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Abstract. In this paper we study the asymptotic behavior of solutions to an elliptic equation
near the singularity of an inverse square potential with a coefficient related to the best constant

for the Hardy inequality. Due to the presence of a borderline Hardy potential, a proper variational

setting has to be introduced in order to provide a weak formulation of the equation. An Almgren-
type monotonicity formula is used to determine the exact asymptotic behavior of solutions.

1. Introduction

On a domain Ω ⊆ RN , N > 3, containing the origin, let us consider the following problem

(1) −∆u−
(
N − 2

2

)2
u

|x|2
= h(x)u+ f(x, u), in Ω,

where h is possibly singular at the origin but negligible with respect to the Hardy potential and f
is a nonlinearity subcritical with respect to the critical Sobolev exponent. Looking at equation (1),
one may observe that the best constant for the classical Hardy inequality appears in front of the
inverse square potential; this can be considered as a borderline situation for several points of view,
from the variational setting to the existence and qualitative behavior of solutions. Recent papers
were devoted to equations and differential inequalities involving elliptic operators with inverse
square potentials in the borderline situation, see [5, 11, 12, 13, 20, 28, 29].

In [13] the authors study necessary conditions for the existence of nonnegative distributional
solutions of the differential inequality

−∆u−
(
N − 2

2

)2
u

|x|2
> α

u

|x|2 log2 |x|
in D′(BR \ {0}),

where BR denotes the ball of radius R centered at the origin. The logarithmic term appearing
in the above inequality is related to an improved version of the Hardy inequality, see for example
[1, 3, 10, 22].

In [11], the author studies existence of positive distributional solutions of the nonlinear elliptic
equation

−∆u− λ u

|x|2
+ b(x)h(u) = 0 in Ω \ {0},
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satisfying some prescribed asymptotic behaviors at the origin, where Ω ⊂ RN , N > 3 is a domain
containing the origin and λ ∈ (−∞, (N−2)2/4]. These prescribed asymptotic behaviors are related
to the following functions

Φ+
λ (x) = |x|−

N−2
2 −

√
(N−2)2

4 −λ, Φ−λ (x) = |x|−
N−2

2 +

√
(N−2)2

4 −λ,

Ψ+(x) = |x|−
N−2

2 log(1/|x|), Ψ−(x) = |x|−
N−2

2

which are solutions to

−∆u− λ u

|x|2
= 0 in RN \ {0}

respectively in the cases λ ∈ (−∞, (N − 2)2/4) and λ = (N − 2)2/4. Similar results were obtained
in [4] for equations with elliptic operators in divergence form. The analysis performed in [11]
highlights how the asymptotics at the isolated singularity of positive solutions is sensitive to the
interplay of many factors, such as the space dimension, the mass of the singularity, the behavior
of the nonlinearity and of its coefficient. The present paper means to provide a classification of
the behavior at the singularity of all (not only positive) finite energy solutions and to relate such
behavior to the limit of an Almgren type frequency function.

In [12] the author studies a singular elliptic Dirichlet problem with a power type nonlinearity
and a forcing term:

(2)


−∆u− c

|x|2
u = up + tf in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN , N > 3, is a domain containing the origin, p > 1, t > 0, f a smooth, bounded,
nonnegative function, and c ∈ (0, (N−2)2/4]. In [12], the author provides a classification of different
kind of solutions of problem (2), both of distributional and variational type. In the present paper,
we are going to introduce an analogous terminology for solutions to (1), a classification of which
will be provided as a byproduct of our main result, see section 2 for details. In particular, in [12]
three types of solution are defined and discussed: weak solutions, which provide a good setting
for proving non-existence results, H1

0 –solutions, for which uniqueness results can be established,
and strong solutions, which have the optimal regularity. The classification of solutions proposed
in [12] motivates the study of the relation between the different kinds of solutions performed in
the present paper: a deeper knowledge of the link between the different notions of solutions allows
drawing a more complete picture on existence, non-existence, and regularity.

We also mention that, in [5] the authors study existence and nonexistence of solutions of the
equation in (2) with t = 0.

In the spirit of [12], in the present paper we concentrate our attention on local solutions to (1)
belonging to a suitable functional space related to the borderline case of the Hardy inequality. To
this purpose, in section 2 we introduce the Hilbert space H(ω) defined as completion of C∞c (ω\{0})
with respect to a scalar product related to the Hardy potential appearing in (1) (see (4)). Here ω
represents a bounded domain with ∂ω ∈ C1.

The purpose of this paper is to classify the possible asymptotic behaviors of solutions to (1) near
the singularity of the Hardy potential. Some results in this direction were obtained in [14, 15, 16, 17]
for different kinds of problems: in [15, 17] Schrödinger equations with electromagnetic potentials, in
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[16] Schrödinger equations with inverse square many-particle potentials; finally in [14] the authors
study the asymptotic behavior of solutions of a singular elliptic equation near a corner of the
boundary. For other results concerning elliptic equations with singular inverse square potentials
see also [18, 19, 23, 24, 27].

The results of the present paper are closely related to the ones obtained in [15, 17]. If we drop
the magnetic part of the electromagnetic potential, the equation studied in [15, 17] becomes

(3) −∆u− a(x/|x|)
|x|2

u = h(x)u+ f(x, u) in Ω,

where a ∈ L∞(SN−1). In [15, 17] the quadratic form associated to the linear operator −∆− a(x/|x|)
|x|2

is assumed to satisfy a coercivity type condition. More precisely, it is required that the first

eigenvalue µ1(0, a) of the spherical operator −∆SN−1 − a(θ) satisfies µ1(0, a) > −
(
N−2

2

)2
.

Due to this coercivity, it was quite natural in that setting looking for H1-solutions to (3), i.e.
functions u ∈ H1(Ω) satisfying (3) in a variational sense, whereas, in the borderline situation
considered in the present paper, it is reasonable to replace the classical H1 Sobolev space with the
above mentioned H space.

In the proof of our main result (Theorem 2.1 below) we perform an Almgren-type monotonic-
ity procedure (see [2, 21]) and provide a characterization of the leading term in the asymptotic
expansion by means of a Cauchy’s integral type representation formula.

As an application of the main result, we also prove an a priori estimate and a unique continuation
principle for solutions to (1); see [25] for questions related to unique continuation principles for
elliptic equations with singular potentials.

This paper is organized as follows. In Section 2 we introduce the assumptions of the main
result and explain in details what we mean by a H-solution of (1). In Section 3 we describe the
main properties of the space H, while in Section 4 we reformulate (1) in cylindrical variables,
introducing an auxiliary equation in a cylinder of RN+1. In Section 5 we study the Almgren-type
function associated to the problem, which is combined in Section 6 with a blow-up argument to
characterize the leading term in the asymptotic expansion of solutions of (1) near the origin, thus
proving the main theorem.

2. Assumptions and main results

We first introduce the assumptions on the potential h and the nonlinearity f . We assume that
h satisfies

(H) h ∈ L∞loc(Ω \ {0}), |h(x)| 6 Ch|x|−2+ε in Ω \ {0} for some Ch > 0 and ε > 0.

It is not restrictive to assume that ε ∈ (0, 2). Let f satisfy

(F)

{
f ∈ C0(Ω× R), F ∈ C1(Ω× R), s 7→ f(x, s) ∈ C1(R) for a.e. x ∈ Ω,

|f(x, s)s|+ |f ′s(x, s)s2|+ |∇xF (x, s) · x| 6 Cf (|s|2 + |s|p) for a.e. x ∈ Ω and all s ∈ R,

where F (x, s) =
∫ s

0
f(x, t) dt, 2 < p < 2∗ = 2N

N−2 , Cf > 0 is a constant independent of x ∈ Ω and

s ∈ R, and f ′s(x, s) = ∂f
∂s (x, s).

In order to state the main result of this paper, a suitable variational formulation for solutions
of (1) has to be introduced (see also [12, 20, 29]). For any bounded domain ω ⊂ RN containing
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the origin and satisfying ∂ω ∈ C1, let us define H(ω) as the completion of the space C∞c (ω \ {0})
with respect to the scalar product

(u, v)H(ω) :=

∫
ω

∇u(x) · ∇v(x) dx−
(
N − 2

2

)2 ∫
ω

u(x)v(x)

|x|2
dx(4)

+

∫
ω

u(x)v(x) dx+
N − 2

2

∫
∂ω

u(x)v(x)

|x|2
(x · ν(x)) dS, u, v ∈ C∞c (ω \ {0}).

The form in (4) is actually a scalar product on C∞c (ω \ {0}) as detailed in Section 3.
For any domain Ω ⊆ RN satisfying 0 ∈ Ω (with ∂Ω not necessarily in C1), we define the space

Hloc(Ω) as the space of functions u ∈ H1
loc(Ω \ {0}) such that u|ω ∈ H(ω) for any domain ω b Ω

with ∂ω ∈ C1.
We are ready to provide a rigorous definition for solutions to (1). Let h, f satisfy respectively

(H) and (F): by a solution of (1) we mean a function u ∈ Hloc(Ω) such that

(5)

∫
Ω

∇u(x) · ∇ϕ(x) dx−
(
N − 2

2

)2 ∫
Ω

u(x)

|x|2
ϕ(x) dx =

∫
Ω

(
h(x)u(x) + f(x, u(x))

)
ϕ(x) dx

for any ϕ ∈ C∞c (Ω \ {0}). We observe that every term in the above identity is well-defined in view
of Proposition 3.2 and Proposition 3.5.

The above notion of solution corresponds to the notion of H(Ω)-solution introduced in [12,
Section 6], as we will prove in Proposition 3.7. In other words, if u ∈ Hloc(Ω) is an H-solution of
(1), then for any ω b Ω with ∂ω ∈ C1 we have

(u, v)H(ω) =

∫
ω

(h(x) + 1)u(x)v(x) dx+

∫
ω

f(x, u(x))v(x) dx for any v ∈ H0(ω),

where H0(ω) is the closure in H(ω) of the space C∞c (ω \ {0}).
In [12], the following notion of strong solution is also discussed. By a strong solution to (1) we

mean a function u ∈ C2(Ω \ {0}) which solves (1) in the classical sense and satisfies the following
pointwise estimate: for any R > 0 there exists a constant C = C(N,h, f, u,Ω, R) depending only
on N,h, f, u,Ω, R but independent of x such that

|u(x)| 6 C|x|−
N−2

2 for any x ∈ (Ω ∩BR) \ {0}.

