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CHAPTER 1 

GENERAL INTRODUCTION 

The relationship between genotype and phenotype 

The human genome is a complex structure containing approximately 

3 billion base pairs (bp)1,2. Much of the genetic diversity between 

humans is due to the presence of single nucleotide polymorphisms 

(SNPs),  mutations introduced into the human genome by replication 

errors3. As demonstrated by a recent analysis of the genome 

sequence of 1,092 individuals from 14 distinct populations, SNPs are 

not a rare phenomenon: more than 38 million SNPs have in fact been 

identified by this study4. Unfortunately elucidating the phenotypic 

impact of these polymorphisms is not straightforward due to the 

multiple ways mutations can affect phenotypes. Coding mutations 

(non-synonymous SNPs in particular) are easier to characterize 

because they directly impact protein structure or function. However 

protein-coding regions only account for a very small proportion of 

the entire sequence (~1.5%)5. The impact of SNPs on the remaining 

sequence is more difficult to assess but cannot be neglected since 

more than 80% of the genome was reported to have some 

biochemical function6.  Mutations in non-coding regions can interfere 

with splicing events, impact transcription or translation and also 

affect post-translational modifications7. 

Due to the complexity of the relationship between genotype and 

phenotype, the identification of genetic variants involved in 
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susceptibility to complex diseases is extremely challenging. Genetic 

linkage studies involving family trios, where parents are used as 

controls for an affected offspring, were a traditional means to 

identify genomic regions harboring genes predisposing to disease8. 

This past decade has seen the development of another approach for 

the unbiased identification of susceptibility genes: genome-wide 

association studies (GWAS). The statistical concept behind 

association studies is simple: significant associations are identified by 

comparing allele or genotype frequencies between cases and 

controls (qualitative phenotypes) or by comparing mean phenotypic 

values between genotypes (quantitative phenotypes) (Figure 1)9.  

The popularity of GWAS was made possible by the development of 

affordable genotype microarray platforms that can now measure up 

to 5 million SNPs across the genome. As of April 2014, 13,156 SNPs 

were reported as being genetically associated to some trait/disease 

by the 1,902 published studies registered in the Catalog of Published 

Genome-Wide Association Studies10. Most of these studies were 

performed on individuals of Caucasian ethnicity, non European 

populations have so far not been well characterized11. 

In spite of the large number of SNPs reported by GWAS, 

understanding the origin of disease susceptibility remains in most 

cases problematic, many of the reported polymorphisms in fact 

exhibit small to moderate effects and the majority of them explain  
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only a small proportion of the estimated heritability for the studied 

trait13 (heritability refers to the fraction of phenotypic variance in a 

population that can be additively explained by genetic factors14). 

In addition most reported disease-associated polymorphisms do not 

 

Figure 1. The concept behind genetic association studies for qualitative 

phenotypes. Allele frequencies are compared between cases and controls: the 

higher the difference for a particular polymorphism, the stronger the association of 

that SNP with disease susceptibility  (modified from
12

). 
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replicate well across cohorts or populations. Only 16% to 30% of 

reported significant associations have been consistently replicated15. 

Multiple factors can explain this phenomenon such as population 

stratification, low statistical power, poor coverage, measurement 

errors and incorrect analysis assumptions that lead to false 

positives16. Another possible explanation for the low replication rate 

of GWAS concerns the presence of gene-gene and gene-environment 

interactions17. Complex systems are characterized by the interplay of 

multiple entities which often exert redundant functions to ensure the 

robustness of the system. It is therefore possible that the effect of a 

polymorphism on a particular phenotype might be missed if the 

genetic variant affecting a gene is considered in isolation, without 

taking into account the genetic state of its interaction partners17.  

This phenomenon where the effect of a SNP depends on its genetic 

background is referred to as epistasis18. The role of the environment 

should also not be ignored. The impact of a polymorphism on a 

certain trait might become evident only in the presence of certain 

environmental conditions or stimuli19. Genetic analyses across 

populations selected from different environments can in fact lead to 

false positives especially when cases and controls are not matched 

across the different conditions. It is therefore important to perform 

genetic studies in homogenous cohorts were the impact of 

environmental factors can be minimized. 

GWAS are normally carried out using commercially available 

genotype platforms for the identification of associations between 

genetic variants and phenotypes. While this technology can now 
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measure up to 5 million polymorphisms it only assays a subset of all 

existing SNPs. Each SNP present on the arrays tags a certain number 

of other SNPs in a defined population. This is due to a phenomenon 

known as linkage disequilibrium (LD), the non-random association of 

alleles at two or more loci. SNPs closely located tend in fact to be 

inherited together so that their allelic states closely match. Each SNP 

on the array can therefore be used as a tag for all its closely linked 

SNPs. Once a tag SNP is identified as being associated with a 

particular phenotype, further analyses need to be performed to 

ascertain which polymorphism is functional among those tagged. 

Therefore significant associations identified by association studies in 

most cases do not reveal causative polymorphisms. 

Moreover linkage disequilibrium patterns differ across populations. 

For this reason association signals identified in one population cannot 

be easily extended to other populations. Since association and 

epistasis studies have so far been strongly biased towards European 

populations there is a great need for genetic studies focusing on less 

characterized populations. 

The immune system as a substrate for studying association and 

epistasis 

The immune system is a complex network characterized by the 

interplay of multiple immune cell subsets with distinct functions. 

Multiple immune diseases have been shown to have a strong genetic 

component, evident from the higher concordance in monozygotic 

twins compared to their heterozygotic counterpart20–25. Considering 
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the high heritability of most immune diseases and the complexity of 

the interactions between cell subsets the immune system represent a 

good model for studying the impact of genetic variants on 

phenotype.  

Because of its key role in promoting survival by protecting hosts 

against infections the immune system is characterized by a strong 

redundancy which ensures the robustness of the system26–28. It is 

therefore important to consider not only single mutations 

(association), which might have a small effect on complex immune 

phenotypes because of functional redundancy, but also combinations 

of mutations (epistasis). 

Association 

SNP association can be performed both on quantitative phenotypes 

such as gene or protein expression and qualitative phenotypes like 

disease status. 

A high-throughput association analysis often performed in the 

context of quantitative phenotypes is the expression Quantitative 

Trait Locus (eQTL) analysis. This technique associates genetic variants 

with gene expression measurements assayed in a particular cell type 

or tissue (Figure 2). The term eQTL can refer to the association 

between a genetic variant (called eSNP) and the gene expression of a 

proximal (cis eQTL) or distal (trans eQTL) gene29.  The exact definition 

of what constitutes a cis eQTL varies from study to study. In most 

cases cis eQTLs are defined as associations between gene expression 
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of one probe and allelic states of SNPs located in a ±1Mbp region 

spanning the probe midpoint30–32.  

The identification of eQTLs in different cell types is particularly 

valuable for understanding the relationship between polymorphisms 

and disease. Gene expression is in fact an important intermediate 

phenotype for multiple conditions. The advantage of associating 

mutations with variations in gene expression rather than 

susceptibility to immune diseases lies in the fact that the impact of a 

polymorphism on expression levels is direct. The impact on a 

complex disease is on the contrary more subtle since it is diluted by 

the complexity underlying biological networks which involve cross-

talks between multiple genes and pathways. 

EQTL analyses have been shown to be an important tool for 

identifying functional and causal SNPs from tag SNPs associated with 

disease susceptibility30,33,34. EQTLs are particularly useful in the 

context of SNPs located in intergenic or non-coding regions which 

cannot be directly connected with gene function35. Since eQTLs link 

genetic variants with their modulated genes they can be used to 

pinpoint proteins involved in disease pathogenesis34. 

Trait-associated SNPs have been shown to be more likely to be 

associated with gene expression confirming the important role 

played by transcriptional regulation in disease susceptibility or 

etiology36. EQTLs could therefore be used to limit the number of SNPs 

to include in genome-wide association studies for a particular disease 

in order to reduce the burden of multiple testing37. 
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EQTL studies can also be used to propose new candidate genes for 

complex diseases. This is particularly relevant when eQTL studies are 

performed on well defined primary cell subsets already known to be 

involved in a particular disease. For example a study of autoimmune 

diseases, which are characterized by a strong T regulatory cells (Treg) 

involvement, could benefit from the identification of eQTLs in this 

CD4+ T cell population.  

Detection of statistical association 

From a statistical point of view eQTLs can be identified using a 

number of different tests. The most commonly used tests for 

 

Figure 2. Expression Quantitative Trait Locus. Expression levels of Gene A are 

influenced by the genotype at Locus A. The A allele is associated with low 

transcriptional expression while the G allele is associated with higher 

transcriptional levels. 



16 
 

estimating significance of association are linear regression38–40, 

Spearman correlation31,39,41–43 and one-way analysis of variance 

(ANOVA or Kruskal-Wallis)44. While P-values estimate the significance 

of an association between a factor and an outcome they give no 

indication on the magnitude of the effect 45. There are multiple 

metrics to estimate the strength of the association between genetic 

variants and quantitative phenotypes. The metric is usually related to 

the statistical test used to estimate the significance of the 

association. Effects sizes of an association estimated through one-

way analysis of variance are usually reported as fold changes 

between the mean or median of the highest group and the mean or 

median of the lowest group. In the context of linear regression or 

correlation effect sizes are estimated by the regression coefficient β 

or by the correlation coefficient r2. 

Association can also be performed on qualitative phenotypes such as 

disease status. One of the most used tests for association in this 

context is the Pearson's chi-squared test, also known as the chi-

square test for goodness-of-fit46–48. This test is applied to categorical 

variables and it estimates the association between row and column 

factors using a two-way table: one variable contains alleles or 

genotypes for a particular SNP; the other variable is the disease 

status (case/control). Each cell contains the count of the number of 

individuals with that particular factor combination. The null 

hypothesis H0 assumes that there exist no association between the 

SNP under consideration and susceptibility to the disease under 

study. 
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Another commonly used test is logistic regression48. Logistic 

regression fits the following model to the data: 

   
 

     
       

(where   is the probability of being affected by the disease and   is a 

measure of the allele dosage for the SNP). The test for association 

evaluates whether the coefficient   is significantly different from 

zero. The strength of a statistical association in the context of 

qualitative phenotypes is usually measured using the metric odds 

ratio (OR). An odds ratio is a measure of association between an 

exposure (in statistical genetics this usually refers to an allele or a 

genotype) and an outcome (in statistical genetics this usually refers 

to the presence or absence of disease)49.  

Epistasis 

As previously mentioned, single mutations are unlikely to account for 

the complexity of multifactorial diseases. Thus, the synergistic or 

antagonistic effect of multiple polymorphisms needs to be 

investigated in order to better understand the mechanisms 

underlying disease susceptibility. 

Definition   

The word epistasis was first introduced by Bateson to refer to the 

masking of the effects of one genetic locus by another locus50. A 

classical example of epistasis involves fur color in mice. Coat color is 

determined by two loci: locus A, which affects the early stages of the 

synthesis of an allele involved in pigment production, and locus B, 
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which determines whether the fur has bands or not. For locus A, the 

dominant allele results in normal pigment production while the 

recessive allele impairs synthesis. For locus B the dominant allele 

results in a brown fur with bands while the recessive allele results in 

a black fur without bands. Mice carrying the aa genotype for locus A 

are albinos regardless of their genotype at locus B. The aa genotype 

at locus A is therefore considered as epistatic to locus B (Table 1). 

Bateson’s definition of epistasis refers to what is nowadays 

considered as biological epistasis: the result of physical interactions 

between entities within a biological pathway or a gene regulatory 

network that make the effect of one gene on a phenotype dependent 

on the effect of one or more other genes51.  

Epistasis is an ubiquitous property of biological networks52. Biological 

networks are in fact extremely complex because of their numerous 

interacting entities. They are also characterized by multiple 

redundant pathways that confer a strong robustness to the system. 

This robustness is guaranteed by the scale-free nature of interaction 

networks where most molecules are involved in few interactions but 

few are involved in many different ones (hubs)53. 
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It has been shown that a disruption of 80% of nodes in a scale-free 

network still allows it to function correctly since most pathways 

between any two nodes can still be drawn52. Due to the extreme 

robustness of biological networks it is thus very unlikely that a variant 

alone could have a huge impact on a complex phenotype. It is not 

clear why epistasis exists but it is likely that the redundant and robust 

nature of genetic networks, that buffer a phenotype against the 

effects of mutations, makes phenotypic changes visible only when 

multiple genes are disrupted in a pathway54. The ubiquity of 

interactions between molecular entities in gene regulation suggests 

that the relationship between genetic variants and phenotypes is not 

biunivocal but that complex traits are likely to involve synergy 

between multiple gene products55. 

Table 1 Example of biological epistasis. Mouse fur color is determined by two loci 

(A and B). A mouse carrying the aa genotype for locus A will be white regardless of 

its genotype at locus B. The genotype aa is therefore epistatic to locus B. 

 AB Ab aB ab 

AB 
AABB 

Brown 

AABb 

Brown 

AaBB 

Brown 

AaBb 

Brown 

Ab 
AAbB 

Brown 

AAbb 

Black 

AabB 

Brown 

Aabb 

Black 

aB 
aABB 

Brown 

aABb 

Brown 

aaBB 

White 

aaBb 

White 

ab 
aAbB 

Brown 

aAbb 

Black 

aabB 

White 

aabb 

White 
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The term epistasis is also often used to refer to statistical epistasis, a 

concept introduced by Fisher in 1918 with respect to deviations from 

additivity in a statistical model explaining the relationship between 

various loci and phenotypic variation in a particular population56. In 

the context of qualitative phenotypes Fisher’s definition of epistasis 

would refer to the following model: 

           

where     is the penetrance (the probability of developing a disease 

given a certain genotype) associated to genotype   at locus A and 

genotype   at locus B,    is a parameter representing the effect of 

genotype   at locus A and    is a parameter representing the effect of 

genotype   at locus B.  

Other authors assume that epistasis refers to a departure from a 

multiplicative model on the penetrance scale57,58. In this case 

penetrance would be defined as: 

           

 While biological epistasis happens at the cellular level in a particular 

individual, statistical epistasis is a phenomenon associated to an 

entire population59.  

The existence of different definitions of the term epistasis often 

creates confusion since it is not always clear from the context which 

type of epistasis is being analyzed in a particular study. 

Statistical Epistasis vs. Biological Epistasis 

One of the major challenges of multi-locus analyses consists in 

finding ways to conciliate the concept of statistical epistasis (that is 
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usually discovered through standard epistasis analyses) and biological 

epistasis (the phenomenon we are really interested in). Making 

hypotheses about biological function from statistical epistasis is 

extremely challenging due to the large number of confounding 

factors such as biases in the study design and analysis and the 

presence of linkage disequilibrium which complicates the 

identification of causative SNPs15. This challenge is even more 

pronounced in the case of humans due to the impossibility of 

conducting the double gene knockouts experiments that are possible 

in model organisms. Making the connection between biological and 

statistical epistasis therefore requires the integration of multiple data 

sources such as genomics, transcriptomics, proteomics and 

metabolomics. To complicate matters biological epistasis, which is a 

phenomenon occurring at the individual level, can exist in the 

absence of statistical epistasis, which is a phenomenon occurring at 

the population level, simply as a result of biases in the sample 

collection51. This is particularly true when the polymorphisms 

involved in the interaction are rare so that a random sample might 

not contain individuals with the deleterious variant combination. The 

reverse is also true, statistical epistasis does not always imply 

biological epistasis especially when there are biases in sample 

collection and cases and controls are not properly matched. 

Models 

There exist multiple models for epistasis. In the case of 2 biallelic loci 

512 fully penetrant models can be identified60, the most common  
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Table 2. Four common epistatic models: threshold model (T), dominant-dominant 

model (DD), recessive-dominant model (RD) and recessive-recessive model 

(RR)
60,61

 

 

T Model 

SNP1/SNP2 aa aA AA 

bb 1 1 0 

bB 1 0 0 

BB 0 0 0 
 

DD Model 

SNP1/SNP2 aa aA AA 

bb 1 1 0 

bB 1 1 0 

BB 0 0 0 

 

RD Model 

SNP1/SNP2 aa aA AA 

bb 1 1 0 

bB 0 0 0 

BB 0 0 0 
 

RR Model 

SNP1/SNP2 aa aA AA 

bb 1 0 0 

bB 0 0 0 

BB 0 0 0 

 

ones including the threshold model (at least three risk alleles 

required for disease independently of which locus they come from), 

the jointly dominant-dominant model (at least one copy of the risk 

allele at both loci required for disease), the jointly dominant-

recessive model (two copies of the risk allele from the first locus and 

at least one copy of the risk allele from the second locus required for 

disease) and the jointly recessive-recessive one (two copies of the 

risk allele at both loci required for disease) (Table 2)60,61. 

An important question to consider is whether there exist loci that 

jointly affect a phenotype without displaying marginal effects (also 

referred to as main effects)62,63. Marginal effects are present when a 

locus independently displays an association with a particular 
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phenotype. From a mathematical point of view it is possible to 

conceive epistatic models where both loci do not show any marginal 

association with the phenotype but it is still not clear if these models 

are biologically plausible and how common they are in humans17. An 

example of this would be the XOR (exclusive OR) model. This model 

assumes that individuals are at a high risk if they inherit the 

heterozygous genotype for one locus and the homozygous genotype 

for the other locus (AaBB, Aabb, AABb and aaBb are high risk 

combinations in this model)64.  

Role of epistasis 

The role of epistasis has been recognized in multiple studies on 

model organisms such as yeast, Escherichia coli and mice65–69 and in 

the pathogenesis of several human diseases such as cardiovascular 

diseases, cancer and other immune conditions18,70–73.  

Epistasis is often considered as a possible factor accounting for the so 

called missing heritability in complex diseases74,75. All risk loci 

identified so far by GWAS studies only explain a small proportion of 

the total estimated heritability14. It has been suggested that a large 

proportion of this missing heritability is due to an overestimation, 

from population data, of the total heritability. Most estimates of total 

heritability are in fact based on the assumption that there exist no 

interactions between loci. This assumption is unjustifiable since 

models involving interactions are also consistent with the observed 

data. Including interactions in the model would lead to smaller total 

heritability estimates. In a model allowing for interactions, variants 
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reported as significantly associated with a disease would therefore 

explain a larger proportion of the total heritability than initially 

thought75.  

Mechanisms underlying epistasis 

Multiple molecular mechanisms can cause the emergence of epistasis 

(as reviewed by Ben Lehner76). Epistatic interaction can involve 

mutations in different genes (intermolecular epistasis) or multiple 

polymorphisms of the same gene (intramolecular epistasis). The 

simplest example of intermolecular epistasis involves molecules 

interacting directly. A mutation affecting a molecule can for example 

become phenotypically apparent only in the presence of a different 

mutation in the interacting partner protein. Similarly, deleterious 

mutations in one protein can be compensated by mutations in their 

interacting protein. This mechanism of epistasis is common among 

surface receptors and their respective ligands. In this context 

Baessler et al. described an epistatic interaction between the ghrelin 

ligand, an appetite inducing hormone secreted by the stomach, and 

its receptor  affecting susceptibility to myocardial infarction and 

coronary artery disease77.  

Another biological mechanism that can cause epistasis is functional 

redundancy. In complex biological network such as those that 

characterize the immune system multiple proteins play a similar role 

or function. This redundancy is essential in assuring the robustness of 

the system. In this context phenotypic changes might become 

evident only in the presence of mutations affecting multiple 
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functionally similar proteins since the dysregulation of a single 

molecule can be easily compensated by other analogous molecules.  

Functional redundancy can also involve mutations affecting genes in 

functionally similar pathways. For example if under certain conditions 

the same metabolite can be produced by two different pathways, 

mutations affecting a single pathway will have little effect on the 

synthesis of the metabolite78.  

Epistasis can also arise when mutations affect multiple genes 

belonging to the same molecular complex or pathway. In linear 

pathways or in molecular complexes a mutation disrupting a single 

gene affects the whole system. Subsequent mutations in the pathway 

or complex would have no further effect. Mutations in one gene 

would therefore mask all other mutations in the pathway. For 

example a loss of function mutation in an upstream molecule would 

have no effect on the pathway if another mutation constitutively 

activated a downstream target.  

Another interesting molecular context for epistasis is linked to the 

concept of physical constraint. If a mutation forces a system to reach 

saturation further mutations might have smaller effects than 

expected by an additive model simply because the maximum or 

minimum effect has already been attained. Physical constraints can 

cause not only intermolecular epistasis but also intramolecular 

epistasis. Intermolecular epistasis can also occur in more complex 

non-linear systems such as feedback loops.  

While most intermolecular epistatic interactions are synergistic the 

majority of intramolecular epistatic interactions are compensatory79. 
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One of the mechanisms for intramolecular epistasis is threshold 

epistasis: each gene and protein has a particular stability and a single 

mutation might not be sufficient to cross the stability threshold80. 

Disruption of function is obtained only in the presence of multiple 

deleterious polymorphisms.  

Epistasis can also be associated to conformational changes. The 

effect of a mutation in a receptor that increases affinity might 

become relevant only if another mutation changes the conformation 

of the protein so that the new residue can come in contact with the 

ligand.  

Another interesting example of intramolecular epistasis comes from 

the interaction between coding mutations that affect function and 

non-coding mutations that affect transcription. A beneficial coding 

mutation could in fact have no noticeable phenotypic effect in the 

presence of a non-coding mutation switching off the transcription of 

the corresponding gene.  

Detection of statistical epistasis 

There exist multiple methods to detect statistical epistasis. The most 

common statistical test used for identifying epistatic interactions in 

the context of qualitative phenotypes is logistic regression. Logistic 

regression fits the following model to the data: 

   
 

     
                    

(where   is the probability of being affected by the disease and   is a 

measure of the allele dosage for the SNP). The test for interaction 

evaluates whether the coefficient   is significantly different from 
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zero. The regression coefficient   refers to interaction as departure 

from multiplicativity. In the context of quantitative phenotypes 

logistic regression is replaced by linear regression. In this case the 

dependent variable is the measurement under study and the 

interaction term reflects departure from additivity81. The advantage 

of using logistic or linear models lies in the ease of incorporating 

covariates such as gender or age. 

As for association, the strength of a statistical epistatic interaction in 

the context of qualitative phenotypes is usually measured using the 

metric odds ratio (OR). In this case the odds ratio is a measure of 

association between a genotype combination and the presence or 

absence of disease49. For quantitative phenotypes the value of the 

standardized regression coefficient for the interaction term in the 

regression model is usually a good estimation of the effect size. 

The burden of multiple testing 

Due to the large number of tests that needs to be performed to 

identify statistical association and epistasis at a genome-wide level, it 

is of uttermost importance to adopt strict multiple testing correction 

strategies during the discovery phase in order to reduce or control 

the proportion of false positives.  

