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It employs two local linear regressions to estimate first the regression function and
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tor: a model-based version and a model-assisted one. Their performance is com-
pared with that of several well-known estimators in a simulation study under simple
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function with regression residuals that do not follow a definite pattern.
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1 Introduction

Since Chambers and Dunstan’s seminal paper [4], several estimators for the finite
population distribution function of a study variable in the presence of complete aux-
iliary information have been proposed. To help realize which estimator is most effi-
cient in a given situation, they are often classified into different groups. The perhaps
most important distinction is whether an estimator accounts for the sample design
or not. Estimators of the first kind are called model-assisted, those of the second
kind are referred to as model-based. Model-assisted estimators are asymptotically
design-unbiased regardless of whether an assumed superpopulation model is true
or not. Their design-variance will be considerably smaller than that of estimators
that ignore auxiliary information if the finite population of interest follows the su-
perpopulation model. Model-based estimators are on the other hand asymptotically
model-unbiased under an assumed superpopulation model. They may have consid-
erably lower design-variance than model-assisted estimators, but they may be badly
design-biased if the finite population does not follow the superpopulation model
and/or the sample design is very unbalanced.

The estimator proposed by Chambers and Dunstan [4] (henceforth CD-estimator)
belongs to the class of model-based estimators. Other notable members of this class
are the estimators proposed by Kuo [9], Dorfman and Hall [7] (DH-estimator),
and Chambers, Dunstan and Wherly [3] (CDW-estimator). These estimators are
based on different superpopulation models. The CD-estimator assumes a linear
regression relationship between the study and the auxiliary variable and allows
the variance of the error components to depend on the auxiliary variable only in
known way. The DH-estimator accommodates also nonlinear regression relation-
ships, while allowing just for identically distributed error components. The Kuo and
the CDW-estimators incorporate a wider range of superpopulation models where
the distribution of the study variable may depend on the auxiliary variable in al-
most any arbitrary way. The CDW-estimator, in particular, may be viewed as the
sum of the CD-estimator and a model-bias correction term to protect against model-
misspecification. It is worth noting that the CD- and the DH-estimator provide es-
timates that are genuine distribution functions with probability 1. The same holds
for the Kuo-estimator, provided that the regression weights used in its definition are
nonnegative and that they do sum to 1, while the CDW-estimator may well provide
estimates that are not distribution functions.

As for the class of model-assisted estimators, its most prominent members are
either generalized difference or model-calibrated estimators (see [1, 15] and [18]).
Well-known examples of estimators of the first kind are the Rao, Kovar and Mantel
estimator [12] and some of those analyzed, among other estimators, by Dorfman and
Hall [7]. A drawback of these estimators is that they may provide estimates that are
not genuine distribution functions. As for model-calibrated estimators, examples are
given by the pseudo empirical maximum likelihood estimators [5, 17, 11] and by the
estimators proposed in [13, 14]. It is worth noting that model-calibrated estimators
may be defined as to ensure estimates that are genuine distribution functions with
probability 1.
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The estimator we propose in the present work is in origin conceived as a model-
based estimator. To accommodate sample designs with markedly nonconstant in-
clusion probabilities we also propose a model-assisted version in the form of a gen-
eralized difference estimator. The new estimator is based on a very general super-
population model that allows for a nonlinear regression function and not identically
distributed error components. The idea underlying its definition is actually quite
simple: two separate nonparametric regressions are employed to estimate first the
mean regression function, and then the cdfs of the error components. Based on the
outcome of these regressions, predictions for the nonsampled units are computed
which are finally used to estimate the finite population distribution function of in-
terest. In view of the generality of the underlying superpopulation model we expect
the new estimator to be a competitor of the Kuo- and the CDW-estimator.

The rest of this work is organized as follows. In Section 2 we review the defini-
tions of several well-known estimators from the literature. In Section 3 we introduce
the new estimator and hint at conditions under which it should be more efficient than
some of its competitors. In Section 4 we present the results of a simulation study and
compare the performance of the new estimator with that of its competitors recalled
in Section 2. Conclusions and final remarks end this work in Section 5.

