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”But the secret of intellectual excellence is the spirit of criticism; it is

intellectual independence. And this leads to difficulties which must prove in-

surmountable for any kind of authoritarianism. The authoritarian will in

general select those who obey, who believe, who respond to his influence. But

in doing so, he is bound to select mediocrities. For he excludes those who

revolt, who doubt, who dare to resist his influence. Never can an authority

admit that the intellectually courageous, i.e. those who dare to defy his au-

thority, may be the most valuable type. Of course, the authorities will always

remain convinced of their ability to detect initiative. But what they mean by

this is only a quick grasp of their intentions, and they will remain for ever

incapable of seeing the difference.”

Karl R. Popper,

The Open Society and Its Enemies, Volume 1: The Spell of Plato
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Abstract

The present work is divided in two part. The first is dedicated to the inves-

tigation of the gas-metal interactions, an interesting area in the basic surface

science but also in applied one, since it could provide a more efficient way to

design corrosion-resistant structural metals.

In particular, we concentrate our attention on the study H2S on Fe sur-

face. Experimental studies, of adsorption of H2S on Fe, and first-principle

calculations were carried out for these systems, clarifying some important

questions, such as adsorption geometry and dissociation pathways for H2S,

on the above close-packed metal surfaces.

However, real samples will also include a number of defects, in particular

step edges where bonding of adsorbates is usually stronger than at facets. It is

therefore interesting to investigate adsorption of H2S on a stepped Fe surface,

a task which has not been considered yet to the best of our knowledge.

In the present work we study the H2S interaction with Fe(310) surfaces

by DFT calculations in order to understand the role of step defects in the

adsorption properties. We recall that the (310) surface is relatively stable,

and its surface energy predicted to be even smaller than that of Fe(110). We

do not only obtain the binding sites and adsorption energies of H2S and its

components, but we also relate bonding to the detailed features of the local

ix
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density of states (LDOS).

The second part of the present thesis is devoted to the dynamics of scat-

tering. Scattering underlies various physical processes in different field of

physics, mainly in solid state, as for example in thermoelectricity, about the

filtering of hot electrons by defects, or adsorption and desorption by a surface,

or in charge injection and field emission trough interface, usually associated

with tunneling mechanisms. The recent developments of nanotechnology and

the advent of modern high-speed high-density MOS devices, have revived the

technological and theoretical interest of the scientific community on the scat-

tering problem and in particular on quantun tunneling mechanism usually

associated. Ultrascaled nanometric CMOS compatible single electron tran-

sistors (SETs) and single atom trasistors has lead the emergence of density

of states graining and fluctuations in the contacts which may determine dis-

cretization of energy levels, charge localization at intradopant length scale

and selection rules on quantum states in tunnelling. Consequently, the un-

derstanding of dependence of charge dynamics, across a barrier, from the

initial position constitutes a relevant aspect in such systems.

In this work we study the scattering process in the non stationary frame-

work using Gaussian wave packet (GWP) to describe the particle wave func-

tion of the system so as to consider the dependence of scattering dynamics

from the initial conditions. Through a numerical solution of the Schrödinger

equation we analyse the evolution of the system calculating the transmis-

sion of the scattering GWP as a function of the initial σx(0) and x(0), and

comparing simulated data with theoretical results.

By our analysis a new important issue emerges: the time spent by the

particle to reach its asymptotic probability to be observed beyond the barrier

( that we call formation time), strongly depends on initial conditions, and
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in particular on x0. Finally, to analytically express such a dependence, we

propose a semi-classical approximated model in which tf is described as the

time spent by a finite support (accounting for the 0.99 of the probability) of

the incident wave packet to cross the barrier, namely the time required to

locate, in coordinate space, the greatest amount of the GWP’s probability

distribution beyond the barrier interface.

The text of this dissertation includes the following previously published

material:

• Carone Fabiani F., Cerofolini G.F., Narducci D.,Dynamics of wave

packets generated at a finite distance from a scattering step, Univer-

sal Journal of Physics and Application, Vol.2, No.3, 193-199 (2014)

• Carone Fabiani F., Fratesi G., Brivio G.P., Adsorption of H2S, HS,

S, and H on a stepped Fe(310) surface, European Physics Journal B,

Vol.78, 455–460 (2010)
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Introduction

The investigation of the gas-metal interactions is an interesting area both in

the basic and applied fields of surface science. In particular it could provide

a more efficient way to design corrosion-resistant structural metals.

One of the most notorious and aggressive gases is hydrogen sulphide

(H2S), a molecule which is relevant for different reasons. First H2S is con-

sidered as a model molecular system to study the corrosion phenomenon due

to sulfur compounds. Owing to the weakness of H-S bond, the barriers for

H2S dissociation, in particular, on transition metals, are usually small [19, 5],

leading to fast sulfur deposition on the surface and subsequent sulphide for-

mation. It is well known that adsorbed sulfur acts as poison, for example

reducing H2 dissociation on metals [51], and is also a severe hindrance to hy-

drogen desorption on transition metals [27]. Also H2S, a common impurity

in fossil derived fuels, has highly poisonous effects on metal based catalysts

used in many reactions in petrochemical industry deactivating their catalyz-

ing power. Finally we recall that, once H2S deposits its hydrogen atoms on

the solid, those atoms can also embrittle metals such Ni and Fe [45, 48, 7].

Experimentally, different studies of adsorption of H2S on close-packed and

corresponding open surfaces of transition and noble metals (for example: Co,

Cu, Ni, Ir, Pd, Pt, Au, Ag) were performed [53, 32, 9, 29, 46, 22]. They

3



4 Introduction

pointed out the easy dissociation of H2S on most of these surfaces at low

temperatures. In particular, experimental results of adsorption of H2S on

Fe, in a wide range of temperatures, clearly show the absence of molecular

free H2S and HS molecules because of subsequent sulphide formation on the

metal surface (see the formation of FeS [37]) at room temperature and below

down to about 100 K.

First-principle calculations were also carried out for these systems, clarify-

ing some important questions, such as adsorption geometry and dissociation

pathways for H2S, on the above close-packed metal surfaces [2]. In that work

a weakly H2S molecular adsorption is found, preferentially in the top site

with the H2S molecular plane parallel to the surface. The authors also con-

cluded that a stronger binding occurs on transition metal surfaces than on

noble metal ones, following a more facile decomposition of H2S. In the case

of Fe(100), density functional theory (DFT) calculations were performed for

characterizing H2S and HS adsorption [24, 25] and dehydrogenation barriers.

Weak adsorption of H2S at the bridge site with perpendicular orientation to

the surface was found. Further calculations reported about the same results

for H2S adsorption on Fe(110) and even lower activation energies for the

molecule decomposition [26].

Such (100) and (110) surfaces are among the most stable iron ones [49, 6].

However, real samples will also include a number of defects, in particular

step edges where bonding of adsorbates is usually stronger than at facets

[44, 31]. It is therefore interesting to investigate adsorption of H2S on a

stepped Fe surface, a task which has not been considered yet to the best of

our knowledge.

In the present work we study the H2S interaction with Fe(310) surfaces

by DFT calculations in order to understand the role of step defects in the
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adsorption properties. We recall that the (310) surface can be viewed as a

stepped (100) one with facets exposing two Fe atoms in between the adjacent

steps. It is relatively stable, its surface energy predicted to be even smaller

than that of Fe(110) [49]. We do not only obtain the binding sites and

adsorption energies of H2S and its components, but we also relate bonding

to the detailed features of the local density of states (LDOS) [18, 8].

In chapter 2 we present the theoretical background for our analysis with

particular focus on Density Functional theory (DFT). In chater 3 we describe

the computational method used in this study. In particular, in section 3.2,

after presenting our results for adsorption on Fe(100) which will serve as ref-

erence, we show bonding energies, geometries and the LDOS’s for adsorption

of H2S and HS on Fe(310), providing also the same analysis for H and S

adatoms following the dissociation of the previous species. The last section

is devoted to the conclusions.
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- Chapter 1 -

Density Functional Theory

This chapter is devoted to a brief overview of first-principles techniques, in

solid state physics, used in our analysis. The first part of this chapter we de-

scribe the theoretic approach to the many-body problem in solid state physics

(the Born-Oppenheimer approximation) used to study the properties of ma-

terials at the atomic scale. Then we present the fundamentals of Density

Functional Theory (DFT) and the practical numerical implementation used

in the present study: pseudopotentials, k-point sampling, supercell.

§ 1.1 Many-body problem

The starting point to study of the physics of a time-independent quantum

system of interacting particles is the application of the following Schrödinger

equation:

HΨ = EΨ (1.1)

7



8 Chapter 1. Density Functional Theory

where H is the Hamiltonian of the system, Ψ is the wave function de-

scribing all the particles of the system and E is the corresponding energy.

In solid state physics, systems are described in terms of interacting electrons

and nuclei with the following Hamiltonian:

H(R, r)Ψ = TN(R) + Te(r) + VNN(R) + Vee(R) + VeN(R, r) (1.2)

where R ≡ RI labels the set of all the nuclear coordinates RI and r ≡ ri

labels the set of all the electronic coordinates ri. TN and Te are respectively

the kinetic energy operator of nuclei and electrons, VNN , Vee, VeN are the

Coulomb electrostatic potential energy operators between respectively nuclei,

electrons, and electrons and nuclei:

TN = −~
2

2

∑

I

1

MI

∂2

∂R2
I

(1.3)

Te = − ~
2

2m

∑

I

∂2

∂r2i
(1.4)

VNN =
e2

2

∑

I 6=J

ZIZJ

||RI −RJ ||
(1.5)

Vee =
e2

2

∑

i 6=j

1

||ri − rj||
(1.6)

VeN = −e2
∑

i 6=I

ZI

||ri −RJ ||
(1.7)

where ZI is the charge of ion I with mass MI , m is the mass of the

electron and e its elementary charge. The widely used approximation to

deal with (1.2) is the Born-Oppenheimer approximation [4] which enables to

decouple the nuclear degrees of freedom from the electronics ones. In such

an approximation, the large nuclei masses can be considered as stationary

compared to the electric charges such that the kinetic energy (1.3) of the

nuclei is treated as a perturbation on the electronic Hamiltonian He:

He(R, r)Ψ = Te(r) + VNN(R) + Vee(R) + VeN(R, r). (1.8)
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where the set of atomic positions R can be treated as fixed parameters in

He. In this context, the potential energy VeN , due to the interaction of the

nuclei on the electrons, can be seen as the energy of the electrons in the

fixed external potential of the nuclei. Once the potential Vee, VeN and VNN

are computed, the quantum description of a solid is obtained through the

Schrödinger equation and its solution Ψ(r) as a many-body electronic wave

function. Hence, the electronic wave function, electronic density and the

eigenstates of any operator can be calculated at different nuclear positions.

Moreover, the ionic geometry of the system can be obtained by computing

the forces (Hellmann-Feynman theorem [11]) and stresses (generalized Virial

theorem [38]). However, the many-body wave function remain a complicated

quantity depending on 3N spatial variables and 3N spin variables. The

huge number of variables, increasing with N , severely limits the sizes of a

system when it is treated with wave function based methods, so, for practical

calculation, it is necessary to adopt a different paradigm as proposed by

Density Functional Theory.

§ 1.2 Density Functional Theory

Due to their high computational efficiency and accuracy, DFT methods have

become the most widely used ab-initio methods in solid state physics to

describe the interacting systems of molecules, crystals and surfaces, also pro-

viding a simple method for describing the effects of exchange and correlation

in an electron gas. In contrast with wave function based methods, the cen-

tral quantity in DFT approach is the electronic charge density distribution

ρ(r). Moreover, with respect to both the approximated Thomas-Fermi and

Hartree-Fock-Slater methods, DFT has the advantage to be in principle ex-
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act for the ground state. In their pioneering works, Hoemberg and Kohn [20]

showed that the minimum of the total energy as a functional of ρ(r) is the

ground state energy of the system, and that the minimum value of ρ(r) is

the exact single-particle ground-state density. After that, Kohn and Sham

showed that a many-electron problem can be replaced by a fictitious non

interacting particles problem solvable by an equivalent set of self-consistent

one-electron equations, in which the ground state properties of the system are

functionals of the ground state electron density [30]. The equations derived

by the Hoenberg-Kohn-Sham approach are time-independent Schrödinger-

like equations in which the electron-electron interaction potential is split

for convenience into two parts: the Hartree potential, and an exchange-

correlation potential, whose form is, in general, unknown. The advantage of

using the electron density over the wave function is reducing dimensional-

ity. In fact, the density is always 3 dimensional whatever is the number of

electrons contained in the system enabling DFT to deal with a much larger

systems than others methods. In the next sections, we will give a basic in-

troduction to DFT( see [30, 55, 12, 28] and textbooks [39, 10] for further

reading)

§ 1.3 The Hohenberg-Kohn theorems

Herein we provide the proofs of the main results due to the work of Hohenberg

and Kohn that can be summarized as follows: (i) there is a one to one

mapping between external potential and electron density; (ii) the ground

state density exists can be found trough a variational principle. Reducing our

attention on a non-degenerate systems, we suppose to deal with an electronic

system interacting trough an external potential v(r). We assume that we
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know the electron density of this system which determines v(r) and thus all

its properties. Suppose another external potential v′(r) exists which differs

from v(r) but with the same electron density (ρr) for the ground state. So we

will have two different Hamiltonians Ĥ and Ĥ ′ whose ground state electron

density is the same but the normalized wave function Φ and Φ′ would be

different. How we will see this leads to a contradiction. In fact we can write:

E0 < 〈|Φ′|Ĥ|Φ′〉 = 〈|Φ′|Ĥ ′|Φ′〉+ 〈|Φ′|Ĥ − Ĥ ′|Φ′〉

= E ′
0 +

∫

ρ(r)[v(r)− v′(r)]dr (1.9)

where E and E ′ are the ground-state energies for Ĥ and Ĥ ′, respectively.