The simplest and most commonly adopted correction strategy in this 

context is Bonferroni correction82,83. This correction procedure has 

the advantage of being simple and computationally inexpensive but 

unfortunately it relies on the hypothesis of independency between 

tests which in most genetic analyses does not hold due to linkage 
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disequilibrium between SNPs. In the context of eQTL analysis probes 

are also not independent due to the correlation existing between co-

regulated genes. 

False-discovery-rate (FDR) is another method frequently used for 

multiple testing correction that controls the expected proportion of 

falsely rejected null hypothesis84. FDR is relatively fast, easy to 

compute and it is more powerful than other multiple testing 

correction strategies but it is less conservative than Bonferroni and 

leads to an increased proportion of type I errors (a type I error is the 

rejection of a true null hypothesis). 

One of the most powerful strategies for multiple testing correction is 

permutation testing85. This strategy has been applied by many 

epistatic algorithms86,87. It is also extremely common in the context 

of eQTL studies30,39,41. Permutation-based corrections do not rely on 

any a priori hypothesis on the statistical distribution underlying the 

process under study. In a permutation test phenotype labels are 

randomly shuffled so that any real association between genotype and 

phenotype is broken and a statistics is computed using the same 

algorithm as for the original dataset. This strategy is used to build a 

null distribution that is then used to estimate significance. 

The main drawback of this approach lies in the computational burden 

of obtaining permuted P-values. In the context of genome-wide 

epistasis studies this approach becomes impractical due to the 

extremely large numbers of pairwise tests to perform for each 

permutation. 
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Regardless of the strategy used for multiple testing correction, 

replication still remains one of the major validation methods to 

reduce the risk of false-positives88. An eQTL is defined as replicated if 

a significant association of the same SNP with the same probe/gene 

and the same direction of effect is detected in a similar population. A 

less stringent definition of replication can also be adopted. In this 

case a perfect match between SNPs is not required as long as the 

eSNPs detected in the two cohorts are in strong linkage 

disequilibrium. The concept of replication for epistatic results has not 

been clearly defined37. Some argue that replication should be at the 

SNP level and with the same direction of effect in the same 

population. Others adopt a less strict definition looking for 

replication of a particular gene or biological pathway. 

The role played by linkage disequilibrium 

Commercially available microarray platforms can now measure up to 

5 million polymorphisms. Many of these genetic variants are not 

independent but jointly inherited due to a phenomenon known as 

linkage disequilibrium (LD). Linkage disequilibrium is the non-random 

association of allelic states at two or more loci. Knowledge of LD is 

extremely important in the context of SNP association/epistasis 

because variants identified as significantly associated with a 

particular phenotype in most cases are not causative but simply tag a 

causative variant. Commercially available microarrays in fact do not 

measure all SNPs but only a portion of them. Nonetheless these 

platforms were developed to tag a large number of variants. LD 
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therefore plays an important role in identifying causative variants 

from disease-associated variants. 

The concept of LD is linked to the concept of haplotypes, 

combinations of alleles at adjacent loci that are inherited together.  

Multiple metrics have been developed to estimate linkage 

disequilibrium from genotypic datasets. The most used metric in the 

context of genetic studies is r2. Given two genetic polymorphic loci A 

(alleles A1 and A2) and B (alleles B1 and B2) four distinct haplotypes 

can be formed: A1B1 with frequency      , A1B2 with frequency      , 

A2B1 with frequency       and A2B2 with frequency      . The metric 

D is defined as follows: 

           
    

where    
 is the frequency of allele A1 and     is the frequency of 

allele B1. D can be normalized using allele frequencies to obtain the 

coefficient D’: 

   
 

    
        

            
       

          

            
       

          
  

If D’=±1 only three out of the four possible haplotypes for SNP A and 

SNP B exist in the population under consideration. 

Another common normalization for the coefficient D is the coefficient 

   which is defined as followed: 

   
  

   
      

   
 

where    
 is the frequency of the allele A2 and     is the frequency of 

the allele B2. This coefficient is a measure of the correlation between 

the allelic states at different loci. An r2 of 1 between two SNPs 
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(perfect linkage disequilibrium) means that each SNP is a perfect tag 

for the other. It is therefore redundant to genotype both SNPs since 

the allelic state of one can be accurately predicted from the allelic 

state of the other. In this case only two out of the four possible 

haplotypes for SNP A and SNP B exist in the population under 

consideration. At the opposite side of the spectrum an r2 of 0 would 

imply that the two SNPs are completely independent.  

When a new mutation arises in proximity of another mutation it is 

initially limited to one haplotype (Figure 3). The genomic pool now 

contains three haplotypes, the two original ones and the one carrying 

the new mutation. A newly risen mutation is therefore linked to its 

adjacent mutation (D’=1). When a recombination event occurs 

between the two mutations a new haplotypes is created causing 

erosion in LD between the two polymorphisms: the larger the 

number of recombination events, the stronger the erosion89. LD thus 

decays with distance: SNPs closely located on the genome have a 

higher chance of being in strong LD because there is a lower chance 

of a recombination event affecting them90. 
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Figure 3. The origin of linkage disequilibrium. When a new mutation is introduced 

in a population (locus B) it is initially linked (D'=1) to all adjacent mutations (locus 

A). When a recombination event occurs between two adjacent mutations a new 

haplotype is introduced into the genetic pool and the linkage disequilibrium 

between the two loci is eroded. 
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One of the most widespread computational tools for the estimation 

and visualization of LD from genotypic datasets is Haploview91. This 

software utilizes triangular correlation plots to represent LD. SNPs 

are lined up on the horizontal axis and the color of the square 

connecting two SNPs is a measure of their pairwise LD (Figure 4).  

As can be easily deduced from the plot this tool is not suitable for the 

analysis of large or highly polymorphic regions because the 

complexity of the visualization increases with the number of SNPs 

under consideration.  

Another frequently used software for the analysis of LD is SNAP 

Proxy. The software supplies a user-friendly interface to retrieve lists 

 Figure 4. Linkage Disequilibrium plot for gene NOD2 as produced by the software 

Haploview
91 
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of SNPs in LD with a particular tag SNP in a pre-defined population 

(HapMap92–94 or 1000 Genomes Pilot project95). It also provides an 

option for building LD plots from a tag SNP. These plots are easy to 

interpret: SNPs are arranged according to their chromosomal 

position (x axis) and their pairwise r2 with the SNP of interest (left y 

axis). Recombination rates can also be obtained from the plot (right y 

axis) (Figure 5).  

A weakness of this visualization lies in the fact that SNP labels are not 

included in the plot but need to be retrieved using a different 

interface.  

The main drawback of both these two tools is that they do not aid in 

the identification of causative or functional SNPs from tag SNPs, an 

 

Figure 5. Linkage Disequilibrium plot for SNP rs11657841 as produced by SNAP 

Proxy
96
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essential step for understanding the biological mechanisms 

underlying a statistical association. Association and epistasis studies 

are in fact not performed on the totality of existent SNPs but are in 

most cases limited to those polymorphisms available on commercial 

genotyping platforms. As previously mentioned SNPs identified as 

being associated with a particular phenotype are rarely causative. 

The first step in pinpointing causative variants is to retrieve all SNPs 

in strong linkage with the polymorphism of interest. These variants 

then need to be ranked according to their functional potential before 

being carried forward for functional studies. This step requires the 

analysis of publicly available biological information. Relative position 

with respect to genes (intronic, exonic, promoter or intergenic 

regions) might for example hint at biologically interesting 

polymorphisms while publicly available experimental data like 

transcription-factor binding sites or open-chromatin regions might 

suggest a transcriptional involvement of the corresponding SNP. 

None of the existing LD visualization tools provides a straightforward 

way to integrate linkage disequilibrium information (required for the 

identification of potential causative SNPs) with additional publicly 

available knowledge (essential for the identification of 

polymorphisms with functional potential). There is therefore a strong 

need for new tools offering this functionality to assist geneticists in 

the identification of causative SNPs from disease- or trait-associated 

polymorphisms in order to bridge the gap between statistical 

association and biological mechanisms. 
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EQTLs in Immune Cells 

The first genome-wide eQTL study in humans was carried out by 

Stranger et al.32 on Epstein-Barr virus–transformed lymphoblastoid 

cell lines developed for 60 unrelated individuals of Caucasian 

ancestry (CEU) collected by the HapMap project92,93. The analysis was 

limited to 630 genes. In a subsequent publication the investigation 

was extended to 13,643 autosomal genes for all 270 individuals 

genotyped by the HapMap project93,94. The consortium selected 

individuals from four geographically distinct populations: 30 mother-

father-child trios of European ancestry living in Utah selected from 

the Centre d’Etude du Polymorphisme Humain (CEPH) collection 

(CEU), 45 unrelated Han Chinese individuals from Beijing, China 

(CHB), 45 unrelated Japanese individuals from Tokyo, Japan (JPT) and 

30 trios from the Yoruba region in Ibadan, Nigeria (YRI). Using a 0.001 

permutation threshold they detected eQTLs for 299 genes in CEU, 

318 genes in CHB, 341 genes in JPT and 394 genes in YRI. About 37% 

of significant eQTLs indentified by the study were shared between 

two or more HapMap populations. 

Since then multiple studies have been performed to elucidate the 

role of genetic variants on gene expression in different cell types. 

Dimas et al. performed a genome-wide scan for cis-eQTLs on three 

cell types (primary fibroblasts, Epstein-Barr-virus-immortalized B cells 

and T cells) in a cohort of 75 individuals of Caucasian ethnicity. Using 

a permutation threshold of 0.001 they reported 427, 442 and 430 

genes with at least a significant eQTL in fibroblasts, Epstein-Barr virus 

immortalized B cells and T cells respectively. A large proportion of 
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eQTLs were cell-type specific even for genes which were not 

significantly differentially expressed across cell types42. Murphy et al. 

performed a cis eQTL analysis on isolated CD4+ lymphocytes from 

200 individuals of self-reported non-Hispanic white ancestry. They 

identified significant eQTLs for 1585 distinct genes at a false 

discovery rate of 0.05. Their eQTLs were shown to be enriched for 

GWAS hits according to the GWAS catalog97. 

Zeller et al. used monocytes isolated from 1490 individuals of 

German origin to elucidate the role played by genetic variants in 

controlling gene expression in this immune cell subset44. Out of the 

12,808 monocyte-expressed genes identified by the study, 2,745 

harbored at least one SNP affecting their expression. Fairfax et al. 

performed a similar analysis on B cells and monocytes isolated from 

283 European individuals39. 7,468 genes harbored a B cell specific 

eQTL, 6,831 harbored a monocytes specific eQTL and 1,323 harbored 

an eQTL shared by the two immune subsets. They showed that while 

many eQTLs with large effect sizes were shared across these two cell 

types, the majority of eQTLs identified for these two primary tissues 

were cell-type specific. Even in this case a strong overlap with 

disease-associated variants was detected.   

Ferraro et al. profiled CD4+ conventional T cells and CD4+ Treg cells 

isolated from 168 donors, healthy or affected by type 1 diabetes and 

selected 65 individuals to perform a cis eQTL analysis98. They 

identified 105 genes harboring an eQTL for Treg cells and 110 genes 

for conventional CD4+ T cells (0.001 permutation threshold). Many of 

the eQTLs were shared across the two cell types.  
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Detection of eQTLs is not limited to isolated cells. Mehta et al. used a 

discovery cohort of 322 whole blood samples obtained from 

Caucasians and identified significant eQTLs for 363 genes after 

Bonferroni correction38. 98.6% of cis eQTLs were replicated in two 

independent cohorts. Westra et al. performed a similar analysis on 

5,311 samples and identified significant cis eQTLs for 44% of all 

tested genes at a false discovery rate of 0.0543.  

A new field of analysis has recently emerged focusing on response-

specific eQTLs (reQTLs)99. Barreiro et al. used dendritic cells isolated 

from 65 individuals to map eQTLs before and after Mycobacterium 

Tuberculosis (MTB) infection99. They were able to identify 198 

response eQTL that were specific to either untreated or MTB-

infected dendritic cells. A similar study was performed by Lee et 

al.100. They collected dendritic cells from 534 individuals from three 

different ethnicities (295 Caucasians, 122 African Americans, 117 East 

Asians) and stimulated them with three different stimuli: Escherichia 

coli lipopolysaccharide (LPS), influenza virus and interferon-β (IFN-β). 

They identified 121 genetic variants associated with the expression of 

their cis gene for at least one of the stimuli tested. A reQTL analysis 

was also performed in the context of monocytes101. Monocytes 

isolated from 432 healthy Europeans were stimulated with interferon 

gamma (IFN-γ) or LPS (2 or 24 hours). A large proportion of observed 

cis eQTLs modulated gene expression only upon stimulation. 

Conversely a large number of cis eQTLs present in naïve cells lost 

significance after stimulation.  
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Most of the studies published so far have been limited to individuals 

of Caucasian ethnicity. The few available studies involving Asian 

populations assayed Epstein-Barr virus–transformed lymphoblastoid 

cell lines developed from individuals collected by the HapMap 

project30 and whole blood expression measurements from a small 

cohort (76 samples) of Japanese individuals102. In this small scale 

study significant eQTLs were detected only for 107 genes. Up to now 

no study has analyzed the impact of genetic variants on isolated 

immune cells in Asian populations. Considering the strong genetic 

differences between Caucasian and Asian populations it is essential 

to perform similar studies in Asian populations to estimate the 

percentage of population specific eQTLs. 

Other studies have been performed trying to link genetic variants 

with protein expression (frequently referred to as pQTLs) 

demonstrating that the effect of genetic variants can be seen not 

only at the transcriptional level but also at the translational level. 

Melzer et al. measured the levels of 42 proteins in human serum and 

plasma from 1200 fasting individuals of European ancestry103. They 

identified 8 proteins with a cis eQTL. Lourdusamy et al. performed a 

similar study on 96 elderly Europeans. They assayed plasma levels of 

778 proteins using a new aptamer-based proteomic technology104. 

They detected cis-associations for 60 proteins using a false discovery 

rate of 5%. 20 of these proteins were previously reported as being 

associated to diseases.      
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Epistasis in Immune Cells 

The immune system carries out his functions through a complex 

network of diverse immune cell subsets. Effector function in 

response to stimuli is attained through the cross-talk between 

different cells and between distinct pathways inside a particular cell. 

Similar stimuli can, through the activation of diverse cascades of 

molecules, lead to different outcomes18. Because of its complexity 

and its functional redundancy the immune system is a good substrate 

for the study of epistasis in humans.  

Due to the computational and statistical complexity associated to the 

detection of epistasis on a genome-wide scale most published works 

concerning epistatic interactions involving immune cells or playing a 

role in immune-related diseases have so far been limited to 

candidate genes or to variants that independently showed an effect 

on the trait or disease under consideration (main effect).  

For example epistasis was detected between two genetic variants of 

the transcription factor ETS1 with strong main effects in the context 

of systemic lupus erythematosus (SLE)105. These two polymorphisms, 

previously shown as being associated with SLE in a Hong Kong 

Chinese population and three follow up cohorts (Anhui, Shanghai, 

Thailand)106 and in an independent GWAS Chinese study107, were 

shown by Zhang et al. to synergistically affect IL-17 production in SLE 

patients105.  

A complementary SLE study focused on interactions between genes 

involved in the mediation of lymphocyte B and T responses 

previously reported as possible GWAS loci for the disease108. The 
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study identified an interaction between TRAF1 and TNFAIP3 in both a 

Chinese and Caucasian cohort109. 

Martin et al. identified an epistatic interaction between KIR3DS1 and 

HLA-B delaying progression to depletion of CD4+ T cells in AIDS110. 

Both KIR3DS1 and HLA-B are good candidate genes for AIDS 

susceptibility.  

Julià et al. performed a genome-wide epistatic association study 

using a Spanish cohort of rheumatoid arthritis cases and controls111. 

While none of the SNPs pairs reached genome-wide significance 

several of them were close to significance. Tao et al. performed a 

similar study for prostate cancer. They used a two-stage scan. In the 

first stage they tested all pairwise SNP combinations for association 

with the disease using a cohort of 1176 cases and 1101 controls. 

None of the SNPs reached genome-wide significance. The top 

interactions were evaluated in a different cohort of 1964 cases and 

3172 controls. They identified 16 nominally significant SNPs (cutoff 

0.01) but none of the interactions withstood multiple testing 

correction. Another  genome-wide epistatic study was performed by 

Wei et al. using an Italian cohort112. The group correlated pairs of 

genetic variants with human serum uric acid levels. Uric acid is a key 

danger signal released by damaged cells113. Even in this case no pair 

reached significance after Bonferroni correction for multiple testing. 

Nevertheless the group identified some interesting candidate pairs. 

In particular, the solute carrier SLC2A9 was reported as interacting 

with multiple other genes across the genome. Two interactions 
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involving this gene reached the conventional genome-wide threshold 

(5x10-8).  

These three genome-wide studies exemplify the statistical issues 

associated to this kind of analysis. The large number of tests that 

need to be performed for genome-wide epistatic analyses requires 

much larger cohorts than those usually available. 

For quantitative phenotypes one of the most interesting genome-

wide epistatic analyses in the context of immune cells was performed 

by Becker et al.114 on gene expression measured in 210 healthy 

individuals selected from HapMap94. The authors correlated pairs of 

genetic variants with gene expression in lymphoblastoid cell lines 

focusing on cis-trans epistatic eQTLs. For each expressed gene only 

pairs of variants where one SNP was located in proximity of the gene 

or on it (cis) and one SNP was distally located from the gene (trans) 

were considered. They reported cis-trans interactions for about 15% 

of the genes analyzed after Bonferroni correction and showed that 

cis variants with marginal effects were more likely to be part of an 

interaction. Even so the majority of cis variants involved in epistatic 

interactions showed no direct association with expression.   

Neutrophils as a candidate cell subset for studying the role of SNP 

association in gene regulation 

Neutrophils are the most abundant leukocyte subset in blood and 

constitute the first mechanism of defense against invading 

pathogens115–117. Neutrophils are essential for innate immunity. As 

opposed  to adaptive immune cell subsets their response to infection 
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is immediate and does not depend on any previous exposure to 

microbes118.  Neutrophils can act as phagocytic cells by engulfing 

bacteria and rapidly killing them with lytic enzymes stored in 

granules, oxygen reactive species and other antimicrobial 

proteins119,120. Bactericidal factors can also be released into the 

extracellular medium by degranulation121. Another mechanism often 

used by neutrophils to kill bacteria extracellularly are neutrophil 

extracellular traps, structures composed of granule proteins and 

chromatin. These extracellular matrices bind Gram-positive and 

Gram–negative bacteria preventing them from spreading and 

incapacitating them119.  

Pathological reduction in neutrophil numbers and defects in 

neutrophil signaling, intracellular killing and granule formation are 

responsible for multiple immunodeficiency syndromes, all 

characterized by an increased susceptibility to microbial and fungal 

infections122. 

In spite of the central role played by neutrophils in innate immunity 

no eQTL study was so far performed on this cell type. Neutrophils are 

particularly difficult to study because of their strong sensitivity to ex-

vivo manipulation. These cells are in fact short-lived and easily 

activated123,124. Neutrophil mRNA has also been shown to be difficult 

to isolate because of the high lytic enzyme content of their lysosomal 

granules125.  

Because of their key role in innate immunity a better understanding 

of how genetic variants affect gene expression of important 

neutrophil mediators would be extremely valuable. 
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Allergic rhinitis and the immunosuppressive gene CD39 as 

candidates for studying the role of SNP association and epistasis in 

immune cells 

As previously mentioned, the immune system is a complex structure 

that involves many different players. Due to its complexity the 

relationship between genotype and phenotype cannot be easily 

elucidated at the system level but needs to be tackled at a smaller 

scale. For this particular project we focused on an immune disease 

characterized by the interplay of multiple immune cell subsets, 

allergic rhinitis (AR). 

Allergic rhinitis is an IgE-mediated allergic disease accompanied by 

the development of specific symptoms (rhinorrhea, nasal itching, 

sneezing and progressive blockage of the nasal passages) in response 

to allergen stimulation126. Epidemiological studies from several 

countries have indicated that the prevalence of AR is increasing 

worldwide and that the disease now affects between 10-30% of the 

total world population127–129. Prevalence is even higher in Singapore 

where this study took place. Andiappan et al. recently reported an AR 

rate higher than 40% for Singapore-born Chinese130. The city of 

Singapore therefore constitutes an optimal environment for the 

study of AR because of the high prevalence of the disease and 

because the allergic response is dominated by a single allergen class 

(dust mite)130. As a result the study population is strongly 

homogenous since the disease is always triggered by the same 

antigen. 
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While environmental factors clearly exert a strong influence on risk of 

allergic diseases, family-based and twin studies have established that 

there is also a genetic component for allergy prevalence131–137. 

However, linking genotype variants with phenotypic manifestations 

of allergic diseases has not been straightforward: as in most other 

complex diseases, gene-gene and gene-environment interactions 

complicate the identification of direct associations138–140.  

Allergic airway diseases are mediated by Th2 cytokines including IL-4, 

IL-5 and IL-13 which drive eosinophil infiltration to the nasal mucosa, 

promote IgE switching and stimulate mast cells to release important 

inflammatory mediators such as histamine, leukotrienes and 

prostaglandins141–146. Monocytes, important regulators of 

inflammation, can exhibit pro- as well as anti-inflammatory 

properties in the context of allergies and can strongly influence the 

course of the allergic reaction. Pro-inflammatory monocytes enhance 

the allergic reaction by producing cytokines like TNF-α and IL-6 but 

can be converted, under the influence of basophils, into anti-

inflammatory monocytes to attenuate the reaction147.  

T regulatory cells, a subset of CD4+ lymphocytes with suppressive 

functions, also play an essential role in dampening the allergic 

inflammation by inhibiting CD4+ T effector proliferation and 

repressing the production of inflammatory Th2 cytokines (Figure 

6)148–151.  
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Treg cells  in fact maintain peripheral tolerance against self antigens  

and inhibit excessive inflammatory responses against dangerous 

pathogens152–154. It is not exactly clear how Treg cells control immune 

responses. Several mechanisms of suppression have been described 

and might reflect the heterogeneity of Treg subsets155. It is likely that 

immune tolerance and homeostasis is achieved through a 

combination of suppressive means including cell contact and 

secretion of inhibitory molecules (Figure 7). Molecules expressed on 

the surface of Treg cells such as cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG3) and TGF-β 

expressed at cellular membrane are key players in the context of 

contact-dependent suppression153,156,157.  CTLA-4 is constitutively 

expressed on Treg cells as opposed to naïve T cells, where it becomes 

expressed only upon stimulation. CTLA-4 suppresses T cells responses  

 

Figure 6. The role of Treg cells in allergic diseases
148
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both by down-regulating the expression of the co-stimulatory 

molecules CD80 and CD86 on antigen presenting cells, by promoting 

secretion of the immunosuppressive cytokine TGF-β by both naïve 

and CD4+ effector T cells  and by enhancing activity of the 

immunosuppressive enzyme IDO on dendritic cells and monocytes158–

161. LAG3, an adhesion molecule which binds to the major 

histocompatibility complex class II, is expressed on the surface of 

Treg cells upon activation and contributes to the suppressive function 

of these cells156. Surface-bound TGF-β is also highly expressed by Treg 

cells upon stimulation by antigen presenting cells and might mediate 

immune suppression of both T cell and B cell functions via interaction 

with the corresponding receptor on target cells157. 

