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Introduction

Since the 60's, in the mathematical research, there have been several theories
developed, concerning cohomology with non-abelian coe�cients. Despite the
e�orts made by many researchers in order to make uniform the context, today
there isn't a general theory that uni�es the various approaches. Indeed,
within the same algebraic setting exist small di�erences between the various
theories.

Our aim is to study the low-dimensional cohomology theory in the categ-
ory of crossed modules.
A lot of people have worked to de�ne the cohomology of a group with coef-
�cients in a crossed module. In general, the approach is to use an explicit
cocycle description of the cohomology groups. The original idea goes back to
Dedecker [19], [20], [21]. He de�ned the cohomology of a group Γ with coe�-
cients in a crossed module, considering a trivial Γ-action on crossed module.
After many years, Borovoi [1] treated the general case, with a generic action.
Another approach is given by Lue [35].
Firstly, we want to recall some known facts concerning the group cohomology
in the abelian case. Given a group Γ, let G be a Γ-module. A derivation
from Γ to G is a function η : Γ → G such that η(σ τ) = η(σ) ση(τ). In
this case, the set Der(Γ, G) of all derivations has a natural abelian group
structure, with a composition given by punctual composition. Each element
g in the abelian group G de�nes a derivation ηg (called inner derivation),
given by ηg(σ) = g σg−1. The map

γ : G −→ Der(Γ, G)
g −→ ηg

is a homomorphism of abelian groups. This homomorphism can be consid-
ered as the starting point for the creation of the �rst abelian cohomology
groups. In fact, the kernel of γ is precisely H0(Γ, G) while the cokernel of
γ is H1(Γ, G), according to the kernel-cokernel diagram:

H0(Γ, G) //G

!!CC
CC

CC
CC

γ //Der(Γ, G) //H1(Γ, G)

γ(G)

99ssssssssss
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where, as known:

H0(Γ, G) = ker(γ) = G Γ and H1(Γ, G) = coker(γ) =
Der(Γ, G)

Ider(Γ, G)

with Ider(Γ, G) denoting the group of inner derivations.
In general, if the group Γ acts on a non-abelian group G, the set of deriva-
tions Der(Γ, G) is just a pointed set. If G is a Γ-crossed module, in [49]
Withehead showed, de�ning a special product of derivations, that Der(Γ, G)
has a natural monoid structure. Furthermore, he characterized the group of
units Der ∗(Γ, G) in relation to the automorphisms of Γ and G. Finally,
Whitehead showed that the set of inner derivations Ider(Γ, G) is a normal
subgroup of Der ∗(Γ, G). Therefore, in a similar way to the abelian case,
given G a Γ-crossed module, Lue in [35] de�ned the cohomology groups in
dimension 0 and 1 of Γ with coe�cients in G as follows:

H0
L(Γ, G) = {g ∈ G : ∀σ ∈ Γ, σg = g}

and

H1
L(Γ, G) = coker(T ) =

Der ∗(Γ, G)

Ider(Γ, G)
.

Serre [45] was the �rst one to construct a low-dimensional cohomology
theory for a group Γ with coe�cients in a non-abelian group, considering a
Γ-group G. He de�ned a group H0

S(Γ, G) and a pointed set H1
S(Γ, G) (see

A.2). This set satis�es the property of cohomological functors, in particular
a short exact sequence gives rise to an exact sequence with six terms in coho-
mology, but H1(Γ, G) hasn't a group structure. At a later time, Guin [30],
considering a group G equipped with a Γ-crossed module structure, de�ned
a notion of 1-cocycle to obtain a cohomology group H1

G(Γ, G). The Guin
cohomology is a particular case of the more general Borovoi cohomology.

Given a Γ-categorical group G, in [14], the authors have de�ned the cate-
gory Der(Γ,G) of derivations from Γ into G, which is a pointed groupoid.
If (G,T, ν, χ) is a categorical Γ-crossed module, then Der(Γ,G) has a
natural monoidal structure, which is inherited from the Γ-crossed module
structure in G. Then, they have considered a Whitehead categorical group
of derivations Der ∗(Γ,G) as the Picard categorical group, P(Der(Γ,G)), of
the monoidal category Der(Γ,G).
There is a homomorphism of categorical groups

G
T //Der ∗(Γ,G)

given by inner derivations. There are natural isomorphisms ν and χ such
that (G,T, ν, χ) is a categorical Der ∗(Γ,G)-crossed module.
Therefore, in a similar way to the abelian case and Lue cohomology, they
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have de�ned the cohomology of categorical groups, in dimension 0 and 1, of
Γ with coe�cients in categorical Γ-crossed module G as follows:

H0(Γ,G) = ker(T : G→ Der ∗(Γ,G))

and

H1(Γ,G) =
Der ∗(Γ,G)

< G,T >
.

The �rst one is the kernel of the homomorphism T of categorical groups
while the second one is the quotient categorical group for the categorical
crossed module (G,T, ν, χ).

There are some well-known particular crossed modules associated to cat-
egorical crossed modules, for example:

• braided crossed modules ∂ : G1 → G0, endowed with an action by
a crossed module ∂ ′ : Γ1 → Γ0 and with the braiding equivariant
respect this action;

• 2-crossed modules (introduced by Guin-Valery and Loday [30]);

• crossed squares (introduced by Daniel Conduché [16]).

In the Chapter 5, we present the cohomology in these three particular cases.
Before describing this last chapter, we want to recall what we have done in

Chapter 4. We show how some known results related to the crossed modules
can be extended to the context of crossed squares.
It is well-known that if ∂ : G1 → G0 is a crossed module, then there exists
an action of coker(∂) on ker(∂) making the composition

ker ∂ � � //G1
∂ //G0

// //coker ∂ (1)

a crossed module.
We show that given a crossed square, using its representation as a strict
categorical crossed module T : G → Γ, we obtain a 2-dimensional version
of (1):

kerT //G
T //Γ // Γ

< G,T >
(2)

for suitable categorical groups kerT (kernel categorical group, see [33] and

[48]) and
Γ

< G,T >
(quotient categorical group, see [14]), where (2) is a

strict categorical crossed module.
In Chapter 4, we describe in terms of crossed modules these strict categorical
groups, the kernel and cokernels by the homotopical versions. The homotopi-
cal kernel is obtained by the construction of a pullback while the homotopical

6



7

cokernel by a generalized semi-direct product. Moreover, in Proposition 4.4.1
we describe, in terms of crossed squares, the strict categorical crossed module
(2).

Finally, in Chapter 5, in all the three cases before emphasized, the zero-th
cohomology categorical group is strict and we present it as a crossed module
(under the equivalence between strict categorical groups and crossed mod-
ules).
Given a braided crossed module equivariant respect an action of crossed
module ∂ ′ : Γ1 → Γ0, in Proposition 5.3.3, we show that the crossed module
associated to the zero-th cohomology categorical group is a braided crossed
module equivariant respect an action of crossed module ∂ ′ : Γ1 → Γ0.
Given a 2-crossed module, in Proposition 5.4.3, we show that the crossed
module associated to the zero-th cohomology categorical group has a 2-
crossed module structure.
Given a crossed square, in Proposition 5.5.2, we show that the crossed mod-
ule associated to the zero-th cohomology categorical group has a crossed
square structure.

In the �rst two cases, we do the same for the �rst cohomology categorical
group, being a strict categorical group.
In the third case, given a crossed square we consider its representation as
a strict categorical crossed module T : G → Γ and the categorical crossed
module T : G→ Der ∗(Γ,G). We have that the �rst cohomology categorical
group is just a categorical group (not strict).

Then we de�ne a category D, included in Der ∗(Γ,G), such that we can
consider a restriction of the homomorphism T:

T : G→ D

and this is a strict categorical D-crossed module (generalization of that
happens in the context of the crossed modules to crossed squares). As a
consequence of Proposition 4.4.1, in Proposition 5.5.3, we can give a descrip-
tion as crossed square of the strict categorical crossed module H0(Γ,G)→
H1
N (Γ,G), where H1

N (Γ,G) is the quotient categorical group for the strict
categorical crossed module T : G→ D.



Chapter 1

Crossed modules

The notion of crossed module, that generalizes the notion of a G-module,
goes back to Whitehead [49] in the course of his studies on the algebraic
structure of the second group of relative homotopy. The relevance of crossed
modules to homotopy types follows from the existence of a classifying space
functor B (see [34], [9]) assigning to a crossed module L = (∂ : G1 →
G0) a connected pointed CW -space BL that is de�ned as the geometrical
realization of the nerve of the crossed module (see [9]). The only two non-
trivial homotopy groups of BL are respectively given by π1 = coker(∂)
and π2 = ker(∂). Moreover, for any connected pointed CW -complex X
with base point x0, there is a crossed module LX and a map X → BLX
inducing an isomorphism of π1 and π2. If X1 is the 1-skeleton of X, then
LX is the Whitehead crossed module π2(X,X1, x0) → π1(X1, x0). These
results reveal that crossed modules model all pointed homotopy 2-types (a
result due originally to Mac Lane and Whitehead [36] although with the old
teminology of 3-types).

In this chapter, we �rst recall the algebraic de�nition of crossed module,
that is a group endowed with an additional structure related to its group of
automorphisms. Then we brie�y review some known results on the theory
of crossed modules.

1.1 Crossed modules

De�nition 1.1.1. [49] A crossed module consists of a group homomorphism
∂ : G1 → G0, endowed with a left action G0 on G1 (denoted by (g, α) 7→
gα ), satisfying:

∂(gα) = g ∂(α) g−1 ∀α ∈ G1, ∀g ∈ G0; (1.1)
∂α1α2 = α1 α2 α

−1
1 ∀α1, α2 ∈ G1. (1.2)

The �rst one is called pre-crossed module property and the second one
the Pei�er identity.

8



CHAPTER 1. CROSSED MODULES 9

The two conditions are equivalent to the request of the commutativity of
the following diagram:

G1 ×G1

(∂,idG1
)

��

χ //G1

idG1

��
G0 ×G1

(idG0
,∂)

��

ξ //G1

∂
��

G0 ×G0
χ //G0

where χ represents the conjugation action for the group G1 and G0 respec-
tively, ξ represents the given action of G0 on G1.

Examples. (a) Every group G can be seen as a trivial crossed module
1→ G.

(b) Let G be a group, the identity homomorphism of G, sending every-
thing g ∈ G to the same element g, is a crossed module. In this case, G
acts on itself by conjugation.

(c) Let G1 be a normal subgroup of G0, the inclusion ∂ : G1 ↪→ G0 is a
crossed module. In this case, G0 acts on the left of G1 by conjugation.

(d) Any epimorphism ∂ : G1 → G0 with central kernel is a crossed
module. An element g ∈ G0 acts on α ∈ G1 by gα = g̃ α g̃−1 where g̃ is
any lifting of g to G1 .

(e) Let ξ : G0 ×G1 → G1 be an action of groups; the pair (ξ, 1 : G1 →
G0), where 1 is the trivial map, is a crossed module if and only if G1 is
abelian.

(f) Let G be a group and let Aut(G) be the automorphism group of G.
Conjugation gives a homomorphism

∂ : G→ Aut(G)

and the last is a crossed module, with an action of Aut(G) on G given by
ϕg = ϕ(g) for all ϕ ∈ Aut(G) and g ∈ G.

(g) The homomorphism ∂ : SL2(L) ↪→ GL2(L) � PGL2(L) = GL2(L)
Z2(L) ,

where L is a �eld, is a crossed module with an action of PGL2(L) on SL2(L)
given by:

[C]B = C BC−1 ∀C ∈ GL2(L),∀B ∈ SL2(L).

(h) J. H. C. Whitehead [49], who introduced the notion of a crossed mod-
ule, considered the boundary homomorphism ∂ : π2(X,Y, x0) → π1(Y, x0)
(where X is a topological space and Y ⊂ X is a pointed subspace with the
base point x0). There exists an action of π1(A, x0) on π2(X,A, x0) which
makes the boundary map a crossed module.
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(i) [44] Any simplicial group G• (see B.3 for the de�nition), yields a
crossed module, the crossed 1-cubeM(G•, 1) associated with simplicial group
G•, de�ned by

∂ :
NG1

d2(NG2)
→ G0

where ∂ is induced from d1 and G0 acts on NG1
d2(NG2) by conjugation via

s0, i.e. if g ∈ G0 and x ∈ NG1
d2(NG2) , then

gx = s0(g)x s0(g)−1.

De�nition 1.1.2. A morphism between crossed modules ∂ : G1 → G0 and
∂ ′ : G

′
1 → G

′
0 is a pair < ϕ,ψ > where ϕ : G1 → G

′
1 and ψ : G0 → G

′
0

are homomorphisms such that the diagram

G1

∂

��

ϕ //G
′
1

∂ ′

��
G0

ψ //G
′
0

commutes and ϕ(gα) = ψ(g)ϕ(α) for all α ∈ G1 and g ∈ G0. If ∂ = ∂ ′ and
ϕ, ψ are automorphisms then < ϕ,ψ > is an automorphism of ∂ : G1 → G0.
The group of automorphisms of ∂ : G1 → G0 is denoted by Aut(G1, G0, ∂).

Crossed modules and their morphisms form a category. That will be
denoted by CM.

De�nition 1.1.3. Let ∂ : G1 → G0, ∂
′ : G

′
1 → G

′
0 be a crossed modules

and < ϕ,ψ >, < ϕ ′, ψ ′ > be a morphism between ∂ : G1 → G0 and
∂ ′ : G

′
1 → G

′
0. A transformation between < ϕ,ψ > and < ϕ ′, ψ ′ > is

given by a function θ : G0 → G1
′ satisfying:

ϕ ′(α) θ(g) = θ(∂(α) g)ϕ(α);

∂ ′ θ(g)ψ(g) = ψ ′(g);

θ(g1 g2) = θ(g1) ψ(g1)θ(g2);

for all α ∈ G1 and g, g1, g2 ∈ G0.

< ϕ,ψ > and < ϕ ′, ψ ′ > are homotopy equivalent if there exists a
transformation between them.

Now recall some known results arising from the de�nition of crossed mod-
ule.

Lemma 1.1.1. Let ∂ : G1 → G0 be a crossed module. Then

(i) the group ker ∂ is central in G1;

(ii) ker ∂ is G0 -invariant;
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(iii) Im ∂ is normal in G0 .

Corollary 1.1.1.1. The action of G0 on G1 induces an action of coker ∂
on the abelian group ker ∂.

It was known to Verdier in 1965, that groups in the category GPD of
groupoids (see for de�nition Appendix B.1 and B.2) are equivalent to crossed
modules.

From a crossed module ∂ : G1 → G0 we construct a groupoid G with a
set of objects G0, as set of arrows the semi-direct product G1oG0, associated
with the given action ξ, as follows:

G1 oG0

s //

t
// G0.

i

gg

The source map s, target map t and the unit map i are de�ned respectively
by

s : G1 oG0 −→ G0 t : G1 oG0 −→ G0 i : G0 −→ G1 oG0

(α, g) −→ g (α, g) −→ ∂(α) g g −→ (1, g)

while the composition of arrows in G is given by (α ′, g ′)◦ (α, g) = (α ′ α, g).
The groupoid G is a group in the category of groupoids. We can de�ne the
functor m on objects and on arrows

m : G0 ×G0 −→ G0 m : (G1 oG0)× (G1 oG0) −→ G1 oG0

(g1, g2) −→ g1 g2 ((α1, g1), (α2, g2)) −→ (α1
g1α2, g1 g2)

respectively. Therefore, m on the objects is the product on G0 and m
on the arrows is the usual semi-direct product. If 1 denotes the terminal
category with one object ∗ , we can de�ne e : 1 → G on objects and on
arrows

e : ∗ −→ G0 e : 1∗ −→ G1 oG0

∗ −→ 1G0 1∗ −→ (1G1 , 1G0)

respectively. Therefore, e associates with ∗ the neutral element of G0 and
with the arrow 1∗ the neutral element of G1 oG0. Finally, the functor inv
is given by

inv : G0 −→ G0 inv : G1 oG0 −→ G1 oG0

g −→ g−1 (α, g) −→ ( g
−1
α−1, g−1)

on objects and on arrows, respectively. Therefore, inv associates with any
object the inverse in G0 and with any arrow the inverse in G1 oG0.

Conversely, let G be a group in GPD. G is a groupoid with set of arrows
G, set of objects G0, source and target maps s, t : G → G0 and unit map
i, that is:

G : G×◦ G ◦ //G
s //

t
//G0.

i

aa
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Since G is a group in GPD, we have three functors m : G × G → G,
e : 1 → G and inv : G → G such that the obvious diagrams commute
(see for details Appendix B.2). We can show that G and G0 are groups
and s, t, i are homomorphisms of groups. The multiplications, the neutral
elements and the inverse ones in G and G0 are respectively induced by the
functors m, e and inv. Then we can de�ne t|kers : kers → G0, with an
action of G0 on kers given by conjugation, i.e if g ∈ G0 and k ∈ kers, then
gk = i(g) k i(g)−1. t|kers : kers→ G0 turns out to be a crossed module.

Recall that a cat1-group is a group G with two endomorphisms d0,
d1 : G→ G such that

d1 d0 = d0 d0 d1 = d1 [kerd0, kerd1] = 1.

A morphism of cat1-groups (G, d0, d1) → (G
′
, d
′
0, d

′
1) is a group homomor-

phism f : G→ G
′
such that d

′
i f = f di, i = 0, 1.

The category of crossed modules is equivalent to the category of cat1-
groups (see [34]). Given a crossed module ∂ : G1 → G0, the corresponding
cat1-group is (G1oG0, d0, d1) where d0(α, g) = (1, g), d1(α, g) = (1, ∂(α) g)
for all (α, g) ∈ G1 oG0.

Another description of the category of crossed modules is given by the
equivalent category of simplicial groups (see B.3 for the de�nition) whose
Moore complex with length 1 (see [34]).

1.2 The actor of a crossed module

Norrie, in [42], de�nes actor crossed modules and shows how they provide
an analogue of automorphism groups of groups.

For a crossed module ∂ : G1 → G0 , denote by Der (G0, G1) the set of
all derivations from G0 to G1, i.e. all maps η : G0 → G1 such that for all
g1, g2 ∈ G0,

η(g1 g2) = η(g1) g1η(g2).

Each such derivation η de�nes endomorphisms ψ(= ψη) and ϕ(= ϕη) of G0

and G1 respectively, given

ψ(g) = ∂(η(g)) g and ϕ(α) = η(∂(α))α.

Whitehead (see [49]) de�ned a multiplication in Der (G0, G1) by the formula
η1 · η2 = η , where

η(g) = η1(ψη2(g)) η2(g) (= ϕη1(η2(g)) η1(g)).

This turns Der (G0, G1) into a monoid, with the identity element the deriva-
tion which maps each element of G0 into the identity element of G1. The
Whitehead group Der∗(G0, G1) is de�ned to be the group of units of Der (G0,
G1). The following Proposition combines results from [49] and [35].
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Proposition 1.2.1. The following statements are equivalent:

(i) η ∈ Der∗(G0, G1) ;

(ii) ϕη ∈ AutG1 ;

(iii) ψη ∈ AutG0.

Moreover, 4 : Der∗(G0, G1)→ Aut (G1, G0, ∂) de�ned by 4(η) =< ϕη, ψη >
is a homomorphism of groups and there is an action of Aut(G1, G0, ∂) on
Der∗(G0, G1) given by (<ϕ,ψ>η)(g) = ϕη ψ−1(g), which makes 4 : Der∗(G0,
G1) → Aut (G1, G0, ∂) a crossed module. This crossed module is called the
actor crossed module of the crossed module ∂ : G1 → G0 .

There is a morphism of crossed modules

G1

∂
��

η //Der∗(G0, G1)

4
��

G0
γ //Aut (G1, G0, ∂)

de�ned as follows. Let α ∈ G1, then ηα : G0 → G1 de�ned by ηα(g) =
α gα−1 is an inner derivation associated with α and the map α → ηα
de�nes a homomorphism η : G1 → Der∗(G0, G1) of groups. Let γ : G0 →
Aut (G1, G0, ∂) be the homomorphism g 7→< ϕg, ψg > , where ϕg(α) = gα
and ψg(g) = g g g−1 for all α ∈ G1 and g, g ∈ G0.

1.3 Actions of crossed modules

Norrie (see [42]) uses this actor to de�ne actions of crossed modules. An
action of a crossed module ∂ ′ : Γ1 → Γ0 on a crossed module ∂ : G1 → G0

is de�ned to be a morphism of crossed modules from ∂ ′ : Γ1 → Γ0 to the
actor of ∂ : G1 → G0, that is:

Γ1

∂ ′

��

%1 //Der∗(G0, G1)

4
��

Γ0
%2 //Aut (G1, G0, ∂).

We have seen that this is equivalent to requiring the following conditions:

(i) %1, %2 are homomorphisms of groups;

(ii) %1(β)(g1 g2) = %1(β)(g1) · g1%1(β)(g2) (since %1(β) ∈ Der(G0, G1));

(iii) ϕ%1(β) ∈ Aut(G1) where ϕ%1(β)(α) = %1(β)(∂(α))α (since %1(β) ∈
Der∗(G0, G1));
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(iv) %2 =< %
′
2, %

′′
2 >∈ Aut (G1, G0, ∂)

where %
′
2 : Γ0 → Aut (G1) (then Γ0 acts on G1,

σα := %
′
2(σ)(α))

and %
′′
2 : Γ0 → Aut (G0) (then Γ0 acts on G0,

σg := %
′′
2(σ)(g))

such that : ∂(σα) = σ∂(α)
σ(gα) =

σg (σα)

(v) the above diagram commutes, then:
%1(β)(∂(α)) · α = ∂ ′(β)α;
∂%1(β)(g) · g = ∂ ′(β)g;

(vi) %1(σβ)(g) = σ(%1(β)( σ
−1
g)) (equivariant condition);

for all α ∈ G1, β ∈ Γ1, g, g1, g2 ∈ G0 and σ ∈ Γ0.
Therefore, an action of a crossed module ∂ ′ : Γ1 → Γ0 on a crossed module
∂ : G1 → G0 is equivalent to an action of Γ0 on G0 and on G1 (and hence
an action of Γ1 on G0 and on G1 via ∂ ′) and a function h : Γ1×G0 → G1,
de�ned by h(β, g) = %1(β)(g), such that the above axioms become:

(i) h(β1 β2, g) = β1h(β2, g)h(β1, g);

(ii) h(β, g1 g2) = h(β, g1) g1h(β, g2);

(iv) the map ∂ preserve the actions of Γ0 and σ(gα) =
σg (σα);

(v) h(β, ∂(α)) = βαα−1, ∂ h(β, g) = βg g−1;

(vi) h(σβ,σ g) = σh(β, g);

for all α ∈ G1, β, β1, β2 ∈ Γ1, g, g1, g2 ∈ G0 and σ ∈ Γ0.

Remark 1.3.1. In particular, the action of a group Γ, seen as the crossed
module 1→ Γ, on the crossed module ∂ : G1 → G0 is reduced to having two
actions of Γ on G0 and G1 (denoted by σg, σα for all σ ∈ Γ, α ∈ G1, g ∈
G0) such that the following relations hold:

∂(σα) = σ(∂(α)) ∀σ ∈ Γ, ∀α ∈ G1;
σ(gα) =

σg(σα) ∀σ ∈ Γ, ∀α ∈ G1, ∀g ∈ G0.

If the crossed module ∂ ′ : Γ1 → Γ0 acts on the crossed module ∂ :
G1 → G0, Norrie, in [42], constructs the following semi-direct product of
these crossed modules:

(∂, ∂ ′) : G1 o Γ1 → G0 o Γ0

where Γ1 acts on G1 via ∂ ′ and Γ0 acts on G0 with the induced action
of ∂ ′ : Γ1 → Γ0 on ∂ : G1 → G0. The action of G1 o Γ1 on G0 o Γ0 is
de�ned by:

(g,σ)(α, β) = ( g( σα)h( σβ, g)−1, σβ).



Chapter 2

Algebraic models for connected

3-types

Groups are algebraic models of connected 1-types: that is, there is a classi-
fying space functor:

B : GP → (pointed connected CW − complexes);

such that for any group G, the associated classifying space BG satis�es:

π1(BG) ∼= G and πi(BG) = 1 for i > 1.

Furthermore any pointed connected CW -complex X with πi(X) = 1 for
i > 1 is the homotopy type of Bπ1(X).

Crossed modules, introduced by Whitehead, are algebraic models of con-
nected 2-types. There is a classifying space functor:

B : CM→ (pointed connected CW − complexes)

such that if L = (∂ : G1 → G0) is a crossed module then BL has

π1(BL) ∼= coker(∂) π2(BL) ∼= ker(∂) πi(BL) = 1 for i > 2

Furthermore any pointed connected CW -complex with πi(X) = 1 for i > 2
is the homotopy type of BL for some crossed module L = (∂ : G1 → G0) .

Crossed squares arose from a study of excision in algebraic K-theory,
introduced by Loday and Guin-Walery in 1981(see [30]). They also form
algebraic models of connected 3-type (see [34]).

The use of simplicial groups as algebraic models of homotopy types is
of long standing (see [34]). Counduché showed in 1983, in [16], that the
category of simplicial groups with Moore complex of lenght 2 is equivalent
to that one of 2-crossed modules.

Brown and Gilbert introduced in 1988, in [8], the braided crossed modules
for an algebraic models of 3-types. Then they showed that these structure

15
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are closely related to simplicial groups; they proved that the category of
braided (regular) crossed modules is equivalent to that of simplicial groups
with Moore complex of length 2. This gives a composite equivalence between
the category of braided crossed modules and that of 2-crossed modules.

The category of braided crossed modules is equivalent to the category of
reduced simplicial groups with Moore complex of length 2.

So braided crossed modules of groups, 2-crossed modules and crossed
squares are seen to arise from algebraic consideration and are all algebraic
models for homotopy 3-types.

2.1 Braided crossed modules

De�nition 2.1.1. [8] A braided crossed module of groups

∂ : G1 → G0

is a crossed module with a braiding function {−,−} : G0×G0 → G1 satisfying
the following axioms:

(i) {g1, g2 g3} = {g1, g2} g2{g1, g3};

(ii) {g1 g2, g3} = g1{g2, g3} {g1, g3};

(iii) ∂{g1, g2} = g1 g2 g
−1
1 g−1

2 ;

(iv) {∂(α), g} = α gα−1;

(v) {g, ∂(α)} = gαα−1;

for all α ∈ G1 and g, g1, g2, g3 ∈ G0.
If the braiding is symmetric, we also have:

(vi) {g1, g2} {g2, g1} = 1,

then the crossed module ∂ : G1 → G0 is called symmetric crossed module.

Let ∂ : G1 → G0 be a braided crossed module, we recall some useful
identities that are used in the proofs of many statements:

(a) g1{g−1
1 , g2} = {g1, g2}−1 = g2{g1, g

−1
2 };

(b) g1 g2{g−1
1 , g−1

2 } = {g1, g2};

(c) g{g, g} = {g, g};

(d) {g1 g2, g3} = {g1, g2 g3 g
−1
2 } {g2, g3};

(e) {g1, g2 g3} = {g1, g3} {g3 g1 g
−1
3 , g2};
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(f) g1{g2, g3} = {g1 g2 g
−1
1 , g1 g3 g

−1
1 };

(g) {∂(α1) g1, ∂(α2) g2}α2
g2α1 = α1

g1α2 {g1, g2};

for all α1, α2 ∈ G1 and g, g1, g2, g3 ∈ G0.
We call Γ-equivariant braided crossed module a braided crossed module

∂ : G1 → G0 equipped with an action by a group Γ and the braidings are
assumed to be Γ-equivariant in the sense that σ{g1, g2} = {σg1,

σg2}.
A morphism between braided crossed modules is a morphism between

crossed modules which is compatible with the braiding map {−,−}. The
category of braided crossed modules will be denoted by BCM.

2.2 Crossed squares

De�nition 2.2.1. A crossed square is a commutative diagram of groups

G1

∂
��

p̄1 //Γ1

∂ ′

��
G0

p̄0 //Γ0

together with actions of the group Γ0 on G1 , Γ1 and G0 (and hence actions
of Γ1 on G1 and G0 via ∂ ′ and of G0 on G1 and Γ1 via p̄0 ) and a
function h : Γ1 ×G0 → G1, such that the following axioms are satis�ed:

(i) the maps p̄1, ∂ preserve the actions of Γ0. Furthermore, with the given
actions the maps ∂ ′, p̄0 and ∂ ′ p̄1 = p̄0∂ are crossed modules;

(ii) p̄1 h(β, g) = β gβ−1 , ∂ h(β, g) = βg g−1;

(iii) h(p̄1(α), g) = α gα−1 , h(β, ∂(α)) = βαα−1;

(iv) h(β1 β2, g) = β1h(β2, g)h(β1, g) , h(β, g1 g2) = h(β, g1) g1h(β, g2);

(v) h(σβ,σ g) = σh(β, g);

for all α ∈ G1, β, β1, β2 ∈ Γ1, g, g1, g2 ∈ G0 and σ ∈ Γ0.

Note that in these axioms a term such as βα is α acted on by β, and
so βα = ∂ ′(β)α. It is a consequence of i) that ∂, p1 are crossed modules.
Further, by (iv), h is normalized and by iii), G0 acts trivially on kerp1 and
Γ1 acts trivially on ker∂.

Given a crossed square as above, we have some useful identities (see [34],
[6]):

(a) β( gα)h(β, g) = h(β, g) g( βα);

(b) β1( g1h(β2, g2))h(β1, g1) = h(β1, g1) g1( β1h(β2, g2));
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(c) h(p̄1 h(β, g1), g2) = h(β, g1) g2h(β, g1)−1;

(d) h(β2, ∂ h(β1, g)) = β2h(β1, g)h(β1, g)−1;

(e) h(p̄1(α1), ∂(α2)) = α1 α2 α
−1
1 α−1

2 ;

(f) h(β1
g1β−1

1 , β2g2 g
−1
2 ) = h(β1, g1)h(β2, g2)h(β1, g1)−1 h(β2, g2)−1;

(g) βh(β−1, g) = h(β, g)−1 = gh(β, g−1);

(h) β( gh(β, g)) = h(β, g);

(l) h(p̄1(α1)β1, ∂(α2)g2)α2
g2α1 = α1

β1α2 h(β1, g2);

for all α, α1, α2 ∈ G1 and g, g1, g2 ∈ G0. The last three identities do not
appear in any text and they are deducted from the axiom (iv).

De�nition 2.2.2. A morphism of crossed squares

G1

∂

��

p̄1 // Γ1

∂ ′

��

G ′1

∂̄

��

p̄ ′1 // Γ ′1

∂̄ ′

��

φ //

G0
p̄0 // Γ0 G ′0

p̄ ′0 // Γ ′0

consists of four group homomorphisms φG1 : G1 → G ′1 φG0 : G0 → G ′0,
φΓ1 : Γ1 → Γ ′1, φΓ0 : Γ0 → Γ ′0 such that the resulting cube of group ho-
momorphisms is commutative; φG1(h(β, g)) = h(φΓ1(β), φG0(g)) for every
β ∈ Γ1, g ∈ G0; each of the homomorphisms φG1, φG0, φΓ1 is φΓ0-
equivariant.

Crossed squares and their morphisms form a category, that will be de-
noted by CS.

Examples. (a) Given a pair of normal subgroups N1, N2 of a group G,
we can form the following square:

N1 ∩N2

��

//N1

��
N2

//G

in which each morphism is an inclusion crossed module and there is a com-
mutator map

h : N1 ×N2 −→ N1 ∩N2

(n1, n2) −→ [n1, n2].

This forms a crossed square of groups.
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(b) [44] Any simplicial group G• yields a crossed square, the crossed
2-cube M(G•, 2) associated with simplicial group G•, de�ned by:

NG2

d3(NG3)

��

//ker∂1
1

��
ker∂1

0
//G1

for suitable maps. This is part of the construction that shows that all con-
nected 3-types are modelled by crossed squares.

(c) [42] Let

G1

∂
��

p̄1 //Γ1

∂ ′

��
G0

p̄0 //Γ0

be a crossed square with a function h : Γ1 × G0 → G1. Then < p̄1, p̄0 > is
a morphism of crossed modules, and ∂ ′ : Γ1 → Γ0 acts on ∂ : G1 → G0.