Before giving the statement of our main result, we recall that the eigenvalues of the Laplace
Beltrami operator −∆SN−1 are given by

λ` = (N − 2 + `)`, ` = 0, 1, 2, . . . ,

having the `-th eigenvalue λ` multiplicity

(6) m` =
(N − 3 + `)!(N + 2`− 2)

`!(N − 2)!
,

and the eigenfunctions coincide with the usual spherical harmonics. For every ` > 0, let {Y`,m}m`m=1

be a L2(SN−1)-orthonormal basis of the eigenspace of −∆SN−1 associated to λ` with Y`,m being
spherical harmonics of degree `.

Theorem 2.1. Let N > 3 and assume (H), (F). Let u ∈ Hloc(Ω) be a nontrivial H-solution
to (1). Then there exist `0 ∈ N and β`0,1, . . . , β`0,m`0 ∈ R such that (β`0,1, . . . , β`0,m`0 ) 6= (0, . . . , 0)
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and, for any α ∈ (0, 1),

r
N−2

2 −
√
λ`0 u(r, θ)→

m`0∑
m=1

β`0,mY`0,m(θ) in C1,α(SN−1) as r → 0+

and

r
N
2 −
√
λ`0∇u(r, θ)→

m`0∑
m=1

β`0,m

[(
−N−2

2 +
√
λ`0

)
Y`0,m(θ)θ +∇SN−1Y`0,m(θ)

]
in C0,α(SN−1) as r → 0+, where u(r, θ) is the representation on u in polar coordinates r ∈ (0,+∞),
θ ∈ SN−1. Moreover, the coefficients β`0,1, . . . , β`0,m`0 admit the following representation

β`0,m =

∫
SN−1

[
u(R, θ)

Rγ̃
+

∫ R

0

h(s, θ)u(s, θ) + f(sθ, u(s, θ))

2γ̃ +N − 2

(
s−γ̃+1 − sγ̃+N−1

R2γ̃+N−2

)
ds

]
Y`0,m(θ) dS(θ)

for any R > 0 such that BR := {x ∈ RN : |x| < R} ⊂ Ω, where γ̃ := −N−2
2 +

√
λ`0 .

As a consequence of Theorem 2.1, the following pointwise estimates hold true.

Corollary 2.2. Let N > 3 and assume (H), (F). If u ∈ Hloc(Ω) is a nontrivial H-solution to (1),
then there exists `0 ∈ N such that

|u(x)| = O
(
|x|−

N−2
2 +
√
λ`0

)
and |∇u(x)| = O

(
|x|−

N
2 +
√
λ`0

)
as |x| → 0.

As observed in [12], from elliptic regularity theory, it follows easily that if a H-solution u satisfies

the decay condition |u(x)| = O
(
|x|−N−2

2

)
, then u is necessarily a strong solution in the sense of

[12]. Corollary 2.2 gives a stronger information; indeed, Corollary 2.2 implies that any nontrivial

H-solution u satisfies the decay condition |u(x)| = O
(
|x|−N−2

2

)
as |x| → 0. Hence, from classical

elliptic regularity theory, it follows that if u is an H-solution to (1) and h, f are smooth outside 0,
then u is a strong solution in the sense of [12].

We also observe that Corollary 2.2 implies that, if u changes sign in a neighborhood of 0, then
u ∈ H1

loc(Ω).
As another byproduct of Theorem 2.1, we also have the following version of the Strong Unique

Continuation Principle for an elliptic equation with a singular coefficient.

Corollary 2.3. Let N > 3 and assume (H), (F). Let u ∈ Hloc(Ω) be a H-solution of (1). If
u(x) = O(|x|k) as |x| → 0+ for any k ∈ N, then u ≡ 0 in Ω.

The proof of Theorem 2.1 is based on a monotonicity method. We give below a brief description
of our argument. Using the Emden-Fowler transformation

v(t, θ) = e−
N−2

2 tu(e−tθ), (t, θ) ∈ C := R× SN−1,

see (7), equation (1) in a ball centered at 0 can be rewritten as

−∆Cv = e−2th̃v + e−2tf̃(t, θ, v), in (t̄,+∞)× SN−1 ⊂ C,

for some t̄, where ∆C is the Laplace-Beltrami operator on the cylinder C and h̃, f̃ are defined
in (24). The proof of our results is based on the study at ∞ of the Almgren frequency function
associated to v, which is defined as

N (t) =
D(t)

H(t)
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where

D(t) :=

∫
(t,+∞)×SN−1

(
|∇Cv|2 − e−2sh̃v2 − e−2sf̃(s, θ, v)v

)
ds dS(θ),

H(t) :=

∫
SN−1

v2(t, θ)dS(θ).

The first step of our strategy consists in proving that limt→+∞N (t) := γ exists and it is finite, see
Lemma 5.8. Next, we perform a blow-up argument by translating at infinity v (i.e. zooming around

the origin the solution u) and normalizing by
√
H. More precisely, we define wλ(t, θ) := v(t+λ,θ)√

H(λ)

and show that wλ converges as λ → +∞ (in some Hölder and Sobolev spaces) to some w solving
the limiting equation −∆Cw = 0 on the cylinder (0,+∞) × SN−1: to this aim, assumptions (H)
and (F) requiring negligibility of h with respect to the Hardy potential and at most criticality of
f with respect to the Sobolev exponent play a crucial role. We refer to Lemma 6.1 for details.

The main point is that the Almgren’s frequency for w satisfies Nw(t) = limλ→+∞N (t+λ) = γ,
i.e. Nw is constant; hence w(t, ·) and ∂w

∂s (t, ·) are proportional in L2(SN−1). Therefore w(t, θ) =
ϕ(t)ψ(θ). By separating variables on the cylinder, we deduce that ψ must be an eigenfunction of
the Laplace Beltrami operator −∆SN−1 associate to some eigenvalue λ`0 . Since w has finite energy

at ∞, we deduce that ϕ(t) is proportional to e−λ`0 t and that γ =
√
λ`0 . The final step relies in

deriving the exact asymptotics of the normalization of the blow-up family, i.e. in proving that
limt→+∞ e2γtH(t) > 0, see Lemma 6.3.

Notation.

- For all r > 0, Br denotes the open ball {x ∈ RN : |x| < r} in RN with center at 0 and
radius r.

- C∞c (A) denotes the space of C∞(A)-functions whose support is compact in A.
- For any open set Ω ⊆ RN , D′(Ω) denotes the space of distributions on Ω.
- dS denotes the volume element on the spheres ∂Br, r > 0.
- For any N > 1 we put ωN−1 :=

∫
SN−1 dS.

3. On H-solutions to (1)

In this section we describe the main properties of the space H and of H-solutions to (1). In the
sequel, ω denotes a bounded domain in RN satisfying ∂ω ∈ C1 and 0 ∈ ω. In order to reformulate
(1) in cylindrical variables, we let

Φ : RN \ {0} → C := R× SN−1 ⊂ RN+1

be the diffeomorphism (Emden-Fowler transformation) defined as

(7) Φ(x) :=

(
− log |x|, x

|x|

)
for any x ∈ RN \ {0},

see [9], and let Cω := Φ(ω \ {0}) ⊆ C. Let us introduce the linear operator

T : C∞c (ω \ {0})→ C∞c (Cω),(8)

Tu(t, θ) := e−
N−2

2 tu(e−tθ), for any (t, θ) ∈ C, u ∈ C∞c (ω \ {0}).
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Clearly T is an isomorphism between vector spaces. Let us denote by µ the standard volume
measure on the cylinder C, by ∇C the gradient associated with the standard Riemannian metric of
C, and by (t, θ) the generic element of C.

We observe that (·, ·)H(ω) as defined in (4) is actually a scalar product on C∞c (ω \{0}) since the
following identities hold for any u ∈ C∞c (ω \ {0}), see [8, 9, 30]:∫

ω

|∇u(x)|2dx−
(
N − 2

2

)2 ∫
ω

u2(x)

|x|2
dx(9)

+
N − 2

2

∫
∂ω

u2(x)

|x|2
(x · ν(x)) dS =

∫
Cω
|∇C(Tu)|2dµ > 0,∫

ω

u2(x) dx =

∫
Cω
e−2t(Tu)2dµ.(10)

We also define, for any ω as above, the weighted Sobolev space Hµ(Cω) as the completion of

C∞c (Cω) with respect to the norm

‖w‖Hµ(Cω) :=

(∫
Cω
|∇Cw|2dµ+

∫
Cω
e−2tw2dµ

)1/2

.

By density and continuity it is possible to extend T as a linear and continuous operator from H(ω)
to Hµ(Cω). In this way T : H(ω)→ Hµ(Cω) becomes an isometric isomorphism.

The following proposition relates H(ω) with the classical Sobolev space H1(ω).

Proposition 3.1. Let ω ⊂ RN be a bounded domain satisfying 0 ∈ ω and ∂ω ∈ C1. Then
H1(ω) ⊂ H(ω) with continuous embedding.

We omit the proof of Proposition 3.1 which can be easily obtained by classical density arguments.

We observe the inclusion H1(ω) ⊂ H(ω) is actually strict, since the function |x|−N−2
2 belongs to

H(ω) but not to H1(ω).

Proposition 3.2. Let ω ⊂ RN be a bounded domain satisfying 0 ∈ ω and ∂ω ∈ C1. Then
H(ω) ⊆ H1

loc(ω \ {0})∩L2(ω) where by H1
loc(ω \ {0}) we mean the space of functions which belong

to H1(A) for any open set A satisfying A ⊆ ω \ {0}.

Proof. Let u ∈ H(ω) and let {un} ⊂ C∞c (ω \ {0}) be a sequence such that un → u in H(ω).
Then, for any n, Tun belongs to Hµ(Cω). By (8), (9), (10) and direct calculations, for any open

set A such that A ⊆ ω \ {0}, we have that, denoting Vn,m = T (un − um),

‖un − um‖2H1(A) =

∫
CA

[
|∇CVn,m|2 +

(
N−2

2

)2
V 2
n,m

]
dµ+

∫
CA

[
N−2

2 ∂t(V
2
n,m) + e−2tV 2

n,m

]
dµ(11)

6
∫
CA

[
|∇CVn,m|2 +

(
N−2

2

)2
V 2
n,m

]
dµ+

∫
CA

[
N−2

2 |∂tVn,m|
2 + N−2

2 V 2
n,m + e−2tV 2

n,m

]
dµ

6 KA

(∫
CA
|∇CVn,m|2dµ+

∫
CA
e−2tV 2

n,mdµ

)
6 KA

(∫
Cω
|∇CVn,m|2dµ+

∫
Cω
e−2tV 2

n,mdµ

)
= KA‖un − um‖2H(ω)
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where KA := max
{
N
2 , 1 + N(N−2)

4 sup(t,θ)∈CA e
2t
}

. Then {un} is a Cauchy sequence in H1(A) for

any A as above and hence u ∈ H(ω) may be seen as a function in H1
loc(ω \ {0}). Moreover, by (4),

(9) and (10) it is clear that

‖un − um‖L2(ω) 6 ‖un − um‖H(ω)

and hence {un} is a Cauchy sequence in L2(ω). This completes the proof of the proposition. �

In [7, Extension 4.3] the following Poincaré-Sobolev type inequality was proved.