Another mechanism through which Treg cells maintains immune 

homeostasis is the production of the immunosuppressive cytokines 

IL-10 and TGF-β155. Treg cells also perform cytotoxic functions by 

releasing perforin and granzyme A which promote monocytes, DCs 

and T cells death162. Another important but frequently ignored 

mechanism through which Treg cells exert their suppressive function 

is the hydrolysis of the pro-inflammatory signal adenosine 

triphosphate (ATP) by the ectonucleoside triphosphate 

diphosphohydrolase 1 (CD39)163,164. ATP is a key player in energy 

metabolism and it is present in all cells of the human body165. 
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Upon tissue damage or pathogen encounter ATP can leak in the 

extracellular compartment where it acts as a danger signal for the 

initiation of an immune response166,167. Extracellular ATP is therefore 

a potent damage-associated molecular pattern which induces a 

number of pro-inflammatory responses including leukocyte 

chemotaxis, dendritic cell maturation, and inflammasome-mediated 

 

Figure 7. Mechanisms through which T regulatory cells maintain immune 

homeostasis.  
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production of  IL-1β163,168,169. ATP receptors such as P2X- and P2Y 

have been shown to be important mediators for the allergic airway 

inflammation. Blocking of these receptors in experimental asthma 

models was in fact shown to attenuate the allergic reaction170,171. 

CD39 is a member of the ectonucleoside triphosphate 

diphosphohydrolase (E-NTPDase) family that hydrolyzes extracellular 

ATP and adenosine diphosphate (ADP) into adenosine 

monophosphate (AMP). It also acts in concert with another 

ectonucleotidase (CD73) to produce adenosine164, a nucleoside with 

suppressive and anti-proliferative properties165,172. Removal of 

inflammatory ATP by Treg-expressed CD39 contributes to the control 

of the inflammatory reaction163. However, the catalytic activity of 

CD39 is strongly influenced by the expression level of this protein on 

the cell surface of human Treg, which is highly variable between 

individuals163.  

The importance of CD39 expression on Treg cells for immune 

regulation is supported by multiple studies. Differences in CD39+ 

Treg cell percentages have in fact been reported for many complex 

immune and infectious diseases such as multiple sclerosis163,173, 

hepatitis B174, hepatitis C175 and HIV-1176. Moreover CD39 genetic 

variants have already been associated with immune phenotypes such 

as susceptibility to inflammatory bowel disease177 and HIV 

progression176.  

Because of its role in immunosuppression and its involvement in 

multiple immune diseases, CD39 is a strong gene candidate for the 

study of association and epistasis in the context of allergic rhinitis.   
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SCOPE OF THE THESIS 

The scope of this project is to study the relationship between 

genotype and phenotype in immune cells both in the context of 

association and epistasis. Since the majority of GWAS and eQTL 

studies performed so far have been centered on individuals of 

European descent we decided to target a cohort of Chinese ethnicity 

to advance the genetic characterization of this population. 

Due to the complexity of the immune system and the impossibility of 

tackling this question at the system level our study focused on two 

well-defined questions. 

The first aim of our project was to characterize the eQTL landscape of 

resting neutrophils, a cell subset strongly involved in innate 

immunity. Neutrophils have so far not been studied in the context of 

eQTLs due to the technical difficulties associated with handling these 

cells which are considered fragile and have been shown to be easily 

activated123,178. We therefore carefully isolated neutrophils from 114 

well-matched individuals of Chinese ethnicity and performed a 

genome-wide cis eQTL analysis to evaluate the impact of genetic 

variants on transcriptional regulation. 

The second aim of our project was to study the role played by 

association and epistasis in a complex immune disease with a strong 

genetic component. Due to the availability of a Singapore Chinese 

cohort of allergic rhinitis patients and matched controls our analysis 

targeted this disease which is characterized by the interplay of 

multiple immune cell subsets. Allergic rhinitis has been shown to 

have a strong genetic component both by family-based and twin 
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studies and is therefore a good candidate for studying the impact of 

genetic variants on disease susceptibility131–137. 

Since the size of the cohort did not allow for a genome-wide analysis 

we centered our genetic study on a gene with a strong role in 

immune suppression, CD39. CD39 is a key inhibitory molecule used 

by T regulatory cells, a subset of CD4+ lymphocytes involved in 

immune regulation. T regulatory cells have been shown to be 

essential for controlling the allergic reaction upon allergen 

exposure148,150,179. Mutations disrupting the function of CD39 might 

therefore have an impact on the suppressive ability of these cells and 

consequently affect susceptibility to allergic rhinitis. 

For tackling these specific questions it became essential to develop 

tools for identifying causative variants from disease-associated 

polymorphisms. These polymorphisms are in fact rarely causative: 

they simply tag causative variants through linkage disequilibrium 

(LD). The state-of-the-art tools for the visualization of linkage 

disequilibrium in human populations did not provide a way of 

integrating LD information with additional biological data that would 

help in identifying functional variants (for example open-chromatin 

regions, transcription factors binding sites, GWAS hits or previous 

published findings linked to a particular polymorphism). It therefore 

became necessary, for the interpretation of association and epistatic 

results, to develop a tool that would facilitate this integration. Thus, 

another important goal for this thesis became the development of a 

user-friendly tool for combining linkage disequilibrium plots with 

additional biological information with the aim of helping bridging the 
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gap between statistical association/epistasis and underlying 

biological mechanisms. 

This thesis is organized as follows. Chapter 1 contains a broad 

introduction to the subject. Chapter 2 illustrates the genome-wide 

eQTL analysis performed on neutrophils isolated from 114 Singapore 

Chinese individuals. Chapter 3 focuses on the role played by CD39 

polymorphisms in allergic rhinitis. Chapter 4 describes the software 

we developed for supporting the identification of causative variants 

from trait-associated tag variants. Chapter 5 summarizes the results 

and discusses future directions for the project. 
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Abstract 

Background 

Cis Expression Quantitative Trait Loci (eQTL) analysis links genotypes 

at polymorphic loci with expression levels of a nearby gene. While 

numerous studies have been performed on isolated immune cell 

subsets, so far none focused on neutrophils, key players of the innate 

immune system and first line of defense against invading pathogens. 

In addition, the majority of eQTL studies performed so far have 

employed cohorts of Caucasian descent. Due to differences in linkage 

disequilibrium (LD) across populations, findings detected in one 

ethnicity cannot be easily transferred to others.  

Methods 

We therefore isolated neutrophils from 114 individuals of Chinese 

descent and performed a genome-wide cis eQTL analysis to identify 

significant associations between single nucleotide polymorphisms 

(SNPs) and gene expression levels. Significant eQTLs were then 

compared with Genome-Wide Association Studies (GWAS) signals 

and analyzed for enrichment of particular diseases to estimate their 

role in disease susceptibility.  

Results 

Using a permutation threshold of 0.001 we identified 971 probes 

with at least a significant eQTL spanning 832 distinct HUGO genes. 

The majority of our eQTLs were previously reported in whole blood 

where neutrophils are abundant giving support to the validity of our 

eQTLs. While the majority of eQTLs detected were cell type specific 

we nonetheless identified a strong overlap with monocyte and B cell 
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eQTLs from a published Caucasian cohort. Moreover our eQTLs 

overlapped with GWAS signals suggesting a role for these variants in 

disease susceptibility. Neutrophils eQTLs were also found to be 

enriched for genes involved in dermatological diseases by QIAGEN’s 

Ingenuity® Pathway Analysis (IPA).  A large proportion of eQTL genes 

reported by IPA as being associated with psoriasis were discovered to 

be differentially expressed between lesional skin from cases and 

normal skin from controls in two independent published cohorts 

suggesting a role for neutrophil eQTLs in this disease. 

Conclusions 

Through a genome-wide cis eQTL analysis we identified numerous 

genes whose expression was modulated by the presence of 

polymorphisms. This dataset constituted a valuable resource both for 

linking disease-associated genetic variants with function, thanks to 

the strong overlap between GWAS signals and SNPs participating in 

eQTLs, or for identifying diseases where a dysregulation of key 

neutrophil genes might play a role. Enrichment and differential gene 

expression analysis in fact suggested a involvement for neutrophil 

eQTLs in psoriasis, which might be worth to further investigate. 
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Introduction 

Gene expression, the primary mechanism by which information 

encoded in the genome is translated into  function, serves as a good 

proxy for the phenotypic state of cells1–3. Basal transcript levels are 

highly variable across individuals and have been shown to be 

modulated not only by the environment, through different signals, 

but also by genetic variants in regulatory regions which affect 

transcription4.   

Variations in gene expression controlled by genetic polymorphisms 

are a key factor for disease susceptibility, the primary focus of 

Genome-Wide Association Studies (GWAS) which statistically 

associate genetic variants with complex phenotypes5,6. Unfortunately 

most of the variants reported by these studies fall in non coding 

regions and cannot therefore be easily linked with function. The 

identification of genetic variants controlling transcription might help 

bridging the gap between statistical association and biological 

function by directly linking disease-associated polymorphisms with 

variation in transcript abundance5,7. 

Expression quantitative trait loci (eQTL) studies associate genetic 

variation with gene expression variability, thus identifying 

polymorphic loci regulating transcription. Most eQTLs studies 

performed so far have focused on the impact of single nucleotide 

polymorphisms (SNPs) on messenger RNA (mRNA) levels. Numerous 

eQTLs have been described both for specific tissues such as normal 

brain samples8, liver samples9, skin biopsies10,11 and adipose 

tissues10,12 and for isolated cell subsets including primary 
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fibroblasts13, Epstein-Barr virus-immortalized B cells (also referred to 

as lymphoblastoid cell lines)11,14, T-cells13,15,16, monocytes17,18 and B-

cells18. In addition numerous eQTL studies have been carried out on 

whole blood specimens19,20. However, most of the studies performed 

so far have been limited to individuals of European descent. 

Unfortunately findings reported for Caucasians are not easily 

extendable to other populations due to differences in linkage 

disequilibrium patterns across ethnicities. There is therefore a strong 

need to characterize the eQTL landscape of other populations. 

Neutrophils, key players of the innate arm of the immune system, 

have so far not been analyzed in the context of eQTL studies21. These 

potent inflammatory cells are the first to migrate to the site of 

infection where they recruit other immune cells and interact with 

both the innate and adaptive immune system to overcome the 

infectious threat21. Through phagocytosis, antimicrobial activity and 

neutrophil extracellular trap (NET), these cells are able to contain and 

clear both bacterial and fungal infections21,22. 

In spite of their key role in immune defense neutrophils have so far 

been poorly studied due to the challenges associated with handling 

them in vitro.  These cells are in fact considered fragile and have 

been shown to be easily activated23,24.  

Here we isolated neutrophils from 114 samples of Chinese descent 

and performed a genome-wide eQTL analysis to characterize the 

impact of cis polymorphisms on neutrophil transcriptional regulation. 

The aim is to acquire a better understanding of how genetically 
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determined changes in gene expression relate to disease 

susceptibility and immune dysfunctions. 

Materials and methods 

Ethics Statement 

This study has been performed with the approval of the Institutional 

Review Board (IRB, Reference - NUS07-023 and NUS10-343) of the 

National University of Singapore and is in compliance with the 

Helsinki declaration. DNA samples used in this study were collected 

from ethnic Chinese participants following standard protocols of 

informed consent. The consent obtained was a “written consent” 

collected using the Participant Information Sheet containing 

information about the study. 

Study subjects 

The cohort studied consists of 114 individuals of Chinese ethnicity, 

collected from random recruitment drives from January to August 

2011 from the National University of Singapore (NUS). Blood was 

drawn from each individual at steady state, in absence of any known 

illness. Additional information on prior medical history was recorded. 

Neutrophil isolation 

Neutrophils were isolated from blood collected from the cohort 

samples using Ficoll. The procedure can be summarized as follows:  

separation of blood, processing of peripheral blood mononuclear 

cells (PBMCs), processing of polymorphonuclear leukocytes (PMNs) 

and washing. 5 ml of blood was pipetted from BD Vacutainer and 
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diluted with 5 ml of sterile phosphate buffer saline (PBS) and reverse 

layer with 5 ml of Ficoll Paque PLUS in a 15 ml Falcon tube using a 

23mm UV sterilized glass Pasteur pipette. Tubes were centrifuged at 

1800 g, room temperature (R.T) for 20 mins. PBMCs were removed 

via a sterile dropper and transferred into a 15 ml Falcon tube. PMNs 

were isolated with as little erythrocytes as possible and transferred 

to a 15 ml Falcon tube with 6 ml of 1x BD Pharm Lyse added into 

each tube. The contents were mixed by vortexing gently and left to 

incubate for 15 mins at R.T. Afterward content was topped up to 15 

ml with RPMI+10% FBS and centrifuged at 1200 rpm, 4°C, 5 mins. The 

supernatant was aspirated. Cell pellet was resuspended with 10 ml of 

RPMI+10% FBS and centrifuged at 1200 rpm, 4°C, 5mins. The 

supernatant was aspirated as before and 500 μl of RPMI+10% FBS 

was added and mixed. The cell suspension, of 10 μl was pipetted into 

90 μl of PBS inside a 96-well format. Cell count was performed on 

MACSQuant with an uptake volume of 25 μl, speed:fast, mode: fast. 

The samples were mixed manually by pipetting before uptake of cell 

suspension by MACSQuant. The cell concentration was made up to 

5x106 cells/ml with RPMI+10% FBS. The samples were aliquoted into 

sterile 96-well U-bottom plate and the remaining cell suspensions 

were centrifuged at 1200 rpm, 4°C, 5 mins. Th Supernatant was 

aspirated up to approximately the 100 μl mark and 300 μl of Trizol LS 

reagent was added and lastly, transferred to a 1.5 ml microcentrifuge 

tube and stored at -80°C. 
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RNA extraction 

Total RNA was extracted from neutrophils using Trizol separation 

followed by RNeasy micro kit extraction. Homogenised samples (1 

ml) were incubated in TRIZOL reagent for 5 mins at R.T, 0.2 ml of 

chloroform was added per 1 ml of TRIZOL, incubated for 2 to 3 mins, 

and centrifuged at 12000 g for 15 mins at 4°C. Aqueous phase was 

separated and the following procedures used RNeasy micro kit 

extraction. Equal amounts of 70% ethanol (EtOH) was added slowly 

and mixed gently. Samples were loaded onto Qiagen columns and 

centrifuged at 9000 g for 15 sec. Buffer RW1 (350 μl) was added to 

the RNeasy MiniElute spin column, and centrifuged at 9000 g for 15 

sec, flow-through was discarded and collection tube was changed. 

Buffer RPE (500 μl) was added to the spin column, and centrifuged at 

9000 g for 15 sec to wash, flow-through was discarded and collection 

tube was reused. The step was repeated with 80% Ethanol, and 

collection tube was replaced. The tube was centrifuged at 12000 g 

for 5 mins and the RNeasy column was transferred into a new 1.5 ml 

collection tube. RNase-free water (10-15 μl) was pipetted onto the 

RNeasy membrane, incubated for a minute and centrifuged at 12000 

g for 1 minute to elute the RNA. Elution was repeated with the eluate 

into the same collection tube. 

Genome-wide gene expression 

Illumina® Ambion TotalPrep™ 96 RNA Amplification kit (Part Number 

4393543) was used for RNA preparation and amplification for 

hybridisation. Illumina® HumanHT-12-v4 Expression BeadChip Kit 
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(Catalog number: BD-103-0204) was used to quantify RNA from the 

114 individuals. Illumina® Beadchip uses direct hybridisation assay. 

The starting amount of RNA used was 40 ng. The protocol can be 

summarized as follows: synthesis of first strand, synthesis of second 

strand, cDNA purification, in vitro transcription (IVT), cDNA 

purification, and hybridization using 750 ng of RNA at 58°C for 16 

hours.  

Probe sequences provided by Illumina were mapped to genome build 

hg18 using the pipeline RUM (http://cbil.upenn.edu/RUM/). Only 

41,469 uniquely mapped to the genome. 39,596 probes were located 

on autosomes and retained for the analysis. Expression values were 

log2-transformed. Probes containing common SNPs (MAF≥1%) 

according to the 1000 Genome Pilot Project25 for CHBJPT were 

excluded from the analysis (2,467 probes). 

DNA extraction 

DNA was extracted from the blood samples. The kit used for the 

extraction of DNA from the blood was Qiagen DNeasy® Blood & 

Tissue Kit (Catalogue number: 69504). 

Genome-wide SNP genotyping and quality control 

Illumina® Human Omni5Quad was used for SNP genotyping. It is able 

to detect up to 4.3 million SNP markers. Genome coordinates 

provided by Illumina were converted to genome build hg18 (for 

consistency with the annotation used for the Illumina probes) using 

the UCSC’s tool liftOver26. 1,067 SNPs could not be converted and 

were removed from the analysis. SNPs located on sex chromosomes, 
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random chromosomes and mitochondrial chromosomes were also 

excluded from the computations. Monomorphic and low call rate 

SNPs (<95%) were excluded as well. 2,031,824 SNPs were retained 

for genome-wide cis eQTL analysis. 

High Resolution Melt (HRM) curve 

HRM analysis is a technique to genotype SNPs using primers, running 

real time-PCR and finally, analyzing the melt curve to identify the SNP 

variant. Samples lacking genotype information for a particular 

polymorphism were genotyped using the HRM technique. 

Reverse transcription of RNA to cDNA 

RNA was reverse transcribed to complementary DNA (cDNA) for 

detection through quantitative real time polymerase chain reaction 

(qRT-PCR). RNA was isolated and reverse transcription was 

performed using Qiagen® QuantiTect® Reverse Transcription. The 

amount of RNA used was 100 ng for reverse transcription into cDNA 

for the whole experiment. The protocol is described Qiagen® 

QuantiTect® Reverse Transcription handbook. The main steps are 

summarized as follows: elimination of gDNA and reverse 

transcription. The cycler used was Eppendorf Mastercycler and the 

final volume of cDNA was 20 μl. cDNA were stored in a -20°C fridge. 

TaqMan® Gene Expression Assay 

TaqMan® Gene Expression Assays were used to detect single gene 

expression. Probes for qRT-PCR from TaqMan® have a FAM 

fluorochrome at the 5’ end, and a quencher TAMRA at the 3’ end. 
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Each reaction mix was 20 μl, using 2.5 ng of cDNA per reaction, with 

1 μl of probe, 10 μl of TaqMan® Master Mix (P/N: 4369016), and 

water to make the total volume of 20 μl. The cycle conditions for the 

qRT-PCR reaction was 50°C for 2 minutes, followed by 90°C for 10 

sec, 40 cycles of 90°C for 10 seconds and 60°C for 2 minutes. The 

cycler used was CFX96™ Real-Time system, C1000™ Thermal cycler. 

The TaqMan® probes used are described in Table S1. 

Validation of gene expression using real-time PCR 

Real-time PCR was performed using Bio Rad CFX96™ Real-Time 

system, C1000™ Thermal cycler. The reaction mix contained: 10 μl of 

the SsoFast™ EvaGreen® Supermix, 0.5 μl of the forward and reverse 

primer respectively, and 40 ng of genomic DNA (gDNA), and topped 

up to 20 μl with water. The reaction mix was heated to 98°C for 2 

mins, followed by 40 cycles of amplification comprising of 

denaturation step at 98°C for 5 sec and annealing and elongation 

step at temperatures dependent on primer optimization for 5 sec. 

Standard DNA melt was performed by increasing the temperatures 

from 75°C to 95°C, holding at each temperature for 5 sec. Lastly, a 

high resolution melt step of increasing temperatures between 75°C 

to 95°C for 2 sec. The results were analyzed by Bio Rad Precision Melt 

Analysis. 

Statistical Analysis 

Genome-wide statistical association between SNPs and gene 

expression in the discovery cohort was evaluated using linear 

regression as implemented by the Apache Commons Mathematics 
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Library. Genotypes were coded based on allele counts (0, 2 for 

homozygous genotypes and 1 for heterozygous genotypes). P-values 

reported as zero were recomputed using the python function 

linregress from the library scipy to achieve a better precision. For 

each probe only SNPs located ± 250kbp from the probe midpoint 

were tested for association. Significance was determined by 10,000 

phenotype permutations (label swapping) as described in14. A 

<SNP,probe> pair was considered significant if its nominal P-value 

was lower than the 0.001 tail of the distribution of minimal permuted 

P-values across all SNPs tested for a particular probe. Each probe was 

analyzed independently. Samples with missing genotypes for a 

particular SNP were excluded from the analysis of the corresponding 

SNP-probe pair. Illumina SNP IDs coded as kgp were mapped to the 

corresponding rs IDs by chromosomal position. 

Statistical association between genotype and gene expression in the 

validation cohort was computed using a Kruskal-Wallis one-way 

analysis of variance (3 genotypes) or Mann-Whitney U test (2 

genotypes). Multiple comparisons were performed using Dunn’s 

multiple comparisons test (Graphpad Prism 6).   

Estimation of the overlap between eQTL datasets and between 

neutrophil eQTLs and GWAS signals 

The overlap between neutrophil eQTLs and monocyte, B cell and 

whole blood eQTLs was computed using a “double expansion” 

strategy. For every probe, SNPs associated to its expression were 

selected for each dataset independently. The set of SNPs in our 
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cohort was expanded to also include all the SNPs in linkage 

disequilibrium with the initial set according to a certain r2 threshold 

using LD computed from the 60 CHBJPT samples sequenced by 1000 

Genomes Pilot Project25. A similar expansion was done for monocyte, 

B cell and whole blood eQTLs using the 60 CEU samples sequenced 

by the 1000 Genomes Pilot Project25. 

A similar analysis was performed to estimate the overlap between 

neutrophil eQTLs and GWAS signals. Even in this case the expansion 

of GWAS signals was performed using the 60 CEU samples sequenced 

by the 1000 Genomes Pilot Project25 on the assumption that most 

GWAS studies in the catalog were performed on individuals of 

Caucasian ethnicity. 

