THE VALIDITY OF THE EULER-LAGRANGE EQUATION

Giovanni Bonfanti and Arrigo Cellina

Dipartimento di Matematica e Applicazioni
Università degli Studi di Milano-Bicocca Via R. Cozzi 53, I-20125 Milano, Italy

To Louis Nirenberg, with admiration

Abstract

We prove the validity of the Euler-Lagrange equation for a solution u to the problem of minimizing $\int_{\Omega} L(x, u(x), \nabla u(x)) \mathrm{d} x$, where L is a Carathéodory function, convex in its last variable, without assuming differentiability with respect to this variable.

1. Introduction. This paper deals with the necessary conditions satisfied by a locally bounded solution u to the problem of minimizing

$$
\begin{equation*}
\int_{\Omega} L(x, v(x), \nabla v(x)) \mathrm{d} x \tag{1}
\end{equation*}
$$

on $v_{0}+W_{0}^{1,1}(\Omega)$, where $L(x, v, \xi)$ is a Carathéodory function, differentiable with respect to v, and whose derivative L_{v} is also a Carathéodory function, and the map $\xi \mapsto L(x, v, \xi)$ is convex and defined on \mathbb{R}^{N}. We do not assume further regularity on L, with the exception of standard growth estimates, described below. For functionals of this form, it has been conjectured that the suitable form of the Euler-Lagrange equations satisfied by u should be

$$
\begin{aligned}
\exists p(\cdot) \in\left(\mathrm{L}^{1}(\Omega)\right)^{N}, & \text { a selection from } \partial L_{\xi}(\cdot, u(\cdot), \nabla u(\cdot)), \text { such that } \\
& \operatorname{div} p(\cdot)=L_{v}(\cdot, u(\cdot), \nabla u(\cdot))
\end{aligned}
$$

in the sense of distributions. This fact has been proved in a few special cases: in [2] for maps of the form $L(v, \xi)$, jointly convex in (v, ξ), and, more recently, in [1] for maps $L(x, v, \xi)=f(\|\xi\|)+g(x, v)$, depending on ξ through its norm. The proof introduced in [1] is elementary, and it is based on the Riesz representation Theorem and on the Hahn-Banach Theorem. This paper is a sequel to [1] and shows that a modification of the same elementary proof allows us to prove the conjecture in its full generality. The proofs we present are self-contained.
2. Main results. We consider \mathbb{R}^{N} with the Euclidean norm $|\cdot|$ and unit ball \mathbb{B}. $\ell(A)$ is the N-dimensional Lebesgue measure of a set A. Given a closed convex $K \subset \mathbb{R}^{N}$, by m_{K} we mean the unique point of K of minimal norm and by $\|K\|$ we mean $\sup \{|k|: k \in K\}$; a set valued map K with values in the non-empty compact subsets of \mathbb{R}^{N} is called upper semicontinuous at x_{0} if $\forall \varepsilon \exists \delta$ such that $\left|x-x_{0}\right|<\delta$ implies $K(x) \subset K\left(x_{0}\right)+\varepsilon \mathbb{B}$. In this paper we shall also meet real valued upper and lower semicontinuous maps, with the usual definitions.

[^0]Given a function $L(x, v, \xi)$, convex in ξ for each fixed (x, v), by $\partial_{\xi} L(x, v, \xi)$ we mean the subdifferential of L with respect to the variable ξ. Under the assumptions of the present paper, $\partial_{\xi} L(x, v, \xi)$ is a non-empty compact convex subset of \mathbb{R}^{N} and the $\operatorname{map} \xi \mapsto \partial_{\xi} L(x, v, \xi)$ is (for fixed (x, v)) an upper semicontinuous set valued map. We shall assume further properties of this map in Assumption A.
$I_{A}(\cdot)$ is the indicator function of the set $A . f^{*}$ is the polar or Fenchel transform [4] of $f . \Omega$ is a bounded open subset of \mathbb{R}^{N}. Given a solution u, the shorthand notation $D_{L}(x)$ means the set $\partial_{\xi} L(x, u(x), \nabla u(x))$.

