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Abstract The focus of the present work are Structural Equation Models in the 

Redundancy Analysis framework (SEM-RA) and, in particular, the extension of 

Redundancy Analysis to more than two sets of variables, with the recently developed 

Extended Redundancy Analysis as the major outline. Drawbacks of the model in 

presence of concomitant indicators will be highlighted, thus introducing a further 

extension, Generalized Redundancy Analysis, whose introduction will be motivated, 

along with a simulation study aimed to assess the performance of the model, in three 

path diagrams at increasing complexity. 

Abstract Il focus del presente lavoro sono i Modelli ad Equazioni Strutturali 

nell’ambito della Redundancy Analysis (SEM-RA) e, in particolare l’estensione 

della Redundancy Analysis a più di due insiemi di variabili, attraverso la Extended 

Redundancy Analysis, di cui si evidenzieranno i limiti in presenza di indicatori 

concomitanti. Si introdurrà, motivando assieme ad uno studio di simulazione che 

valuti le prestazioni del modello, in tre path diagrams a crescente complessità, 

l’introduzione come ulteriore estensione della Generalized Redundancy Analysis.  

Key words: Redundancy Analysis, Structural Equation Modelling, Component 

Analysis 

1 Introduction 

In the Structural Equation Models - Redundancy Analysis framework (SEM-RA), 

our main focus will be on the extensions of the original Redundancy Analysis (RA; 

[10]) model, which analyses the causal relationship between two sets of multivariate 

data [4]. A few attempts have been made to extend RA to more than two sets of 

variables [8, 11], with the most relevant Multiblock Redundancy Analysis (MbRA; 

[1]) and Extended Redundancy Analysis (ERA; [3]) (see Figure 1). 
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Figure 1: MbRA (on the left) and basic ERA (on the right) path specifications. 

  

 

 

 

 

 

 

 

 

 

 

 

 

In MbRA the relationships between one block of dependent variables and several 

blocks of explanatory variables is modelled, maximizing the sum of the covariances 

between the latent constructs of each explanatory block and the latent construct of 

the dependent block, whereas in ERA a linear combination of the manifest variables 

is employed to obtain the latent composites (LCs), which are in turn fitted with the 

endogenous block. The estimates of the parameters are obtained minimizing a global 

LS criterion. ERA stands off as an incisive improvement in the SEM-RA framework, 

especially thanks to its versatility: it can accommodate more diverse and complex 

specifications than MbRA (in the ERA model in fig. 1 a LC does not necessarily 

have an impact on all the endogenous variables), and it can also include either (i) 

direct effects from covariates not strictly taking part in the formation of the latent 

composites or (ii) simultaneously exogenous and endogenous variables (see Fig. 2).  
 

Figure 2: Examples of two path diagrams not feasible with MbRA. 

 

 

 

 

 

 

 

 

 

 

 

2 Generalized Redundancy Analysis 

Extending the ERA formal specification to evaluate direct effects without altering 

the model formulation or the estimation algorithm leads to inefficient solutions and 

misinterpretation of the coefficients, since (a) the estimation of the parameters 

forming the LCs is performed by ERA between the endogenous block (i.e. Y) and 
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the exogenous and concomitant block altogether, in block matrix notation (i.e. 

[X|T]), ignoring direct effects; (b) T and X are typically correlated and present 

different causal effects on Y, making the separate contribution of each block to the 

determination of the LC scores not distinguishable. GRA [7] has been proposed as a 

further extension, to include concomitant indicators
1
: 

Y= TAY
’
 + XWA

’
 +TWTA

’
 + E 

where WT is the corresponding weight matrix and AY is the corresponding direct 

coefficient matrix. Two further steps are then added to the algorithm: (1) the TAY
’ 

block is isolated and estimated separately; (2) W and WT are estimated separately 

and correlation between X and T is accounted for, by matrix manipulation. 

3 A simulation study 

In this section the GRA model in three different path diagrams at increasing 

complexity (Fig. 3) will be evaluated through simulation (SAS software, [9]), 

focusing on GRA and how biases and accuracy of the estimates behave in presence 

of different concomitant links, rather than on comparing ERA and GRA in a single 

model specification (as in [7]). In fact, the ultimate aim of these simulations is to 

point out variations in bias patterns in a clear step-by-step increase in complexity: (i) 

a single covariate affecting a single endogenous variable (Model I); (ii) a single 

concomitant indicator affecting also LCs (Model II) and finally, (iii) a concomitant 

indicator affecting both the endogenous variables (Model III).  
 