Identification of differentially expressed genes in psoriasis and 

atopic dermatitis 

GEO dataset Series Matrix files for two psoriasis studies (GSE1335527 

and GSE1490528) and one atopic dermatitis one (GSE566729) were 

obtained from NCBI GEO. Data were then processed in the R 

statistical language 2.15.230 using the R package GEOquery. 

Comparisons between the lesional skin from cases and normal skin 

from controls were made using the Limma package. Multiple testing 

correction was performed using the method of Benjamini and 

Hochberg31 and tests were considered significant if the multiple 

testing corrected P-value was lower than 0.05. 
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Results 

eQTL discovery and validation 

A cohort of 114 individuals of Chinese ethnicity, whose genotype and 

gene expression profiles were measured by Illumina® Omni5Quad 

and HumanHT-12-v4 expression beadchip platforms respectively, was 

used for discovering cis eQTLs in neutrophils (±250kbp from the 

probe midpoint). Association between allelic states at a particular 

locus and gene expression measurements was evaluated using linear 

regression for 39,596 probes and 2,031,824 SNPs. A total of 

15,537,788 tests were performed. At a 0.001 permutation 

significance threshold our analysis identified 21,210 eQTLs involving 

971 distinct probes and spanning 832 HUGO genes. Table 1 reports 

the top 20 most significant eQTL genes. Figure 1 depicts the 

Manhattan and the Q-Q plots associated with the analysis and 

provide information on the distribution of P-values across the various 

chromosomes and the deviation of the distribution of observed P-

values from the expected distribution respectively.  

 

Figure 1. Manhattan plot and QQ plot. 
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Since high-throughput microarray platforms are known to produce 

experimental artifacts which might generate false positive eQTLs 19,32 

we selected a subset of <SNP,probe> pairs for validation. Gene 

expression was in this case quantified using quantitative real-time 

polymerase chain reaction (qRT-PCR) with TaqMan® Gene Expression 

probes. This technique measures expression of single genes thus 

allowing for a more sensitive and accurate measurement compared 

to genome-wide assays. Figure S1 summarizes the results of the 

genes tested for validation: all the probes tested showed a similar 

distribution across genotypes as in the discovery cohort.   

Table 1. Top 20 genes harboring a neutrophil eQTL. 

Symbol Probe SNP ID P FC R
2
 

LOC654055 ILMN_1742442 rs2209313 
4.28 x 
10

-60
 

3.77 0.91 

C4BPA ILMN_1810752 kgp8310661 
7.21 x 
10

-58
 

18.1
1 

0.90 

BTNL3 ILMN_1783795 rs4700772 
9.72 x 
10

-52
 

5.20 0.87 

CHURC1 ILMN_1798177 rs7143432 
1.13 x 
10

-48
 

5.06 0.85 

C7orf28B ILMN_2246083 kgp11715520 
3.42 x 
10

-44
 

4.44 0.82 

ERO1L ILMN_1744963 rs12590590 
4.09 x 
10

-44
 

2.52 0.82 

GOLGB1 ILMN_1747935 kgp5002661 
6.43 x 
10

-44
 

2.86 0.82 

KIAA1324 ILMN_1771482 rs649539 
3.93 x 
10

-42
 

9.03 0.81 

TFIP11 ILMN_2408102 kgp3038838 
1.13 x 
10

-41
 

2.63 0.81 

LOC401233 ILMN_1674285 kgp12462332 
2.05 x 
10

-40
 

3.70 0.80 

USMG5 ILMN_1773313 rs12220267 
2.22 x 
10

-40
 

2.27 0.80 

PAM ILMN_2313901 kgp9149121 2.79 x 4.55 0.79 
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Overlap between neutrophil eQTLs, whole blood and other immune 

cell subsets  

Neutrophils are the most abundant leukocyte cell subset in the 

blood33–35. We therefore decided to evaluate the percentage of 

neutrophil eQTLs that could also be captured in whole blood. We 

compared our eQTLs with eQTLs reported by a large study performed 

on a cohort of 5,311 individuals of European descent36. A large 

proportion of significant eQTLs detected in neutrophils were also 

reported in whole blood: 525 out of 971 probes (54.07%) had at least 

a shared eQTL in the two datasets based on a perfect match between 

SNP IDs (Figure 2A). The number of probes with at least a shared 

eQTL increased to 574 (59.11%) after lowering the linkage 

disequilibrium threshold used for computing the overlap (r2=0.5). To 

estimate the impact of effect size on the overlap we also compared 

our results with eQTLs discovered in a smaller whole blood cohort 

10
-39

 

CLEC4C ILMN_1682259 rs10845821 
5.25 x 
10

-38
 

2.09 0.77 

TREML4 ILMN_2205322 rs6458200 
1.53 x 
10

-37
 

3.27 0.77 

LPCAT2 ILMN_1796335 rs1502000 
2.83 x 
10

-37
 

4.23 0.77 

LOC100130520 ILMN_3272741 kgp10871931 
5.07 x 
10

-37
 

5.15 0.77 

HIATL1 ILMN_1737964 kgp2340295 
1.35 x 
10

-36
 

2.69 0.76 

C17orf97 ILMN_1707137 kgp9481735 
2.91 x 
10

-36
 

2.17 0.76 

DNASE2 ILMN_1796245 rs7249143 
9.67 x 
10

-36
 

2.53 0.75 

PPP2R3C ILMN_1662617 kgp1904514 
1.44 x 
10

-35
 

2.19 0.75 



90 
 

composed of 322 individuals20. Only 95 out of 971 probes (9.78%) 

shared an eQTL in the two datasets. 

To estimate the overlap between neutrophil eQTLs and other 

isolated immune subsets we selected the dataset published by 

Fairfax et al. reporting cis eQTLs identified in B cells and monocytes 

isolated from 288 Caucasian individuals18. Of the 971 probes with at 

least a significant eQTL, 248 (25.54%) shared an eQTL with both 

monocytes and B cells, 159 (16.37%) shared an eQTL with monocytes 

only and 28 (2.88%) shared an eQTL with B cells only based on a 

linkage disequilibrium threshold of r2=0.8 for both populations 

(Figure 2B). While a strong overlap with monocytes and B cells was 

detected, the majority of neutrophil eQTLs (55.20%) was found to be 

unique to this cell subset.  
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Overlap between neutrophil eQTLs and GWAS signals 

The majority of GWAS signals falls in non-coding regions and cannot 

therefore be easily linked with function. These mutations do not in 

fact alter the amino acid sequence and consequently do not directly 

affect protein structure or function. It is nonetheless possible for 

these GWAS SNPs to modulate expression. This might be a potential 

mechanism through which these associated variants lead to disease 

susceptibility. We estimated the overlap between all the SNPs 

involved in at least a significant neutrophil eQTL (eSNPs) and SNPs 

 

Figure 2. Overlap of neutrophil cis eQTLs with published eQTL datasets. (A) 

Overlap of neutrophil eQTLs with two whole blood datasets of different sample 

sizes (5311 samples
36

  versus 322 samples
20

). The overlap was minimal for the 

smaller cohort while the majority of neutrophil eQTLs was detected in the larger 

cohort. Using different LD thresholds for computing the overlap did not have a big 

impact on the proportion of probes with a shared eQTL (B) Overlap of neutrophil 

eQTLs with monocytes and B cells eQTLs detected in a cohort of 288 individuals of 

European descent
18

. The overlap was computed using a LD threshold of r
2
=0.8. A 

large proportion of eQTLs was detected both in monocytes and B cells. A stronger 

overlap was detected for neutrophils and monocytes compared to neutrophils and 

B cells, a finding in line with their shared myeloid lineage. 
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reported as being associated with diseases or traits by the Catalog of 

Published Genome-Wide Association Studies37.  The overlap was 

estimated using a linkage disequilibrium threshold of r2=0.8. GWAS 

variants associated to 89 diseases/traits were reported to be in 

linkage disequilibrium with at least one neutrophil eSNP (Table S2). 

For some of the diseases more than one eQTL-associated SNP was 

reported (Figure 3A). In addition multiple genes with a significant 

eQTL were found to be associated to GWAS variants implicated in 

more than one disease/trait (Figure 3B).  
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Figure 3. Overlap between neutrophil eQTLs and GWAS signals. Overlap between 

GWAS signals and neutrophil eQTLs was computed using a LD threshold of r
2
=0.8. 

Only genome-wide significant findings were used to compute the overlap. (A) 

Representative list of diseases associated by GWAS to multiple neutrophil eQTLs. 

(B) Expression plots of representative neutrophil eQTLs reported as being 

significantly associated to diseases/traits by GWAS studies. Numerous neutrophil 

eQTLs were found to be associated to multiple diseases.  
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Enrichment for diseases and disorders 

To investigate the functional impact of neutrophil eQTLs on disease 

we performed an enrichment analysis for the 971 Illumina probes 

with at least a significant eQTL using QIAGEN’s Ingenuity® Pathway 

Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity). 

Top hits for the category Diseases and Disorders are reported in 

Table 2.  

As expected considering the role played by neutrophils in immune 

defense, genetically regulated probes were enriched for genes 

participating in the inflammatory response and associated with the 

resolution of organismal injury.  Surprisingly eQTL probes were also 

enriched for dermatological diseases and conditions. The software 

reported 43 genes associated with psoriasis, 35 genes associated 

with dermatitis, 26 genes associated with atopic dermatitis and 2 

genes associated with dermatitis of the ear (Table S3). To evaluate if 

Table 2. IPA enrichment for diseases and disorders 

Disease or Disorder p-value 
# 

molecules 

Inflammatory Response 2.39 x 10-6 – 3.50 x 10-2 130 

Dermatological Diseases and 

Conditions 
1.46 x 10-4 – 2.48 x 10-2 69 

Inflammatory Disease 1.46 x 10-4 – 3.23 x 10-2 94 

Cardiovascular Disease 1.87 x 10-4 – 3.23 x 10-2 57 

Organismal Injury and 

Abnormalities 
4.77 x 10-4 – 3.34 x 10-2 35 
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these reported genes showed differential expression between cases 

and controls we used two publicly available GEO datasets (GSE5667 

for dermatitis29 and GSE13355 for psoriasis27). None of the 35 genes 

tested for dermatitis showed differential expression between 

involved skin from 6 affected individuals and normal skin from 5 

control samples after multiple testing correction (FDR). Interestingly 

108 Affymetrix probes tagging 41 distinct genes out of the 43 

reported for psoriasis were differentially expressed between involved 

skin from 58 psoriatic samples and normal skin from 64 control 

samples after multiple testing correction (Figure 4). 23 probes 

tagging 16 psoriasis-associated genes showed instead similar 

expression patterns across conditions (PFisher= 5.98 x 10-6).  
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Similar results were obtained using a second cohort composed of 21 

 

Figure 4. Comparison between affected skin from psoriatic patients and healthy 

skin from controls for the 43 neutrophil eQTL genes associated with psoriasis. The 

GEO dataset GSE13355 Series Matrix files were obtained from NCBI GEO. 

Comparison between the lesional skin from cases and normal skin from controls 

was made using the Limma R package. Multiple testing correction was performed 

using the method of Benjamini and Hochberg and a comparison was considered to 

be significant if the multiple testing corrected P value was less than 0.05.41 out of 

43 genes were differentially expressed. 
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healthy donors and 28 psoriatic patients (GEO dataset GSE1490528) 

where 76 probes tagging 34 distinct genes were differentially 

expressed after FDR correction (Figure S2). 55 probes tagging 28 

distinct genes showed instead similar expression patterns across 

conditions (PFisher= 3.18 x 10-8). In both cohorts differentially 

expressed probes were therefore enriched for IPA psoriasis-

associated genes. 

We then extended our analysis to include all neutrophil eQTLs. Of the 

1790 probes tagging our 832 genes harboring an eQTL 1309 were 

differentially expressed in the GEO dataset GSE13355 while 481 were 

not (PFisher<2.2 x 10-16). Similarly in the GEO dataset GSE14905 876 

probes were differentially expressed while 923 were not (PFisher<2.2 x 

10-16). Differentially expressed probes between psoriatic skin samples 

and control skin samples were therefore strongly enriched for 

neutrophil eQTLs in both GEO datasets. 

Discussion 

In this study we investigated the impact of cis polymorphisms on 

gene expression levels in neutrophils using a cohort of 114 Singapore 

Chinese individuals. To our knowledge this is the first eQTL study 

performed on this immune subset and one of the few studies 

employing an Asian cohort14,38,39. Neutrophils are notoriously difficult 

to isolate because fragile and easily activated23,24. This dataset 

therefore constitutes a valuable resource for the study of this cell 

subset. 
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Our genome-wide analysis identified 971 Illumina probes with at 

least a significant eQTL, spanning 832 distinct HUGO genes. The 

majority of these eQTLs was also detectable in whole blood, an easier 

to access biological resource. However a comparison between two 

whole blood studies based on cohorts of different sizes (5,31136 vs 

322 individuals20) showed that a 50% overlap was only obtained for 

the biggest cohort while the overlap with the smaller cohort was 

minimal. 

This suggests that much larger sample sizes are needed to detect 

neutrophil eQTLs from blood compared to isolated cells in spite of 

the high frequency of neutrophils in this medium. 

Comparison with monocytes and B cells isolated from 288 individuals 

of Caucasian descent revealed that while there exists some overlap 

between neutrophils and monocytes/B cells the majority of 

neutrophil eQTLs are still cell type specific confirming previous 

reports on other immune cell subsets13,18. As expected the overlap 

was stronger for monocytes than B cells because neutrophils and 

monocytes are more closely related (common myeloid lineage). 

According to our study the proportion of eQTLs shared between 

neutrophils and monocytes and neutrophils and B cells is larger than 

the proportion of eQTLs reported as being shared between 

monocytes and B cells (see Figure 2). This is easily explained 

considering that our cohort is smaller than the cohort used to detect 

eQTLs in monocytes and B cells. Since the power of the analysis 

increases with sample size, larger cohorts allow for the detection of 

smaller effect size eQTLs. In addition, it has been reported that cell 
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type-specific eQTLs tend to have smaller effect sizes than shared 

ones13,18. 

Our study also identified numerous neutrophil eSNP tagging GWAS 

signals. As described in Figure 3 numerous variants implicated in 

complex diseases were found to be significant eQTLs in neutrophils. 

For example GWAS variants associated with Crohn’s disease were 

shown to modulate the expression of 10 different genes.  On the 

other hand, multiple genetically regulated genes were associated to 

multiple diseases or traits. 

In addition, genes harboring neutrophil eQTLs were shown to be 

enriched for inflammatory responses and diseases by an unbiased 

pathway analysis. This enrichment was expected considering the key 

role played by neutrophils in innate immunity. Enrichment was also 

detected for organismal injury, a finding consistent with the role of 

neutrophils as first line of defense against pathogens upon tissue 

damage40. Interestingly our eQTL genes were also enriched for 

dermatological diseases (dermatitis and psoriasis in particular). 

Analysis of two publicly available datasets revealed that the majority 

of eQTL genes reported for psoriasis are differentially expressed 

between affected skin collected from cases and normal skin collected 

from controls. This finding is in line with other reports supporting a 

role for neutrophils in the etiology of psoriasis, a immune-mediated 

disorder characterized by epidermal hyperproliferation41. Neutrophils 

have in fact been shown to accumulate under the stratum corneum 

of highly-inflamed psoriatic lesions where they influence the 

activation state of T cells and promote the growth of epidermal 
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keratinocytes42,43. Interestingly a link between neutrophils and 

psoriasis was also supported by the overlap between GWAS signals 

for this disease and our eQTLs. Three of the SNPs reported for this 

disease in the GWAS catalog are in fact eSNPs in our cohort.  

A similar analysis on atopic dermatitis (AD) did not yield any 

significant result. None of the genes reported by IPA as being 

associated with the disease were differentially expressed between 

affected skin from cases and normal skin from controls. This is not 

surprising considering that while both atopic dermatitis and psoriasis 

affect the skin, the biological mechanisms underlying skin 

inflammation are quite different42. Atopic dermatitis skin lesions are 

in fact predominantly accompanied by infiltration of macrophages, 

dendritic cells, eosinophils and Th2 CD4+ lymphocytes44,45 while 

psoriatic plaques are polarized towards a Th1 response and are 

characterized by an accumulation of T cells, monocytes and 

neutrophils46. 

In summary using a genome-wide cis eQTL analysis we identified 

numerous genes whose expression was affected by the presence of 

polymorphic loci. This dataset constitutes a valuable resource both 

for linking disease-associated genetic variants with function, as 

demonstrated by the strong overlap between eQTLs and GWAS 

signals, or for identifying diseases where a dysregulation of key 

neutrophil genes might play a role, as in psoriasis.  
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Supplementary files 

 
Figure S1. Technical validation of a subset of neutrophil eQTLs using TaqMan® 

Probe-Based Gene Expression Analysis. Validation was performed on a subset of 

14 samples selected from the original cohort. P-values were computed using 

Kruskal-Wallis one-way analysis of variance in the case of loci with three available 

genotypes followed by Dunn's multiple comparisons test and Mann-Whitney U test 

in the case of loci with two available genotypes. P-values lower than 0.05 were 

considered significant. 
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Figure S2. Differentially expressed genes between lesional skin from psoriatic 

patients and normal skin from healthy controls.  The GEO dataset GSE14905 

Series Matrix files were obtained from NCBI GEO. Comparison between the lesional 

skin from cases and normal skin from controls was made using the Limma R 

package. Multiple testing correction was performed using the method of Benjamini 

and Hochberg and a comparison was considered to be significant if the multiple 

testing corrected P value was less than 0.05. 
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Table S1. Catalogue no. of TaqMan® Gene Expression Assays and Amplicon size 

after qRT-PCR 

Gene Assay ID Catalogue No. Amplicon Size 

PRKAR1A Hs00267597_m1 #4453320 73 

CLEC12A Hs01074333_m1 #4448892 94 

C4BPA Hs00426339_m1 #4448892 105 

IL18RAP Hs00977695_m1 #4448892 151 

KYNU Hs01114099_m1 #4448892 102 

LYZ Hs00426232_m1 #4448892 67 

S100P Hs00195584_m1 #4453320 73 

GAPDH Hs03929097_g1 #4331182 93 

 

Table S2. Overlap between neutrophil eQTLs and GWAS signals group by disease. 

disease 

# 

eQTL 

genes 

eQTL genes Study GWAS SNP 

Alzheimer's 
disease 

1 MS4A6A 
47

 rs610932 

Alzheimer's 
disease (late 

onset) 

1 MS4A6A 
48

 rs4938933 

Ankylosing 
spondylitis 

1 CAST 
49,50

 rs27434, rs30187 

Asthma 3 

HLA-DRB5, 

IL18RAP, 

LOC650557 

51,52
 

rs3771166, rs9272346, 

rs9273349 

Behcet's 
disease 

1 CCR3 
53

 rs7616215 

Beta-2 
microglubulin 
plasma levels 

1 BAT5 
54

 rs2596466 

Blond vs. 
brown hair 

color 

1 TPCN2 
55

 rs35264875 

Blood 
pressure 

3 
C15orf17, CSK, 

MTHFR 

56
 rs1378942, rs17367504 
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Body mass 
index 

3 
MYBPC3, SPI1, 

TUFM 

57–59
 

 

rs10838738, rs3817334, 

rs7498665 

Brain imaging 2 CISD1, TFAM 
60

 rs16912145 

Brain 
structure 

2 HRK, TMEM118 
61

 rs7294919 

Breast cancer 1 ECHDC1 
62

 rs2180341 

C4b binding 
protein levels 

1 C4BPA 
63

 rs3813948 

Celiac disease 1 RGS1 
64,65

 rs2816316 

Cholesterol, 
total 

2 N.A., CPNE1 
66

 rs2072183, rs2277862 

Chronic 
obstructive 
pulmonary 

disease-
related 

biomarkers 

2 
HCG27, 

PSORS1C3 

67
 rs1265093, rs2074488 

Cleft lip 1 TRAF3IP3 
68

 rs10863790 

Coffee 
consumption 

1 CSK 
69

 rs6495122 

Coronary 
heart disease 

1 HCG27 
70

 rs3869109 

Crohn's 
disease 

10 

N.A., CISD1, 
DNLZ, ERAP2, 

HLA-F, IL18RAP, 
RNASET2, 

TFAM, TRPT1, 
TUFM 

71–73
 

rs151181, rs1819658, 
rs2058660, rs2301436, 
rs2549794, rs4077515, 

rs415890, rs694739, 
rs9258260 

Dengue shock 
syndrome 

1 N.A. 
74

 rs3132468 

Diastolic 
blood 

pressure 
3 

C15orf17, CSK, 
LY6G5C 

75–77
 

rs1378942, rs6495122, 
rs805303 

Drug-induced 
liver injury 

(amoxicillin-
clavulanate) 

2 
HLA-DRB5, HLA-

F 
78

 rs2523822, rs9274407 

Endometriosis 2 N.A., CDC42 
79

 
rs10917151, rs4654783, 

rs2235529 

Eosinophil 
counts 

1 IL18RAP 
80

 rs1420101 

Epstein-Barr 1 HLA-DRB5 
81

 rs477515 
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virus immune 
response 
(EBNA-1) 

Eye color 
traits 

1 C17orf90 
82

 rs9894429 

Glaucoma 
(primary 

open-angle) 
1 PIK3C2A 

83
 rs11024102 

Graves' 
disease 

3 
HCG4, HLA-F, 

RNASET2 
84,85

 rs3893464, rs9355610 

HDL 
cholesterol 

8 

CDK2AP1, 
KCTD10, LILRA3, 
LOC100133875, 

MYBPC3, 
PPP1R1B, SPI1, 

UBE2L3 

66,86–88
 

rs11869286, rs181362, 
rs2338104, rs386000, 
rs4759375, rs7120118 

Height 9 

CCBL2, CLIC4, 
FIG4, N4BP2L2, 
OCEL1, PFAAP5, 
PIK3C2A, RFP, 

SMPD2 

89
 

rs1046943, rs1330, 
rs2279008, rs3129109, 
rs4601530, rs6699417, 

rs7332115 

Hippocampal 
volume 

2 HRK, TMEM118 
61

 rs7294919 

Homocysteine 
levels 

1 MFN2 
90

 rs1801133 

Hypertension 1 LY6G5C 
75

 rs805303 

Hypothyroidis
m 

1 VAV3 
91

 rs4915077 

IgA 
nephropathy 

2 CD68, HCG4 
92

 rs2523946, rs4227 

Immunoglobu
lin A 

1 HLA-DRB5 
93

 rs9271366 

Inflammatory 
bowel disease 

4 
CISD1, HLA-

DRB5, TFAM, 
UTS2 

94–96
 

rs2790216, rs35675666, 
rs477515, rs9271366 

Iris color 1 HERC2 
97

 rs916977 

LDL 
cholesterol 

1  
66

 rs2072183 

Leprosy 1 NOD2 
98

 rs9302752 

Lipoprotein-
associated 

phospholipas
e A2 activity 

and mass 

1 MS4A6A 
99

 rs600550 

Liver enzyme 1 NRBF2 
100

 rs10761779, 
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levels rs12355784 