Assumption A.
i) $L(x, v, \xi)$ is a Carathéodory function, differentiable with respect to v, and whose derivative L_{v} is also a Carathéodory function, and, for every pair (x, v), the map $\xi \mapsto L(x, v, \xi)$ is convex and defined on \mathbb{R}^{N}.
ii) There exist a convex non-negative function f and constants H_{1} and H_{2} such that

$$
\begin{equation*}
\|\partial f(\xi)\| \leq H_{1} f(\xi)+H_{2} \tag{2}
\end{equation*}
$$

and, for every U, there exist functions α_{U}, β_{U} and γ_{U} in $\mathrm{L}^{1}(\Omega)$ and positive constants h_{U}^{1}, h_{U}^{2} and h_{U}^{3}, such that $|v| \leq U$ implies

$$
\begin{gather*}
\alpha_{U}(x)+h_{U}^{1} f(\xi) \leq L(x, v, \xi) \tag{3}\\
\partial_{\xi} L(x, v, \xi) \leq \beta_{U}(x)+h_{U}^{2} \partial f(\xi) \tag{4}\\
\left|L_{u}(x, v, \xi)\right| \leq \gamma_{U}(x)+h_{U}^{3} f(\xi) \tag{5}
\end{gather*}
$$

iii) For every $\delta>0$ there exists $\Omega_{\delta} \subset \Omega$, with $\ell\left(\Omega \backslash \Omega_{\delta}\right)<\delta$, such that the restriction of $\partial_{\xi} L(x, v, \xi)$ to $\Omega_{\delta} \times \mathbb{R} \times \mathbb{R}^{N}$ is upper semicontinuous.

Assumption A ii) limits the growth of L in the variable ξ to be exponential. This growth limitation still holds, so far, for the proofs of the validity of the Euler-Lagrange equation for variational problems of general form, independently on whether there are additional differentiability assumptions or not. An exception to this statement is the recent paper [3], where no growth limitations are assumed, but for functionals of a special form.

It is our purpose to prove the following
Theorem 2.1. Let L satisfy Assumption A. Let u be a locally bounded solution to Problem (1). Then,

$$
\exists p(\cdot) \in \mathrm{L}^{1}(\Omega), \text { a selection from } \partial_{\xi} L(\cdot, u(\cdot) \nabla u(\cdot)) \text {, }
$$

such that

$$
\operatorname{div} p(\cdot)=L_{u}(\cdot, u(\cdot), \nabla u(\cdot))
$$

in the sense of distributions.
We shall need the following variant of the Riesz Representation Theorem.
Lemma 2.2. Let D be a map from Ω to the closed convex non-empty subsets of $R \mathbb{B}$, such that $v \in\left(\mathrm{~L}^{\infty}(\Omega)\right)^{N}$ implies that the map $x \mapsto m_{[D(x)-v(x)]}$ is measurable; let $T:\left(\mathrm{L}^{1}(\Omega)\right)^{N} \rightarrow \mathbb{R}$ be a linear functional satisfying

$$
T(\xi) \leq \int_{\Omega}\left(I_{D(x)}\right)^{*}(\xi(x)) d x
$$

Then, there exists $\tilde{p} \in\left(\mathrm{~L}^{\infty}(\Omega)\right)^{N}$, $\tilde{p}(x)$ a.e. in $D(x)$, that represents T, i.e., such that

$$
\begin{equation*}
T(\xi)=\int_{\Omega}\langle\tilde{p}(x), \xi(x)\rangle d x \tag{6}
\end{equation*}
$$

Proof. a) Since $\left|\left(I_{D(x)}\right)^{*}(\xi(x))\right| \leq\|D(x)\||\xi(x)|$ we have that T is a bounded linear functional on $\left(\mathrm{L}^{1}(\Omega)\right)^{N}$. Writing ξ as $\xi_{1}(x) e_{1}+\ldots+\xi_{N}(x) e_{N}$ and applying the standard Riesz representation Theorem, we infer the existence of a function $\tilde{p} \in$ $\left(\mathrm{L}^{\infty}(\Omega)\right)^{N}$ that satisfies (6). To show that $\tilde{p}(x)$ is in $D(x)$ a.e., assume that there exists a set $E \subset \Omega$ of positive measure such that, on $E, \tilde{p}(x) \notin D(x)$, i.e., $0 \notin$ $D(x)-\tilde{p}(x)$. Setting $D^{*}:=D(x)-\tilde{p}(x)$, we can equivalently say that $\left|m_{D^{*}(x)}\right|>0$ on E.