2 Estimators from literature

Let (yi,xi) be the values of a study variable Y and an auxiliary variable X for unit i
of a finite population, i = 1,2, . . . ,N. Let FN(y) := ∑

N
i=1 I(yi ≤ y), where I(·) denotes

as usual the indicator function, be the population distribution function of the study
variable, and let s be the set of labels i of the units included in a sample drawn from
the population. The Horvitz-Thompson estimator for FN(y) is defined as

F̂HT (y) :=
1
N ∑

i∈s
diI(yi ≤ y),

where di := π
−1
i denotes the inverse sample inclusion probabilities. F̂HT (y) is obvi-

ously a design-unbiased estimator for FN(y). However, in the presence of complete
auxiliary information, i.e. if we know the values of the X variable for all population
units, more efficient estimators may be defined.

2.1 Model-based estimators

The first proposal of an estimator for FN(y) that takes advantage of complete aux-
iliary information is probably due to Chambers and Dunstan [4]. Their estimator is
based on the assumption that
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yi := xiβ + v(xi)εi, i = 1,2, . . . ,N, (1)

where β is unknown, v(·) is a known positive function, and the error components
εi are i.i.d. with E(εi) = 0 and Var(εi) = σ2. Given this superpopulation model,
Chambers and Dunstan estimate FN(y) by

F̂CD(y) =
1
N

{
∑
i∈s

I(yi ≤ y)+∑
i/∈s

ĜCD,i

}
,

where

ĜCD,i :=
1
n ∑

j∈s
I

(
y j− x jβ̂

v(x j)
≤ y− xiβ̂

v(xi)

)
, i /∈ s

are predictors for the unobserved indicator functions I(yi ≤ y). In the definition of
the ĜCD,i’s, n denotes the sample size, and

β̂ :=
∑ j∈s v−2(x j)x jy j

∑ j∈s v−2(x j)x2
j

is the weighted least squares estimator for β based on the observed sample.
The main drawbacks of the CD-estimator stem from the fact that it is based on a

superpopulation model that allows merely for a linear regression function and that it
requires the user to specify the function v(·). A modified version of the CD-estimator
that accommodates also nonlinear regression functions has been proposed and an-
alyzed by Dorfman and Hall [7]. The underlying superpopulation model assumes
that

yi := µ(xi)+ εi, i = 1,2, . . . ,N, (2)

where µ(·) is allowed to be any smooth function, and where the error components
εi are assumed to be i.i.d.. Dorfman and Hall [7] estimate µ(·) by

µ̂(x) := ∑
j∈s

w j(x)y j,

using Nadaraya-Watson kernel weights in place of w j(·). Based on the estimated
regression function µ̂(·), they employ

ĜDH,i :=
1
n ∑

j∈s
I(y j− µ̂(x j)≤ y− µ̂(xi)), i /∈ s

as predictors for the unobserved indicator functions I(yi ≤ y). The model-based
estimator for FN(y) based on these predictors will be denoted by F̂DH(y) hereafter.

Kuo [9] assumes a more general superpopulation model than (1) and (2) where it
is merely assumed that

P(yi ≤ y) := p(xi), i = 1,2, . . . ,N, (3)
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for some smooth function p(·). The estimator for FN(y) proposed by Kuo [9] uses

p̂K,i := ∑
j∈s

w j(xi)I(y j ≤ y), i /∈ s (4)

as predictors for the unobserved indicator functions I(yi ≤ y). In place of the w j(·)’s
Kuo [9] suggests to use either uniform kernel weights, or gaussian kernel weights,
or nearest k-neighbor weights. The model-based estimator based on the predictors
(4) will be denoted by F̂K(y) below.

Chambers, Dorfman and Wherly [3] use nonparametric regression to offset the
model-bias that arises in F̂CD(y) when the model (1) is wrong. The predictors for
the unobserved indicator functions I(yi ≤ y) implicit in their estimator for FN(y) are
given by

p̂CDW,i := ĜCD,i +∑
j∈s

w j(xi)
[

p̂K,i− ĜCD, j

]
, i /∈ s,

and the corresponding model-based estimator for FN(y) will be denoted by F̂CDW (y)
in what follows.

