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Abstract. We prove the validity of the Euler-Lagrange equation for a so-
lution u to the problem of minimizing

∫

Ω
L(x, u(x),∇u(x)) dx, where L is a

Carathéodory function, convex in its last variable, without assuming differen-
tiability with respect to this variable.

1. Introduction. This paper deals with the necessary conditions satisfied by a
locally bounded solution u to the problem of minimizing

∫

Ω

L(x, v(x),∇v(x)) dx (1)

on v0 + W 1,1
0 (Ω), where L(x, v, ξ) is a Carathéodory function, differentiable with

respect to v, and whose derivative Lv is also a Carathéodory function, and the map
ξ 7→ L(x, v, ξ) is convex and defined on R

N . We do not assume further regularity on
L, with the exception of standard growth estimates, described below. For function-
als of this form, it has been conjectured that the suitable form of the Euler-Lagrange
equations satisfied by u should be

∃ p(·) ∈ (L1(Ω))N , a selection from ∂Lξ(·, u(·),∇u(·)), such that

div p(·) = Lv(·, u(·),∇u(·))
in the sense of distributions. This fact has been proved in a few special cases: in [2]
for maps of the form L(v, ξ), jointly convex in (v, ξ), and, more recently, in [1] for
maps L(x, v, ξ) = f (‖ξ‖) + g (x, v), depending on ξ through its norm. The proof
introduced in [1] is elementary, and it is based on the Riesz representation Theorem
and on the Hahn-Banach Theorem. This paper is a sequel to [1] and shows that a
modification of the same elementary proof allows us to prove the conjecture in its
full generality. The proofs we present are self-contained.

2. Main results. We consider R
N with the Euclidean norm | · | and unit ball B.

ℓ(A) is the N -dimensional Lebesgue measure of a set A. Given a closed convex
K ⊂ R

N , by mK we mean the unique point of K of minimal norm and by ‖K‖ we
mean sup{|k| : k ∈ K}; a set valued map K with values in the non-empty compact
subsets of R

N is called upper semicontinuous at x0 if ∀ε∃δ such that |x − x0| < δ
implies K(x) ⊂ K(x0)+ εB. In this paper we shall also meet real valued upper and
lower semicontinuous maps, with the usual definitions.
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Given a function L(x, v, ξ), convex in ξ for each fixed (x, v), by ∂ξL(x, v, ξ) we
mean the subdifferential of L with respect to the variable ξ. Under the assumptions
of the present paper, ∂ξL(x, v, ξ) is a non-empty compact convex subset of R

N and
the map ξ 7→ ∂ξL(x, v, ξ) is (for fixed (x, v)) an upper semicontinuous set valued
map. We shall assume further properties of this map in Assumption A.

IA(·) is the indicator function of the set A. f∗ is the polar or Fenchel transform
[4] of f . Ω is a bounded open subset of R

N . Given a solution u, the shorthand
notation DL(x) means the set ∂ξL(x, u(x),∇u(x)).

Assumption A.
i) L(x, v, ξ) is a Carathéodory function, differentiable with respect to v, and whose

derivative Lv is also a Carathéodory function, and, for every pair (x, v), the map
ξ 7→ L(x, v, ξ) is convex and defined on R

N .
ii) There exist a convex non-negative function f and constants H1 and H2 such

that
‖∂f(ξ)‖ ≤ H1f(ξ) + H2 (2)

and, for every U , there exist functions αU , βU and γU in L1(Ω) and positive con-
stants h1

U , h2
U and h3

U , such that |v| ≤ U implies

αU (x) + h1
Uf(ξ) ≤ L(x, v, ξ) (3)

∂ξL(x, v, ξ) ≤ βU (x) + h2
U∂f(ξ) (4)

|Lu(x, v, ξ)| ≤ γU (x) + h3
Uf(ξ). (5)

iii) For every δ > 0 there exists Ωδ ⊂ Ω, with ℓ(Ω \ Ωδ) < δ, such that the
restriction of ∂ξL(x, v, ξ) to Ωδ × R × R

N is upper semicontinuous.