Let $z(x)$ be the projection of minimal distance of $\tilde{p}(x)$ on $D(x)$, so that, $z(x)$ -$\tilde{p}(x)=m_{D(x)-\tilde{p}(x)}$ or, $z(x)-\tilde{p}(x)=m_{D^{*}(x)}$. From the characterization of the projection of minimal distance, we obtain

$$
\langle\tilde{p}(x)-z(x), z(x)\rangle \geq\langle\tilde{p}(x)-z(x), k\rangle, \quad \forall k \in D(x),
$$

that can be rewritten as

$$
\left\langle-m_{D^{*}}(x), \tilde{p}(x)\right\rangle \geq\left|m_{D^{*}}(x)\right|^{2}+\left\langle-m_{D^{*}}(x), k\right\rangle, \quad \forall k \in D(x)
$$

Hence, we have that, on E,

$$
\left\langle-m_{D^{*}}(x), \tilde{p}(x)\right\rangle>\sup \left\{\left\langle-m_{D^{*}}(x), k\right\rangle: k \in D(x)\right\}=\left(I_{D(x)}\right)^{*}\left(-m_{D^{*}}(x)\right)
$$

b) Setting $\tilde{\xi}:=-m_{D^{*}} \chi_{E}$, we have that $\tilde{\xi} \in \mathrm{L}^{1}(\Omega)$ and

$$
T(\tilde{\xi})=\int_{\Omega}\langle\tilde{p}, \tilde{\xi}\rangle=\int_{E}\left\langle\tilde{p},-m_{D^{*}}\right\rangle>\int_{\Omega}\left(I_{D(x)}\right)^{*}(\tilde{\xi}) \geq T(\tilde{\xi})
$$

a contradiction.
Proposition 1. Let $x \mapsto K(x)$ be an upper semicontinuous set-valued map. Then, i) the real valued map $x \mapsto\left|m_{K(x)}\right|$ is lower semicontinuous and the real valued map $x \mapsto\|K(x)\|$ is upper semicontinuous; ii) the real valued map $(x, \xi) \mapsto\left(I_{K(x)}\right)^{*}(\xi)$ is continuous in ξ for each fixed x and upper semicontinuous in x for each fixed ξ.

Proposition 2. Let $x \mapsto K(x)$ be an upper semicontinuos set-valued map with values in the closed convex subsets of \mathbb{R}^{N}. Then, $\left|m_{K(\cdot)}\right|$ continuous at x_{0} implies that $m_{K(\cdot)}$ is continuous at x_{0}.

Proof. Fix x_{0}, a point of continuity of $\left|m_{K(\cdot)}\right|$, and consider two cases: i) $0 \notin K\left(x_{0}\right)$ and, ii), $0 \in K\left(x_{0}\right)$.
i) Fix $\varepsilon>0$, with $\varepsilon<2 \sqrt{2}\left|m_{K\left(x_{0}\right)}\right|$. Let $\sigma>0$ be such that $\left(\left|m_{K\left(x_{0}\right)}\right|-\sigma\right)^{2}=$ $\left|m_{K\left(x_{0}\right)}\right|^{2}-\frac{\varepsilon^{2}}{8}$ and let η be such that $\frac{1}{2}\left(\left|m_{K\left(x_{0}\right)}\right|^{2}+\left(\left|m_{K\left(x_{0}\right)}\right|+\eta\right)^{2}\right)=\left|m_{K\left(x_{0}\right)}\right|^{2}+$ $\frac{\varepsilon^{2}}{8}$. Let δ be such that $\left|x-x_{0}\right|<\delta$ implies that both $K(x) \subset K\left(x_{0}\right)+\sigma \mathbb{B}$ and $\left|\left|m_{K\left(x_{0}\right)}\right|-\left|m_{K(x)}\right|\right|<\eta$. As a consequence, from the convexity of $K\left(x_{0}\right)+\sigma \mathbb{B}$, we obtain that $\frac{m_{K\left(x_{0}\right)}+m_{K(x)}}{2} \in K\left(x_{0}\right)+\sigma \mathbb{B}$, so that