(d) Let

G1

∂
��

p̄1 //Γ1

∂ ′

��
G0

p̄0 //Γ0

be a crossed square with a function h : Γ1×G0 → G1. Then we can construct
the semi-direct crossed module (see for the description the section 1.3) and
an other one, given by:

(p̄1, p̄0) : G1 oG0 → Γ1 o Γ0.

The actions of G0 on G1 and of Γ0 on Γ1 are the natural actions and the
action of Γ1 o Γ0 on G1 oG0 is de�ned by:

(β,σ)(α, g) = ( ∂
′(β)σαh(β, σg), σg).

(e) [42] If ∂ : G1 → G0 is a crossed module, then we have the following
crossed square:

G1

∂
��

η //Der∗(G0, G1)

4
��

G0
γ //Aut (G1, G0, ∂)

with the function h : Der∗(G0, G1)×G0 → G1 given by (ε, g) → ε(g) and
where Aut (G1, G0, ∂) acts on G1 and on G0 via the appropriate projec-
tions.

(f) [15] Crossed squares can be seen as crossed modules in the category
of crossed modules and they provide algebraic models of connected 3-types.
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2.3 2-crossed modules

De�nition 2.3.1. A 2-crossed module is a normal complex of groups 1

G1
∂ //G0

p0 //Γ0

together with actions of Γ0 on all three groups and a mapping {−,−} :
G0 ×G0 → G1 satisfying the following axioms:

(i) the action on Γ0 on itself is by conjugation, ∂ and p0 are Γ0-equivariant;

(ii) ∂{g1, g2} = g1 g2 g
−1
1

p0(g1)g−1
2 ;

(iii) {∂(α1), ∂(α2)} = α1 α2 α
−1
1 α−1

2 ;

(iv) {∂(α), g} {g, ∂(α)} = α p0(g)α−1;

(v) {g1, g2 g3} = {g1, g2} {g1, g3} {∂({g1, g3})−1,p0(g1) g2};

(vi) {g1 g2, g3} = {g1, g2 g3 g
−1
2 } p0(g1){g2, g3};

(vii) σ{g1 g2} = {σg1,
σ g2};

for all α, α1, α2 ∈ G1, g, g1, g2, g3 ∈ G0 and σ ∈ Γ0.

The pairing {−,−} : G0 × G0 → G1 is often called the Pei�er lifting of
the 2-crossed module. Note that we have not speci�ed that G0 acts on G1.
We could have done that as follows: if g ∈ G0 and α ∈ G1 , de�ne:

gα := α {∂(α)−1, g}.

The homomorphism ∂ : G1 → G0, endowed with this action, is a crossed
module. Now (iv) and (v) simplify to the following expressions:

{g1, g2 g3} = {g1, g2}
p0(g1)g2 {g1, g3};

{g1 g2, g3} = g1{g2, g3} {g1,
p0(g2)g3}.

Let G1
∂ //G0

p0 //Γ0 be a 2-crossed module, we recall some useful
identities that are used in the proofs of many statements:

1

De�nition 2.3.2. A chain complex of groups is a sequence (of any length, �nite or
in�nite) of groups and homomorphisms, for instance,

... //Cn
∂n //Cn−1

∂n−1 //Cn−2
// ... ,

in which each composite ∂n−1 ◦ ∂n is the trivial homomorphism.
The chain complex is normal if each image ∂n(Cn) is a normal subgroup of the next group
Cn−1.
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(a) g1{g−1
1 , g2} = {g1,

p0(g−1
1 )g2}−1;

(b)
p0(g1)g2{g1, g

−1
2 } = {g1, g2}−1;

(c) {∂(α1) g1, ∂(α2) g2} p0(g1)α2
p0(g1)g2α1 = α1

g1α2 {g1, g2};

(d) {∂(α), g} = α gα−1;

(f) {g, ∂(α)} = gα p0(g)α−1;

for all α1, α2, α ∈ G1 and g1, g2, g ∈ G0.

De�nition 2.3.3. A morphism of 2-crossed modules is given by a diagram

G1

ϕ

��

∂ //G0

ψ

��

p0 //Γ0

χ

��
G
′
1

∂
′

//G
′
0

p
′
0 //Γ

′
0

such that commutes and

ψ( σg) = χ(σ)ψ(g), ϕ( σα) = χ(σ)ϕ(α), {ψ(g1), ψ(g2)} = ϕ({g1, g2}),

for all α ∈ G1, g, g1, g2 ∈ G0 and σ ∈ Γ0.

2-Crossed modules and their morphisms form a category, that will be
denoted by 2−CM.

Examples. (a) Any crossed module ∂ : G1 → G0 gives a 2-crossed
module:

1
1 //G1

∂ //G0

with the obvious actions. This construction is functorial and CM can be
considered to be a full subcategory of 2−CM in this way.

Viceversa, any 2-crossed module having trivial top dimensional group is
a crossed module.

(b) G1
∂ //G0 is a braided crossed module if and only if

G1
∂ //G0

1 //1

is a 2-crossed module. In this way, we can consider the functor from BCM
to 2−CM and BCM is a full subcategory of 2−CM.

(c) G1
∂ //G0 is a Γ0-equivariant braided crossed module if and only if

G1
∂ //G0

1 //Γ0 is a 2-crossed module.

(d) If G1
∂ //G0

p0 //Γ0 is a 2-crossed module, then < 1, p0 > is a
morphism of crossed modules from ∂ : G1 → G0 to 1→ Γ0 with an action
of 1→ Γ0 on ∂ : G1 → G0.



CHAPTER 2. ALGEBRAIC MODELS FOR CONNECTED 3-TYPES 22

If

G1
∂ //G0

p0 //Γ0

is a 2-crossed module, obviously we have that Im ∂ is a normal subgroup of
G0. Now we recall a well-known Proposition (with a small abuse of notation).

Proposition 2.3.1. If G1
∂ //G0

p0 //Γ0 is a 2-crossed module then there
is an induced crossed module structure on

p0 :
G0

Im∂
//Γ0 .

2.4 2-crossed modules with trivial Pei�er lifting

Suppose we have a 2-crossed module

G1
∂ //G0

p0 //Γ0

with the extra condition that {g1, g2} = 1 for all g1, g2 ∈ G0. The obvious
thing to do is to see what each of the de�ning properties of a 2-crossed
module give in this case.

(i) There is an action of Γ0 on G0 and on G1 and the maps ∂, p0 are
Γ0-equivariant (this gives nothing new in this special case).

(ii) The Pei�er identity holds for p0 : G0 → Γ0, i.e. p0 is a crossed module.

(iii) G1 is an abelian group.

(iv) The Pei�er lifting {−,−} is trivial, i.e. p0(g)α = α, so p0(G0) has
trivial action on G1.

Axioms (v),(vi) and (vii) vanish and consequently G0 has trivial action on
G1.

Example. The following diagram

G1

∂
��

//1

��
G0

p0 //Γ0

is a crossed square if and only if G1
∂ //G0

p0 //Γ0 is a 2-crossed module
whit trivial Pei�er lifting.
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2.5 Crossed squares and 2-crossed modules

Suppose that

G1

∂
��

p̄1 //Γ1

∂ ′

��
G0

p̄0 //Γ0

is a crossed square, then its associated 2-crossed module is given by:

G1
∂ //G0 n Γ1

p0 //Γ0

where ∂(α) = (∂(α), p̄1(α−1)) and p0(g, β) = ∂ ′(β) p̄0(g) (this is a part of
the construction to transform morphisms of crossed modules into butter�ies
[40]). The semi-direct product of Γ1 on G0 is formed by making G0 act
on Γ1 via Γ0 , i.e

gβ = p̄0(g)β ∀β ∈ Γ1, ∀g ∈ G0

where the Γ0-action is the given one. Conduché, in [17], de�ned the Pei�er
lifting in this situation by

{(g1, β1), (g2, β2)} = h(β1, g1 g2 g
−1
1 )−1.

We thus have two ways of going from a simplicial group G• to a 2-crossed
module:

(a) directly to get
NG2

d3(NG3)
//NG1

//G0

(b) indirectly via M(G•, 2) and then by the above construction to get

NG2

d3(NG3)
//ker∂1

1 n ker∂1
0

//G1

and they give the same homotopy type. More precisely, G1 decomposes
as s0(G0) nKer∂1

0 and the Ker∂1
0 factor in the middle term of (b) maps

down to that in this decomposition by the identity map, thus ∂1
0 induces a

quotient map from (b) to (a) with kernel isomorphic to

1 //ker∂1
0

= //ker∂1
0

which is acyclic/contractible.
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Categorical groups

In [14], the authors develop a cohomological theory with coe�cients in a
categorical crossed module. Our purpose (see Chapter 5) is to describe in
details the cohomology in some strict cases. This chapter serves to start from
recall the concept of categorical crossed module, so the de�nition of monoidal
category (category enriched by a tensor product), categorical group and ac-
tions of categorical groups. At the end of this chapter we are giving some
examples of categorical crossed modules that they will be the protagonists
of the Chapter 5.

3.1 Monoidal categories

De�nition 3.1.1. A monoidal category C = (C,⊗, a, I, l, r) consists of a
category C, a bifunctor (tensor product) ⊗ : C×C→ C, an object I (unit)
and natural isomorphisms called, respectively, the associativity, left unit and
right unit constraints:

a = {aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)}X,Y,Z∈Ob(C);

l = {lX : I ⊗X → X}X∈Ob(C);

r = {rX : X ⊗ I → X}X∈Ob(C);

such that for any objects X, Y, Z, W in Ob(C) the following diagrams (as-
sociativity coherence and unit coherence) commute:

((X ⊗ Y )⊗ Z)⊗W
aX⊗Y,Z,W //

aX,Y,Z⊗idW
��

(X ⊗ Y )⊗ (Z ⊗W )

aX,Y,Z⊗W

��

(X ⊗ (Y ⊗ Z))⊗W
aX,Y⊗Z,W

��
X ⊗ ((Y ⊗ Z)⊗W )

idX⊗aY,Z,W
//X ⊗ (Y ⊗ (Z ⊗W ))

24
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(X ⊗ I)⊗ Y
aX,I,Y //

rX⊗idY ''OOOOOOOOOOO X ⊗ (I ⊗ Y )

idX⊗lYwwooooooooooo

X ⊗ Y

De�nition 3.1.2. A braided monoidal category is a monoidal category C
equipped with a family of natural isomorphisms

c = {cX,Y : X ⊗ Y → Y ⊗ Y }X,Y ∈Ob(C),

such that for any objects X,Y, Z in Ob(C) the following diagrams (asso-
ciativity coherence) commute:

(X ⊗ Y )⊗ Z
cX,Y ⊗idZ //

aX,Y,Z

vvlllllllllllll
(Y ⊗X)⊗ Z

aY,X,Z

((RRRRRRRRRRRRR

X ⊗ (Y ⊗ Z)

cX,Y⊗Z ((RRRRRRRRRRRRR Y ⊗ (X ⊗ Z)

idY ⊗cX,Zvvlllllllllllll

(Y ⊗ Z)⊗X aY,Z,X
//Y ⊗ (Z ⊗X);

X ⊗ (Y ⊗ Z)
idX⊗cY,Z //

a−1
X,Y,Z

vvlllllllllllll
X ⊗ (Z ⊗ Y )

a−1
X,Z,Y

((RRRRRRRRRRRRR

(X ⊗ Y )⊗ Z

cX⊗Y,Z ((RRRRRRRRRRRRR (X ⊗ Z)⊗ Y

cX,Z⊗idYvvlllllllllllll

Z ⊗ (X ⊗ Y )
a−1
Z,X,Y

//(Z ⊗X)⊗ Y.

De�nition 3.1.3. A symmetric monoidal category is a braided monoidal
category C for which the braiding satis�es cX,Y = c−1

Y,X , for all objects X
and Y .

A (braided, symmetric) monoidal category is called strict if aX,Y,Z , lX , rX
are all identity morphisms, for all objects X, Y, Z in Ob(C). In this case,
we have:

(X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z) and I ⊗X = X = X ⊗ I. (3.1)

De�nition 3.1.4. A monoidal functor between monoidal categories,
C = (C,⊗, a, IC, l, r) and D = (D,⊗, a ′, ID, l ′, r ′), consists of a functor
F : C→ D equipped with:

• a natural isomorphism ΦX,Y : F (X)⊗ F (Y )→ F (X ⊗ Y );

• an isomorphism ΦI : ID → F (IC);
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such that for any objects X, Y, Z in C the following diagrams commutate:

(F (X)⊗ F (Y ))⊗ F (Z)
a ′
F (X),F (Y ),F (Z) //

ΦX,Y ⊗idF (Z)

��

F (X)⊗ (F (Y )⊗ F (Z))

idF (X)⊗ΦY,Z
��

F (X ⊗ Y )⊗ F (Z)

ΦX⊗Y,Z
��

F (X)⊗ F (Y ⊗ Z)

ΦX,Y⊗Z
��

F ((X ⊗ Y )⊗ Z)
F (aX,Y,Z)

//F (X ⊗ (Y ⊗ Z));

F (X)⊗ ID
idF (X)⊗ΦI //

r ′
F (X)

��

F (X)⊗ F (IC)

ΦX,IC
��

F (X) F (X ⊗ IC); ;
F (rX)

oo

ID ⊗ F (Y )
ΦI⊗idF (Y ) //

l ′
F (Y )

��

F (IC)⊗ F (Y )

ΦIC,Y
��

F (Y ) F (IC ⊗ Y ).
F (lY )

oo

De�nition 3.1.5. A braided monoidal functor between braided monoidal
categories, C = (C,⊗, a, IC, l, r, c) and D = (D,⊗, a ′, ID, l ′, r ′, c ′) , is a
monoidal functor (F : C→ D,Φ) such that the following diagram commutes
for all X, Y ∈ Ob(C):

F (X)⊗ F (Y )
c ′
F (X),F (Y ) //

ΦX,Y
��

F (Y )⊗ F (X)

ΦY,X
��

F (X ⊗ Y )
F (cX,Y )

//F (Y ⊗ Z).

A symmetric monoidal functor is simply a braided monoidal functor be-
tween symmetric monoidal categories.

A (braided, symmetric) monoidal functor is called strict if ΦX,Y , ΦI are
identity morphisms, for all objects X, Y in Ob(C). In this case, we have:

F (X)⊗ F (Y ) = F (X ⊗ Y ) and F (IC) = ID.

De�nition 3.1.6. Suppose that

C = (C,⊗, a, IC, l, r, c) and D = (D,⊗, a ′, ID, l ′, r ′, c ′)

are two monoidal categories and (F : C → D,Φ) and (F ′ : C → D,Φ ′)
are two monoidal functors between these categories.



CHAPTER 3. CATEGORICAL GROUPS 27

A monoidal natural transformation α : (F,Φ) ⇒ (F ′,Φ ′) between these
functors is a natural transformation α : F ⇒ F ′ between the underlying
functors such that the diagrams

F (X)⊗ F (Y )
αX⊗αY //

ΦX,Y
��

F ′(X)⊗ F ′(Y )

Φ ′X,Y
��

ID
ΦI

||xx
xx

xx
xx

x Φ ′I

##GG
GG

GG
GG

G

F (X ⊗ Y ) αX⊗Y
//F ′(X ⊗ Y ) F (IC) αIC

//F ′(IC)

commute for all objects X, Y ∈ Ob(C).

3.2 Categorical groups

De�nition 3.2.1. A categorical group G (see [23], [46], [2], [24]) is a
monoidal category (G,⊗, a, I, l, r) such that:

• G is a groupoid (see Appendix B.1);

• for each object X, there is an object X∗ (inverse) and an arrow ηX :
I → X ⊗X∗.

If G is a categorical group, then it is possible to choose an arrow εX :
X∗ ⊗ X → I in such a way that (X,X∗, ηX , εX) is a duality, this means
that the two following diagrams commute:

X∗
r−1
X∗ //

idX∗ ))SSSSSSSSSSSSSSSSSS X∗ ⊗ I
idX∗⊗ηX //X∗ ⊗X ⊗X∗

εX⊗idX∗
��

X∗ I ⊗X∗;
lX∗

oo

X
l−1
X //

idX
))RRRRRRRRRRRRRRRRRR I ⊗X ηX⊗idX //X ⊗X∗ ⊗X

idX⊗εX
��

X X ⊗ I.rX
oo

Moreover, one can choose I∗ = I.
Categorical groups and their monoidal functors form a category, that will

be denoted by CG.
A categorical group is said to be braided (symmetric) (see [32]) if it is

braided (symmetric) as a monoidal category.
A (braided, symmetric) categorical group is called strict if it is strict as

a monoidal category and ηX is an identity morphism, for all objects X in
Ob(C). In this case, we have the identities (3.1) and furthermore

X ⊗X∗ = I = X∗ ⊗X.
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Strict categorical groups and their strict monoidal functors form a cate-
gory, that will be denoted by StrCG.

Remark 3.2.1. If we consider a monoidal functor between categorical groups,
then each canonical isomorphism ΦI can be deduced from ΦX,Y .

A natural transformation between morphisms of categorical groups is a
monoidal natural transformation between the underlying monoidal functors.

It easy to see that the category StrCG is equivalent to the category
of groups in GPD. The last one being equivalent to CM, it follows that
StrCG is equivalent to CM. Given a crossed module ∂ : G1 → G0 we
denote by G(∂) the strict categorical group associated with it.

Examples. (a) If G is a group, the associated discrete category G[0]

G
idG //

idG
// G

idG

ZZ

is a strict categorical group where the tensor product is given by the group
operation. If G is an abelian group, then the category denoted by G[1]:

G
//
// 1

1G

ff

is also a strict categorical group where the tensor product is given by the
group operation.

(b) Let G be a categorical group. Eq(G) is the categorical group of the
equivalences of G; the set of objects of Eq(G) are the monoidal functors
(F : G → G,Φ) with F an equivalence of categories and the arrows are
the monoidal natural transformations between them. The composition in
Eq(G) is given by the usual vertical composition of natural transformations.
It is clear that Eq(G) is a groupoid. The composition of functors and the
horizontal composition of the natural transformations de�ne a tensor functor
Eq(G) ⊗ Eq(G) → Eq(G). Thus, Eq(G) is a categorical group in which
I = idG and an inverse for an object (F,Φ) is obtained by taking a quasi-
inverse F−1 of F .

(c) Aut(G) is the categorical subgroup of Eq(G) , whose objects, called
automorphisms, are strict monoidal functor (F,Φ), where F is an isomor-
phism.

3.3 Actions of categorical groups

Fix a categorical group Γ . A Γ-categorical group (see [24]) consists of
a categorical group G together with a morphism of categorical groups (a
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G-action) (F, µ) : Γ→ Eq(G). Equivalently, we have a functor

ac : Γ×G −→ G
(X,A) −→ XA

together with three natural isomorphisms:

ψX,A,B : X(A⊗B)→ XA⊗ XB;

φI,A : IA→ A;

φX,Y,A : (X⊗Y )A→ X( YA);

such that, for any objects X, Y, Z in Ob(Γ) and A, B, C in Ob(G), the
following diagrams commutate:

(X⊗(Y⊗Z))A
φX,Y⊗Z,A //X( (Y⊗Z)A)

XφY,Z,A
��

((X⊗Y )⊗Z)A

φX⊗Y,Z,A ''PPPPPPPPPPPP

aX,Y,ZA

OO

X( Y ( ZA))

(X⊗Y )( ZA);

φ
X,Y, ZA

77nnnnnnnnnnnn

(X⊗I)A
φX,I,A //

rXA ##HH
HH

HH
HH

H
X( IA)

XφI,A{{www
ww

ww
ww

XA;

X(A⊗ (B ⊗ C))
ψX,A,B⊗C //XA⊗ X(B ⊗ C)

idXA⊗ψX,B,C
��

X((A⊗B)⊗ C)

XaA,B,C

OO

ψX,A⊗B,C
��

XA⊗ (XB ⊗X C)

X(A⊗B)⊗ XC
ψX,A,B⊗idXC

//(XA⊗ XB)⊗ XC;

aXA,XB,XC

OO

(X⊗Y )(A⊗B)
φX⊗Y,A,B //

φX,Y,A⊗B
��

(X⊗Y )A⊗ (X⊗Y )B

φX,Y,A⊗φX,Y,B
��

X( Y (A⊗B))
ψ
X, Y A, Y B

◦XψY,A,B
//X( YA)⊗ X( YB);

Note that a canonical morphism φI,A : IA → A can be deduced from
φX,Y,A.
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De�nition 3.3.1. Let G and G ′ be Γ-categorical groups. A morphism
(T, ϕ) : G → G ′ consists of a categorical group morphism T = (T, µ) and
a natural transformation ϕ

Γ×G

ϕ⇓Id×T
��

ac // G

T
��

Γ×G ′
ac

// G ′

compatible with ψ, φ and φI in the sense of [24].

Γ-categorical groups and morphisms of Γ-categorical groups are the
objects and 1-cells of a 2-category, denoted by Γ-CG, where a 2-cell α :
(T, ϕ)⇒ (T ′, ϕ ′) is a 2-cell α : T⇒ T ′ in CG satisfying the corresponding
compatibility condition with ϕ and ϕ ′.

3.4 Categorical crossed modules

De�nition 3.4.1. Fix a categorical group Γ. A categorical Γ -precrossed
module consists of a triple (G,T, ν), where G is a Γ-categorical group,
T = (T, µ) : G→ Γ is a morphism of categorical groups and

ν = (νX,A : T (XA)⊗X → X ⊗ T (A))(X,A)∈Ob(Γ)×Ob(G)

is a family of natural isomorphisms in Γ such that the following diagrams
commute:

T (X( YA))⊗X ⊗ Y
T (φ−1

X,Y,A)⊗idX⊗Y
//

ν
X, Y A

⊗idY
��

T ( (X⊗Y )A)⊗X ⊗ Y
νX⊗Y,A

��
X ⊗ T ( YA)⊗ Y

idX⊗νY,A
//X ⊗ Y ⊗ T (A);

T (XA)⊗ T (XB)⊗X
id
T (XA)

⊗νX,B
//

µXA,XB⊗idX
��

T (XA)⊗X ⊗ T (B)

νX,A⊗idT (B)

��
T (XA⊗ XB)⊗X
T (ψ−1

X,A,B)

��

X ⊗ T (A)⊗ T (B)

idX⊗µA,B
��

T (X(A⊗B))⊗X νX,A⊗B
//X ⊗ T (A⊗B).

Now, a morphism of categorical Γ-precrossed modules is a triple

(F, η, α) : (G,T, ν)→ (G ′,T ′, ν ′)
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with (F, η) : G → G ′ a morphism in Γ-CG and α : T ⇒ T ′ F a 2-cell
in CG such that, for any X in Ob(Γ) and A in Ob(G), the following
diagram is commutative (which corresponds to the coherence condition for
α : T ⇒ T ′ F being a 2-cell in Γ-CG):

T (XA)⊗X
νX,A //

αXA⊗idX
��

X ⊗ T (A)

idX⊗αA
��

T ′ F (XA)⊗X

T ′(ηX,A)⊗idX ))SSSSSSSSSSSSSS X ⊗ T ′F (A)

T ′(XF (A))⊗X.
ν ′
X,F (A)

55llllllllllllll

De�nition 3.4.2. A categorical Γ-crossed module consists of a 4-tuple
(G,T, ν, χ), where (G,T, ν) is a categorical Γ-precrossed module and

χ = (χA,B : T (A)B ⊗A→ A⊗B)(A,B)∈Ob(G)×Ob(G)

is a family of natural isomorphisms in G such that the following diagrams
commutate:

T (A⊗B)C ⊗A⊗B
χA⊗B,C //

µ
−1
A,BC ⊗ idA⊗B

��

A⊗B ⊗ C

(T (A)⊗T (B))C ⊗A⊗BφT (A),T (B),C ⊗ idA⊗B
//T (A)( T (B)C)⊗A⊗Bχ

A, T (B)C
⊗ idB

//
A⊗ T (B)C ⊗B;

idA ⊗ χB,C

OO

T (A)(B ⊗ C)⊗A
χA,B⊗C //

ψT (A),B,C⊗idA
��

A⊗B ⊗ C

T (A)B ⊗ T (A)C ⊗A
idT (A)B

⊗χA,C
//T (A)B ⊗A⊗ C;

χA,B⊗idC

OO

X( T (A)B ⊗A)

XχA,BS //

ψ
X, T (A)B,A

��

X(A⊗B)

ψX,A,B

��
X( T (A)B)⊗ XA

φ−1
X,T (A),B

⊗ idXA
��

XA⊗ XB

(X⊗T (A))B ⊗ XA
ν
−1
X,AB ⊗ idXA

// (T (XA)⊗X)B ⊗ XAφ
T (XA),X,B

⊗ idXA
//T (XA)(XB)⊗ XA;

χXA,XB

OO

T ( T (A)B ⊗A)
T (χA,B)

//

µ−1
T (A)B,A

��

T (A⊗B)

µ−1
A,B

��
T ( T (A)B)⊗ T (A) νT (A),B

//T (A)⊗ T (B).
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Now, a morphism of categorical Γ-crossed modules

(F, η, α) : (G,T, ν, χ)→ (G ′,T ′, ν ′, χ ′)

is a morphism between the underlying categorical Γ-precrossed modules such
that, for any A,B in Ob(G), the following diagram (expressing a compati-
bility condition between the natural isomorphisms χ and χ ′) commutates:

F ( T (A)B ⊗A)
F (χA,B)

//

can

��

F (A⊗B)

can

��
F ( T (A)B)⊗ F (A)

ηT (A),B⊗idF (A)

��

F (A)⊗ F (B)

T (A)F (B)⊗ F (A) αAF (B)⊗idF (A)

//T ′ F (A)F (B)⊗ F (A).

χ ′
F (A),F (B)

OO

A categorical Γ-crossed module (G,T, ν, χ) is called:

- semistrict if G and Γ are strict categorical groups, the action of Γ on
G is strict and T is strictly equivariant (i.e., ν is an identity);

- special semistrict if G is a strict categorical group and Γ is a discrete
categorical group acting strictly on G ;

- strict if it is semistrict and χ is an identity.

Examples. (a) Any crossed module of groups ∂ : G1 → G0 is a categor-
ical crossed module when both G1 and G0 are seen as discrete categorical
groups. This is a trivial example of strict categorical crossed module.

(b) Let (G1
∂ //G0

p0 //Γ0 , {, }) be a 2-crossed module. Then, follow-
ing [13], it has an associated categorical Γ0[0]-crossed module (G(∂),T, id, χ)
where G(∂) is the strict categorical group associated with crossed module
∂ : G1 → G0, the morphism of categorical groups T = (T, µ) with T de-
�ned as p0 on the objects and as trivial map on the arrows of G(∂) and
µ = identity. ν is the identity and χg1,g2 = ({g1, g2}, p0(g1)g2 g1) , for all
g1, g2 ∈ G0, where {−,−} is the Pei�er lifting. So 2-crossed modules are
examples of special semistrict categorical crossed modules.

(c) In [12], a categorical Γ-module is de�ned as a braided categorical
group (G, c) provided with a Γ-action such that

cXA,XB ψX,A,B = ψX,B,A
XcA,B

for any X ∈ Ob(G) and A, B ∈ Ob(Γ). If G is a categorical Γ-module,
the trivial morphism 1 : G → Γ is a categorical Γ-crossed module where,
for any A, B ∈ Ob(G), χA,B : IB ⊗ A → A ⊗ B is given by the braiding
cB,A, up to composition with the obvious canonical isomorphism.

This example contains the following two special cases.
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1. Let ∂ : G1 → G0 be a braided crossed module equipped with an action
by a crossed module ∂ ′ : Γ1 → Γ0. The braiding are assumed to be
equivariant respect the action, that is σ{g1, g2} = { σg1,

σg2}, for all
σ in Γ0 and g1, g2 in G0. Then (G(∂), c) is a categorical G(∂ ′)-
module where cg2,g1 = ({g1, g2}, g2 g1) , for all g1, g2 ∈ G0. So we have
an example of semistrict categorical crossed module.

2. Let ∂ : G1 → G0 be a Γ0-equivariant braided crossed module (see
2.1 for the de�nition). Then (G(∂), c) is a categorical Γ0[0]-module
where cg2,g1 = ({g1, g2}, g2 g1) , for all g1, g2 ∈ G0. So we have another
example of special semistrict categorical crossed module.

Notice that this last case is a special case both of (b) and (c)1..
(d) [15] Crossed squares correspond, up to isomorphisms, to strict cate-

gorical crossed modules.

Finally, we want to summarize with the following diagram the inclusions
and the equivalences between the categories presented.

Crossed modules
∼ //

p P

��

s S

��

Strict

categorical groups

� � // Categorical groups

Braided

crossed modules

∼ //
?�

OO

� _

��

Strict braided

categorical groups

� � //
?�

OO

Braided

categorical groups

?�

OO

� � // Semistric categorical

crossed modules

2-crossed modules
� � // Special semistric

categorical crossed modules

Crossed squares
∼ // Stric categorical

crossed modules

, �

ee



Chapter 4

Crossed squares

First of all, let us recall a few well-known facts about crossed modules. Let
∂ : G1 → G0 be a crossed module, then:

(a) ker ∂ is G0 -invariant;

(b) Im ∂ is normal in G0 ;

(c) there is an action of coker ∂ on the abelian group ker ∂ such that

ker ∂ � � //G1
∂ //G0

// //coker ∂ (4.1)

is a crossed module.

We are going to show that these properties hold, in a 2-dimensional form,
provided we change the notions of kernels and cokernels by the homotopical
versions. Using the representation of strict categorical crossed modules given
by crossed squares, we show that, starting from a strict categorical crossed
module T : G→ Γ, we obtain a 2-dimensional version of (4.1):

kerT //G
T //Γ // Γ

< G,T >

for suitable categorical groups kerT and
Γ

< G,T >
(introduced in [33], [48]

and [14]), where kerT // Γ

< G,T >
is shown to be a strict categorical

crossed module.

34
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4.1 Crossed square version of homotopy kernels

In literature, there are two versions of the kernel of a morphism of crossed
module

G1

∂

��

ϕ //G
′
1

∂ ′

��
G0

ψ //G
′
0.

The strict version is introduced by Norrie in [42]. In this approach, she
considers crossed modules as the objects of a category CM and the kernel
of the morphism < ϕ,ψ > is ∂|kerϕ : kerϕ→ kerψ.

The homotopical version is analyzed in [14] where the authors consider
crossed modules as the objects of a 2-category (thanks the equivalence be-
tween strict categorical groups and crossed modules). The kernel is given
by the homotopy �bre over the unit object of the morphism of categorical
groups G(∂)→ G(∂ ′). In this case the objects of the kernel are the elements
of the pullback G0 ×G ′0 G

′
1 (see 6.7. REMARK in [14]).

In this section we use this last version.
Let us consider the crossed square

G1

∂
��

p̄1 //Γ1

∂ ′

��
G0

p̄0 //Γ0.

(4.2)

If we call G the strict categorical group associated with ∂ : G1 → G0 and
Γ the strict categorical group associated with ∂ ′ : Γ1 → Γ0, then there
is a strict categorical crossed module T : G → Γ (see the example (d) in
3.4). The kernel kerT of T : G → Γ is a strict categorical group with
Ob(kerT) = G0 ×Γ0 Γ1.

An arrow in kerT from (g1, β1) to (g2, β2) is an arrow g1
(α,g2) //g2 , with

g1 = ∂(α) g2, such that the triangle

p̄0(g1)

(β1,1) !!DD
DD

DD
DD

D
(p̄1(α),p̄0(g2)) // p̄0(g2)

(β2,1)}}zz
zz

zz
zz

z

1

commutes, that is p̄1(α)β2 = β1. Therefore, an arrow in the categorical
group kerT is uniquely speci�ed by triple (α, g2, β2) with (g2, β2) ∈ G0×Γ0

Γ1 and an element α ∈ G1. The target of (α, g2, β2) is given by (g2, β2);
the source of (α, g2, β2) is given by (g1, β1) where g1 = ∂(α) g2 and β1 =
p̄1(α)β2.



CHAPTER 4. CROSSED SQUARES 36

It is easy to check that the tensor product on objects is given by the
direct product.