Dorfman and Hall [7] derived asymptotic expansions of the model-bias and the
model-variance of F̂DH(y), F̂K(y) and F̂CDW (y). Considering Nadaraya-Watson re-
gression weights

w j(x) =
K
(

x−x j
λ

)
∑k∈s K

( x−xk
λ

) , λ > 0,

with any symmetric density function in place of K(·), they show that under mild
conditions the leading term of the model-variance is of order O(n−1) for all three
estimators, as the leading term of the model-variance of F̂CD(y) (see [2]). Moreover,
they show that the model-bias of F̂CDW (y) achieves the parametric O(n−1) rate, as
the model-bias of F̂CD(y), when model (1) is correct, while it is of order O(λ 2)+
o((nλ )−1), as the model-bias of F̂K(y), under the more general model (3) when
model (1) is wrong. The model-bias of F̂DH(y) goes to zero slightly slower: it is of
order O(λ 2)+O((nλ )−1) under model (2).

In the simulation study we are going to present in Section 3, we used a positive
constant in place of the function v(·) in F̂CD(y), and local linear regression weights in
the estimators involving nonparametric regressions. Thus, in the estimators F̂DH(y),
F̂K(y) and F̂CDW (y) we replaced w j(x) by the jth component of the row-vector

w := eT
1
(
XT

x WxXx
)−1 XT

x Wx, (5)

where eT
1 := (1,0), Xx := [1,(xi − x)]i∈s, and Wx := diag[K((xi − x)/λ )]i∈s with

λ > 0 and with the Epanechnikov kernel function

K(u) :=
3
4
(1−u2)I(|u| ≤ 1), u ∈ R

in place of K(·).
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2.2 Model-assisted estimators

Including design weights in the predictors for the unobserved indicator functions
I(yi ≤ y) yields fitted values gi for use in model-assisted estimators of FN(y). Such
fitted values may be incorporated either in a generalized difference estimator or
in model-calibrated estimators. Rao, Kovar and Mantel [12] follow the former ap-
proach. They use

gi :=

(
∑
j∈s

d j

)−1

∑
j∈s

d jI

(
y j− x jβ̃

v(x j)
≤ y− xiβ̃

v(xi)

)

as fitted values for the unobserved I(yi ≤ y)’s (i.e. for i /∈ s), and

gi :=

(
∑
j∈s

di j

)−1

∑
j∈s

di jI

(
y j− x jβ̃

v(x j)
≤ y− xiβ̃

v(xi)

)

as fitted values for the observed I(yi ≤ y)’s (i.e. for i ∈ s). In the definition of the
fitted values gi,

β̃ :=
∑i∈s div−2(xi)xiyi

∑i∈s div−2(xi)x2
i

is an asymptotically design-unbiased estimator for

βN :=
∑

N
i=1 v−2(xi)xiyi

∑
N
i=1 v−2(xi)x2

i
,

the weighted least squares estimator for β in model (1) based on the whole popu-
lation, and di j := πi

πi j
denotes the inverse of the conditional probability that unit j

belongs to the sample given that unit i is present in the sample. Using these fitted
values gi in a generalized difference estimator yields

F̃RKM(y) :=
1
N

{
∑
i∈s

diI(yi ≤ y)+

(
N

∑
i=1

gi−∑
i∈s

digi

)}
.

In the simulation study we are going to present in the following Section, we ana-
lyzed a slightly modified version of F̃RKM(y), where the inverse conditional inclu-
sion probabilities di j are replaced by the inverse (marginal) inclusion probabilities
d j. The resulting estimator will be denoted by F̃CD(y) below, since it may be viewed
as a model-assisted version of F̂CD(y). Note that in the case of Poisson sampling the
definitions F̃CD(y) and F̃RKM(y) coincide, while in case of simple random without
replacement sampling F̃RKM(y) and F̃CD(y) give rise estimates that are only slightly
different if the population size N is large. As in F̂CD(y), we used a positive constant
in place of the function v(·) in the estimator F̃CD(y) in the simulations.
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Further generalized difference estimators based on fitted values derived from the
predictors ĜDH,i and p̂K,i are defined and analyzed in [7] for the case of simple ran-
dom without replacement sampling. But while in [7] the fitted values gi are based on
leave-one-out estimators if i ∈ s, those used in the model-assisted estimators in the
simulation study presented below are based on all sample observations regardless of
whether i ∈ s or i /∈ s. The fitted values derived from ĜDH,i were computed by

gi :=
1
N ∑

j∈s
diI(y j− µ̃(x j)≤ y− µ̃(xi)), i = 1,2, . . . ,N. (6)