$$
\left|\frac{m_{K\left(x_{0}\right)}+m_{K(x)}}{2}\right| \geq\left|m_{K\left(x_{0}\right)}\right|-\sigma .
$$

From the identity

$$
\left|\frac{m_{K\left(x_{0}\right)}-m_{K(x)}}{2}\right|^{2}=\frac{1}{2}\left(\left|m_{K\left(x_{0}\right)}\right|^{2}+\left|m_{K(x)}\right|^{2}\right)-\left|\frac{m_{K\left(x_{0}\right)}+m_{K(x)}}{2}\right|^{2}
$$

we obtain

$$
\begin{aligned}
\left|\frac{m_{K\left(x_{0}\right)}-m_{K(x)}}{2}\right|^{2} & \leq \frac{1}{2}\left(\left|m_{K\left(x_{0}\right)}\right|^{2}+\left|m_{K\left(x_{0}\right)}+\eta\right|^{2}\right)-\left(\left|m_{K\left(x_{0}\right)}\right|-\sigma\right)^{2} \\
& =\left|m_{K\left(x_{0}\right)}\right|^{2}+\frac{\varepsilon^{2}}{8}-\left|m_{K\left(x_{0}\right)}\right|^{2}+\frac{\varepsilon^{2}}{8}=\frac{\varepsilon^{2}}{4}
\end{aligned}
$$

ii) Fix $\varepsilon>0$; for $\sigma>0$ such that $\left|x-x_{0}\right|<\sigma$ implies $K(x) \subset K\left(x_{0}\right)+\varepsilon \mathbb{B}$, we have that $m_{K(x)}-0 \in \varepsilon \mathbb{B}$.

Lemma 2.3. i) $v \in\left(\mathrm{~L}^{\infty}(\Omega)\right)^{N}$ implies that the map $x \mapsto m_{\left[\frac{1}{\pi D_{L}(x) \pi} D_{L}(x)-v(x)\right]}$ is in $\left(\mathrm{L}^{\infty}(\Omega)\right)^{N}$ and, ii), for $\xi \in L^{1}(A)$, the map $x \mapsto\left(I_{\left[\frac{1}{\left\|D_{L}(x)\right\|} D_{L}(x)-v(x)\right]}\right)^{*}(\xi(x))$ is in $L^{1}(\Omega)$.