Let (g1, β1)
(α1,g1,β1) // (g1, β1) and (g2, β2)

(α2,g2,β2) // (g2, β2) be

two arrows in kerT, where (gi, βi) are determined by (αi, gi, βi) for i = 1, 2,
the tensor product of these two arrows is given by:

(α1, g1, β1) (α2, g2, β2) = (α1
g1α2, g1 g2, β1 β2).

Because kerT is a strict categorical group, under the equivalence between
strict categorical groups and crossed modules, it is equivalent to the crossed
module constructed as follows:

∂ : Kert → G0 ×Γ0 Γ1

with ∂ = s|Kert, where s and t are the source and target maps, respectively,
of the underlying groupoid kerT. We denote with kerT 1 the set of arrows
in kerT and we recall the target map:

t : kerT 1 −→ G0 ×Γ0 Γ1

(α1, g1, θ1) −→ (g1, θ1)

while the source map is given by:

s : kerT 1 −→ G0 ×Γ0 Γ1

(α1, g1, θ1) −→ (g2, θ2)

where (g2, θ2) are given by g2 = ∂(α1) g1 and β2 = p̄1(α1)β1.
Thus we have

∂ : Kert → G0 ×Γ0 Γ1

(α, 1, 1) → (∂(α), p̄1(α)).

The product of two arrows (α1, 1, 1) and (α2, 1, 1) in kerT is (α1 α2, 1, 1)
and the product in G0 ×Γ0 Γ1 is the direct product, checked above. The
action of the group G0 ×Γ0 Γ1 on Kert is given by:

(g,β)(α, 1, 1) = i(g, β)(α, 1, 1)(i(g, β))−1.

We recall that the map i for the groupoid kerT is given by:

i : G0 ×Γ0 Γ1 −→ kerT 1

(g, β) −→ (1, g, β).

Therefore, using the multiplication de�ned above on kerT 1, we have:

(g,β)(α, 1, 1) = (1, g, β) (α, 1, 1) (1, g, β)−1 = (1, g, β) (α, 1, 1)

(1, g−1, β−1) =

= ( gα, g, β) (1, g−1, β−1) = ( gα, 1, 1).
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Because Kert is isomorphic to G1, it is clear the isomorphism between ∂
and a homomorphism

∂ : G1 → G0 ×Γ0 Γ1

which, by abuse of notation, we have denoted again by ∂.
In the category of categorical groups CG we have a morphism eT :

KerT→ G de�ned on objects and on arrows

eT0 : G0 ×Γ0 Γ1 −→ G0 eT1 : kerT 1 −→ G1 oG0

(g, β) −→ g (α, g, β) −→ (α, g)

and it is a categorical G-crossed module.
If we interpret these facts in the context of crossed modules, we can prove

the following Proposition.

Proposition 4.1.1. The diagram

G1

∂
��

G1

∂
��

G0 ×Γ0 Γ1

pG0 //G0

(4.3)

gives rise to a crossed square (that is a crossed module of crossed modules)
with actions, group homomorphism pG0 and function ĥ : G1×(G0×Γ0 Γ1)→
G1 de�ned as following:

- the action of G0 on G1 is the action of the crossed module ∂ : G1 → G0 ;

- the action of G0 on G0 ×Γ0 Γ1 is de�ned by g(g2, β2) = (g g2 g
−1, gβ2);

- pG0 : G0 ×Γ0 Γ1 → G0 is the canonical projection on G0.

- ĥ(α, (g2, β2)) := α g2α−1 (notice that ĥ(α, (g2, β2)) = h(p̄1(α), g2) where
the function h is given by the crossed square structure of (4.2));

Proof. The action of G0 on G0 ×Γ0 Γ1 is well de�ned. We now want to
check the �ve properties making this diagram a crossed square (see de�nition
2.2.1).

(i) The map idG1 : G1 → G1 obviously preserves the actions of G0.

The map ∂ preserves the actions of G0:

∂( gα) = (∂( gα), p̄1( gα)) = (g ∂(α) g−1, p̄1( p̄0(g)α)) =

= (g ∂(α) g−1, p̄0(g)p̄1(α)) = (g ∂(α) g−1, gp̄1(α)) =

= g(∂(α), p̄1(α)) = g∂(α).
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∂ is a crossed module because (4.2) is a crossed square and we want to
prove that pG0 is a crossed module. In fact, we have:

pG0( g(g2, β2)) = pG0(g g2 g
−1, gβ2) = g g2 g

−1 =

= g pG0(g2, β2) g−1;
pG0

(g2,β2)(g2
′, β2

′) = g2(g2, β2) = (g2 g2
′ g−1

2 , g2β2
′) =

= (g2 g2
′ g−1

2 , p̄0(g2)β2
′) =

= (g2 g2
′ g−1

2 , ∂
′(β2)β2

′) =

= (g2 g2
′ g−1

2 , β2 β2
′β−1

2 ) =

= (g2, β2) (g2
′, β2

′) (g2, β2)−1.

pG0 ∂ = ∂ idG1 is a crossed module because ∂ : G1 → G0 is a crossed
module.

(ii) idG1(ĥ(α, (g2, β2))) = α g2α−1 = α (g2,β2)α−1.

Now we want to prove that ∂ ĥ(α, (g2, β2)) = α(g2, β2) (g2, β2)−1 and
we develop the two members separately:

∂ ĥ(α, (g2, β2)) = (∂(α g2α−1), p̄1(α g2α−1)) =

= (∂(α) g2 ∂(α)−1 g−1
2 , p̄1(α) g2 p̄1(α)−1) =

= (∂(α) g2 ∂(α)−1 g−1
2 , p̄1(α) p̄0(g2)p̄1(α)−1) =

= (∂(α) g2 ∂(α)−1 g−1
2 , p̄1(α) ∂ ′(β2)p̄1(α)−1)

= (∂(α) g2 ∂(α)−1 g−1
2 , p̄1(α)β2 p̄1(α)−1 β−1

2 );
α(g2, β2) (g2, β2)−1 = ∂(α)(g2, β2) (g2, β2)−1 =

= (∂(α) g2 ∂(α)−1, ∂(α)β2) (g−1
2 , β−1

2 ) =

= (∂(α) g2 ∂(α)−1 g−1
2 , p̄0(∂(α))β2 β

−1
2 ) =

= (∂(α) g2 ∂(α)−1 g−1
2 , ∂

′(p̄1(α))β2 β
−1
2 ) =

= (∂(α) g2 ∂(α)−1 g−1
2 , p̄1(α)β2 p̄1(α)−1 β−1

2 ).

In the �rst development, the next to last passage is given by the fact
that (g2, β2) belongs to the pullback G0 ×Γ0 Γ1.

(iii) ĥ(idG1(α), (g2, β2)) = ĥ(α, (g2, β2)) = α g2α−1 = α (g2,β2)α−1;
ĥ(α, ∂(α ′)) = ĥ(α, (∂(α ′), p̄1(α ′))) = α ∂(α ′)α−1 = αα ′α−1α ′−1 =
= ∂(α)α ′α ′−1 = αα ′α ′−1.

(iv)

ĥ(αα ′, (g2, β2)) = αα ′ g2(αα ′)−1 = αα ′ g2 α ′−1 g2α−1 =

= αα ′ g2 α ′−1 α−1 α g2α−1 =

= α ĥ(α ′, (g2, β2))α−1 ĥ(α, (g2, β2)) =
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= αĥ(α ′, (g2, β2)) ĥ(α, (g2, β2));

ĥ(α, (g2, β2) (g2
′, β2

′)) = ĥ(α, (g2 g2
′, β2 β2

′)) = α g2 g2
′
α−1 =

= α g2α−1 g2α g2 g2
′
α−1 =

= α g2α−1 g2(α g2
′
α−1) =

= ĥ(α, (g2, β2)) g2 ĥ(α, (g2
′, β2

′)) =

= ĥ(α, (g2, β2)) (g2,β2)ĥ(α, (g2
′, β2

′)).

(v)

ĥ( gα, g(g2, β2)) = ĥ( gα, (g g2 g
−1, gβ2)) = gα g g2 g−1

( gα−1) =

= gα g g2α−1 = g(α g2α−1) = gĥ(α, (g2, β2)).

�

Remark 4.1.1. If < p̄1, p̄0 > is just a morphism of crossed modules then
(4.3) is still a crossed square. This is a generalization of the well-known fact
in the category of groups that if ∂ : G1 → G0 is a morphism of groups then
ker∂ ↪→ G1 is a crossed module (of groups).

4.2 kerT as a strict categorical Γ-crossed module

It is well-known that given a crossed module (of groups) ∂ : G1 → G0 then
ker∂ ↪→ G1 → G0 is a crossed module (of groups). In the context of crossed
squares, we prove the following Proposition.

Proposition 4.2.1. The outer diagram

G1

∂
��

p̄1

!!
G1

∂
��

p̄1 //Γ1

∂ ′

��
G0 ×Γ0 Γ1

p0

==
pG0 //G0

p̄0 //Γ0

(4.4)

gives rise to a crossed square with actions and function h : Γ1×(G0×Γ0Γ1)→
G1 de�ned as following:

- the action of Γ0 on G1 is induced by the action of ∂ ′ : Γ1 → Γ0 on
∂ : G1 → G0 ;

- the action of Γ0 on Γ1 is the action of the crossed module ∂ ′ : Γ1 → Γ0;

- the action of Γ0 on G0 ×Γ0 Γ1 is de�ned by σ(g2, β2) = ( σg2,
σβ2);
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- h(β, (g2, β2)) := h(β, g2) where the function h is given by the crossed
square structure of (4.2);

Proof. The action of Γ0 on G0 ×Γ0 Γ1 is well de�ned. p0 is a group
homomorphism because p̄0 is and the diagram (4.4) commutes. Now we
want to check the �ve properties making this diagram a crossed square.

(i) The map p̄1 preserves the actions of Γ0 because (4.2) is a crossed square.

The map ∂ preserves the actions of Γ0:
∂( σα) = (∂( σα), p̄1( σα)) = ( σ∂(α), σp̄1(α)) = σ(∂(α), p̄1(α)) =
= σ∂(α).

∂ ′ is a crossed module because (4.2) is a crossed square and we want to
prove that p0 is a crossed module. The pre-crossed module property
holds because p̄0 satis�es the pre-crossed module property. It also
holds the Pei�er condition:

p0(g2,β2)(g2
′, β2

′) = p̄0(g2)(g2
′, β2

′) =

= ( p̄0(g2)g2
′, p̄0(g2)β2

′) =

= (g2 g2
′ g−1

2 , ∂
′(β2)β2

′) =

= (g2 g2
′ g−1

2 , β2 β2
′β−1

2 );

(g2, β2) (g2
′, β2

′) (g2, β2)−1 = (g2, β2) (g2
′, β2

′) (g−1
2 , β−1

2 ) =

= (g2 g2
′ g−1

2 , β2 β2
′β−1

2 ).

p0 ∂ = ∂ ′ p̄1 is a crossed module because (4.2) is a crossed square.

(ii) p̄1(h(β, (g2, β2))) = p̄1(h(β, g2)) = β g2β−1 = β p̄0(g2)β−1 =

= β p0(g2,β2)β−1 = β (g2,β2)β−1.
Now we want to show that ∂ h(β, (g2, β2)) = β(g2, β2) (g2, β2)−1. We
develop the two members separately:

∂ h(β, (g2, β2)) = (∂ h(β, (g2, β2)), p̄1 h(β, (g2, β2))) =

= (∂ h(β, g2), p̄1 h(β, g2)) = ( βg2 g
−1
2 , β g2β−1);

β(g2, β2) (g2, β2)−1 = ∂ ′(β)(g2, β2) (g2, β2)−1 =

= ( ∂
′(β)g2,

∂ ′(β)β2) (g−1
2 , β−1

2 ) =

= ( ∂
′(β)g2 g

−1
2 , ∂

′(β)β2 β
−1
2 ) =

= ( βg2 g
−1
2 , β ∂

′(β2) β−1) =

= ( βg2 g
−1
2 , β p̄0(g2) β−1) = ( βg2 g

−1
2 , β g2 β−1).

In the development of the �rst member, the last passage is allowed
since (4.2) is a crossed square. In the second, the next to last passage
is given by the fact that (g2, β2) belongs to the pullback G0 ×Γ0 Γ1.

(iii) h(p̄1(α), (g2, β2)) = h(p̄1(α), g2) = α g2α−1 = α (g2,β2)α−1;
h(β, ∂(α)) = h(β, (∂(α), p̄1(α))) = h(β, ∂(α)) = βαα−1.
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(iv)

h(β β ′, (g2, β2)) = h(β β ′, g2) = βh(β ′, g2)h(β, g2) =

= βh(β ′, (g2, β2))h(β, (g2, β2));

h(β, (g2, β2) (g2
′, β2

′)) = h(β, (g2 g2
′, β2 β2

′)) = h(β, g2 g2
′) =

= h(β, g2) g2h(β, g2
′) =

= h(β, (g2, β2)) (g2,β2)h(β, (g2
′, β2

′)).

(v)

h( σβ, σ(g2, β2)) = h( σβ, ( σg2,
σβ2)) = h( σβ, σg2) = σh(β, g2) =

= σh(β, (g2, β2)).

�

Remark 4.2.1. In the category of groups, it is obvious that the following
composition

ker ∂ � � //G1
∂ //G0

is the trivial homomorphism.
If we interpret this fact in the context of crossed modules, we can prove

that the morphism of crossed modules (4.4) is homotopy equivalent to the
trivial morphism. In fact, there exists a transformation between them given
by a function θ : G0 ×Γ0 Γ1 → Γ1, de�ned by θ(g, β) = β−1.

4.3 Crossed square version of homotopy cokernels

We can consider the quotient categorical group
Γ

< G,T >
as de�ned in

[14]. We have Ob(
Γ

< G,T >
) = Γ0 and the tensor product on objects in

Γ

< G,T >
is the same as the product in Γ0. Then

Γ

< G,T >
is a strict

categorical group because Γ0 is a group.
We are going to describe morphisms in this category specifying the gen-

eral construction given in [14].

De�nition 4.3.1. A premorphism in
Γ

< G,T >
is uniquely speci�ed by

(g, β, σ2) with (β, p̄0(g)σ2) ∈ Γ1 o Γ0 (the set of arrows of Γ), g ∈ G0 .
The target of (g, β, σ2) is p̄0(g)σ2 and the source of (g, β, σ2) is given by
σ1 where

σ1 = ∂ ′(β) p̄0(g)σ2. (4.5)
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De�nition 4.3.2. A morphism in
Γ

< G,T >
from σ1 to σ2 is a class

of premorphisms [g, β, σ2] where (g, β, σ2) and (g ′, β ′, σ2) are equivalent
if there is an arrow in G from g to g ′, that is an α ∈ G1 such that
g = ∂(α) g ′ and the diagram

σ1
(β,p̄0(g)σ2) //

(β ′,p̄0(g ′)σ2) ##HHHHHHHHH p̄0(g)σ2

(p̄1(α),p̄0(g ′)σ2)xxrrrrrrrrrr

p̄0(g ′)σ2

commutes in G. Therefore

β p̄1(α) = β ′.

Given two morphisms σ1
[g,β,σ2] // σ2

[g ′,β ′,σ3] // σ3, we de�ne their
composition by

σ1
[g g ′,β gβ ′,σ3] // σ3 .

Given two morphisms σ1
[g1,β1,σ2] // σ2 and σ1

′ [g2,β2,σ2
′] // σ2

′, their
tensor product is given by

[g σ2g2, β, σ2 σ2
′].

β is given by the composition of the following three morphisms:

∂ ′(β1) p̄0(g1)σ2 ∂
′(β2) p̄0(g2)σ2

′

(β1
p̄0(g1)σ2β2,p̄0(g1)σ2 p̄0(g2)σ2

′)
��

p̄0(g1)σ2 p̄0(g2)σ2
′

p̄0(g1) p̄0( σ2g2)σ2 σ2
′

p̄0(g1
σ2g2)σ2 σ2

′

hence
β = β1

p̄0(g1)σ2β2.

Because
Γ

< G,T >
is a strict categorical group it is equivalent to the

crossed module constructed as follows:

d : Kert → Ob(
Γ

< G,T >
) = Γ0
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with d = s|Kert, where s and t are the source and target maps, respectively,

of the underlying groupoid
Γ

< G,T >
. We denote with

Γ

< G,T >1

the set

of arrows in
Γ

< G,T >
and we consider the target map:

t :
Γ

< G,T >1

−→ Γ0

(g, β, σ2) −→ σ2

while the source map:

s :
Γ

< G,T >1

−→ Γ0

(g, β, σ2) −→ ∂ ′(β) p̄0(g)σ2.

Thus we have

d : Kert → Γ0

(g, β, 1) → ∂ ′(β) p̄0(g).

The product of two arrows [g, β, 1] and [g ′, β ′, 1] in Kert is

[g g ′, β p̄0(g)β ′, 1] = [g g ′, β gβ ′, 1].

The action of the group Γ0 on Kert is given by:

σ[g, β, 1] = i(σ) [g, β, 1] i(σ)−1.

We recall that the map i for the groupoid
Γ

< G,T >
is given by:

i : Γ0 −→ Γ

< G,T >1

σ −→ (1, 1, σ)

Therefore, using the multiplication de�ned above on
Γ

< G,T >1

, we have:

σ[g, β, 1] = [1, 1, σ] [g, β, 1] [1, 1, σ]−1 =

= [1, 1, σ] [g, β, 1] [1, 1, σ−1] =

= [ σg, σβ, σ] [1, 1, σ−1] =

= [ σg, σβ, 1].

It is easy to observe that: Kert is isomorphic to
G0 n Γ1

∼
where (g1, β1) ∼

(g2, β2) if there is an α ∈ G1 such that

g1 = ∂(α) g2, (4.6)

β1 = β2 p̄1(α)−1. (4.7)
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We can also show that the group
G0 n Γ1

∼
is isomorphic to the generalized

semi-direct product G0 nG1 Γ1 of G0 and Γ1 along G1, introduced by

Noohi in [40]. By de�nition, G0 nG1 Γ1 is equal to
G0 n Γ1

N
, where N =

{(∂(α), p̄1(α)−1), α ∈ G1}.
In fact, (g1, β1) ∼ (g2, β2) if there is an α ∈ G1 such that the identities
(4.6) and (4.7) hold. Then we have:

(g1, β1) = (∂(α) g2, β2 p̄1(α)−1) = (∂(α) g2, p̄1(α)−1 ∂ ′(p̄1(α))β2) =

= (∂(α) g2, p̄1(α)−1 p̄0(∂(α))β2) = (∂(α) g2, p̄1(α)−1 ∂(α)β2) =

= (∂(α), p̄1(α)−1) (g2, β2)

So we have a homomorphism

d : G0 nG1 Γ1 → Γ0

which, by abuse of notation, we have denoted again by d.

Remark 4.3.1. Starting from the crossed square (4.2), Conduché in [17]
introduced a construction called the mapping cone complex, given by:

G1
p̄1 //

∂

��

∂2

$$HHHHHHHHH Γ1

∂ ′

��

G0 n Γ1

∂1

##HHHHHHHHH

G0
p̄0 //Γ0

where ∂2(α) = (∂(α), p̄1(α−1)) and ∂1(g, β) = ∂ ′(β) p̄0(g). It is immediate
to observe that the generalized semi-direct product G0 nG1 Γ1 is obtained
from the mapping cone complex as coker ∂2.

From the previous remark, we obtain the following Proposition.

Proposition 4.3.1. d : G0 nG1 Γ1 → Γ0 is a crossed module

Proof. Proposition 2.3.1.

4.4 kerT as a strict categorical
Γ

< G,T >
-crossed

module

It is well-known that given a crossed module (of groups) ∂ : G1 → G0 then
ker∂ ↪→ G1 → G0 � coker∂ is a crossed module (of groups). In the context
of a crossed squares, we prove the following Proposition.
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Proposition 4.4.1. The outer diagram

G1

∂
��

p̃1

''
G1

∂
��

p̄1 //Γ1
∂ ′′ //

∂ ′

��

G0 nG1 Γ1

d
��

G0 ×Γ0 Γ1

p0

66

p̃0

88
pG0 //G0

p̄0 //Γ0 Γ0

(4.8)

gives rise to a crossed square with actions, group homomorphism ∂ ′′ and

function h : (G0 nG1 Γ1)× (G0 ×Γ0 Γ1)→ G1 de�ned as following:

- the action of Γ0 on G1 is induced by the action of ∂ ′ : Γ1 → Γ0 on
∂ : G1 → G0 ;

- the action of Γ0 on G0 nG1 Γ1 is the action of a crossed module d :
G0 nG1 Γ1 → Γ0;

- the action of Γ0 on G0 ×Γ0 Γ1 is de�ned by σ(g2, β2) = ( σg2,
σβ2) (the

same action seen in the crossed square (4.4));

- ∂ ′′ : Γ1 → G0nG1 Γ1 is the canonical inclusion map of Γ1 in G0nG1 Γ1;

- h((g1, β1), (g2, β2)) := h(β1, g1 g2 g
−1
1 )h(β2, g1)−1 where the function h is

given by the crossed square structure of (4.2).

Proof. p̃0 = p0 is a group homomorphism, where p0 is de�ned in (4.4).
p̃1(α) = (1, p̄1(α)) is a group homomorphism because p̄1 is and it is easy to
check that d p̃1 = ∂ ′ p̄1 = p̄0 ∂ = p̃0 ∂ (so the diagram (4.8) commutes and

the last map is a crossed module). h is well de�ned, in fact we have:

h((∂(α) g1, β1 p̄1(α)−1), (g2, β2)) =

= h(β1 p̄1(α)−1, ∂(α) g1 g2 g
−1
1 ∂(α)−1)h(β2, ∂(α) g1)−1 =

= h(β1 p̄1(α)−1, p̄0 ∂(α)(g1 g2 g
−1
1 )) ∂(α)h(β2, g1)−1 h(β2, ∂(α))−1 =

= p̄0 ∂(α)h( p̄0 ∂(α)−1
(β1 p̄1(α)−1), g1 g2 g

−1
1 )αh(β2, g1)−1 α−1 α β2α−1 =

= αh( ∂
′p̄1(α)−1

(β1 p̄1(α)−1), g1 g2 g
−1
1 )α−1 αh(β2, g1)−1 β2α−1 =

= αh(p̄1(α)−1 β1, g1 g2 g
−1
1 )h(β2, g1)−1 β2α−1 =

= α ∂ ′p̄1(α)−1
h(β1, g1 g2 g

−1
1 )h(p̄1(α)−1, g1 g2 g

−1
1 )h(β2, g1)−1 β2α−1 =

= αα−1 h(β1, g1 g2 g
−1
1 )αα−1 g1 g2 g

−1
1 αh(β2, g1)−1 β2α−1 =

= h(β1, g1 g2 g
−1
1 ) g1 β2( g

−1
1 α)h(β2, g1)−1 β2α−1 =

= h(β1, g1 g2 g
−1
1 )h(β2, g1)−1 β2 g1( g

−1
1 α) β2α−1 =

= h(β1, g1 g2 g
−1
1 )h(β2, g1)−1 β2α β2α−1 =

= h(β1, g1 g2 g
−1
1 )h(β2, g1)−1.
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The equalities above are consequences of the axioms of the crossed square
(4.2). We also want to emphasize that in the eighth passage we have used the
fact that (g2, β2) belongs to the pullback G0 ×Γ0 Γ1 and we have p̄0(g2) =
∂ ′(β2) and in general for any α1 ∈ G1, we have:

g2α1 = p̄0(g2)α1 = ∂ ′(β2)α1 = β2α1.

Instead, in the ninth passage, we used the property (a) of the crossed square
(4.2) (see section 2.2).

Now we want to check the �ve properties making the diagram (4.8) a
crossed square.

(i) The map p̃1 preserves the actions of Γ0; in fact:

p̃1( σα) = (1, p̄1( σα)) = (1, σp̄1(α)) = σ(1, p̄1(α)) = σp̃1(α).

We have already seen that the map ∂ preserves the actions of Γ0.

d is a crossed module and p̃0 is a crossed module because p0 is.

(ii) We want to prove that p̃1(h((g1, β1), (g2, β2))) = (g1, β1) (g2,β2)(g1, β1)−1

and we develop the two members separately:

p̃1(h((g1, β1), (g2, β2))) = p̃1(h(β1, g1 g2 g
−1
1 )h(β2, g1)−1) =

= (1, p̄1(h(β1, g1 g2 g
−1
1 )h(β2, g1)−1)) =

= (1, β1
g1 g2 g

−1
1 β−1

1
g1β2 β

−1
2 );

(g1, β1) (g2,β2)(g1, β1)−1 = (g1, β1) p̃0(g2,β2)(g1, β1)−1 =

= (g1, β1) p̄0(g2)(g−1
1 , g

−1
1 β−1

1 ) = (g1, β1) (g2 g
−1
1 g−1

2 , g2 g
−1
1 β−1

1 ) =

= (g1 g2 g
−1
1 g−1

2 , β1
g1 g2 g

−1
1 β−1

1 ) =

= (∂ h(β2, g1)−1 · 1, β1
g1 g2 g

−1
1 β−1

1
g1β2 β

−1
2 · p̄1 h(β2, g1)).

So p̃1(h((g1, β1), (g2, β2))) ∼ (g1, β1) (g2,β2)(g1, β1)−1 in
G0 n Γ1

∼
∼=

G0 nG1 Γ1.

Now we want to prove that

∂ h((g1, β1), (g2, β2)) = (g1,β1)(g2, β2) (g2, β2)−1

and we develop the two members separately:

∂ h((g1, β1), (g2, β2)) = ∂(h(β1, g1 g2 g
−1
1 )h(β2, g1)−1) =

= (∂ h(β1, g1 g2 g
−1
1 ) ∂ h(β2, g1)−1, p̄1 h(β1, g1 g2 g

−1
1 )

p̄1 h(β2, g1)−1) =

= ( β1(g1 g2 g
−1
1 ) g1 g

−1
2 g−1

1 g1
β2g−1

1 , β1
g1 g2 g

−1
1 β−1

1
g1β2 β

−1
2 ) =
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= ( β1(g1 g2 g
−1
1 ) g1 g

−1
2

p̄0(g2)g−1
1 , β1

g1( ∂
′(β2)( g

−1
1 β−1

1 )) g1β2 β
−1
2 ) =

= ( β1(g1 g2 g
−1
1 ) g1 g

−1
2 g2 g

−1
1 g−1

2 , β1
g1β2 β

−1
1

g1β−1
2

g1β2 β
−1
2 ) =

= ( β1(g1 g2 g
−1
1 ) g−1

2 , β1
g1β2 β

−1
1 β−1

2 );
(g1,β1)(g2, β2) (g2, β2)−1 = ∂ ′(β1) p̄0(g1)(g2, β2) (g−1

2 , β−1
2 ) =

= ( β1(g1 g2 g
−1
1 ), β1

g1β2 β
−1
1 ) (g−1

2 , β−1
2 ) =

= ( β1(g1 g2 g
−1
1 ) g−1

2 , β1
g1β2 β

−1
1 β−1

2 ).

(iii)

h(p̃1(α), (g2, β2)) = h((1, p̄1(α)), (g2, β2)) =

= h(p̄1(α), g2)h(β2, 1)−1 = α g2α−1 = α p̄0(g2)α−1 =

= α p̄0(g2,β2)α−1 = α (g2,β2)α−1;

h((g1, β1), ∂(α)) = h((g1, β1), (∂(α), p̄1(α))) =

= h(β1, g1 ∂(α) g−1
1 )h(p̄1(α), g1)−1 =

= h(β1, ∂( g1α))h(p̄1(α), g1)−1 = β1( g1α) g1α−1 g1αα−1 =

= β1( g1α)α−1 = ∂ ′(β1) p̄0(g1)αα−1 = d(g1,β1)αα−1 = (g1,β1)αα−1.

(iv) We want to prove that:

h((g1, β1) (g1
′, β1

′), (g2, β2)) =
(g1,β1)h((g1

′, β1
′), (g2, β2))h((g1, β1), (g2, β2))

and we develop the two members separately:

h((g1, β1) (g1
′, β1

′), (g2, β2)) = h((g1 g1
′, β1

g1β1
′), (g2, β2)) =

= h(β1
g1β1

′, g1 g1
′ g2 g1

′−1 g−1
1 )h(β2, g1 g1

′)−1 =

= β1h( g1β1
′, g1 g1

′ g2 g1
′−1 g−1

1 )h(β1, g1 g1
′ g2 g1

′−1 g−1
1 )

g1h(β2, g1
′)−1 h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1)h(β1, g1 g1

′ p̄0(g2)(g1 g1
′)−1 g2)

g1h(β2, g1
′)−1 h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1)h(β1, g1 g1

′ ∂ ′(β2)(g1 g1
′)−1 g2)

g1h(β2, g1
′)−1 h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1)h(β1, ∂ h(β2, g1 g1

′)−1 g2) g1h(β2, g1
′)−1

h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1) β1h(β2, g1 g1

′)−1 h(β1, g2)h(β2, g1 g1
′)

g1h(β2, g1
′)−1 h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1) β1h(β2, g1 g1

′)−1 h(β1, g2)h(β2, g1)
g1h(β2, g1

′) g1h(β2, g1
′)−1 h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1) β1h(β2, g1 g1

′)−1 h(β1, g2);
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(g1,β1)h((g1
′, β1

′), (g2, β2))h((g1, β1), (g2, β2)) =

= β1 g1 [h(β1
′, g1

′ g2 g1
′−1)h(β2, g1

′)−1]h(β1, g1 g2 g
−1
1 )

h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1) β1 g1h(β2, g1

′)−1 h(β1, g1
p̄0(g2) g−1

1 g2)

h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1) β1 g1h(β2, g1

′)−1 h(β1, g1
∂ ′(β2) g−1

1 g2)

h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1) β1 g1h(β2, g1

′)−1 h(β1, ∂ h(β2, g1)−1 g2)

h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1) β1 g1h(β2, g1

′)−1 β1h(β2, g1)−1 h(β1, g2)

h(β2, g1)h(β2, g1)−1 =

= β1 g1h(β1
′, g1

′ g2 g1
′−1) β1 [ g1h(β2, g1

′)−1 h(β2, g1)−1]h(β1, g2) =

= β1 g1h(β1
′, g1

′ g2 g1
′−1) β1h(β2, g1 g1

′)−1 h(β1, g2).

In the development of both members, we used the axioms relating to
crossed square (4.2). We want to emphasize that, in the development
of the �rst member (second member) in the fourth (third) step, we
used the fact that (g2, β2) belongs to the pullback G0 ×Γ0 Γ1 and in
the sixth (�fth) step we used the identity (l) for the crossed square
(4.2) (see section 2.2).

(v)

h( σ(g1, β1), σ(g2, β2)) = h(( σg1,
σβ1), ( σg2,

σβ2)) =

= h( σβ1,
σg1

σg2
σg−1

1 )h( σβ2,
σg1)−1 =

= h( σβ1,
σ(g1 g2 g

−1
1 ))h( σβ2,

σg1)−1 =

= σh(β1, g1 g2 g
−1
1 ) σh(β2, g1)−1 =

= σ(h(β1, g1 g2 g
−1
1 )h(β2, g1)−1) =

= σh((g1, β1), (g2, β2)).

�

Transferring in a categorical crossed module language, we can summarize
the previous results by saying

kerT //G
T //Γ // Γ

< G,T >

is a strict categorical crossed module.

Remark 4.4.1. In the category of groups, it is obvious that the following
composition

ker ∂ � � //G1
∂ //G0

// //coker ∂
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is the trivial homomorphism.
If we interpret this fact in the context of crossed modules, we can prove

that the morphism of crossed modules (4.8) is homotopy equivalent to the
trivial morphism. In fact, there exists a transformation between them given
by a function θ : G0 ×Γ0 Γ1 → G0 nG1 Γ1, de�ned by θ(g, β) = (1G0 , β

−1).

4.5 Images of crossed modules

In this last section, we consider the Norrie's approach (see [42]) of the image
of a crossed module morphism and we well prove another result showing the
analogy between crossed modules and crossed squares.
It is well-known that given a crossed module (of groups) ∂ : G1 → G0 then
Im∂ is normal in G0.