Liver enzyme 
levels 

(gamma-
glutamyl 

transferase) 

3 
CCBL2, DDT, 

THBS3 
101

 
rs10908458, 

rs12145922, rs2739330 

Lymphoma 1 TAP2 
102

 rs2621416 

Magnesium 
levels 

1 THBS3 
103

 rs4072037 

Mean 
corpuscular 
hemoglobin 

1 DNASE2 
104

 rs11085824 

Mean 
corpuscular 

volume 
1 DNASE2 

104
 rs7255045 

Mean platelet 
volume 

2 
C12orf47, 

NRBF2 
105,106

 rs2393967, rs6490294 

Melanoma 2 CTSK, DEF8 
107,108

 rs4785763, rs7412746 

Menarche 
(age at onset) 

2 ARNTL, RBM6 
109

 rs6762477, rs900145 

Menopause 
(age at onset) 

1 LY6G5C 
110,111

 rs1046089 

Metabolic 
traits 

1 TRAF3IP2 
112

 rs7760535 

Metabolite 
levels 

2 
CLTCL1, 

TRAF3IP2 
113

 rs6900341, rs807669 

Multiple 
sclerosis 

6 

CPT1B, ECGF1, 
HLA-DRB5, HLA-

F, TYMP, 
XRCC6BP1 

114–117
 

rs12368653, rs140522, 
rs2523393, rs703842, 

rs9271366 

Multiple 
sclerosis (OCB 

status) 
1 HLA-DRB5 

118
 rs9271640 

Nasopharynge
al carcinoma 

1 HCG4 
119,120

 rs2517713, rs2860580 

Natriuretic 
peptide levels 

1 MTHFR 
121

 rs1023252 

Orofacial 
clefts 

1 TRAF3IP3 
122

 rs861020 

Other 
erythrocyte 
phenotypes 

1 EPHB4 
104

 rs2075671 

Pain 1 ZNF493 
123

 rs2562456 

Parkinson's 
disease 

1 BST1 
124,125

 rs11724635, rs4538475 
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Plasminogen 
activator 

inhibitor type 
1 levels (PAI-

1) 

1 EPHB4 
126

 rs6976053 

Platelet 
counts 

6 

AKAP10, 
KIAA2013, 

MFN2, NRBF2, 
PIK3C2A, PLOD1 

127
 

rs10761731, 
rs13300663, rs2336384, 

rs397969 

Primary 
biliary 

cirrhosis 
1 MANBA 

128
 rs7665090 

Proinsulin 
levels 

2 MYBPC3, SPI1 
129

 rs10838687 

Prostate 
cancer 

6 

AGAP6, LILRA3, 
LILRB2, 

LOC100133875, 
PSORS1C3, 

RNF181 

130–135
 

rs10187424, rs103294, 
rs10993994, rs130067, 

rs3123078 

Prostate-
specific 

antigen levels 
1 AGAP6 

136
, rs10993994 

Psoriasis 3 
CAST, PPP2R3C, 

TRAF3IP2 
137,138

 
rs12586317, rs240993, 

rs27524 

QT interval 1 CNOT1 
139

 rs7188697 

Red blood cell 
traits 

3 
CPT1B, ECGF1, 

TYMP 
140

 rs140522 

Renal 
function-

related traits 
(BUN) 

1 THBS3 
141

 rs2049805 

Rheumatoid 
arthritis 

6 

ARAP1, CENTD2, 
HLA-F, 

LOC253039, 
LY6G5C, 
RNASET2 

142–147
 

rs1610677, rs3093023, 
rs3761847, rs3781913, 

rs805297, rs881375 

Sarcoidosis 1 TRPT1 
148

 rs479777 

Schizophrenia 1 LSM1 
149

 rs16887244 

Sphingolipid 
levels 

1 LOC255167 
150

 rs1566039 

Stevens-
Johnson 

syndrome and 
toxic 

epidermal 

1 HCG27 
151

 rs3130501 
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necrolysis 
(SJS-TEN) 

Systemic 
lupus 

erythematosu
s 

2 
HLA-DRB5, 

UBE2L3 
152,153

 
rs131654, rs9270984, 

rs9271100 

Systolic blood 
pressure 

5 
C15orf17, CSK, 

LY6G5C, 
MTHFR, USMG5 

75–77
 

rs1004467, rs1378942, 
rs17367504, rs805303 

Triglycerides 1 NRBF2 
66

 rs10761731 

Tumor 
biomarkers 

1 FAM3B 
154

 rs441810 

Type 1 
diabetes 

5 

HLA-DRB5, 
HOXA5, 

LOC650557, 
SULT1A2, TUFM 

155–157
 

rs4788084, rs7804356, 
rs9272346 

Type 1 
diabetes 

autoantibodie
s 

2 SULT1A2, TUFM 
158

 rs4788084 

Type 2 
diabetes 

2 MAEA, PSTPIP1 
159–161

 rs6815464, rs7178572 

Ulcerative 
colitis 

6 

HLA-DRB5, 
LOC650557, 

MANBA, NFKB1, 
PIM3, UTS2 

95,162–164
 

rs35675666, rs3774959, 
rs5771069, rs6927022, 

rs9271366 

Urate levels 2 SF1, THBS3 
165,166

 rs11264341, rs606458 

Ventricular 
conduction 

1 UBE2L3 
167

 rs13165478 

Vitiligo 2 HCG4, RNASET2 
168,169

 rs2236313, rs6904029 

Weight 1 TUFM 
58

 rs7498665 
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Table S3. Genes reported by IPA for the category Dermatological Diseases and 

Conditions 

Diseases or 
Functions 

Annotation 
P-Value Molecules # Molecules 

Psoriasis 
8.05 x 
10

-4
 

ACPP,ACTA2,ANXA1,APOBEC3A,ARG
1,ATXN3,C3AR1,CLEC7A,CSTB,CTSB,C
TSK,CTSS,DBN1,EIF5,EIF5A,FAM26F,

GM2A,GNA15,GSN,HAL,HLA-
G,HMOX1,IL16,KDELR2,KRT10,KYNU,
LILRB1,MBP,PTPRC,RGS1,RNASE3,S1
00A12,S100P,SEC23B,SIGIRR,TEK,TH
BD,TYMP,UBE2I,VNN1,VWF,YWHAB,

ZNF91 

43 

    

Dermatitis 
1.46 x 
10

-4
 

ACADVL,ANXA1,ANXA5,C3AR1,CAPZ
B,CCR3,CPNE1,CSK,CYTIP,F2RL1,FAS,
FCER1G,FLOT1,GNB1L,GSN,GSR,HLA-
DRB5,HNRNPR,IL16,KRT10,NFKB1,PG
LYRP1,POLE4,RABGEF1,RNASE3,RNF
138,RPS6KA4,SELL,SIGIRR,SPAG1,SPI

1,STAT6,SYK,THBD,UBE2I 

35 

Atopic  
Dermatitis 

1.78 x 
10

-2
 

ACADVL,ANXA1,ANXA5,CAPZB,CCR3,
CPNE1,F2RL1,FCER1G,FLOT1,GNB1L,

GSN,HLA-
DRB5,HNRNPR,KRT10,RNF138,SPAG1

,SPI1,SYK,UBE2I 

19 

Dermatitis 
of ear 

2.48 x 
10

-2
 

CYTIP,STAT6 2 
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Abstract 

Background 

Extracellular ATP is a pro-inflammatory molecule released by 

damaged cells. Regulatory T cells (Treg) can suppress inflammation 

by hydrolysing this molecule via ectonucleoside triphosphate 

diphosphohydrolase 1 (ENTPD1), also termed as CD39. Multiple 

studies have reported differences in CD39+ Treg percentages in 

diseases such as multiple sclerosis, Hepatitis B and HIV-1. In addition, 

CD39 polymorphisms have been implicated in immune-phenotypes 

such as susceptibility to inflammatory bowel disease and AIDS 

progression. However none of the studies published so far has linked 

disease-associated variants with differences in CD39 Treg surface 

expression. This study aims at identifying variants affecting CD39 

expression on Treg and at evaluating their association with allergic 

rhinitis, a disease characterized by a strong Treg involvement. 

Methods 

Cohorts consisting of individuals of different ethnicities were 

employed to identify any association of CD39 variants to surface 

expression. Significant variant(s) were tested for disease association 

in a published GWAS cohort by one-locus and two-locus genetic 

analyses based on logistic models. Further functional characterization 

was performed using existing microarray data and quantitative RT-

PCR on sorted cells.  
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Results 

Our study shows that rs7071836, a promoter SNP in the CD39 gene 

region, affects the cell surface expression on Treg cells but not on 

other CD39+ leukocyte subsets. Epistasis analysis revealed that, in 

conjunction with a SNP upstream of the FAM134B gene (rs257174), it 

increased the risk of allergic rhinitis (P = 1.98 x 10-6). As a promoter 

SNP, rs257174 controlled the expression of the gene in monocytes 

but, notably, not in Treg cells. Whole blood transcriptome data of 

three large cohorts indicated an inverse relation in the expression of 

the two proteins. While this observation was in line with the epistasis 

data, it also implied that a functional link must exist. Exposure of 

monocytes to extracellular ATP resulted in an up-regulation of 

FAM134B gene expression, suggesting that extracellular ATP released 

from damaged cells represents the connection for the biological 

interaction of CD39 on Treg cells with FAM134B on monocytes.  

Conclusions 

The interplay between promoter SNPs of CD39 and FAM134B results 

in an intercellular epistasis which influences the risk of a complex 

inflammatory disease. 



133 
 

Background 

Allergic Rhinitis (AR) is a common airway disease where allergen 

exposure triggers an IgE-mediated immune response. The typical 

symptoms  include nasal itchiness, rhinorrhea, sneezing and 

progressive blockage of the inflamed nasal passages1. The disease is 

driven by a complex interplay of various leukocytes, including mast 

cells, eosinophils and basophils but also CD4+ T cells, IgE-producing B 

cells and dendritic cells. Th2 cytokines such as IL-4, IL-5 and IL-13 

drive IgE production, promote eosinophil infiltration to the nasal 

mucosa, and stimulate mast cell release of key vasoactive mediators 

such as histamine2–4. In this context also monocytes are important 

effectors and regulators of inflammation5. While pro-inflammatory 

monocytes can fuel the allergic reaction by releasing cytokines such 

as TNF-α and IL-6, they can be converted into anti-inflammatory 

monocytes to dampen the reaction6.  

Central to the prevention or attenuation of pro-inflammatory 

immune responses are CD4+ Foxp3+ T regulatory cells (Treg). They 

can inhibit the proliferation of CD4+ effector T cells and impair the 

production of  various Th2 cytokines7–10. A key mechanism by which 

Treg exert their regulatory function is the expression of the 

ectoenzyme CD3911,12. CD39 is involved in the hydrolysis of 

extracellular ATP, which is typically released from cells following 

tissue damage. ATP-sensors such as P2X- and P2Y-receptors are 

important mediators of allergic airway inflammation and their 

blockade has been shown to strongly suppress allergic reactions in 

experimental asthma models13,14. Treg-expressed CD39 thus 
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contributes to the control of inflammation via the removal of 

ATP11,12. Genetic and phenotypic correlations of CD39 variants have 

already revealed strong associations with inflammatory bowel 

disease15 and multiple sclerosis11,16, as well as with viral infections 

including HIV17 and Hepatitis B18. However, a link between CD39 and 

allergic diseases has not previously been identified.  

In the current report we demonstrate that variation in cell surface 

expression in Treg cells is associated with a genetic polymorphism 

(rs7071836) located in the promoter region of CD39. On its own this 

polymorphism had no direct impact on risk of AR but associated with 

disease risk through an epistatic interaction with rs257174, a 

promoter SNP of the cis-Golgi protein FAM134B. As rs257174 alters 

the gene expression in monocytes but not in Treg cells this 

represents the first example of an intercellular epistasis.     

Methods 

Ethics statement  

This study has been approved by the Institutional Review Board of 

the National University of Singapore (IRB ref. NUS 07-023, NUS 10-

343 and NUS 09-256) and complies with the Helsinki declaration. 

Written informed consent was obtained from all donors prior to 

sample collection. 

Study populations 

Case-control cohorts 

We used two age-matched cohorts of Singapore Chinese 

individuals19, including 456 AR cases and 486 non-atopic controls for 
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investigative discovery and a separate cohort of 676 AR cases, 511 

non-atopic controls and 1647 atopic individuals without AR 

symptoms for validating our statistical interaction and estimating the 

role played by atopy in the epistasis. These two cohorts were used to 

evaluate the role played by the variant rs7071836 in AR risk both in 

the context of disease association and epistatic phenomena. Details 

of sample collection for each cohort and the genotyping and quality 

control filters applied for the discovery cohort, are described in19. 

Cases were defined as individuals displaying a positive skin prick test 

for at least one of the two house dust mite allergens tested 

(Dermatophagoides pteronyssinus, Blomia tropicalis) and exhibiting 

two or more symptoms of nasal blockage, sneezing, nasal itching, and 

rhinorrhea. Controls were defined as skin-prick test negative 

individuals with no history of allergic disease or AR symptoms. All 

individuals were genotyped using the Illumina HumanHap 550k 

BeadChip version 3 (Illumina, San Diego, California). Due to 

constraints in the number of available Sequenom slots 20 SNPs were 

selected for replication. Genotyping of the 20 SNPs chosen for 

replication in the validation cohort was performed using Sequenom’s 

MassARRAY system and iPLEX technology (Sequenom Inc, San Diego) 

on 2834 samples. The experiment was carried out according to the 

manufacturer’s guidelines. SNPs were called using the Sequenom 

TYPER software and were checked for deviation from Hardy-

Weinberg equilibrium (variants with an adjusted P-value <0.05 in 

controls only or across all samples were excluded from the analysis; 

rs2900474, Punaffected= 6.01 x 10-10; rs4862396, Punaffected= 8.53 x 10-4). 
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Functional cohorts 

An independent cohort of 165 ethnic Chinese volunteers was 

recruited to validate the genotype-phenotype association between 

rs7071836 and CD39 protein expression. Samples were collected in a 

similar manner and were age- and gender-matched to the case-

control cohorts. Genotyping was performed on a genome-wide scale 

using the Illumina HumanOmni5-Quad chip (Illumina, San Diego, 

California) on DNA extracted from blood following standard 

protocols. SNP calling was carried out using the Genome Studio 

genotyping module (Illumina, San Diego, California). The same quality 

control filters were applied as those described for the case-control 

cohorts. 

A small cohort of 41 self-reported Chinese individuals and 22 self-

reported Caucasian subjects was recruited internally and then 

phenotyped for CD39 protein expression by T regulatory cells to 

evaluate the relative frequency of the ‘CD39lo’ phenotype in each 

ethnic group.   

Published whole blood cohorts 

Three published cohorts (Kora F420, DILGOM21, SHIP-TREND22) for 

which whole blood gene expression measurements were available 

were used to correlate CD39/FAM134B expression levels. The three 

cohorts are composed respectively of 993, 518 and 991 healthy 

individuals of Caucasian ethnicity. A detailed description of how each 

cohort was collected and samples were processed can be found in 

the respective publications. Gene expression processed values were 
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downloaded from the corresponding public online repositories Array 

Express (E-MTAB-1708, E-TABM-1036) and Gene Expression Omnibus 

(GEO) (GSE36382).  

FACS analysis  

In both functional cohorts, CD39 expression was determined by FACS 

staining of PBMCs pre-incubated with LIVE/DEAD Fixable Blue Dead 

Cell Stain kit (Invitrogen) to identify viable cells. The cells were then 

incubated with anti-CD39 APC (clone TÜ66), anti-CTLA-4 PE (clone 

BNI3), anti-CCR6 PerCP-Cy5.5 (clone 11A9), anti-CD4 APC-Cy7 (clone 

RPA-T4), anti-CD25 PE-Cy7 (clone M-A251), anti-CD45RA eFluor605 

(clone H100) mAbs. Intracellular staining of Treg was conducted using 

the anti-FoxP3 eFluor450 (clone PCH101) Staining kit (eBioscience). 

Adult peripheral blood T cells either express CD45RA or CD45RO and 

few cells are double positive or double negative23. In our cohort, 

CD45RA- FoxP3+ CD25+ CD4+ T cells are termed as CD45RA- T 

regulatory (Treg) cells (CD45RO+) whereas CD45RA- FoxP3- CD25- 

CD4+ are CD4+ effector T (Teff) cells (CD45RO+). The level of CD39 

expression was measured using a BD LSR II flow cytometer (BD 

Biosciences).  The gating strategy for Treg, T effector cells, B cells and 

monocytes is outlined in Additional file 1: Figure S1. The variability of 

CD39 expression among human Treg from different donors was 

established by calculating the ratio of CD39 geometric mean 

fluorescence intensity relative to the CD39 geometric mean 

fluorescence of donor-matched B cells (which constitutively express 

high levels of CD39). Samples were classified as CD39 high expressing 
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Treg (‘CD39hi’) or CD39 low expressing Treg (‘CD39lo’) using the 

unsupervised clustering method k-means on the log2-transformed 

ratios. The analysis was performed using the function k-means in R  

2.15.124, with the number of clusters set to two. Each population was 

considered and classified separately. CD39 expression values for the 

two groups as clustered by the k-means method are depicted in 

Additional file 2: Figure S2. 

Cell sorting 

Human blood was collected into BD K2 EDTA vacutainers (Becton, 

Dickinson and Company) and the PBMCs were isolated by 

centrifugation over Ficoll-Paque density gradients (GE Healthcare) for 

30 min at 400 x g. PBMCs were then re-suspended in FACS buffer 

(0.5% bovine serum albumin, 2mM EDTA in PBS) and incubated at 4˚C 

for 15 min with anti-CD49d FITC (clone MZ18-24A9, Miltenyi Biotec), 

CD127 PE (clone HIL-7R-M21), CCR6 PerCP-Cy5.5 (clone 11A9), CD4 

APC-Cy7 (clone RPA-T4) CD25 PE-CY7 (clone M-A251), and CD19 

Alexa700 (clone HIB19). All mAbs were purchased from BD 

Biosciences unless otherwise stated. After incubation, the cells were 

washed and re-suspended in FACS buffer at 1- 1.5 x 107 cells/ml for 

cell sorting of Treg, T effector cells, B cells and monocytes using a BD 

FACS Aria II cell sorter (BD Biosciences). See Additional file 3: Figure 

S3 for cell sorting strategy. 

Expression analysis 

FACS-sorted Treg, T effector cells, B cells and monocytes were 

obtained from 15 healthy donor blood samples selected from the 
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discovery cohort. Target ssDNA was prepared starting with 50 ng 

total RNA (RIN ≥ 7.1) using the Ambion WT Expression Kit and the 

Affymetrix WT Terminal Labelling kit. Fragmented ssDNA was 

hybridized to the Affymetrix Human Exon 1.0ST Arrays. The GeneChip 

arrays were washed and stained using the GeneChip Fluidics Station 

450. After staining, the GeneChip arrays were scanned using a 

GeneChip Scanner 3000 at the BSF Microarray Facility. Array QC was 

conducted using the Affymetrix Expression Console Software. Raw 

data were normalized using the Robust Multi-Array Average (RMA) at 

the gene level25. 

Monocyte ATP treatment 

Monocytes from individuals heterozygous for rs257174 were purified 

from PBMCs by positive selection using MACS human CD14 

MicroBeads (Miltenyi Biotec) according to manufacturer’s 

instructions. Monocytes were plated at 0.5 x 106 cells/well in 24-well 

tissue culture plates and then incubated with or without cell culture-

grade ATP disodium salt hydrate (Sigma-Aldrich) in RPMI-1640 

supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 1 

mM sodium pyruvate, 100 units/ml of penicillin and 100 μg/ml of 

streptomycin. For the inhibition of ATP the incubation was carried 

out in the presence of 10 µM of the purinergic receptor inhibitor A-

438079 (Sigma-Aldrich). Monocytes were incubated for 2h before 

harvesting using cell scrapers. The treated monocytes were stored in 

TRIzol (Invitrogen Life Technologies) at -80˚C until further analysis. 
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Genotyping 

Genotyping was performed by PCR using SsoFast EvaGreen Supermix 

(Bio-Rad) on a CFX96 Real-Time System (Bio-Rad). DNA was isolated 

using DNeasy Blood & Tissue Kits (Qiagen) according to the 

manufacturer's instructions. The following primers were used for the 

analysis: FAM134B rs257174 forward primer: 

GCACGCTTTTGCCTTTGTAAT; FAM134B rs257174 reverse primer: 

CACCCACTGGGAGAAAAGAC. Amplification was carried out using the 

following protocol: 3 min at 95°C, 40 cycles of 5s at 95°C, 5s at 58°C, 

and final extension for 10s at 95°C. A melt curve was generated from 

65 to 95°C (in 0.2°C increments) with 10s/step. Genotype analysis 

was performed using Bio-Rad Precision Melt Analysis software. 

Quantitative RT-PCR 

Total RNA was isolated using TRIzol and RNeasy RNA isolation Kits 

(Qiagen) according to the manufacturer's instructions. Reverse 

transcription was performed using QuantiTect Reverse Transcription 

Kits (Qiagen). Expression analysis was performed by real-time PCR on 

a CFX96 Real-Time System (Bio-Rad). The analysis was carried out 

using the following protocol: 30s at 95°C, 40 cycles of 5s at 95°C, and 

ending with 5s at 62°C. HPRT was used as the housekeeping 

reference gene for normalization. qRT-PCR was run using the 

following primers: FAM134B forward primer for the long isoform 

(Exon1,2): CTGCTGTTCTGGTTCCTTGC; FAM134B reverse primer for 

the long isoform (Exon1,2): CGCCCAAGTATCATGACGGA; FAM134B 

forward primer for the short isoform (Exon4,5): 
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GCAGCCTTTGCCACTGTTATTAT; FAM134B reverse primer for the 

short isoform (Exon4,5): ATAACTTCCCAGCTTTTGCCTG; HPRT forward 

primer: CTCAACTTTAACTGGAAAGAATGTC; HPRT reverse primer: 

TCCTTTTCACCAGCAAGCT. 

Statistical analysis 

Association analysis was performed using the command --logistic in 

PLINK v.1.0726 software including sex as a covariate (--sex). Due to 

the homogeneity of the cohort (which consisted of Singapore Chinese 

university students only), age and population were not included as 

factors in the model. Gene-gene interactions were evaluated in PLINK 

v.1.07 26  conditioning on rs7071836 using the command --condition, 

fitting a logistic model (--logistic --interaction) and including sex as a 

covariate (--sex).  