Similarly we can get

E ′
0 < 〈|Φ|Ĥ|Φ〉 = 〈|Φ′|Ĥ ′|Φ′〉+ 〈|Φ′|Ĥ ′ − Ĥ|Φ′〉

= E0 −
∫

ρ(r)[v(r)− v′(r)]dr (1.10)

Adding (1.9) and (1.10), we will obtain the following false relation:

E0 + E ′
0 < E ′

0 + E0. (1.11)

Hence it is impossible to have two different external potentials with the

same ρ(r). Thus ρ(r) uniquely determines v(r) and all ground state proper-

ties.

The second Hohenberg-Kohn theorem demonstrates that the ground state

energy can be obtained variationally, where the exact ground state density

is the density that minimize the total energy. It means:

E0[ρ] ≤ E[ρ] (1.12)

First, rewriting the energy E as a function of the electron density only,
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we have: ρ(r):

E[ρ] = T [ρ] + Tne[ρ] + Vee[ρ] (1.13)

=

∫

ρ(r)v(r) + FHK[ρ] (1.14)

where

FHK[ρ] = T [ρ] + Vee[ρ] (1.15)

Note that FHK[ρ] is function only on ρ and independent by any external

potential v(r). Thus FHK[ρ] is a universal functional of ρ Assuming the first

theorem, the ρ uniquely defines the external potential v(r), hence, for any

other wave function Φ′ and its electron density ρ′, we have:

〈|Φ′|Ĥ|Φ′〉 =

∫

ρ′(r)v(r) + FHK[ρ] ≡ E[ρ′] ≥ E[ρ] (1.16)

So the energy will reach the minimum only when the electron density is the

ground-state electron density, which proofs the thesis.

§ 1.4 The Kohn-Sham Equations

Although the Hohenberg-Kohn theorem provided the connection between the

ground state density and the total energy of the system the problem on how

to obtain the density ρ(r), or the functional FHK[ρ(r)], remained an unsolved

problem. Later, Kohn and Sham [30] resolved the problem by introducing

the one electron orbitals and approximating the kinetic energy of the system

by the kinetic energy of non-interacting electrons. In such a way they got

the following equation which represents the central equation in Kohn-Sham

DFT:
(

−1

2
∇2 + v(r) +

∫

ρ(r)

|r− r′|dr+ vxc(r)

)

φi = ǫφi (1.17)
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where, on the left hand side, the kinetic energy of the non-interacting ref-

erence system, the external potential, the Hartree potential, and the exchange-

correlation potential, respectively appears.

If we set:

veff(r) =

∫

ρ(r′)

|r− r′|dr
′ + vxc(r) (1.18)

we obtain a more compact form of (1.17),

(

−1

2
∇2 + veff

)

φi = ǫφi (1.19)

As we can see, (1.19) is the one-electron Schrödinger-like equation. Here,

φ are the Kohn-Sham orbitals, ǫ is its energy and the electron density is:

ρ(r) =
∑

i

|φi|2 (1.20)

and the exchange-correlation potential is expressed by:

vxc =
δExc[ρ]

δρ(r)
(1.21)

where Exc[ρ] is the exchange-correlation functional which is not known and

in which it is discharged all the lack of information of the original system.

Equations (1.19), (1.20), and (1.21) compose the Kohn-Sham equations.

Note that the veff depends only on ρ(r) through (1.18). The Kohn-Sham

equations represent a mapping of the interacting many-electron system onto

a system of non interacting electrons moving in an effective potential due to

all the other electrons. They must be solved self-consistently. The general

procedure to solve the Kohn-Sham problem is described as follows: an ini-

tial trial electron density is settled to construct the veff from (1.18). As a

result the Kohn-Sham orbitals are obtained. Based on these orbitals, a new

density is obtained from (1.20) and the process repeated until convergence is
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achieved. Finally, the total energy will be calculated by final electron density

through the following:

E =
N
∑

i

ǫi −
1

2

∫ ∫

ρ(r)ρ(r′)

|r− r′| drdr′ + Exc[ρ]−
∫

vxc(r)ρ(r)dr. (1.22)

In principle, once each term in the Kohn-Sham energy functional was

known, the exact ground state density and total energy are obtained. Unfor-

tunately, the exchange-correlation Exc functional is not exactly accessible and

it is necessary to approximate it to deal with the Kohn-Sham equations. Exc

includes the non-classical aspects of the electron-electron interaction along

with the component of the kinetic energy of the real system different from

the fictitious non-interacting system. Different approximations for Exc have

been used, with varying levels of complexity [43].

§ 1.5 Generalised Gradient Approximation

(GGA)

As we can see from (1.21), the exchange-correlation potential vxc is a func-

tional derivative of the exchange correlation energy with respect to the local

density. For a homogeneous electron gas, this will only depend on the value

of the electron density, while for a non homogeneous system, the value of vxc

at the point r depends also on its variation close to r.

So, the exchange-correlation potential vxc can be expanded in terms of

the gradients of the density:

vxc[ρ(r)] = vxc[ρ(r),∇ρ(r),∇(∇ρ(r)), ...] (1.23)

As the exact form of the energy functional is unknown, different approx-

imations for vxc can be deduced considering increasing order of the gradient
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of the density into the definition. Following Perdew-Schmidt ”Jacob’s lad-

der” [43], it is possible to classify the the exchange-correlation functional as

follows:

• LDAs (first rung), which depends only on the local density,

• GGAs (second rung) in which the dependence on the gradients of the

density is added,

• MGGAs (third rung), including Laplacian of the density and/or the

(local) Kohn-Sham orbital kinetic energy density,

• Hybrid functionals (fourth rung), in which the exact exchange is added

to the MGGAs functionals

• the fully non-local functionals (fifth rung), which make use the unoc-

cupied kohn-Sham orbitals also.

In te present thesis we take into account GGAs functionals, which takes into

account the density ρ(r) and the its gradient:

EGGA
xc [ρ(r)] =

∫

ρ(r)ǫGGA
xc ρ(r)∇ρ(r)dr (1.24)

So called semi-local GGAs functionals are more suitable approximations than

the LDAs functionals for the study of many properties, for example geome-

tries and ground state energies of molecules, while they are not necessarily

better than LDA with relation to the properties of metals and their surfaces.

The most widely used GGAs in surface physics are the PW91 [41] and PBE

[40] family of functionals. Others popular funtcionals as PBE, revPBE [54],

RPBE [17], PBE-WC [52], and PBEsol [42] belong to this family. RPBE

is the most popular of them, although PBE-WC and PBEsol, seem to be

promising methods for the simulation of solids and their surfaces. Finally,
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the AM05 functional [3], designed to include surface effects has been shown

to offer a much improved performance for lattice constant and bulk modulus

than PBE [35].

§ 1.6 Plane-Wave Basis Sets

In practical DFT calculations of solids or condensed matter, one must adopt

a basis set of wave functions and plane-wave basis set is a very widely used

choice. We will now briefly discuss plane-waves and then the pseudopotential

methods usually adopted jointly with plane-waves for treating the strong

interactions between core electron and nuclei.

Crystal is a periodically arranged structure of atoms, whose electrons

lie in a periodic external potential U(r) with the same periodicity as the

underlying Bravais lattice R, it means:

U(r+R) = U(r) (1.25)

For an infinite solid with the Born-Von Karman periodic boundary condi-

tions, Bloch’s theorem [4] asserts that, the eigenstates φ of the one electron

Hamiltonian with potential U(r) can be written as

φnk(r) = exp(ik · r)unk(r) (1.26)

where unk have the same periodicity as the potential (U(r)). Furthermore,

unk can be expanded as,

uik =
1

Ωcell

∑

m

ci,m exp(iGm · r) (1.27)

where G is the reciprocal lattice vector and Ω = NcellΩcell, with Ω as the

whole volume.
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By inserting (1.27) in (1.26), the eigenfunctions can be written as

φi(r =
∑

q

ci,q
1√
Ω
exp(iq · r) (1.28)

Here ci,q are the expansion coefficients, q = k + G, and the exponential

terms in (1.28) are the basis of the orthonormal plane-waves.

Obviously, this Fourier transform of the Bloch functions involves infinite

number of plane waves to exactly describe them, so, in practice, the plane

wave expansion is truncated to the plane wave with energy lower than a

certain cut-off energy Ecut and convergence studies must be performed to

choose suitable cut-off, depending on the system and on desired precision.

1.6.1 Brillouin zone grid

Generally, calculations on the reciprocal space involve the knowledge of the

Bloch functions over an infinite k points over the Brillouin zone. So, practi-

cally, we need to select a finite number of k points where the Bloch functions

are known. In this thesis we will use the Monkhorst and Pack [36] technique

to sample the reciprocal space which allows to define a finite mesh of k points

in each direction, as a good compromise between computational cost and ac-

curacy of the results. This set of k-points depends on the symmetry of the

system and must be converged in each case study by increasing its size.

§ 1.7 Pseudopotentials

As we have seen before, to perform numerical calculations we must to trun-

cate the plane wave expansion on the base of some cut-off energy criterion.

Unfortunately, two main problems arise: the deeply bound core electrons re-

quire a huge amount of basis functions for their correct description [33], and
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second the valence electron wave function in the core region suffer of rapid

oscillations. So, we run into the problem to have a good description of such

electrons by an acceptable computational cost

The pseudopotential approach [14] is devoted just to such a problem

and it is based on the two following approximations. The first consists in

considering the electronic properties of the molecules and solids mainly due

by the valence electrons while the core electrons can be considered as frozen.

On the other hand, it is expected that the core electrons that do not directly

involved to the chemical bonding are only slightly affected by modifications

of the atomic environment.

The second approximations is to replace a smooth version of the nucleus

potential (the so called ”pseudo-potential”), as the central region of the va-

lence electronic wave functions is weakly involved in the chemical properties

of the atoms. The atomic potential, screened by the core electrons, is replaced

by a pseudo potential such that the analytical form of the valence wave func-

tions don’t change beyond a given cut-off radius and are replaced by smoothly

varying function in the core region. The above approximations allow to re-

duce the number of electrons, and the respective plane waves, involved in

the Kohn-Sham equations and hence the computational cost. Among many

types of pseudopotential developed for DFT calculations in the last year [50]

we adopted the pseudopotential implemented in QUANTUM ESPRESSO

code used for our calculations.
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Adsorption of molecules on Metal Surfaces

Adsorption mechanism and surface reactions are the main aims of surface

science. In particular the nature and the energetics of adsorption , the geome-

tries and the bond lengths of the adsorbate represent the core of the surface

and interface analysis. DFT is one of the most powerful tool for analysing

surface geometries, to calculate adsorption energies, as well electronic and

atomic structures. DFT calculations describe the geometry and energy dif-

ferences of chemically similar bound adsorbates with a very good accuracy,

but it is less precise to predict absolute energy.

§ 2.1 Adsorption process

When atoms or molecules in the gas phase (called the adsorbates) and a

solid or liquid surface (called the substrate) brought together, they start to

interact. Adsorption is the process which describes the binding of an adsor-

bate on a substrate. The inverse process of removing the adsorbate from the

surface is called desorption. It is possible to distinguish the adsorption phe-

19
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nomenon in two classes [47]: physisorption and chemisorption. Physisorption

refers to the adsorption in which a weak intermolecular bonding as Van der

Waals between adsorbate and substrate are involved and which is related to

adsorption energies typically less than 0.3 eV per particle. Due to this weak

interaction, a small perturbation electronic structure of the adsorbate is ex-

pected. Chemisorption refers to those processes where the adsorption energy

is larger, characterized by a chemical bond (covalent bond) between the ad-

sorbate and the surface. In this case the electronic structure of adsorbate is

significantly modified.

The nature of the adsorbate-surface bond varies significantly with the

substrate. Besides being a reservoir of ions a surface has the effect to stabilize

intermediates and hence to catalyze reactions and also to allow defect grow.

On metals, the largest contribution to bonding comes from an interaction

with the conduction band [21], which shares electrons with the adsorbate,

modifying the electron density of the neighbourhood of the adsorbate [34].

The adsorbate wave functions are hybridized and the interaction with

s-band states of the substrate causes a broadening of the adsorbate levels.

The broadening and shifting to the substrate Fermi level of electronic levels

of an adatom close to the surface, is due to the spill out of the substrate

s-electrons mostly into the vacuum [47]. Broadening implies a coupling of

the electrons of the adatom, which are localized, to the substrate, leading to

a delocalization. The more localized d-states also interact with the atomic

levels. In this case the narrow d-band interacting with the atomic levels mix

and split into bonding and antibonding states. The bonding state, with a

lower energy, is due to those states which have an increased electron density

between the adsorbate and the substrate, while the higher energy antibonding

state, which is due to those states with a node between the adsorbate and
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the substrate. Moreover, due to the hybridization with the adsorbate, the

electron density inside the d-band decreases and move to higher and lower

energy band, and the resulting adsorbate-surface DOS, shows peaks close

to the lower and upper edge of the d-band. The bonding is strongest when

bonding states are occupied and antibonding states remain empty.

Based on the assumption that trends in the chemisorption energy of the

adsorbate-surface strictly depends by the interaction of adsorbate orbitals

with surface sp- and d-bands, a simplified theory of adsorbate bonding on

transition metal surfaces has been proposed by Hammer and Norskov [18, 15,

16]. In particular the change in the energy due to the hybridization of the

adsorbate orbital with the d-bands of metals is equal to the corresponding

changes in chemisorption energy. Their in-depth analysis of the adsorbate-

induced change in the density of states shows two basic features: (i)the

coupling to the d-states can be reduced to a two level problem (bonding and

anti-bonding states), and (ii) the basic feature to characterize d-bands is the

their band center. The general trends for the transition metals are that:

going to the left in the Periodic Table, the bonds become stronger as the

d-band is emptying, and they become weaker going down the Periodic Table.