If we interpret these facts in the context of crossed squares, we can prove
the following proposition.

Proposition 4.5.1. Let

G1

∂
��

p̄1 //Γ1

∂ ′

��
G0

p̄0 //Γ0,

be a crossed square, the subcrossed module ∂ ′|Im p̄1
: Im p̄1 → Im p̄0 of ∂ ′ :

Γ1 → Γ0 is normal.

Proof.

- Im p̄0 is a normal subgroup of Γ0 (because p̄0 : G0 → Γ0 is a crossed
module);

- for all σ ∈ Γ0 and β ∈ Im p̄1 (that is there exists α ∈ G1 such that
p̄1(α) = β), we have:

σβ = σp̄1(α) = p̄1( σα),

so σβ ∈ Im p̄1.

- for all σ ∈ Im p̄0 (that is there exists g ∈ G0 such that p̄0(g) = σ) and
β ∈ Γ1, we have:

σβ β−1 = p̄0(g)β β−1 = gβ β−1 = p̄1 h(β, g),

so σβ β−1 ∈ Im p̄1.

�



Chapter 5

Cohomologies

In this chapter, we recall and revisit some results of Dedecker [20]-[21],
Borovoi [1] and Noohi [41] relative to the cohomology of a group with coef-
�cients in crossed modules.

In the sections 5.3, 5.4 and 5.5, we present (thanks to the article [14]
on the cohomology for categorical groups) a low-dimensional cohomology
for crossed modules with coe�cients in braided crossed modules, 2-crossed
modules and crossed squares, respectively.

5.1 Cohomology of a group with coe�cients in cros-
sed module

5.1.1 Dedecker Cohomology

The category of Γ-groups (with objects Γ-groups and arrows group homo-
morphisms respecting the action of Γ) is suitable as a category of coe�cients
to describe a good cohomological theory of Γ only in dimension 0 and 1 (see
A.2). This is not true in dimension 2 and therefore Dedecker replaced the
category of Γ-groups with the category of crossed modules. In 1964 Dedecker
[20]-[21] de�ned the cohomology in dimension 2 of a group Γ with coe�-
cients in a crossed module ∂ : G1 → G0, considering the trivial action of Γ
on ∂ : G1 → G0. The usefulness of this cohomological theory is that:

1. it is functorial;

2. it produces a cohomological exact sequence associated with short exact
sequence in the coe�cients category, a notion respected by the forgetful
functors from CM to the category of Γ-groups.

For an arbitrary group Γ, Dedecker denotes by:

C0
D(Γ, ∂ : G1 → G0) = G1 0-cochains,

C1
D(Γ, ∂ : G1 → G0) = App(Γ, G1) 1-cochains,

50
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C2
D(Γ, ∂ : G1 → G0) = App(Γ, G0)×App(Γ× Γ, G1) 2-cochains,

where App represents the set of all maps between the underlying sets. Dedecker
de�nes the set of 2-cocycles in the following way:

Z2
D(Γ, ∂ : G1 → G0) = { (p, ε) ∈ C2

D(Γ, ∂ : G1 → G0) /
p(σ) p(τ) = ∂ε(σ, τ) p(σ τ)
p(σ)ε(τ, υ) ε(σ, τ υ) = ε(σ, τ) ε(σ τ, υ) }.

Z2
D(Γ, ∂ : G1 → G0) is a pointed set with as base point the pair of constant

functions (1G0 , 1G1), where 1G0(g) = 1G0 and 1G1(α) = 1G1 for all g in G0

and all α in G1. An action of the group C1
D(Γ, ∂ : G1 → G0) = App(Γ, G1)

(with the product given by (θ1 · θ2)(σ) = θ1(σ) θ2(σ)) on the set Z2
D(Γ, ∂ :

G1 → G0) is given by the following function:

∗ : C1
D(Γ, ∂ : G1 → G0)× Z2

D(Γ, ∂ : G1 → G0)→ Z2
D(Γ, ∂ : G1 → G0)

where we have θ ∗ (p1, ε1) = (p2, ε2) and:

(i) p2(σ) = ∂θ(σ) p1(σ);

(ii) ε2(σ, τ) = θ(σ) p1(σ)θ(τ) ε1(σ, τ) θ(σ τ)−1.

Dedecker considers the orbits of this action that form a set H2
D(Γ, ∂ : G1 →

G0).

5.1.2 Borovoi Cohomology

Actually Dedecker cohomology does not fully generalizes the abelian case,
presented in A.1, since it represents the cohomology for trivial actions of Γ.
After more than 20 years, Borovoi [1] gave a full generalization of cohomology
of a group Γ with coe�cients in a Γ-module in dimension 0, 1, 2. In this
theory, the main tool is the notion of action of a group on a crossed module
(see section 1.3).

Given an action of a group Γ on the crossed module ∂ : G1 → G0,
Borovoi denotes by:

C0
B(Γ, ∂ : G1 → G0) = G1 0-cochains,

C1
B(Γ, ∂ : G1 → G0) = G0 ×App(Γ, G1) 1-cochains,

C2
B(Γ, ∂ : G1 → G0) = App(Γ, G0)×App(Γ× Γ, G1) 2-cochains.

Borovoi de�nes
H0
B(Γ, ∂ : G1 → G0) = (ker∂)Γ

and this is an abelian group.
C1
B(Γ, ∂ : G1 → G0) is a group with the product given by:

(g1, θ1)(g2, θ2) = (g1 g2,
g1θ2 θ1)
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where (g1θ2 θ1)(σ) = g1θ2(σ) θ1(σ). The inverse of (g, θ) is the pair (g−1, θ∗),
where θ∗(σ) = g−1

θ(σ)−1.
The 1-cocycles form a subgroup of C1

B(Γ, ∂ : G1 → G0), de�ned as

Z1
B(Γ, ∂ : G1 → G0) = {(g, θ) ∈ C1

B / θ(σ τ) = θ(σ) σθ(τ) , σg = ∂θ(σ)−1 g}.

The 1-coboundaries form a normal subgroup of Z1
B(Γ, ∂ : G1 → G0), de�ned

as

B1
B(Γ, ∂ : G1 → G0) = {(g, θ) ∈ Z1

B / ∃α ∈ G1 : g = ∂(α) , θ(σ) = α σα−1}.

Then Borovoi introduces the following group (in general not abelian):

H1
B(Γ, ∂ : G1 → G0) =

Z1
B(Γ, ∂ : G1 → G0)

B1
B(Γ, ∂ : G1 → G0)

.

He de�nes the following pointed set:

Z2
B(Γ, ∂ : G1 → G0) = { (p, ε) ∈ C2

B(Γ, ∂ : G1 → G0) /
p(σ) σp(τ) = ∂(ε(σ, τ)) p(σ τ)
p(σ)( σε(τ, υ)) ε(σ, τ υ) = ε(σ, τ) ε(σ τ, υ) }

with as base point the pair of constant functions (1G0 , 1G1). There is an
action of the group C1

B(Γ, ∂ : G1 → G0) on the set Z2
B(Γ, ∂ : G1 → G0):

∗ : C1
B(Γ, ∂ : G1 → G0)× Z2

B(Γ, ∂ : G1 → G0)→ Z2
B(Γ, ∂ : G1 → G0).

This is de�ned by (g1, θ1) ∗ (p1, ε1) = (p2, ε2), where:

(i) p2(σ) = g−1
1 ∂θ1(σ) p1(σ) σg1;

(ii) ε2(σ, τ) = g−1
1 [θ1(σ) p1(σ)( σθ1(τ)) ε1(σ, τ) θ1(σ τ)−1].

Borovoi considers the orbits of this action that form a set H2
B(Γ, ∂ : G1 →

G0).

Remark 5.1.1. If we regard crossed modules as 2-dimensional forms of
groups, this is also a generalization of the Serre cohomology A.2 because
there is just the action of the group Γ on the crossed module ∂ : G1 → G0.

Examples. (a) Let G1 be an abelian group, then G1 → 1 is a crossed
module and an action of Γ on G1 → 1 corresponds to an action of Γ on
G1. In this standard example, the Borovoi cohomology recovers the abelian
cohomology introduced in A.1 and we have:

H0
B(Γ, G1 → 1) = GΓ

1 = H0(Γ, G1);

H1
B(Γ, G1 → 1) = H1(Γ, G1);

H2
B(Γ, G1 → 1) = H2(Γ, G1).
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(b) Let G0 be a group, then 1→ G0 is a crossed module and an action
of Γ on 1→ G0 corresponds to an action of Γ on G0. Furthermore, in this
case, the Borovoi cohomology recovers the Serre cohomology introduced in
A.2 and we have

H0
B(Γ, 1→ G0) = 1;

H1
B(Γ, 1→ G0) = GΓ

1 = H0
S(Γ, G0);

H2
B(Γ, 1→ G0) = H1

S(Γ, G0).

(c) Let ∂ : G1 → G0 be a crossed module endowed with a trivial action
of a group Γ. In an analogous way of the previous examples, we have:

H2
B(Γ, G1 → G0) = H2

D(Γ, G1 → G0).

(d) Finally, we are going to describe the Borovoi cohomology for a speci�c
example. Let us consider the crossed module ∂ : SL2(L) → PGL2(L) (see
example (g) in 1.1), we have:

H0
B(Gal(L \K), ∂ : SL2(L)→ PGL2(L)) ∼= Z2 if carL 6= 2;

H0
B(Gal(L \K), ∂ : SL2(L)→ PGL2(L)) = 1 if carL = 2;

H1
B(Gal(L \K), ∂ : SL2(L)→ PGL2(L)) = 1.

5.1.3 Noohi Cohomology

In this section, we are going to recall and revisit some well-known facts about
the cohomology presented by Noohi in [41].
First of all, Noohi notes that H0

B(Γ, G1 → G0) and H1
B(Γ, G1 → G0) are

the kernel and cokernel, respectively, of the crossed module:

∂ : G1 −→ Z1
B(Γ, ∂ : G1 → G0)

α −→ (∂(α), θα)

where θα(σ) = α σα−1 with the action of Z1
B(Γ, ∂ : G1 → G0) on G1 given

by
(g,θ)α := gα.

He analyzes also the Borovoi cohomology of a group Γ with coe�cients in
a Γ-equivariant braided crossed module ∂ : G1 → G0 (see for the de�nition
the section 2.1). In this case, Noohi observes that H1

B(Γ, ∂ : G1 → G0) is
abelian. This is true thanks to the following Lemma.

Lemma 5.1.1. [41] The commutator of the two 1-cocycles (g1, θ1) and
(g2, θ2) in Z1

B(Γ, ∂ : G1 → G0) is equal to the 1-coboundary (∂(α), θα),
where α = {g1, g2}.
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It follows, from the above Lemma, that the bracket {(g1, θ1), (g2, θ2)} =

{g1, g2} makes the crossed module ∂ : G1 → Z1
B(Γ, G1 → G0) (de�ned

above) a braided crossed module.
In the presence of a braiding on ∂ : G1 → G0, Noohi introduces a second

product on C1
B(Γ, ∂ : G1 → G0) which makes it into a group as well. Given

two 1-cochains (g1, θ1) and (g2, θ2), their product is the 1-cochain (g1 g2, θ),
where θ is de�ned by the formula

θ(σ) = g1{g2
σg−1

2 , σg−1
1 }

g1
σg−1

1 θ2(σ) θ1(σ).

When restricted to Z1
B(Γ, ∂ : G1 → G0), the above product coincides with

the Borovoi product.
Noohi de�nes the following group homomorphism:

d : C1
B(Γ, ∂ : G1 → G0) → Z2

B(Γ, ∂ : G1 → G0)

(g, θ) → (p, ε)

• p(σ) = ∂θ(σ)−1 g σg−1;

• ε(σ, τ) = θ(σ)−1 g σg−1
(σθ(τ)−1) θ(σ τ).

The product in C1
B(Γ, ∂ : G1 → G0) is the one de�ned above and the product

in Z2
B(Γ, ∂ : G1 → G0) is de�ned as follows. Let (p1, ε1) and (p2, ε2) be in

Z2
B(Γ, ∂ : G1 → G0), the product (p1, ε1) (p2, ε2) is the pair (p, ε) where

p(σ) = p1(σ) p2(σ);

ε(σ, τ) = p1(σ){p2(σ), σp1(τ)} ε1(σ, τ) p1(σ τ)ε2(σ, τ).

The inverse of the element (p, ε) in Z2
B(Γ, ∂ : G1 → G0) is the pair (p∗, ε∗)

where

p∗(σ) = p(σ)−1;

ε∗(σ, τ) = {p(σ)−1, σp(τ)−1} p(σ τ)−1
ε(σ, τ)−1.

Next he constructs the crossed module:

d :
C1
B(Γ, ∂ : G1 → G0)

B1
B(Γ, ∂ : G1 → G0)

→ Z2
B(Γ, ∂ : G1 → G0)

because the group homomorphism d vanishes on the subgroup B1
B(Γ, ∂ :

G1 → G0) ⊆ C1
B(Γ, ∂ : G1 → G0) of 1-coboundaries. Therefore, the group

homomorphism d factors through the new homomorphism d, by abuse of no-

tation. The action of (p, ε) ∈ Z2
B(Γ, ∂ : G1 → G0) on [g, θ] ∈ C1

B(Γ,∂:G1→G0)

B1
B(Γ,∂:G1→G0)

is given by:
(p,ε)[g, θ] = [g, θ̃]
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where θ̃(σ) = g{p(σ), σg−1}−1 {g, p(σ)} p(σ)θ(σ).
It is easy to observe that the kernel of d coincides with H1

B(Γ, ∂ : G1 →
G0). Noohi shows that the cokernel of d coincides with H2

B(Γ, ∂ : G1 → G0).
He does so by comparing the action of C1

B(Γ, ∂ : G1 → G0) on Z2
B(Γ, ∂ :

G1 → G0), introduced in 5.1.2, with the multiplication action of C1
B(Γ, ∂ :

G1 → G0) on Z2
B(Γ, ∂ : G1 → G0) via d. More precisely, we have the

following Lemma.

Lemma 5.1.2. [41] Let (g, θ) be in C1
B(Γ, ∂ : G1 → G0) and (p, ε) in

Z2
B(Γ, ∂ : G1 → G0). Let (g,θ)(p, ε) be the action of C1

B(Γ, ∂ : G1 → G0) on
Z2
B(Γ, ∂ : G1 → G0) introduced in the section 5.1.2. Then,

(g,θ)(p, ε) = d(g−1, θ̂) (p, ε)

where θ̂ : Γ→ G1 is de�ned by θ̂(σ) = g−1{p(σ), σg}−1 g−1
θ(σ)−1.

Proof.
d(g−1, θ̂) (p, ε) = (p̂, ε̂) (p, ε) = (p, ε)

p̂(σ) = ∂θ̂(σ)−1 g−1 σg = ∂(g
−1{p(σ), σg}−1 g−1

θ(σ)−1)−1 g−1 σg =

= g−1 ∂ θ(σ) p(σ) σg p(σ)−1 σg−1 g g−1 σg

= g−1 ∂ θ(σ) p(σ) σg p(σ)−1

ε̂(σ, τ) = θ̂(σ)−1 g−1 σg( σ θ̂(τ)−1) θ̂(σ τ)

p(σ) = p̂(σ) p(σ) = g−1 ∂ θ(σ) p(σ) σg

ε(σ, τ) = p̂(σ){p(σ), σp̂(τ)} ε̂(σ, τ) p̂(σ τ)ε(σ, τ) =

= ∂θ̂(σ)−1 g−1 σg{p(σ), σ∂θ̂(τ)−1 σ g−1 σ τg} θ̂(σ)−1 g−1 σg( σ θ̂(τ)−1)

θ̂(σ τ) ∂θ̂(σ τ)−1 g−1 σ τgε(σ, τ) =

= θ̂(σ)−1 g−1 σg[ p(σ)( σ θ̂(τ)−1) {p(σ), σ g−1 σ τg} σ θ̂(τ)] θ̂(σ) θ̂(σ)−1

g−1 σg( σ θ̂(τ)−1) θ̂(σ τ) θ̂(σ τ)−1 g−1 σ τgε(σ, τ) θ̂(σ τ) =

= θ̂(σ)−1 g−1 σg[ p(σ)( σ θ̂(τ)−1) {p(σ), σ g−1 σ τg}] g−1 σ τgε(σ, τ)

θ̂(σ τ) =

= g−1
θ(σ) g

−1{p(σ), σg} g−1 σg[ p(σ)( σ( g
−1
θ(τ) g

−1{p(τ), τg}))
{p(σ), σ g−1 σ τg}] g−1 σ τgε(σ, τ) g

−1{p(σ τ), σ τg}−1

g−1
θ(σ τ)−1 =

= g−1
θ(σ) g

−1{p(σ), σg} ∂( g
−1{p(σ), σg}−1) g−1 p(σ)[ σθ(τ){ σp(τ),

σ τg}] g−1 σg{p(σ), σ g−1 σ τg} g−1 σ τgε(σ, τ)
g−1{∂ ε(σ, τ)−1 p(σ) σp(τ), σ τg}−1 g−1

θ(σ τ)−1 =

= g−1
θ(σ) g

−1 p(σ)( σθ(τ)) g
−1 p(σ){ σp(τ), σ τg} g−1{p(σ), σg}

g−1 σg{p(σ), σ g−1 σ τg} g−1 σ τgε(σ, τ) g
−1

[
σ τgε(σ, τ)−1
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{p(σ) σp(τ), σ τg}−1 ε(σ, τ)] g
−1
θ(σ τ)−1 =

= g−1
θ(σ) g

−1 p(σ)( σθ(τ)) g
−1 p(σ){ σp(τ), σ τg} g−1{p(σ), σ τg}

g−1 σ τgε(σ, τ) g
−1 σ τgε(σ, τ)−1 g−1{p(σ) σp(τ), σ τg}−1 g−1

ε(σ, τ)
g−1

θ(σ τ)−1 =

= g−1
[θ(σ) p(σ)( σθ(τ)) {p(σ)σp(τ), σ τg} {p(σ) σp(τ), σ τg}−1

ε(σ, τ) θ(σ τ)−1] =

= g−1
[θ(σ) p(σ)( σθ(τ)) ε(σ, τ) θ(σ τ)−1].

�

Corollary 5.1.2.1. [41] When ∂ : G1 → G0 has a Γ-equivariant braiding,
the second cohomology set H2

B(Γ, ∂ : G1 → G0) inherits a natural group
structure, H1

B(Γ, ∂ : G1 → G0) is abelian, and there is a natural action of
H2
B(Γ, ∂ : G1 → G0) on H1

B(Γ, ∂ : G1 → G0).

In the case where the braiding is symmetric, we can do even better.

Lemma 5.1.3. [41] Suppose that the braiding on ∂ : G1 → G0 is symmetric.

Then, the crossed-module d :
C1
B(Γ,∂:G1→G0)

B1
B(Γ,∂:G1→G0)

→ Z2
B(Γ, ∂ : G1 → G0) is

braided and symmetric. The braiding is given by

{(p1, ε1), (p2, ε2)} = [1, {p1, p2}]

where {p1, p2} : Γ0 → G1 is the pointwise bracket of the maps p1, p2 : Γ0 →
G0 .

Corollary 5.1.3.1. [41] When the braiding on ∂ : G1 → G0 is symmetric,
the structure on H2

B(Γ, ∂ : G1 → G0) is abelian.

5.2 Cohomology with coe�cients in categorical
crossed modules

Categorical groups are regarded as 2-dimensional sorts of groups. From this
point of view, the cohomology for categorical groups with coe�cients in
categorical crossed modules [14] can be considered a generalization of the
Lue cohomology, with coe�cients in crossed modules [35].

We are going to recall the Lue cohomology and we brie�y introduce the
one with coe�cients in categorical crossed modules.

Let G1 be a G0-group, Der(G0, G1) is the set of all derivations from G0

to G1. This is a pointed set with as base point the function 1G1 : G0 → G1

where 1G1(g) = 1G1 for all g in G0.
If we consider a crossed module ∂ : G1 → G0, Der(G0, G1) becomes a

monoid, with the Whitehead product. Then we can take the group Der ∗(G0,
G1) of the units of Der(G0, G1).
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There is a homomorphism γ of groups

G1
γ //Der ∗(G0, G1) (5.1)

sending an element α in G1 to the associated inner derivation. The group
homomorphism γ : G1 → Der ∗(G0, G1) is a crossed module with the action
of Der ∗(G0, G1) on G1 given by:

ηα = η(∂(α))α.

So Lue, in [35], de�nes a cohomology in dimension 0 and 1 as follows:

H0
L(G0, G1) = ker(γ);

H1
L(G0, G1) = coker(γ).

Now we want to give an idea of the construction of a low-dimensional
cohomology of a categorical group Γ with coe�cients in a categorical Γ-
crossed module (see [14] for details).

Let G be a Γ-categorical group, in [14], the authors de�ne a pointed
groupoid Der(Γ,G) of derivations of categorical groups from Γ to G.

They show that starting with a categorical Γ-crossed module (G,T, ν, χ),
the groupoid Der(Γ,G) becomes a monoidal category. Then they introduce
a Whitehead categorical group of derivations Der ∗(Γ,G). This is the Picard
categorical group of the monoidal category Der(Γ,G), that is the subcat-
egory of Der(Γ,G) given by invertible objects and isomorphisms between
them.

There is a homomorphism of categorical groups

G
T //Der ∗(Γ,G)

given by inner derivations. There are natural isomorphisms ν and χ such
that (G,T, ν, χ) is a categorical Der ∗(Γ,G)-crossed module.

So they de�ne a cohomology in dimension 0 and 1 as follows:

H0(Γ,G) = ker(T : G→ Der ∗(Γ,G))

H1(Γ,G) =
Der ∗(Γ,G)

< G,T >

where the �rst one is the kernel (see [48]) of the categorical group homomor-
phism T while the second one is the quotient categorical group (see [14])
for the categorical crossed module (G,T, ν, χ).

5.3 Cohomology with coe�cients in braided crossed
modules

Our work arises from the observation that the Noohi cohomology, of a group
Γ with coe�cients in a Γ-equivariant braided crossed module ∂ : G1 → G0,
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falls within the setting of the cohomology with coe�cients in categorical
crossed modules.
We have already observed (see the example (c)2. of section 3.4) that a
Γ-equivariant braided crossed module can be seen as a special semistrict cat-
egorical Γ[0]-crossed module, where Γ[0] is the discrete category associated
with Γ. Thanks to this remark, we notice that

∂ : G1 → Z1
B(Γ, ∂ : G1 → G0)

de�ned in 5.1.3 is a model for the strict categorical group H0(Γ[0],G(∂)),
where G(∂) is the strict categorical group associated with ∂ : G1 → G0,
and

d :
C1
B(Γ, ∂ : G1 → G0)

B1
B(Γ, ∂ : G1 → G0)

→ Z2
B(Γ, ∂ : G1 → G0)

de�ned in 5.1.3 is a model for the strict categorical group H1(Γ[0],G(∂)).

In this section, we want to revisit the cohomology with coe�cients in
categorical crossed modules for another particular case. We have just seen
if ∂ : G1 → G0 is a braided crossed module, endowed with an action by a
crossed module ∂

′
: Γ1 → Γ0 and the braiding is equivariant respect this

action, we have an example of semistrict G(∂ ′)-categorical crossed module
(see the example (c)1. section 3.4). We use Γ to denote G(∂ ′) and G for
G(∂).

In this case (see [27]), Der(Γ,G) is a categorical group, so Der(Γ,G) =
Der∗(Γ,G) . The associativity a, left unit l and right unit r of the monoidal
structure of Der (Γ,G) are de�ned by using the canonical isomorphisms of
Γ, G and the trivial morphism 1 : Γ→ G (see [14]). In this case, they are
all identity maps. Furthermore, for any object in Der(Γ,G) exists an strict
inverse (so that η = ε = identity). Thus Der(Γ,G) is a strict categorical
group.

We are going to describe the objects and arrows of Der(Γ,G).

Lemma 5.3.1. A derivation from Γ into G is uniquely speci�ed by a triple
of functions p : Γ0 → G0, f : Γ1oΓ0 → G1 and ε : Γ0×Γ0 → G1 satisfying

p(∂
′
(β)σ) = ∂f(β, σ) p(σ); (5.2)

f(β1 β2, σ) = f(β1, ∂
′
(β2)σ) f(β2, σ); (5.3)

f(β, σ) p(σ)h(β, σp(∂ ′(β ′)σ ′)) p(σ)( σf(β ′, σ ′)) ε(σ, σ ′) =

= ε(∂ ′(β)σ, ∂ ′(β ′)σ ′) f(β σβ ′, σ σ ′); (5.4)

p(σ) σp(τ) = ∂(ε(σ, τ)) p(σ τ); (5.5)
p(σ)( σε(τ, υ)) ε(σ, τ υ) = ε(σ, τ) ε(σ τ, υ). (5.6)

Proof.
An object in Der(Γ,G) is a functor D : Γ → G together with a family
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of natural isomorphisms ϕ = ϕσ,τ : D(σ τ) → D(σ) σD(τ), σ, τ ∈ Ob(Γ),
verifying a coherence condition with respect to the canonical isomorphisms
of the action. The functor D : Γ→ G is de�ned on objects

D0 : Γ0 −→ G0

σ −→ p(σ)

by a map p : Γ0 → G0 and on arrows

D1 : Γ1 o Γ0 −→ G1 oG0

(β, σ) −→ (f(β, σ), f0(β, σ))

by a pair of functions f : Γ1 o Γ0 → G1 and f0 : Γ1 o Γ0 → G0.
Because D : Γ→ G is a functor, the following diagrams have to commute:

Γ1 o Γ0

s

��

D1 //G1 oG0

s

��

Γ1 o Γ0

t
��

D1 //G1 oG0

t
��

Γ0
D0

//G0 Γ0
D0

//G0

• D0(s(β, σ)) = s(D1(β, σ)) ⇒ p(σ) = f0(β, σ);

• D0(t(β, σ)) = t(D1(β, σ)) ⇒ p(∂ ′(β)σ) = ∂ f(β, σ) f0(β, σ) ⇒
p(∂ ′(β)σ) = ∂ f(β, σ) p(σ).

Furthermore, the following conditions of functoriality have to be satis�ed:

•

D1((β1, ∂
′(β2)σ) ◦ (β2, σ)) = D1(β1, ∂

′(β2)σ) ◦D1(β2, σ) ⇒
D1(β1 β2, σ) = (f(β1, ∂

′(β2)σ), p(∂ ′(β2)σ)) ◦ (f(β2, σ), p(σ)) ⇒
(f(β1 β2, σ), p(σ)) = (f(β1, ∂

′(β2)σ) f(β2, σ), p(σ)) ⇒
f(β1 β2, σ) = f(β1, ∂

′(β2)σ) f(β2, σ); (5.7)

• ∀σ ∈ Γ0

D1(i(σ)) = i(D0(σ)) ⇒ D1(1, σ) = (1, D0(σ)) ⇒
(f(1, σ), p(σ)) = (1, p(σ)) ⇒ f(1, σ) = 1.

The last request is equivalent to the commutativity of the following diagram:

Γ1 o Γ0
D1 //G1 oG0

Γ0

i

OO

D0

//G0.

i

OO

We can observe that the relation f(1, σ) = 1 is a consequence of the identity
(5.7).
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A natural isomorphism ϕ is de�ned by the map p and a new function
ε : Γ0 × Γ0 → G1

D0(σ τ)
ϕσ,τ //D0(σ) σD0(τ)

p(σ τ)
(ε(σ,τ),p(σ τ)) //p(σ) σp(τ)

and the codomain of this arrow is de�ned by the following condition:

• ∂ ε(σ, τ) p(σ τ) = p(σ) σp(τ).

Let σ
(β, σ) //∂ ′(β)σ and σ ′

(β ′, σ ′)//∂ ′(β ′)σ ′ be two arrows of Γ, the nat-
uralness of ϕ is equivalent to requiring the commutativity of the following
diagram:

p(σ σ ′)

(f(β σβ ′, σ σ ′), p(σ σ ′))

��

(ε(σ, σ ′), p(σ σ ′)) //
p(σ) σp(σ ′)

(f(β, σ) p(σ)h(β, σp(∂ ′(β ′)σ ′)) p(σ)( σf(β ′, σ ′)), p(σ) σp(σ ′))

��
p(∂ ′(β)σ ∂ ′(β ′)σ ′)

(ε(∂ ′(β)σ, ∂ ′(β ′)σ ′), p(∂ ′(β)σ ∂ ′(β ′)σ ′))
//
p(∂ ′(β)σ) ∂

′(β) σp(∂ ′(β ′)σ ′),

therefore

• f(β, σ) p(σ)h(β, σp(∂ ′(β ′)σ ′)) p(σ)( σf(β ′, σ ′)) ε(σ, σ ′) =
= ε(∂ ′(β)σ, ∂ ′(β ′)σ ′) f(β σβ ′, σ σ ′).

The coherence condition is equivalent to requiring the commutativity of
the following diagram:

p(σ τ υ)

(ε(σ τ,υ),p(σ τ υ))

��

(ε(σ,τ υ),p(σ τ υ)) //p(σ) σp(τ υ)

(p(σ)( σε(τ,υ)),p(σ) σp(τ υ))
��

p(σ τ) σ τp(υ)
(ε(σ,τ),p(σ τ) σ τp(υ))

//p(σ) σp(τ) σ τp(υ),

therefore

• p(σ)( σε(τ, υ)) ε(σ, τ υ) = ε(σ, τ) ε(σ τ, υ).

�

Proposition 5.3.1. An arrow in the categorical group Der(Γ,G) is uniquely
speci�ed by a quadruple (θ, p1, f1, ε1) with (p1, f1, ε1) as in Lemma 5.3.1
and an arbitrary function θ : Γ0 → G1. The source of (θ, p1, f1, ε1) is the
derivation from Γ into G given by (p1, f1, ε1); the target of (θ, p1, f1, ε1)
is the derivation from Γ into G given by the triple of functions:

p2(σ) = ∂θ(σ) p1(σ);

f2(β, σ) = θ(∂ ′(β)σ) f1(β, σ) θ(σ)−1;

ε2(σ, τ) = θ(σ) p1(σ)( σθ(τ)) ε1(σ, τ) θ(σ τ)−1.
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Proof.
An arrow in Der(Γ,G) from (p1, f1, ε1) to (p2, f2, ε2) is a natural trans-
formation, that is a function (θ, ϕ) : Γ0 → G1 oG0 such that the square

p1(σ)

(f1(β,σ),p1(σ))

��

(θ(σ),ϕ(σ)) // p2(σ)

(f2(β,σ),p2(σ))

��
p1(∂ ′(β)σ)

(θ(∂ ′(β)σ),ϕ(∂ ′(β)σ))
// p2(∂ ′(β)σ)

commutes in G. Therefore

ϕ = p1, (5.8)

p2(σ) = ∂θ(σ)ϕ(σ), (5.9)

f2(β, σ) θ(σ) = θ(∂ ′(β)σ) f1(β, σ). (5.10)

This natural transformation has to be compatible with ε1 and ε2, that is
the following square:

p1(σ τ)

(θ(σ τ),p1(σ τ))
��

(ε1(σ,τ),p1(σ τ)) // p1(σ) σp1(τ)

(θ(σ), p1(σ))⊗ σ(θ(τ), p1(τ)) =

= (θ(σ) p1(σ)( σθ(τ)), p1(σ) σp1(τ))��
p2(σ τ)

(ε2(σ,τ),p2(σ τ))
// p2(σ) σp2(τ)

has to commute. Therefore

θ(σ) p1(σ)( σθ(τ)) ε1(σ, τ) = ε2(σ, τ) θ(σ τ).

Thus (θ, p1, f1, ε1) determines (p2, f2, ε2), and it is simple to check that
if (p1, f1, ε1) ∈ Ob(Der(Γ,G)) and if (p2, f2, ε2) is de�ned as above, then
(p2, f2, ε2) ∈ Ob(Der(Γ,G)).