In their definition
µ̃(x) := ∑

i∈s
wπ,i(x)yi (7)

is a design-based version of µ̂(x), with wπ,i(x) given by the components of the row-
vector

wπ := eT
1
(
XT

x Wπ,xXx
)−1 XT

x Wπ,x, (8)

where Wπ,x := diag[diK((xi−x)/λ )]i∈s. The generalized difference estimator based
on the fitted values in (6) will be denoted by F̃DH(y) below. Replacing the wi(·)’s by
the design-weighted local linear regression weights wπ,i(·) in the definition of the
predictors p̂K,i, yields another set of fitted values gi that we included in a generalized
difference estimator denoted by F̃K(y) below. Going one step further than in [7], we
derived fitted values also from the predictor p̂CDW,i to define a generalized differ-
ence estimator that provides a model-assisted version of the estimator F̂CDW (y). The
resulting estimator will be denoted by F̃CDW (y). The fitted values gi used in F̃CDW (y)
are given

gi := gCD,i +∑
j∈s

wπ, j(xi)(gK,i−gCD,i) , i = 1,2, . . . ,N, (9)

where gCD,i and gK,i denote the fitted values used in F̃CD(y) and F̃K(y).
Model-calibrated estimators for FN(y) are obtained by replacing the inverse in-

clusion probabilities di in the Horvitz-Thompson estimator F̂HT (y) by a set of sam-
ple weights ωi. The sample weights ωi are defined as the solution to a constrained
optimization problem, where some function that measures the distance between the
sample weights ωi and the inverse inclusion probabilities di is minimized, under the
constraint that

∑
i∈s

ωigi =
N

∑
i=1

gi (10)

for some set of fitted values gi. As for the distance function to be minimized, two
popular choices are given by the Kullback-Leibler distance between the ωi’s and
the di’s (see [18, 17, 5, 10, 11]) and by some weighted chi-squared distance (see
[6, 16, 13, 14]). The former choice leads to the class of pseudo empirical maximum
likelihood estimators. One drawback of this class of estimators is that there exists no
closed form solution for the corresponding weights ωi. We therefore did not include



8 Leo Pasquazzi and Lucio De Capitani

pseudo empirical maximum likelihood estimators for FN(y) in the simulation study.
Their performance relative to other estimators included in the simulation study has
been tested in another simulation study in [14]. On the other hand, minimizing the
weighted chi-squared distance

Φs := ∑
i∈s

(ωi−di)
2

diqi
, (11)

under the constraint in (10) does lead to a closed form solution for the sample
weights ωi. The solution is given by

ωi = di +

(
N

∑
j=1

g j−∑
j∈s

d jg j

)
diqigi

∑ j∈s d jq jg2
j
, i ∈ s.

Applying these weights to the observed indicator functions I(yi ≤ y) yields the
model calibrated estimator

F̃∗MC(y) :=
1
N ∑

i∈s
ωiI(yi ≤ y)

for FN(y). It is worth noting that F̃∗MC(y) may give rise to estimates that are not
genuine distribution functions, since some sample weights ωi might be negative,
and since the weights ωi depend on the fitted values gi, which in turn depend on
the y-value at which the distribution function FN(y) has to be estimated. [13, 14]
propose a solution to these problems. In these papers it is suggested to consider a
single set of sample weights ωi to estimate FN(y) at all y-values. The set of sample
weights ωi should be obtained by considering instead of a single set of fitted values
gi, r sets of fitted values that do not depend on the y-value at which FN(y) has to be
estimated. In particular, it is suggested to use the r sets of fitted values given by

gi j := I(µ̃(xi)≤ y∗j), i = 1,2, . . . ,N; j = 1,2, . . . ,r,

where y∗1 < y∗2 < · · ·< y∗r are fixed, and µ̃(·) may be given either by

µ̃(x) := xβ̃ , x ∈ R,

under model (1), or by some design-weighted nonparametric estimator for the re-
gression function µ(·). In the simulation study we followed [14] and used (7) to
compute the µ̃(xi)’s in the fitted values gi j. Still following [14], we set r = 4 and
used the three quartiles of the µ̃(xi)’s, i = 1,2, . . . ,N, in place of y∗1,y