Some important correlation for the adsorption of isolated atoms on metallic

surfaces is that stronger bonding, go together with shorter bondlengths. For

sites with lower coordination than hollow adsorption site, the strength per

bond will typically increase, because the same number of adsorbate electrons

have to be distributed over fewer bonds, resulting to a decrease of the bond

length on top and bridge sites. This correlation between local coordination

and bond strength, and the correlation between bond strength and bond

length is well known.
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§ 2.2 Potential Energy Surfaces, Adsorp-

tion Energy

The total energy Etotal(V,N
nuc
A , Nnuc

B , ...,RI) of an atomic arrangement in

the Born-Oppenheimer approximation can be described as an hypersurface,

in the atomic coordinates space, called PES [47]. Once its expression is

obtained, for example by a DFT calculation its global minimum represent

the most stable configuration of the system.

The adsorption energy per atom is the difference of the total energy of

the adsorbate system and the total energy of the clean substrate, as follows:

Eads = −(Etotal − Eclean/surface −NEadatom)/N (2.1)

where Etotal is the total energy per adatom, Ecleansurface is the total energy

of the clean substrate, and NEadatom is the total energy of N free adsorbates

involved in the adsorption process.

§ 2.3 Surface models

2.3.1 Structure and modelling of clean surfaces

Surfaces are generated cleaving a bulk crystal. In such a way atoms at the

surface modify decreasing their coordination degree with respect to those

in the bulk. This cause a relaxation and eventually the reconstruction of

the atoms at the surface with a change of the surface geometry and a new

equilibrium atomic positions is reached. Considering an ideal cubic crystals,

is possible to distinguish two classes of surfaces: flat surfaces with low Miller
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index ( (100), (111) and (110) surfaces), and stepped surfaces with higher

Miller index.

However, although an ideal flat surface can be consider a good model

providing relevant informations about real samples, such systems also include

a number of defects, such as kinks, vacancies or steps, which could drastically

modify the properties of the substrate with respect to an ideal one.

To better understand the adsorption of H2S on a real Fe surface in this

thesis we will concentrate our attention on stepped surfaces. Steps can be

suitably implemented using vicinal surfaces, which exhibit a regular array of

steps. Vicinal surfaces (or stepped surfaces or high-Miller-index surfaces)can

be created by cleaving a crystal at a small angle away from a low-Miller-index

plane. Vicinal surfaces exhibit atomic terraces with a low-index orientation,

and these terraces are separated by atomic steps.

In the present work we use an Fe(310) surface, which exhibit different

sites with a similar symmetry but involving different kinds of Fe atoms.

2.3.2 Supercell approach

Supercell model is one of the most widely adopted approach for surface simu-

lations especially for metal surfaces with de-localized valence wavefunctions.

Supercell approach implies the use of slabs and vacua. The slab in the

supercell is infinite and periodic in the directions parallel to the surface,

but finite in the direction perpendicular to the surface to assure the correct

dispersion of the band formation. Constructing supercell model one must

pay attention to the following criteria: the thickness of the slab must be

sufficient to avoid interaction between the two surfaces of the slab and the

vacuum thickness must be large enough to avoid mutual interactions between

surfaces of consecutive slabs. This procedure also guarantees that the middle
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Figure 2.1: Slab structure

layers of the slab show bulk-like properties. In our study we just use a slab

vicinal surface model in the supercell approach to investigate the properties

of vicinal surfaces.

We choose a reasonable surface unit cell size, constructing the slab from

the corresponding high Miller-index plane layer by layer, paying a particular

attention on proper k-point sampling. Such a setup allows the investigation

of long-range step-step interactions.
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Adsorbtion of H2S, HS, S, and H on a

stepped Fe(310)

This chapter contains setting, procedures and results of the first-principle

calculations performed to simulate the adsorbtion of the hydrogen sulfide

molecule on a stepped Fe(310) surface, and all the species composing H2S:

HS, S, and H. We will provide energy and geometry of all such the species

with particular attention on the most stable configurations

§ 3.1 Simulation setting

We perform first-principle calculations based on spin-polarized DFT [20, 30].

To solve the Kohn-Sham equations, with periodic boundary conditions and a

plane-waves basis set, we use the Quantum Espresso (Q.E.) integrated suite

of codes [13]. We use the generalized gradient approximation(GGA) of PBE

to treat the electron exchange and correlation[40], using pseudopotentials

available in the Q.E. website. The Kohn-Sham one electron valence eigen-

states were expanded in terms of plane-wave basis sets with a cut-off energy

25
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of 220 Ry. We use the first order Marzari-Vanderbilt method for the Fermi

surface smearing with a width of 0.02 Ry and the Monkorst-Pack scheme for

k-point sampling of the Brillouin zone, with a converged k-mesh of 8×8×8

for bcc Fe. First we determine the equilibrium lattice constant a0 for the

ferromagnetic bcc Fe. The resulting value for a0 is 2.84 Å in good agreement

with the experimental one equal to 2.86 Å [1]. To calculate the electronic

structure of the isolated species H2S, HS, S, and H we set the molecules and

the atoms in a 11.36 Å periodic cubic box.

Following a convergence study of the total energy, we chose a 5-layer

slab to model the Fe(100) surface and a 8-layer slab for Fe(310), in order

to consider a thickness for the latter as close as possible to the that of the

Fe(100) slab. In the case of Fe(100) the top two layers of the substrate were

allowed to relax together with the adsorbate layer deposited on that side of

the slab. The bottom three layers were kept fixed in their bulk positions to

represent the semi-infinite crystal. In the case of Fe(310), the top three layers

of the substrate were allowed to relax and the bottom five ones were kept

fixed in the bulk positions. A (2 × 2) surface unit cell at 0.25 monolayers

(ML) coverage was adopted for studying adsorption on Fe(100). A coverage

as close as possible to that value was considered for Fe(310), namely 0.30

ML in a (2 × 1) surface unit cell. We use a 4 × 4 k-mesh for both Fe(100)

and Fe(310) surfaces, which determines the adsorption energy of H2S within

5 · 10−6 Ry.

The adsorption energy of each species was obtained by the equation:

Eads = Esys −Eslab −Emol, (3.1)

where Esys, Eslab, and Emol are the total energy of the whole system (ad-

sorbates and slab), of the Fe slab, and of the isolated molecule or atom,

respectively. Following common practice, we take half the calculated energy
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for an H2 molecule as value of Emol for H species.

§ 3.2 Results and discussion

In this section we report all our results and analysis relative to the adsorption

of all the species possibly involved in the interaction of H2S and both the

Fe(100) and Fe(310) substrate, eventually analysing and also comparing their

the Local Density of States (LDOS). Remind that LDOS is a key quantity to

analyse the electronic structure and system properties, such as the valence

band, conduction band, Fermi energy, bonding region, etc. It is the number

of electronic states within energy between E and E + dE , defined as:

n(r, ǫ) =
∑

i

|ψi(r)|2δ(ǫ− ǫi) (3.2)

where ψi(r) is the single-particle Kohn-Sham eigenfunction, and ǫi the

corresponding eigenvalue.

Before studying the adsorption features of each species, we must dis-

tinguish different high-symmetry sites on the two surfaces. In the case of

Fe(100) (see Figure 3.1(a)), there are bridge (b), hollow (h) and top (t) sites.

On the Fe(310) surface (see Figure fig:1(b)), we can distinguish different sites

having the same similar symmetry but involving different kinds of Fe atoms.

Indeed, top-layer Fe atoms at the step edge have 4 nearest neighbours (NN)

as in the (100) surface, while those at the second layer (at the bottom of the

step) have 6 NN. Hence we have a four-fold hollow site (4h) on the (100)

facets and two kinds of three-fold hollow site at the surface step. The first

one, which we denote by (3h1), involves two Fe atoms at the step edge and

one at the bottom of the step. Conversely, the second one, labelled by (3h2),

involves one Fe atom at the step edge and two ones at the bottom. Finally
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(b)(a)

Figure 3.1: Ball-stick view of Fe(100) (panel (a)) and Fe(310) (panel (b))

with labelled high-symmetry sites. Brighter circles denote higher Fe atoms.

two different kinds of bridge sites are present, on the terraces and on the step

edges, denoted by (b1) and (b2), respectively.

The LDOS of the outermost Fe atoms is plotted in Fig. 3.2 where panel

(a) shows the LDOS for the first layer of Fe(100), panel (b) the one of the

Fe atoms at the top of the step edge of Fe(310), and panel (c) the one of the

Fe atoms at the bottom of the step. We find that the band edges are very

similar and that from the bottom to the Fermi level they integrate to about

the same value (7.80 and 7.82 e− for topmost atoms in Fe(100) and (310),

respectively). The following quantitative differences are found and we expect

a corresponding effect to binding energies. In fact the weighed centre of the d

band at the outermost Fe atom increases from −1.34 eV for Fe(100) to −1.19

eV for Fe(310). We also found that the LDOS at the Fermi level is smaller for

the stepped than for the flat surface: 0.82 eV−1 and 1.21 eV−1, respectively,

though this does not imply a lower reactivity for the latter one[15].

In Tab. 3.1 we present the results of the adsorption energy, bond distances

and geometry for all the species considered in the case of Fe(100). As we can

see our results are in good agreement with previous theoretical investigations,

especially concerning the energies of the most stable adsorption sites, which
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differ by 0.05 eV from those of Ref.[25, ?] at most.

Binding energies and structural details for the various species on Fe(310)

are reported in Tab. 3.2 and will be now discussed. In this case, since some

adsorption sites relax to the same adsorption coordinates during our struc-

tural optimization, such equivalent results are shown only for the adsorbate

site closer to the final geometry.

3.2.1 H and S Adsorption on Fe(310)

For H adsorption, the results indicate a larger binding energy (-0.54 eV) and

a more stable position in the (3h1) site. All sites, except (b1), are equally or

more stable with respect to the similar ones of the Fe(100) surface, whose

binding energy in the most stable site (hollow), is −0.34 eV. The same (4h)

site is preferred by S (adsorption energy equal to −5.77 eV) on Fe(310)) as

on Fe(100), even if the adsorption magnitude is now smaller, since it amounts

to −5.97 eV on the flatter surface.

The above results can be understood in a better way by looking at the

LDOS of the two species summed on the spin populations. Figure 3.3 shows

the LDOS of the whole system (slab plus adatom) projected onto the s state

of the H atom on Fe(100) lying in the hollow site (panel (a)), and on Fe(310)

in the 3h2 hollow site (panel (b)). In both cases, the total (d + s) LDOS

of the topmost Fe atoms of the clean surfaces (that in panel (a) of Fig. 3.2,

shaded area) is reported as reference. We verified that such LDOS does not

change substantially in presence of the adsorbate. Following the generalized

Grimley-Anderson-Newns theory of chemisorption [8, 18, 15] the interaction

of the adatom state with the d states of the metals determines a bonding and

an anti-bonding state (the latter usually smeared out in the valence band).

The former becomes a resonance owing to the interaction with the s band
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Table 3.1: H2S, HS, S and H adsorption energy, bond length, and HSFe

and HSH angles on Fe(100) calculated in the present work (a), and reported

in Ref.[25, 23] (b).

bridge(a) hollow(a) top(a)

H2S Eads[eV] -0.39 -0.10 -0.29

RS−H [Å] 1.357 1.374 1.363

ΘHSH[deg] 92.8 92.1 91.6

HS Eads[eV] -3.13 -3.35 -2.61

RS−H [Å] 1.365 1.393 1.358

ΘHS/Fe[deg] 64.7 1.2 71.0

S Eads[eV] -4.78 -5.97 -4.00

H Eads[eV] -0.28 -0.34 0.26

bridge(b) hollow(b) top(b)

H2S Eads[eV] -0.46 -0.13 -0.33

RS−H [Å] 1.373 1.399 1.362

ΘHSH[deg] 91.7 86.5 93.6

HS Eads[eV] -3.30 -3.56 -2.76

RS−H [Å] 1.363 1.393 1.395

ΘHS/Fe[deg] 58.9 0.00 80.5

S Eads[eV] -4.79 -6.00 -4.06

H Eads[eV] -0.32 -0.38 0.23
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Table 3.2: H2S, HS, S and H adsorption energy, bond length, and angles

on Fe(310) calculated in the present work.

b1 b2 3h1 3h2 4h

H2S Eads[eV] -0.24 -0.45 -0.24

RS−H [Å] 1.377 1.378 1.381

ΘHSH[deg] 92.6 91.9 90.9

HS Eads[eV] -3.29 -3.22

RS−H [Å] 1.361 1.391

ΘHSH[deg] 75.8 15.7

S Eads[eV] -4.68 -5.38 -5.77

H Eads[eV] -0.14 -0.54 -0.33 -0.38

of the metal. Hence both on Fe(100) and on Fe(310) we can observe that

the s state of H broadens. We note that, passing from the flat case to the

stepped one, the hydrogen LDOS slightly shifts towards higher energies being

more hybridized with the Fe valence states, with increased magnitude of the

bonding energy of H by 0.20 eV on Fe(310) than on Fe(100). Such an effect

can be explained by close examining the equations for the d hybridization in

chemisorption in refs.[8, 15, 16], which show that bonding energy increases by

increasing the energy difference between the adatom orbital and the weighed

average d band energy.

In Fig. 3.4 we plot the total LDOS of the system, projected separately

onto the s and p states, of the adsorbed S in the four-fold hollow sites on

both Fe(310) and Fe(100) surfaces. Also in this case, we display the projected

LDOS onto d and s states of the metal atoms before adsorption. For both

surfaces, at the lowest energies we can observe a narrow peak corresponding
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to the s state of sulfur atom, which does not hybridize with the Fe states.

Then, the adatom p state resonances, closer to the Fermi level, are found.

For both s states and p states of sulfur there is an energy shift towards lower

values, passing from the (100) surface to the (310) one. Hence the p peaks

of sulfur for the flat surface are closer to the Fermi level with to a larger

hybridization between adsorbed S and metal states on the (100) surface.