Assumption A ii) limits the growth of L in the variable ξ to be exponential.
This growth limitation still holds, so far, for the proofs of the validity of the
Euler-Lagrange equation for variational problems of general form, independently
on whether there are additional differentiability assumptions or not. An exception
to this statement is the recent paper [3], where no growth limitations are assumed,
but for functionals of a special form.

It is our purpose to prove the following

Theorem 2.1. Let L satisfy Assumption A. Let u be a locally bounded solution to
Problem (1). Then,

∃ p(·) ∈ L1(Ω), a selection from ∂ξL(·, u(·)∇u(·)),
such that

div p(·) = Lu(·, u(·),∇u(·))
in the sense of distributions.

We shall need the following variant of the Riesz Representation Theorem.

Lemma 2.2. Let D be a map from Ω to the closed convex non-empty subsets of
RB, such that v ∈ (L∞(Ω))N implies that the map x 7→ m[D(x)−v(x)] is measurable;

let T : (L1(Ω))N → R be a linear functional satisfying

T (ξ) ≤
∫

Ω

(ID(x))
∗(ξ(x)) dx.

Then, there exists p̃ ∈ (L∞(Ω))N , p̃(x) a.e. in D(x), that represents T , i.e., such
that

T (ξ) =

∫

Ω

〈p̃(x), ξ(x)〉 dx. (6)
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Proof. a) Since |(ID(x))
∗(ξ(x))| ≤ ‖D(x)‖|ξ(x)| we have that T is a bounded linear

functional on (L1(Ω))N . Writing ξ as ξ1(x)e1 + . . . + ξN (x)eN and applying the
standard Riesz representation Theorem, we infer the existence of a function p̃ ∈
(L∞(Ω))N that satisfies (6). To show that p̃(x) is in D(x) a.e., assume that there
exists a set E ⊂ Ω of positive measure such that, on E, p̃(x) /∈ D(x), i.e., 0 /∈
D(x)− p̃(x). Setting D∗ := D(x)− p̃(x), we can equivalently say that |mD∗(x)| > 0
on E.

Let z(x) be the projection of minimal distance of p̃(x) on D(x), so that, z(x) −
p̃(x) = mD(x)−p̃(x) or, z(x) − p̃(x) = mD∗(x). From the characterization of the
projection of minimal distance, we obtain

〈p̃(x) − z(x), z(x)〉 ≥ 〈p̃(x) − z(x), k〉, ∀k ∈ D(x),

that can be rewritten as

〈−mD∗(x), p̃(x)〉 ≥ |mD∗(x)|2 + 〈−mD∗(x), k〉, ∀k ∈ D(x).

Hence, we have that, on E,

〈−mD∗(x), p̃(x)〉 > sup {〈−mD∗(x), k〉 : k ∈ D(x)} = (ID(x))
∗(−mD∗(x)).

b) Setting ξ̃ := −mD∗χE , we have that ξ̃ ∈ L1(Ω) and

T (ξ̃) =

∫

Ω

〈p̃, ξ̃〉 =

∫

E

〈p̃,−mD∗〉 >

∫

Ω

(ID(x))
∗(ξ̃) ≥ T (ξ̃),

a contradiction.

Proposition 1. Let x 7→ K(x) be an upper semicontinuous set-valued map. Then,
i) the real valued map x 7→ |mK(x)| is lower semicontinuous and the real valued map
x 7→ ‖K(x)‖ is upper semicontinuous; ii) the real valued map (x, ξ) 7→ (IK(x))

∗(ξ)
is continuous in ξ for each fixed x and upper semicontinuous in x for each fixed ξ.

Proposition 2. Let x 7→ K(x) be an upper semicontinuos set-valued map with
values in the closed convex subsets of R

N . Then, |mK(·)| continuous at x0 implies
that mK(·) is continuous at x0.