∗
2,y
∗
3, and

max1≤i≤N µ̃(xi) in place of y∗4. The latter choice makes sure that the sample weights
ωi do sum to 1. Minimizing the chi-squared distance function (11) with constant
weights qi subject to the set of constraints

∑
i∈s

ωigi = gN ,
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where gi = (gi1,gi2, . . . ,gir)
T and gN = ∑

N
i=1 gi, yields a set of nonnegative sample

weights ωi as shown in [13, 14]. These sample weights are given by

ωi = di(1+ γ gi), i ∈ s,

where

γ =

(
gN−∑

i∈s
digi

)T (
∑
i∈s

digigT
i

)−1

Since the sample weights ωi sum to 1, the estimator

F̃MC(y) =
1
N ∑

i∈s
ωiI(yi ≤ y)

provides estimates that are genuine distribution functions with probability 1. Given
its construction, the estimator F̃MC(y) should be particularly efficient at y-values
close to y∗1,y

∗
2, . . . ,y

∗
r .

3 The double regression estimator

The estimator we propose in this work employs still another approach to compute
predictions for the unobserved indicator functions I(yi≤ y). To accommodate super-
population models like the one in (2) with possibly not identically distributed error
components εi, we propose to employ two nonparametric regressions to estimate
first the model-mean regression function µ(·), and then, using the fitted residuals,
the model-cdfs Gi(ε) = P(εi ≤ ε) of the error components. The resulting predictors
for the unobserved indicator functions I(yi ≤ y) are thus given by

p̂DR,i := ∑
j∈s

w j(xi)I (y j− µ̂(x j)≤ y− µ̂(xi)) , i /∈ s,

and the corresponding model-based estimator for FN(y) is

F̂DR(y) :=
1
N

{
∑
i∈s

I(yi ≤ y)+∑
i/∈s

p̂DR,i

}
.

Because F̂DR(y) is based on two regressions we called it ”Double Regression” esti-
mator. It is worth noting that F̂DR(y) provides estimates that are genuine distribution
functions with probability 1 if the regression weights w j(·) are nonnegative and if
they do sum to 1. In some situations it should be a good idea to employ different re-
gression weights w j(·) for estimating the regression function µ(·) and the cdfs Gi(·)
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of the error components.1 In particular, if the sample or a priori information support
the hypothesis of a linear regression function µ(·), there should be some gain in
efficiency by using even linear regression instead of nonparametric regression to es-
timate µ(·). In this way F̂DR(y) would yield perfect estimates in the scholastic limit
case where yi := xiβ for all i = 1,2, . . . ,N. It is worth noting that this goal can also
be achieved by using local linear regression to estimate the regression function µ(·).
On the other hand, if the sample or a priori information support the hypothesis of
identically distributed error components, then one should simply put w j(xi) = 1/n
for all j ∈ s and for all i /∈ s in the estimation of the Gi(·)’s. In this case F̂DR(y)
reduces obviously to F̂DH(y). Based on these considerations we should thus expect
that: (i) F̂DR(y) is not as efficient as F̂CD(y) if the population follows model (1);
(ii) F̂DR(y) is not as efficient as F̂DH(y) if model (2) with i.i.d. error components
provides a good fit to the population. On the other hand, F̂DR(y) should be more
efficient than both F̂CD(y) and F̂DH(y) in populations generated from model (2) with
not identically distributed error components because of model misspecification bias
in F̂CD(y) and F̂DH(y).

To hint at conditions under which F̂DR(y) should be more efficient than F̂K(y)
and/or F̂CDW (y) we observe that the superpopulation model underlying the latter
two estimators is slightly more general than the one that leads to the definition of
F̂DR(y). In fact, model (3) allows the regression function µ(·) even to not exist, and
since F̂DR(y) is based on some estimate for µ(·), we should expect quite erratic
estimates from F̂DR(y) in populations generated from such models. But otherwise,
especially when the population exhibits a strong regression relationship between the
study variable Y and the auxiliary variable X , we should expect that F̂DR(y) is more
efficient than F̂K(y), since F̂DR(y) exploits a separate estimate of µ(·). For the same
reason F̂DR(y) should be expected to be more efficient than F̂CDW (y) too, if there is
a strong regression relationship and model (1) does not provide a good fit.