Proof. i) Fix ε. Let Ω^{\prime} be the subset of Ω provided by Assumption A, iii), with $\delta=\frac{\varepsilon}{4}$. Applying Lusin's theorem, there exists $E \subset \Omega^{\prime}$ with $\ell\left(\Omega^{\prime} \backslash E\right) \leq \frac{\varepsilon}{4}$, such that $\left.u\right|_{E},\left.v\right|_{E}$ and $\left.\nabla u\right|_{E}$ are continuous so that, on E, the set valued map D_{L} is upper semicontinuous and, by Proposition 1, the real valued map $\left\|D_{L}\right\|$ is upper semicontinuous. Hence, there exists $E^{\prime} \subset E$, with $\ell\left(\Omega^{\prime} \backslash E^{\prime}\right) \leq \frac{2}{4} \varepsilon$, such that the restriction of $\left\|D_{L}\right\|$ to E^{\prime} is continuous. Then, on E^{\prime}, the set valued map $x \mapsto \frac{1}{\left\|D_{L}(x)\right\|} D_{L}(x)$ is upper semicontinuous: in fact, let $x_{n} \in E^{\prime}, x_{n} \rightarrow x_{*}$ and $w_{n} \in$ $\frac{1}{\left\|D_{L}\left(x_{n}\right)\right\|} D_{L}\left(x_{n}\right)$ with $w_{n} \rightarrow w_{*}$; then $\left\|D_{L}\left(x_{n}\right)\right\| w_{n} \rightarrow\left\|D_{L}\left(x_{*}\right)\right\| w_{*}$ that belongs to $D_{L}\left(x_{*}\right)$, i.e., $w_{*} \in \frac{1}{\pi D_{L}\left(x_{*}\right) \|} D_{L}\left(x_{*}\right)$. We have obtained that the restriction to E^{\prime} of the map $\frac{1}{\left\|D_{L}\right\|} D_{L}$ has closed graph, and it follows that it is u.s.c. Then, so is the the restriction to E^{\prime} of the set valued map $\frac{1}{\left\|D_{L}\right\|} D_{L}-v$. Applying Proposition 1 i), we infer that the restriction to E^{\prime} of $\left|m_{\left[\frac{1}{D_{L} \|} D_{L}-v\right]}\right|$ is lower semicontinuous, hence, for a suitable $E^{\prime \prime} \subset E^{\prime}$ with $\ell\left(\Omega^{\prime} \backslash E^{\prime \prime}\right) \leq \frac{3}{4} \varepsilon$, its restriction to $E^{\prime \prime}$ is continuous. By Proposition 2, the restriction to $E^{\prime \prime}$ of $m_{\left[\frac{1}{\left\|D_{L}\right\|} D_{L}-v\right]}$ is continuous, and $\ell\left(\Omega \backslash E^{\prime \prime}\right) \leq \varepsilon$. Being ε arbitrary, $m_{\frac{1}{D_{L} \Pi} D_{L}-v}$ is measurable on Ω and belongs to $\left(\mathrm{L}^{\infty}(\Omega)\right)^{N}$.
ii) Consider a simple function $\xi_{s}=\sum \alpha_{i} \chi_{A_{i}}$, with $\cup A_{i}=E^{\prime}$; we have

$$
\left(I_{\left[\frac{1}{\pi D_{L}(x) \pi} D_{L}-v(x)\right]}\right)^{*}\left(\xi_{s}(x)\right)=\sum\left(I_{\left[\frac{1}{D_{L}(x) \pi 5}\right.} D_{L}-v(x)\right)^{*}\left(\alpha_{i}\right) \chi_{A_{i}}(x):
$$

by Proposition 1 ii), it is upper semicontinuous in x on each A_{i}, hence measurable on E^{\prime}. Let $\left(\xi_{\nu}\right)$ be a sequence of simple functions, converging to $\left.\xi\right|_{E^{\prime}}$. Fix \tilde{x} : again by Proposition 1,

$$
\left(I_{\left[\frac{1}{\pi D_{L}(\tilde{x}) \|} D_{L}(\tilde{x})-v(\tilde{x})\right]}\right)^{*}\left(\xi_{\nu}(\tilde{x})\right) \text { converges to } \quad\left(I_{\left[\frac{1}{\left\|D_{L}(\tilde{x})\right\|} D_{L}(\tilde{x})-v(\tilde{x})\right]}\right)^{*}(\xi(\tilde{x}))
$$

Moreover, each of the functions $x \mapsto\left(I_{\left[\frac{1}{\prod_{D}(x) \pi} D_{L}-v(x)\right]}\right)^{*}\left(\xi_{\nu}(x)\right)$ is measurable, and so is their pointwise limit $\left.\left(I_{\left[\frac{1}{D_{L}(\cdot) \pi}\right.} D_{L}(\cdot)-v(\cdot)\right]\right) *(\xi(\cdot))$. Being ε arbitrary, we have that $x \mapsto\left(I_{\left[\frac{1}{D_{L}(x) \pi} D_{L}(x)-v(x)\right]}\right)^{*}(\xi(x))$ is measurable on Ω. Finally, $\left|\left(I_{\left[\frac{1}{\prod_{D_{L}} \|} D_{L}-v\right]}\right)^{*}(\xi)\right| \leq$ $|\xi|$.