Proof. Fix x0, a point of continuity of |mK(·)|, and consider two cases: i) 0 /∈ K(x0)
and, ii), 0 ∈ K(x0).

i) Fix ε > 0, with ε < 2
√

2|mK(x0)|. Let σ > 0 be such that
(

|mK(x0)| − σ
)2

=

|mK(x0)|2− ε2

8 and let η be such that 1
2

(

|mK(x0)|2 + (|mK(x0)| + η)2
)

= |mK(x0)|2 +
ε2

8 . Let δ be such that |x − x0| < δ implies that both K(x) ⊂ K(x0) + σB and
∣

∣|mK(x0)| − |mK(x)|
∣

∣ < η. As a consequence, from the convexity of K(x0) + σB, we

obtain that
mK(x0)+mK(x)

2 ∈ K(x0) + σB, so that

∣

∣

∣

∣

mK(x0) + mK(x)

2

∣

∣

∣

∣

≥ |mK(x0)| − σ.

From the identity

∣

∣

∣

∣

mK(x0) − mK(x)

2

∣

∣

∣

∣

2

=
1

2

(

|mK(x0)|2 + |mK(x)|2
)

−
∣

∣

∣

∣

mK(x0) + mK(x)

2

∣

∣

∣

∣

2
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we obtain
∣

∣

∣

∣

mK(x0) − mK(x)

2

∣

∣

∣

∣

2

≤ 1

2

(

|mK(x0)|2 + |mK(x0) + η|2
)

− (|mK(x0)| − σ)2

= |mK(x0)|2 +
ε2

8
− |mK(x0)|2 +

ε2

8
=

ε2

4
.

ii) Fix ε > 0; for σ > 0 such that |x − x0| < σ implies K(x) ⊂ K(x0) + εB, we
have that mK(x) − 0 ∈ εB.

Lemma 2.3. i) v ∈ (L∞(Ω))N implies that the map x 7→ m[ 1
‖DL(x)‖

DL(x)−v(x)] is

in (L∞(Ω))N and, ii), for ξ ∈ L1(A), the map x 7→ (I[ 1
‖DL(x)‖

DL(x)−v(x)])
∗(ξ(x)) is

in L1(Ω).

Proof. i) Fix ε. Let Ω′ be the subset of Ω provided by Assumption A, iii), with
δ = ε

4 . Applying Lusin’s theorem, there exists E ⊂ Ω′ with ℓ(Ω′ \ E) ≤ ε
4 , such

that u|E , v|E and ∇u|E are continuous so that, on E, the set valued map DL is
upper semicontinuous and, by Proposition 1, the real valued map ‖DL‖ is upper
semicontinuous. Hence, there exists E′ ⊂ E, with ℓ(Ω′ \ E′) ≤ 2

4ε, such that
the restriction of ‖DL‖ to E′ is continuous. Then, on E′, the set valued map
x 7→ 1

‖DL(x)‖DL(x) is upper semicontinuous: in fact, let xn ∈ E′, xn → x∗ and wn ∈
1

‖DL(xn)‖DL(xn) with wn → w∗; then ‖DL(xn)‖wn → ‖DL(x∗)‖w∗ that belongs to

DL(x∗), i.e., w∗ ∈ 1
‖DL(x∗)‖DL(x∗). We have obtained that the restriction to E′ of

the map 1
‖DL‖DL has closed graph, and it follows that it is u.s.c. Then, so is the

the restriction to E′ of the set valued map 1
‖DL‖DL − v. Applying Proposition 1 i),

we infer that the restriction to E′ of |m[ 1
‖DL‖

DL−v]| is lower semicontinuous, hence,

for a suitable E′′ ⊂ E′ with ℓ(Ω′ \E′′) ≤ 3
4ε, its restriction to E′′ is continuous. By

Proposition 2, the restriction to E′′ of m[ 1
‖DL‖

DL−v] is continuous, and ℓ(Ω\E′′) ≤ ε.