Proposition 3.3. [7, Extension 4.3] Let ω ⊂ RN be a bounded domain satisfying 0 ∈ ω and let
1 6 q < 2N

N−2 . Then there exists a constant C(ω, q) such that

(12)

(∫
ω

|u(x)|q dx
)2/q
6 C(ω, q)

[∫
ω

|∇u(x)|2dx−
(
N − 2

2

)2 ∫
ω

u2(x)

|x|2
dx

]

for any u ∈ C∞c (ω \ {0}).

Let us consider the space H0(ω) defined in Section 2 as the closure in H(ω) of C∞c (ω \ {0}), see
also [12, Section 6]. If we define the scalar product

(13) (u, v)H0(ω) :=

∫
ω

∇u(x)·∇v(x) dx−
(
N − 2

2

)2 ∫
ω

u(x)v(x)

|x|2
dx, for any u, v ∈ C∞c (ω\{0}),

then by (12) with q = 2 we deduce that the norms ‖ · ‖H(ω) and ‖ · ‖H0(ω) are equivalent on
C∞c (ω \ {0}). Hence H0(ω) may be endowed with the equivalent scalar product obtained by
density, extending the scalar product (·, ·)H0(ω) defined in (13) to the whole H0(ω)×H0(ω).

By Proposition 3.3 and the definition of H0(ω), the following Sobolev type embedding follows.

Proposition 3.4. Let ω ⊂ RN be a bounded domain satisfying 0 ∈ ω and let 1 6 q < 2N
N−2 . Then

H0(ω) ⊂ Lq(ω) with continuous embedding.

Actually the continuous embedding H(ω) ⊂ Lq(ω), 1 6 q < 2N/(N − 2), also holds true as
shown Proposition 3.5.

Proposition 3.5. Let ω ⊂ RN be a bounded domain satisfying 0 ∈ ω and let 1 6 q < 2N
N−2 . Then

H(ω) ⊂ Lq(ω) with continuous embedding.

Proof. Let u ∈ H(ω). Then by Proposition 3.2 we deduce that u ∈ Lq(ω \ Bδ) for any δ > 0
such that Bδ ⊂ ω. Moreover, arguing as in (11), we infer that there exists a constant C(N, q, δ)
depending only on N, q, δ, ω such that

(14) ‖u‖Lq(ω\Bδ) 6 C(N, q, δ)‖u‖H(ω) .

Let us prove that for some fixed δ > 0 chosen as above u ∈ Lq(Bδ). To this purpose let η ∈ C∞c (ω)
be a radial function such that 0 6 η 6 1 and η ≡ 1 in Bδ. Let {un} ⊂ C∞c (ω \ {0}) be a sequence
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such that un → u in H(ω). Then by (9), (10), (12) we obtain(∫
ω

|(un − um)η|qdx
)2
q

6 C(ω, q)

[∫
ω

|∇((un − um)η)|2dx−
(
N−2

2

)2∫
ω

|(un − um)η|2

|x|2
dx

]
(15)

= C(ω, q)

∫
Cω
|∇C(T ((un − um)η))|2dµ

6 2

∫
Cω
η2(e−tθ)|∇C(T (un − um))|2dµ+ 2

∫
Cω
|T (un − um)|2|∇C(η(e−tθ))|2dµ

6 2

∫
Cω
|∇C(T (un − um))|2dµ+ 2‖∇η‖2L∞(ω)

∫
Cω
e−2t|T (un − um)|2dµ

6 2(1 + ‖∇η‖2L∞(ω))‖un − um‖
2
H(ω) .

This shows that {unη} is a Cauchy sequence in Lq(ω). Since unη → uη pointwise then uη ∈ Lq(ω).
In particular u ∈ Lq(Bδ). Moreover proceeding as in (15) we also have that

‖u‖Lq(Bδ) 6 ‖ηu‖Lq(ω) = lim
n→+∞

‖ηun‖Lq(ω)(16)

6 lim
n→+∞

[2(1 + ‖∇η‖2L∞(ω))]
1/2‖un‖H(ω) = [2(1 + ‖∇η‖2L∞(ω))]

1/2‖u‖H(ω) .

Combining (14) and (16) we conclude that H(ω) ⊂ Lq(ω) with continuous embedding. �

From Propositions 3.2 and 3.5 we infer that, if u ∈ Hloc(Ω), then u ∈ H1
loc(Ω \ {0}) ∩ Lqloc(Ω) for

all 1 6 q < 2N/(N − 2).

Remark 3.6. From Proposition 3.2, we have that if u ∈ Hloc(Ω) is a solution to (1) in the sense
of (5), then u is a weak H1-solution in Ω\{0}. Hence, classical Brezis-Kato [6] estimates, bootstrap,

and elliptic regularity theory, imply that u ∈ H2
loc(Ω \ {0}) ∩ C1,α

loc (Ω \ {0}) for any α ∈ (0, 1).

From (5) we deduce the following characterizations of solutions to (1).

Proposition 3.7. Let h satisfy (H), f satisfy (F) and u ∈ Hloc(Ω) be a solution to (1) in the
sense of (5). Then u solves (1) in the sense of distributions in Ω, i.e.

(17) −
∫

Ω

u(x)∆ϕ(x) dx−
(
N − 2

2

)2 ∫
Ω

u(x)

|x|2
ϕ(x) dx =

∫
Ω

(
h(x)u(x) + f(x, u(x))

)
ϕ(x) dx

for any ϕ ∈ C∞c (Ω). Moreover, for any bounded domain ω with ∂ω ∈ C1 and ω ⊂ Ω, we have that

(18) (u, v)H(ω) =

∫
ω

(h(x) + 1)u(x)v(x) dx+

∫
ω

f(x, u(x))v(x) dx

for all v ∈ H0(ω) and

(19) (u, v)H(ω) =

∫
ω

(h+ 1)uv dx+

∫
ω

f(x, u)v dx+

∫
∂ω

∂u

∂ν
v dS +

N − 2

2

∫
∂ω

uv

|x|2
(x · ν) dS

for all v ∈ H(ω).

Proof. Let ϕ ∈ C∞c (Ω) and let ω be an open domain with smooth boundary satisfying ω ⊂ Ω
and suppϕ ⊂ ω. Since u ∈ Hloc(Ω) then u ∈ H(ω) and there exists a sequence {un} ⊂ C∞c (ω\{0})



10 VERONICA FELLI AND ALBERTO FERRERO

such that un → u in H(ω). Since ϕ ∈ H1
0 (ω), Proposition 3.1 implies that there exists a sequence

{ϕm} ⊂ C∞c (ω \ {0}) such that ϕm → ϕ in H1(ω) and in H(ω) as m→ +∞. Hence we have

(u, ϕ)H(ω) = lim
n→+∞

(
lim

m→+∞
(un, ϕm)H(ω)

)
(20)

= lim
n→+∞

{
lim

m→+∞

[ ∫
ω

∇un · ∇ϕm dx−
(
N − 2

2

)2 ∫
ω

unϕm
|x|2

dx+

∫
ω

unϕm dx

]}
= lim
n→+∞

[∫
ω

∇un · ∇ϕdx−
(
N − 2

2

)2 ∫
ω

unϕ

|x|2
dx+

∫
ω

unϕdx

]

= lim
n→+∞

[
−
∫
ω

un∆ϕdx−
(
N − 2

2

)2 ∫
ω

unϕ

|x|2
dx+

∫
ω

unϕdx

]
.

By Proposition 3.5 we also have that un → u in Lq(ω) for any 1 6 q < 2∗. By Hölder inequality
with N

N−2 < p < 2N
N−2 we have that uϕ

|x|2 ∈ L
1(ω) and

∣∣∣∣∫
ω

un(x)ϕ(x)

|x|2
dx−

∫
ω

u(x)ϕ(x)

|x|2
dx

∣∣∣∣ 6 ‖ϕ‖L∞(ω)

(∫
ω

|un(x)− u(x)|qdx
)1/q (∫

ω

|x|−
2q
q−1 dx

) q−1
q

and hence passing to the limit in (20) we obtain

(21) (u, ϕ)H(ω) = −
∫
ω

u(x)∆ϕ(x) dx−
(
N − 2

2

)2 ∫
ω

u(x)ϕ(x)

|x|2
dx+

∫
ω

u(x)ϕ(x) dx .

On the other hand, by the convergence un → u in H1
loc(ω \ {0}), see Proposition 3.2, we obtain

(u, ϕ)H(ω) = lim
m→+∞

(
lim

n→+∞
(un, ϕm)H(ω)

)
(22)

= lim
m→+∞

{
lim

n→+∞

[ ∫
ω

∇un · ∇ϕm dx−
(
N − 2

2

)2 ∫
ω

unϕm
|x|2

dx+

∫
ω

unϕm dx

]}
= lim
m→+∞

[∫
ω

∇u · ∇ϕm dx−
(
N − 2

2

)2 ∫
ω

uϕm
|x|2

dx+

∫
ω

uϕm dx

]

= lim
m→+∞

[ ∫
ω

(h+ 1)uϕm dx+

∫
ω

f(x, u)ϕm dx

]
=

∫
ω

(h+ 1)uϕdx+

∫
ω

f(x, u)ϕdx

where the last identity follows from assumptions (H) and (F) and the fact that ϕm → ϕ in Lq(ω)
for any 1 6 q < 2N

N−2 . Combining (21) and (22) obtain (17).

The proof of (18) follows by the following density argument: let {vm} ⊂ C∞c (ω \ {0}) such that
vm → v in H(ω). Now it is enough to pass to the limit as m→ +∞ in (22) with vm in place of ϕ.