The above consideration about the atomic H and S species can be summa-

rized as follows. There is a common trend for the LDOS of adsorbed species:

larger magnitudes of adsorption energy correspond to a shift of all energy

levels towards higher values (see before). This implies a larger hybridization

between the states of the atomic species and the Fe states below the Fermi

levels leading to a stronger interaction between adsorbed atoms and surface

and a larger binding energy, more evident for S than for H species. This

occurs passing from (100) to (310) for H and vice-versa for the S species.

It might be surprising to find a smaller adsorption strength for S on the

stepped surface, given the same adsorption site. See Tables 3.1 and 3.2).

But we remark that the Fe(310) stepped surface does not display a terrace,

since the steps are too close to one another. In particular, the (4h) site of the

(100) facets of the (310) surface (see Fig. 1b) is a hollow site adjacent to step

edges both from below (where adsorption is commonly stabilized) and from

above (where instead a weaker bonding may be expected) so that the net

result is not easily predictable from common sense. The comparison to other

adsorbates is to be done, to this respect, always considering adsorption in

four-fold hollow sites: indeed, in this case, also HS and H2S are less bonded to

the surface (H2S is not even stable in 4h sites of Fe(310) than in hollow sites

of Fe(100)). The only exception here is H, which is 0.04 eV more stable at the

(310) surface. In conclusion, the step edge offers reactive bridge sites which
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are energetically more convenient for HS and H2S but not for S. We also wish

to add that the hollow site involves Fe atoms with different coordination on

the two surfaces. On Fe(100), all Fe atoms have 4 NN, while on Fe(310) two

have 6 NN and the other two have 4 NN (even though the number of second

neighbors is lower than that on the flat surface). Apparently, the Fe atoms

at this stepped surface are on the average more coordinated than on the flat

one, hence justifying the weaker binding found.

3.2.2 HS Adsorption on Fe(310)

The HS ion on Fe(310) changes its preferred site with respect to that on

the (100) surface. In fact a bridge site (b2) represents the deeper minimum

for the (310) surface rather than a hollow one, with an adsorption energy

equal to of −3.29 eV, slightly larger than that in the hollow site of Fe(100)

(−3.35 eV). The H-S bond length (1.361Å) is about the same as in the gas

phase (whose calculated value is 1.398 Å). The HS ion lies almost parallel to

the terraces of the surface with an angle of 79.8◦ with respect to the surface

normal. The optimized configuration is depicted in panel (a) of Fig. 3.5. As

we found for S, the hollow site is more stable on the flat surface rather than

on the stepped one. However, the bridge site involves only Fe atoms at the

step edge and is stabilized (as expected) by 0.16 eV on Fe(310), eventually

becoming the preferred adsorption site for this surface.

Figure 3.6 shows the LDOS of HS projected onto the s and p states

of the H and S atoms, for adsorption at the bridge site on Fe(100) (chosen

for its larger similarity to the stepped surface one) in panel (a), and the

same LDOS at the (b2) site for Fe(310), in panel (b). The energy positions

of s and p states involved in the S-H bonding is about the same for both

surfaces. However, a small shift to lower energies of the s-p projected LDOS
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Figure 3.2: Comparison between the LDOS of the outermost Fe atoms of

the clean surfaces. Panel (a), first layer of Fe(100); panel (b), first layer

of Fe(310); panel (c) second layer of Fe(310). Majority and minority spin

contributions are shown.
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Figure 3.3: Comparison between the LDOS for H adsorption on Fe(100),

panel (a), and Fe(310), panel (b). For the shaded area see the text.
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Figure 3.4: Comparison between the LDOS for S adsorption on Fe(100),

panel (a), and Fe(310), panel (b). Shaded area as in Figure 3.
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(a)

(b)

Figure 3.5: Side and top view of the adsorption configuration in the most

stable (b2) site for HS, panel (a), and H2S, panel (b).
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for HS/Fe(310) is observed signaling a slightly weaker bond than on Fe(100).

In both cases, the deeper peak is composed mainly by the s states of S and H.

The next one is composed by the s state of H and mainly by the S p-states in

the y direction perpendicular to the step edge and to the surface normal (z),

with a smaller component of the pz state. The broad band which appears at

larger energies is instead due mainly to the px orbital (parallel to the step

edge) and to some extent to the pz one, and is significantly hybridized with

the Fe states. These states are responsible for the HS-surface binding and

are narrower and centered at lower energies in the Fe(310) case.

3.2.3 H2S Adsorption on Fe(310)

In panel (b) of Figure 3.5, the most stable high-symmetry site for adsorption

of H2S on Fe(310), i.e. (b2), is depicted. This configuration presents a weak

adsorption energy of −0.45 eV, while (b1) and (3h1) are even less stable

both at an energy of −0.24 eV. Nevertheless, there is a weak increasing

in the binding energy of H2S on Fe(310) with respect to that on Fe(100)

(−0.39 eV at the most stable bridge site). In (b2) the molecule lies in a

plane perpendicular to the step edges, with the two H atoms pointing out

of the surface. In the same site, other orientations of the molecule were

simulated but proven to be unstable, or leading to dissociation of the molecule

without any barrier when H2S was placed close to the surface in structural

optimizations, in line with easy dissociation of molecular hydrogen sulphide

on the iron surface. With regard to the geometry, both for Fe(100) and

Fe(310) adsorption, there is only a slight change in bond length and in the

HSH angle with respect to that of H2S in gas phase, whose calculated values

are 1.352 Å and 91.1◦, respectively. These small changes are consistent with

the weak interaction between molecular H2S and the surface (see Tab. 3.2).
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Figure 3.7 shows the comparison between the total projected LDOS

onto the s and p states of H and S atoms of the H2S molecule, in the case

of adsorption on Fe(100), panel (a), and Fe(310), panel (b). The calculated

energies of the molecular orbitals up to LUMO are also reported by arrows

in Fig. 3.7, with energy reference chosen to align the lowest level to the same

one for H2S/Fe(100). From Tables 3.1 and 3.2 we note that there is a

very small difference in binding energy between the two surfaces (0.06 eV

larger on Fe(310)). In Fig. 3.7 first, from both panels (a) and (b), one can

distinguish the s states of the S atom hybridized with the s ones of H (the

deepest peak). This could be associated to the 1a1 bonding orbital of H2S,

that does not interact with the surface.

Moving towards the Fermi level the p band of the S atom is found. The

deeper peaks, composed by the py and pz projections (perpendicular to the

step edge and x axis) are also hybridized with the s states of the H atoms.

They can be associate with 1b2 and 2a1 molecular orbitals and are also re-

sponsible for H-S bonding. The following structure derives from the lone

pair of the molecule, i.e., the HOMO b1, which is mostly composed by the

px states of sulfur. This is responsible for the interaction with the surfaces

and appears very similar for Fe(100) and Fe(310). In conclusion, the LDOS’s

of H2S on the two surfaces display smaller differences, as compared to the

species reported before, due to a smaller adsorbate-surface interaction.
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Conclusions

In the framework of periodic density functional theory, we studied H2S, HS,

H and S adsorption on a stepped (310) iron surface at θ = 0.30 ML coverage,

comparing our results with those previously obtained for the same species in

the case of Fe(100).

We find that for S and HS a strong binding is still predicted, but with

slightly smaller adsorption values on Fe(310) than on Fe(100). Conversely

H and H2S are more strongly adsorbed on the stepped surface than on the

Fe(100) one. Both H and HS occupy different stable configurations on Fe(310)

with respect to the ones on Fe(100) (hollow in both cases), namely a three-

fold hollow site for H and the bridge one at the step edge for HS. On the

contrary, adsorption of S and H2S occurs in the same high-symmetry sites

on Fe(310) as on Fe(100), namely the four-fold hollow site for S and a bridge

one (at the step edge) for H2S. Different coordination numbers of Fe atoms

involved in the four-fold hollow site for Fe(310), with apparently increased

average coordination, may account for the reduced adsorption energy of most

species in this site with respect to the same one on Fe(100). This is not a

general result, but it follows for the particular shape of the stepped surface.

The analysis of the calculated LDOS is useful to remark and confirm

common trends with adsorption energies. In particular, a stronger binding
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is predicted when there is a decrease in the relative distance between the

atom’s orbital and the weighed average energy of the projected d bands of

the metals. Indeed this occurs for H and H2S on Fe(310) and S and HS on

Fe(100).
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Introduction

The recent developments of nanotechnology and the advent of modern high-

speed high-density MOS devices, have revived the technological and theo-

retical interest of the scientific community in the tunneling problem, since

they require extremely short channel lengths for improving performance and

decreasing size. The development of ultrascaled nanometric CMOS com-

patible single electron transistors (SETs) and single atom trasistors [25, 34]

has lead, together with sequential tunneling of single/few electrons regime,

the emergence of density of states graining and fluctuations in the contacts

[8, 24]. Confinement effects in the contacts may determine discretization of

energy levels, charge localization at intradopant length scale, valley orbital

splitting [33], and selection rules on quantum states in tunnelling. Conse-

quently, the understanding of dependence of tunneling across a barrier from

the position constitutes a relevant aspect in view of Beyond CMOS and More

Moore technology developments.

The large relevance of such quantum effects on micro devices has also

revived the theoretic interest in the well known problem of the tunneling time,

i.e. the time spent by the particle to tunnel through the barrier [16, 28, 35,

7, 37, 41, 23, 50, 12, 31], insomuch as numerous works were published on this

subject over the last ten years [15, 36, 52, 49]. Surprisingly, no answer to such
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a question has been definitively accepted yet despite the fact that a variety

of definitions of tunneling time have been proposed. We emphasise that, in

most of these approaches, while the particle is described as a wave packet,

its energy is assumed to be an assigned value so that its dispersion, which

may play a fundamental role in several dynamical situations, is completely

ignored.

In this work we point out that, in real cases, only a wave packet approach

can adequately describe the dynamics of a particle. In fact, the stationary

plane wave picture, usually adopted as an approximated scheme for standard

analysis of such problems, intrinsically neglects the initial conditions of the

wave packet in terms of its origin x(0) and spread σx(0), which conversely

play, as we will show, an important role in such an analysis. We concentrate

our attention on the dynamics of a Gaussian wave packet (GWP) scattering

on a step potential. To solve the Schrödinger equation, we have implemented

a code, based on a Crank-Nicholson finite difference scheme with absorbing

boundary conditions, to emulate the wave packet propagation to infinity.

Our code works in 3-d, with any number and shape of barriers. Through a

numerical solution of the Schrödinger equation we analyse the evolution of

the system calculating the transmission of the scattering GWP as a function

of the initial σx(0) and x(0) conditions, and comparing simulated data with

theoretical results.

Further important issue about scattering emerges by the numerical anal-

ysis on the probability of the system to cross the barrier as a function of time

t, which seems to be neglected by literature to the best of our knowledge.

Namely, how much time after the scattering event the wave packet spends to

reach the asymptotic regime, in which the particle has achieved its asymp-

totic probability to be observed beyond the barrier. Of course, since the
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support of a Gaussian is not compact, the interactions with the potential are

ever-present and, in principle, this time is not finite. However, for all prac-

tical purposes, we define a finite time which accounts, within the confidence

limits, for a fixed amount (namely 0.99) of the normalized probability of the

transmitted wave packet. We name this time interval the formation time

tf . Numerical results show that tf strongly depends on x0. To analytically

express such a dependence, we propose a semi-classical approximated model

in which tf is described as the time spent by a finite support (accounting for

the 0.99 of the probability) of the incident wave packet to cross the barrier,

namely the time required to locate, in coordinate space, the greatest amount

of the GWP’s probability distribution beyond the barrier interface. This

could be a relevant aspect, mainly in solid state physics, in those phenom-

ena, of large conceptual and practical interest, which are characterized by

incoming particles generated by scattering centres at a finite and randomly

distributed distance from surface.
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- Chapter 1 -

Dynamics of interacting Gaussian wave

packet

This chapter is dedicated to a general overview of the quantum mechanical de-

scription of a particle and its dynamics with relation to the scattering process.

After a discussion about the importance to describe the quantum particle in

a wave packet frame , we focus on the Gaussian wave packet dynamics for

the free motion and in the case of 1-d scattering.

§ 1.1 Particle as a wave packet

The interaction of a particle in a box with a potential barrier is generally

achieved by describing the particle in terms of monochromatic waves [2, 10,

40, 22, 26, 51].

However, we note that there are a variety of phenomena, mainly in solid

state physics, in which the incoming particles are generated by scattering

centres at a finite distance from the potential barrier. We refer, for example,

to the following scenarios: the passage of hot electrons from the channel
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to the floating gate, in non-volatile memories, during the writing cycle; the

Fowler–Nordheim tunneling [11] of trapped electrons during the erase of the

information stored in floating gate; the filtering of hot electrons by defects, in

thermoelectricity. In the above contexts, it is especially interesting to observe

that the entire treatment of the problem of scattering at the surface, in

terms of energy eigenstate, is manifestly difficult and any description of such

phenomena in terms of stationary plane waves is inadequate. On the other

hand, they are easily framed in the wave packet description, simply assuming

that the scattering centres generating the wave packet are localized. If these

centres are of atomic nature, the maximum information one can provide on

the origin of the particle is a distribution of atomic size (say 0.2–0.4 nm),

whereas if they are attributed to lattice imperfections the particle is localized

with an uncertainty typically of the order of 5 nm. For the above phenomena,

the spread resulting from the localization condition is not negligible with

respect to the mean free path (for electrons in solids λ ≈ 10 nm)—that

renders especially difficult the disentanglement of phenomena due to the

initial wave packet spread and mean free path.

More generally, the description of a particle in a non-stationary state as

a wave packet (usually a GWP) has striking advantages. First of all, the

wave packet description provides a detailed knowledge of the wave function

evolution approaching the step potential, and it is able to provide a measure

of the time required to form the escaping and backscattered wave functions

as a function of particle dynamical properties (mean kinetic energy, energy

dispersion) and of its original position and space dispersion. Second, while

the description in terms of stationary waves can be applied to physically

interesting problems only for potentials subject to very restrictive conditions,

the use of GWP can be applied to potentials which vary even in a non-
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monotonic way with x. In the last case, the major difficulties come from the

fact that a wave packet, initially Gaussian, remains so only for quadratic,

linear, or constant potentials and that, in general, a non-Gaussian packet

does not preserve the norm [14]. Third, the use of GWP allows an easy

interpretation in semi-classical terms. Just like the free motion of a classical

particle with momentum p is frictionless occurring with velocity v, given

by v = p/m, the free motion of the GWP with mean wave number 〈k〉 is

frictionless and occurs with a group velocity vg given by vg = ~〈k〉/m (the

classical velocity).