To accommodate sample designs with markedly nonconstant inclusion probabil-
ities πi, we propose also a model-assisted version of F̂DR(y) in form of a gener-
alized difference estimator. The model-assisted version will be denoted by F̃DR(y).
The fitted values gi to be used in F̃DR(y) are obtained by incorporating the sam-
ple inclusion probabilities πi in the regression weights w j(·) in the predictors p̂DR,i.
Considerations about the efficiency of F̃DR(y) in comparison to that of the general-
ized difference estimators F̃CD(y), F̃DH(y), F̃K(y) and F̃CDW (y) are similar to those
already made above concerning the model-based versions of these estimators. As
for comparison with F̃MC(y), we should expect that F̃DR(y) is about as efficient as
F̃MC(y) in case of a strong regression relationship, since both estimators exploit an
estimate of µ(·), and that F̃DR(y) is more efficient than F̃MC(y) in case of a weak
regression relationship, since the fitted values used in F̃MC(y) will be unreliable in
the latter case, while those used in F̃DR(y) will track the indicator functions I(yi ≤ y)

1 In this case it is enough that the regression weights w j(·) used for estimating the cdfs of the error
components are nonnegative and that they sum to 1 to ensure that F̂DR(y) provides estimates that
are genuine distribution functions with probability 1.
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closer, because they are sensitive to both the fitted regression function and the fitted
regression residuals.

In the simulation study presented in the next section we tested F̂DR(y) and F̃DR(y)
with the local linear regression weights defined in (5) and in (8), respectively. We
also tried to use different bandwidths λ to estimate µ(·) and the cdfs of the error
components Gi(·) as will be explained in the next section.

4 Simulation Results

In this Section we report the results of a simulation study where the double regres-
sion estimators F̂DR(y) and F̃DR(y) have been compared with the estimators recalled
in Section 2. In the simulations we considered finite populations of size N = 1000
generated from the following superpopulation models:

M1 yi := 0.5xi +σεi

M2 yi := log(xi)+σεi

M3 yi :=
√

xi +σεi

M4 yi := −10(xi−0.5)2 +σεi .

As for the error components εi, they were generated independently from either the
Student t distribution with ν = 5 df (identically distributed error components), or
from shifted noncentral Student t distributions with ν = 5 dgf and with noncen-
trality parameter given by ζ = 15xi (not identically distributed error components).
The shifts applied to the error component distributions in the latter case are aimed to
make sure that their expectations are equal to zero. Note that, in the case of not iden-
tically distributed error components, the value of the auxiliary variable influences
not only the scale of the error distributions but also their entire shape. As for σ , we
considered two values: σ = 0.1 (strong regression relationship), and σ = 0.3 (weak
regression relationship). The x-values taken on by the auxiliary variable were inde-
pendently generated from the uniform distribution on (0,1). The populations we
considered are thus 4(superpopulation models)× 2(types of error components)×
2(values of σ) = 16. The scatterplots of the 16 considered populations are shown in
Figure 1 and in Figure 2.

To compare the performance of the estimators, we selected B = 1000 samples
from each of the 16 populations by simple random without replacement sampling
(srwors) with sample sizes n = 50 and n = 100, and by Poisson sampling with
inclusion probabilities πi proportional to

√
xi and expected sample sizes n = 50

and n = 100. As anticipated in Section 2 and Section 3, in all estimators involving
nonparametric regression, local linear regression weights with Epanechnikov kernel
function were used. The bandwidth λ was set either equal to λs := 0.20 (small band-
width) or to λl := 0.40 (large bandwidth) for n = 50, and either equal to λs := 0.15
(small bandwidth) or to λl := 0.30 (large bandwidth) for n = 100. In F̂DR(y) and
F̃DR(y) we also tried to use two different bandwidths λµ and λG for estimating the
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regression function µ(·) and the cdfs Gi(·) of the error components, respectively.
The combinations we tested are given by (λµ ,λG) := (λs,λs); (λµ ,λG) := (λs,λl);
(λµ ,λG) := (λl ,λs); (λµ ,λG) := (λl ,λl).