We fitted the following model: 

Y ~ β0+β1A+β2B+β3AB+β4S+ε 

where A represents the allele dosage for the first SNP, B represents 

the allele dosage for the second SNP, AB is the interaction term, and 

S is the sex covariate. 

Association between rs7071836 and CD39 cell surface expression was 

evaluated using Kruskal-Wallis testing on geometric mean intensity 

values. Association between genotypes and gene expression was 

evaluated using one-way ANOVA on log2-transformed expression 

values considering each genotype class as a distinct group (Graphpad 

Prism 6). 



142 
 

Differences in gene expression between control samples and samples 

treated with ATP were evaluated using repeated-measures ANOVA 

on ∆c(t) values with the assumption of sphericity. The mean of each 

group was compared to the mean of the control samples using 

Tukey's multiple comparisons test. Concentration specific effects 

were evaluated using the post test for linear trends in Graphpad 

Prism 6. Normality was assessed using the Shapiro-Wilk normality 

test as implemented by the function shapiro.test in R  2.15.124. 

Homoscedasticity was tested using the Bartlett test of homogeneity 

of variances as implemented by the function bartlett.test in R  

2.15.124. Clustering of whole blood CD39 gene expression into three 

groups (CD39lo, CD39int, CD39hi) was performed using the 

unsupervised clustering method k-means as implemented by the 

function kmeans in R  2.15.124 with the number of clusters set to 

three. Differences in FAM134B expression across the three groups 

(CD39lo, CD39int, CD39hi) were estimated using Kruskal-Wallis. 

Pairwise differences between CD39lo and CD39hi groups were tested 

using Dunn’s multiple comparison test (Graphpad Prism 6). 

Correlation coefficients and significance were computed using 

Spearman correlation and the fitting line was evaluated using linear 

regression (Graphpad Prism 6). Each cohort was analyzed 

independently.  

Linkage disequilibrium plots were built using the software ArchiLD27  

on LD values estimated from the 1000 Genomes Pilot Project for 

CHB+JPT28. 
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Power estimation 

Power estimation for epistatic interactions was performed using 

QUANTO software29 with a significance threshold of 5 x 10-8 for the 

discovery study and 0.0025 for the validation study (Bonferroni 

correction for 20 tests). For both genes, the mode of inheritance was 

hypothesized to be log-addictive. Prevalence was set to 13% in both 

the discovery and validation cohorts. For each epistatic pair the allele 

frequency for the first SNP participating in the interaction was set to 

0.25 (i.e. the allele frequency of rs7071836 in the discovery cohort) 

and the allele frequency of the second SNP was set to the allele 

frequency, in the discovery cohort, of the epistatic partner under 

consideration. RGH, the interaction effect, was set to the OR of the 

interaction in the discovery cohort. 

Results 

CD39 expression on Treg is influenced by promoter SNP rs7071836 

In humans, CD39 is expressed by effector/memory-like Treg cells11. 

For this study we assessed CD39 cell surface expression in a small 

cohort of 41 Chinese and 22 Caucasian blood donors. As previously 

reported in Caucasians11 we detected substantial inter-individual 

differences in CD39 surface expression in blood samples from 

volunteers of Chinese ethnicity (Figure 1A). However, while only 

~20% of Caucasians were ‘CD39lo’, more than half of Chinese donors 

exhibited this phenotype (Figure 1B, upper panel). An analysis of 

CD39 SNP frequencies as reported for both ethnicities by the 

HapMap project30–33 suggested that rs7071836 could be associated 
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with the CD39 Treg phenotype (Figure 1B, lower panel). The 

frequency of the ‘CD39lo’ Treg phenotype in the Caucasian and 

Chinese cohorts closely resembled the frequency of the ‘AA’ 

genotype for this SNP.  

Figure 1. Promoter SNP rs7071836 influences Treg expression of CD39.  (A) 

Illustrative example of the ‘CD39hi’ and ‘CD39lo’ Treg phenotypes. Intracellular 

staining of the Treg-associated transcription factor FoxP3 vs. cell surface expression 

of CD39 is shown for the CD45RO+CD4+ T cell compartment in two separate 

individuals of Chinese ethnicity. (B) Frequency of the ‘CD39lo’ Treg phenotype 

correlated with the frequency of the rs7071836-AA genotype (calculated using 

samples from HapMap3 release #27). (C) Genotype/phenotype association in a 

cohort of Chinese ethnicity (n = 165) showing CD39 expression in subsets of 

peripheral blood Treg, CD4+ effector T cells, B cells and monocytes. Significance 

was evaluated by Kruskal-Wallis test. Gating of the different cell populations is 

shown in Additional file 1: Figure S1.  

Accordingly, FACS analysis of a larger cohort of 165 ethnic Chinese 

blood donors confirmed that rs7071836 SNP variants are indeed 

strongly associated with the phenotype of Treg cells (Figure 1C). 
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Notably, the correlation was restricted to Treg, since CD39 expression 

on monocytes, B cells and T effector cells appeared unaffected by the 

allelic state of the SNP. In line with our finding a variant in strong 

linkage disequilibrium (LD) with rs7071836 was recently reported as 

being associated with the percentage of CD39+ activated CD4+ Treg 

in a Caucasian population34. 
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SNP rs7071836 tags a cluster of perfectly-linked SNPs 

In Asian individuals rs7071836 tags a group of 82 perfectly-linked 

SNPs (SNP-cluster27) that cover the entire gene locus (Figure 2A). 

Figure 2. Association of rs7071836 with CD39 mRNA levels in Treg but not other 

CD39+ human leukocytes. (A) The position of the SNP-cluster which is in perfect 

linkage disequilibrium (r
2
 = 1) with rs7071836 in Asian individuals (CHB/JPT) is 

shown here with respect to the transcripts of the gene CD39 (ENTPD1). Linkage 

disequilibrium was estimated using the 60 samples sequenced by the 1000 

Genomes Pilot Project. This SNP-cluster contains 82 SNPs spanning the entire gene. 

The position of the tag-SNP rs7071836 is indicated. (B) Impact of rs7071836 on 

CD39 gene expression in Treg, CD4+ T effector cells, B cells and monocytes isolated 

by FACS sorting from 15 genotyped individuals. The CD39 mRNA content is plotted 

with reference to rs7071836 genotype. Statistical analysis revealed that the 

polymorphism is associated with CD39 cell surface expression in T regulatory cells 

only (P < 0.0001). Gene expression was measured using the Affymetrix Human Exon 

1.0ST Array and data were normalized using the Robust Multichip Average (RMA) 

at the gene level. P-values for the association were evaluated using one-way 

ANOVA on log2-transformed data (n = 15). 
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Some of these SNPs have been associated with risk of inflammatory 

disorders and viral infections. Specifically, the variants rs10748643 

and rs11188513 have been respectively linked in Caucasians with risk 

of inflammatory bowel disease15 and HIV17. In this population, both 

rs10748643 and rs7071836 are part of the same cluster, with linkage 

of r2 = 0.68 to rs11188513. mRNA analysis in FACS-sorted cells 

confirmed that the pattern of CD39 cell surface expression was 

directly reflected by the amount of mRNA detected in the respective 

cell types (Figure 2B). While CD39 mRNA levels in Treg cells varied 

according to rs7071836 genotype, expression levels in B cells, 

monocytes and CD4+ T effector cells were unaffected by the 

polymorphism.    

SNP rs7071836 affects AR risk via epistatic interaction with 

rs257174 

To evaluate the role of the rs7071836 cluster in determining AR risk 

we assessed a Singapore Chinese cohort that comprised 456 atopic 

individuals affected by AR and 486 non-atopic asymptomatic controls 

(described in a previous publication)19. Using standard logistic 

regression models, we were unable to find any evidence of a direct 

association of rs7071836 with the risk of AR (P = 0.82, Table 1). We 

therefore explored possible epistatic interactions of rs7071836 with 

other polymorphic sites. Of the 550,000 SNPs detected by the 

Illumina HumanHap 550k array, a total of 447,081 tag SNPs passed 

quality control assessment as described in19. Using a cut-off of 10-4 

we identified 58 candidate interactions with rs7071836 that 
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exhibited odds ratios (ORs) of 0.17 - 2.94 with P-values ranging from 

10-4 to 10-6 (Additional file 4: Table S1).  

To identify the ‘true’ epistatic partners of rs7071836 an independent 

Singapore Chinese replication cohort consisting of 676 atopic AR 

cases and 511 non-atopic asymptomatic controls was employed19. 

Twenty SNPs were selected for replication and genotyped by 

Sequenom (Sequenom Inc, San Diego). After Bonferroni correction, 

the power to detect a significant interaction was estimated to be 

0.88 - 0.99 (Additional file 5: Table S2). This finally allowed us to 

confirm an interaction of rs7071836 with a second SNP located ~12 

kbp upstream of gene FAM134B (rs257174). 

The combined P-value of discovery and validation cohorts was 

determined to be 1.98 x 10-6 with an odds ratio of 0.53 (Table 2). In 

order to exclude the possibility that the statistical interaction was 

driven by a direct influence of rs257174 on the risk of AR, we also 

tested this SNP for primary association with disease presentation. 

While a weak association of rs257174 with AR risk was detected in 

Table 1. Association results for rs7071836 and AR in a Singapore Chinese 

population 

Gene SNP Test 
Freq 
cases 

Freq 
controls 

Alleles
a
 MAF

b
 

OR
c
 

[CI
d
 95%] 

P 

CD39 rs7071836 LOGISTIC 0.25 0.25 G/A 0.25 
1.03 

[0.83-1.27] 
0.82 

a
Minor allele listed first. 

b
Minor Allele Frequency. 

C
Odds Ratio. 

d
Confidence Interval. 
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the discovery cohort (P =   0.01, OR = 1.32), neither the validation 

cohort (P = 0.35, OR = 0.91) nor the combined cohort produced any 

statistical significance (P = 0.38, OR = 1.07), indicating that the effect 

of rs257174 on incidence of AR is evident only when the variant is 

considered in combination with rs7071836 (marginal P-values and 

ORs are provided in Additional file 6: Table S3). 

Epistatic interaction between rs7071836 and rs257174 is associated 

with AR risk but not atopy 

In the tropical urban environment of Singapore AR is strongly 

associated with the sensitization against house dust mite (HDM) 

allergens35. We therefore sought to determine whether the epistatic 

effect of rs257174 and rs7071836 was associated with the 

production of HDM-specific IgE (atopy), the key mediator of AR 

pathology, or rather with a downstream event influencing the 

manifestation of the clinical symptoms. 

 

Table 2. Summary of the statistical interaction between rs7071836 and rs257174 

across all cohorts 

  
Discovery Validation Combined 

SNP1 SNP2 
OR

a
int 

[CI
b
 95%] 

Pint 
OR

a
int 

[CI
b
 95%] 

Pint 
OR

a
int 

[CI
b 

95%] 
Pint 

rs7071836 rs257174 
0.45 

[0.31- 0.66] 
3.64 x 

10
-5

 
0.59 

[0.41-0.84] 
4.02 x 

10
-3

 
0.53 

[0.41- 0.69] 
1.98 x 

10
-6

 

a
Odds Ratio.

 b
Confidence Interval. 
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Table 3. Atopy contribution to the statistical interaction between rs7071836 and 

rs257174 in the validation cohort 

SNP1 SNP2 AR cases 
Samples with 
atopy but no 

AR 

OR
a
 

[CI
b
 95%] 

P-value 

rs7071836 rs257174 676 1647 
0.69 

[0.52-0.91] 
9.60 x 10

-3
 

      

SNP1 SNP2 
Samples with 

atopy but no AR 
Non atopic 

samples 
OR

a
 

[CI
b
 95%] 

P-value 

rs7071836 rs257174 1647 511 
0.87 

[0.66-1.15] 
0.34 

a
Odds Ratio. 

b
Confidence Interval. 

All AR cases were atopic (HDM-IgE positive as defined by skin prick 

test), whereas all non-symptomatic controls were non-atopic. We 

therefore used the replication cohort described in19 to assess the 

putative epistatic interaction by comparing the atopic AR group (AR+) 

comprising 676 individuals with 1647 individuals that were also 

atopic but did not show any AR symptoms (AR-). Epistasis of 

rs257174 and rs7071836 was still evident when comparing atopic 

AR+ cases with atopic AR- cases (P = 9.6 x 10-3), but this effect was 

lost when comparing atopic AR- individuals with a healthy non-atopic 

control group comprising 511 individuals (P = 0.34) (Table 3). These 

data indicated that epistasis of rs7071836 and rs257174 affects the 

manifestation of clinical symptoms but does not associate with the 

production of HDM specific IgE.  
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SNP rs257174 influences FAM134B expression levels in monocytes 

While statistical analysis of the GWAS data revealed an epistatic 

interaction of rs7071836 with rs257174, it still had to be shown that 

the SNP was actually associated with function. Polymorphism 

rs257174 is located ~12 kbp upstream of the FAM134B gene. Like its 

epistatic partner rs7071836, it belongs to a cluster of perfectly-linked 

SNPs (Figure 3A). To establish a quantitative effect on FAM134B gene 

expression we used mRNA samples from the same cell sources as in 

our rs7071836 analyses (Figure 2B). The analysis revealed that the 

rs257174-cluster indeed represents an ‘expression quantitative trait 

locus’ (eQTL). As in the case of the rs7071836-cluster the allelic effect 

was cell-type specific. Surprisingly, however, it was most evident in 

monocytes while the expression of FAM134B in Treg cells was 

unaffected (Figure 3B).  
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Figure 3. Variations in monocyte expression of FAM134B are associated with SNP 

rs257174. (A) The position of the SNP-cluster which is in perfect linkage 

disequilibrium (r
2
 = 1) with rs257174 in Asian individuals (CHB/JPT) is shown here 

with respect to the transcripts of the gene FAM134B. This SNP-cluster contains 9 

SNPs located ~9 kbp upstream of the transcriptional start site. The position of the 

tag SNP rs257174 is indicated. Several SNPs of this cluster are located in a region of 

open chromatin (identified by DNase I Hypersensitivity site analysis of CD14+ 

monocytes in the Encode Project), suggesting a regulatory role on gene expression. 

(B) Impact of rs257174 on FAM134B gene expression in Treg, CD4+ T effector cells, 

B cells and monocytes (same samples as in Figure 2B). FAM134B mRNA content is 

plotted with reference to rs257174 genotype. Statistical analysis revealed that the 

polymorphism is associated with FAM134B gene expression in monocytes only (P = 

0.0003). Gene expression was measured using the Affymetrix Human Exon 1.0ST 

Array and data were normalized using the Robust Multichip Average (RMA) at the 

gene level. P-values for the association were evaluated using one-way ANOVA on 

log2-transformed data (n = 15). 
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In-line with our findings, the influence of rs257174 on FAM134B 

expression has also been detected by other investigators conducting 

transcriptome studies of human monocytes36,37. For this cell type, 3 

of the SNPs in the rs257174-cluster are located in close proximity to 

an open chromatin region (DNase I Hypersensitivity peak), which, by 

ENCODE criteria, suggests a functional role in the regulation of gene 

expression38 (Figure 3A).  

CD39 expression is negatively correlated with FAM134B expression 

in whole blood 

The epistatic interaction between rs7071836 and rs257174 suggested 

an inverse relation between the expression of CD39 and FAM134B. In 

order to confirm the relevance of this finding the expression levels of 

CD39 and FAM134B were compared in three Caucasian cohorts of 

healthy individuals (Kora F420, DILGOM21, SHIP-TREND22) for which 

whole blood gene expression measurements were published. In all 

three cohorts CD39 expression values negatively correlated with  
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FAM134B expression values (Pspearman< 0.001, rKora F4 = - 0.3938, rDILGOM 

= - 0.2513, rSHIP-TREND= -0.2459) (Figure 4A). Similarly, FAM134B was 

differentially expressed across samples clustered according to their 

CD39 expression (CD39lo, CD39int, CD39hi, Additional file 7: Figure 

S4). Thus, a high expression of CD39 was inversely correlated to the 

expression of FAM134B (Figure 4B).  

Figure 4. CD39 expression negatively correlates with FAM134B expression in 

whole blood. (A) Correlation between CD39 and FAM134B expression in whole 

blood in three Caucasian cohorts. The most significant FAM134B Illumina probe is 

plotted here with respect to the unique CD39 Illumina probe. A consistent negative 

correlation between the two genes was apparent in all cohorts (P < 0.001). (B) 

FAM134B expression is affected by CD39 levels in whole blood. Samples were 

classified according to their CD39 expression levels (CD39lo, CD39int, CD39hi) using 

unsupervised clustering (see Additional file 7: Figure S4) and FAM134B expression 

across the three groups was compared using Kruskal-Wallis test followed by Dunn’s 

multiple comparison tests. CD39hi individuals were characterized by a significantly 

lower FAM134B expression than CD39lo individuals (Pkrusal-wallis < 0.0001,  PCD39lo vs 

CD39hi < 0.0001). 



155 
 

Extracellular ATP enhances FAM134B expression  

Since variations in CD39 Treg expression affect the concentration of 

ATP in the extracellular space11, we hypothesized that this molecule 

could represent the functional link for the epistasis of CD39 and 

FAM134B. This would imply however, that FAM134B expression 

would be controlled by the amount of extracellular ATP. In order to 

test this hypothesis, we isolated CD14+ blood monocytes and 

incubated these cells for 2h in the presence or absence of ATP before 

assessing mRNA levels of FAM134B (Figure 5A). The experiment 

confirmed that extracellular ATP indeed enhances the expression of 

FAM134B (Figure 5B). In monocytes exposed to either 0.2 mM or 1 

mM ATP we observed a significant increase in FAM134B mRNA (P = 

0.0089). Specificity of the ATP-mediated effect was confirmed by a 

partial block of the FAM134B expression by the addition of the ATP-

antagonist A-438079 (Additional file 8: Figure S5). The stimulatory 

effect of ATP on FAM134B expression was dose-dependent (P = 

0.0035, post test for assessment of linear trends), and observed only 

for the long isoform of FAM134B, which is encoded ~9 kbp 

downstream of the rs257174 LD block. Expression levels of a less 

abundant shorter isoform, which is encoded more than 100 kbp 

distal from the rs257174 LD cluster, were not affected by ATP 

exposure. Thus, in human monocytes the expression of FAM134B is 

modulated both by a genetic cis polymorphism and by extracellular 

ATP levels. 
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Figure 5. Extracellular ATP enhances monocyte expression of FAM134B. (A) 

Location of the rs257174 SNP-cluster with reference to the two common splice 

variants of FAM134B. The FAM134B transcript exists in two isoforms, a long 

isoform (~9 kbp down-stream of the rs257174 SNP-cluster), and a less abundant 

short isoform (more than 100 kbp distal from the rs257174 SNP-cluster). (B) CD14+ 

monocytes were isolated from 3 separate individuals and exposed to variable doses 

of ATP (0, 0.2 and 1 mM). After 2h incubation, expression of FAM134B was 

measured by RT-PCR and normalized by the 2
-∆c(t)

 method using HPRT as the 

housekeeping reference gene. FAM134B expression in monocytes was significantly 

and dose-dependently up-regulated in response to extracellular ATP treatment. 

Differences between the 3 treatments were estimated using repeated measures 

ANOVA (P = 0.0089) with Tukey’s post-hoc comparison test on ∆c(t) values. Error 

bars represent standard deviation across biological replicates.  
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Discussion 

In this study we provide the first evidence that intercellular epistatic 

interactions can influence risk of complex human diseases. In this 

case, rs7071836, which modulated CD39 expression by human Treg, 

interacted with rs257174, which altered FAM134B gene expression in 

blood monocytes to affect the risk of AR. Both are functionally 

connected via extracellular ATP, a damage-associated molecule 

involved in eliciting a range of host inflammatory responses.  

In a cohort of Singapore Chinese volunteers this novel epistatic 

interaction is associated to risk of allergic rhinitis. With an estimated 

disease prevalence of 13%39 and an OR of 0.45, our study exhibited 

only 5% power to detect our CD39/FAM134B interaction in the 

discovery cohort at a significance threshold α = 5 x 10-8. We therefore 

elected for a replication approach to improve the power of the study. 

By this approach, our power for detection was increased to 89% (α = 

0.0025 after Bonferroni correction for 20 tests) with a combined P-

value of 1.98 x 10-6. While the epistasis was anchored on rs7071836, 

an eQTL known to regulate the surface expression of CD39, the 

epistasis-partner revealed by the statistical analysis also turned out 

to be functional. Polymorphism rs257174 was part of a SNP-cluster 

associated with the expression of the cis-Golgi protein FAM134B.  

Moreover, while the allelic combination of the epistasis suggested 

that the expression of CD39 and of FAM134B were inversely linked, 

this correlation could actually be validated from the expression data 

of a full blood transcriptome analysis.   
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CD39 is an ecto-ATPase that depletes extracellular ATP from the local 

microenvironment. Since extracellular ATP is a key indicator of host 

tissue damage, the efficacy of ATP removal by CD39 has been 

associated with various inflammatory conditions including 

autoimmune diseases, viral infections and cancer progression. The 

CD39 promoter SNP rs7071836 responsible for the effect is part of a 

large cluster of perfectly linked SNPs containing polymorphisms 

already implicated in Crohn’s disease15 and in progression of AIDS17. 

Our study indicates that in conjunction with a cluster controlling 

FAM134B it is also an important component of AR risk. While the 

biological function of CD39 is well-established, the exact role played 

by the epistatic partner remains enigmatic. As a newly identified cis-

Golgi protein, it has only been shown to be expressed on few cell 

types mostly associated with the neural system40–42. While the 

protein was detected in autonomic and sensory ganglia, deleterious 

mutations in this gene have been shown to cause hereditary sensory 

and autonomic neuropathy type II (HSAN II), a severe genetic disease 

characterized by a dysfunction of the autonomic system and 

impaired nociception40. FAM134B knock-down in a mouse N2a 

neuroblastoma cell line resulted in a smaller cis-Golgi compartment 

and impaired cell proliferation, and FAM134B knock-down in 

cultured dorsal root ganglion mouse neurons resulted in apoptosis of 

nociceptive neurons40. FAM134B may therefore be involved in 

mediating multiple cellular pathways that affect the maturation and 

export of protein precursors and cell surface receptors.  
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Although FAM134B has been primarily associated with the nervous 

system, the expression of this gene is in fact far more widespread. 

Overexpression of FAM134B has been reported before in human 

esophageal squamous cell carcinoma43 and this study provides 

evidence for a constitutive expression in multiple different 

populations of human leukocytes. The FAM134B molecule thus 

seems likely to play a significant role in host immune protection and 

inflammatory responses. Further work will now be required to fully 

dissect the role played by FAM134B in the numerous different 

leukocyte subsets that comprise the human immune system. 