It remains to prove (19). By elliptic regularity estimates u ∈ C1(ω \ {0}) (see Remark 3.6) and
hence the normal derivative of u on ∂ω is continuous. Let v ∈ H(ω) and let {vm} ⊂ C∞c (ω \ {0})
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be such that vm → v in H(ω). Therefore we are allowed to integrate by parts to obtain

(u, vm)H(ω) =

∫
ω

∇u · ∇vm dx−
(
N − 2

2

)2∫
ω

u

|x|2
vm dx+

∫
ω

uvm dx+
N − 2

2

∫
∂ω

uvm
|x|2

(x · ν) dS

=

∫
ω

−(∆u)vm dx+

∫
∂ω

∂u

∂ν
vm dS −

(
N − 2

2

)2 ∫
ω

u

|x|2
vm dx

+

∫
ω

uvm dx+
N − 2

2

∫
∂ω

uvm
|x|2

(x · ν) dS

=

∫
ω

huvm dx+

∫
ω

f(x, u)vm dx+

∫
∂ω

∂u

∂ν
vm dS +

∫
ω

uvm dx+
N − 2

2

∫
∂ω

uvm
|x|2

(x · ν) dS .

The proof of (19) follows passing to the limit as m→ +∞. �

4. An equivalent problem on the cylinder C

Reformulation of (5) in cylindrical variables yields the following characterizations of solutions
to (1).

Proposition 4.1. Let h satisfy (H), f satisfy (F), and u ∈ Hloc(Ω) be a solution to (1) in the sense
of (5). If ω is a bounded domain with ∂ω ∈ C1 and ω ⊂ Ω, then the function v := Tu ∈ Hµ(Cω)
is a weak solution of the equation

(23) −∆Cv(t, θ) = e−2th̃(t, θ)v(t, θ) + e−2tf̃(t, θ, v(t, θ)), in Cω,

where ∆C denotes the Laplace-Beltrami operator on C and

h̃(t, θ) := h(e−tθ), f̃(t, θ, s) := e−
N−2

2 tf
(
e−tθ, e

N−2
2 ts

)
, for any (t, θ) ∈ Cω,(24)

in the sense that

(25)

∫
Cω
∇Cv · ∇Cw dµ =

∫
Cω
e−2t

(
h̃v + f̃(t, θ, v)

)
w dµ, for every w ∈ Hµ,0(Cω) := T (H0(ω)).

Moreover

(26)

∫
Cω
∇Cv · ∇Cw dµ =

∫
∂Cω

(∇Cv · ν∂Cω )w dS +

∫
Cω
e−2t

(
h̃v + f̃(t, θ, v)

)
w dµ,

for every w ∈ Hµ(Cω), where ν∂Cω denotes the exterior normal vector to ∂Cω on C.

The following corollary is an immediate consequence of (26).

Corollary 4.2. Let h satisfy (H), let f satisfy (F), and let u ∈ Hloc(Ω) be a solution to (1) in
the sense of (5). For any t ∈ R, let

Ct := {(s, θ) ∈ C : s > t, θ ∈ SN−1}, Γt := {(t, θ) ∈ C : θ ∈ SN−1}.

Then for any t such that Ct ⊂ CΩ, the function v := Tu ∈ Hµ(Ct) satisfies

(27)

∫
Ct
∇Cv · ∇Cw dµ = −

∫
Γt

∂v

∂s
w dS +

∫
Ct
e−2s

(
h̃(s, θ)v(s, θ) + f̃(s, θ, v(s, θ))

)
w(s, θ) dµ

for any w ∈ Hµ(Ct).
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In order to study solutions to (23), the properties of space Hµ have to be investigated. The next
results go in this direction.

Lemma 4.3. For every t ∈ R, Hµ(Ct) ↪→ L2(Γt) with compact embedding. Furthermore,

(28) v 7→
(∫
Ct
|∇Cv|2dµ+

∫
Γt

v2dS

)1/2
is an equivalent norm in Hµ(Ct); more precisely, there exists a constant C > 0 such that, for all
t ∈ R and v ∈ Hµ(Ct),

1

C

(∫
Ct
|∇Cv|2 dµ+ e2t

∫
Ct
e−2sv2 dµ

)
6
∫
Ct
|∇Cv|2dµ+

∫
Γt

v2dS(29)

6 C

(∫
Ct
|∇Cv|2 dµ+ e2t

∫
Ct
e−2sv2 dµ

)
.

Proof. The embedding Hµ(Ct) ↪→ L2(Γt) and its compactness are just a consequence of the
fact that T : H(ω) → Hµ(Cω) is an isometric isomorphism combined with Proposition 3.2 and
compactness of classical Sobolev trace embeddings. To show that the quadratic form in (28) is an
equivalent norm in Hµ(Ct), we notice that, for all v ∈ C∞c (Ct), integration by parts yields∫

Ct
e−2sv2(s, θ) dµ(s, θ) =

∫
SN−1

(∫ +∞

t

e−2sv2(s, θ)ds

)
dS(θ)(30)

=

∫
SN−1

([
− 1

2
e−2sv2(s, θ)

]s=+∞

s=t

+

∫ +∞

t

e−2s dv

ds
(s, θ)v(s, θ)ds

)
dS(θ)

=
1

2
e−2t

∫
Γt

v2dS +

∫
Ct
e−2sv

dv

ds
dµ,

which implies∫
Ct
e−2sv2 dµ 6

1

2
e−2t

∫
Γt

v2dS +
1

2

∫
Ct
e−2sv2 dµ+

e−2t

2

∫
Ct
|∇Cv|2 dµ

and hence ∫
Ct
e−2sv2 dµ 6 e−2t

(∫
Γt

v2dS +

∫
Ct
|∇Cv|2 dµ

)
.

On the other hand, (30) also implies

e−2t

∫
Γt

v2dS 6 3

∫
Ct
e−2sv2 dµ+ e−2t

∫
Ct
|∇Cv|2 dµ.

The conclusion then follows by density. �

The following lemma provides a Hardy type inequality with boundary terms.

Lemma 4.4. For every σ > 0 and t ∈ R, Hµ(Ct) ⊂ L2(Ct, e−σsdµ). Furthermore, for every σ > 0

there exists C̃σ > 0 such that, for all t ∈ R and v ∈ Hµ(Ct),∫
Ct
e−σsv2(s, θ)dµ(s, θ) 6 C̃σe

−σt
(∫
Ct
|∇Cv|2dµ+

∫
Γt

v2dS

)
.
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Proof. For all v ∈ C∞c (Ct), integration by parts yields∫
Ct
e−σsv2(s, θ) dµ(s, θ) =

∫
SN−1

(∫ +∞

t

e−σsv2(s, θ)ds

)
dS(θ)

=

∫
SN−1

([
− 1

σ
e−σsv2(s, θ)

]s=+∞

s=t

+
2

σ

∫ +∞

t

e−σs
dv

ds
(s, θ)v(s, θ)ds

)
dS(θ)

=
1

σ
e−σt

∫
Γt

v2dS +
2

σ

∫
Ct
e−σsv

dv

ds
dµ,

which implies∫
Ct
e−σsv2 dµ 6

1

σ
e−σt

∫
Γt

v2dS +
1

2

∫
Ct
e−σsv2 dµ+

2e−σt

σ2

∫
Ct
|∇Cv|2 dµ

and hence ∫
Ct
e−σsv2 dµ 6 e−σt

(
2

σ

∫
Γt

v2dS +
4

σ2

∫
Ct
|∇Cv|2 dµ

)
.

The conclusion thereby follows with C̃σ = max{2/σ, 4/σ2}. �

The following Hardy-Sobolev type inequality holds.

Lemma 4.5. For every q ∈
[
1, 2N

N−2

)
, there exists CN,q > 0 such that, for all t ∈ R and v ∈ Hµ(Ct),(∫

Ct
e(−N+N−2

2 q)s|v(s, θ)|qdµ(s, θ)

)2/q
6 CN,q e

(− 2N
q +N−2)t

(∫
Ct
|∇Cv|2dµ+

∫
Γt

v2dS

)
.

Proof. From Proposition 3.5, there exists cN,q > 0 such that(∫
B1

|u(x)|qdx
)1/q
6 cN,q‖u‖H(B1)

for all u ∈ H(B1). Performing the change of variable v(s, θ) = Tu(s− t, θ) in the above inequality
for all t ∈ R and taking into account (29), we obtain the stated inequality with CN,q = c2N,qC. �

5. The Almgren frequency function

In this section, our purpose would be to construct an appropriate Almgren-type frequency
function for the solution to problem (5). Since for a general function u ∈ H(ω), the norm ‖u‖H(ω)

cannot be expressed in an integral form, we prefer to look for an Algrem-type function associated
with the function v := Tu.

In a domain Ω ⊂ RN , let u ∈ Hloc(Ω) be a solution of (5). Let R > 0 be such that BR ⊂ Ω.
According with [2, 21] (see also [14, 15, 16, 17]), for t > − logR, we define the functions

(31) D(t) :=

∫
Ct
|∇Cv|2dµ−

∫
Ct
e−2sh̃v2dµ−

∫
Ct
e−2sf̃(s, θ, v)v dµ

and

(32) H(t) :=

∫
Γt

v2dS,

where v := Tu and T is defined in (8).
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Lemma 5.1. Let Ω be a domain in RN and u ∈ Hloc(Ω) be a solution of (5), u 6≡ 0, with h
satisfying (H) and f satisfying (F). Let H = H(t) be the function defined in (32). Then there
exists t̄ > 0 such that H(t) > 0 for any t > t̄.

Proof. Let us argue by contradiction and assume that there exists tn → +∞ such that H(tn) =
0; in particular v = 0 on Γtn and v ∈ Hµ,0(Ctn). From (27), (H), (F), and Lemmas 4.4 and 4.5

0 =

∫
Ctn
|∇Cv|2dµ−

∫
Ctn

e−2sh̃v2dµ−
∫
Ctn

e−2sf̃(s, θ, v)v dµ

>
∫
Ctn
|∇Cv|2dµ− Ch

∫
Ctn

e−εsv2dµ− Cf
∫
Ctn

e−2sv2dµ− Cf
∫
Ctn

e

(
−N+N−2

2 p
)
s|v|pdµ

>
(

1− ChC̃εe−εtn − Cf C̃2e
−2tn − CfCp/2N,p e

(−N+N−2
2 p)tn

(∫
C− logR

|∇Cv|2dµ
)p−2

2

)∫
Ctn
|∇Cv|2dµ

= (1 + o(1))

∫
Ctn
|∇Cv|2dµ

which implies that v ≡ 0 in Ctn for n sufficiently large. Hence u ≡ 0 in a neighborhood of the
origin and, by classical unique continuation principles for second order elliptic equations with
locally bounded coefficients (see e.g. [31]) we conclude that u = 0 a.e. in Ω, a contradiction. �

By virtue of Lemma 5.1, the Almgren-type frequency function

(33) N (t) =
D(t)

H(t)

is well defined in (t̄,+∞).
In order to obtain a suitable representation for the derivative of D we need the following

Pohozaev-type identity.