�

Der(Γ,G) is a strict categorical group and the tensor product on objects
(see Theorem 5.2 in [14]) is given by:

(p1, f1, ε1)(p2, f2, ε2) = (p, f, ε)

p(σ) = p1(σ) p2(σ) (5.11)

f(β, σ) = f1(β, σ) p1(σ)f2(β, σ) (5.12)

and ε is de�ned by the composition of the following sequence of arrows in
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G:
p1(σ τ) p2(σ τ)

(ε1(σ,τ),p1(σ τ))⊗(ε2(σ,τ),p2(σ τ))=(ε1(σ,τ) p1(σ τ)ε2(σ,τ),p1(σ τ) p2(σ τ))
��

p1(σ) σp1(τ) p2(σ) σp2(τ)

(1, p1(σ))⊗ ({p2(σ), σp1(τ)}, σp1(τ) p2(σ))⊗ (1, σp2(τ))

= ( p1(σ){p2(σ), σp1(τ)}, p1(σ) σp1(τ) p2(σ) σp2(τ))

��
p1(σ) p2(σ) σp1(τ) σp2(τ)

p1(σ) p2(σ) σ(p1(τ) p2(τ)).

Therefore, we have:

ε(σ, τ) = p1(σ){p2(σ), σp1(τ)} ε1(σ, τ) p1(σ τ)ε2(σ, τ). (5.13)

Because Der(Γ,G) is a strict categorical group the set of objects of Der(Γ,
G) is a group, thus this product is a group product.

Let

(p1, f1, ε1)
(θ1,p1,f1,ε1) // (p1, f1, ε1) and (p2, f2, ε2)

(θ2,p2,f2,ε2) // (p2, f2, ε2)

be two arrows in Der(Γ,G), where (pi, f i, εi) are determined by (θi, pi, fi, εi)
under the Proposition 5.3.1 for i = 1, 2, the tensor product of these two ar-
rows (see Theorem 5.2 in [14]) is given by:

p1(σ) p2(σ)

(θ1(σ),p1(σ))⊗(1,p2(σ))=(θ1(σ),p1(σ) p2(σ))
��

p1(σ) p2(σ)

(1,p1(σ))⊗(θ2(σ),p2(σ))=( p1(σ)θ2(σ),p1(σ) p2(σ))
��

p1(σ) p2(σ).

Therefore, we obtain:

(θ1, p1, f1, ε1)(θ2, p2, f2, ε2) = (θ, p, f, ε)

θ(σ) = p1(σ)θ2(σ) θ1(σ) = ∂θ1(σ) p1(σ)θ2(σ) θ1(σ) = θ1(σ) p1(σ)θ2(σ)

and (p, f, ε) = (p1, f1, ε1)(p2, f2, ε2), as in (5.11), (5.12) and (5.13).
Because Der(Γ,G) is a strict categorical group it corresponds to the

crossed module constructed as follows:

∂ : Kers → Ob(Der(Γ,G))
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with ∂ = t|Kers, where s and t are the source and target maps, respectively,
of the underlying groupoid Der(Γ,G). We denote with Der1(Γ,G) the set
of arrows in Der(Γ,G) and we recall the source map:

s : Der1(Γ,G) −→ Ob(Der(Γ,G))

(θ1, p1, f1, ε1) −→ (p1, f1, ε1)

while the target map:

t : Der1(Γ,G) −→ Ob(Der(Γ,G))

(θ1, p1, f1, ε1) −→ (p2, f2, ε2)

where (p2, f2, ε2) as in Proposition 5.3.1.
Thus we have

∂ : Kers → Ob(Der(Γ,G))

(θ, 1, 1, 1) → (p, f, ε)

where

• p(σ) = ∂ θ(σ);

• f(β, σ) = θ(∂
′
(β)σ) θ(σ)−1;

• ε(σ, τ) = θ(σ) σθ(τ) θ(σ τ)−1.

The product of two arrows (θ1, 1, 1, 1) and (θ2, 1, 1, 1) in Kers is (θ, 1, 1, 1)
where θ(σ) = θ1(σ) θ2(σ) and the product in Ob(Der(Γ,G)) as de�ned
above. The inverse of the element (p, f, ε) ∈ Ob(Der(Γ,G)) is the triple
(p∗, f∗, ε∗) where

p∗(σ) = p(σ)−1;

f∗(β, σ) = p(σ)−1
f(β, σ)−1;

ε∗(σ, τ) = {p(σ)−1, σp(τ)−1} p(σ τ)−1
ε(σ, τ)−1.

The action of the group Ob(Der(Γ,G)) on Kers is given by:

(p,f,ε)(θ, 1, 1, 1) = i(p, f, ε)(θ, 1, 1, 1)(i(p, f, ε))−1.

We recall that the map i for the groupoid Der(Γ,G) is de�ned by:

i : Ob(Der(Γ,G)) −→ Der1(Γ,G)

(p, f, ε) −→ (1, p, f, ε).
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Therefore, using the multiplication de�ned above on Der1(Γ,G) and the
inverse in Ob(Der(Γ,G)), we have:

(p,f,ε)(θ, 1, 1, 1) = (1, p, f, ε) (θ, 1, 1, 1) (1, p, f, ε)−1

= (1, p, f, ε) (θ, 1, 1, 1) (1, p∗, f∗, ε∗)

= (θ̂, p, f, ε) (1, p∗, f∗, ε∗)

= (
̂̂
θ, 1, 1, 1)

where θ̂(σ) = 1(σ) p(σ)θ(σ) = p(σ)θ(σ);̂̂
θ(σ) = θ̂(σ) p(σ)1(σ) = θ̂(σ) = p(σ)θ(σ).

Because Kers is isomorphic to App(Γ0, G1), it is clear the isomorphism
between ∂ and a homomorphism

∂ : App(Γ0, G1) → Ob(Der(Γ,G))

which, by abuse of notation, we have denoted again by ∂.

Remark 5.3.1. [27] If ∂ : G1 → G0 is a symmetric crossed module, then
∂ : App(Γ0, G1)→ Ob(Der(Γ,G)) is a symmetric crossed module where the
braiding

{−,−} : Ob(Der(Γ,G))×Ob(Der(Γ,G))→ App(Γ0, G1)

is determined by {(p1, f1, ε1), (p2, f2, ε2)}(σ) = {p1(σ), p2(σ)}. However, if
{−,−} is just a braiding in ∂ : G1 → G0 (but not a symmetry), then
∂ : App(Γ0, G1)→ Ob(Der(Γ,G)) is not a braided crossed module.

Now we are going to describe the structure of H0(Γ,G), presented in
[14]. H0(Γ,G) is well-known to be equivalent to the categorical group of
Γ-invariant objects GΓ (see [26]). The associativity a, left unit l and
right unit r of the monoidal structure of GΓ are given by the respective
constraints a, l and r of G and in this case they are all identity maps.
Furthermore, for any object in GΓ there exists a strict inverse. Thus GΓ

is a strict categorical group.

Lemma 5.3.2. A Γ-invariant object of G is uniquely speci�ed by a pair
(g, θ), with g ∈ G0 and a function θ : Γ0 → G1 satisfying

∂ θ(σ) = g σg−1 (5.14)

θ(σ τ) = θ(σ) σθ(τ) (5.15)

θ(σ) = θ(∂ ′(β)σ)h(β, σg) (5.16)
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Proof.
An object in GΓ (see [14]) is a pair consisting of an object g ∈ G0 and a
natural transformation, that is a function (θ, ϕ) : Γ0 → G1 oG0 such that
the square

σg

(h(β, σg), σg)

��

(θ(σ),ϕ(σ)) // g

(1,g)

∂ ′(β)σg
(θ(∂ ′(β)σ),ϕ(∂ ′(β)σ))

// g

commutes in G. Therefore we have:

ϕ(σ) = σg;

g = ∂ θ(σ)ϕ(σ) ⇒ g = ∂ θ(σ) σg;

θ(σ) = θ(∂ ′(β)σ)h(β, σg).

Furthermore, the following square has to commute:

σ τg
(θ(σ τ), σ τg) // g

σ( τg)
σ(θ(τ), τg)=( σθ(τ), σ( τg))

// σg,

(θ(σ), σg)

OO

therefore we obtain:
θ(σ τ) = θ(σ) σθ(τ).

�

Proposition 5.3.2. An arrow in the categorical group GΓ is uniquely spec-
i�ed by a triple (α, g1, θ1) with (g1, θ1) as in Lemma 5.3.2 and an element
α ∈ G1. The source of (α, g1, θ1) is the Γ-invariant object of G given by
(g1, θ1); the target of (α, g1, θ1) is the Γ-invariant object of G given by
(g2, θ2) where g2 = ∂(α) g1 and θ2(σ) = α θ1(σ) σα−1.

Proof.

An arrow in GΓ from (g1, θ1) to (g2, θ2) is an arrow g1
(α,g1) //g2 in G such

that the square

σg1

σ(α,g1)=( σα, σg1)
��

(θ1(σ), σg1) // g1

(α,g1)

��
σg2

(θ2(σ), σg2)
// g2
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commutes in G. Therefore we have:

g2 = ∂(α) g1;

α θ1(σ) = θ2(σ) σα.

Thus (α, g1, θ1) determines (g2, θ2), and it is simple to check that if (g1, θ1) ∈
Ob(GΓ) and if (g2, θ2) is de�ned as above, then (g2, θ2) ∈ Ob(GΓ).

�

GΓ is a strict categorical group and the tensor product on objects (see
[26]) is given by:

(g1, θ1) (g2, θ2) = (g1 g2, θ)

σg1

(θ1(σ), σg1)

��

σg2

(θ2(σ), σg2)

��

σg1
σg2

(θ1(σ)
σg1θ2(σ), σg1

σg2)
��

g1 g2 g1 g2

where

θ(σ) = θ1(σ)
σg1θ2(σ) = ∂ θ1(σ) σg1θ2(σ) θ1(σ) = g1

σg−1
1

σg1θ2(σ) θ1(σ) =

= g1θ2(σ) θ1(σ).

Because GΓ is a strict categorical group the set of objects of GΓ is a group,
thus this product is a group product.

Let

(g1, θ1)
(α1,g1,θ1) // (g1, θ1) and (g2, θ2)

(α2,g2,θ2) // (g2, θ2)

be two arrows in GΓ, where (gi, θi) are determined by (αi, gi, θi) under
the Proposition 5.3.2 for i = 1, 2, the tensor product of these two arrows is
given by:

(α1, g1, θ1) (α2, g2, θ2) = (α1
g1α2, g1 g2, θ)

where θ is de�ned as above.
Because GΓ is a strict categorical group it corresponds to the crossed

module constructed as follows:

∂ : Kers → Ob(GΓ)

with ∂ = t|Kers, where s and t are the source and target maps, respectively,

of the underlying groupoid GΓ. We denote with GΓ
1 the set of arrows in

GΓ and we recall the source map:

s : GΓ
1 −→ Ob(GΓ)

(α1, g1, θ1) −→ (g1, θ1)
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while the target map:

t : GΓ
1 −→ Ob(GΓ)

(α1, g1, θ1) −→ (g2, θ2)

where (g2, θ2) as in Proposition 5.3.2.
Thus we have

∂ : Kers → Ob(GΓ)

(α, 1, 1) → (∂(α), θα)

where θα(σ) = α σα−1. The product of two arrows (α1, 1, 1) and (α2, 1, 1)
in Kers is (α1 α2, 1, 1) and the product in Ob(GΓ) is de�ned as above.
The inverse of the element (g, θ) ∈ Ob(GΓ) is the pair (g−1, θ∗) where

θ∗(σ) = g−1
θ(σ)−1.

The action of the group Ob(GΓ) on Kers is given by:

(g,θ)(α, 1, 1) = i(g, θ)(α, 1, 1)(i(g, θ))−1.

We recall that the map i for the groupoid GΓ is given by:

i : Ob(GΓ) −→ GΓ
1

(g, θ) −→ (1, g, θ).

Therefore, using the multiplication de�ned above on GΓ
1 and the inverse in

Ob(GΓ), we have:

(g,θ)(α, 1, 1) = (1, g, θ) (α, 1, 1) (1, g, θ)−1 = (1, g, θ) (α, 1, 1) (1, g−1, θ∗) =

= ( gα, g, θ) (1, g−1, θ∗) = ( gα, 1, 1).

Because Kers is isomorphic to G1, it is clear the isomorphism between ∂
and a homomorphism

∂ : G1 → Ob(GΓ)

which, by abuse of notation, we have denoted again by ∂.
H0(Γ,G) is de�ned by the kernel (see [14]) as follows:

H0(Γ,G) = ker(T : G→ Der(Γ,G)).

In this case, the functor T : G → Der(Γ,G) is de�ned on objects and on
arrows by

T 0 : G0 −→ Ob(Der(Γ,G)) T 1 : G1 oG0 −→ Der1(Γ,G)
g −→ (pg, fg, 1) (α, g) −→ (θ, pg, fg, 1)
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respectively, where pg(σ) = g σg−1, fg(β, σ) = gh(β, σg−1) and θ(σ) =

α g σg−1
( σα−1).

There are natural isomorphisms ν and χ such that (G,T, ν, χ) is a cat-
egorical Der(Γ,G)-crossed module (see [14]).
In this case, we observe that the isomorphism χ is given by the composition
of the three morphisms:

T 0(g1)g2 g1 g1 g
−1
1 g2 g1

(1, g1)⊗ ({g2, g−1
1 }, g

−1
1 g2)⊗ (1, g1) =

= ( g1{g2, g−1
1 }, g1 g

−1
1 g2 g1) // g1 g2 g

−1
1 g1 g1 g2

therefore χg1,g2
= ( g1{g2, g

−1
1 }, g1 g

−1
1 g2 g1).

Thanks to this observation H0(Γ,G) can be equipped with a braiding (see
Proposition 2.7 in [14]) given by

g2 g1 g2 g1 T 0(g1)g2 g1

χg1,g2 // g1 g2

Then ∂ : G1 → Ob(GΓ) is also a braided crossed module with braiding
de�ned by

{(g1, θ1), (g2, θ2)} = g1{g2, g
−1
1 } = {g2, g1}−1. (5.17)

Moreover, we have that this braiding is equivariant respect an action of
∂ ′ : Γ1 → Γ0 (see the following Proposition).

Proposition 5.3.3. The crossed module ∂ : G1 → Ob(GΓ) is a braided
crossed module equivariant respect the action of ∂ ′ : Γ1 → Γ0 de�ned as
follows:

- the action of Γ0 on G1 is induced by the action of ∂ ′ : Γ1 → Γ0 on
∂ : G1 → G0 ;

- the action of Γ0 on Ob(GΓ) is de�ned by σ(g, θ) = (σg, θ), where θ(τ) =
σθ(σ−1 τ σ);

- the map h : Γ1 ×Ob(GΓ)→ G1 is de�ned by h(β, (g, θ)) = h(β, g) where
the function h is given by the action of ∂ ′ : Γ1 → Γ0 on ∂ : G1 → G0.

Proof.
First of all, we are going to show that the action of Γ0 on Ob(GΓ) is well
de�ned.

- (σg, θ) ∈ Ob(GΓ), in fact, we have:
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θ(τ τ) = σθ(σ−1 τ τ σ) = σθ(σ−1 τ σ σ−1 τ σ) =

= σθ(σ−1 τ σ) τ σθ(σ−1 τ σ) = θ(τ) τθ(τ);

∂θ(τ)−1 σg = ∂( σθ(σ−1 τ σ))−1 σg = σ∂θ(σ−1 τ σ)−1 σg =

= σ( σ
−1 τ σg g−1) σg = τ σg = τ (σg);

θ(τ) = σθ(σ−1τ σ) = σθ(∂ ′( σ
−1
β)σ−1 τ σ) σh( σ

−1
β, σ

−1τ σg) =

= σθ(σ−1 ∂ ′(β) τ σ)h(β, τ σg) = θ(∂ ′(β) τ)h(β, τ ( σg)).

- Γ0 acts on Ob(GΓ), in fact, we have:

σ1( σ2(g, θ)) = σ1( σ2g, θ) = ( σ1( σ2g), θ) = ( σ1 σ2g, θ);

θ(τ) = σ2θ(σ−1
2 τ σ2);

θ(τ) = σ1θ(σ−1
1 τ σ1) = σ1( σ2θ(σ−1

2 σ−1
1 τ σ1σ2)) =

= σ1 σ2θ(σ−1
2 σ−1

1 τ σ1σ2);
σ1 σ2(g, θ) = ( σ1 σ2g, θ̃);

θ̃(τ) = σ1 σ2θ(σ−1
2 σ−1

1 τ σ1 σ2) = θ(τ);
σ(g1, θ1) σ(g2, θ2) = ( σg1, θ1) ( σg2, θ2) = ( σg1

σg2,
σg1θ2 θ1);

σg1θ2 θ1(τ) =
σg1θ2(τ) θ1(τ) =

σg1( σθ2(σ−1 τ σ)) σθ1(σ−1 τ σ);
σ[(g1, θ1)(g2, θ2)] = σ(g1 g2,

g1θ2 θ1) = ( σ(g1 g2), θ̂);

θ̂(τ) = σ(g1θ2 θ1)(σ−1 τ σ) = σ(g1θ2(σ−1 τ σ) θ1(σ−1 τ σ)) =

=
σg1( σθ2(σ−1 τ σ)) σθ1(σ−1 τ σ) = (

σg1θ2 θ1)(τ).

Secondly, we are going to check the �ve conditions making the action of
∂ ′ : Γ1 → Γ0 on ∂ : G1 → Ob(GΓ) a good action (see section 1.3):

(i) h(β1 β2, (g, θ)) = h(β1 β2, g) = β1h(β2, g)h(β1, g) =

= β1h(β2, (g, θ))h(β1, (g, θ)).

(ii) h(β, (g1, θ1) (g2, θ2)) = h(β, (g1 g2,
g1θ2 θ1) = h(β, g1 g2) =

= h(β, g1) g1h(β, g2) = h(β, (g1, θ1)) (g1,θ1)h(β, (g2, θ2)).

(iv) ∂( σα) = (∂( σα), θ σα);

σ∂(α) = σ(∂(α), θα) = ( σ∂(α), θα) = (∂( σα), θα);

σ((g,θ)α) = σ(gα) =
σg(σα) = (σg,θ)(σα) =

σ(g,θ)(σα);

where θα(τ) = σθα(σ−1 τ σ) = σ(α σ−1 τ σα−1) = σα τ σα−1 = θ σα(τ).

(v) h(β, ∂(α)) = h(β, (∂(α), θα)) = h(β, ∂(α)) = βαα−1;

∂ h(β, (g, θ)) = ∂ h(β, g) = (∂ h(β, g), θh(β,g)) = ( ∂
′(β)g g−1, θh(β,g));

∂ ′(β)(g, θ) (g, θ)−1 = ( ∂
′(β)g, θ) (g−1, θ∗) = ( ∂

′(β)g g−1,
∂ ′(β)gθ∗ θ);
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where

(
∂ ′(β)gθ∗ θ)(σ) =

∂ ′(β)gθ∗(σ) θ(σ) =

=
∂ ′(β)g g−1

θ(σ)−1 ∂ ′(β)θ(∂ ′(β)−1 σ ∂ ′(β)) =

= ∂θ(∂ ′(β))−1
θ(σ)−1 ∂ ′(β)θ(∂ ′(β)−1 σ ∂ ′(β)) =

= θ(∂ ′(β))−1 θ(σ)−1 θ(∂ ′(β)) ∂
′(β)θ(∂ ′(β)−1) θ(σ ∂ ′(β)) =

= θ(∂ ′(β))−1 θ(σ)−1 θ(∂ ′(β)) θ(∂ ′(β))−1 θ(σ ∂ ′(β)) =

= θ(∂ ′(β))−1 θ(σ)−1 θ(σ ∂ ′(β)) = θ(∂ ′(β))−1 σθ( ∂ ′(β)) =

= h(β, g) σh(β, g)−1 = θh(β,g)(σ).

(vi) h( σβ, σ(g, θ)) = h( σβ, ( σg, θ)) = h( σβ, σg) = σh(β, g) =

= σh(β, (g, θ)).

Finally, we are going to prove that the braiding de�ned in (5.17) is equiv-

ariant respect the action of ∂ ′ : Γ1 → Γ0 on ∂ : G1 → Ob(GΓ):

σ{(g1, θ1), (g2, θ2)} = σ{g2, g1}−1 = { σg2,
σg1}−1 =

= {( σg1, θ1), ( σg2, θ2)} = { σ(g1, θ1), σ(g2, θ2)}.

�

In the symmetric case we have {(g1, θ1), (g2, θ2)} = {g2, g1}−1 = {g1, g2}
and ∂ : G1 → Ob(GΓ) becomes a symmetric crossed module.

Remark 5.3.2. Here we want to show (as discussed in section 4.1) that
Ob(GΓ) coincides with the pullback of the pair of maps:

App(Γ0, G1)

∂
��

G0
T 0 // Ob(Der(Γ,G))

indeed, we have:

G0×Ob(Der(Γ,G))App(Γ0, G1) = {(g, θ) ∈ G0 × App(Γ0, G1) : T 0(g) = ∂(θ)}
= {(g, θ) ∈ G0 × App(Γ0, G1) :

g σg−1 = ∂ θ(σ)
gh(β, σg−1) = θ(∂ ′(β)σ) θ(σ)−1

1 = θ(σ) σθ(τ) θ(σ τ)−1} =

= {(g, θ) ∈ G0 × App(Γ0, G1) :

∂ θ(σ) = g σg−1

θ(σ τ) = θ(σ) σθ(τ)

θ(∂ ′(β)σ) = gh(β, σg−1) θ(σ)}.
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The third condition becomes:

θ(∂ ′(β)σ) = ∂ θ(σ) σg h(β, σg−1) θ(σ) = θ(σ)h(β, σg)−1.

Then we have θ(σ) = θ(∂ ′(β)σ)h(β, σg).

Now we can consider H1(Γ,G) as de�ned in [14]. H1(Γ,G) is a quotient
categorical group de�ned in the following way:

H1(Γ,G) =
Der(Γ,G)

< G,T >
.

We have Ob(H1(Γ,G)) = Ob(Der(Γ,G)) and the tensor product on objects
in H1(Γ,G) is the same de�ned in Der(Γ,G). Then H1(Γ,G) is a strict
categorical group because Der(Γ,G) is a strict categorical group.

We are going to describe the morphisms in H1(Γ,G).

Proposition 5.3.4. A premorphism in H1(Γ,G) is uniquely speci�ed by
(g, θ, p2, f2, ε2) with (p2, f2, ε2) ∈ Ob(Der(Γ,G)), g ∈ G0 and a function
θ : Γ0 → G1. The target of (g, θ, p2, f2, ε2) is (p2, f2, ε2) and the source of
(g, θ, p2, f2, ε2) is given by (p1, f1, ε1) where

p1(σ) = ∂ θ(σ)−1 g σg−1 p2(σ); (5.18)

f1(β, σ) = θ(∂ ′(β)σ)−1 gh(β, σg−1) g
σg−1

f2(β, σ) θ(σ); (5.19)

ε1(σ, τ) = θ(σ)−1 g σg−1 p2(σ)( σθ(τ)−1) g
σg−1{p2(σ), σg σ τg−1}

g σ τg−1
ε2(σ, τ) θ(σ τ). (5.20)

Proof.
A premorphism in H1(Γ,G) from (p1, f1, ε1) to (p2, f2, ε2) is a pair of an
object g ∈ G0 and an arrow in Der(Γ,G) from (p1, f1, ε1) to (pg, fg, 1)(p2,
f2, ε2), that is (see Proposition 5.3.1) an arbitrary function θ : Γ0 → G1 such
that:

g σg−1 p2(σ) = ∂ θ(σ) p1(σ);
gh(β, σg−1) g

σg−1
f2(β, σ) = θ(∂ ′(β)σ) f1(β, σ) θ(σ)−1;

g σg−1{p2(σ), σg σ τg−1} g σ τg−1
ε2(σ, τ) =

= θ(σ) p1(σ)( σθ(τ)) ε1(σ, τ) θ(σ τ)−1.

From this we obtain the three relations introduced in the Proposition with
same easy computations.

�
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De�nition 5.3.1. A morphism in H1(Γ,G) from (p1, f1, ε1) to (p2, f2, ε2)
is a class of premorphisms [g, θ, p2, f2, ε2] where (g, θ, p2, f2, ε2) and (g ′, θ ′,
p2, f2, ε2) are equivalent if there is an arrow in G from g to g ′, that is an
α ∈ G1 such that g ′ = ∂(α) g and the diagram

p1(σ)
(θ(σ),p1(σ)) //

(θ ′(σ),p1(σ)) &&MMMMMMMMMMM
g σg−1 p2(σ)

(α g
σg−1

( σα−1),g σg−1 p2(σ))vvnnnnnnnnnnnn

g ′ σg ′−1 p2(σ)

commutes in G. Therefore we have:

θ ′(σ) = α g σg−1
( σα−1) θ(σ).

Given two morphisms

(p1, f1, ε1)
[g,θ,p2,f2,ε2] // (p2, f2, ε2)

[g ′,θ ′,p3,f3,ε3]// (p3, f3, ε3)

we de�ne their composition by (p1, f1, ε1)
[g g ′,θ,p3,f3,ε3]// (p3, f3, ε3) where θ

is given by:

p1(σ)
(θ(σ), p1(σ)) // g σg−1 p2(σ)

(1, g σg−1)⊗ (θ ′(σ), p2(σ)) =

= ( g
σg−1

θ ′(σ), g σg−1 p2(σ)) // g σg−1 g ′ σg ′−1 p3(σ)

(1, g)⊗ ({g ′ σg ′−1, σg−1}, σg−1 g ′ σg ′−1)⊗ (1, p3(σ)) =

= ( g{g ′ σg ′−1, σg−1}, g σg−1 g ′ σg ′−1 p3(σ)) // g g ′ σg ′−1 σg−1 p3(σ).

Therefore we obtain:

θ(σ) = g{g ′ σg ′−1, σg−1} g σg−1
θ ′(σ) θ(σ).

Given two morphisms

(p1, f1, ε1)
[g,θ,p1

′,f1
′,ε1 ′]// (p1

′, f1
′, ε1

′) (p2, f2, ε2)
[g ′,θ ′,p2

′,f2
′,ε2 ′]// (p2

′, f2
′, ε2

′)

their tensor product is given by:

[g (p1
′,f1

′,ε1 ′)g ′, θ, p, f, ε] = [g p1
′(1) g ′, θ, p, f, ε]

where (p, f, ε) = (p1
′, f1

′, ε1
′)(p2

′, f2
′, ε2

′) (see (5.11), (5.12), (5.13)). The
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function θ is given by the composition of the following three morphisms:

p1(σ)p2(σ)

(θ(σ), p1(σ))⊗ (θ ′(σ), p2(σ)) =

= (θ(σ) p1(σ)θ ′(σ), p1(σ) p2(σ))

��
g σg−1 p1

′(σ) g ′ σg ′−1 p2
′(σ)

(1, g σg−1)⊗ ν−1
((p1

′,f1 ′,ε1 ′),g ′)σ
⊗ (1, p2

′(σ))

��
g σg−1 p1

′(1) g ′ σg ′−1 σp1
′(1)−1 p1

′(σ) p2
′(σ)

(1, g)⊗ χ
p1
′(1) g ′ σg ′−1 σp1

′(1)−1, σg−1 ⊗ (1, p1
′(σ) p2

′(σ)) =

= (1, g)⊗ ({p1
′(1) g ′ σg ′−1 σp1

′(1)−1, σg−1}, σg−1 p1
′(1) g ′ σg ′−1 σp1

′(1)−1)⊗ (1, p1
′(σ) p2

′(σ)) =

= ( g{p1
′(1) g ′ σg ′−1 σp1

′(1)−1, σg−1}, g σg−1 p1
′(1) g ′ σg ′−1 σp1

′(1)−1 p1
′(σ) p2

′(σ))

��
g p1

′(1) g ′ σg ′−1 σp1
′(1)−1 σg−1 p1

′(σ) p2
′(σ)

where ν((p1
′,f1

′,ε1 ′),g ′)σ is one of the natural isomorphisms given in the struc-
ture of G as a categorical Der(Γ,G)-crossed module (see [14]) and it is given
by:

p1
′(1) g ′ σg ′−1 σp1

′(1)−1 p1
′(σ)

(1, p1
′(1) g ′)⊗ ({p1

′(σ), σg ′−1 σp1
′(1)−1}, σg ′−1 p1

′(1)−1 p1
′(σ))=

= ( p1
′(1) g ′{p1

′(σ), σg ′−1 σp1
′(1)−1}, p1

′(1) g ′ σg ′−1 p1
′(1)−1 p1

′(σ))

��
p1
′(1) g ′ p1

′(σ) σg ′−1 σp1
′(1)−1

(1, p1
′(1))⊗ ({g ′, p1

′(σ)}−1, g ′ p1
′(σ))⊗ (1, σg ′−1 σp1

′(1)−1)=

= ( p1
′(1){g ′, p1

′(σ)}−1, p1
′(1) g ′ p1

′(σ) σg ′−1 σp1
′(1)−1)

��
p1
′(1) p1

′(σ) g ′ σg ′−1 σp1
′(1)−1

(1, p1
′(1) p1

′(σ))⊗ ({g ′ σg ′−1, σp1
′(1)−1}−1, g ′ σg ′−1 σp1

′(1)−1)=

= ( p1
′(1) p1

′(σ){g ′ σg ′−1, σp1
′(1)−1}−1, p1

′(1) p1
′(σ) g ′ σg ′−1 σp1

′(1)−1)

��
p1
′(1) p1

′(σ) σp1
′(1)−1 g ′ σg ′−1

(1, p1
′(1) p1

′(σ))⊗ σ(ε1
′(1, 1) ε1

′(1, 1), p1
′(1)−1)⊗ (1, g ′ σg ′−1)=

= ( p1
′(1) p1

′(σ)[ σ(ε1
′(1, 1) ε1

′(1, 1))], p1
′(1) p1

′(σ) σp1
′(1)−1 g ′ σg ′−1)

��
p1
′(1) p1

′(σ) σp1
′(1) g ′ σg ′−1
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(1, p1
′(1))⊗ (ε1

′(σ, 1)−1, p1
′(σ) σp1

′(1))⊗ (1, g ′ σg ′−1)=

= ( p1
′(1)ε1

′(σ, 1)−1, p1
′(1) p1

′(σ) σp1
′(1) g ′ σg ′−1)

��
p1
′(1) p1

′(σ) g ′ σg ′−1

(ε1
′(1, σ)−1, p1

′(1) p1
′(σ))⊗ (1, g ′ σg ′−1)=

= (ε1
′(1, σ)−1, p1

′(1) p1
′(σ) g ′ σg ′−1)

��
p1
′(σ) g ′ σg ′−1.

Finally, we have:

θ(σ) = g{p1
′(1) g ′ σg ′−1 σp1

′(1)−1, σg−1}
g σg−1

[ p1
′(1) g ′{p1

′(σ), σg ′−1 σp1
′(1)−1}−1

p1
′(1){g ′, p1

′(σ)} p1
′(1) p1

′(σ){g ′ σg ′−1, σp1
′(1)−1}

p1
′(1) p1

′(σ)[ σ(ε1
′(1, 1) ε1

′(1, 1))]−1 p1
′(1)ε1

′(σ, 1) ε1
′(1, σ)] θ(σ)

p1(σ)θ ′(σ).

Because H1(Γ,G) is a strict categorical group it corresponds to the
crossed module constructed as follows:

d : Kert → Ob(H1(Γ,G)) = Ob(Der(Γ,G))

with d = s|Kert, where s and t are the source and target maps, respectively,

of the underlying groupoid H1(Γ,G). We denote with H1
1(Γ,G) the set of

arrows in H1(Γ,G) and we consider the target map:

t : H1
1(Γ,G) −→ Ob(Der(Γ,G))

(g, θ, p2, f2, ε2) −→ (p2, f2, ε2)

while the source map:

s : H1
1(Γ,G) −→ Ob(Der(Γ,G))

(g, θ, p2, f2, ε2) −→ (p1, f1, ε1)

where (p1, f1, ε1) as in Proposition 5.3.4.
Thus we have:

d : Kert → Ob(Der(Γ,G))

(g, θ, 1, 1, 1) → (p, f, ε)

where
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• p(σ) = ∂ θ(σ)−1 g σg−1;

• f(β, σ) = θ(∂ ′(β)σ)−1 gh(β, σg−1) θ(σ);

• ε(σ, τ) = θ(σ)−1 g σg−1
( σθ(τ)−1) θ(σ τ).