Figure 3: Three GRA path specifications, with increasing complexity. 
 

 
 

The distributions underlying X, T and E simulated data is X~N4(0, ΣX), T~N(0, σ
2
T), 

and E~N2(0, ΣE), with covariance matrices and arbitrary parameters for W and A’ 

defined as follows (as in [3]): 
 

 

 ΣX                                      ;   

T = 1  ;         ΣE               ;       W                  ;    A’                    

 

                                                           
1
 A concomitant indicator is an exogenous covariate that does not strictly belong to the formative blocks 

of unobservable composites, but that may have a causal impact on observed endogenous variables and on 

composites too [8]. 
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For Model I, with only one external link, WT is null and AY’= [0.3  0]; for Model II, 

with a concomitant link, WT = [0.4  0] and AY’= [0.3  0]; for Model III, with the 

second external link: WT = [0.4  0] and AY’= [0.3 0.3]. A population of N=1000 

observations is then randomly generated and the endogenous matrix Y is calculated 

based on the above specifications. GRA is evaluated in each specification with 

increasing sample sizes, with two indices representing the accuracy of the estimates: 

(1) the congruence coefficient (
1/2

 [5] between the estimates 

 

and the real parameters and (2) the relative bias (in absolute value), 

of each estimate. Estimates have been obtained through Bootstrap 

resampling [2], for each sample size. 

3.1 Simulation Results 

In all three models convergence of the estimates was reached (see Table 1). Results 

show a general increase in Mean() along with an increase in the sample size, 

indicating a satisfactory recovery of the population parameters, with n>200, for 

Models I and II ( > 0.85). The distribution of  through the replications appears to 

be increasingly pointed towards high values, with decreasing standard deviations. 

Model III fails to recover efficiently the true values of the coefficients, with  < 0.9 

until n = 600 and more variable results (StdDev() = 0.110 at n = 400).  
 

Table 1: Descriptive statistics of  for the GRA model for n= {50; 100; 200; 400; 600} and 

model complexity. For model III convergence criterion has been lowered from 10
-4

 to 10
-3

. 
 

Model I II III I II III 

n Mean() StdDev() 

50 0.653 0.597 0.494 0.226 0.228 0.226 

100 0.770 0.734 0.642 0.158 0.172 0.219 

200 0.855 0.845 0.784 0.113 0.107 0.173 

400 0.912 0.903 0.880 0.074 0.065 0.110 

600 0.929 0.925 0.917 0.058 0.053 0.067 

 

Reasons are highlighted analyzing the estimates biases (Table 2), generally 

satisfactory in Models I and II, although the presence of the concomitant indicator 

affects some estimates peculiarly: with t1, W biases do not decrease, having w1 and 

w2 affected by its presence (→ y1 in I and also →f1 in II), for which w1 > 50% and 

w2 has increasing bias for n = 50→300; without concomitant indicators, A biases 

do not decrease (a3 and a4 in I and II are affected by the absence of indicators related 

to f2, for which (a3) and (a4)  are ~ 20%, regardless of n). Model III is more 

unstable for lower values of n, with biases mainly on loadings related to f1: having t1 

and f1 sharing the same endogenous variables, should normally lower A biases, but 

the causal link between t1 and y2 is only external, influencing them similarly to 
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Model I. Moreover, the additional external link affects wT1 bias ((wT1) > 20% at 

high sample size). 
 

Table 2: Estimates, S. Errors and biases for relevant parameters, by model and sample size. 
 