Proposition 5.2. Let h satisfy (H), f satisfy (F), and u ∈ Hloc(Ω) be a solution to (5). Let
R > 0 be such that BR ⊂ Ω. Then for every t ∈ (− logR,+∞) the function v := Tu ∈ Hµ(C− logR)
satisfies

1

2

∫
Γt

|∇v|2dS =

∫
Γt

∣∣∣∣∂v∂s
∣∣∣∣2 dS − ∫

Ct
e−2s h̃v

∂v

∂s
dµ+

N − 2

2

∫
Ct
e−2sf̃(s, θ, v)v dµ(34)

−
∫
Ct
e−(N+1)s∇xF (e−sθ, e

N−2
2 sv(s, θ)) · θ dµ−N

∫
Ct
e−NsF (e−sθ, e

N−2
2 sv(s, θ)) dµ

+

∫
Γt

e−NtF (e−tθ, e
N−2

2 tv(t, θ)) dS.

Proof. Since v ∈ Hµ(Ct) for any t > − logR, then∫ +∞

t

(∫
SN−1

|∇Cv(s, θ)|2dS(θ)

)
ds =

∫
Ct
|∇Cv|2dµ < +∞,

which implies that the map s 7→
∫
SN−1 |∇Cv(s, θ)|2dS(θ) is integrable in (t,+∞) and hence

lim inf
s→+∞

∫
SN−1

|∇Cv(s, θ)|2dS(θ) = 0 .
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By Lemmas 4.4, 4.5, we also have∫ +∞

t

I1(s)ds+

∫ +∞

t

I2(s)ds =

∫
Ct
e−2sv2(s, θ) dµ+

∫
Ct
e(−N+N−2

2 p)s|v|pdµ < +∞

where

I1(s) =

∫
SN−1

e−2sv2(s, θ)dS(θ), I2(s) =

∫
SN−1

e(−N+N−2
2 p)s|v(s, θ)|pdS(θ),

so that I1, I2 ∈ L1(0,+∞) and hence

lim inf
s→+∞

(I1(s) + I2(s)) = 0.

Let {sk} ⊂ R be an increasing sequence such that sk → +∞ and

(35) lim
k→+∞

(∫
SN−1

|∇Cv(sk, θ)|2dS(θ)

)
+ I1(sk) + I2(sk) = 0 .

From Remark 3.6, u ∈ C1(Ω \ {0}) and hence v ∈ C1(CΩ). Since v is a weak solution of (23) in
Cω for any bounded domain ω satisfying ∂ω ∈ C1 and ω ⊂ Ω, testing (23) with ∂v

∂s (we recall that
∂v
∂s ∈ H

1
µ(Ct \ Csk) in view of Remark 3.6) and using (26) we obtain∫
Ct\Csk

e−2s
(
h̃v + f̃(s, θ, v)

)∂v
∂s

dµ =

∫
Ct\Csk

∇Cv · ∇C
(
∂v
∂s

)
dµ+

∫
Γt

∣∣∣∣∂v∂s
∣∣∣∣2dS − ∫

Γsk

∣∣∣∣∂v∂s
∣∣∣∣2dS(36)

=
1

2

∫
Ct\Csk

∂

∂s
(|∇Cv|2) dµ+

∫
Γt

∣∣∣∣∂v∂s
∣∣∣∣2 dS − ∫

Γsk

∣∣∣∣∂v∂s
∣∣∣∣2 dS

=
1

2

∫ sk

t

(
∂

∂s

∫
SN−1

|∇Cv(s, θ)|2dS(θ)

)
ds+

∫
Γt

∣∣∣∣∂v∂s
∣∣∣∣2 dS − ∫

Γsk

∣∣∣∣∂v∂s
∣∣∣∣2 dS

=
1

2

∫
SN−1

|∇Cv(sk, θ)|2dS(θ)− 1

2

∫
SN−1

|∇Cv(t, θ)|2dS(θ) +

∫
Γt

∣∣∣∣∂v∂s
∣∣∣∣2 dS − ∫

Γsk

∣∣∣∣∂v∂s
∣∣∣∣2 dS .

By (35) we infer that

lim
k→+∞

∫
Γsk

∣∣∣∣∂v∂s
∣∣∣∣2dS = lim

k→+∞

∫
SN−1

∣∣∣∣∂v∂s (sk, θ)

∣∣∣∣2dS(θ) 6 lim
k→+∞

∫
SN−1

|∇Cv(sk, θ)|2dS(θ) = 0.(37)

Moreover an integration by parts in the left hand side of (36) yields∫
Ct\Csk

e−2s f̃(s, θ, v)
∂v

∂s
dµ = −N − 2

2

∫
Ct\Csk

e−Nsf(e−sθ, u(e−sθ))u(e−sθ) dµ

+

∫
Ct\Csk

e−(N+1)s∇xF (e−sθ, u(e−sθ)) · θ dµ+N

∫
Ct\Csk

e−NsF (e−sθ, u(e−sθ)) dµ

−
∫

Γt

e−NsF (e−sθ, u(e−sθ)) dS +

∫
Γsk

e−NsF (e−sθ, u(e−sθ)) dS .

By (F) and (35) we have

(38) lim
k→+∞

∣∣∣∣ ∫
Γsk

e−NsF (e−sθ, u(e−sθ)) dS

∣∣∣∣ 6 const lim
k→+∞

(I1(sk) + I2(sk)) = 0.
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Passing to the limit as k → +∞ in (36), by (H), (F), (35), (37) and (38) we arrive to the
conclusion. �

In the next lemma we provide a useful representation for the derivative of D.

Lemma 5.3. Under the same assumptions of Proposition 5.2, the function D defined in (31)

belongs to W 1,1
loc (− logR,+∞) and

D′(t) =− 2

∫
Γt

∣∣∣∣∂v∂s
∣∣∣∣2 dS + 2

∫
Ct
e−2sh̃v

∂v

∂s
dµ− (N − 2)

∫
Ct
e−2sf̃(s, θ, v)v dµ

+ 2

∫
Ct
e−(N+1)s∇xF (e−sθ, e

N−2
2 sv(s, θ)) · θ dµ+ 2N

∫
Ct
e−NsF (e−sθ, e

N−2
2 sv(s, θ)) dµ

− 2

∫
Γt

e−NtF (e−tθ, e
N−2

2 tv(t, θ)) dS + e−2t

∫
Γt

(
h̃v2 + f̃(t, θ, v)v

)
dS

in a distributional sense and for a.e. t ∈ (− logR,+∞).

Proof. Since

D′(t) = −
∫

Γt

|∇Cv|2dS + e−2t

∫
Γt

(
h̃v2 + f̃(t, θ, v)v

)
dS,

the proof directly follows from (34). �

The derivative of H is computed in the next lemma.

Lemma 5.4. Under the same assumptions of Proposition 5.2 let H be as in (32). Then H is
differentiable in (− logR,+∞) and

H ′(t) = 2

∫
Γt

v
∂v

∂s
dS = −2D(t)

for any t ∈ (logR,+∞).

Proof. By Remark 3.6 v ∈ C1(CΩ). Moreover H(t) =
∫
SN−1 v

2(t, θ) dS(θ) and hence

H ′(t) =

∫
SN−1

2v(t, θ)
∂v

∂t
dS(θ) =

∫
Γt

2v
∂v

∂s
dS,

which, together with the identity∫
Ct
|∇Cv|2dµ+

∫
Γt

v
∂v

∂s
dS =

∫
Ct
e−2s

(
h̃v2 + f̃(s, θ, v)v

)
dµ

obtained by taking w = v in (26), completes the proof of the lemma. �

Let us now compute the derivative of N .

Lemma 5.5. Let h satisfy (H), f satisfy (F), u ∈ Hloc(Ω) be a nontrivial solution of (5). Let N
be the Almgren-type function defined in (33). Then N ∈W 1,1

loc (t̄,+∞) and

N ′(t) = ν1(t) + ν2(t)(39)
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in a distributional sense and for a.e. t ∈ (t̄,+∞), where

ν1(t) := −2

(∫
Γt

∣∣∂v
∂s

∣∣2 dS)(∫
Γt
v2dS

)
−
(∫

Γt
v ∂v∂sdS

)2
(∫

Γt
v2dS

)2

and

ν2(t) =
2
∫
Ct e
−2sh̃(s, θ)v(s, θ)∂v∂s (s, θ) dµ+ e−2t

∫
Γt
h̃v2 dS∫

Γt
v2 dS

+
2
∫
Ct e
−(N+1)s∇xF (e−sθ, e

N−2
2 sv(s, θ)) · θ dµ∫

Γt
v2 dS

+
2N
∫
Ct e
−NsF (e−sθ, e

N−2
2 sv(s, θ)) dµ− (N − 2)

∫
Ct e
−2sf̃(s, θ, v(s, θ))v(s, θ) dµ∫

Γt
v2 dS

+
e−2t

∫
SN−1 f̃(t, θ, v(t, θ))v(t, θ) dS(θ)− 2e−Nt

∫
SN−1 F (e−tθ, e

N−2
2 tv(t, θ)) dS(θ)∫

Γt
v2 dS

.

Proof. It follows from (33), Lemmas 5.3, 5.4. �

In order to show that the Almgren function N admits a finite limit as t → +∞ we need some
preliminary estimates which will be proved in the next lemmas.

Lemma 5.6. Under the same assumptions as in Lemma 5.5, let N be as in (33) and t as in
Lemma 5.1. Then, up to choose a larger t, we have

N (t) > −Ce−Mt

and

(40) D(t) +H(t) >
1

2

(∫
Ct
|∇Cv|2dµ+

∫
Γt

v2dS

)
for any t > t, where C is a constant depending only on N, ε, p, u, h, f and M = min

{
ε, 2N

p −N+2
}

.