The product of two arrows [g, θ, 1, 1, 1] and [g ′, θ ′, 1, 1, 1] in Kert is [g g ′, θ̃,
1, 1, 1], where θ̃ is given by:

θ̃(σ) = g{g ′ σg ′−1 σ, σg−1} θ(σ)∂ θ(σ)−1 g σg−1
θ ′(σ) =

= g{g ′ σg ′−1 σ, σg−1} g σg−1
θ ′(σ) θ(σ). (5.21)

The action of the group Ob(Der(Γ,G)) on Kert is given by:

(p,f,ε)[g, θ, 1, 1, 1] = i(p, f, ε) [g, θ, 1, 1, 1] i(p, f, ε)−1.

We recall that the map i for the groupoid H1(Γ,G) is de�ned by:

i : Ob(Der(Γ,G)) −→ H1
1(Γ,G)

(p, f, ε) −→ (1, 1, p, f, ε)

Therefore, using the multiplication de�ned above on H1
1(Γ,G) and the in-

verse in Ob(Der(Γ,G)), we have:

(p,f,ε)[g, θ, 1, 1, 1] = [1, 1, p, f, ε] [g, θ, 1, 1, 1] [1, 1, p, f, ε]−1 =

= [1, 1, p, f, ε] [g, θ, 1, 1, 1] [1, 1, p∗, f∗, ε∗] =

= [p(1) g, θ̂, p, f, ε] [1, 1, p∗, f∗, ε∗]

where

θ̂(σ) = p(1) g{p(σ),σ g−1 σp(1)−1}−1 p(1){g, p(σ)} p(1)p(σ){g σg−1, σp(1)−1}
p(1)p(σ)[σε(1, 1) σε(1, 1)]−1 p(1)ε(σ, 1) ε(1, σ) p(σ)θ(σ).

(p, f, ε) ∈ Ob(Der(Γ,G)) then p(1) = ∂ε(1, 1) and we are going to prove
that

[p(1) g, θ̂, p, f, ε] ∼ [g, θ̃, p, f, ε]

where θ̃(σ) = g{p(σ), σg−1}−1 {g, p(σ)} p(σ)θ(σ).

θ̂(σ) = ε(1, 1) g{p(σ),σ g−1 σ∂ε(1, 1)−1}−1{g, p(σ)}
p(σ){g σg−1, σ∂ε(1, 1)−1} p(σ)[σε(1, 1) σε(1, 1)]−1 ε(σ, 1) ε(1, 1)−1

ε(1, σ) p(σ)θ(σ) =

= ε(1, 1) g
σg−1{p(σ),σ ∂ε(1, 1)−1}−1 g{p(σ),σ g−1}−1{g, p(σ)}

p(σ) g σg−1
(σε(1, 1)−1) p(σ)(σε(1, 1))p(σ)(σε(1, 1)−1) p(σ)(σε(1, 1)−1)

ε(σ, 1) p(σ)θ(σ) =
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= ε(1, 1) g
σg−1

(σε(1, 1)−1) g
σg−1p(σ)(σε(1, 1)) g{p(σ),σ g−1}−1

{g, p(σ)} p(σ) g σg−1
(σε(1, 1)−1) p(σ)θ(σ) =

= ε(1, 1) g
σg−1

(σε(1, 1)−1) g{p(σ),σ g−1}−1{g, p(σ)}
p(σ) g σg−1

(σε(1, 1)) p(σ) g σg−1
(σε(1, 1)−1) p(σ)θ(σ) =

= ε(1, 1) g
σg−1

(σε(1, 1)−1) g{p(σ),σ g−1}−1{g, p(σ)} p(σ)θ(σ).

In the last equalities, we have used the following relations:

1. since (p, f, ε) ∈ Ob(Der(Γ,G)) (in particular (p, ε) ∈ Z2
B(Γ0, ∂ :

G1 → G0)) then:

p(σ)( σε(1, 1)) = ε(σ, 1);

ε(1, σ) = ε(1, 1);

2. since ∂ : G1 → G0 is a braided crossed module we have:

g σg−1 p(σ) = ∂[ g{p(σ), σg−1}−1] g p(σ) σg−1

= ∂[ g{p(σ), σg−1}−1 {g, p(σ)}] p(σ) g σg−1.

Thus we obtain:

(p,f,ε)[g, θ, 1, 1, 1] = [g, θ̃, p, f, ε] [1, 1, p∗, f∗, ε∗] =

= [g p(1), θ, 1, 1, 1]

where g p(1) = g ∂ε(1, 1) = ∂( gε(1, 1)) g and

θ(σ) = g{p(1) σp(1)−1, σg−1} g σg−1
[ p(1){p(σ), σp(1)−1}−1 p(1) p(σ)[σε(1, 1)

σε(1, 1)]−1 p(1)ε(σ, 1) ε(1, σ)] θ̃(σ) =

= g{∂[ε(1, 1) σε(1, 1)−1], σg−1} g σg−1
[ ε(1, 1) {p(σ), σ∂ε(1, 1)−1}−1

p(σ)(σε(1, 1)−1) p(σ)(σε(1, 1)−1) ε(σ, 1) ε(1, 1)−1 ε(1, σ)]
g{p(σ), σg−1}−1 {g, p(σ)} p(σ)θ(σ) =

= g(ε(1, 1) σε(1, 1)−1) g
σg−1

(σε(1, 1) ε(1, 1)−1) g
σg−1

(ε(1, 1)
σε(1, 1)−1) g

σg−1
[p(σ)(σε(1, 1)) p(σ)(σε(1, 1)−1)] g{p(σ), σg−1}−1

{g, p(σ)} p(σ)θ(σ) =

= g(ε(1, 1) σε(1, 1)−1) g{p(σ), σg−1} {g, p(σ)} p(σ)θ(σ) =

= gε(1, 1) g
σg−1

( σ( gε(1, 1)−1) g{p(σ), σg−1}−1 {g, p(σ)} p(σ)θ(σ).

So we have:
(p,f,ε)[g, θ, 1, 1, 1] = [g, θ̃, 1, 1, 1].

We can prove that:

Kert is isomorphic to
C1
B(Γ0, ∂ : G1 → G0)

B1
B(Γ0, ∂ : G1 → G0)

.
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Thanks to the de�nition of the product in Kert (see (5.21)), we have:

[∂(α), θα, 1, 1, 1] [g, θ, 1, 1, 1] = [∂(α) g, θ̂, 1, 1, 1]

where:

θ̂(σ) = ∂(α){g σg−1, σ∂(α)−1} θα(σ) ∂ θα(σ)−1 ∂(α) σ∂(α)−1
θ(σ) =

= α g σg−1
(σα−1) σαα−1 α σα−1 θ(σ) =

= α g σg−1
(σα−1) θ(σ).

When restricted to Z1
B(Γ0, ∂ : G1 → G0) the product de�ned in (5.21)

coincides with the Borovoi product.
It is clear the isomorphism between d and a homomorphism

d :
C1
B(Γ0, ∂ : G1 → G0)

B1
B(Γ0, ∂ : G1 → G0)

→ Ob(Der(Γ,G))

which, by abuse of notation, we have denoted again by d.

Remark 5.3.3. [26] If ∂ : G1 → G0 is a symmetric crossed module, then

d :
C1
B(Γ0,∂:G1→G0)

B1
B(Γ0,∂:G1→G0)

→ Ob(Der(Γ,G)) is a symmetric crossed module where

the braiding

{−,−} : Ob(Der(Γ,G))×Ob(Der(Γ,G))→
C1
B(Γ0, ∂ : G1 → G0)

B1
B(Γ0, ∂ : G1 → G0)

is determined by {(p1, f1, ε1), (p2, f2, ε2)}(σ) = [1, {p1, p2}] where {p1, p2}(σ)
= {p1(σ), p2(σ)}. However, if {−,−} is just a braiding in ∂ : G1 → G0

(but not a symmetry), then d :
C1
B(Γ0,∂:G1→G0)

B1
B(Γ0,∂:G1→G0)

→ Ob(Der(Γ,G)) is not a

braided crossed module.

Remark 5.3.4. If Γ1 = 1 then ∂ : G1 → G0 is a Γ0-equivariant braided
crossed module (case considered by Noohi). In this case, Der(Γ0[0],G) is
associated with crossed module:

∂ : App(Γ0, G1) → Z2
B(Γ0, ∂ : G1 → G0)

θ → (p, ε)

• p(σ) = ∂ θ(σ);

• ε(σ, τ) = θ(σ) σθ(τ) θ(σ τ)−1.

The product in Z2
B(Γ0, ∂ : G1 → G0) is given by:

(p1, ε1)(p2, ε2) = (p, ε);

p(σ) = p1(σ) p2(σ);

ε(σ, τ) = p1(σ){p2(σ), σp1(τ)} ε1(σ, τ) p1(σ τ)ε2(σ, τ);
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and the product in App(Γ0, G1) is given by:

(θ1 · θ2)(σ) = θ1(σ) θ2(σ).

The action of the group Z2
B(Γ0, ∂ : G1 → G0) on the group App(Γ0, G1) is

de�ned by:
(p,ε)θ = θ̂ where θ̂(σ) = p(σ)θ(σ).

As we have already introduced at the beginning of this section, we can
easily observe that H0(Γ0[0],G), H1(Γ0[0],G) are associated respectively

with crossed modules ∂ : G1 → Z1
B, d : C1

B/B
1
B → Z2

B, presented in section
5.1.3.

Noohi proves in the Lemma 5.1.1 that H1
B is abelian. From the cat-

egorical point of view, H0(Γ0[0],G) can be equipped with a braiding and

consequently ∂ : G1 → Z1
B can be seen as a braided crossed module. Then

G1
∂ //Z1

B
1 //1 is a 2 crossed module (example (b) in section 2.3) and

1 : H1
B → 1 is a crossed module (consequence of Proposition 2.3.1) then

H1
B is abelian.

5.4 Cohomology in 2-crossed modules

In this section, we want to revisit the cohomology with coe�cients in cat-
egorical crossed modules for another particular case. We have already seen
that if

G1
∂ //G0

p0 //Γ0 (5.22)

is a 2-crossed module, then this is an example of special semistrict Γ0[0]-
categorical crossed modules (see example (b) of the section 3.4). We use Γ
to denote Γ0[0] and G for G(∂).

In this case, we consider the monoidal category Der(Γ,G). The associa-
tivity a, left unit l and right unit r of the monoidal structure of Der(Γ,G)
are de�ned by using the canonical isomorphisms of Γ, G and the strict func-
tor T (induced by the morphism p0) from Γ to G (see [14]) and they are
all identity maps. Thus Der(Γ,G) is a strict monoidal category.

We are going to describe the objects and arrows of Der(Γ,G).

Lemma 5.4.1. A derivation from Γ into G is uniquely speci�ed by a pair
of functions p : Γ0 → G0 and ε : Γ0 × Γ0 → G1 satisfying

p(σ) σp(τ) = ∂(ε(σ, τ)) p(σ τ) (5.23)
p(σ)( σε(τ, υ)) ε(σ, τ υ) = ε(σ, τ) ε(σ τ, υ) (5.24)

Thus Ob(Der(Γ,G)) = Z2
B(Γ0, ∂ : G1 → G0).
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Proof. As in the braided case.

�

Proposition 5.4.1. An arrow in the categorical group Der(Γ,G) is uniquely
speci�ed by a triple (θ, p1, ε1) with (p1, ε1) as in Lemma 5.4.1 and an ar-
bitrary function θ : Γ0 → G1. The source of (θ, p1, ε1) is the derivation
from Γ into G given by (p1, ε1); the target of (θ, p1, ε1) is the derivation
from Γ into G given by the pair of functions p2(σ) = ∂θ(σ) p1(σ) and
ε2(σ, τ) = θ(σ) p1(σ)( σθ(τ)) ε1(σ, τ) θ(σ τ)−1.

Proof. As in the braided case.

�

Der(Γ,G) is a strict monoidal category and the tensor product on objects
(see Theorem 5.2 in [14]) is given by:

(p1, ε1)(p2, ε2) = (p, ε);

p(σ) = p1(p0(p2(σ))σ) p2(σ); (5.25)

where ε is de�ned by the composition of the following sequence of arrows
in G:

p1(p0(p2(σ τ))σ τ) p2(σ τ)

p1(p0(p2(σ))σ p0(p2(τ)) τ) p2(σ τ)

(ε1(p0(p2(σ))σ, p0(p2(τ)) τ), p1(p0(p2(σ))σ p0(p2(τ)) τ))⊗ (ε2(σ, τ), p2(σ τ)) =

(ε1(p0(p2(σ))σ, p0(p2(τ)) τ) p1(p0(p2(σ)) σ p0(p2(τ)) τ)ε2(σ, τ), p1(p0(p2(σ))σ p0(p2(τ)) τ) p2(σ τ))

��
p1(p0(p2(σ))σ) p0(p2(σ))σp1(p0(p2(τ)) τ) p2(σ) σp2(τ)

p1(p0(p2(σ))σ) p0(p2(σ))[ σp1(p0(p2(τ)) τ)] p2(σ) σp2(τ)

(1, p1(p0(p2(σ))σ))⊗ ({p2(σ), σp1(p0(p2(τ)) τ)}, p0(p2(σ))[ σp1(p0(p2(τ)) τ)] p2(σ))⊗ (1, σp2(τ)) =

= ( p1(p0(p2(σ)) σ){p2(σ), σp1(p0(p2(τ)) τ)}, p1(p0(p2(σ))σ) p0(p2(σ))[ σp1(p0(p2(τ)) τ)] p2(σ) σp2(τ))

��
p1(p0(p2(σ))σ) p2(σ) σp1(p0(p2(τ)) τ) σp2(τ)

p1(p0(p2(σ))σ) p2(σ) σ(p1(p0(p2(τ)) τ) p2(τ)).
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Therefore, we have:

ε(σ, τ) = p1(p0(p2(σ))σ){p2(σ), σp1(p0(p2(τ)) τ)}
ε1(p0(p2(σ))σ, p0(p2(τ)) τ) p1(p0(p2(σ))σ p0(p2(τ)) τ)ε2(σ, τ).

(5.26)

Let

(p1, ε1)
(θ1,p1,ε1) // (p1, ε1) and (p2, ε2)

(θ2,p2,ε2) // (p2, ε2)

be two arrows in Der(Γ,G), where (pi, εi) are determined by (θi, pi, εi)
under the Proposition 5.4.1 for i = 1, 2, the tensor product of these two
arrows (de�ned in the Theorem 5.2 in [14]) is given by:

p1(p0(p2(σ))σ) p2(σ)

(θ1(p0(p2(σ))σ),p1(p0(p2(σ))σ))⊗(1,p2(σ))=(θ1(p0(p2(σ))σ),p1(p0(p2(σ))σ) p2(σ))
��

p1(p0(p2(σ))σ) p2(σ)

(1,p1(p0(p2(σ))σ))⊗(θ2(σ),p2(σ))=( p1(p0(p2(σ))σ)θ2(σ),p1(p0(p2(σ))σ) p2(σ))
��

p1(p0(p2(σ))σ) p2(σ).

Therefore, we obtain:

(θ1, p1, ε1)(θ2, p2, ε2) = (θ, p, ε);

where

θ(σ) = p1(p0(p2(σ))σ)θ2(σ) θ1(p0(p2(σ))σ) =

= ∂θ1(p0(p2(σ))σ) p1(p0(p2(σ))σ)θ2(σ) θ1(p0(p2(σ))σ) =

= θ1(p0(p2(σ))σ) p1(p0(p2(σ))σ)θ2(σ)

and (p, ε) = (p1, ε1)(p2, ε2) as in (5.25) and (5.26).
Now we consider the categorical group Der∗(Γ,G) and we observe (thanks

to the Theorem 4.7 in [25]) that a strict inverse exists for any object in
Der∗(Γ,G). In the Theorem 4.7, we have the following equivalent state-
ments:

a) (p, ε) ∈ Der∗(Γ,G);

b) σp : Γ0 → Γ0 ∈ Aut(Γ0).

In the proof b) ⇒ a), we observe that the inverse of (p, ε) is strict. In fact:
let (p, ε) ∈ Der(Γ,G) such that σp is an automorphism (in this case σp
is given by σp(σ) = p0(p(σ))σ), an inverse (p, ε)∗ = (p∗, ε∗) for (p, ε) is
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obtained as follows. p∗(σ) = (p(σ−1
p (σ)))−1 and ε∗ is determined by the

composition of the following morphisms:

p∗(σ τ) = (p(σ−1
p (σ τ)))−1 = (p(σ−1

p (σ)σ−1
p (τ)))−1

( (p(σ−1
p (σ)σ−1

p (τ)))−1
ε(σ−1

p (σ),σ−1
p (τ))−1,(p(σ−1

p (σ)σ−1
p (τ)))−1)

��

[p(σ−1
p (σ)) σ

−1
p (σ)p(σ−1

p (τ))]−1

( p(σ
−1
p (σ))−1 p̄0(p(σ−1

p (σ)))( σ
−1
p (σ)p(σ−1

p (τ)))−1{p(σ−1
p (σ)), σ

−1
p (σ)p(σ−1

p (τ))},
[p(σ−1

p (σ)) σ
−1
p (σ)p(σ−1

p (τ))]−1)
��

[ p0(p(σ−1
p (σ)))( σ

−1
p (σ)p(σ−1

p (τ))) p(σ−1
p (σ))]−1

[ σp(σ−1
p (σ))p(σ−1

p (τ)) p(σ−1
p (σ))]−1

[ σp(σ−1
p (τ)) p(σ−1

p (σ))]−1

p(σ−1
p (σ))−1 σp(σ−1

p (τ))−1

therefore

ε∗(σ, τ) = p(σ−1
p (σ))−1 p̄0(p(σ−1

p (σ)))
(
σ−1
p (σ)

p(σ−1
p (τ)))−1

{p(σ−1p (σ)), σ
−1
p (σ)p(σ−1p (τ))}

(p(σ−1
p (σ)σ−1

p (τ)))−1

ε(σ−1p (σ), σ−1p (τ))−1.

And we have:

(p, ε)∗ (p, ε) = (p∗, ε∗) (p, ε) = (p̂, ε̂);

p̂(σ) = p∗(σp(σ)) p(σ) = (p(σ−1
p ◦ σp(σ)))−1 p(σ) = (p(σ))−1 p(σ) = 1;

ε̂(σ, τ) = p∗(σp(σ)){p(σ), σp∗(σp(τ))} ε∗(σp(σ), σp(τ))
p∗(σp(σ)σp(τ))ε(σ, τ) =

= p(σ)−1{p(σ), σp(τ)−1} p(σ)−1 p̄0(p(σ))σp(τ)−1{p(σ), σp(τ)}
p(σ τ)−1

ε(σ, τ)−1 p(σ τ)−1
ε(σ, τ) =

= p(σ)−1
[{p(σ), σp(τ)−1} p̄0(p(σ))σp(τ)−1{p(σ), σp(τ)}] =

= p(σ)−1
[{p(σ), σp(τ)−1 σp(τ)}] = p(σ)−1{p(σ), 1} = 1;

Thus Der∗(Γ,G) is a strict categorical group and it corresponds to the
crossed module constructed as follows:

∂ : Kers → Ob(Der∗(Γ,G))



CHAPTER 5. COHOMOLOGIES 82

with ∂ = t|Kers, where s and t are the source and target maps, respectively,
of the underlying groupoid Der∗(Γ,G). We denote with Der∗1(Γ,G) the set
of arrows in Der∗(Γ,G) and we recall the source map:

s : Der∗1(Γ,G) −→ Z2
B
∗
(Γ0, ∂ : G1 → G0)

(θ1, p1, ε1) −→ (p1, ε1)

where Z2
B
∗
(Γ0, ∂ : G1 → G0) is the group of invertible elements of the

monoid Z2
B(Γ0, ∂ : G1 → G0) under the product de�ned above. The target

map is given by:

t : Der∗1(Γ,G) −→ Z2
B
∗
(Γ0, ∂ : G1 → G0)

(θ1, p1, ε1) −→ (p2, ε2)

where (p2, ε2) as in Proposition 5.4.1.
Thus we have

∂ : Kers → Z2
B
∗
(Γ0, ∂ : G1 → G0)

(θ, 1, 1) → (p, ε)

where

• p(σ) = ∂ θ(σ);

• ε(σ, τ) = θ(σ) σθ(τ) θ(σ τ)−1.

The product of two arrows (θ1, 1, 1) and (θ2, 1, 1) in Kers is (θ, 1, 1) where
θ(σ) = θ1(σ) θ2(σ). The action of the group Z2

B
∗
(Γ0, ∂ : G1 → G0) on Kers

is given by:
(p,ε)(θ, 1, 1) = i(p, ε)(θ, 1, 1)(i(p, ε))−1.

We recall that the map i for the groupoid Der∗(Γ,G) is given by:

i : Z2
B
∗
(Γ0, ∂ : G1 → G0) −→ Der∗1(Γ,G)

(p, ε) −→ (1, p, ε).

Therefore, using the multiplication de�ned above on Der∗1(Γ,G), we have:

(p,ε)(θ, 1, 1) = (1, p, ε) (θ, 1, 1) (1, p, ε)−1

= (1, p, ε) (θ, 1, 1) (1, p∗, ε∗)

= (θ̂, p, ε) (1, p∗, ε∗)

= (
̂̂
θ, 1, 1)

where θ̂(σ) = p(σ)θ(σ)̂̂
θ(σ) = θ̂(p0(p∗(σ))σ) = p(p0(p∗(σ))σ)θ(p0(p∗(σ))σ) =

= p∗(σ)−1
θ(p0(p∗(σ))σ)
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and the pair (p∗, ε∗) is the strict inverse of (p, ε) .
Because Kers is isomorphic to App(Γ0, G1), it is clear the isomorphism
between ∂ and a homomorphism

∂ : App(Γ0, G1) → Z2
B
∗
(Γ0, ∂ : G1 → G0)

which, by abuse of notation, we have denoted again by ∂.

Now we are going to describe the structure of H0(Γ,G). H0(Γ,G) cor-
responds to the categorical group of Γ-invariant objects GΓ (see [26]). The
associativity a, left unit l and right unit r of the monoidal structure of
GΓ are given by the respective constraints a, l and r of G and they are
all identity maps. Furthermore for any object in GΓ there exists a strict
inverse. Thus GΓ is a strict categorical group.

Lemma 5.4.2. A Γ-invariant object of G is uniquely speci�ed by a pair
(g, θ), with g ∈ G0 and a function θ : Γ0 → G1 satisfying

∂ θ(σ) = g σg−1 (5.27)

θ(σ τ) = θ(σ) σθ(τ) (5.28)

Thus Ob(GΓ) = Z1
B(Γ0, ∂ : G1 → G0).

Proof. As in the braided case.

�

Proposition 5.4.2. An arrow in the categorical group GΓ is uniquely spec-
i�ed by a triple (α, g1, θ1) with (g1, θ1) as in Lemma 5.4.2 and an element
α ∈ G1. The source of (α, g1, θ1) is the Γ-invariant object of G given by
(g1, θ1); the target of (α, g1, θ1) is the Γ-invariant object of G given by
(g2, θ2) where g2 = ∂(α) g1 and θ2(σ) = α θ1(σ) σα−1.

Proof. As in the braided case.

�

GΓ is a strict categorical group and the tensor product on objects (see
[26]) is given by:

(g1, θ1) (g2, θ2) = (g1 g2, θ)

σg1

(θ1(σ), σg1)

��

σg2

(θ2(σ), σg2)

��

σg1
σg2

(θ1(σ)
σg1θ2(σ), σg1

σg2)
��

g1 g2 g1 g2

where

θ(σ) = θ1(σ)
σg1θ2(σ) = ∂ θ1(σ) σg1θ2(σ) θ1(σ) = g1

σg−1
1

σg1θ2(σ) θ1(σ) =

= g1θ2(σ) θ1(σ).
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Thus this product in Z1
B(Γ0, ∂ : G1 → G0) is the Borovoi product de�ned

on 1-cochains.
Let

(g1, θ1)
(α1,g1,θ1) // (g1, θ1) and (g2, θ2)

(α2,g2,θ2) // (g2, θ2)

be two arrows in GΓ, where (gi, θi) are determined by (αi, gi, θi) under
the Proposition 5.4.2 for i = 1, 2, the tensor product of these two arrows is
given by:

(α1, g1, θ1) (α2, g2, θ2) = (α1
g1α2, g1 g2, θ)

where θ is de�ned as above.
Because GΓ is a strict categorical group it corresponds to the following

crossed module:

∂ : G1 → Z1
B(Γ0, ∂ : G1 → G0)

α → (∂(α), θα)

where θα(σ) = α σα−1 and the action of Z1
B(Γ0, ∂ : G1 → G0) on G1 is

given by (g,θ)α = gα (the calculations are similar to the braided case).
H0(Γ,G) is de�ned by the kernel of T : G→ Der∗(Γ,G). The last one

is de�ned on objects and on arrows

T 0 : G0 −→ Z2
B
∗
(Γ0, ∂ : G1 → G0) T 1 : G1 oG0 −→ Der∗1(Γ,G)

g −→ (pg, 1) (α, g) −→ (θ, pg, 1)

respectively, where pg(σ) = g σg−1 and θ(σ) = α g σg−1
( σα−1).

There are natural isomorphisms ν and χ such that (G,T, ν, χ) is a cat-
egorical Der∗(Γ,G)-crossed module (see [14]).
In this case, we observe that the isomorphism χ is given by the composition
of the three morphisms:

T 0(g1)g2 g1 g1
p0(g2)g−1

1 g2 g1

(1, g1)⊗ ({g2, g−1
1 },

p0(g2)g−1
1 g2)⊗ (1, g1) =

= ( g1{g2, g−1
1 }, g1

p0(g2)g−1
1 g2 g1)// g1 g2 g

−1
1 g1 g1 g2

therefore χg1,g2
= ( g1{g2, g

−1
1 }, g1

p0(g2)g−1
1 g2 g1). Thanks to this observa-

tion H0(Γ,G) can be equipped with a braiding (Proposition 2.7 in [14])
given by:

g2 g1 g2 g1
(θ1(p0(g2)),g2 g1) // T 0(g1)g2 g1

χg1,g2 // g1 g2.

Then ∂ : G1 → Z1
B(Γ0, ∂ : G1 → G0) is also a braided crossed module with

a braiding de�ned by:

{(g1, θ1), (g2, θ2)} = g1{g2, g
−1
1 } θ1(p0(g2)) =

= ∂ θ1(p0(g2)) p0(g2)g1{g2, g
−1
1 } θ1(p0(g2)) =

= θ1(p0(g2)) {g2, g1}−1.
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Moreover we can de�ne a structure of 2-crossed module on ∂ : G1 →
Z1
B(Γ0, ∂ : G1 → G0).

Proposition 5.4.3. The complex of groups

G1
∂ //Z1

B(Γ0, ∂ : G1 → G0)
p0 //Γ0 (5.29)

together with:

- the action of Γ0 on G1 determined by the 2-crossed module structure of
(5.22);

- the action of Γ0 on Z1
B(Γ0, ∂ : G1 → G0) de�ned by σ(g, θ) = (σg, θ);

where θ(τ) = σθ(σ−1 τ σ);

- the Pei�er lifting {−,−} : Z1
B(Γ0, ∂ : G1 → G0)×Z1

B(Γ0, ∂ : G1 → G0)→
G1 given by {(g1, θ1), (g2, θ2)} = {g1, g2};

- the map p0 : Z1
B(Γ0, ∂ : G1 → G0) → Γ0, by abuse of notation, given by

p0(g, θ) = p0(g);

is a 2-crossed module.

Proof. The calculations to show that the action of Γ0 on Z1
B(Γ0, ∂ :

G1 → G0) is well de�ned, are similar to those used to prove that Γ0 acts
on Ob(GΓ) in the braided case (see Proposition 5.3.3).

G1
∂ //Z1

B(Γ0, ∂ : G1 → G0)
p0 //Γ0 is a normal complex of groups; in

fact, we have:

- p0(∂(α)) = p0(∂(α), θα) = p0(∂(α)) = 1;

- ∂ G1 = B1
B(Γ0, ∂ : G1 → G0) is a normal subgroup of Z1

B(Γ0, ∂ : G1 →
G0);

- p0(Z1
B(Γ0, ∂ : G1 → G0)) ≤ p0(G0) and the last one is a normal subgroup
of Γ0.

We have already seen that ∂ : G1 → Z1
B(Γ0, ∂ : G1 → G0) is a group

homomorphism and a crossed module. p0 : Z1
B(Γ0, ∂ : G1 → G0) → Γ0 is a

morphism of groups because p0 : G0 → Γ0 is.
Now we want to check the seven properties making (5.29) a 2-crossed

module.

(i) the maps ∂ and p0 are Γ0-equivariant:

∂( σα) = (∂( σα), θ σα) = ( σ∂(α), θ σα);

θ σα(τ) = σα τ σα−1;
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σ∂(α) = σ(∂(α), θα) = ( σ∂(α), θα);

θα(τ) = σθα(σ−1 τ σ) = σ(α σ−1 τ σα−1) = σα τ σα−1 =

= θ σα(τ);

p0( σ(g, θ)) = p0( σg) = σp0(g) = σp0(g, θ).

(ii)

∂{(g1, θ1), (g2, θ2)} = ∂{g1, g2} = (∂{g1, g2}, θ{g1,g2}) =

= (g1 g2 g
−1
1

p0(g1)g−1
2 , θ{g1,g2});

(g1, θ1) (g2, θ2) (g1, θ1)−1 p0(g1,θ1)(g2, θ2)−1 = (g1, θ1) (g2, θ2)

(g−1
1 , θ∗1) ( p0(g1)g−1

2 , θ
∗
2) = (g1 g2 g

−1
1

p0(g1)g−1
2 , θ̂) where

θ̂(σ) = g1 g2 g
−1
1 [ p0(g1)( g

−1
2 θ2(p0(g1)−1 σ p0(g1))−1)] g1 g2 g

−1
1 θ1(σ)−1

g1θ2(σ) θ1(σ).

Because (5.22) is a 2-crossed module, we can observe that

p0(g1)−1 σ p0(g1) = p0(g−1
1 ) p0( σg1)σ = p0(g−1

1
σg1)σ =

= p0(∂(θ∗1(σ)))σ = σ

thus θ̂(σ) becomes:

θ̂(σ) = g1 g2 g
−1
1 [ p0(g1)( g

−1
2 θ2(σ)−1)] g1 g2 g

−1
1 θ1(σ)−1 g1θ2(σ) θ1(σ) =

= g1 g2 g
−1
1

p0(g1)g−1
2 ( p0(g1)θ2(σ)−1) g1 g2 g

−1
1 θ1(σ)−1 g1θ2(σ)

θ1(σ) =

= ∂ {g1,g2}( p0(g1)θ2(σ)−1 p0(g1)g2θ1(σ)−1) g1θ2(σ) θ1(σ) =

= {g1, g2} p0(g1)θ2(σ)−1 p0(g1)g2θ1(σ)−1{g1, g2}−1 g1θ2(σ)

θ1(σ) =

= {g1, g2} {∂θ1(σ)−1 g1, ∂θ2(σ)−1 g2}−1 θ1(σ)−1 g1θ2(σ)−1

g1θ2(σ) θ1(σ) =

= {g1, g2}{ σg1,
σg2}−1 = {g1, g2} σ{g1, g2}−1 = θ{g1,g2}(σ)

(iii)

{∂(α1), ∂(α2)} = {(∂(α1), θα1), (∂(α2), θα2)} = {∂(α1), ∂(α2)} =

= α1 α2 α
−1
1 α−1

2 .

(iv)

{∂(α), (g, θ)} {(g, θ), ∂(α)} = {(∂(α), θα), (g, θ)} {(g, θ), (∂(α), θα)} =

= {∂(α), g} {g, ∂(α)} = α p0(g)α−1 = α p0(g,θ)α−1.
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(v)

{(g1, θ1), (g2, θ2) (g3, θ3)} = {(g1, θ1), (g2 g3,
g2θ3 θ2)} =

= {g1, g2 g3} = {g1, g2}
p0(g1)g2 {g1, g3} =

= {(g1, θ1), (g2, θ2)} p0(g1,θ1)(g2,θ2) {(g1, θ1), (g3, θ3)}.