Considering that FAM134B is located in the cis-Golgi compartment, 

this protein could potentially be involved in vesicle trafficking and  

may influence cytokine secretion by monocytes in response to 

external stimuli including ATP. 

Conclusions  

Epistasis has been recognized as a natural phenomenon that 

commonly occurs between SNPs that affect components of the same 

biological pathway44–46. Here we propose a novel mechanism of 

epistasis based on the interaction of two ‘unrelated’ molecules that 

are regulated by polymorphisms in different cell types. Hence, 

epistasis can also arise from functional links that facilitate cross-talk 

between disparate biological pathways. In the current report, the 

putative mediator of this inter-lineage epistasis is ATP. While it 

modulates monocyte expression of FAM134B, it is also depleted from 

the environment by Treg via the ectonucleotidase CD39, whose 
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expression is influenced by rs7071836 (Figure 6). The amount of 

FAM134B in monocytes is thus modulated both by a monocyte-

specific cis polymorphism that determines basal expression levels 

and by a trans-polymorphism that affects CD39 expression in Treg. To 

our knowledge, this is the first report that intercellular genetic 

epistasis can play a role in susceptibility to a complex human disease. 

 

Figure 6. Schematic representation of the epistatic interaction between SNPs 

rs7071836 and rs257174. While promoter SNP rs7071836 regulates CD39 

expression in Treg, the allelic state of rs257174 determines basal expression of 

FAM134B in monocytes. CD39 depletes extracellular ATP by hydrolyzing this 

damage-associated molecular pattern but the extent of ATP depletion depends 

directly on the allelic state of rs7071836. In turn, monocyte basal expression of 

FAM134B is regulated by rs257174 and is modulated by the concentration of ATP in 

the extracellular space. Host cell damage-associated ATP is thus the putative 

functional link that supports epistatic interaction of rs7071836 and rs257174 in 

determining AR risk. 
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Supplementary Figure 1. Gating strategy for Treg, CD4+ T effector cells, B cells 

and monocytes. 1-2 x 10
6
 PBMCs from each donor were stained using the 

LIVE/DEAD Fixable Blue Dead kit followed by surface staining with anti-CD4, CD25, 

CD39, CD45RA and CCR6 mAb, FoxP3 and CTLA-4 were stained intracellularly as 
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described in Materials and methods. Monocytes and B cells constitutively 

expressed CD39 at steady-state. B cells were gated based on CD4-, CD39+, and 

CD45RA+ cells whereas effector CD4+ T cells (Teff) were CD4+ and FoxP3-. CD39 

was not expressed on CD45RA+ or CD45RA- Teff cells. (A) rs7071836 GG genotype 

resulted in a higher CD39 expression on a specific subset of Treg cells, CD45RA- 

FoxP3+ Treg (CD45RO+). (B) In contrast, rs7071836 AA genotype was associated 

with a CD39 low phenotype on the same population of Treg cells.  

Supplementary Figure 2. Variation in CD39 cell surface expression in Caucasian 

and Chinese populations. CD39 expression is stable in human B cells (see Figure 1) 

but variable in Treg. Surface expression of CD39 in Treg was therefore normalized 

to the expression levels observed in donor-matched B cells in order to reduce 

possible batch effects. CD39 cell surface expression on the two subsets was 

determined by FACS analysis and individuals were clustered into two groups: 

CD39lo and CD39hi. Donor classification was confirmed using the unsupervised 

clustering k-means method on log2-transformed ratios, setting the number of 

clusters to two. While no major differences in clustering were observed between 

ethnicities, the relative frequency of CD39lo individuals was higher in the Chinese 

cohort. 
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Supplementary Figure 3. FACS Sorting strategy for Teff, Treg, B cells, and 

monocytes. (A) Gating strategy for the pre-sort sample. PBMCs were incubated 

with CD49d, CD127, CD4, CD25, CD19, and CCR6 mAbs in MACS buffer for 15 min. 

After staining, the samples were washed with MACS buffer and re-suspended at 

40-50 x106 cells per ml in MACS buffer and applied to 70 uM Pre-separation filters 

(Miltenyi Biotec). The filtered samples were applied to a FACSAriaII cell sorter. Teff, 

Treg, B cells were collected in 5 ml Falcon polystyrene tube containing 1 ml of FACS 

sorting media (RPMI1640 supplemented with 10% fetal bovine serum and 10μg/ml 

gentamicin). For Treg cells, these cells were collected in 1.5 ml Eppendorf tube 

containing 1 ml of FACS sorting media. (B) Post-sort analysis of Treg, Teff, B cell, 

and monocyte. Post sort analysis was performed to determine the purity of Treg, 

Teff, B cells, and monocytes. 
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Supplementary Table 1. CD39 epistatic interactions identified in the discovery cohort (P < 0.0001) 

SNP CHR BP Gene Location OR L95 U95 P 

rs12745984 1 107905374 VAV3 downstream ( 9930bp) 0.3748 0.2464 0.57 4.50E-06 

rs2311740 10 89818869 PTEN downstream (100356bp) 0.4222 0.2938 0.6067 3.14E-06 

rs12247999 10 89820726 PTEN downstream (102213bp) 0.4033 0.2616 0.6219 3.96E-05 

rs6502938 17 6086382 WSCD1, KIAA0523 downstream (117910bp) 0.5297 0.3904 0.7188 4.50E-05 

rs518569 13 79663798 SPRY2 downstream (144314bp) 1.972 1.424 2.731 4.36E-05 

rs12408799 1 107900866 VAV3 downstream (14438bp) 0.3937 0.2477 0.6256 7.98E-05 

rs10881471 1 107897140 VAV3 downstream (18164bp) 0.3727 0.2451 0.5667 3.89E-06 

rs9322777 6 96788552 FUT9 downstream (18342bp) 2.46 1.579 3.832 6.91E-05 

rs1975732 12 48544213 FAIM2, KIAA0950 downstream (2733bp) 2.719 1.658 4.459 7.38E-05 

rs2324999 3 86241575 BC040985 downstream (36870bp) 0.3784 0.2453 0.5838 1.12E-05 

rs1394695 13 75829626 AX747676 downstream (473677bp) 2.178 1.521 3.121 2.18E-05 

rs4862396 4 185780666 CASP3 downstream (5177bp) 0.3077 0.1717 0.5513 7.45E-05 

rs9377629 6 96836588 FUT9 downstream (66378bp) 2.32 1.522 3.535 9.07E-05 

rs6068671 20 51852394 SUMO1P1 downstream (72052bp) 0.4793 0.336 0.6836 4.91E-05 

rs12674330 7 5070801 RBAK exon, intron 0.469 0.3333 0.66 1.39E-05 

rs3749430 3 72231809 AK097190 exon 2.048 1.456 2.881 3.82E-05 

rs10460527 2 37358609 PRKD3 exon 0.4939 0.3517 0.6937 4.69E-05 

rs4149117 12 20902747 SLCO1B3, LST3, LST-3TM12 exon 0.4763 0.3315 0.6845 6.10E-05 

rs1328199 1 107929418 VAV3 intron 0.3928 0.2658 0.5803 2.71E-06 

rs7619493 3 86133485 CADM2 intron 0.358 0.2319 0.5527 3.54E-06 

rs4914950 1 107977810 VAV3 intron 2.132 1.539 2.955 5.40E-06 

rs9385283 6 123385160 RLBP1L2 intron 0.2075 0.1008 0.4271 1.96E-05 

rs2783495 1 93416265 TMED5, UNQ397 intron 2.19 1.528 3.14 1.98E-05 
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rs10206380 2 37307790 CEBPZ intron 0.48 0.3425 0.6727 2.02E-05 

rs2576203 1 215139683 ESRRG intron 2.943 1.792 4.834 2.02E-05 

rs444594 20 14414618 MACROD2 intron 0.4329 0.2943 0.6369 2.14E-05 

rs2783490 1 93400117 TMED5, UNQ397 intron 2.174 1.517 3.115 2.33E-05 

rs6549436 3 72229210 AK097190 intron 2.089 1.484 2.939 2.40E-05 

rs11154131 6 123361081 RLBP1L2 intron 0.2114 0.1027 0.435 2.44E-05 

rs3821144 2 37362985 PRKD3 intron 0.4786 0.3397 0.6744 2.54E-05 

rs4777717 15 90839700 C15orf32 intron 0.4884 0.3495 0.6827 2.73E-05 

rs2815429 1 93363256 MTF2 intron 2.169 1.511 3.115 2.73E-05 

rs8030836 15 90834290 C15orf32 intron 0.4825 0.343 0.6787 2.84E-05 

rs10122718 9 6989846 JMJD2C intron 0.4716 0.3312 0.6716 3.09E-05 

rs408086 20 14427272 MACROD2 intron 0.4465 0.3051 0.6534 3.33E-05 

rs7021928 9 118583985 ASTN2 intron 0.51 0.3707 0.7017 3.53E-05 

rs4384764 2 37443788 QPCT intron 0.4808 0.3393 0.6814 3.86E-05 

rs9866277 3 86188030 CADM2 intron 0.4566 0.3141 0.6638 4.01E-05 

rs11031122 11 30504014 MPPED2 intron 0.1685 0.07174 0.3958 4.36E-05 

rs7537311 1 107938539 VAV3 intron 0.4524 0.3092 0.662 4.42E-05 

rs11031125 11 30509905 MPPED2 intron 0.1692 0.07175 0.3989 4.91E-05 

rs2900474 12 20901315 SLCO1B3, LST3, LST-3TM12 intron 0.477 0.3328 0.6838 5.60E-05 

rs9812103 3 86069410 CADM2 intron 0.3424 0.2021 0.5804 6.85E-05 

rs1410406 1 107957883 VAV3 intron 2.049 1.439 2.916 6.86E-05 

rs12545504 8 4337921 CSMD1 intron 0.5008 0.3558 0.7051 7.41E-05 

rs2300888 2 37347840 PRKD3 intron 0.5039 0.3587 0.7079 7.76E-05 

rs4629138 2 37371231 PRKD3 intron 0.5047 0.3593 0.7088 7.93E-05 

rs4670685 2 37374689 PRKD3 intron 0.508 0.3626 0.7117 8.26E-05 

rs12563120 1 93563233 CR609342, AL832786 intron 2.017 1.42 2.865 9.00E-05 
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rs7015436 8 76363384 BC062758 upstream (10132bp) 0.5307 0.3904 0.7213 5.21E-05 

rs257174 5 16681511 FAM134B upstream (11392bp) 0.4496 0.3076 0.657 3.64E-05 
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Supplementary Table 2. CD39 epistatic interactions tested in the replication cohort 
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rs6502938 0.53 0.39 0.72 4.50E-05 0.47 0.88 1.04 0.79 1.36 7.96E-01 0.77 0.63 0.94 9.40E-03 

rs257174 0.45 0.31 0.66 3.64E-05 0.23 0.89 0.59 0.41 0.84 4.02E-03 0.53 0.41 0.69 1.98E-06 

rs12247999 0.40 0.26 0.62 3.96E-05 0.18 0.90 0.90 0.65 1.26 5.49E-01 0.67 0.51 0.87 2.70E-03 

rs2900474 0.48 0.33 0.68 5.60E-05 0.28 0.90 1.05 0.76 1.45 7.85E-01 0.73 0.57 0.93 1.02E-02 

rs4862396 0.31 0.17 0.55 7.45E-05 0.11 0.91 0.99 0.64 1.52 9.62E-01 0.64 0.45 0.90 1.14E-02 

rs4777717 0.49 0.35 0.68 2.73E-05 0.33 0.92 0.90 0.66 1.23 5.15E-01 0.67 0.54 0.84 5.98E-04 

rs6782778 1.95 1.39 2.73 9.81E-05 0.32 0.93 0.78 0.58 1.04 8.93E-02 1.16 0.94 1.44 1.68E-01 

rs3821144 0.48 0.34 0.67 2.54E-05 0.35 0.94 1.08 0.82 1.42 5.93E-01 0.78 0.63 0.96 2.15E-02 

rs10206380 0.48 0.34 0.67 2.02E-05 0.37 0.94 1.06 0.81 1.39 6.74E-01 0.78 0.63 0.95 1.62E-02 

rs10881471 0.37 0.25 0.57 3.89E-06 0.20 0.96 1.00 0.70 1.43 9.98E-01 0.65 0.50 0.85 1.53E-03 

rs9377629 2.32 1.52 3.54 9.07E-05 0.19 0.96 0.94 0.66 1.32 7.02E-01 1.35 1.04 1.75 2.65E-02 

rs12674330 0.47 0.33 0.66 1.39E-05 0.42 0.97 1.11 0.84 1.46 4.57E-01 0.79 0.64 0.98 2.98E-02 

rs1394695 2.18 1.52 3.12 2.18E-05 0.25 0.97 0.91 0.66 1.25 5.47E-01 1.37 1.08 1.72 9.00E-03 

rs1328199 0.39 0.27 0.58 2.71E-06 0.23 0.97 1.04 0.75 1.44 8.11E-01 0.69 0.54 0.88 2.65E-03 

rs7619493 0.36 0.23 0.55 3.54E-06 0.19 0.97 1.15 0.82 1.62 4.13E-01 0.72 0.56 0.93 1.25E-02 

rs6549436 2.09 1.48 2.94 2.40E-05 0.32 0.97 0.82 0.61 1.10 1.91E-01 1.24 1.00 1.54 5.28E-02 
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rs9285176 2.04 1.47 2.84 2.38E-05 0.42 0.97 0.94 0.71 1.24 6.53E-01 1.29 1.05 1.59 1.71E-02 

rs2311740 0.42 0.29 0.61 3.14E-06 0.31 0.98 0.99 0.75 1.31 9.52E-01 0.74 0.59 0.92 6.15E-03 

rs2783495 2.19 1.53 3.14 1.98E-05 0.29 0.98 1.06 0.78 1.43 7.02E-01 1.44 1.15 1.81 1.82E-03 

rs4914950 2.13 1.54 2.96 5.40E-06 0.49 0.99 1.00 0.76 1.30 9.78E-01 1.38 1.12 1.69 2.13E-03 
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Supplementary Table 3. Marginal and interaction P-values and ORs for the 

statistical interaction between rs7071836 and rs257174 across all cohorts 

 rs7071836 rs257174 Interaction 

 
OR

a
 

[CI
b
 95%] 

P 
OR

a
 

[CI
b
 95%] 

P 
OR

a
 

[CI
b
 95%] 

P 

Discovery 
1.47 

[1.11-1.93] 
6.42 x 
10

-3
 

2.01 
[1.48-2.71] 

6.18 x 
10

-6
 

0.45 
[0.31-0.66] 

3.64 x 
10

-5
 

Validation 
1.06 

[0.84-1.34] 
0.62 

1.15 
[0.88-1.51] 

0.30 
0.59 

[0.41-0.84] 
4.02 x 
10

-3
 

Combined 
1.21 

[1.01-1.44] 
3.92 x 
10

-2
 

1.46 
[1.20-1.78] 

2.05 x 
10

-4
 

0.53 
[0.41-0.69] 

1.98 x 
10

-6
 

a
Odds Ratio.

 b
Confidence Interval. 

 

Supplementary Figure 4. CD39 expression clustering in whole blood to simulate 

the effect of polymorphism rs7071836. Gene expression processed data were 

downloaded from the respective repositories and used as input for the clustering 

algorithm k-means. The number of clusters was set to three. Significance was 

assessed using Kruskal-Wallis test followed by Dunn’s multiple comparison tests. 

Each cohort was analyzed independently. In all cohorts the three CD39 expression 

clusters (CD39lo, CD39int, CD39hi) were strongly separated. 
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Supplementary Figure 5. Inhibition of the ATP-mediated induction of FAM134B by 

a purinergic receptor antagonist. Monocytes of two donors were incubated for 2h 

with 1mM ATP in the absence or presence of the ATP antagonist 10 µM A-438079. 

After the incubation the mRNA levels of FAM134B were determined by RT-PCR. The 

analysis revealed a 50% and 36% reduction in reference to the basal expression in 

the absence of ATP (red dashed line). 
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Abstract 

Linkage disequilibrium (LD) is an essential metric for selecting single-

nucleotide polymorphisms (SNPs) to use in genetic studies and 

identifying causal variants from significant tag SNPs. The explosion in 

the number of polymorphisms that can now be genotyped by 

commercial arrays makes the interpretation of triangular correlation 

plots, commonly used for visualizing LD, extremely difficult in 

particular when large genomics regions need to be considered or 

when SNPs in perfect LD are not adjacent but scattered across a 

genomic region. We developed ArchiLD, a user-friendly graphical 

application for the hierarchical visualization of LD in human 

populations. The software provides a powerful framework for 

analyzing LD patterns with a particular focus on blocks of SNPs in 

perfect linkage as defined by r2. Thanks to its integration with the 

UCSC Genome Browser, LD plots can be easily overlapped with 

additional data on regulation, conservation and expression.  ArchiLD 

is an intuitive solution for the visualization of LD across large or highly 

polymorphic genomic regions. Its ease of use and its integration with 

the UCSC Genome Browser annotation potential facilitates the 

interpretation of association results and enables a more informed 

selection of tag SNPs for genetic studies.  
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Introduction 

The development and diffusion of high-throughput technologies for 

the analysis of genetic variants, such as single-nucleotide 

polymorphism (SNP) microarrays and next-generation sequencing, 

has lead to a substantial increase in the number of variants that can 

be included in population-based genetic studies1. Commercially 

available microarray platforms can now measure up to 5 million SNPs 

on a single chip.  

A large number of these variants are not independent but correlated 

through linkage disequilibrium (LD), the non-random association of 

alleles at two genomic locations. Knowledge of LD plays an important 

role in the selection of SNPs to be tested for association with a 

particular phenotype. This metric can in fact be used to alleviate the 

burden of multiple testing by pruning out redundant information. It is 

also useful for identifying possible causative variants from relevant 

tag polymorphisms. 

The completion of the International HapMap project2–5 and  the 1000 

Genomes Pilot Project6 has provided scientists with a high-density 

map of genetic variation across the major human populations making 

it possible to evaluate patterns of LD on a genome-wide scale. 

Triangular correlation plots for the visualization of pairwise linkage 

disequilibrium across genome regions, as implemented in 

Haploview7, are the most used method to report LD information in 

population-based genetic studies8. However, the extensive number 

of variants now available on commercial arrays makes the 
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interpretation of triangular correlation plot difficult especially when 

SNPs in high linkage are not adjacent but interspersed between other 

SNPs. Furthermore the complexity of triangular correlation plots 

increases with the size of the region of interest which complicates 

the analysis of LD patterns across large genes. It is therefore 

necessary to develop alternative ways to plot LD for genome regions 

characterized by a high density of SNPs or fragmented LD blocks.  

We conceived a new way of visualizing LD patterns across the 

genome as blocks of SNPs in perfect LD (r2=1) that can be 

hierarchically clustered based on their pairwise linkage. ArchiLD is the 

implementation of this new concept in a user-friendly Java 

application which integrates the UCSC Genome Browser9 

visualization potential with a simple and intuitive tool for building LD 

blocks. 

Implementation 

ArchiLD comes in two versions: a client-server application (ArchiLD1k) 

for the analysis of LD across the four populations sequenced by the 

1000 Genomes Pilot Project  (CEU, CHB, JPT and YRI)6 and a 

standalone application (ArchiLDCustom) for the analysis of LD across 

custom genotypic datasets.  

ArchiLD1k computes blocks of SNPs in perfect LD (r2=1), called 

clusters, from pre-calculated pairwise LD measures obtained using 

the software Haploview7 on the four populations provided by the 

1000 Genomes Pilot Project6.  Due to the low number of CHB and JPT 

samples sequenced by the consortium (30 samples each) when 
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compared with the number of YRI and CEU samples (respectively 59 

and 60), the two Asian populations have been merged together as 

previously done by others6,10. This allows for an easier comparison of 

LD patterns across populations due to their similar sample size. The 

software will soon be updated to include all 1092 individuals (14 

distinct populations) sequenced by the 1000 Genome Project phase 

I11.  More individuals/populations will be added as they become 

available.  

ArchiLDCustom computes LD clusters from custom genotyping 

datasets imported by the user. The software accepts pedigree data 

and marker information in the standard linkage format used by 

Haploview7. Each chromosome needs to be loaded independently 

and r2 values are estimated using the software Haploview7.  

In both versions of the software clusters are visualized as custom 

tracks in an integrated instance of the UCSC Genome Browser9. 

ArchiLD1k is implemented as a client-server application developed in 

Java v1.6 (client-side) and Java EE v1.7 (server-side).  All 

computations are carried out by a Java servlet deployed on Apache 

Tomcat (v7.0.30). Hierarchical clustering of LD blocks is performed 

using R v2.15.1 by the function hclust from the package {stats} 

utilizing an agglomeration method based on average12. The distance 

matrix used for the analysis is defined from LD pairwise measures as 

1-r2. Analysis parameters can be selected by means of a query 

interface on the client side and are then dispatched to the servlet 

which computes LD blocks and generates the custom Browser 

Extensible Data (BED) tracks used for plotting clusters. BED is a file 
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format used by the UCSC Genome Browser9 to define genomic 

regions:  a description of the required fields can be found on the 

UCSC Genome Bioinformatics website13. Custom tracks are 

automatically imported in the browser when the user selects which 

architecture to visualize. Gene annotations were downloaded from 

the UCSC Genome Browser database14 and SNP annotations were 

provided by the 1000 Genome Pilot Project (genome build hg18)6. 

Hg19 positions were obtained using the liftOver tool provided by the 

UCSC Genome Browser15. Minor allele frequencies were computed 

using the software PLINK16 on all samples sequenced by the 1000 

Genomes Pilot Project (60 CEU, 60 CHB+JPT and 59 YRI)6. Each 

population was analyzed independently. Tables containing LD 

information and gene/SNP annotations are managed on the server 

side using MySQL v 5.5.27.  

ArchiLDCustom is completely implemented in Java v1.6. Hierarchical 

clustering of LD blocks is performed by a local instance of R using the 

same algorithm described for ArchiLD1k. Annotation tables and 

custom datasets are managed through a MySQL database. 

Connection parameters to the MySQL server and the complete path 

to the local installation of Haploview and R need to be set before any 

analysis can be performed. All the computations are run locally. LD 

plots can be visualized using an integrated instance of the UCSC 

Genome Browser9 but contrarily to the client-server version tracks 

containing LD plots need to be uploaded manually in the browser. All 

plots are stored as BED files.  
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All graphical interfaces were implemented using the Qt libraries for 

Java17.   

Results 

LD architectures 

LD architectures, sets of clusters of SNPs in perfect LD (r2=1), can be 

built starting from four distinct genomic elements: genes, SNPs, 

chromosomes (ArchiLD1k only) and genomic regions (ArchiLDCustom 

only). 