The major differences between the classical and wave packet description

of the particle are that

• in classical mechanics a particle in a definite energy state is able to drift

whereas in quantum mechanics that would be impossible (the space

probability distributions for eigenstates of energy are stationary);

• the analogy is possible only by exchanging the quantum mechanical

expectation values with the corresponding classical values, and better

the sharper are the quantum mechanical distributions are.

• the quantum mechanical nature of the particle does anyway emerge

because of the almost linear asymptotic increase with time t of the

spread of the wave packet, in agreement with the general behaviour of

the spread of the wave function.

Despite the fact that wave packet approach offers the above advantages,

some of the aspects connected with the wave packet dynamics remain con-

troversial. We refers, for example, to the dependence of the phase and delay

time on the distance between the wave packet origin x0 and the barrier ,

or the acceleration of the transmitted wave packet by an opaque potential
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barrier [16, 23]. Moreover, within the context of the non-stationary scheme,

two problems seem physically interesting. First of all, the description of the

evolution of the original GWP into two non-overlapping wave packets, as a

function of the initial position, and in particular the characteristic time spent

by the system to reach the above condition. As we will see in the next session,

we define it, within some approximations, as the formation time tf . Second,

the relation between such a time and the underlying energetics (energy and

energy dispersion) of the impinging particle and of the newly formed parti-

cles. For these kind of problems, literature is mainly focused on the potential

barrier (rather than on the step) looking at estimating the tunneling time, i.e.

the time spent by the particle to tunnel through the barrier [15, 36, 52, 49].

We stress that in most of these approaches while the particle is imagined as

a wave packet, it is assumed to be in an assigned energy value so that its

dispersion is totally ignored.

In the next sections, we will concentrate our attention on the above two

problems, proposing a semi-classical model, to study the dynamics of the

wave packet impinging a potential step and comparing it with numerical re-

sults. As we will see, our approach picks out the relevance of the energy

spread and of the initial condition x0 on the behaviour of the system. Man-

ifestly, these quantities are not considered in any treatment of the problem

where the particle is initially in an energy eigenstate.

§ 1.2 Dynamics of a free Gaussian wave packet

In this section we briefly review free motion of a quantum particle, and

then focus our attention on the step potential as a benchmark case for the

scattering process.
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As it is well known, the dynamics of a quantum particle of massmmoving

in one dimension, along the coordinate x, with Hamiltonian H , and potential

V (x) is ruled by the following time dependent Schrödinger equation(TDSE):

i~
∂Ψ(x, t)

∂t
=
(

H0 + V (x)
)

Ψ(x, t) = − ~
2

2m

∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t) (1.1)

where t is time, ~ is the Planck’s constant, and the solution Ψ(x, t) is nor-

malized to unity:
∫

| Ψ(x, t) |2 dx = 1. (1.2)

It can be shown that the more general solution of equation (1.1), com-

plying with the superposition principle, can assume the following form:

Ψ(x, t) =

∫

Φ(k, t)eikxdk. (1.3)

where Φ(k, t) is the envelope function, in general complex, eikx are the eigen-

functions (plane-waves MWs) of momentum operator P and k is the wave

number such that for the eigenvalues p holds: p = ~k .

The function Ψ(x, t) is called wave packet (WP). Note that, it is nothing

but the Fourier transformation of Φ(k, t), that is the wave packet in momen-

tum representation.

Also for practical purpose, the Gaussian envelope Φ(k, t) (GWP) is usu-

ally chosen, first because it is analytically manageable, and then because it

verifies the Heisenberg uncertainty principle, as we will see later.

In the case of free particle we can rewrite Φ(k, t) as

Φ(k, t) = Φ(k, 0)e−iω(k)t (1.4)

where the phase ω(k) is the De Broglie’s dispersion relation for energy E =

~2k2

2m
.
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The more general Gaussian free wave packet, with arbitrary initial values

for position x0, momentum k0 and spread σk, can be written in momentum

space as

Φ(k, 0) =

(

1

2πσ2
k

)1/4

e
−(k−k0)

2

4σ2
k e−ikx0 (1.5)

Substituting (1.4) and (1.5) in (1.3) and performing the integrations, one

obtains:

Ψ(x, 0) =

(

1

2πσ2
x(0)

)1/4

e
−(x−x0)

2

4σ2
x(0) e+ik0(x−x0)dk. (1.6)

This is also a Gaussian packet with the spread σx(0) which, due to the

Heisenberg uncertainty principle, results:

σx(0) =
1

2σk(0)
. (1.7)

With the same procedure as above, the evolution of the GWP Ψ(x, t) can be

deduced:

Ψ(x, t) =

(

8σ2
x(0)

π

)1/4
eiφ

[

(2σx(0))4 +
4~2t2

m2

]1/4
exp

[

−
(

x− ~k0
m
t
)2

(2σ2
x(0))

2 + 2i~t
m

]

e−ikx0dk.

(1.8)

where φ = −1/2 arctan( 2~t
4σ2

x(0)m
)− ~k20

2m
t

with the following position-space probability density:

|Ψ(x, t)|2 =
(

1

2πσ2
x(0) +

~2t2

4mσ2
x(0)

)1/2

exp



−
(

x− ~k0
m
t
)2

2
(

σ2
x(0) +

~2t2

4mσ2
x(0)

)



 (1.9)

The Fourier transformation of (1.8) defines the evolution of a Gaussian

Φ(k, t) in the momentum representation:

Φ(k, t) =

∫

Ψ(x, t)e−ikxdx (1.10)

Also in this case, performing the above integral one obtains the explicit

expression of the GWP as a function of time (as follows from (1.5) and (1.4)),

Φ(k, t) =

(

1

2πσ2
k

)1/4

e
−(k−k0)

2

4σ2
k e−ikx0e−iω(k)t (1.11)
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with probability density:

|Φ(k, t)|2 = |Φ(k, 0)|2 (1.12)

We use the quantum mechanics standard notation for the evaluation of

the mean value of an operator A(α) as a function of a continuous variable α

〈A(α)〉 =
∫

Ψ(α)∗A(α)Ψ(α)dx (1.13)

In the case of free particle applying (1.13) to (1.11) and (1.8) the following

equations hold:

〈x(t)〉 = x0 +
~k0t
m

σx(t)
2 = σx(0)

2 + ~2t2

4m2σx(0)2

〈k(t)〉 = k0

σk(t) = 1
2σx(0)

(1.14)

As we can see from (1.9),(1.12) and from the (1.14), in coordinate rep-

resentation, the free GWP’s center x0(t) moves with constant velocity and

spreads following the second of (1.14). On the other hand, in momentum

representation the GWP and its square modulus remains constant.

§ 1.3 Scattering Theory

As we want to study the dynamics of the GWP and its dependence by the

initial conditions x0 and spread σx(0), we concentrate our attention on the

problem of the scattering of a GWP by a step potential, reducing for sim-

plicity in 1-d space.

In this section, first we provide a general setting of the scheme used

to describe the dynamics of the scattering [44] and then we provide the



68 Chapter 1. Dynamics of interacting Gaussian wave packet

interesting physical quantities and properties in the particular case of a step

potential, which will be the subject of our analysis in the next sessions.

1.3.1 1-d Scattering Theory

The general equation (1.1) can assume the form

ψ(x, t) = U(t, t0)ψ(x, t0) (1.15)

where the unitary operator U(t, t0) ≡ e−iH(t−t0)/~ is called the evolution op-

erator. In this way a wave function representing the evolution of a particle

at time t can be uniquely identified by an initial wave function ψ(x, t0) at

time t = t0.

Now we consider a scattering process where ψ(x, t) represents the evolu-

tion of the scattering particle, it means that the backward time propagation

of ψ(x, t) is described by a free wave packet very far from the scattering re-

gion (asymptotic region). But the evolution on time of a free wave packet

(ψin(x, t)) is described by the following equation:

ψin(x, t) = U0(t, t0)ψin(x, t0) = e−iH0(t−t0)/~ψin(x, t0) (1.16)

Hence the following relation is established:

lim
t→−∞

U(t, t0)ψ(x, t0)− U0(t, t0)ψin(x, t0) = 0 (1.17)

it means that very far in time, before the scattering, the dynamical behaviour

of ψ(x, t) is undistinguishable from a free packet.

In the same manner, the evolution in the future ψout(x, t) of the scattered

state very after the scattering event and far from the scattering region, can

be deduced by a similar relation:

lim
t→+∞

U(t, t0)ψ(x, t0)− U0(t, t0)ψout(x, t0) = 0 (1.18)
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.

Equations (1.17) and (1.18) define respectively the incoming asymptotic

state (”in” state ) ψin(x, t0) and the outgoing asymptotic state (”out” state)

ψout(x, 0), of the interacting system.

From previous relation (1.17) and (1.17), it is clear that

ψ(x, t0) = lim
t→−∞

U(t, t0)
†U0(t, t0)ψin(x, t0)

ψ(x, t0) = lim
t→+∞

U(t, t0)
†U0(t, t0)ψout(x, t0) (1.19)

.

Finally defining the operators Ω± as

Ω± = lim
t→±∞

U(t, t0)
†U0(t, t0) (1.20)

it is possible to establish the following relation

ψout(x, 0) = Ω+Ω−ψin(x, t0) = Sψin(x, t0) (1.21)

.

This defines the unitary Scattering operator S = Ω+Ω−, which will be

useful in the next section

1.3.2 The potential Step

In order to evaluate the role of initial condition on the dynamics of the

scattering process, it means how the initial wave packet center x0 and width

σx(0) modifies the evolution of ψin(x, t0) toward ψout(x, t0), we concentrate

our attention on the problem of scattering by a potential step, so avoiding

tunneling contribute.
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In this case the Hamiltonian in (1.1) contains a potential of the form:

V (x) =







0 for x ∈ D−
x

VB for x ∈ D+
x

(1.22)

where D−
x =]−∞, xB[, D+

x = [xB+∞[, xB is the discontinuity point, and VB

is the potential height.

Standard analysis of scattering [2, 26, 51, 3] of a particle impinging on

a potential V (x) is usually described in the stationary framework, which is

based on the following assumptions:

• the initial asymptotic state of the particle ψin(x, t0) is described by a

stationary state, simultaneously eigenfunctions of energy and momen-

tum, represented by the plane waves (MWs):

ψin(x, t0) = ϕ(±k)(x) = (2π)−1/2e±ikx (1.23)

• States with positive momentum describe a forward motion, represent-

ing the transmitted channel.

• States with negative momentum describe a backward motion , repre-

senting the reflected channel.

• The physical situation of an incoming particle undergoing scattering is

accounted imposing that for the backward solution is nil in the region

beyond the scattering region.

• The potential VB separates the scattering region, and hence the sup-

port of the solution ψ(x, t0), in two disconnected domains where the

Hamiltonian of the system commutes with the momentum operator,

separately.
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• The left side D−
x of the barrier, contains the linear superposition of

the two (incident and reflected) MWs, while the complementary D+
x

contains only the transmitted MW.

ψout(x) =







ϕ(+k′)(x) + r(k′, k′′)ϕ(−k′)(x) for x ∈ D−
x

t(k′, k′′)ϕ(+k′′)(x) for x ∈ D+
x .

(1.24)

where

k =







k′ = ±
√

2mE/~2 for x ∈ D−
x

k′′ =
√

2m(E − VB)/~2 for x ∈ D+
x

(1.25)

k′′ = ±
√

k′2 − 2mVB/~2 (1.26)

and r(k′, k′′) and t(k′, k′′) are obtained solving the Schrödinger equation

separately in the different regions and imposing continuity boundary

conditions for the wave function and its derivative

t(k′, k′′) =
2k′

k′ + k′′
=

2
√

(E(k)− VB)
√

E(k) +
√

(E(k)− VB
(1.27)

r(k′, k′′) = =
k′ − k′′

k′ + k′′
=

√

E(k) +
√

(E(k)− VB)
√

E(k)−
√

(E(k)− VB
(1.28)

Finally the solution can be rewritten as:

ψout(x) =
[

ψI
in(x) + ψR

out(x)
]

Θ(xB − x) + ψT
out(x)Θ(x− xB) (1.29)

where:

ψI
in(x) = ϕ(+k′)(x)

ψT
out(x) = t(k)ϕ(+k′′)(x)

ψR
out(x) = r(k)ϕ(−k′)(x) (1.30)
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Figure 1.1: The stationary picture of the scattering process: an incident

plane waves (MWs) originated in x0 impinging on a step VB.The discontinu-

ity xB separates the scattering region, and hence the support of the solution

ψ(x, t0), in two disconnected domains where the Hamiltonian of the system

commutes with the momentum operator, separately. One, on the left side

D−
x of the barrier, contains the linear superposition of the two (incident and

reflected) MWs, while the complementary D+
x contains only the transmitted

MW.

which, can be viewed in the form of (1.21) if assuming the operator S

has the following form:

S =





t r

r t



 (1.31)

In that scheme, it is possible to calculate the relevant physical quantities.