For each considered estimator, we evaluated the estimation error with respect
to FN(tk) at tk = F−1

N (k/20) for k = 1,2, . . . ,19, and we computed the simulated
Relative Bias (RB) and the simulated Relative Mean Squared Error (RMSE). The
simulated RB for estimator “•” at the point tk is defined by

RB•(k) =
B•(k)
(k/20)

k = 1,2, ...,19,

where B•(k) denotes the simulated bias of estimator “•” at the point tk. The sim-
ulated RMSE for estimator “•” at the point tk is computed by taking F̂HT (y) as
benchmark. It is defined by

RMSE•(k) =
MSE•(k)

MSEHT (k)
k = 1,2, ...,19

where MSE•(k) denotes the simulated MSE of estimator “•” at the point tk. Based
on RB•(k) and on RMSE•(k), k = 1,2, . . . ,19, we finally computed the AVeraged
Relative Bias (AVRB) and the AVeraged Relative Error (AVRE)

AV RB• =
1

19

19

∑
k=1
|RB•(k)| , AV RE =

1
19

19

∑
k=1

RMSE•(k)

to evaluate the overall performance of each estimator. Tables 1 to 8 report the values
of both these indexes for each considered estimator, population and sample design.
In these tables the notation identifying the estimators has been slightly modified in
order to single out, if necessary, the results obtained with small and large bandwidth.
In detail, we added an “s” or an “l” to the subscript of F̂•(y) and F̃•(y) according
to the bandwidth. In F̂DR(y) and F̃DR(y) we added two subscripts “ss”, “sl”, “ls”,
or “ll”, where the first one refers to the bandwidth used for estimating µ(·), and
the second one to the bandwidth for estimating the Gi(·)’s. The AVRB and AVRE-
values reported in Tables 1 to 4 and those referring to the estimators that do not
involve local-linear regression with bandwidth λs in Tables 5 to 8 are based on
B = 1000 samples, while those referring to the estimators that do involve local-
linear regression with bandwidth λs in Tables 5 and 6 and in Tables 7 and 8 are based
on 878 and 969 samples, respectively. This is caused by the fact that while under
the srwors sample designs no sample occurred with not well-defined local-linear
regression weights (which happens when there are too large holes in the sampled
x-values), under the Poisson sample designs with expected sample sizes n = 50 and
n = 100 there occurred respectively 122 and 31 samples where at some population
x-value the local-linear regression weights w j(x) with bandwidth λs were not well-
defined.

The simulation results reported in Tables 1 to 8 confirm that the estimators based
on auxiliary information do often provide a large gain in efficiency with respect to
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the Horvitz-Thompson estimator. In fact, the AVRE of the former estimators is usu-
ally smaller than 1 and it may reach values close to 0.1 in some cases. The gain in
efficiency (as measured by the AVRE) seems less evident in the populations gener-
ated from the models with not identically distributed error components. Perhaps sur-
prisingly, the AVRE of the model-based estimators tends to be smaller than that of
the model-assisted ones not just under the srwors schemes, but also under the Pois-
son sampling schemes. In fact, under srwors there is, as expected, a large positive
gap between the lowest AVRE among the model-based estimators, and the lowest
AVRE among the model-assisted ones. Under the Poisson sampling schemes this
gap reduces, but except for the population generated from model M1 with σ = 0.3,
where F̃MC(y) has lowest AVRE among all considered estimators when the expected
sample size is n = 50, the smallest AVRE among the model-based estimators is al-
ways lower than the smallest AVRE among the model-assisted ones. This outcome
is explained by the fact that the AVRB of the model-based estimators remains quite
low under the Poisson sampling schemes as well, even though the inclusion prob-
abilities πi are proportional to