Gene-centered architectures are composed of LD blocks with at least 

one SNP located inside a gene or in proximity of it. The maximum 

distance between the gene transcription start/end and the SNPs to 

be included in the analysis can be adjusted by the user. The tool 

accepts three different identifiers for gene names: Entrez IDs, RefSeq 

IDs and HUGO gene symbols. 

SNP-centered architectures contain all clusters in LD with a selected 

SNP (reference SNP). To reduce the size of the tables used for the 

computations and the processing time required to generate the 

clusters only variants with an r2>=0.5 with the reference SNP are 

considered. 

Chromosome-centered architectures contain all LD blocks located on 

a specific chromosome. Region-centered architectures focus on the 

genomic region described in the genotypic dataset imported by the 

user. Only SNPs included in the file are used to build clusters. 

Regardless of the type of analysis selected, users can set a minor 

allele frequency threshold to exclude rare SNPs from the analysis and 
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choose which genome build (hg18/hg19) to use for the visualization 

(ArchiLD1k only).  

Visualization 

LD architectures are visualized as custom BED files in the integrated 

instance of the UCSC Genome Browser9. SNPs in perfect LD (r2=1) are 

joined by a horizontal line which constitutes a cluster.  

Gene-centered architectures are represented by two distinct tracks, 

one containing the name and position of individual SNPs and one 

containing all blocks in the region. Clusters are identified by the name 

of their first SNP (Figure 1). Users can decide to include only SNPs 

belonging to a cluster or all the SNPs in the region. If SNPs not 

belonging to any LD block (singletons) are included, a new track is 

added to the visualization.  

 

Figure 1. An example of gene-centered architecture. The first track contains the 

names and positions of all SNPs considered in the analysis. The second track 

contains all clusters associated to the gene. 
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It is also possible to build a hierarchical tree of clusters spanning the 

gene. Blocks of SNPs in perfect LD are clustered according to their 

pairwise r2. Hierarchical plots are displayed next to the Genome 

Browser window to facilitate the interpretation of LD patterns. When 

this option is selected each cluster is represented by a distinct track 

with the order of the tracks following the order of the clusters in the 

hierarchical tree (Figure 2).  

Region-centered architectures are similarly visualized but only SNPs 

included in a custom genotypic dataset are used for the analysis. 

SNP-centered architectures are represented by multiple tracks. The 

first track contains SNP names. The second track displays the 

reference SNP and all its perfectly linked SNPs. All other tracks are 

ordered by decreasing r2 values (the corresponding r2 is included in 

 

Figure 2. An example of hierarchical clustering. On the left the hierarchical 

clustering of all SNP blocks associated to a particular gene. On the right a graphical 

representation of a gene-centered architecture. The first track contains the names 

and positions of all SNPs considered in the analysis. The following tracks are 

ordered as they appear in the hierarchical clustering plot.  
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the track name, Figure 3). Singletons can be included and added to 

the track with the appropriate r2 value.  

For gene-centered, SNP-centered and region-centered architectures 

the user has the option to color SNPs and LD blocks by minor allele 

frequency. This simplifies the identification of clusters of SNPs in 

linkage disequilibrium with similar allele distributions.  

For chromosome-centered architectures all clusters are added to the 

same track (Figure 4). When singletons are included an additional 

track containing only these SNPs is added to the visualization.  

BED tracks and filenames containing the IDs of SNPs in a particular 

cluster can be easily exported for external use using the navigation 

tree. Multiple plots can be uploaded simultaneously as UCSC tracks 

 

Figure 3. An example of SNP-centered architecture. The first track contains the 

names and positions of all SNPs considered in the analysis. The second track 

contains the reference SNP and its linked variants. The following tracks are ordered 

by descending r
2
 with respect to the reference SNP. 
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to facilitate the comparison of LD patterns across different 

populations. 

In ArchiLD1k, gene-centered and SNP-centered architectures can be 

automatically loaded into the browser by clicking on the 

corresponding item in the navigation tree. Due to their large size 

chromosome-centered architectures cannot be automatically loaded 

but need to be exported first and then manually imported. 

ArchiLDCustom requires users to export BED tracks and manually 

import them in the browser regardless of the type of architecture 

generated.  

Discussion 

 

Figure 4. An example of chromosome-centered architecture. The first track 

contains the names and positions of all SNPs considered in the analysis. The second 

track contains all clusters located on the chromosome. 
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ArchiLD is a powerful software for producing highly interpretable 

plots that can be used to select tag SNPs in the context of association 

studies or to prioritize SNPs for functional studies. Its integration with 

the UCSC Genome Browser9 makes it easy to overlap additional 

information about regulation, conservation across species, 

phenotype and disease associations aiding the users in the 

interpretation of their results. 

Query performance 

Generation of SNP-centered architectures requires few seconds. For 

gene-centered architectures the process can take from few seconds 

to several minutes according to the length of the gene and the size of 

the upstream/downstream region selected by the user. 

Chromosome-centered architectures are pre-computed but due to 

their large size require minutes to be uploaded into the UCSC 

Genome Browser9. The import of custom datasets can be time-

consuming depending on the number of SNPs included in the file: the 

limiting factor is the computational time required by Haploview7  to 

generate pairwise LD measures. 

Comparison with similar software 

Multiple tools have so far been developed to tackle the complexity of 

linkage disequilibrium visualization in human populations. 

Haploview7 is one of the most used software for the computation 

and visualization of LD. It is extremely powerful for visualizing small 

genomic regions where highly linked SNPs are organized in compact 

blocks and it is therefore strongly used for tag selection in candidate 
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gene studies. Triangular correlation plots become difficult to 

interpret when the region of interest contains a large number of 

SNPs or when highly linked SNPs are not adjacent (Figure 5). ArchiLD 

facilitates the analysis of LD across these regions by joining perfectly 

linked SNPs in visual clusters and by ordering clusters with respect to 

their relative LD: SNP-centered architectures are ordered by 

decreasing r2 with respect to a reference SNP (index SNP) while gene-

centered and region-centered architectures are ordered according to 

their hierarchical tree with strongly linked blocks clustered together. 

In Haploview LD computations are done on the fly, a time and 

memory consuming process. ArchiLD1k on the other hand uses pre-

computed r2 values for building and hierarchically organizing LD 

blocks and can thus be used on a very large scale. 
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Another interesting way of computing LD clusters is offered by LD-

based clumping, a technique implemented, for example, in PLINK16. 

The clumping procedure is straightforward: it requires a SNP dataset 

and an input file containing variant names and association p-values. 

SNPs with an assigned p-value lower than a certain threshold (user-

based) are taken as index SNPs. All the other SNPs in the region are 

assigned to their most closely linked index SNP. An r2 threshold can 

 

Figure 5. Comparison between ArchiLD and Haploview. (A) Gene-centered 

visualization for the gene LAMP3 in CEU as provided by ArchiLD1k. (B) Analogous 

visualization in Haploview. The large number of variants analyzed makes it difficult, 

for example, to identify the position of the SNPs in perfect LD with rs76730564. 
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be selected to ignore variants that are weakly linked to index SNPs. 

The output of the procedure is a text file containing the list of index 

SNPs (with their respective association p-values) and the list of their 

linked SNPs. The information provided by the clumping procedure is 

extremely valuable for the interpretation of association results and 

the selection of genetic variants to use in downstream analysis but 

the visualization of the results is not straightforward. ArchiLD does 

not offer any clumping functionality since our visualization of linkage 

disequilibrium is independent of the availability of association results.  

Nonetheless clumping could be performed in two steps: by manually 

analyzing an association file to identify index SNPs and by creating a 

SNP-centered architecture for each index SNP. 

Another well used software for the analysis of LD patterns across the 

genome is SNAP10. The plots produced by SNAP are very similar to 

the SNP-centered plots produced by ArchiLD but our software has 

the advantage of including individual SNP labels and visualizing the 

gene structure (number of transcripts, positions of the exons) (Figure 

6). SNAP can also be used to integrate association results with LD 

information. The LD plot is by default centered on the SNP with the 

highest association signal (this can be modified by the user). The tool 

does not offer any way of focusing on a particular gene/region. This 

limitation is overcome by other tools such as LocusZoom18 where the 

user can choose a gene or a genomic region to analyze. As for SNAP 

the plot is centered on the SNP with the lowest p-value but this can 

be easily modified by the user. Both HapMap2–5  and the 1000 

Genome Project datasets6,11 can be used for computing LD.  The 
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advantage of this tool with respect to ArchiLD lies in the availability 

of pre-loaded GWAS datasets. Custom association datasets can also 

be loaded for the visualization. The integration of LD plots with pre-

loaded GWAS datasets is also offered by Ricopili, a tool developed by 

the Broad Institute19. As for LocusZoom the association/LD plot can 

be centered on a particular gene or a particular genomic region. The 

advantage of Ricopili with respect to LocusZoom is that more than 

one index SNP can be used for the visualization (clumping). When 

more than one reference variant is selected the most associated 

SNPs are chosen as index SNPs and all the other SNPs are assigned to 

their most closely linked reference SNP. SNPs are colored according 

to their pairwise LD with the reference SNP they are assigned to. The 

main disadvantage of this kind of visualization is that it does not 

provide any information about the pairwise LD of SNPs with the same 

color. It is impossible to say from the plot if these SNPs are totally 

independent or are strongly linked. ArchiLD tackles this limitation by 

joining SNPs which are perfectly linked with a horizontal line. While 

ArchiLD does not provide any pre-loaded GWAS dataset, custom 

association p-values can be imported as bedGraph custom tracks13 

and easily overlapped with the LD plot in the integrated browser. 

Except for Haploview all of the tools mentioned above generate SNP-

centered plots: the plot can be centered on a particular gene but one 

or more reference SNPs need to be selected before a visualization 

can be created. ArchiLD not only provides options to generate gene-

centered LD patterns but also offers the possibility of clustering the 

resulting LD blocks using a hierarchical tree.  
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A strong advantage of ArchiLD over the aforementioned tools is that 

it does not produce static pdf plots but interactive plots thanks to its 

 

Figure 6. Comparison between ArchiLD and SNAP. (A) SNP-centered visualization 

for the variant rs76730564 in CEU as provided by ArchiLD1k. Clusters are ordered 

by descending values of r
2
 with the reference SNP. (B) Analogous visualization in 

SNAP. The plot does not contain any SNP label nor provide any information on the 

location of exons. 
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integration with the UCSC Genome Browser9. Plots can be modified 

in real-time by zooming in/out or shifting the visualization 

upstream/downstream. Once the user is satisfied with the 

visualization a pdf file can be created. 

The major drawback of all the tools here described when compared 

with ArchiLD consists in the difficulty of adding functional 

annotations to LD plots (besides association p-values or in the case of 

Ricopili NHGRI GWAS catalog variants) : ArchiLD integration with the 

UCSC Genome Browser9 provides a solution to this limitation thanks 

to the large number of free annotation tracks available. 

Availability 

Precompiled binaries for both ArchiLD1k and ArchiLDCustom 

(Windows, Linux and Mac OS) can be downloaded from the project 

website (http://archild.sign.a-star.edu.sg)20. ArchiLD1k binaries are 

distributed as zip files containing a runnable jar and all the libraries 

required by the application. ArchiLDCustom binaries are distributed 

as zip files containing a runnable jar, all the libraries and annotation 

tables required by the application and two sample datasets that can 

be used to test the software. The two sample datasets have been 

generated using genotype data from the 1000 Genomes Pilot Project6 

for the first 500kbp of chromosome 7 (CEU) and chromosome 12 

(CHB+JPT) respectively. ArchiLDCustom requires  R v 2.15.1 and 

access to a MySQL database (MySQL v 5.5.27 or higher). 

Instructions on how to launch the software under different operating 

systems and how to use the different functionalities of ArchiLD are 

http://archild.sign.a-star.edu.sg/
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described in the manual, available for download on the project 

website. Source files can also be obtained from the website and 

easily imported as java projects in Eclipse IDE for Java Developers.  

The software is released under the GNU General Public License (GPL) 

version 3. 

Conclusions 

ArchiLD is a user-friendly application for the visualization of linkage 

disequilibrium in human populations. The software was developed to 

aid geneticists in selecting SNPs to include in genetic studies and in 

identifying putative causative SNPs from relevant tag variants. Its 

ease of use and high interpretability make ArchiLD a powerful 

addition to every geneticist’s toolbox.  
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CHAPTER 5 

SUMMARY, CONCLUSIONS AND FUTURE 

PERSPECTIVES 

The connection between genotype and phenotype is not 

straightforward due to the multiple mechanisms through which DNA 

mutations can affect phenotypic manifestations and the numerous 

ways polymorphisms can interact to produce a final outcome. This is 

particularly true in the context of the immune system which is 

characterized by a complex interplay between multiple cell subsets. 

Because of the redundancy of the system and the number of players 

involved it is rare for a single polymorphism to have a measurable 

direct impact on a complex phenotype such as disease susceptibility. 

In most cases in fact polymorphisms do not act alone but 

synergistically contribute to the emergence of certain phenotypes. 

The identification of these interacting variants is not easy due to the 

large number of entities in the system which poses a statistical 

challenge because many tests needs to be performed with relatively 

small cohorts. It is therefore useful to also focus on intermediate 

phenotypes such as gene expression in addition to complex 

phenotypes like disease susceptibility to try and elucidate the impact 

of variants on complex diseases. 

For this project we adopted a knowledge driven approach for the 

identification of association and epistasis events in the context of 
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immune cells and immune diseases. The aim of our work was two-

fold: to characterize the influence of genetic variants on 

transcriptional regulation in an immune cell subset; and to study the 

role played by association and epistasis in a complex immune disease 

characterized by the interaction of multiple cell types. Considering 

that both expression quantitative trait loci and genome wide 

association/epistasis studies have so far been mostly performed on 

populations of European descent we decided to center our 

characterization on a less studied population: Singapore Chinese. 

To evaluate the impact of polymorphisms on expression in an 

immune cell subset we focused on neutrophils, key players of the 

innate immune system. Neutrophils have so far not been 

characterized for eQTLs most likely because of the technical 

difficulties inherent in handling this cell subset. These cells are in fact 

considered fragile and have been shown to be easily activated1,2. For 

this study we carefully isolated neutrophils from 114 well-matched 

samples of Chinese ethnicity and performed a genome-wide eQTL 

study to identify cis polymorphisms associated with gene expression 

levels. Using a permutation significance threshold of 0.001 we 

identified 21,210 significant eQTL probe/SNP pairs involving 971 

distinct probes (832 distinct HUGO genes). Out of the 971 probes 

with a significant eQTL 525 were also reported by a large scale whole 

blood eQTL study backing our claim of genetic regulation for those 

probes3.  In addition numerous SNPs involved in neutrophil eQTLs 

were previously described as being associated to diseases/traits as 

listed by the GWAS catalog supporting the hypothesis that 
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transcriptional dysregulation can in some cases lead to increased 

disease susceptibility4. An enrichment analysis for the 971 probes 

with a significant eQTLs suggested an involvement for neutrophil 

eQTLs in dermatological diseases (psoriasis and dermatitis in 

particular). An analysis of two GEO psoriasis datasets revealed that 

differentially expressed genes between lesional skin from cases and 

normal skin from controls were enriched for neutrophil eQTLs. No 

enrichment was found instead for atopic dermatitis, a disease 

characterized by different infiltrates than psoriasis. While atopic 

dermatitis skin lesions are predominantly accompanied by infiltration 

of macrophages, dendritic cells, eosinophils and Th2 CD4+ 

lymphocytes5,6 psoriatic plaques are polarized towards a Th1 

response and are characterized by an accumulation of T cells, 

monocytes and neutrophils7. 

Future work will focus on functionally characterizing neutrophil 

eQTLs involving differentially expressed genes in psoriasis and other 

interesting eQTL signals associated with disease susceptibility by 

GWAS. A better grasp of the impact of genetic variants on 

transcriptional regulation might help in acquiring a deeper 

understanding of diseases characterized by a dysregulation in 

neutrophil functions or numbers. It would also be interesting to apply 

a similar approach to study how the eQTL landscape of neutrophils 

changes upon treatment of these cells with different stimuli to better 

characterize their behavior under inflammatory conditions. 

As regards the translational contribution of this project neutrophils 

are the most abundant leukocyte cell subset in blood and the first 
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line of defense against invading pathogens8–10. A better 

characterization of the impact of mutations on transcriptional 

regulation of key neutrophil genes might lead to a deeper 

understanding of some of the mechanisms underlying disease 

susceptibility, especially for those immune conditions characterized 

by a strong neutrophil involvement. 

To study the role played by association and epistasis on a complex 

immune disease we concentrated on a published allergic rhinitis (AR) 

cohort of individuals of Chinese ethnicity11. Due to the relatively 

small size of our discovery and validation cohorts we limited our 

search to an important gene known to play a role in immune 

suppression by T regulatory cells (Treg), CD39. Treg cells have in fact 

been shown to play a very important role in allergic diseases12,13. 

They are essential in dampening the allergic reaction by suppressing 

CD4+ T effector cells and inhibiting the production of Th2 cytokines 

driving the allergic reaction12,14–16. The removal of extracellular ATP, a 

pro-inflammatory danger signal, by CD39 is one of the known 

mechanisms through which Treg cells promote immune 

suppression17. Differences in CD39 expression on Treg cells have 

been described for multiple immune diseases such as multiple 

sclerosis and cancer as well as for infectious diseases such as 

Hepatitis B, Hepatitis C and HIV17–22. CD39 polymorphisms have 

already been described in association with inflammatory bowel 

disease (IBD) and HIV progression18,23. A closely linked polymorphism 

to those described in the context of IBD and HIV was found to be 
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associated with the frequency of CD39+ activated Treg with respect 

to their parental population24. 

In our study we showed that another highly linked CD39 

polymorphism (rs7071836) was associated with the surface 

expression of this molecule on Treg cells but not on other CD39-

expressing leukocyte subsets. Together with another polymorphism 

in the promoter region of FAM134B (rs257174), SNP rs7071836 was 

found to impact susceptibility to AR. A comparison between 

symptomatic AR cases and asymptomatic atopic controls established 

that the interaction was associated with disease but not with 

predisposition to atopy. Polymorphism rs257174 was shown to affect 

expression of its cis gene in monocytes but notably not in Treg cells. 

Using three distinct large cohorts we were also able to show that the 

expression of CD39 and FAM134B was inversely correlated in whole 

blood implying that the genetic interaction had an effect in vivo. In 

addition we were able to suggest a mechanism for the interaction of 

CD39 in Treg cells and FAM134B in monocytes by showing that 

extracellular ATP levels, which inversely correlate with CD39 

expression, regulated FAM134B expression in monocytes. We also 

demonstrated that in the presence of an ATP-receptor antagonist this 

ATP-induced upregulation of FAM134B was reduced.  

The role of FAM134B in allergic rhinitis remains to be elucidated 

since not much is known about this gene. FAM134B is a cis-Golgi 

protein so far mainly described in the context of the nervous system. 

Loss-of-function mutations in this gene have been associated to 

severe sensory and autonomic neuropathy and this gene has been 
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implicated in the long term survival of nociceptive and autonomic 

neurons25. The role of this gene in the context of the immune system 

still needs to be elucidated. We showed that this gene is expressed in 

multiple immune cell subsets and genetically regulated in monocytes. 

It would be interesting to investigate the function of this gene in this 

cell subset and see how this could relate to AR susceptibility. Future 

work will therefore focus on studying how this gene may affect 

protein trafficking and secretion in response to different stimuli and 

on revealing how this might relate to AR symptoms. Since the 

interaction between CD39 and FAM134B did not seem to be 

associated with allergy predisposition in our population it is unlikely 

that this molecule disrupts the IgE pathway. The protein is most 

probably involved in the development of a symptomatic reaction in 

response to allergen challenge. 

As regards the translational contribution of this project we were able 

to propose a new candidate gene for allergic rhinitis, FAM134B. A 

deep characterization of this not well-described protein might lead to 

novel insights into AR susceptibility. In addition a similar approach 

based on selecting a gene known to be involved in a disease and 

looking for genome-wide epistatic partners, might be easily applied 

to other immune conditions in order to detect new candidate genes 

for disease susceptibility. 

Throughout this thesis we did not limit our analysis to the 

identification of statistical association or epistasis but, whenever 

possible, we tried to characterize the biological impact of statistical 

findings. In order to do this we needed a tool for the identification of 



 

207 
 

potential functional SNPs from disease/trait-associated 

polymorphisms. Due to a phenomenon known as linkage 

disequilibrium (the non random association of allelic states at two or 

more loci) statistically significant SNPs are in fact usually not 

causative but simply tag functional SNPs. To identify biologically 

important genetic variants from statistically relevant ones it is 

therefore necessary to integrate linkage disequilibrium information 

with public biological knowledge. None of the available tools for the 

visualization of linkage disequilibrium provided an option for 

incorporating available biological knowledge. We therefore 

conceived a novel tool with the capability of overlapping biological 

knowledge with linkage disequilibrium plots to try and bridge the gap 

between statistical association and biological mechanisms. We 

developed a software called ArchiLD26 that integrates a user-friendly 

graphical representation of linkage disequilibrium with the 

annotation potential of the UCSC Genome Browser27. Linkage 

disequilibrium plots, which can be generated using both custom 

datasets and data from the four populations sequenced by the 1000 

Genomes Pilot Project28, can now be easily overlapped with 

transcription factor binding sites, open chromatin regions, 

conservation plots and published findings. This is a great tool for the 

discovery of causative variants from tag polymorphisms reported as 

being associated with a particular immune phenotype or disease. The 

identification and characterization of causative variants is the first 

step in understanding how a particular mutation affects a phenotype, 

a prerequisite for developing pharmaceutical solutions to complex 
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diseases. Future work will focus on adding new populations to the 

software like the fourteen populations sequenced by the 1000 

Genomes Pilot Project29 and the three provided by the Singapore 

Genome Variation Project30. Moreover it would be useful to integrate 

into the software eQTL information derived both by published 

studies and by in-house cohorts. With this additional data tag SNPs or 

their linked SNPs could be directly linked to changes in expression 

across different immune cells.  

In this thesis we propose a biologically-oriented statistical approach 

for the identification of association and epistasis in the context of the 

immune cells and apply it both in the context of gene regulation (by 

characterizing the eQTL landscape of neutrophils) and in the context 

of complex diseases (by studying the impact of CD39 variants on AR 

susceptibility). Due to the large number of tests performed for both 

analyses and the relatively small size of our cohorts, whenever 

possible, we tried to validate our statistical results using replication 

cohorts, published studies or additional biological experiments to 

reduce the possibility of false positives. In addition we often tried to 

link statistical findings with biological mechanisms in order to 

increase the translational potential of our findings.
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