(vi)

{(g1, θ1) (g2, θ2), (g3, θ3)} = {(g1 g2,
g1θ2 θ1), (g3, θ3)} =

= {g1 g2, g3} = g1{g2, g3} {g1,
p0(g2)g3} =

= (g1,θ1){(g2, θ2), (g3, θ3)} {(g1, θ1), p0(g2,θ2)(g3, θ3)}.

The previous relation holds because:

(g,θ)α := α {∂α−1, (g, θ)} = α {(∂α−1, θα−1), (g, θ)} =

= α {∂α−1, g} =: gα

(vii) σ{(g1, θ1), (g2, θ2)} = σ{g1, g2} = {σg1,
σ g2} = {σ(g1, θ1),σ (g2, θ2)}.

�

Remark 5.4.1. It is easy to observe (as discussed in section 4.1) that
Ob(GΓ) = Z1

B(Γ0, ∂ : G1 → G0) coincides with the pullback of the pair
of maps:

App(Γ0, G1)

∂
��

G0
T 0 // Z2

B
∗
(Γ0, ∂ : G1 → G0).

Now we are going to analyze H1(Γ,G), introduced in the generale case
in [14]. H1(Γ,G) is a quotient categorical group de�ned in the following
way:

H1(Γ,G) =
Der∗(Γ,G)

< G,T >
.

We have Ob(H1(Γ,G)) = Ob(Der∗(Γ,G)) = Z2
B
∗
(Γ0, ∂ : G1 → G0)

and the tensor product on objects in H1(Γ,G) is the same de�ned in
Der∗(Γ,G). Then H1(Γ,G) is a strict categorical group because Der∗(Γ,G)
is.

We are going to describe the morphisms in H1(Γ,G).

Proposition 5.4.4. A premorphism in H1(Γ,G) is uniquely speci�ed by
(g, θ, p2, ε2) with (p2, ε2) ∈ Ob(Der∗(Γ,G)), g ∈ G0 and a function θ :
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Γ0 → G1. The target of (g, θ, p2, ε2) is (p2, ε2) and the source of (g, θ, p2, ε2)
is given by (p1, ε1) where

p1(σ) = ∂ θ(σ)−1 g p0(p2(σ))σg−1 p2(σ) (5.30)

ε1(σ, τ) = θ(σ)−1 g p0(p2(σ))σg−1 p2(σ)( σθ(τ)−1)

g p0(p2(σ))σg−1{p2(σ), σg σ p0(p2(τ)) τg−1}
g p0(p2(σ))σ p0(p2(τ)) τg−1

ε2(σ, τ) θ(σ τ) (5.31)

Proof. As in the braided case.

�

De�nition 5.4.1. A morphism in H1(Γ,G) from (p1, ε1) to (p2, ε2) is
a class of premorphisms [g, θ, p2, ε2] where (g, θ, p2, ε2) and (g ′, θ ′, p2, ε2)
are equivalent if there is an arrow in G from g to g ′, that is an α ∈ G1

such that g ′ = ∂(α) g and the diagram

p1(σ)
(θ(σ),p1(σ)) //

(θ ′(σ),p1(σ))
PPPPP

((PPPPP

g p0(p2(σ))σg−1 p2(σ)

(α g
p0(p2(σ))σg−1

( p0(p2(σ))σα−1),g p0(p2(σ))σg−1 p2(σ))
jjjj

ttjjjj

g ′ p0(p2(σ))σg ′−1 p2(σ)

commutes in G. Therefore, we have:

θ ′(σ) = α g p0(p2(σ))σg−1
( p0(p2(σ))σα−1) θ(σ).

Given two morphisms (p1, ε1)
[g,θ,p2,ε2] // (p2, ε2)

[g ′,θ ′,p3,ε3] // (p3, ε3) ,
we de�ne their composition by:

(p1, ε1)
[g g ′,θ,p3,ε3] // (p3, ε3)

where θ is given by:

p1(σ)

(θ(σ), p1(σ))

��
g p0(p2(σ))σg−1 p2(σ)

(1, g p0(p2(σ)) σg−1)⊗ (θ ′(σ), p2(σ)) =

= ( g
p0(p2(σ)) σg−1

θ ′(σ), g p0(p2(σ)) σg−1 p2(σ))

��
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g p0(p2(σ))σg−1 g ′ p0(p3(σ))σg ′−1 p3(σ) =

= g p0(g ′ p0(p3(σ))σg ′−1 p3(σ))σg−1 g ′ p0(p3(σ))σg ′−1 p3(σ)

(1, g)⊗ ({g ′ p0(p3(σ)) σg ′−1, p0(p3(σ)) σg−1}, p0(g ′ p0(p3(σ)) σg ′−1 p3(σ)) σg−1 g ′ p0(p3(σ)) σg ′−1)

⊗(1, p3(σ)) = ( g{g ′ p0(p3(σ)) σg ′−1, p0(p3(σ)) σg−1}, g p0(p2(σ)) σg−1 g ′ p0(p3(σ)) σg ′−1 p3(σ))

��
g g ′ p0(p3(σ))σg ′−1 p0(p3(σ))σg−1 p3(σ).

Therefore, we obtain:

θ(σ) = g{g ′ p0(p3(σ))σg ′−1, p0(p3(σ))σg−1} g p0(p2(σ))σg−1
θ ′(σ) θ(σ).

Given two morphisms

(p1, ε1)
[g,θ,p1

′,ε1 ′] // (p1
′, ε1

′) and (p2, ε2)
[g ′,θ ′,p2

′,ε2 ′] // (p2
′, ε2

′)

their tensor product is given by:

[g (p1
′,ε1 ′)g ′, θ, p, ε] = [g p1

′(p0(g ′)) g ′, θ, p, ε]

where (p, ε) = (p1
′, ε1

′)(p2
′, ε2

′) as in (5.25), (5.26). The function θ is
given by the composition of the three complicated morphisms. When we
will describe the crossed module associated with the strict categorical group
H1(Γ,G), we will calculate this product for particular morphisms.
H1(Γ,G) is a strict categorical group and it corresponds to the crossed

module constructed as follows:

d : Kert → Ob(H1(Γ,G)) = Ob(Der∗(Γ,G))

with d = s|Kert, where s and t are the source and target maps, respectively,

of the underlying groupoid H1(Γ,G). We denote with H1
1(Γ,G) the set of

arrows in H1(Γ,G) and we consider the target map:

t : H1
1(Γ,G) −→ Z2

B
∗
(Γ0, ∂ : G1 → G0)

(g, θ, p2, ε2) −→ (p2, ε2)

while the source map:

s : H1
1(Γ,G) −→ Z2

B
∗
(Γ0, ∂ : G1 → G0)

(g, θ, p2, ε2) −→ (p1, ε1)

where (p1, ε1) as in Proposition 5.4.4.
Thus we have:

d : Kert → Z2
B
∗
(Γ0, ∂ : G1 → G0)

(g, θ, 1, 1) → (p, ε)

where:
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• p(σ) = ∂ θ(σ)−1 g σg−1,

• ε(σ, τ) = θ(σ)−1 g σg−1
( σθ(τ)−1) θ(σ τ).

Given two arrows in Kert

(p1, ε1)
[g,θ,1,1] // (1, 1) (p2, ε2)

[g ′,θ ′,1,1] // (1, 1)

where:

- p1(σ) = ∂ θ(σ)−1 g σg−1,

- p2(σ) = ∂ θ ′(σ)−1 g ′ σg ′−1,

- ε1(σ, τ) = θ(σ)−1 g σg−1
( σθ(τ)−1) θ(σ τ),

- ε2(σ, τ) = θ ′(σ)−1 g ′ σg ′−1
( σθ ′(τ)−1) θ ′(σ τ),

their product is given by:

(p1, ε1) (p2, ε2)
[g (1,1)g ′,θ̃,1,1]=[g g ′,θ̃,1,1] // (1, 1) .

The map θ̃ is de�ned by the composition of the following two morphisms:

p1(p0(p2(σ))σ) p2(σ)

(θ(p0(p2(σ))σ), p1(p0(p2(σ))σ)⊗ (θ ′(σ), p2(σ))) =

= (θ(p0(p2(σ))σ) p1(p0(p2(σ)) σ)θ ′(σ), p1(p0(p2(σ))σ) p2(σ))

��

g p0(p2(σ))σg−1 g ′ σg ′−1 = g p0(g ′ σg ′−1)σg−1 g ′ σg ′−1

(1, g)⊗ ({g ′ σg ′−1, σg−1}, p0(g ′ σg ′−1) σg−1 g ′ σg ′−1) =

= ( g{g ′ σg ′−1, σg−1}, g p0(g ′ σg ′−1) σg−1 g ′ σg ′−1)

��
g g ′ σg ′−1 σg−1

therefore we have:

θ̃(σ) = g{g ′ σg ′−1, σg−1} θ(p0(p2(σ))σ) p1(p0(p2(σ))σ)θ ′(σ) =

= g{g ′ σg ′−1, σg−1} θ(p0(g ′ σg ′−1)σ) p1(p0(g ′ σg ′−1)σ)θ ′(σ) =

= g{g ′ σg ′−1, σg−1} g p0(g ′ σg ′−1)σg−1
θ ′(σ) θ(p0(g ′ σg ′−1)σ).(5.32)

The action of the element (p, ε) ∈ Z2
B
∗
(Γ0, ∂ : G1 → G0) on Kert is

given by:
(p,ε)[g, θ, 1, 1] = i(p, ε) [g, θ, 1, 1] i(p, ε)−1.
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We recall that the map i for the groupoid H1(Γ,G) is de�ned by:

i : Z2
B
∗
(Γ0, ∂ : G1 → G0) −→ H1

1(Γ,G)

(p, ε) −→ (1, 1, p, ε).

Therefore, using the tensor product on the arrows of H1
1(Γ,G) and the

inverse in Z2
B
∗
(Γ0, ∂ : G1 → G0), we have:

(p,ε)[g, θ, 1, 1] = [1, 1, p, ε] [g, θ, 1, 1] [1, 1, p, ε]−1 =

= [1, 1, p, ε] [g, θ, 1, 1] [1, 1, p∗, ε∗] =

= [p(p0(g)) g, θ̂, p, ε] [1, 1, p∗, ε∗] =

= [p(p0(g)) g p(1), θ, 1, 1].

The map θ̂ is obtained by the composition of the following morphisms:

p(p0(∂ θ(σ)−1 g σg−1)σ) ∂ θ(σ)−1 g σg−1 =

= p(p0(g σg−1)σ) ∂ θ(σ)−1 g σg−1

(1, p(p0(g σg−1)σ))⊗ (θ(σ), ∂ θ(σ)−1 g σg−1) =

= ( p(p0(g σg−1) σ)θ(σ), p(p0(g σg−1)σ) ∂ θ(σ)−1 g σg−1)

��
p(p0(g σg−1)σ) g σg−1

((ν(p,ε),g)σ)−1

��
p(p0(g)) g p0(p(σ))σ(p(p0(g)) g)−1 p(σ)

where (ν(p,ε),g)σ for any σ ∈ Γ0 is given by the following composition (see
Proposition 5.6. in [14]):

p(p0(g)) g p0(p(σ))σ(p(p0(g)) g)−1 p(σ)

(1, p(p0(g)) g)⊗ ({p(σ), σg−1 σp(p0(g))−1}, p0(p(σ)) σ(p(p0(g)) g)−1 p(σ)) =

= ( p(p0(g)) g{p(σ), σg−1 σp(p0(g))−1}, p(p0(g)) g p0(p(σ)) σ(p(p0(g)) g)−1 p(σ))

��
p(p0(g)) g p(σ) σg−1 σp(p0(g))−1

(1, p(p0(g)))⊗ ({g, p(σ)}, p0(g)p(σ) g)−1 ⊗ (1, σg−1 σp(p0(g))−1) =

= ( p(p0(g)){g, p(σ)}−1, p(p0(g)) g p(σ) σg−1 σp(p0(g))−1)

��
p(p0(g)) p0(g)p(σ) g σg−1 σp(p0(g))−1

(1, p(p0(g)) p0(g)p(σ))⊗ ({g σg−1, σp(p0(g))−1}, p0(g σg−1)σp(p0(g))−1 g σg−1)−1 =

= ( p(p0(g)) p0(g)p(σ){g σg−1, σp(p0(g))−1}−1, p(p0(g)) p0(g)p(σ) g σg−1 σp(p0(g))−1)

��
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p(p0(g)) p0(g)p(σ) p0(g σg−1)σp(p0(g))−1 g σg−1

p(p0(g)) p0(g)[p(σ) p0( σg−1)σp(p0(g))−1] g σg−1

p(p0(g)) p0(g)[p(σ) σ p0(g−1)p(p0(g))−1] g σg−1

(1, p(p0(g)))⊗ p0(g)[(1, p(σ))⊗ σ(ε(p0(g)−1, p0(g)) ε(1, 1), p0(g)−1
p(p0(g))−1)]⊗ (1, g σg−1) =

= ( p(p0(g)) p0(g)p(σ)[ p0(g) σε(p0(g)−1, p0(g)) p0(g) σε(1, 1)], p(p0(g)) p0(g)[p(σ) σ p0(g−1)p(p0(g))−1] g σg−1)

��
p(p0(g)) p0(g)[p(σ) σp(p0(g−1))] g σg−1

(1, p(p0(g)))⊗ p0(g)(ε(σ, p0(g−1)), p(σ p0(g−1)))−1 ⊗ (1, g σg−1) =

= ( p(p0(g))[ p0(g)ε(σ, p0(g−1))−1], p(p0(g)) p0(g)[p(σ) σp(p0(g−1))] g σg−1)

��
p(p0(g)) p0(g)p(σ p0(g−1)) g σg−1

p(p0(g)) p0(g)p(p0( σg−1)σ) g σg−1

(ε(p0(g), p0( σg−1)σ), p(p0(g) p0( σg−1)σ))−1 ⊗ (1, g σg−1) =

= (ε(p0(g), p0( σg−1)σ)−1, p(p0(g)) p0(g)p(p0( σg−1)σ) g σg−1)

��
p(p0(g) p0( σg−1)σ) g σg−1

p(p0(g σg−1)σ) g σg−1.

We obtain:

(ν(p,ε),g)σ = (ε(p0(g), p0( σg−1)σ)−1 p(p0(g))[ p0(g)ε(σ, p0(g−1))−1]

p(p0(g)) p0(g)p(σ)[ p0(g)σε(p0(g)−1, p0(g)) p0(g)σε(1, 1)]

p(p0(g)) p0(g)p(σ){g σg−1, σp(p0(g))−1}−1 p(p0(g)){g, p(σ)}−1

p(p0(g)) g{p(σ), σg−1 σp(p0(g))−1}, p(p0(g)) g
p0(p(σ))σ(p(p0(g)) g)−1 p(σ)); (5.33)

((ν(p,ε),g)σ)−1 = (p(p0(g)) g{p(σ), σg−1 σp(p0(g))−1}−1 p(p0(g)){g, p(σ)}
p(p0(g)) p0(g)p(σ){g σg−1, σp(p0(g))−1}
p(p0(g)) p0(g)p(σ)[ p0(g)σε(p0(g)−1, p0(g)) p0(g)σε(1, 1)]−1

p(p0(g))[ p0(g)ε(σ, p0(g−1))] ε(p0(g), p0( σg−1)σ),
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p(p0(g σg−1)σ) g σg−1); (5.34)

and accordingly we have

θ̂(σ) = p(p0(g)) g{p(σ),σ g−1 σp(p0(g))−1}−1 p(p0(g)){g, p(σ)}
p(p0(g)) p0(g)p(σ){g σg−1, σp(p0(g))−1}
p(p0(g)) p0(g)p(σ)[p0(g)σε(p0(g)−1, p0(g)) p0(g)σε(1, 1)]−1

p(p0(g))[p0(g)ε(σ, p0(g)−1)] ε(p0(g), p0( σg−1)σ) p(p0(g σg−1)σ)θ(σ).

θ is obtained by the composition of following morphisms:

p(p0(g p0(p
∗(σ))σg−1) p0(p∗(σ))σ) ∂ θ(p0(p∗(σ))σ)−1 g p0(p

∗(σ))σg−1 p∗(σ)

(θ̂(p0(p∗(σ))σ), p(p0(g p0(p∗(σ)) σg−1) p0(p∗(σ))σ) ∂ θ(p0(p∗(σ))σ)−1 g p0(p∗(σ)) σg−1)⊗ (1, p∗(σ)) =

= (θ̂(p0(p∗(σ))σ), p(p0(g p0(p∗(σ)) σg−1) p0(p∗(σ))σ) ∂ θ(p0(p∗(σ))σ)−1 g p0(p∗(σ)) σg−1 p∗(σ))

��
p(p0(g)) g p0(p(p0(p

∗(σ))σ)) p0(p
∗(σ))σ(p(p0(g)) g)−1 p(p0(p∗(σ))σ) p∗(σ) =

= p(p0(g)) g p0(p(p0(p
∗(σ))σ) p∗(σ))σ(p(p0(g)) g)−1

= p(p0(g)) g σ(p(p0(g)) g)−1

(1,p(p0(g)) g σ(p(p0(g)) g)−1)⊗((ν(p,ε),1)σ)−1⊗(1,p∗(σ))

��

p(p0(g)) g p0(p(1) σp(1)−1)σ(p(p0(g)) g)−1 p(1) σp(1)−1 =

= p(p0(g)) g σ(p(p0(g)) g)−1 p(1) σp(1)−1

(1, p(p0(g)) g)⊗ ({p(1) σp(1)−1, σ(p(p0(g)) g)−1}, σ(p(p0(g)) g)−1 p(1) σp(1)−1) =

= ( p(p0(g)) g{p(1) σp(1)−1, σ(p(p0(g)) g)−1}, p(p0(g)) g σ(p(p0(g)) g)−1 p(1) σp(1)−1)

��
p(p0(g)) g p(1)σ(p(p0(g)) g p(1))−1.

The domain of the second arrow is simpli�ed because we know that

p(p0(p∗(σ))σ) p∗(σ) = 1

where p∗ is the inverse of p. The codomain is simpli�ed because we can
easily observe that p(1) = ∂ ε(1, 1) (with (p, ε) ∈ Z2

B
∗
(Γ0, ∂ : G1 → G0))

and in a 2-crossed module it holds p0 ◦ ∂ = 1.
In the second morphism, the �rst component of the arrow ((ν(p,ε),1)σ)−1,

thanks to (5.34), is given by:

πG1 [((ν(p,ε),1)σ)−1] = p(1){p(σ), σp(1)−1}−1 p(1) p(σ)[ σε(1, 1) σε(1, 1)]−1

p(1)ε(σ, 1) ε(1, σ) =

= ∂ ε(1,1){p(σ), σ∂ ε(1, 1)−1}−1 ∂ ε(1,1) p(σ)[ σε(1, 1)
σε(1, 1)]−1 ∂ ε(1,1)ε(σ, 1) ε(1, σ) =
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= ε(1, 1) {p(σ), ∂( σε(1, 1)−1)}−1 p(σ)( σε(1, 1))−1

p(σ)( σε(1, 1)−1) ε(σ, 1) ε(1, 1)−1 ε(1, σ) =

= ε(1, 1) p0(p(σ))( σε(1, 1)−1) p(σ)( σε(1, 1))
p(σ)( σε(1, 1))−1 =

= ε(1, 1) p0(p(σ))σε(1, 1)−1.

In the last equalities, we have used the following relations:

1. since (p, ε) ∈ Z2
B
∗
(Γ0, ∂ : G1 → G0) then:

p(1) = ∂ ε(1, 1);
p(σ)( σε(1, 1)) = ε(σ, 1);

ε(1, σ) = ε(1, 1);

2. since G1
∂ //G0

p0 //Γ0 is a 2-crossed module, we have

{g, ∂(α)} = gα p0(g)α−1.

Therefore we have:

θ(σ) = p(p0(g)) g{p(1) σp(1)−1, σ(p(p0(g)) g)−1}
p(p0(g)) g σ(p(p0(g)) g)−1

(ε(1, 1) p0(p(σ))σε(1, 1)−1) θ̂(p0(p∗(σ))σ) =

= p(p0(g)) g{∂(ε(1, 1) σε(1, 1)−1), σ(p(p0(g)) g)−1}
p(p0(g)) g σ(p(p0(g)) g)−1

(ε(1, 1) p0(p(σ))σε(1, 1)−1) θ̂(p0(p∗(σ))σ) =

= p(p0(g)) g(ε(1, 1) σε(1, 1)−1) p(p0(g)) g σ(p(p0(g)) g)−1
(ε(1, 1)

p0(p(σ))σε(1, 1)−1)−1 p(p0(g)) g σ(p(p0(g)) g)−1
(ε(1, 1) p0(p(σ))σε(1, 1)−1)

θ̂(p0(p∗(σ))σ) =

= p(p0(g)) g(ε(1, 1) σε(1, 1)−1) θ̂(p0(p∗(σ))σ) =

= p(p0(g)) gε(1, 1) p(p0(g)) g σ(p(p0(g)) g)−1
[σ( p(p0(g)) gε(1, 1)−1)]

θ̂(p0(p∗(σ))σ).

In the last equalities, we have used together with the relations above the
following:

- since G1
∂ //G0

p0 //Γ0 is a 2 crossed module we have

{∂(α), g} = α gα−1.

Because p(p0(g)) g p(1) = p(p0(g)) g ∂ε(1, 1) = ∂( p(p0(g)) gε(1, 1))p(p0(g)) g
we can observe that:

(p,ε)[g, θ, 1, 1] = [p(p0(g)) g p(1), θ, 1, 1] = [p(p0(g)) g, θ̃, 1, 1]
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where θ̃(σ) = θ̂(p0(p∗(σ))σ).
We can prove that:

Kert is isomorphic to
C1
B(Γ0, ∂ : G1 → G0)

B1
B(Γ0, ∂ : G1 → G0)

.

Thanks to the de�nition of the product in Kert, we have:

[∂(α), θα, 1, 1][g1, θ1, 1, 1] = [∂(α) g1, θ̂, 1, 1]

where

θ̂(σ) = ∂(α){g1
σg−1

1 , σ∂(α)−1} ∂(α) p0(g1
σg−1

1 )σ∂(α)−1
θ1(σ)

θα(p0(g1
σg−1

1 )σ) =

= α {g1
σg−1

1 , ∂( σα−1)} p0(g1
σg−1

1 )σα−1θ1(σ) =

= α g1
σg−1

1 ( σα−1)θ1(σ).

We want to emphasize that in the third passage we have used the property
(c) (see section 2.3) of the 2-crossed module (5.22).
When restricted to Z1

B(Γ0, ∂ : G1 → G0), the product de�ned in (5.32)
coincides with the Borovoi product.
It is clear the isomorphism between d and a homomorphism

d :
C1
B(Γ0, ∂ : G1 → G0)

B1
B(Γ0, ∂ : G1 → G0)

→ Z2
B
∗
(Γ0, ∂ : G1 → G0)

which, by abuse of notation, we have denoted again by d.

Remark 5.4.2. The Noohi cohomology is a particular case of the cohomology
in 2-crossed modules because every Γ0-equivariant braided crossed module can
be seen as a 2-crossed module as in (5.22) with p0 = 1.

5.5 Cohomology in crossed squares

Let

G1

∂
��

p̄1 //Γ1

∂ ′

��
G0

p̄0 //Γ0

(5.35)

be a crossed square. If we call G the strict categorical group associated with
∂ : G1 → G0 and Γ the strict categorical group associated with ∂ ′ : Γ1 →
Γ0, then G is a strict categorical Γ-crossed module (see the example (d) in
3.4).
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In this case (see [14]), Der(Γ,G) is just a strict monoidal category. The
associativity a, left unit l and right unit r of Der (Γ,G) are de�ned by
using the canonical isomorphisms of Γ, G and the strict functor T : Γ→ G,
so that they are all identity maps. Then we consider the categorical group
Der ∗(Γ,G). The last one is not a strict categorical group because every
object in Der ∗(Γ,G) has an inverse but this inverse is not necessarily strict
(see Proposition 5.5 in [14]).

Lemma 5.5.1. A derivation from Γ into G is uniquely speci�ed by a triple
of functions p : Γ0 → G0, f : Γ1oΓ0 → G1 and ε : Γ0×Γ0 → G1 satisfying

p(∂
′
(β)σ) = ∂f(β, σ) p(σ); (5.36)

f(β1 β2, σ) = f(β1, ∂
′
(β2)σ) f(β2, σ); (5.37)

f(β, σ) p(σ)h(β, σp(∂ ′(β ′)σ ′)) p(σ)( σf(β ′, σ ′)) ε(σ, σ ′) =

= ε(∂ ′(β)σ, ∂ ′(β ′)σ ′) f(β σβ ′, σ σ ′); (5.38)

p(σ) σp(τ) = ∂(ε(σ, τ)) p(σ τ); (5.39)
p(σ)( σε(τ, υ)) ε(σ, τ υ) = ε(σ, τ) ε(σ τ, υ). (5.40)

Proof.
As in the braided case.

�

Proposition 5.5.1. An arrow in the categorical group Der(Γ,G) is uniquely
speci�ed by a quadruple (θ, p1, f1, ε1) with (p1, f1, ε1) as in Lemma 5.5.1
and an arbitrary function θ : Γ0 → G1. The source of (θ, p1, f1, ε1) is the
derivation from Γ into G given by (p1, f1, ε1); the target of (θ, p1, f1, ε1)
is the derivation from Γ into G given by the triple of functions p2(σ) =
∂θ(σ) p1(σ), f2(β, σ) = θ(∂ ′(β)σ) f1(β, σ) θ(σ)−1 and ε2(σ, τ) = θ(σ)
p1(σ)( σθ(τ)) ε1(σ, τ)θ(σ τ)−1.

Proof.
As in the braided case.

�

Der(Γ,G) is a strict monoidal category and the tensor product on objects
(see Theorem 5.2 in [14]) is given by:

(p1, f1, ε1)(p2, f2, ε2) = (p, f, ε) where

p(σ) = p1(p̄0(p2(σ))σ) p2(σ), (5.41)

f(β, σ) = f1(p̄1(f2(β, σ)) p̄0(p2(σ))β, p̄0(p2(σ))σ) p1(p̄0(p2(σ))σ)f2(β, σ).

(5.42)
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ε is de�ned by the composition of the following sequence of arrows in G:

p1(p̄0(p2(σ τ))σ τ) p2(σ τ)

(f1(p̄1(ε2(σ, τ)), p̄0(p2(σ τ))σ τ), p1(p̄0(p2(σ τ))σ τ))⊗ (1, p2(σ τ)) =

= (f1(p̄1(ε2(σ, τ)), p̄0(p2(σ τ))σ τ), p1(p̄0(p2(σ τ))σ τ) p2(σ τ))

��
p1(p̄0(p2(σ))σ p̄0(p2(τ)) τ) p2(σ τ)

(ε1(p̄0(p2(σ))σ, p̄0(p2(τ)) τ), p1(p̄0(p2(σ))σ p̄0(p2(τ)) τ))⊗ (ε2(σ, τ), p2(σ τ)) =

= (ε1(p̄0(p2(σ))σ, p̄0(p2(τ)) τ) p1(p̄0(p2(σ)) σ p̄0(p2(τ)) τ)ε2(σ, τ), p1(p̄0(p2(σ))σ p̄0(p2(τ)) τ) p2(σ τ))

��
p1(p̄0(p2(σ))σ) p̄0(p2(σ))σp1(p̄0(p2(τ)) τ) p2(σ) σp2(τ)

p1(p̄0(p2(σ))σ) p̄0(p2(σ))( σp1(p̄0(p2(τ)) τ)) p2(σ) σp2(τ)

p1(p̄0(p2(σ))σ) p2(σ) σp1(p̄0(p2(τ)) τ)) σp2(τ)

p1(p̄0(p2(σ))σ) p2(σ) σ[p1(p̄0(p2(τ)) τ)) p2(τ)]

therefore we have:

ε(σ, τ) = ε1(p̄0(p2(σ))σ, p̄0(p2(τ)) τ) p1(p̄0(p2(σ))σ p̄0(p2(τ)) τ)ε2(σ, τ)

f1(p̄1(ε2(σ, τ)), p̄0(p2(σ τ))σ τ). (5.43)

Since Der(Γ,G) is a strict monoidal category the set of objects of Der(Γ,G)
is a monoid.

Let

(p1, f1, ε1)
(θ1,p1,f1,ε1) // (p̃1, f̃1, ε̃1) and (p2, f2, ε2)

(θ2,p2,f2,ε2) // (p̃2, f̃2, ε̃2)

be two arrows in Der(Γ,G), where (p̃i, f̃i, ε̃i) are determined by (θi, pi, fi, εi)
under the Proposition 5.5.1 for i = 1, 2; the tensor product of these two ar-
rows, is de�ned in the Theorem 5.2 in [14] by:

p1(p̄0(p2(σ))σ) p2(σ)

(θ1(p̄0(p2(σ))σ), p1(p̄0(p2(σ))σ))⊗ (1, p2(σ)) =

= (θ1(p̄0(p2(σ))σ), p1(p̄0(p2(σ))σ) p2(σ))

��
p̃1(p̄0(p2(σ))σ) p2(σ)
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(f̃1(p̄1(θ2(σ)), p̄0(p2(σ))σ), p̃1(p̄0(p2(σ))σ))⊗ (θ2(σ), p2(σ)) =

= (f̃1(p̄1(θ2(σ)), p̄0(p2(σ))σ) p̃1(p̄0(p2(σ)) σ)θ2(σ), p̃1(p̄0(p2(σ))σ) p2(σ))

��
p̃1(p̄0(p̃2(σ))σ) p̃2(σ)

therefore we obtain:

(θ1, p1, f1, ε1)(θ2, p2, f2, ε2) = (θ, p, f, ε) with

θ(σ) = f̃1(p̄1(θ2(σ)), p̄0(p2(σ))σ) p̃1(p̄0(p2(σ))σ)θ2(σ) θ1(p̄0(p2(σ))σ) =
= f̃1(p̄1(θ2(σ)), p̄0(p2(σ))σ) ∂θ1(p̄0(p2(σ))σ) p1(p̄0(p2(σ))σ)θ2(σ)
θ1(p̄0(p2(σ))σ) =
= f̃1(p̄1(θ2(σ)), p̄0(p2(σ))σ) θ1(p̄0(p2(σ))σ) p1(p̄0(p2(σ))σ)θ2(σ),

and (p, f, ε) = (p1, f1, ε1)(p2, f2, ε2) as in (5.41), (5.42), (5.43).

Now we are going to describe the structure of H0(Γ,G). H0(Γ,G)
corresponds to the categorical group of Γ-invariant objects GΓ (see [14]).
The associativity a, left unit l and right unit r of the monoidal structure
of GΓ are given by the respective constraints a, l and r of G, so that they
are all identity maps. Furthermore, for any object in GΓ an strict inverse
exists. Thus GΓ is a strict categorical group associated with a crossed
module (analogous to what has already done in the braided case):

∂ : G1 → Ob(GΓ)

α → (∂(α), θα)

where θα(σ) = α σα−1 and

Ob(GΓ) = {(g, θ) ∈ Z1
B(Γ0, ∂ : G1 → G0) / θ(∂ ′(β)σ)h(β, σg) = θ(σ)}.

The product in G1 is the usual product and the product in Ob(GΓ) is the
Borovoi product. The action of (g, θ) ∈ Ob(GΓ) on α ∈ G1 is given by
(g,θ)α = gα.
H0(Γ,G) is de�ned by the kernel of T : G → Der∗(Γ,G), the last one

is de�ned on objects and on arrows

T 0 : G0 −→ Ob(Der(Γ,G)) T 1 : G1 oG0 −→ Der1(Γ,G)
g −→ (pg, fg, 1) (α, g) −→ (θ, pg, fg, 1)

respectively, where pg(σ) = g σg−1, fg(β, σ) = gh(β, σg−1) and θ(σ) =

α g σg−1
( σα−1).