Being ε arbitrary, m 1
‖DL‖

DL−v is measurable on Ω and belongs to (L∞(Ω))N .

ii) Consider a simple function ξs =
∑

αiχAi
, with ∪Ai = E′; we have

(I[ 1
‖DL(x)‖

DL−v(x)])
∗(ξs(x)) =

∑

(I[ 1
‖DL(x)‖]

DL−v(x))
∗(αi)χAi

(x) :

by Proposition 1 ii), it is upper semicontinuous in x on each Ai, hence measurable
on E′. Let (ξν) be a sequence of simple functions, converging to ξ|E′ . Fix x̃: again
by Proposition 1,

(I[ 1
‖DL(x̃)‖ DL(x̃)−v(x̃)])

∗(ξν(x̃)) converges to (I[ 1
‖DL(x̃)‖ DL(x̃)−v(x̃)])

∗(ξ(x̃)).

Moreover, each of the functions x 7→ (I[ 1
‖DL(x)‖

DL−v(x)])
∗(ξν(x)) is measurable, and

so is their pointwise limit (I[ 1
‖DL(·)‖

DL(·)−v(·)])
∗(ξ(·)). Being ε arbitrary, we have that

x 7→ (I[ 1
‖DL(x)‖

DL(x)−v(x)])
∗(ξ(x)) is measurable on Ω. Finally, |(I[ 1

‖DL‖
DL−v])

∗(ξ)| ≤
|ξ|.

Proof of Theorem 1. a) Let u be a locally bounded solution to problem (1), let
η ∈ C∞

0 (Ω). Without loss of generality assume that sup |η| ≤ 1 and sup |∇η| ≤ 1.
Set ω = supp(η), let U∗ such that |u(x)| ≤ U∗ on ω, and set U = U∗ + 1. From
(2) we infer that, for |z| ≤ 1, f(ξ + z) ≤ f(ξ)eH . Recalling the notation DL(x) =
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∂ξL(x, u(x),∇u(x)), we have that

1

ε
[L(x, u(x) + εη(x),∇u(x) + ε∇η(x)) − L(x, u(x),∇u(x))]

→
[

sup
k∈DL(x)

〈k,∇η(x)〉
]

+ Lu(x, u(x),∇u(x))η(x)

pointwise w.r.t. x. Moreover,
∣

∣

∣

∣

1

ε
[L(x, u(x) + εη(x),∇u(x) + ε∇η(x)) − L(x, u(x),∇u(x))]

∣

∣

∣

∣

=

∣

∣

∣

∣

1

ε
[L(x, u(x) + εη(x),∇u(x) + ε∇η(x)) − L(x, u(x),∇u(x) + ε∇η(x))]

∣

∣

∣

∣

+

∣

∣

∣

∣

1

ε
[L(x, u(x),∇u(x) + ε∇η(x)) − L(x, u(x),∇u(x))]

∣

∣

∣

∣

≤ |Lu(x, u(x) + θ1εη(x),∇u(x) + ε∇η(x))η(x)|
+ |sup{〈k,∇η(x)〉 : k ∈ ∂ξL(x, u(x),∇u(x) + θ2ε∇η(x))}| .

From (5), we have

|Lu(x, u(x) + θ1εη(x),∇u(x) + ε∇η(x))η(x)|
≤ γU (x) + h3

Uf(∇u(x) + ε∇η(x))

≤ γU (x) + h3
Uf(∇u(x))eH .

(7)

Assumption (3) implies that f(∇u) is integrable, so that the r.h.s. of (7) is an
integrable function, independent of ε.

We also have:

| sup{〈k,∇η(x)〉 : k ∈ ∂ξL(x, u(x),∇u(x) + θ2ε∇η(x))}|
≤ |∇η(x)|[βU (x) + h2

U |∂f(∇u(x) + θ2ε∇η(x))|]
≤ |∇η(x)|[βU (x) + h2

UKf(∇u(x) + θ2ε∇η(x))]

≤ |∇η(x)|[βU (x) + h2
UHf(∇u(x))eH ],

an integrable function, independent of ε.
Hence, by dominated convergence,

1

ε

[
∫

Ω

L(x, u(x) + εη(x),∇u(x) + ε∇η(x)) dx −
∫

Ω

L(x, u(x),∇u(x)) dx

]

→
∫

Ω

sup
k∈DL(x)

〈k,∇η(x)〉 dx +

∫

Ω

Lu(x, u(x),∇u(x))η(x) dx

=

∫

Ω

(IDL(x))
∗(∇η(x)) dx +

∫

Ω

Lu(x, u(x),∇u(x))η(x) dx.

