fx and fy.



98 PostErs EMBnet.journal 18.B

Results and Discussion
The first issue of our investigation was to check 
the capability, for a given standard approach, 
of distinguishing patient groups. For this, we 
considered the following case - control study: (i) 
stage II (as control group) vs stage III (as case 
group); (ii) stage III (as control group) vs stage IV 
(as case group); (iii) stage II (as control group) vs 
stage IV (as case group). 

All our evaluations employ a class of algo-
rithms widely used in the machine learning 
community (i.e., the Support Vector Machine 
(Cristianini et al, 2000) within a k-fold cross-vali-
dation process. For the “standard” case, SVMs 
are given (input) matrices where patients are 
represented through the sequence of chromo-
somes as attributes, and each i-th component 
of the sequence is given by the CNA mean val-
ue associated to the chromosome i. Moreover, 
all experiments are evaluated by standard in-
dices which are broadly applied in this context 
to measure the precision and recall capability 
of an inference system; i.e., sensitivity, specific-
ity, positive (PPV) and negative predictive values 
(NPV), see for example (Davis et al, 2006). Table 
1a) shows the performances when the classifiers 
are applied to the standard representations as 
discussed above. The standard approach is not 
able to discriminate both stage III from stage-
IV patients (20% specificity) and stage II from 
stage-IV patients (30% specificity). On this basis, 
we used CNAs information to represent patients 
through dissimilarities as reported above. Table 
1b) reports the inference performance when the 
dissimilarity representation is applied. We ob-
tained substantially better accuracies reporting 
higher values of performances (>=80%) for the 
whole set of the applied indices.

We showed that even a prediction analysis, 
concerning the progression of CRC, as charac-
terized by the given staging classification system 
(Duke), benefits from exploiting CNA informa-
tion when a specific representation of patients 
is considered. We point out that, in this work, the 
choice of a dissimilarity representation (i.e., the KL-
divergence) has been addressed to obtain a func-
tion providing an estimation of the difference be-
tween the obtained CNA mean value frequency 
distributions for each pair of patients. More specific 
measures may be tested in future analysis.

Interesting questions on these arguments are 
reported in (Pekalska et al, 2005). Also the choice 
of a correct prototype set can be critical in this 
approach, and may change the results being 
investigated. This is another question which we 
are immediately interested for future analysis. 
Here we did not study the best possible proto-
type set, instead, the rationale for our choice 
was simply to employ a group of patients with a 
presumably low number of accumulated altera-
tions. Numerical experiments indicate that the 
application of the applied representation for the 
considered data provide high precision and re-
call performances outperforming typical stand-
ard approaches where patients are represented 
through their set of available attributes. These re-
sults clearly suggest broader investigations either 
on different data sets or different CRC staging 
classification systems (Horton et al, 2005).
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