In particular, the usual relation for the transmission and reflection coefficients

T and R in the case of step potential, are given by

T (k) = t2
k′′

k′
=

4k′k′′

(k′ + k′′)2
=

4
√

E(k)(E(k)− VB)

2E(k)− VB +
√

E(k)(E(k)− VB)

R(k) = r2 =
(k′ − k′′)2

(k′ + k′′)2
=

2E(k)− VB +
√

E(k)(E(k)− VB)

2E(k)− VB −
√

E(k)(E(k)− VB)
(1.32)

Although the standard scheme guarantees the conservation of the total

flux, to deal with real cases one needs to consider the particle in terms of a

wave packet. This is the goal of the next section.
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1.3.3 Scattering of a Gaussian Wave Packet

Now we introduce the standard scheme for the scattering of a Gaussian wave

packet, in analogy with the MWs scheme. The particle ψ(x, t) is described by

an incoming GWP Ψin(x, t) of the form (1.6), starting very far from the po-

tential and proceeding toward the step following equations (1.14). When the

GWP interacts with the potential the system enters in a transitory regime in

which it starts to bifurcate in opposite directions (Fig.1.2), forming transmit-

ted and reflected wave packet. Once the demixing is complete and the differ-

ent components have completely non overlapping supports, the two out states

enter in the asymptotic regime in which they are described two Gaussian,

respectively ΨT
out(x) and ΨR

out(x), and proceed following equations (1.14).

Also in this case general solution in coordinate space can be expressed as:

ψ(x, t) =







ΨI(x, t) + ΨR(x, t) for x ∈ D−
x

ΨT(x, t) for x ∈ D+
x .

(1.33)

where, in this case, ψ(x, t) is the whole wave function at any time t.

The general solution can be written as:

ψ(x, t) =
[

ΨI(x, t) + ΨR(x, t)
]

Θ(xB − x) + ΨT(x, t)Θ(x− xB) (1.34)

In the asymptotic regime it holds:

ψin(x, t) = ΨI
in(x, t)

ψout(x, t) = ΨT
out(x, t) + ΨR

out(x, t) (1.35)

Consequently with the axioms of quantum mechanics, the definition of

transmission T and reflections R, is basically the probability to find the
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Figure 1.2: Picture of the scattering of a GWP: the sequence of panel

show the dynamics of the GWP. It starts very far from the potential and

moves towards the discontinuity xB. When interacts with the potential it

bifurcates in two GWP which, once the demixing is completed, proceed in

opposite directions.
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particle respectively beyond and before the discontinuity, in the asymptotic

regime:

T =

∫

|ΨT
out(x, t)|2dx

R =

∫

|ΨR
out(x, t)|2dx (1.36)

and, by virtue of duality properties of momentum space, we also have:

T =

∫

|ΦT
out(k, t)|2dk

R =

∫

|ΦR
out(k, t)|2dk (1.37)

Note that the last relations implies that quantities T andR cannot depend

on origin x0 of the original incident GWP ΦI
in(x, t0).

An analytical expression for T and R can also be deduced in terms of the

initial GWP ΦI
in(k) and transmission T (k) and reflection R(k) coefficients

(see (1.32)) associated to each component, given by equations:

T =

∫

|ΦI
in(k, t0)|2T (k)dk

R =

∫

|ΦI
in(k, t0)|2R(k)dk (1.38)

However, despite the fact that the (1.38) are widely used, to the best of

our knowledge, a rigorous proof of their validity seems neglected by literature

and often bypassed by the help of some approximation which invokes the

sharpness of the momentum distribution of the GWP, hence bringing back

to the monochromatic case.

Here we want to provide an analytical demonstration of the identities

(1.38) in a very general case and for any kind of Gaussian packet. To proof
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equations (1.38), we first recall the relations for transparency T and reflection

R coefficients for a scattering particle on a potential step V (x) in the following

symmetric form:

V (x) =







V −
0 for x < 0

V +
0 for x > 0

(1.39)

where x0 = 0 is the scattering center and V +
0 and V −

0 are constant values.

Due to parity conservation, without loss in generality, we can assume V +
0 >

V −
0 .

In this contest, we consider the complete orthogonal set of stationary

solutions of the Schrödinger equation:

ϕ±k′(x) = (2π)−1/2ei±kx

ϕ±k′′(x) = (2π)−1/2ei±k′′x
(1.40)

where

k′ =
√

2m(E − V −)/~2 for x < 0

k′′ =
√

2m(E − V +)/~2 for x > 0
(1.41)

Approaching the potential from the left, and recalling the general solution

(1.24), the transmitted and reflected coefficients t(k) and r(k) are respectively

can assume the following symmetric form:

t(k) = 2
√
k′k′′

k′+k′′

r(k) = = k′−k′′

k′+k′′

(1.42)

Their square modulus is interpreted as the transmission and reflection

probability and obey to the conservation of the total flux:

|t(k)|2 + |r(k)|2 = 1 (1.43)

In the Scattering matrix picture, connecting incoming and outgoing states,

this leads to the following compact form for the solution with left incoming

wave:
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ψout(x) = Sψin(x) (1.44)

where

ψin = ψI
k(x)

ψout(x) = ψT
k (x) + ψR

k (x)
(1.45)

and the scattering operator S has the form of (1.31).

Once the connection rules for incoming and outgoing waves have been es-

tablished, we now have to translate them into the non stationary framework,

in terms of Gaussian wave packet (GWP). In this case we deal with asymp-

totic state defined in section (1.3.1): in (Ψin) and out (Ψout) asymptotes

Under suitable asymptotic conditions [44], orthogonality and complete-

ness are guaranteed. It assures that if the Ψin is a GWP it evolves, after the

scattering, in a Ψout, which is a GWP jet for quadratic, linear, or constant

potentials only and that [14].

Also in this case the evolution of the system is obtained by the use of the

S matrix, connecting in states with out, as follows:

Ψout = SΨin (1.46)

where Ψin is the asymptotic incident GWP and

Ψout = ΨT
out +ΨR

out (1.47)

is the sum of the two asymptotic transmitted (ΨT
out) and reflected (ΨR

out)

GWPs. Moreover, the conservation of the norm of the wave function is

guaranteed by the unitary of the S matrix.

Now, to proof the relation (1.38) we must expand the above relations

(1.46) on the plane waves base, noting that in the asymptotic conditions in
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and out packet must be expanded in the appropriate set of planes waves:

ΨT
out(x) =

∫

ΦI
in(k, t0)ϕ(+k′′)(x)

∗Sϕ(+k′′)(x)dk (1.48)

Now, by the use of (1.44) we perform the operator S on the in waves

obtaining:

ΨT
out(x) =

∫

ΦI
in(k, t0)ϕ(+k′′)(x)

∗t(k)ϕ(+k′)(x)dk (1.49)

Note that the same relations hold for the reflected case, simply substituting

the label T by R, that is:

ΨR
out(x) =

∫

ΦI
in(k, t0)ϕ(−k′)(x)

∗r(k)ϕ(−k′)(x)dk (1.50)

Finally performing the norm of both side of (1.49), we obtain:

T =
∫

|ΦI
in(k)|2t2(k)dk

R =
∫

|ΦI
in(k)|2r2(k)dk

(1.51)

Recalling definitions (1.27), (1.51) are exactly the relations (1.38) re-

quired. We stress that the above procedure to deduce equations (1.51), can

be performed not only in the case of step potential but for a wide class of

potential, only changing the definition of the scattering matrix S adopted.

We stress that, (1.38) results as an exact formula, irrespective of any

approximation on the momentum distribution of ΦI
in(k

′, t0)
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The Schrödinger Simulator

In this chapter we report the method used to implement our code for the

numerical solution of the Schrödinger equation. A Crank-Nicholson finite

difference scheme is adopted, with absorbing boundary conditions, such that

no reflection emerges. The absorbing boundary conditions are used to emulate

the wave packet propagation to infinity. Our code works in 3-d, with any

number and shape of barriers.

§ 2.1 Finite Difference Approximation

Consider the time-dependent three dimensional Schrödinger problem in Ω×
[0, T ] and in atomic units,



























i
∂Ψ(r, t)
∂t

= HtΨ(r, t)

Ψ(r, 0) = Ψ0(r)

DΨ(r, t)|∂Ω = 0

(2.1)

79
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where H is the Hamiltonian (1.1) Ω ⊆ ℜN , T is the time domain ∂Ω

the spatial domain boundary. Operator D defines the boundary condition

imposed on a solution. In case of bounded and sufficiently small spatial

domain D is the identity operator, so the boundary condition is reduced to

Ψ(∂Ω, t) = 0.

To solve the problem (2.1) numerically means basically to find a solution

of a discrete problem defined in the nodes of a grid covering the space-time

domain, which would converge to the real solution of the initial equation in

terms of some grid norm once the discretization steps are turned to zero.

Let hi, i = 1..N (N is the number of points )and τ be discretization steps

along each spatial dimension and time axes respectively. Then we can define

a lattice in space-time domain as

W =
{

(xn1,...,nN
, tm)

}

=
{

x01 + n1h1, ..., x
0
N + nNhN

}

×

×
{

mτ
}

= Wr ×Wt, ni, m = 0, 1, 2, ... i = 1..N

Here hi and τ are space and time lattice steps respectively.

In Cartesian coordinates the Laplacian is written as

▽
2 =

N
∑

i=1

∂2

∂x2i

Therefore by replacing the derivatives in equation (2.1) with finite differ-

ences we obtain the standard weighted implicit-explicit scheme [17],[21]:











































i
um+1
n1,...,nN

− umn1,...,nN

τ =

= θHm+1
h um+1

n1,...,nN
+ (1− θ)Hm

h u
m
n1,...,nN

u0n1,...,nN
= Ψ0(xn1,...,nN

) ∀xn1,...,nN
∈ Wr

Dhu
m+1
∂Ω = 0

(2.2)
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where umn1,...,nN
= u(xn1,...,nN

, tm) is a discrete function defined on the lattice

W , um+1
∂Ω - function values at the domain boundary and Dh is the discretized

boundary conditions operator. The discrete finite difference representation

of a time-dependent Hamiltonian is defined as follows

Hm
h u

m
n1,...,nN

= −1

2
×

N
∑

i=1

umn1,...,ni−1,...,nN
− 2umn1,...,ni,...,nN

+ umn1,...,ni+1,...,nN

h2i
+

+V (xn1,...,ni,...,nN
, tm)u

m
n1,...,ni,...,nN

.

In order to secure convergence of the solution of the discrete problem

(2.2) to the true solution of the partial differential equation (2.1) the scheme

(2.2) must be consistent and numerically stable (the Lax-Richtmyer theorem)

[17],[42]. The initial value problem for the partial differential equation is

supposed to be well-posed here, i.e. its the solution must exist, be unique and

depend continuously on the problem data (initial condition and right-hand

part). The well-posedness of initial-boundary value problem for Schrödinger

equation has been established (see, e.g. [20]).

Generally, the discrete scheme Λumn = 0 is consistent [17] with the con-

tinuous problem LΨ(x, t) = 0 if it approximates the initial problem, i.e. the

residual error at each grid point can be kept as small as desired by appropri-

ate selection of the discretization steps:

Λumn −ΛΨ(xn, tm) ∼ o(τ p + hq),

p, q ≥ 1 - order of the approximation.

The scheme Λumn = 0 is said to be stable with respect to initial data if

∥

∥um
∥

∥ ≤ C
∥

∥u0
∥

∥ ∀m , (2.3)
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where C > 0 is a constant which doesn’t depend on discretization steps h

and τ , ‖.‖ is some grid norm on space lattice Wr [39].

There several estimations of the scheme (2.2) parameters h, τ and θ can

be found in literature which guarantee the scheme stability with respect to

different grid norms (see, for example, [17],[39]). However, there’s a stronger

condition which should be taken into account here through the physical na-

ture of the problem: the wave function L2-norm preservation

∫

Ω

Ψ(x, t)Ψ∗(x, t)dx = 1 ∀t

or, in terms of discrete functions

∥

∥um
∥

∥

L2
=
∥

∥u0
∥

∥

L2
= 1 ∀m.

Evidently, if the solution preserves its L2-norm at each layer of time grid,

the condition (2.3) holds true automatically (C = 1). To find out when this

unitarity condition is satisfied, we rewrite the equation (2.2) the following

way [21]:

um+1 = U(m,m+ 1)um (2.4)

where U(m,m+1) =
(

1+ iθτHm+1
h

)−1(
1− i(1− θ)τHm

h

)

is the system time

evolution operator.

In order to preserve the L2-norm (i.e. the scalar product in Hilbert space)
∥

∥um+1
∥

∥

L2
=
∥

∥um
∥

∥

L2
the evolution operator must be unitary [19]. It is known

that eigenvalues of a unitary operator reside on a unitary sphere. In the

simplest case of time independent Hamiltonian Hh the eigenvalues λk of

U(m,m+ 1) are the functions of eigenvalues of Hh (discrete finite set ǫk)

λk =
1− i(1 − θ)τǫk

1 + iθτǫk
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and both operators have the same set of eigenvectors [21]. The eigenvalues

norm is

∣

∣λk
∣

∣ =

[

1 + (1− θ)2τ 2ǫ2k
1 + θ2τ 2ǫ2k

]1/2

.

It is easy to see that the solution norm preservation condition
∣

∣λk
∣

∣ = 1 ∀k
holds true only for θ =

1

2
.

For time dependent potential (and, therefore, time dependent Hamilto-

nian) the situation is more complicated. No θ can be found such that the wave

function norm keeps its unitarity with time. Nevertheless, for θ =
1

2
(Crank-

Nicholson scheme) the following norm evolution expression is obtained in

[21]:

∥

∥um+1
∥

∥ =
(

1 +O(τ 3)
)∥

∥um
∥

∥.

Therefore the solution norm growth can be controlled by proper time

discretization step selection.

2.1.1 Absorbing Boundary Conditions

If the considered area is infinite (e.g. the interval [0,∞)), the boundary

condition Ψ(∞, t) = 0 cannot be directly implemented numerically by cutting

off the right end of the interval in certain point a and setting up Ψ(a, 0) = 0

(if a is selected close to the area of our interest, the reflected waves will

interfere with the real solution while choosing a too far away will yield either

significant computational costs or low precision). In order to suppress the

influence of spurious reflected waves the operator D is selected such that it

”absorbs” the passing wave instead of reflecting it thus emulating the wave

propagation to infinity.