Hence, we obtain

0 ≤
∫

Ω

(IDL(x))
∗(∇η(x)) dx +

∫

Ω

Lu(x, u(x),∇u(x))η(x) dx

or,
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−
∫

Ω

Lu(x, u(x),∇u(x))η(x) dx ≤
∫

Ω

(IDL(x))
∗(∇η) dx

=

∫

Ω

sup
{k∈DL(x)}

〈k,∇η〉 =

∫

Ω

sup
{k∈DL(x)}

〈 k

‖DL(x)‖ , ‖DL(x)‖∇η〉.
(8)

b) From (4), (3) and (2), we have that ‖DL(x)‖ ≤ βU (x) + h2
UHf(∇u(x)) ≤

βU (x) + h2
UH 1

h1
U

(L(x, u,∇u(x)) − αU (x)), so that ‖DL‖ ∈ L1(Ω); for every η ∈
C∞

0 (Ω) we have that ‖DL‖∇η ∈ (L1(Ω))N . Consider L, the linear subspace of
(L1(Ω))N defined as

L = {ξ ∈ (L1(Ω))N : ∃η ∈ C∞
0 (Ω) : ξ = ‖DL(x)‖∇η}

and, on L, the linear functional

T (ξ) = −
∫

Ω

Lu(x, u(x),∇u(x))η(x) dx.

We notice that T is well defined: assume that there exist η1 and η2 in C∞
0 (Ω)

such that ξ = ‖DL‖∇η1 = ‖DL‖∇η2: then, from (8), we have

| −
∫

Ω

Lu(x, u(x),∇u(x))η1(x) dx +

∫

Ω

Lu(x, u(x),∇u(x))η2(x) dx| = 0,

so that T is well defined.
The map

̺(ξ) : =

∫

Ω

sup
{k∈DL(x)}

〈 k

‖DL(x)‖ , ‖DL(x)‖∇η〉 dx

=

∫

Ω

sup
{h∈ 1

‖DL(x)‖
DL(x)}

〈h, ‖DL(x)‖∇η〉 dx

=

∫

Ω

(

I 1
‖DL(x)‖

DL(x)

)∗

(‖DL(x)‖∇η(x)) dx

appearing at the r.h.s. of (8) is defined on L as a convex, positively homoge-
neous map. It can be extended, preserving these properties, to (L1(Ω))N , since
(

I 1
‖DL(x)‖

DL(x)

)∗

(ξ(x)) ≤ |ξ(x)|.

Hence, by the Hahn Banach Theorem, the linear map T can be extended from
L to the whole of (L1(Ω))N , still satisfying |T (ξ)| ≤ ρ(ξ).

c) By Lemma 2, we can apply Lemma 1 to the map D = 1
‖DL‖DL. Hence,

we infer the existence of a p̃ ∈ (L∞(Ω))N , with p̃(x) ∈ 1
‖DL(x)‖DL(x) a.e. on Ω,

i.e. p̃(x) = 1
‖DL(x)‖p(x) with p(x) ∈ DL(x), representing the extension of T to

(L1(Ω))N , in particular, representing T on L. Hence, for every η ∈ C∞
0 (Ω), we have

−
∫

Ω

Lu(x, u(x),∇u(x))η(x) dx

=

∫

Ω

〈p̃(x), ‖DL(x)‖∇η(x)〉 dx =

∫

Ω

〈p(x),∇η(x)〉 dx

In other words, for every η ∈ C∞
0 (Ω),

∫

Ω

〈p(x),∇η(x)〉 dx +

∫

Ω

Lu(x, u(x),∇u(x))η(x) dx = 0.
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The map p(·) is a selection from ∂ξL(·, u(·),∇u(·)) defined on Ω, thus proving the
Theorem.
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