Proof. Combining assumptions (H), (F) with Lemma 4.4 and Lemma 4.5, we obtain that, for
t > t̄ with t̄ large,

D(t) =

∫
Ct
|∇Cv|2dµ−

∫
Ct
e−2sh̃v2dµ−

∫
Ct
e−2sf̃(s, θ, v)v dµ

>

(
1− ChC̃εe−εt − Cf C̃2e

−2t − CfCN,pe(−
2N
p +N−2)t(∫

Ct e
(−N+N−2

2 p)s|v|pdµ
) p−2

p

)∫
Ct
|∇Cv|2dµ

−
(
ChC̃εe

−εt + Cf C̃2e
−2t + CfCN,pe

(− 2N
p +N−2)t(∫

Ct e
(−N+N−2

2 p)s|v|pdµ
) p−2

p

)∫
Γt

v2dS

> −
(
ChC̃εe

−εt + Cf C̃2e
−2t + CfCN,pe

(− 2N
p +N−2)t(∫

Ct e
(−N+N−2

2 p)s|v|pdµ
) p−2

p

)∫
Γt

v2dS

for which yields the conclusion if t is chosen sufficiently large. �

Next we provide an estimate on the function ν2 introduced in Lemma 5.5.
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Lemma 5.7. Under the same assumptions as in Lemma 5.5 we have

|ν2(t)| 6 C1(e−αt + g(t))(N (t) + 1) + C2e
−2t for any t > t ,

where C1 and C2 are two positive constant depending only on N,h, f, u but independent of t,
α := min{ε, 2, 2N

p −N + 2}, and g ∈ L1(t,+∞), g > 0 a.e., satisfies

∫ +∞

t

g(s) ds 6
p

p− 2

(∫
Ct
e(−N+N−2

2 p)s|v(s, θ)|p dµ

) p−2
p

e(−
2N
p +N−2)t for any t > t .

Proof. From (H) and (F) it follows that

|ν2(t)| 6
Ch
∫
Ct e
−εsv2(s, θ) dµ+ Che

−εt ∫
Ct |∇Cv|

2dµ+ Che
−εt ∫

Γt
v2dS∫

Γt
v2 dS

(41)

+
3NCf

∫
Ct e
−Ns[u2(e−sθ) + |u(e−sθ)|p] dµ∫

Γt
v2 dS

+
3Cfe

−Nt ∫
SN−1 [u2(e−tθ) + |u(e−tθ)|p] dS(θ)∫

Γt
v2 dS

=
Ch
∫
Ct e
−εsv2(s, θ) dµ+ Che

−εt ∫
Ct |∇Cv|

2dµ+ Che
−εt ∫

Γt
v2dS∫

Γt
v2 dS

+
3NCf

[∫
Ct e
−2sv2(s, θ) dµ+

∫
Ct e

(−N+N−2
2 p)s|v(s, θ)|p dµ

]
∫

Γt
v2 dS

+
3Cfe

−2t
∫
SN−1 v

2(t, θ) dS(θ)∫
Γt
v2 dS

+
3Cfe

(−N+N−2
2 p)t ∫

SN−1 |v(t, θ)|p dS(θ)∫
Γt
v2 dS

.

By Lemma 4.5 and (40) we obtain for any t > t(∫
Ct
e(−N+N−2

2 p)s|v(s, θ)|pdµ
)2/p

6 CN,pe(
− 2N

p +N−2)t
(∫
Ct
|∇Cv|2dµ+

∫
Γt

v2dS

)
6 2CN,pe

(− 2N
p +N−2)t(D(t) +H(t)) = 2CN,p e

(− 2N
p +N−2)t(N (t) + 1)

∫
Γt

v2dS

and hence

3Cfe
(−N+N−2

2 p)t ∫
SN−1 |v(t, θ)|p dS(θ)∫

Γt
v2 dS

(42)

6 6CfCN,p e
(− 2N

p +N−2)t
∫

Γt
e(−N+N−2

2 p)t|v(t, θ)|p dS(∫
Ct e

(−N+N−2
2 p)s|v(s, θ)|p dµ

)2/p
(N (t) + 1) .
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We also have

0 6 g(t) := e(−
2N
p +N−2)t

∫
Γt
e(−N+N−2

2 p)t|v(t, θ)|p dS(∫
Ct e

(−N+N−2
2 p)s|v(s, θ)|p dµ

)2/p
(43)

= − p

p− 2

{
d

dt

[
e(−

2N
p +N−2)t

(∫
Ct
e(−N+N−2

2 p)s|v(s, θ)|p dµ
) p−2

p

]

−
(
− 2N

p +N − 2
)
e(−

2N
p +N−2)t

(∫
Ct
e(−N+N−2

2 p)s|v(s, θ)|p dµ
) p−2

p

}

6 − p

p− 2

d

dt

[
e(−

2N
p +N−2)t

(∫
Ct
e(−N+N−2

2 p)s|v(s, θ)|p dµ
) p−2

p

]
in the distributional sense for almost every t > t. But the right hand side of (43) is integrable in
(t,+∞) since

lim
t→+∞

e(−
2N
p +N−2)t

(∫
Ct
e(−N+N−2

2 p)s|v(s, θ)|p dµ
) p−2

p

= 0

and hence we also have g ∈ L1(t,+∞).
Combining (41), (42) with Lemma 4.4, Lemma 4.5 and (40) we obtain

|ν2(t)| 6

[
6NCfCN,p e

(− 2N
p +N−2)t

(∫
Ct
e(−N+N−2

2 p)s|v(s, θ)|p dµ

)1− 2
p

+ 2Ch(C̃ε + 1)e−εt + 6NCfCN,2e
−2t + 6CfCN,p g(t)

]
(N (t) + 1) + 3Cfe

−2t .

The statements of the lemma follow from this last estimate and the definition of g. �

We can now prove that the function N admits a finite limit as t→ +∞.

Lemma 5.8. Under the same assumptions as in Lemma 5.5, the limit γ := limt→+∞N (t) exists
and is finite. Moreover γ > 0.

Proof. From Lemma 5.6 we have that

(44) lim inf
t→+∞

N (t) > 0 .

On the other hand, by Lemma 5.5, Schwarz inequality, and Lemma 5.7, we have

(45) (N (t) + 1)′ = N ′(t) = ν1(t) + ν2(t) 6 ν2(t) 6 C1(e−αt + g(t))(N (t) + 1) + C2e
−2t

and in turn

d

dt

[
eC1

∫ +∞
t

(e−αs+g(s)) ds(N (t) + 1)
]
6 C2e

−2t+C1

∫ +∞
t

(e−αs+g(s)) ds .

Since the right hand side in the above line belongs to L1(t,+∞), after integration we deduce that
N is bounded from above and hence, by (45) and Lemma 5.7, it follows that N ′ is the sum of the
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nonpositive function ν1 and of the integrable function ν2. This implies that

lim
t→+∞

N (t) = N (t) + lim
t→+∞

∫ t

t

N ′(s) ds

exists and it is necessarily finite since N is bounded. This limit is necessarily nonnegative in view
of (44). �

As a consequence of the convergence of N , the following estimates on H hold.

Lemma 5.9. Suppose that all the assumptions of Lemma 5.5 are satisfied. Then there exists a
constant K1 > 0 such that

(46) H(λ) 6 K1e
−2γλ for any λ > t,

with γ = limt→+∞N (t) as in Lemma 5.8. Moreover, for any σ > 0 there exists a constant K2(σ)
such that

(47) H(λ) > K2(σ)e−(2γ+σ)λ for any λ > t .

Proof. By Lemma 5.4 and Lemma 5.8, we have

H ′(λ)

H(λ)
= −2N (λ) = −2

[
γ −

∫ +∞

λ

N ′(s) dx
]
6 −2γ + 2

∫ +∞

λ

ν2(s) ds .

By Lemma 5.7 we then obtain

H ′(λ)

H(λ)
6 −2γ + Ce−αλ for any λ > t

where C is a constant depending only on N,h, f, u, ε,N, p and α is as in Lemma 5.7. Estimate
(46) follows after integration in the last inequality.

On the other hand, for any σ > 0 there exists λ(σ) > 0 such that

H ′(λ)

H(λ)
> −2γ − σ for any λ > λ(σ) .

Estimate (47) follows after integration. �

6. A blow-up argument

Convergence of the frequency function N as t → +∞ is a fundamental tool in the following
blow-up argument. Hereafter, we denote as 0 = µ1 < µ2 6 . . . 6 µn 6 . . . the eigenvalues of
−∆SN−1 with the usual notation of repeating them as many times as their multiplicity. Hence we
have that µ1 = λ0 = 0 and

if k > 1 and
∑`−1
n=0mn < k 6

∑`
n=0mn, then µk = λ`,

where mn is defined in (6).

Lemma 6.1. Under the same assumptions as in Lemma 5.5, let us define the family of functions
{wλ}λ>t

wλ(t, θ) :=
v(t+ λ, θ)√

H(λ)
for any t > 0 and θ ∈ SN−1 .

Let γ be the limit introduced in Lemma 5.8. Then
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(i) there exists k0 ∈ N \ {0} such that γ =
√
µκ0

;
(ii) for any sequence λn → +∞ there exists a subsequence λnk and an eigenfunction ψ of
−∆SN−1 corresponding to the eigenvalue µk0 such that ‖ψ‖L2(SN−1) = 1 and {wλnk } con-

verges to the function w(s, θ) = e−
√
µk0sψ(θ) weakly in Hµ(C0), strongly in Hµ(Ct) for any

t > 0, and strongly in C1,α
loc (C0) for any α ∈ (0, 1).

Proof. We divide the proof into several steps.

Step 1. We observe that {wλ}λ>t is bounded in Hµ(C0). Indeed, by (40) and the definition of wλ
we deduce that

N (λ) + 1 >
1

2

(∫
C0
|∇Cwλ|2dµ+

∫
Γ0

w2
λ dS

)
and by Lemma 4.3 and Lemma 5.8 we conclude that {wλ}λ>t is bounded in Hµ(C0).

Step 2. Let {λn}n∈N be a sequence such that λn → +∞. From Step 1, it follows that there exists
a subsequence λnk and a function w ∈ Hµ(C0) such that wλnk ⇀ w in Hµ(C0). We claim that w
is harmonic on C0.