Model I II III 

Par. Pop. n Est. S.E. %Bias Est. S.E. Bias% Est. S.E. Bias% 

w1 0.6 50 0.18 0.701 70.1 0.17 0.614 70.1 0.16 0.558 73.3 

100 0.25 0.547 58.3 0.22 0.467 62.6 0.21 0.386 64.6 

200 0.27 0.384 55.1 0.28 0.352 53.7 0.24 0.320 60.5 

  400 0.31 0.273 49.1 0.27 0.243 54.4 0.25 0.253 58.3 

  600 0.32 0.216 45.9 0.3 0.202 51.8 0.27 0.208 55.2 

w2 0.6 50 0.61 0.631 2.3 0.52 0.537 14.7 0.49 0.504 19 

100 0.7 0.442 15.1 0.59 0.397 1.9 0.47 0.383 22.1 

200 0.74 0.301 23.7 0.63 0.301 5.4 0.61 0.310 1.3 

  400 0.74 0.216 22.8 0.67 0.205 12 0.72 0.215 19.3 

  600 0.73 0.175 21.6 0.68 0.17 13.1 0.69 0.167 14.8 

a1 0.3 50 0.23 0.140 16.9 0.3 0.297 48.4 0.37 0.399 85.2 

100 0.23 0.010 15 0.32 0.497 58 0.44 0.472 120 

200 0.22 0.068 10.1 0.25 0.152 26.7 0.29 0.260 45.9 

  400 0.21 0.047 6.4 0.23 0.056 17 0.22 0.121 10.8 

  600 0.21 0.039 4.1 0.23 0.230 15.1 0.23 0.040 15.4 

a2 0.3 50 0.23 0.138 15.3 0.28 0.280 40.2 0.27 0.153 76.9 

100 0.22 0.094 8.0 0.25 0.098 23 0.42 0.448 107.4 

200 0.2 0.072 1.2 0.23 0.069 14.8 0.28 0.281 40.5 

  400 0.2 0.050 2.1 0.22 0.049 8.8 0.21 0.081 3.7 

  600 0.2 0.041 1.5 0.21 0.042 7.2 0.21 0.041 6.5 

a3 
0.3 50 0.27 0.152 33.9 0.26 0.151 31.5 0.27 0.153 34.5 

100 0.25 0.100 24.9 0.24 0.156 21.5 0.23 0.102 14.7 

200 0.24 0.071 22.1 0.25 0.071 22.9 0.22 0.065 10.9 

  400 0.24 0.048 21.7 0.24 0.050 20.6 0.22 0.044 8.1 

  600 0.24 0.039 21.7 0.24 0.042 19.7 0.24 0.043 13.7 

a4 
0.3 50 0.27 0.136 37.2 0.26 0.144 30.9 0.26 0.151 30.7 

100 0.26 0.097 27.4 0.25 0.102 24.2 0.23 0.104 16.8 

200 0.24 0.070 21.9 0.24 0.072 20.2 0.22 0.069 12.2 

  400 0.24 0.050 20.7 0.24 0.051 20.5 0.22 0.045 9.1 

  600 0.24 0.039 21.7 0.24 0.04 19.9 0.24 0.041 19.2 

wT1 
0.4 50 - - - 0.27 0.492 32.4 0.22 0.592 45.3 

100 - - - 0.31 0.407 23.7 0.15 0.662 62.9 

200 - - - 0.35 0.279 12.6 0.21 0.499 46.6 

  400 - - - 0.38 0.208 6.3 0.25 0.315 36.9 

  600 - - - 0.38 0.161 5.3 0.39 0.154 3.7 

 

 

4 Conclusion 

Several extensions of RA, among which MbRA [1] and ERA [3], have been 

proposed to investigate causal relationships between more than two datasets [8, 11]. 

However, both methodologies present limitations. ERA, in particular, studies more 
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complex relationships among variables, also including possible direct effects of 

observed variables on endogenous variables [7], but its limits are clear when we 

want to analyze these effects without any change either in the model specification or 

in the estimation procedure. Thus, GRA [7] has been introduced, with innovative and 

theoretically valid features in the estimation of SEM, providing separate estimation 

for each different influential block and efficiently dealing with concomitant and 

external covariates simultaneously. GRA also provides good performances in 

recovering population parameters at sufficiently high sample size, either when 

compared to the ERA block-matrix counterpart [7], or in itself when challenged by 

increasingly complex path diagrams, as pointed out by the previous simulations.  

Empirical validity of GRA has been proven in the analysis of Human Capital (HC), 

considered as a compound of latent traits derived from education (f1) and working 

experience (f2) variables, and of their impact on several economic indicators [6]: the 

related model has first been estimated without any concomitant indicator, adding it 

on second instance to test whether the economic background of the subjects (t1) had 

a meaningful impact on the income variables. The provided results are fully 

interpretable and coherent, sustaining the hypothesis of a positive direct effect of the 

socioeconomic background on the income. 

Some further complex specifications need to be tested, as the presence of 

correlations between different blocks, different underlying distribution, and 

concomitant indicators simultaneously linked to different LCs, for which correlations 

between LCs appear to be a crucial aspect to outline. 
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