Proof of Theorem 1. a) Let u be a locally bounded solution to problem (1), let $\eta \in C_{0}^{\infty}(\Omega)$. Without loss of generality assume that $\sup |\eta| \leq 1$ and $\sup |\nabla \eta| \leq 1$. Set $\omega=\operatorname{supp}(\eta)$, let U^{*} such that $|u(x)| \leq U^{*}$ on ω, and set $U=U^{*}+1$. From (2) we infer that, for $|z| \leq 1, f(\xi+z) \leq f(\xi) e^{H}$. Recalling the notation $D_{L}(x)=$
$\partial_{\xi} L(x, u(x), \nabla u(x))$, we have that

$$
\begin{aligned}
& \frac{1}{\varepsilon}[L(x, u(x)+\varepsilon \eta(x), \nabla u(x)+\varepsilon \nabla \eta(x))-L(x, u(x), \nabla u(x))] \\
& \quad \rightarrow\left[\sup _{k \in D_{L}(x)}\langle k, \nabla \eta(x)\rangle\right]+L_{u}(x, u(x), \nabla u(x)) \eta(x)
\end{aligned}
$$

pointwise w.r.t. x. Moreover,

$$
\begin{aligned}
& \left|\frac{1}{\varepsilon}[L(x, u(x)+\varepsilon \eta(x), \nabla u(x)+\varepsilon \nabla \eta(x))-L(x, u(x), \nabla u(x))]\right| \\
& \quad=\left|\frac{1}{\varepsilon}[L(x, u(x)+\varepsilon \eta(x), \nabla u(x)+\varepsilon \nabla \eta(x))-L(x, u(x), \nabla u(x)+\varepsilon \nabla \eta(x))]\right| \\
& \quad+\left|\frac{1}{\varepsilon}[L(x, u(x), \nabla u(x)+\varepsilon \nabla \eta(x))-L(x, u(x), \nabla u(x))]\right| \\
& \leq\left|L_{u}\left(x, u(x)+\theta_{1} \varepsilon \eta(x), \nabla u(x)+\varepsilon \nabla \eta(x)\right) \eta(x)\right| \\
& \quad+\left|\sup \left\{\langle k, \nabla \eta(x)\rangle: k \in \partial_{\xi} L\left(x, u(x), \nabla u(x)+\theta_{2} \varepsilon \nabla \eta(x)\right)\right\}\right| .
\end{aligned}
$$

From (5), we have

$$
\begin{align*}
\mid L_{u}(x, u(x)+ & \left.\theta_{1} \varepsilon \eta(x), \nabla u(x)+\varepsilon \nabla \eta(x)\right) \eta(x) \mid \\
& \leq \gamma_{U}(x)+h_{U}^{3} f(\nabla u(x)+\varepsilon \nabla \eta(x)) \tag{7}\\
& \leq \gamma_{U}(x)+h_{U}^{3} f(\nabla u(x)) e^{H} .
\end{align*}
$$

Assumption (3) implies that $f(\nabla u)$ is integrable, so that the r.h.s. of (7) is an integrable function, independent of ε.

We also have:

$$
\begin{aligned}
\mid \sup \{\langle k, & \left.\nabla \eta(x)\rangle: k \in \partial_{\xi} L\left(x, u(x), \nabla u(x)+\theta_{2} \varepsilon \nabla \eta(x)\right)\right\} \mid \\
& \leq|\nabla \eta(x)|\left[\beta_{U}(x)+h_{U}^{2}\left|\partial f\left(\nabla u(x)+\theta_{2} \varepsilon \nabla \eta(x)\right)\right|\right] \\
& \leq|\nabla \eta(x)|\left[\beta_{U}(x)+h_{U}^{2} K f\left(\nabla u(x)+\theta_{2} \varepsilon \nabla \eta(x)\right)\right] \\
& \leq|\nabla \eta(x)|\left[\beta_{U}(x)+h_{U}^{2} H f(\nabla u(x)) e^{H}\right],
\end{aligned}
$$