√
xi. More variability in the inclusion probabilities

would likely change this result.
Comparing the model-based estimators, we note that F̂CD(y) and F̂DH(y) usually

have lowest AVRE in the populations generated from the models with identically
distributed error components, and that the new estimator F̂DR(y) has usually low-
est AVRE in the other populations. But while the AVRE of F̂CD(y) and F̂DH(y) is
huge in the populations generated from models with not identically distributed error
components, that of F̂DR(y) remains quite close to that F̂CD(y) and F̂DH(y) when
the latter estimators are more precise. F̂K(y) and F̂CDW (y) exhibit also low AVRE-
values in many instances. However, the AVRE of the latter estimators is usually
larger than that of F̂DR(y). In favor of F̂DR(y) it is further worth noting that its AVRE
is not as sensitive to the bandwidth as that of F̂DH(y), F̂K(y) and F̂CDW (y). The more
pronounced sensitivity to the bandwidth of in particular F̂K(y) and F̂CDW (y) is exac-
erbated by the Poisson sampling schemes. This is probably due to the fact that F̂K(y)
and F̂CDW (y) (in its bias correction term) do not take advantage of a separate esti-
mate of the regression function, which makes the predictors used those estimators
very variable if the bandwidth is small.

Similar considerations as those about the model-based estimators, hold for com-
parisons among the generalized difference estimators derived from F̂CD(y), F̂DH(y),
F̂K(y), F̂CDW (y) and F̂DR(y). As for F̃MC(y), the only model-calibrated estimator
included in the simulation study, it usually exhibits a larger AVRE than the gener-
alized difference estimators under the srwors schemes. This may be the price to be
paid by the estimator for providing always estimates that are genuine distribution
functions. However, under the Poisson sampling schemes F̃MC(y) has in many cases
lowest AVRE among the model-assisted estimators when the population is gener-
ated from models with not identically distributed error components. In one instance,
as already mentioned above, F̃MC(y) is even the estimator with lowest AVRE among
all estimators included in the simulation study. The competitiveness of F̃MC(y) un-
der the Poisson sampling schemes is due to fact that F̃MC(y) is based on four sets of
fitted values, while the other estimators are based on a single set of predictions or
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fitted values. In fact, under the Poisson sampling schemes the predictions and fitted
values for I(yi ≤ y) at low x-values are very variable, while the high variability of
the set of fitted values corresponding to y∗1 in F̃MC(y) is dampened by lower variabil-
ity of the other three sets of fitted values corresponding to y∗2, y∗3 and y∗4. The AVRE
of F̃DR(y) is however very close to that F̃MC(y) when the latter estimator performs
better, unless the wrong bandwidth combination is used in F̃DR(y).

5 Conclusions

In this work we proposed a new estimator for a finite population distribution func-
tion based on a very general superpopulation model that allows for nonlinear re-
gression functions and possibly not identically distributed error components. The
new estimator employs two local linear regressions to estimate first the regression
function and then the cdfs of the error components. We therefore call it ”Double
Regression” estimator (DR-estimator). We proposed a model-based as well as a
model-assisted version of the new estimator, the latter in the form of generalized
difference estimator. We hint at conditions under which the new estimator should
outperform some well-known estimators from the literature and tested the efficiency
of the new estimator in a simulation study involving several populations and two
sample designs: simple random without replacement sampling and Poisson sam-
pling with nonconstant inclusion probabilites. The simulation results show that the
DR-estimator looses little efficiency with respect to the Chambers and Dunstan esti-
mator [4] and with respect to the nonlinear version Chambers and Dunstan estimator
proposed in [7] in populations generated from the more restrictive models underly-
ing the definitions of the latter estimators. On the other hand, the DR-estimator is
clearly more efficient in populations with nonlinear regression functions and sparse
regression residuals. The DR-estimator also outperforms the Kuo [9] and by Cham-
bers, Dunstan and Wehrly [3] estimators in all considered populations and under
both sample designs. Among the considered settings, the model-calibrated estima-
tor proposed in [14] turned out to be a little more efficient than the DR-estimator
just in one case, while being far less efficient in several other cases.
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Fig. 1 Finite populations generated from models M1-M4 with σ = 0.1 and σ = 0.3 and identically
distributed error components.
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Fig. 2 Finite populations generated from models M1-M4 with σ = 0.1 and σ = 0.3 and not-
identically distributed error components.
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