There are natural isomorphisms ν and χ such that (G,T, ν, χ) is a cat-
egorical Der∗(Γ,G)-crossed module (see [14]).
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In this case, we observe that the isomorphism χ is given by the composition
of the three morphisms:

T 0(g1)g2 g1 g1
p̄0(g2)g−1

1 g2 g1 g1 g2 g
−1
1 g1 g1 g2

therefore χ is the identity map. Thanks to this observation H0(Γ,G) can
be equipped with a braiding (Proposition 2.7 in [14]) given by

g2 g1 g2 g1
(θ1(p̄0(g2)),g2 g1) // T 0(g1)g2 g1

χg1,g2 g1 g2.

Then ∂ : G1 → Ob(GΓ) is also a braided crossed module with a braiding
de�ned by

{(g1, θ1), (g2, θ2)} = θ1(p0(g2)).

In this case, we can do even better.

Proposition 5.5.2. The following diagram

G1

∂
��

p̄1 //Γ1

∂ ′

��
Ob(GΓ)

p0 //Γ0

(5.44)

is a crossed square with actions, group homomorphism p0 and function h :
Γ1 ×Ob(GΓ)→ G1 de�ned as following:

- the action of Γ0 on G1 is induced by the action of ∂ ′ : Γ1 → Γ0 on
∂ : G1 → G0 ;

- the action of Γ0 on Γ1 is the action of the crossed module ∂ ′ : Γ1 → Γ0;

- the action of Γ0 on Ob(GΓ) is de�ned by σ(g, θ) = (σg, θ) where θ(τ) =
σθ(σ−1 τ σ);

- p0 : Ob(GΓ)→ Γ0 is determined by p0(g, θ) = p̄0(g);

- h(β, (g, θ)) = h(β, g) where the function h is given by the crossed square
structure of (5.35).

Proof. The action of Γ0 on Ob(GΓ) is well de�ned and the proof is the
same as in the Proposition 5.3.3. p0 is a group homomorphism because p̄0

is and the diagram (5.44) commutes:

p0(∂(α)) = p0(∂(α), θα) = p̄0(∂(α)) = ∂ ′(p̄1(α)).

Now we want to check the �ve properties making the diagram (5.44) a crossed
square (see De�nition 2.2.1 in the section 2.2).
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(i) The map ∂ preserves the actions of Γ0 and the proof is the same as
in the Proposition 5.4.3. The map p̄1 preserves the actions of Γ0

because (5.35) is a crossed square. ∂ ′ is a crossed module because
(5.35) is a crossed square and we want to prove that p0 is a crossed
module. The pre-crossed module property is shown the same way as
in the Proposition 5.4.3. Now, also the Pei�er condition holds:

p0(g1,θ1)(g2, θ2) = p̄0(g1)(g2, θ2) = ( p̄0(g1)g2, θ̂) = (g1 g2 g
−1
1 , θ̂),

(g1, θ1) (g2, θ2) (g1, θ1)−1 = (g1, θ1) (g2, θ2) (g−1
1 , θ∗1) =

= (g1 g2 g
−1
1 , θ),

where

θ(σ) = g1 g2θ∗1(σ) g1θ2(σ) θ1(σ) = g1 g2 g
−1
1 θ1(σ)−1 g1θ2(σ) θ1(σ),

θ̂(σ) = p̄0(g1)θ2(p̄0(g1)−1 σ p̄0(g1)) = p̄0(g1)θ2(p̄0(g−1
1

σg1)σ) =

= p̄0(g1)θ2(p̄0 ∂θ
∗
1(σ)σ) = p̄0(g1)θ2(∂ ′ p̄1 θ

∗
1(σ)σ) =

= p̄0(g1)[θ2(σ)h(p̄1 θ
∗
1(σ), σg2)−1] =

= g1θ2(σ) g1
σg2θ∗1(σ) g1θ∗1(σ)−1 =

= g1θ2(σ) g1
σg2 g

−1
1 θ1(σ)−1 θ1(σ) =

= ∂( g1θ2(σ)) g1
σg2 g

−1
1 θ1(σ)−1 g1θ2(σ) θ1(σ) =

= g1 g2
σg−1

2 g−1
1 g1

σg2 g
−1
1 θ1(σ)−1 g1θ2(σ) θ1(σ) =

= g1 g2 g
−1
1 θ1(σ)−1 g1θ2(σ) θ1(σ) = θ(σ).

p0 ∂ = ∂ ′ p̄1 is a crossed module because (5.35) is a crossed square.

(ii) p̄1(h(β, (g, θ))) = p̄1(h(β, g)) = β gβ−1 = β p̄0(g)β−1 = β p0(g,θ)β−1 =
= β (g,θ)β−1.

∂ h(β, (g, θ)) = β(g, θ) (g, θ)−1 (as in the Proposition 5.3.3).

(iii) h(p̄1(α), (g, θ)) = h(p̄1(α), g) = α gα−1 = α (g,θ)α−1.

h(β, ∂(α)) = βαα−1 (as in the Proposition 5.3.3).

(iv) h(β1 β2, (g, θ)) = β1h(β2, (g, θ))h(β1, (g, θ)) (as in the Proposition 5.3.3).
h(β, (g1, θ1) (g2, θ2)) = h(β, (g1, θ1)) (g1,θ1)h(β, (g2, θ2)) (as in the Propo-
sition 5.3.3).

(v) h( σβ, σ(g, θ)) = h( σβ, ( σg, θ)) = h( σβ, σg) = σh(β, g) = σh(β, (g, θ)).

�

Now we want to generalize what happens in the context of crossed mod-
ules with objects groups.
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It is known that given a crossed module of groups ∂ : G1 → G0, the
homomorphism γ : G1 → Der ∗(G0, G1) becomes a crossed module of groups
(see section 5.1).

At this point, we want to interpret what happens in the new context of
crossed modules with objects crossed modules.

Given a crossed square (5.35), that is a crossed module of crossed mod-
ules, we can consider the morphism of categorical groups T : G→ Der∗(Γ,G),
previously de�ned. The last one is a categorical Der∗(Γ,G)-crossed module
(see [14]) but it is certainly not strict because Der∗(Γ,G) is not a strict
categorical group.

In this section, we want to de�ne a category D included in Der ∗(Γ,G)
such that we can consider a restriction of the homomorphism T :

T : G→ D

and this is a strict categorical D-crossed module (that is equivalent to a
crossed square, that is a crossed module of crossed modules).

One condition to have a strict categorical crossed module (G,T, ν, χ) is
that the maps ν and χ are identity maps. Then, we analyze these maps
for the categorical crossed module T : G→ Der∗(Γ,G). Thanks to [14] we
observe that the map ν(p,f,ε),g is given by:

p(p̄0(g)) g p̄0(p(σ))σ(p(p̄0(g)) g)−1 p(σ)

p(p̄0(g)) g p(σ) σg−1 σp(p̄0(g))−1

p(p̄0(g)) p̄0(g)p(σ) g σg−1 σp(p̄0(g))−1

p(p̄0(g)) p̄0(g)p(σ) p̄0(g σg−1)σp(p̄0(g))−1 g σg−1

p(p̄0(g)) p̄0(g)[p(σ) p̄0( σg−1)σp(p̄0(g))−1] g σg−1

p(p̄0(g)) p̄0(g)[p(σ) σ p̄0(g−1)p(p̄0(g))−1] g σg−1

( p(p̄0(g)) p̄0(g)p(σ)[ p̄0(g) σε(p̄0(g)−1, p̄0(g)) p̄0(g) σε(1, 1)], p(p̄0(g)) p̄0(g)[p(σ) σ p̄0(g−1)p(p̄0(g))−1] g σg−1)

��
p(p̄0(g)) p̄0(g)[p(σ) σp(p̄0(g−1))] g σg−1

( p(p̄0(g))( p̄0(g)ε(σ, p̄0(g−1))−1), p(p̄0(g)) p̄0(g)[p(σ) σp(p̄0(g−1))] g σg−1)

��
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p(p̄0(g)) p̄0(g)p(σ p̄0(g−1)) g σg−1

p(p̄0(g)) p̄0(g)p(p̄0( σg−1)σ) g σg−1

(ε(p̄0(g), p̄0( σg−1)σ)−1, p(p̄0(g)) p̄0(g)p(p̄0( σg−1)σ) g σg−1)

��
p(p̄0(g)p̄0( σg−1)σ) g σg−1

p(p̄0(g σg−1)σ) g σg−1.

Therefore we have:

(ν(p,f,ε),g)(σ) = (ε(p̄0(g), p̄0( σg−1)σ)−1 p(p̄0(g))( p̄0(g)ε(σ, p̄0(g−1))−1)

p(p̄0(g)) p̄0(g)p(σ)[ p̄0(g)σε(p̄0(g)−1, p̄0(g)) p̄0(g)σε(1, 1)],

p(p̄0(g)) g p̄0(p(σ))σ(p(p̄0(g)) g)−1 p(σ))

while χ is the identity (as previously seen).

Then we considers DerN (Γ,G) as the full subcategory of Der(Γ,G)
with objects satisfying the conditions:

ε(σ, p̄0(g1)) = ε(p̄0(g1), σ) = 1 ∀g1 ∈ G0,∀σ ∈ Γ (5.45)

Ob(DerN (Γ,G)) is a submonoid of Ob(Der(Γ,G)); in fact, given the prod-
uct in Ob(DerN (Γ,G)) of two objects (p1, f1, ε1)(p2, f2, ε2) = (p, f, ε), we
have:

ε(σ, p̄0(g1)) = ε1(p̄0(p2(σ))σ, p̄0(p2(p̄0(g1))) p̄0(g1))
p1(p̄0(p2(σ))σ p̄0(p2(p̄0(g1))) p̄0(g1))ε2(σ, p̄0(g1))

f1(p̄1(ε2(σ, p̄0(g1))), p̄0(p2(σ p̄0(g1)))σ p̄0(g1)) = 1;

ε(p̄0(g1), σ) = ε1(p̄0(p2(p̄0(g1))) p̄0(g1), p̄0(p2(σ))σ)
p1(p̄0(p2(p̄0(g1))) p̄0(g1) p̄0(p2(σ))σ)ε2(p̄0(g1), σ)

f1(p̄1(ε2(p̄0(g1), σ)), p̄0(p2(p̄0(g1)σ)) p̄0(g1)σ) = 1.

Then DerN (Γ,G) is a monoidal subcategory of Der(Γ,G), because DerN (Γ,
G) is a subcategory of Der(Γ,G), closed under the tensor product of objects
and morphisms (because DerN (Γ,G) is a full subcategory of Der(Γ,G)).
DerN (Γ,G) is a strict monoidal subcategory of Der(Γ,G).
Now we consider Der∗∗N (Γ,G) the subcategory of DerN (Γ,G) given by strict
invertible objects and isomorphisms between them. Then Der∗∗N (Γ,G) is a
strict categorical group and it corresponds to the crossed module constructed
as follows:

∂ : Kers → Ob(Der∗∗N (Γ,G))
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with ∂ = t|Kers, where s and t are the source and target maps, respec-
tively, of the underlying groupoid Der∗∗N (Γ,G).
We can observe that Ob(Der∗∗N (Γ,G)) is the group of invertible elements of
the monoid Ob(DerN (Γ,G)), and usually it is denoted by Ob(DerN (Γ,G))∗.
We denote with Der∗∗N (Γ,G)1 the set of arrows in Der∗∗N (Γ,G) and we recall
the source map:

s : Der∗∗N (Γ,G)1 −→ Ob(DerN (Γ,G))∗

(θ1, p1, f1, ε1) −→ (p1, f1, ε1)

while the target map:

t : Der∗∗N (Γ,G)1 −→ Ob(DerN (Γ,G))∗

(θ1, p1, f1, ε1) −→ (p2, f2, ε2)

where (p2, f2, ε2) as in Proposition 5.5.1. Because (p2, f2, ε2) has to belong
to Ob(DerN (Γ,G))∗, θ1 has to satisfy the following conditions:

θ1(p̄0(g1)σ) = θ1(p̄0(g1)) p1(p̄0(g1))( p̄0(g1)θ1(σ)); (5.46)

θ1(σ p̄0(g1)) = θ1(σ) p1(σ)( σθ1(p̄0(g1))). (5.47)

Thus we have

∂ : Kers → Ob(DerN (Γ,G))∗

(θ, 1, 1, 1) → (p, f, ε)

where

• p(σ) = ∂ θ(σ),

• f(β, σ) = θ(∂
′
(β)σ) θ(σ)−1,

• ε(σ, τ) = θ(σ) σθ(τ) θ(σ τ)−1.

The product of two arrows (θ1, 1, 1, 1) and (θ2, 1, 1, 1) in Der∗∗N (Γ,G) is
(θ, 1, 1, 1) where θ(σ) = θ1(p̄0(∂(θ2(σ)))σ) θ2(σ) and the product on objects
of Der∗∗N (Γ,G) is the same as de�ned in Ob(Der(Γ,G)). The action of the
group Ob(DerN (Γ,G))∗ on Kers is given by:

(p,f,ε)(θ, 1, 1, 1) = i(p, f, ε)(θ, 1, 1, 1)(i(p, f, ε))−1.

We recall that the map i for the groupoid Der∗∗N (Γ,G) is given by:

i : Ob(DerN (Γ,G))∗ −→ Der∗∗N (Γ,G)1

(p, f, ε) −→ (1, p, f, ε).



CHAPTER 5. COHOMOLOGIES 104

Therefore, using the multiplication de�ned above on arrows in Der(Γ,G),
we have:

(p,f,ε)(θ, 1, 1, 1) = (1, p, f, ε) (θ, 1, 1, 1) (1, p, f, ε)−1

= (1, p, f, ε) (θ, 1, 1, 1) (1, p∗, f∗, ε∗)

= (θ̂, p, f, ε) (1, p∗, f∗, ε∗)

= (
̂̂
θ, 1, 1, 1)

where θ̂(σ) = f(p̄1(θ(σ)), σ) p(σ)θ(σ),̂̂
θ(σ) = θ̂(p̄0(p∗(σ))σ) =

= f(p̄1(θ(p̄0(p∗(σ))σ)), p̄0(p∗(σ))σ)
p(p̄0(p∗(σ))σ)θ(p̄0(p∗(σ))σ) =

= f(p̄1(θ(p̄0(p∗(σ))σ)), p̄0(p∗(σ))σ) p
∗(σ)−1

θ(p̄0(p∗(σ))σ).

Kers is isomorphic to D∗, that is the group of the invertible elements of the
following monoid:

D = {θ ∈ App(Γ0, G1) / θ(p̄0(g1)σ) = θ(p̄0(g1)) p̄0(g1)θ(σ)
θ(σ p̄0(g1)) = θ(σ) σθ(p̄0(g1)) }

under the product (θ1 · θ2)(σ) = θ1(p̄0(∂(θ2(σ)))σ) θ2(σ). It is clear the
isomorphism between ∂ and a homomorphism

∂ : D∗ → Ob(DerN (Γ,G))∗

which, by abuse of notation, we have denoted again by ∂.

Now we want to show that:

T : G→ Der∗∗N (Γ,G)

is a strict categorical Der∗∗N (Γ,G)-crossed module.
Firstly T : G→ Der∗(Γ,G) is strict monoidal functor:

T (1) = (1, 1, 1);

T (g1 g2) = (pg1 g2 , fg1 g2 , 1);

T (g1)T (g2) = (pg1 , fg1 , 1) (pg2 , fg2 , 1) = (p, f, 1);

where

pg1 g2(σ) = g1 g2
σ(g1 g2)−1 = g1 g2

σg−1
2

σg−1
1 ,

fg1 g2(β, σ) = g1 g2h(β, σ(g1 g2)−1),

p(σ) = pg1(p̄0(pg2(σ))σ) pg2(σ) = g1
p̄0(g2

σg−1
2 )σg−1

1 g2
σg−1

2 =
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= g1 g2
σg−1

2
σg−1

1 = pg1 g2(σ),

f(β, σ) = fg1(p̄1(fg2(β, σ)) p̄0(pg2 (σ))β, p̄0(pg2(σ))σ)
pg1 (p̄0(pg2 (σ))σ)fg2(β, σ) =

= fg1(p̄1( p̄0(g2)h(β, σg−1
2 )) p̄0(g2

σg−1
2 )β, p̄0(g2

σg−1
2 )σ)

g1
p̄0(g2

σg−1
2 )σ g−1

1 ( g2h(β, σg−1
2 )) =

= fg1( p̄0(g2)(β p̄0( σg−1
2 )β−1) p̄0(g2

σg−1
2 )β, p̄0(g2

σg−1
2 )σ)

g1 g2
σg−1

2
σg−1

1
σg2h(β, σg−1

2 ) =

= fg1( p̄0(g2)β, p̄0(g2
σg−1

2 )σ) g1 g2
σg−1

2
σg−1

1
σg2h(β, σg−1

2 ) =

= g1h( p̄0(g2)β, p̄0(g2
σg−1

2 )σg−1
1 ) g1 g2

σg−1
2

σg−1
1

σg2h(β, σg−1
2 ) =

= g1 g2(h(β, p̄0( σg−1
2 )σg−1

1 )
σg−1

2
σg−1

1
σg2h(β, σg−1

2 )) =

= g1 g2(h(β, σg−1
2

σg−1
1

σg2)
σg−1

2
σg−1

1
σg2h(β, σg−1

2 )) =

= g1 g2h(β, σg−1
2

σg−1
1 ) = g1 g2h(β, σ(g1 g2)−1) =

= fg1 g2(β, σ).

It is easy to see that Im(T ) ⊆ Der∗∗N (Γ,G). Then we can consider a cat-
egorical Der∗∗N (Γ,G)-crossed module (G, T , ν, χ). In this case, ν and χ
are the identities. Furthermore, the action of Der∗∗N (Γ,G) on G de�ned by
(p,f,ε)g = p(p̄0(g)) g is strict, in fact:

(p,f,ε)(g1 g2) = p(p̄0(g1 g2)) g1 g2;
(p,f,ε)g1

(p,f,ε)g2 = p(p̄0(g1)) g1 p(p̄0(g2)) g2 =

= p(p̄0(g1)) p̄0(g1)p(p̄0(g2)) g1 g2 =

= ∂ε(p̄0(g1), p̄0(g2))p(p̄0(g1 g2)) g1 g2 =

= p(p̄0(g1 g2)) g1 g2 = (p,f,ε)(g1 g2);
((p1,f1,ε1) (p2,f2,ε2))g = (p,f,ε)g = p(p̄0(g)) g =

= p1(p̄0(p2(p̄0(g))) p̄0(g)) p2(p̄0(g)) g;
(p1,f1,ε1)[ (p2,f2,ε2)g] = (p1,f1,ε1)[p2(p̄0(g)) g] =

= p1(p̄0(p2(p̄0(g)) g)) p2(p̄0(g)) g =

= p1(p̄0(p2(p̄0(g))) p̄0(g)) p2(p̄0(g)) g =

= ((p1,f1,ε1) (p2,f2,ε2))g.

Thus we have the following crossed square:

G1

∂
��

T 1 //D∗

∂
��

G0
T 0 //Ob(DerN (Γ,G))∗
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where T 1(α) = θα (by abuse of notation, we have denoted again by T 1),
θα(σ) = α σα−1, the action of the group Ob(DerN (Γ,G))∗ on D∗ and on
G0 given above, the action of Ob(DerN (Γ,G))∗ on G1 is de�ned by

(p,f,ε)α = f(p̄1(α), 1) p1(1)α = f(p̄1(α), 1)α

and the function h : D∗ ×G0 → G1 is given by h(θ, g) = θ(p̄0(g)).

Finally, we conclude, as we have seen in the Chapter 4, that H1
N (Γ,G)

constructed as follows:

H1
N (Γ,G) =

Der∗∗N (Γ,G)

< G,T >

corresponds to the crossed module d : G0 nG1 D∗ → Ob(DerN (Γ,G))∗

where d(g, θ) = ∂(θ) ·T 0(g) and the action of Ob(DerN (Γ,G))∗ on G0nG1

D∗ is given by (p,f,ε)(g, θ) = ( (p,f,ε)g, (p,f,ε)θ).
Using Proposition 4.4.1 we easily obtain the following result.

Proposition 5.5.3. The following outer diagram

G1

∂
��

p̃1

**
G1

∂
��

T 1 //
D∗

∂ ′′ //

∂
��

G0 nG1 D∗

d
��

G0 ×Ob(DerN (Γ,G))∗ D
∗

p̃0

44
pG0 //

G0

T 0 //
Ob(DerN (Γ,G))∗ Ob(DerN (Γ,G))∗

is a crossed square.

Examples. The following standard examples show when H1
N (Γ,G) is

isomorphic to H1(Γ,G) de�ned in [14] as follows:

H1(Γ,G) =
Der∗(Γ,G)

< G,T >
.

Notice that the last one is, in general, a categorical group not strict.
H1
N (Γ,G) is valid as a generalization of the known cohomologies theory.
(a) If ∂ : G1 → G0 is a crossed module, then we can see it as the crossed

square:

1

��

//1

��
G1

∂ //G0.
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In this case, we denote by Γ = G1[0], G = G0[0] and Ob(Der(Γ,G)) is the
set Der(G0, G1) of all derivations from G0 to G1. The tensor product on
derivations is the Whitehead product. Ob(Der∗(Γ,G)) becomes the White-
head group Der∗(G0, G1), that is the group of units of Der(G0, G1). The
set of arrows of H1(Γ,G) is isomorphic to G1 and the tensor product is the
usual product in G1. Then we have:

π1(H1(Γ,G)) = G1
G0 = H0

L(G0, G1);

π0(H1(Γ,G)) =
Der∗(G0, G1)

Ider(G0, G1)
= H1

L(G0, G1);

π1(H0(Γ,G)) = 1;

π0(H0(Γ,G)) = G1
G0 = H0

L(G0, G1);

where L stands for Lue (see the recalls in the section 5.2 and the references
[35], [29]). Moreover, we can easy observe that:

H1(Γ,G) = H1
N (Γ,G).

In the particular case where G1 is a left G0-module, we can see it as the
trivial crossed module 1 : G1 → G0 and as the crossed square

1

��

//1

��
G1

1 //G0.

Then we �nd the abelian cohomology (see A.1):

π1(H1(Γ,G)) = G1
G0 = H0(G0, G1);

π0(H1(Γ,G)) =
Der(G0, G1)

Ider(G0, G1)
= H1(G0, G1);

π1(H0(Γ,G)) = 1;

π0(H0(Γ,G)) = G1
G0 = H0(G0, G1).

(b) If ∂ : G1 → G0 is a Γ0-equivariant braided crossed module, then we
can see it as the crossed square:

G1

∂
��

//1

��
G0

1 //Γ0.

(5.48)

where G1 and G0 are abelian groups and the action of G0 on G1 is trivial.
In this case, Der(Γ,G) = Der∗(Γ,G) and we have Ob(Der(Γ,G)) =

Z2
B(Γ0, ∂ : G1 → G0) (the set of 2-cocycles de�ned by Borovoi). The tensor
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product on Ob(Der(Γ,G)) is simpli�ed to:

(p1, ε1) (p2, ε2) = (p, ε) where

p(σ) = p1(σ) p2(σ),

ε(σ, τ) = ε1(σ, τ) ε2(σ, τ).

Then we have:

π1(H1(Γ,G)) = H1
B(Γ0, ∂ : G1 → G0);

π0(H1(Γ,G)) = H2
B(Γ0, ∂ : G1 → G0);

π1(H0(Γ,G)) = ker∂ Γ0 = H0
B(Γ0, ∂ : G1 → G0);

π0(H0(Γ,G)) = H1
B(Γ0, ∂ : G1 → G0).

Moreover, we can easy observe that:

H1(Γ,G) ∼= H1
N (Γ,G).

In the particular case where G0 = 1, the crossed square (5.48) becomes:

G1

��

//1

��
1 //Γ0

and this implies that G1 is a Γ0-module.
In this case, Ob(Der(Γ,G)) is the set Z2(Γ0, G1) of 2-cocycles de�ned

by Mac Lane (see A.1), with the obviously product. Then we �nd the coho-
mology in the abelian context:

π1(H1(Γ,G)) = H1(Γ0, G1);

π0(H1(Γ,G)) = H2(Γ0, G1);

π1(H0(Γ,G)) = G1
Γ0 = H0(Γ0, G1);

π0(H0(Γ,G)) = H1(Γ0, G1).



Appendix A

Cohomology of groups

A.1 Group cohomology with abelian coe�cients via
cochains

From K. S. Brown [3] �The cohomology theory of groups arose from both
topological and algebraic sources. The starting point for topological aspect
of the theory was the work of Hurewicz (1936) on aspherical spaces. [...] A
few years later there was a rapid development of this subject by Eckmann,
Eilenberg-Mac Lane, Freudenthal and Hopf. In particular, one had by the
mid-1940's purely algebraic de�nition of group homology and cohomology,
from which it became clear that the subject was of interest to algebraists
as well as topologists. Indeed, the low dimensional cohomology groups were
seen to coincide with groups which had been introduced much earlier in
connection with various algebraic problems. H1, for instance, consists of
equivalence classes of derivations. And H2 consists of equivalence classes of
factor sets, the study of which goes back to Schur (1904), Schreier (1926),
and Brauer (1926). Even H3 had appeared in algebraic context (Teichmüller
1940).�

The cohomology of a group Γ with coe�cients in a Γ-module G can
be de�ned by using various constructions. One approach is to treat Γ-
modules as modules over the group ring Z[G], which allows one to de�ne
group cohomology via Ext functors. This is a formal de�nition of group
cohomology.

Another simpler way is to de�ne Hn(Γ, G) via cochains. These group
cohomology is de�ned in terms of the standard �bar resolution�.
Let Γ be a group. A Γ-module is an abelian group G together with an
action of Γ on G . We shall denote this action by writing σg, where σ ∈ Γ
and g ∈ G.
The group of n-cochains of Γ with coe�cients in G is the set of functions
from Γn to G:

Cn(Γ, G) = {f : Γn → G}.
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C0(Γ, G) is taken simply to be G, as Γ0 is a singleton set. The nth di�er-
ential ∂n = ∂nG : Cn(Γ, G)→ Cn+1(Γ, G) is the map

∂n(f)(σ1, σ2, ..., σn+1) =σ1 f(σ2, ..., σn+1)

n∏
i=1

(f(σ1, ..., σi σi+1, ..., σn+1))(−1)i

(f(σ1, ..., σn))(−1)n+1
.

Lemma A.1.1. For any n ≥ 0, one has ∂n+1 ◦ ∂n = 1 .

This Lemma shows that C(Γ, G) = (Cn(Γ, G), ∂n) is a cochain complex.
Then we can consider the cohomology groups of C(Γ, G).

For n ≥ 0, we set Zn(Γ, G) = ker(∂n), the group of n-cocycles of Γ
with coe�cients in G. We set B0(Γ, G) = 1 and Bn(Γ, G) = Im(∂n−1) for
n ≥ 1 . We refer to Bn(Γ, G) as the group of n-coboundaries of Γ with
coe�cients in G. Finally, because C(Γ, G) is a cochain complex, we may
make the following de�nition:

Hn(Γ, G) =
Zn(Γ, G)

Bn(Γ, G)
.

The cohomology groups measure how far the cochain complex C(Γ, G) is
from being exact.

So the cohomology groups in low degree are:

• Z0(Γ, G) = {α ∈ G / σα = α ∀σ ∈ Γ} = GΓ

• B0(Γ, G) = 1

• H0(Γ, G) =
Z0(Γ, G)

B0(Γ, G)
= GΓ

• Z1(Γ, G) = {θ : Γ→ G / θ(σ τ) = θ(σ) σθ(τ)} =Der(Γ, G)

• B1(Γ, G) = {θ : Γ→ G / ∃µ ∈ G : θ(σ) = σµµ−1} =Ider(Γ, G)

• H1(Γ, G) =
Z1(Γ, G)

B1(Γ, G)
=

Der(Γ, G)

Ider(Γ, G)

• Z2(Γ, G) = {ε : Γ× Γ→ G / σε(τ, υ) ε(σ, τ υ) = ε(σ, τ) ε(σ τ, υ)}

• B2(Γ, G) = {ε ∈ C2 / ∃t : Γ→ G : ε(σ, τ) = σt(τ) t(στ)−1 t(σ)}

• H2(Γ, G) =
Z2(Γ, G)

B2(Γ, G)
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A.2 Serre cohomology

Serre (see [45]) was the �rst one to construct a low-dimensional cohomology
theory for a group Γ with coe�cients in a non-abelian group. Let G be a
Γ-group, i.e. G is a group with an action of Γ on G, then he set:

• H0
S(Γ, G) = GΓ the group of Γ-invariant elements;

• Z1
S(Γ, G) =Der(Γ, G) the set of 1-cocycles of Γ with coe�cients in G.

There exists an equivalence relation on Z1
S(Γ, G):

θ1 ∼ θ2 ⇔ θ2(σ) = µ−1 θ1(σ) σµ

for every θ1, θ2 ∈ Z1
S(Γ, G). The quotient set of this relation is H1

S(Γ, G).
The sets of cohomology H0

S(Γ, G) and H1
S(Γ, G) are functorial on G.

In particular, if G is abelian then G is a Γ-module and we �nd the usual
cohomology, de�ned in A.1.



Appendix B

B.1 Groupoids [7]

A groupoid G is a small category in which every morphism is an isomor-
phism. Thus G has a set of arrows, denoted by G, and a set G0 of objects
or vertices, together with functions s, t : G → G0, i : G0 → G such that
s i = t i = idG0 .

G
s //

t
// G0

i

cc

The functions s, t are sometimes called the source and target maps respec-
tively. If f, g ∈ G and t(f) = s(g), (g, f) ∈ G×◦ G, where the latter set is
de�ned by the following pullback diagram

G×◦ G
π1

��

π2 //G

t
��

G
s //G0.

The composition of arrows: ◦ : G ×◦ G → G denoted by g ◦ f = g f , is
such that s(g f) = s(f), t(g f) = t(g). Furthermore, this composition is
associative; the elements i(x) , x ∈ G0 , act as identities; and each arrow f
has an inverse f−1 with

s(f−1) = t(f), t(f−1) = s(f), f f−1 = i(t(f)), f−1 f = i(s(f)).

An element f is often written as an arrow f : s(f)→ t(f).

•
s(f)

f // •
t(f)=s(g)

g

t(g)
// • •

s(f)

g f

t(g)
// •

A morphism of groupoids is just a functor, and the category of groupoids
will be denoted by GPD.
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B.2 Groups in a category

Let C be a category with �nite products and a terminal object 1. Let G
be an object of C. Then a monoid in C [37] is a triple < G,m : G × G →
G, e : 1→ G > such that the following diagrams

G×G×G
m×idG

��

idG×m // G×G
m

��
G×G m

// G,

1×G

∼=
((QQQQQQQQQQQQQQ

e×idG // G×G
m

��

G× 1
idG×eoo

∼=
vvmmmmmmmmmmmmmm

G,

commute. A group in a category C is a monoid < G,m : G × G → G, e :
1 → G > together with an arrow inv : G → G such that the diagram
commutes

G

∃!
��

4 // G×G
inv×idG // G×G

m

��
1

e // G

where 4 : G → G × G is the diagonal morphism (i.e. p4 = q4 = idG ,
where p, q are the projections from the product to its components).

B.3 Simplicial groups

De�nition B.3.1. [38] A simplicial set K• is a graded set indexed on the
non-negative integers together with maps ∂i : Kq → Kq−1 and si : Kq →
Kq+1, 0 ≤ i ≤ q , which satisfy the following identities:

(i) ∂i ∂j = ∂j−1 ∂i if i < j,

(ii) si sj = sj+1 si if i ≤ j,

(iii) ∂i sj = sj−1 ∂i if i < j,
∂j sj = identity = ∂j+1 sj,
∂i sj = sj ∂i−1 if i > j + 1.

The element of Kq are called q-simplices. The ∂i and si are called face
and degeneracy operators.

If C is any category, a simplicial object in C is given by a family of
objects of C, {Kn, n ≥ 0} and morphisms ∂i and si as above. A simplicial
group is a simplicial object in the category of groups.
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De�nition B.3.2. Given a simplicial group G• , the Moore complex ((NG)•,
d) is the normal chain complex de�ned by

•
(NG)n = ∩ni=1ker(∂

n
i )

that is the joint kernel in degree n of all face maps except the 0-face,

• and the di�erential maps given by the remaining 0-face

dn := ∂n0|(NG)n
: (NG)n → (NG)n−1.
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