Indeed, by direct computation, we have that wλ weakly solves the equation

(48) −∆Cwλ(t, θ) = g1(λ, t, θ) + g2(λ, t, θ), in C0,

where

g1(λ, t, θ) = e−2λe−2th̃(t+ λ, θ)wλ(t, θ), g2(λ, t, θ) =
e−2λ√
H(λ)

e−2tf̃(t+ λ, θ,
√
H(λ)wλ(t, θ)),

and hence, for any φ ∈ Hµ,0(C0),∫
C0
∇Cwλ·∇Cφdµ =

∫
C0
g1(λ, t, θ)φ(t, θ) dµ+

∫
C0
g2(λ, t, θ)φ(t, θ) dµ.(49)

We estimate the two terms in the right hand side of (49). By (H), Lemma 4.4, and boundedness
of {wλ} in Hµ(C0), we have that∣∣∣∣ ∫

C0
g1(λ, t, θ)φ(t, θ) dµ

∣∣∣∣ 6 Che−ελ ∫
C0
e−εt|wλ(t, θ)| |φ(t, θ)| dµ(50)

6 ChC̃εe
−ελ
(∫
C0
|∇Cwλ|2 dµ+

∫
Γ0

w2
λdS

)1
2
(∫
C0
|∇Cφ|2 dµ+

∫
Γ0

φ2dS

)1
2

= o(1)

as λ→ +∞. On the other hand by (F) we have∣∣∣∣ ∫
C0
g2(λ, t, θ)φ(t, θ) dµ

∣∣∣∣ 6 Cfe−2λ

∫
C0
e−2t|wλ(t, θ| |φ(t, θ)| dµ(51)

+ Cfe
p(N−2)−2N

2 λ

∫
C0
e
p(N−2)−2N

2 t|v(t+ λ, θ)|p−2|wλ(t, θ)| |φ(t, θ)| dµ.

One can show that the first term at the right hand side of (51) tends to zero as λ → +∞ by
proceeding as in (50). Let us prove that also the second term at right hand side of (51) tends to
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zero. Indeed, by Hölder inequality, Lemma 4.5 and boundedness of {wλ} in Hµ(C0) we obtain

e
p(N−2)−2N

2 λ

∫
C0
e
p(N−2)−2N

2 t|v(t+ λ, θ)|p−2|wλ(t, θ)| |φ(t, θ)| dµ(52)

6 e
p(N−2)−2N

2 λ

(∫
C0
e
p(N−2)−2N

2 t|v(t+ λ, θ)|p dµ
) p−2

p

×

×
(∫
C0
e
p(N−2)−2N

2 t|wλ(t, θ)|p dµ
) 1
p
(∫
C0
e
p(N−2)−2N

2 t|φ(t, θ)|p dµ
) 1
p

6 CN,pe
p(N−2)−2N

2 λe
p−2
p

2N−p(N−2)
2 λ

(∫
Cλ
e
p(N−2)−2N

2 t|v|pdµ
) p−2

p

×
(∫
C0
|∇Cwλ|2dµ+

∫
Γ0

w2
λ dS

) 1
2
(∫
C0
|∇Cφ|2dµ+

∫
Γ0

φ2 dS

) 1
2

→ 0+

as λ → +∞ since p < 2∗. Passing to the limit in (49) along the sequence {λnk} and using (50),
(51), (52) we obtain ∫

C0
∇Cw · ∇Cφdµ = 0 for any φ ∈ Hµ,0(C0) .

This proves that w is harmonic in C0.

Step 3. We claim that wλnk → w strongly in Hµ(Ct) for any t > 0. We first observe that, testing

equation ∆Cw = 0 with a function φ ∈ Hµ(C0), we have

(53)

∫
C0
∇Cw · ∇Cφdµ = −

∫
Γ0

∂w

∂s
φ dS .

Moreover, since
∫

Γ0
w2
λ dS = 1, by compactness of the trace map we also have that

(54)

∫
Γ0

w2 dS = 1.

To prove strong Hµ(Ct)-convergence of wλnk → w, we notice that, by direct computation, the

function uλ = T−1wλ is actually a rescaling of the function u, i.e.

uλ(x) =
e−

N−2
2 λ√

H(λ)
u(e−λx)

so that it solves the equation

−∆uλ −
(
N − 2

2

)2
uλ
|x|2

= G1(λ, x) +G2(λ, x), in B1,

where

G1(λ, x) = e−2λh(e−λx)uλ(x), G2(λ, x) =
e−

N−2
2 λ · e−2λ√
H(λ)

f(e−λx,
√
H(λ)e

N−2
2 λuλ(x)).

By (H) we obtain

|G1(λ, x)| 6 Che−ελ|x|−2+ε|uλ(x)|(55)
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and by (F) and (46)

(56) |G2(λ, x)| 6 Cfe−2λ|uλ(x)|+ Cf (H(λ))
p−2
2 e(−N+N−2

2 p)λ|uλ(x)|p−1 .

Taking into account that the set {uλ}λ>t is bounded in H(B1) (we recall that T is an isometry),
by (11) we also have that {uλ}λ>t is also bounded in H1(A) for any open set A b B1 \ {0}.

Therefore by (55), (56), (46), the fact that p < 2∗, and a standard bootstrap argument, we

deduce that uλ is bounded in C1,α
loc (B1 \ {0}) for any α ∈ (0, 1); the same holds true for the set

{wλ} in C1,α
loc (C0) for any α ∈ (0, 1).

Moreover along the subsequence {λnk} we have that

wλnk → w in C1,α
loc (C0)

for any α ∈ (0, 1) and in particular

(57)
∂wλnk
∂s

→ ∂w

∂s
in C0,α

loc (C0) .

Taking λ = λnk in (48), testing in Ct with the function wλnk −w ∈ Hµ(Ct), for any t > 0 we obtain∫
Ct
∇Cwλnk · ∇C(wλnk − w) dµ = −

∫
Γt

∂wλnk
∂s

(wλnk − w) dS

+

∫
Ct
g1(λnk , s, θ)(wλnk (s, θ)− w(s, θ)) dµ+

∫
Ct
g2(λnk , s, θ)(wλnk (s, θ)− w(s, θ)) dµ.

Using (53) with φ = wλnk − w, the last identity then gives∫
Ct
|∇C(wλnk − w)|2 dµ = −

∫
Γt

(
∂wλnk
∂s

− ∂w

∂s

)
(w − wλnk ) dS

+

∫
Ct
g1(λnk , s, θ)(wλnk (s, θ)− w(s, θ)) dµ+

∫
Ct
g2(λnk , s, θ)(wλnk (s, θ)− w(s, θ)) dµ.

Passing to the limit as k → +∞, proceeding as in (50)-(52) and using (57) and the fact that
wλnk → w in L2(Γt), we obtain ∇Cwλnk → ∇Cw in L2(Ct) and in turn, thanks to Lemma 4.3,

wλnk → w strongly in Hµ(Ct) for all t > 0.

Step 4. We claim that there exists k0 ∈ N \ {0} such that

w(s, θ) = e−
√
µk0sψ(θ),

where ψ is an eigenfunction of −∆SN−1 associated to the eigenvalue µk0 such that
∫
SN−1 ψ

2dS = 1.
To prove the claim, we study the frequency functions associated to wλ and w. According with

(33), it is reasonable to associate to every solution wλ of (48) the Almgren-type frequency function

Nλ(t) :=
Dλ(t)

Hλ(t)
for any t > 0 and λ > t,

where

Dλ(t) :=

∫
Ct
|∇Cwλ|2 dµ−

∫
Ct
g1(λ, t, θ)wλ(s, θ) dµ−

∫
Ct
g2(λ, t, θ)wλ(s, θ) dµ
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and

Hλ(t) :=

∫
Γt

w2
λdS .

By direct computation it follows that

N (t+ λ) = Nλ(t) for any t > 0 and λ > t.(58)

Since wλnk → w strongly in Hµ(Ct) for any t > 0, passing to the limit as k → ∞ and proceeding

as in (50)-(52), we obtain that, for any t > 0,

(59) Dλnk
(t)→

∫
Ct
|∇Cw|2 dµ

and

(60) Hλnk
(t)→

∫
Γt

w2 dS .

We notice that

(61)

∫
Ct
|∇Cw|2 dµ+

∫
Γt

w2 dS > 0 for any t > 0 .

Indeed, if there exists t > 0 such that
∫
Ct |∇Cw|

2 dµ +
∫

Γt
w2 dS = 0, then by a classical unique

continuation property we deduce that w is identically zero in C0 in contradiction with (54). More-
over

(62)

∫
Γt

w2 dS > 0

for any t > 0 since otherwise, if there exists t > 0 such that
∫

Γt
w2 dS = 0, then by (59), (60), (61)

we would have

γ = lim
k→+∞

N (t+ λnk) = lim
k→+∞

Nλnk (t) = lim
k→+∞

Dλnk
(t)

Hλnk
(t)

= +∞,

a contradiction. Therefore

Nλnk (t)→ Nw(t) :=

∫
Ct |∇Cw|

2 dµ∫
Γt
w2dS

for any t > 0. Combining this with (58) and Lemma 5.8 we deduce that

Nw(t) = γ for any t > 0.(63)

This means that Nw is constant and in particular, for almost every t > 0, by Lemma 5.5 we have

0 = N ′w(t) = −2

(∫
Γt

∣∣∂w
∂s

∣∣2 dS)(∫
Γt
w2dS

)
−
(∫

Γt
w ∂w
∂s dS

)2
(∫

Γt
w2dS

)2 .

The condition
(∫

Γt
w ∂w
∂s dS

)2
=
(∫

Γt

∣∣∂w
∂s

∣∣2 dS)(∫
Γt
w2dS

)
implies that, for almost every t > 0,

the functions θ 7→ w(t, θ) and θ 7→ ∂w
∂s (t, θ) are parallel as vectors of L2(SN−1) and hence there

exists a function η depending only on t such that

(64)
∂w

∂t
(t, θ) = η(t)w(t, θ) for any t > 0.
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Clearly the function η(t) = (w(t, θ))−1 ∂w
∂t (t, θ) is well defined and continuous for any t > 0 thanks

to (62). After integration in (64) we deduce that w admits the representation

w(t, θ) = ϕ(t)ψ(θ).

It is not restrictive assuming that
∫
SN−1 ψ

2dS = 1. Inserting the above representation of w into
the equation ∆Cw = 0, it follows that there exist k0 ∈ N \ {0} and c1, c2 ∈ R such that

−∆SN−1ψ(θ) = µk0ψ(θ) and ϕ(t) = c1e
√
µk0 t + c2e

−√µk0 t.

Since w ∈ Hµ(C0) and
∫

Γ0
w2dS = 1, then necessarily c1 = 0 and c2 = 1, so that we may write

(65) w(t, θ) = e−
√
µk0 tψ(θ).

Step 5. To conclude the proof, we observe that, inserting (65) into (63), we obtain that γ =
√
µk0 .
�

The next lemma provides an upper bound for the function v.

Lemma 6.2. Suppose that all the assumptions of Lemma 5.5 are satisfied. Then, up to enlarge t,
there exists a constant C independent of s such that

(66) sup
Γs

v2 6 CH(s) for any s > t

and

(67) sup
Γs

v2 6 CK1e
−2γs for any s > t.