an integrable function, independent of ε.
Hence, by dominated convergence,

$$
\begin{aligned}
\frac{1}{\varepsilon}\left[\int_{\Omega} L(x\right. & \left., u(x)+\varepsilon \eta(x), \nabla u(x)+\varepsilon \nabla \eta(x)) \mathrm{d} x-\int_{\Omega} L(x, u(x), \nabla u(x)) \mathrm{d} x\right] \\
& \rightarrow \int_{\Omega} \sup _{k \in D_{L}(x)}\langle k, \nabla \eta(x)\rangle \mathrm{d} x+\int_{\Omega} L_{u}(x, u(x), \nabla u(x)) \eta(x) \mathrm{d} x \\
& =\int_{\Omega}\left(I_{D_{L}(x)}\right)^{*}(\nabla \eta(x)) \mathrm{d} x+\int_{\Omega} L_{u}(x, u(x), \nabla u(x)) \eta(x) \mathrm{d} x
\end{aligned}
$$

Hence, we obtain

$$
0 \leq \int_{\Omega}\left(I_{D_{L}(x)}\right)^{*}(\nabla \eta(x)) \mathrm{d} x+\int_{\Omega} L_{u}(x, u(x), \nabla u(x)) \eta(x) \mathrm{d} x
$$

or,

$$
\begin{align*}
-\int_{\Omega} L_{u}(x, u(x), \nabla u(x)) \eta(x) \mathrm{d} x & \leq \int_{\Omega}\left(I_{D_{L}(x)}\right)^{*}(\nabla \eta) \mathrm{d} x \\
=\int_{\Omega} \sup _{\left\{k \in D_{L}(x)\right\}}\langle k, \nabla \eta\rangle & =\int_{\Omega} \sup _{\left\{k \in D_{L}(x)\right\}}\left\langle\frac{k}{\left\|D_{L}(x)\right\|},\left\|D_{L}(x)\right\| \nabla \eta\right\rangle \tag{8}
\end{align*}
$$

b) From (4), (3) and (2), we have that $\left\|D_{L}(x)\right\| \leq \beta_{U}(x)+h_{U}^{2} H f(\nabla u(x)) \leq$ $\beta_{U}(x)+h_{U}^{2} H \frac{1}{h_{U}^{\perp}}\left(L(x, u, \nabla u(x))-\alpha_{U}(x)\right)$, so that $\left\|D_{L}\right\| \in \mathrm{L}^{1}(\Omega)$; for every $\eta \in$ $C_{0}^{\infty}(\Omega)$ we have that $\left\|D_{L}\right\| \nabla \eta \in\left(\mathrm{L}^{1}(\Omega)\right)^{N}$. Consider \mathbb{L}, the linear subspace of $\left(\mathrm{L}^{1}(\Omega)\right)^{N}$ defined as

$$
\mathbb{L}=\left\{\xi \in\left(L^{1}(\Omega)\right)^{N}: \exists \eta \in C_{0}^{\infty}(\Omega): \xi=\left\|D_{L}(x)\right\| \nabla \eta\right\}
$$

and, on \mathbb{L}, the linear functional

$$
T(\xi)=-\int_{\Omega} L_{u}(x, u(x), \nabla u(x)) \eta(x) \mathrm{d} x .
$$

We notice that T is well defined: assume that there exist η^{1} and η^{2} in $C_{0}^{\infty}(\Omega)$ such that $\xi=\left\|D_{L}\right\| \nabla \eta^{1}=\left\|D_{L}\right\| \nabla \eta^{2}$: then, from (8), we have

$$
\left|-\int_{\Omega} L_{u}(x, u(x), \nabla u(x)) \eta^{1}(x) \mathrm{d} x+\int_{\Omega} L_{u}(x, u(x), \nabla u(x)) \eta^{2}(x) \mathrm{d} x\right|=0
$$