Let’s consider the one-dimensional plane wave φ(x, t) = e−i(ωt−kx) trav-

elling towards the right end of 1-d domain. By substituting the plane wave
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expression into equation (2.1), we will obtain the following ”dispersion rela-

tion” [9]:

k2 = 2(ω − V ) (2.5)

Resolving the expression (2.5) with respect to wave number k and re-

membering that only solutions with positive k travel beyond the domain (if

we had been considering the left end of the domain segment, we would have

taken solutions with negative wave numbers only), we will get the following

boundary condition

k =
√

2(ω − V ) (2.6)

The problem is that we cannot express this relation in form of some

differential operator in wave functions space unless it is approximated with

some rational expression.

The idea introduced in [9] addresses the notion of a wave packet group ve-

locity. Imagine we observe the wave packet travelling with the group velocity

v, v > 0. From (2.5) we find

v =
dω

dk
= k (2.7)

Using the correspondence between k and −i ∂
∂x

we can write the relation

(2.7) in operator form:

(

i
∂

∂x
+ v

)

Ψ = 0 (2.8)

If the differential equation (2.8) is satisfied on the right domain boundary,

then the wave packet travelling to the right with the group velocity v will be

completely absorbed thus yielding no reflection off the boundary.

In case the solution is formed by several groups of waves travelling with
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different group velocities vj the condition (2.8) can be generalized as

q
∏

j=1

(

i
∂

∂x
+ vj

)

Ψ = 0 (2.9)

Note that, for waves traveling to the left, vj are substituted with −vj .

For example, for q = 2 we observe two wave packets propagating towards

the right border with group velocities v1 and v2 respectively. Neither of

the wave packets will be reflected out of the boundary if (using again wave

number k notation for the sake of convenience)

k2 − (v1 + v2)k + v1v2 = 0

or, using dispersion relation (2.5)

2(ω − V )− (v1 + v2)k + v1v2 = 0.

Going back to differential form by substituting ω and k with correspond-

ing operators i
∂

∂t
and −i ∂

∂x
respectively, we obtain the boundary condition

at the right end of the domain which absorbs either of wave packets travelling

with the group velocities v1 and v2:

ic1
∂Ψ

∂t
= −i∂Ψ

∂x
+
(

c1V − c2
)

Ψ (2.10)

where c1 =
2

v1 + v2
, c2 =

v1v2
v1 + v2

.

For the waves travelling left with the same velocities we must change sign

before each of vj thus getting

ic1
∂Ψ

∂t
= i

∂Ψ

∂x
+
(

c1V − c2
)

Ψ.

Similar considerations can be used to obtain the boundary conditions in

domains of greater number of dimensions.
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2.1.2 One-Dimensional Case

In case of a particle with one degree of freedom the spatial domain turns into

an interval Ω ⊆ ℜ.
Suppose the interval is infinite. In this case we select certain boundary

points such that the finite segment
[

a, b
]

would cover the area of our interest

and define the initial-value problem on this segment, taking the boundary

conditions in form (2.10):















































































i
∂Ψ(x, t)

∂t
= −1

2

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t)

Ψ(x, 0) = Ψ0(x)

ic1
∂Ψ

∂t

∣

∣

∣

∣

x=a

= i
∂Ψ

∂x

∣

∣

∣

∣

x=a

+
(

c1V (a, t)− c2
)

Ψ

ic1
∂Ψ

∂t

∣

∣

∣

∣

x=b

= −i∂Ψ
∂x

∣

∣

∣

∣

x=b

+
(

c1V (b, t)− c2
)

Ψ

(2.11)

The uniform lattice on
[

a, b
]

×
[

0, T
]

is

W =
{

a = x0, x1, ..., xN = b
}

×
{

0 = t0, t1, ..., tM = T
}

,

xn = x0 + nh, tm = mτ, h =
b− a

N
, τ =

T

M
.

The Crank-Nicholson finite difference scheme for regular (internal) lattice

points gives

i
um+1
n − umn

τ
=
um+1
n−1 − 2um+1

n + um+1
n+1

4h2
+

+
umn−1 − 2umn + umn+1

4h2
+

1

2
V m+1
n um+1

n +
1

2
V m
n umn

(2.12)

The approximation error of this scheme is estimated as O(h2+τ 2) [17],[39].

Regrouping the items in (2.12), we get the following evolution equation at
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internal points

i

4h2
um+1
n−1 +

(

i

τ
− 1

2h2
− V m+1

n

2

)

um+1
n +

+
i

4h2
um+1
n+1 = − i

4h2
umn−1 +

+

(

i

τ
+

1

2h2
+
V m
n

2

)

umn − i

4h2
umn+1 ,

n = 1..N − 1

(2.13)

Finite difference approximation of boundary conditions at left and right

boundary, respectively

ic1
um+1
0 − um0

τ
=
i

2

(

um+1
1 − um+1

0

h
+
um1 − um0

h

)

+

+
1

2
(c1V

m+1
0 − c2)u

m+1
0 +

1

2
(c1V

m
0 − c2)u

m
0

and

ic1
um+1
N − umN

τ
= − i

2

(

um+1
N − um+1

N−1

h
+
umN − umN−1

h

)

+

+
1

2
(c1V

m+1
N − c2)u

m+1
N +

1

2
(c1V

m
N − c2)u

m
N

gives the equations for um+1
0 and um+1

N :

(

ic1
τ

+
i

2h
− c1V

m+1
0 − c2
2

)

um+1
0 − i

2h
um+1
1 =

=

(

ic1
τ

− i

2h
+
c1V

m
0 − c2
2

)

um0 +
i

2h
um1

(2.14)

and
(

ic1
τ

+
i

2h
− c1V

m+1
N − c2
2

)

um+1
N − i

2h
um+1
N−1 =

=

(

ic1
τ

− i

2h
+
c1V

m
N − c2
2

)

umN +
i

2h
umN−1 .

(2.15)
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Summarizing (2.13), (2.14) and (2.15), we can write a system evolution

equation in a form

Aum+1 = Bum

or

um+1 = A−1Bum (2.16)

Matrices A and B are tri-diagonal. Equation (2.16) defines the procedure

of the numerical solving of the time-dependent Schrödinger equation in one-

dimensional case. Therefore, unless the matrix A is singular, the solution

of the finite difference problem exists and is uniquely defined by the initial

vector u0. Note that the system evolution operator U(m,m+ 1) = A−1B is

calculated at each time iteration, unless the potential V is time independent;

in that case it is calculated just once for all the time steps.
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Validation of the Schrödinger Simulator

In this chapter, we discuss the implementation of the physical observables to

describe separately the three different components coming out the scattering

process. After description of the dynamical behaviour of the numerical solu-

tion of Schrödinger equation, we provide a validation method to evaluate the

quality of the description of our code and giving confidence to our results.

§ 3.1 Testing the Simulator

Figures 3.2-3.3, panels (a), show the scattering of a GWP on a potential

VB = 1 a.u., with energy respectively, slightly down (k0 = 1.28) and slightly

up (1.54) a.u. the barrier, both of them originated at the same distance

∆x = x − x0 = 30 a.u. and with the same σx(0) = 2 a.u. The different

curves correspond to different time steps t1, ..., t6 of the GWP evolution.

Panel (b) of Figs.3.2-3.3 shows the whole Ψ(x, t) after scattering in the

asymptotic regime, that in our case coincides with the stability of both

||ΨT
out(x, t)|| and ||ΨR

out(x, t)|| within an accuracy of 10−5 (see Fig.3.5), with

89
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the same ∆x = 30 a.u., while panels (c) show the asymptotic curves with

the same setting as in (b) but with a larger ∆x = 80 a.u.

Comparing panels (b) and (c) of both above figures at different k0, we

can figure that both the shape of asymptotic GWP’s slightly differs varying

their origins, while, the larger ∆x the more larger oscillations of the slower

tail appears.

Moreover, figures show that the centers 〈x(t)〉 of each asymptotic reflected

and transmitted component are shifted along the respective directions of the

motion by an amount increasing with ∆x.

However, more interesting is how 〈x(t)〉 varies with ∆x but for fixed k0.

Also in this case the GWP’s centers are shifted forwards and hence a larger

formation time is expected. This is confirmed by panels (a) of Figs. 3.2-3.3

and Fig. 3.5 where the transient regime is reported. We can recognize that

both |ΨT(x, t)|2 and ||ΨT||, (and the same for the reflection) depend on x0,

and in particular the time interval to reach the asymptotic regime increases

with ∆x.

Finally, looking only at panels (b) of Figs. 3.2-3.3, we obtain a simple

trend for both the components after scattering : the asymptotic |ΨT
out(x, t)|2

and |ΨR
out(x, t)|2 are lower and have larger width with respect to the inci-

dent |ΨI
in(x, t)|2, and also their relative magnitude depends strictly on initial

momentum k0, namely |ΨT
out(x, t)|2 is larger (smaller) than |ΨR

out(x, t)|2 for

k0 − kB > 0 (k0 − kB < 0).

§ 3.2 Physical Observables

Once the discrete solution of Schrödinger equationwas obtained, we deal with

the implementation of most of the interesting physical operators, such as,
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Figure 3.1: Picture of the scattering of a GWP provided by our code, with:

k0 = 1.54a.u., xB = 120a.u. and VB = 1a.u.
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Figure 3.2: GWP’s dynamics. The |Ψ(x)|2 with k0 = 1.28 a.u. is reported

for different increasing time steps t1....tas, where tas is the time in which the

WF reach its asymptotic regime.
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Figure 3.3: GWP’s dynamics. The norm |Ψ(x)|2 with k0 = 1.54 a.u. is

reported for different increasing time steps t1....tas, where tas is the time in

which the WF reach its asymptotic regime.
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energy E, position X , momentum K, and probability of transmitted and

reflected particle, T and R.

In order to manage independently the different components, outgoing

the scattering, ΨT
out(x) and ΨR

out(x), we must first separate the whole wave

function Ψout(x, t), and than we follow the dynamics for t → +∞ of each

components, which proceed in opposite directions in coordinate space (see

Fig. 3.4).

As we have seen in section 1.3.3, soon after the scattering, the system

spends a certain time for completely demixing and reaching the asymptotic

regime (see Fig. 3.5), in which the two components assume definitively their

values ΨT
out(x) and ΨR

out(x). Very far from the potential their supports in

coordinate space can be assumed to be not connected.

Recalling (1.33) and (1.35), we are able to obtain every components

through the numerical solution umn provided by our code :

ΨI
in(x, t) ≡

{

uIin
}m

n
= um<min

n<nB

ΨT
out(x, t) ≡

{

uTout
}m

n
= um>mout

n>nB

ΨR
out(x, t) ≡

{

uRout
}m

n
= um>mout

n<nB
(3.1)

where min and mout are respectively the time step in which the demixing

process starts ( when the GWP impacts the potential step) and finish (it

means umn≥nB
and umn≤nB

reach their asymptotic values. In the next section

we will establish an operative criterion to measure min and mout.

Also we can introduce the uniform lattice W̃ on the dual momentum-time

domain
[

ka, kb
]

×
[

0, T
]

:

W̃ =
{

ka = p0, p1, ..., pN = kb
}

×
{

0 = t0, t1, ..., tM = T
}

,

pn = 00 + pl, tm = mτ, l =
kb − ka
N

, τ =
T

M
.
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Figure 3.4: The Scattering dynamics: an incident GWP originated in x0

impinging on a step VB, with energy slightly higher then VB. When the

scattering starts, the initial wave function bifurcates in opposite directions:

the transmitted component, which proceeds forward and reflected component

which inverts its direction.

Performing the Fourier transformation on previous functions (3.1) we can

also obtain the momentum representation of every GWPs:

ΦI
in(k, t) ≡

{

ũIin
}m

p
= ũm<min

p>0

ΦT
out(k, t) ≡

{

ũTout
}m

p
= ũm>mout

p>0

ΦR
out(k, t) ≡

{

ũRout
}m

p
= ũm>mout

p<0 (3.2)

where:

{

ũIin
}m

p
= h

∑

n<nB

e−ipnum<min

n<nB
p > 0

{

ũTout
}m

p
= h

∑

n>nB

e−ipnum>mout

n>nB
p > 0

{

ũRout
}m

p
= h

∑

n<nB

e−ipnum>mout

n<nB
p < 0 (3.3)
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Figure 3.5: The norm ||ΨT(x, t)|| of a transmitted GWP as a function of

time, and with the following initial conditions: ∆x = 70 a.u.( ∆x = xB − x0

), k0 = 1.28 a.u., σx(0) = 2 a.u., VB = 1 a.u..

With the above definitions we are able to compute all physical observables

for each components, incident, transmitted and reflected. In particular we

first calculate that quantities useful as a test to validate the code: the kinetic

energy Ek, the mean value of the GWPs in coordinate and momentum space

(〈x〉 and 〈k〉 ), the transmission T and reflection R:

〈EJ
k〉 = l

∑

p

{

{

ũJ
}m

p

}∗
k2
{

ũIin
}m

p

〈kJ〉 = l
∑

p

{

{

ũJ
}m

p

}∗
k
{

ũIin
}m

p

〈xJ〉 = h
∑

n

{{

uJ
}m

n

}∗
x
{

uJin
}m

n

〈T 〉 = l
∑

p

|
{

ũTout
}m

p
|2

〈R〉 = l
∑

p

|
{

ũRout
}m

p
|2 (3.4)

where, to simplify the notation, we have set J = I, T, R and ũI = ũIin,
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ũT = ũTout, and ũ
R = ũRout.

§ 3.3 Validation of the scheme

The numerical solution of the Schrödinger equation requires the discretization

(through intervals of measure h) of the space region where the phenomena are

supposed to occur and of the considered time (through intervals of measure

τ). Of course such need impacts on the quality of the description and is

responsible for errors whose amount we need to know to give confidence to

our results. Expressions 3.4, allow us to perform some validation test.