Proof. Estimate (67) follows from (66) and (46). In order to prove (66) we proceed by contra-
diction and assume that there exists a sequence sn → +∞ such that

sup
θ∈SN−1

v2(sn, θ) > n

∫
SN−1

v2(sn, θ) dS(θ) .

Putting λn := sn − 1 and dividing both sides of the last inequality by
√
H(λn) we infer

(68) sup
θ∈SN−1

w2
λn(1, θ) > n

∫
SN−1

w2
λn(1, θ) dS(θ)

with wλn as in Lemma 6.1. By Lemma 6.1, along a suitable subsequence {λnk} we have

sup
θ∈SN−1

w2
λnk

(1, θ)→ sup
θ∈SN−1

e−2γψ2(θ)

and ∫
SN−1

w2
λnk

(1, θ) dS(θ)→ e−2γ

∫
SN−1

ψ2(θ) dS(θ) = e−2γ ,

hence contradicting (68). �

We now describe the behavior of H(t) as t→ +∞.

Lemma 6.3. Suppose that all the assumptions of Lemma 5.5 are satisfied and let γ be as in
Lemma 5.8. Then the limit

(69) lim
t→+∞

e2γtH(t)

exists and belongs to (0,+∞).
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Proof. By Lemma 5.4, Lemma 5.8, and direct computations we obtain

d

dt
(e2γtH(t)) = 2γe2γtH(t) + e2γtH ′(t) = 2e2γtH(t)(γ −N (t)) = 2e2γtH(t)

∫ +∞

t

N ′(s) ds .

Integration in (t, t) then yields

e2γtH(t)− e2γtH(t) = 2

∫ t

t

e2γsH(s)

(∫ +∞

s

ν1(z)dz

)
ds+ 2

∫ t

t

e2γsH(s)

(∫ +∞

s

ν2(z) dz

)
ds.(70)

By Lemma 5.5 we deduce that the function

s 7→ e2γsH(s)

∫ +∞

s

ν1(z) dz

is non positive.
On the other hand combining Lemma 5.7 with (46) we infer that

s 7→ e2γsH(s)

∫ +∞

s

ν2(z) dz

is integrable in a neighborhood of infinity. This implies that the right hand side of (70) admits
a limit as t → +∞. This proves that the limit in (69) exists; on the other hand by (46) it is
necessarily finite. It remains to prove that it is strictly positive.

Let R be such that BR ⊂ Ω and let T := − logR. For any k ∈ N let us denote by ψk an
eigenfunction of −∆SN−1 corresponding to the eigenvalue µk and suppose that the set {ψk}k>1 is
an orthonormal basis of L2(SN−1). For any t > T , we define the functions

ϕk(t) :=

∫
SN−1

v(t, θ)ψk(θ) dS(θ)

and

ζk(t) :=

∫
SN−1

[
e−2th̃(t, θ)v(t, θ) + e−2tf̃(t, θ, v(t, θ))

]
ψk(θ) dS(θ) .

Since v is a solution to (23) then, for any k > 1, ϕk solves the equation

−ϕ′′k(t) + µkϕk(t) = ζk(t) in [T,+∞).

Integration of the above ordinary differential equation yields

ϕk(t) =

(
ck1 −

∫ t

T

e−
√
µk s

2
√
µk

ζk(s) ds

)
e
√
µk t +

(
ck2 +

∫ t

T

e
√
µk s

2
√
µk

ζk(s) ds

)
e−
√
µk t

for some ck1 , c
k
2 ∈ R. Let k0 > 1 be as in Lemma 6.1 so that

γ := lim
t→+∞

N (t) =
√
µk0 .

By definition of ϕk and the Parseval identity we have H(t) =

+∞∑
k=1

|ϕk(t)|2. In particular, by (46)

(71) |ϕk(t)| 6
√
H(t) 6

√
K1e

−√µk0λ for all t > t.

Let m be the multiplicity of the eigenvalue µk0 and let j0 be such that

µj0 = . . . = µk0 = . . . = µj0+m−1.
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Let us fix an index i ∈ {j0, . . . , j0 +m− 1} and provide an estimate for the function ζi. From (H),
(F), (46), and Lemma 6.2 we infer

|ζi(t)| 6 (Che
−εt + Cfe

−2t)
√
H(t) + CfC

p−1
2
√
ωN−1(H(t))

p−1
2 e(−N+N−2

2 p)t(72)

6
√
K1(Che

−εt + Cfe
−2t)e−

√
µk0 t + CfC

p−1
2
√
ωN−1K

p−1
2

1 e(−N+N−2
2 p)te−(p−1)

√
µk0 t.

Since p > 2, the previous estimate gives

s 7→ e
√
µk0 sζi(s) ∈ L1(0,+∞), s 7→ e−

√
µk0 sζi(s) ∈ L1(0,+∞).

This implies that(
ci2 +

∫ t

T

e
√
µk0 s

2
√
µk0

ζi(s) ds

)
e−
√
µk0 t = O(e−

√
µk0 t) = o(e

√
µk0 t) as t→ +∞

and hence

ci1 −
∫ +∞

T

e−
√
µk0 s

2
√
µk0

ζi(s) ds = 0

since otherwise we would have limt→+∞ ϕi(t)e
−√µk0 t 6= 0, in contradiction with (71).

Therefore we may write

ϕi(t) =

(∫ +∞

t

e−
√
µk0 s

2
√
µk0

ζi(s) ds

)
e
√
µk0 t +

(
ci2 +

∫ t

T

e
√
µk0 s

2
√
µk0

ζi(s) ds

)
e−
√
µk0 t(73)

and so by (72) we infer

ϕi(t) =

(
ci2 +

∫ t

T

e
√
µk0 s

2
√
µk0

ζi(s) ds

)
e−
√
µk0 t + o(e−(

√
µk0+δ) t) as t→ +∞(74)

where δ = min{ε, 2,−N + N−2
2 p}.

Suppose by contradiction that lim
t→+∞

e2
√
µk0 tH(t) = 0, so that, by (71), for any k > 1 we have

(75) lim
t→+∞

e
√
µk0 tϕk(t) = 0 .

Multiplying both sides of (74) by e
√
µk0 t and exploiting (75) we get

ci2 +

∫ +∞

T

e
√
µk0 s

2
√
µk0

ζi(s) ds = 0

and hence

ϕi(t) = −
(∫ +∞

t

e
√
µk0 s

2
√
µk0

ζi(s) ds

)
e−
√
µk0 t + o(e−(

√
µk0+δ) t) as t→ +∞.

Using again (72), we finally obtain

(76) ϕi(t) = O(e−(
√
µk0+δ) t) as t→ +∞.

Therefore, by (47) with σ < 2δ and (76), we have∫
SN−1

wλ(0, θ)ψi(θ) dS(θ) = (H(λ))−
1
2ϕi(λ) = o(1) as λ→ +∞,
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for any i ∈ {j0, . . . , j0 +m−1}. Passing to the limit as k → +∞ along a subsequence as in Lemma
6.1, then yields ∫

SN−1

ψ(θ)ψi(θ) dS(θ) = 0 for any i ∈ {j0, . . . , j0 +m− 1}

with ψ as in Lemma 6.1. This contradicts the fact that ‖ψ‖L2(SN−1) = 1 and that ψ belongs to the
space generated by ψj0 , . . . , ψj0+m−1. The proof is thereby complete. �

We are now ready to prove the main theorem.
Proof of Theorem 2.1. Let {ψi}i>1 be as in the proof of Lemma 6.3. By Lemma 6.1 and
Lemma 6.3, for any sequence λn → +∞ there exists a subsequence {λnk} such that, for any
α ∈ (0, 1),

eγλnk v(λnk , θ)→
j0+m−1∑
i=j0

βiψi(θ) in C1,α(SN−1) as k → +∞,(77)

eγλnk
∂v

∂t
(λnk , θ)→ −γ

j0+m−1∑
i=j0

βiψi(θ) in C0,α(SN−1) as k → +∞,(78)

and

eγλnk∇SN−1v(λnk , θ)→
j0+m−1∑
i=j0

βi∇SN−1ψi(θ) in C0,α(SN−1, TSN−1) as k → +∞(79)

for some βj0 , . . . , βj0+m−1 ∈ R such that (βj0 , . . . , βj0+m−1) 6= (0, . . . , 0) .
Let us prove that the coefficients βj0 , . . . , βj0+m−1 ∈ R depend neither on the sequence {λn}

nor on its subsequence {λnk}.
First of all, for any i ∈ {j0, . . . , j0 +m− 1} we have

lim
k→+∞

eγλnkϕi(λnk) = lim
k→+∞

eγλnk
∫
SN−1

v(λnk , θ)ψi(θ) dS(θ) = βi.(80)

On the other hand, by (73) with t = T := − logR and R as in the statement of Theorem 2.1, we
infer

ci2 = e
√
µk0 Tϕi(T )− e2

√
µk0 T

∫ +∞

T

e−
√
µk0 s

2
√
µk0

ζi(s) ds,

which inserted in (74) gives

ϕi(t) =

(
e
√
µk0 Tϕi(T )− e2

√
µk0 T

∫ +∞

T

e−
√
µk0 s

2
√
µk0

ζi(s) ds

)
e−
√
µk0 t

+ e−
√
µk0 t

∫ t

T

e
√
µk0 s

2
√
µk0

ζi(s) ds+ o(e−(
√
µk0+δ) t) as t→ +∞ .

Multiplying both sides of the last identity by e
√
µk0 t and passing to the limit as t→ +∞ we obtain

e
√
µk0 tϕi(t)→ e

√
µk0 Tϕi(T )− e2

√
µk0 T

∫ +∞

T

e−
√
µk0 s

2
√
µk0

ζi(s) ds+

∫ +∞

T

e
√
µk0 s

2
√
µk0

ζi(s) ds .
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This combined with (80) yields

βi = e
√
µk0 Tϕi(T )− e2

√
µk0 T

∫ +∞

T

e−
√
µk0 s

2
√
µk0

ζi(s) ds+

∫ +∞

T

e
√
µk0 s

2
√
µk0

ζi(s) ds .

Therefore the coefficients βj0 , . . . , βj0+m−1 do depend neither on {λn} nor on {λnk} and hence
(77)–(79) also hold as λ→ +∞ and not only along the sequence {λnk}. The proof of Theorem 2.1
then follows from (8), the fact that v = Tu, and direct computations. �
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