so that T is well defined.
The map

$$
\begin{aligned}
& \varrho(\xi):=\int_{\Omega} \sup _{\left\{k \in D_{L}(x)\right\}}\left\langle\frac{k}{\left\|D_{L}(x)\right\|},\left\|D_{L}(x)\right\| \nabla \eta\right\rangle \mathrm{d} x \\
& =\int_{\Omega\left\{h \in \frac{1}{\frac{1}{\| D_{L}(x) \pi}} D_{L}(x)\right\}}\left\langle h,\left\|D_{L}(x)\right\| \nabla \eta\right\rangle \mathrm{d} x \\
& =\int_{\Omega}\left(I_{\| D_{L}(x) \pi} D_{L}(x)\right)^{*}\left(\left\|D_{L}(x)\right\| \nabla \eta(x)\right) \mathrm{d} x
\end{aligned}
$$

appearing at the r.h.s. of (8) is defined on \mathbb{L} as a convex, positively homogeneous map. It can be extended, preserving these properties, to $\left(\mathrm{L}^{1}(\Omega)\right)^{N}$, since $\left(I_{\pi D_{L}(x) \pi} D_{L}(x)\right)^{*}(\xi(x)) \leq|\xi(x)|$.

Hence, by the Hahn Banach Theorem, the linear map T can be extended from \mathbb{L} to the whole of $\left(\mathrm{L}^{1}(\Omega)\right)^{N}$, still satisfying $|T(\xi)| \leq \rho(\xi)$.
c) By Lemma 2, we can apply Lemma 1 to the map $D=\frac{1}{\left\|D_{L}\right\|} D_{L}$. Hence, we infer the existence of a $\tilde{p} \in\left(\mathrm{~L}^{\infty}(\Omega)\right)^{N}$, with $\tilde{p}(x) \in \frac{1}{\left\|D_{L}(x)\right\|} D_{L}(x)$ a.e. on Ω, i.e. $\tilde{p}(x)=\frac{1}{\left\|D_{L}(x)\right\|} p(x)$ with $p(x) \in D_{L}(x)$, representing the extension of T to $\left(\mathrm{L}^{1}(\Omega)\right)^{N}$, in particular, representing T on \mathbb{L}. Hence, for every $\eta \in C_{0}^{\infty}(\Omega)$, we have

$$
\begin{gathered}
-\int_{\Omega} L_{u}(x, u(x), \nabla u(x)) \eta(x) \mathrm{d} x \\
=\int_{\Omega}\left\langle\tilde{p}(x),\left\|D_{L}(x)\right\| \nabla \eta(x)\right\rangle \mathrm{d} x=\int_{\Omega}\langle p(x), \nabla \eta(x)\rangle \mathrm{d} x
\end{gathered}
$$

In other words, for every $\eta \in C_{0}^{\infty}(\Omega)$,

$$
\int_{\Omega}\langle p(x), \nabla \eta(x)\rangle \mathrm{d} x+\int_{\Omega} L_{u}(x, u(x), \nabla u(x)) \eta(x) \mathrm{d} x=0
$$

The map $p(\cdot)$ is a selection from $\partial_{\xi} L(\cdot, u(\cdot), \nabla u(\cdot))$ defined on Ω, thus proving the Theorem.

REFERENCES

[1] Arrigo Cellina and Marco Mazzola, Necessary conditions for solutions to variational problems, SIAM J. Control Optim., 48 (2009), 2977-2983.
[2] Francis H. Clarke, "Optimization and Nonsmooth Analysis," $2^{\text {nd }}$ edition, Classics in Applied Mathematics, 5. SIAM, Philadelphia, PA, 1990.
[3] Marco Degiovanni and Marco Marzocchi, On the Euler-Lagrange equation for functionals of the Calculus of Variations without upper growth conditions, SIAM J. Control Optim., 48 (2009), 2857-2870.
[4] R. Tyrrell Rockafellar, "Convex Analysis," Princeton University Press, Princeton, NJ, 1970.
Received December 2009; revised February 2010.
E-mail address: g.bonfanti3@campus.unimib.it
E-mail address: arrigo.cellina@unimib.it

[^0]: 2000 Mathematics Subject Classification. Primary: 49K20.
 Key words and phrases. Euler-Lagrange equation.