Figure 3.6 show the comparison between the mean kinetic energy (Ek) of

the whole wavefunction and the sum of the transmitted mean kinetic energy

(ET
k ) and the reflected one (ER

k ), as a function on time. As we can see, far

before and soon after the scattering, the following relation is verified:

Ek = TET
k +RER

k (3.5)

Figure 3.7 shows the behaviour of the momentum mean value for the

whole, transmitted and reflected wavefunction as function on time. Fig.3.7

also shows the comparison between the above quantities computed trough

two methods: the first one makes use of (3.4) and the second one computing

the derivative of the respective mean value of position, as established by the

Ehrenfest’s theorem. The comparison shows that the two methods coincides

for each component, at least in the asymptotic regime.

Finally we compare the transparency T computing via the two expression

(1.36) and (1.37). In the following we accept ǫ0 = 10−6 corresponding to the

finest grid mash available for our machine. In this validation scheme we

considered a GWP with k0 = 1.54 a.u. and σk = .025 a.u. impacting a
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Figure 3.6: comparison between the mean kinetic energy Ek (total wavefunc-

tion) and the weighted sum of the transmitted energy ET
k and the reflected

one ER
k

Figure 3.7: Comparison between transmitted and reflected mean value of

momentum computed using (3.4) and by the derivative of the mean value of

position.
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Figure 3.8: Difference between T computed via (1.37) and (1.36), as a

function on the step h of the grid mesh

potential well of height V0 = 1 eV.

Figure 3.8 shows the difference of the two expression for T , varying with

the grid mesh.

Table 3.1 shows that for the default grid mesh step the two quantities

give consistent results within a confidence of 10−3.

Table 3.1: Difference between T computed via (1.37) (1.36), as a function

on the step h of the grid mesh.

10−3∆T h[a.u] 10−3τ [a.u]

.8 0.062 0.166

3.6 0.125 0.333

15.4 0.250 0.666

64.5 0.500 2.001
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Results and Discussion

In this chapter we introduce the characteristic time interval formation time

(tf) and we provide a method to quantitatively describe it. After we have

showed the dependence of such a time interval , on the origin x0 of the inci-

dent GWP we also provide a semi-classical model to describe tf only in terms

of initial conditions. A comparison with the numerical simulation is reported

to sustain the model.

§ 4.1 The formation time

As a consequence of eq.(4.1), that here we report for convenience:

T =

∫

|ΦI
in(k, t0)|2T (k)dk

R =

∫

|ΦI
in(k, t0)|2R(k)dk (4.1)

the above T and R quantities are independent of the initial position x0

of the incident GWP and they depend only on the initial GWP momentum
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distribution, whose modulus is constant on time. Rather, an inspection of

Figure 4.1 and 4.2 shows immediately that, within the confidence limits, the

time spent to reach the asymptotic value T increases with the separation of

the initial position from the step. The same result can be showed for the

reflected probability R.

Here, we will just define the time interval spent by the system to reach

T , which we call formation time tf , relating it to the dynamical variables of

the incident GWP.

Due to the non-compactness of the Gaussian functions, strictly, the scat-

tering process of a GWP through a barrier starts once the GWP is present

and ends in the limit of time t approaching infinity. However, the evolution

of the system can be characterized by two different dynamical regimes (see

Fig.3.5) introducing the approximations, clarified in the following paragraph.

Far from the potential, the front of the incident GWP weakly interacts

with the barrier. For all practical purpose, the GWP moves towards the

barrier as a free packet. Once the interaction between the front of the GWP

and the potential become relevant, the system starts to bifurcate in opposite

directions, forming transmitted and reflected wave packets (see Fig.1.2), with

one or multiple peaks, as suggested in [5]. We call this time instant tin. For

t > tin, the system enters in a transient regime dominated by the superpo-

sition of the incoming and reflected waves, in the x < xB zone, and by the

oscillating distribution probability in the x > xB zone. On the other hand,

after the tail of the incident GWP has arrived to the barrier, oscillations de-

crease with increasing time and, after a sufficient long time, the transmitted

and reflected probability distributions approach a limit value, corresponding

to the theoretical values expressed by eqs.(1.36) (see Fig.3.5). Strictly, the

demixing process is complete only in the limit of time t approaching infinity,
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where the system could be considered decoupled in transmitted and reflected

free packets with non-overlapping supports. However, also in this case, we

can consider a finite time limit tout such that, for t > tout, the system enters

into an asymptotic regime, characterized by the two resulting GWPs escap-

ing as free packets from the barrier and assuming definitively their constant

distributions and probabilities in momentum space. Finally, we define the

characteristic formation time as the interval tf = tout − tin. Let’s concen-

trate our attention on the GWP of the transmitted particle. Determining

the interval tf requires finding the two time limits (tin, tout) of the scattering

region. Within the confidence limits, they respectively represent the time

step in which the front of the incident GWP impinges the potential step,

yielding a non zero transmitted probability, and the time step in which the

transmitted GWP approaches the T value. Thus, tin and tout can be op-

eratively determined assigning a confidence accuracy ǫr (hereafter we use a

value ǫ = 10−2) while tf can be deduced calculating the time interval spent

by the norm ||ΨT(x, t)|| to pass from ǫr to the value ||ΨT
out|| - ǫr (Fig. 3.5).

By definitions, it follows that:

||ΨT(x, tin)|| = ǫr

||ΨT(x, tout)|| = T − ǫr

tf = tout − tin (4.2)

In such a way we have defined the characteristic time tf as the time required to

a fixed amount (namely 0.99) of the normalized probability of the transmitted

wave packet to be observed beyond the step barrier. Moreover, the tf values

are directly accessible by our simulations. From now on, we concentrate our

attention on the description of the formation time in terms of the dynamical

parameters of the system.
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Figure 4.1: The norm ||ΨT(x, t)||, with k0 = 1.28 a.u., σx(0) = 2 a.u., and

VB = 1 a.u. for different initial wave packet centers (∆x = 30, 50, 70, 100

a.u.)
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Figure 4.2: The norm ||ΨT(x, t)||, with k0 = 1.54 a.u., σx(0) = 2 a.u., and
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§ 4.2 The model

In this section, we propose a model to analytically describe the formation

time tf as a function of initial conditions x0 and σx(0). First we note that

tf , should be not shorter then the time required to the system to demix

in two different reflected and transmitted components, even though having

overlapping support. On the basis of the definitions from the previous section,

this demixing process starts when the front of the incident GWP impinges

the step interface and it terminates once the tail of the GWP arrives on the

step. We call this time interval the crossing time t×. It can be seen simply as

the time required to the incident GWP support to cross the coordinate xB at

the step interface. Of course, since the support of a Gaussian is not compact

we must define it via some operative criterion, summarized in a parameter

γ, defining the number of dispersions putatively forming the support of the

GWP. To compute tf , we first consider a semi-classical model for the evolution

of a free expanding GWP in the absence of the step potential V (x). First,

by the use of eqs.(1.14), we deduce an expression for t× in terms of initial

conditions x0, k0 and σx(0). Then to account for the corrections, due to

the interaction with the potential, we compare t× with the real values of tf

obtained by simulations of the system in the presence of the potential V (x).

In this way we obtain an analytical expression explaining real tf data, as a

function of initial conditions and fitting parameters.

Consider a free GWP originated in x0 and with momentum k0, moving

towards the coordinate position xB, first in absence of the potential VB. To

calculate the time spent by the GWP to completely cross the xB we must

take into account that its motion is the combination of both the motion of its

center of mass and the motion of the two fronts of the packet. Let us define
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ta and tb respectively as the maximum time value for which the support, in

coordinate space, is still totally included in the region x < xB, and at the

minimum time step for which the finite support is already totally located in

in the x > xB zone, (Fig.4.3). Consistently with the definition given for t×,

we obtain:

〈x(ta)〉 = x
B
+ γσ(ta)/2

〈x(tb)〉 = x
B
− γσ(tb)/2 (4.3)

Hence, t× = tb − ta. In the case of a free wave packet the relations (1.14)

still hold. On the other hand, in the range of parameters in which we run,

the following condition is satisfied:

k0 ≪
(〈x(t)〉 − x0)

2σ2
x(0)

(4.4)

which, by the use of the first of (1.14), reads:

σ2
x(0) ≪

~
2t2

4m2σ2
x(0)

(4.5)

In such a regime, we can approximate the second of the equations (1.14) with

the following:

σx(t) =
~t

2mσx(0)
(4.6)

Actually we can write an equation for t× only in terms of initial parameters,

by resolving the system composed by the first of (1.14) and (4.6) calculated

in t ≡ ta, and the first of (4.3). As a solution we obtain:

ta =
4mσx(0)

~(4k0σx(0)− γ)
(xB − x0) (4.7)

In a likely manner, by simultaneously solving the first of (1.14) and (4.6)

calculated in t ≡ tb, and the second of (4.3):

tb =
4mσx(0)

~(4k0σx(0) + γ)
(xB − x0) (4.8)
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Subtracting (4.7) from (4.8), we obtain the crossing time t× as a function of

initial position x0:

t× =
8mγσx(0)

~(16k20σ
2
x(0)0 − γ2)

(xB − x0) (4.9)

Figure 4.4 compares tf and t× as a function of x0 for different values of k0.

Both quantities show a linear dependence increasing with the separation of

the origin of the incident GWP from the step.

Since t× is the crossing time in the case of free GWP, as expected, it is

settled below tf at a fixed k0 and the difference between t× and tf seems to be

constant, within the confidence, also on varying k0. Now, to get a model for

tf including the effects of the interaction, we describe the difference between

the two quantities introducing a term t∗. This term takes into account the

deviations from the free GWP due to the presence of the potential and we

relate it to an additional dependence of the demixing process on the initial

conditions x0, k0 and σx(0), namely

tf = t× + t∗ (4.10)

A fitting procedure is required to evaluate the free parameters γ and t∗. Re-

calling that we supposed the origin x0 was the leading parameters in deter-

mining tf , through the spread σx(t) in the scattering region, here we assume

a linear fitting functions both for γ and t∗ on x0, with α and β as fitting

parameters.

t∗ = t∗(x0, α, β)

γ = γ(x0, α
′, β ′) (4.11)

Equations (4.10) and (4.11) define the semi-classical linear model only in

terms of initial parameters and the fitting parameters α, β and α′, β ′:

tf = t×(x0, k0, σx(0), γ(x0, α
′, β ′)) + t∗(x0, α, β) (4.12)
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Figure 4.3: Evolution of a GWP, originally centered in x0, passing from

incoming time ta to outgoing time tb

After performing a set of simulations to evaluate tf , through the definition

(4.2), we compare the results with data provided by the model (4.12). For

initial values x0, k0 and σx(0) in the range considered, we obtain the values

α = −2.422, β = 411.632 and α′ = −0.004, β ′ = 19.895, as fitting parame-

ters. Figure 4.5 plots both simulated and expected tf values, as a function on

x0 and at different k0 and with fixed σx(0) = 2 a.u. Actually, the formation

time given in eq.(4.12) results to be different from tf in eq.(4.2): this could

be ascribed to the influence of the initial conditions on wave packets with

large momentum spread [30] The value of γ seems to depend slightly on x0,

and it is appreciably different from the free values (γ = 6σx(0)). This is due

to the variations caused by the presence of the potential.

The above equations establish a connection between tf and initial parame-

ters of the system. Results show a relevant dependence of the dynamics of the

wave packet on the origin x0. In particular tf , i.e. the interval time needed to

make accessible the outgoing wave packets for experimental measurements, is
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Figure 4.4: Comparison between tf and t× as a function of x0 for initial

values k0 = 0.54, 0.63, 0.72, 0.80 a.u.,VB = 0.2 a.u. and xB = 150 a.u. is

The family of diamonds are the data from simulations by the use of (4.2);

dotted lines are the correspondent regression curves; the full lines are the data

obtained by (4.9).

strongly dependent on the origin and increases with the separation from the

barrier (∆x = xB−x0). At the same time, due to the norm conservation, the

maximum value of the probability density, as a function on time, decreases

with x0.
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Conclusions

Usually, mainly for practical purposes, the description of the scattering event

is provided in terms of monochromatic waves instead of a wave packet, re-

laxing the description assuming that the particle energy E is well defined

around its mean value. There are however a number of situations that are

characterized by the fact that the incoming particles are generated at a finite

distance from randomly distributed scattering centres and with an energy

spread that is comparable to the potential height, so they cannot be reduced

to a monochromatic waves scheme. In this scenario, the initial conditions x0

and σx(0) can assume a relevant role in the description of the dynamics of

the system. However describing the system in terms of Gaussian wave packet

requires resolving numerically the Schrödinger equation. Hence, through the

numerical solution, we analyse the evolution of the Gaussian wave packet,

calculating the transmission of the scattering Gaussian wave packet as a

function of x0, σx(0) and k0,and comparing simulated data with theoretical

results. We introduce a time interval, which we call formation time tf , as the

time required to a fixed amount (0.99) of the normalized probability of the

transmitted wave packet to reach the asymptotic regime after scattering. A

numerical analysis of the probability of the system to cross the barrier as a

function of t shows that the the formation time tf strongly depends on the

109
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GWP x0 and increases with the separation from the barrier. At the same

time, due to the norm conservation, the charge density decreases with x0.

In the range of parameters studied, data suggest a linear behaviour of tf

on x0, supporting the comparison with the model (4.9) proposed for a free

Gaussian. To study such dependence we propose a semi-analytical model

for tf decomposing it in two terms, linearly dependent on x0: one describing

the transit of a free GWP across the discontinuity point at the step, and

the other one, describing the residual dependence both on x0 and k0 and ex-

plaining the deviation from linearity due to the interaction with the barrier.

Results show a good match between simulations and data coming from the

model, confirming it could be considered a useful tool to obtain informations

on the time required to observe the particle beyond the step, at least in the

range of initial parameters typically adopted in condensed matter. Such a

dependence of the charge density on the coordinate x0 could be an important

issue in those system in which scattering event occur within the nanoscopic

scale and the conduction mechanism of the scattered particles involves charge

interactions with instabilities usually lying at the barrier interface.
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