
ON THE NON-OCCURRENCE OF THE LAVRENTIEV
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Abstract. We show that the Lavrentiev’s phenomenon does not occur for
functionals of the form Z

Ω
L(|∇u(x)|) dx,

where L is an arbitrary convex function, provided that both ∂Ω and u0 are of
class C2.

1. Introduction

In 1927 a remarkable paper by N. Lavrentiev [7] presented an example of a
variational functional over the interval (a, b), with boundary conditions u(a) = α,
u(b) = β, whose infimum over the set of absolutely continuous functions was strictly
lower than the infimum of the same functional over the set of Lipschitzean functions
satisfying the same boundary conditions. Since then, this phenomenon is called the
Lavrentiev phenomenon. In 1934, B. Manià published a simpler example of this
phenomenon [8] and, in 1993, Alberti and Serra Cassano [1] did show that the
phenomenon does not occur for autonomous integrands over a one-dimensional
integration set.

When the integration set is a subset Ω of RN , the boundary condition is described
by the inclusion u− u0 ∈ W 1,1

0 (Ω) and, in order for the problem of the occurrence
of the Lavrentiev phenomenon to make sense, u0 is a Lipschitzean function on Ω;
in section 5 we present a modification of Manià’s functional on Ω ⊂ R2 with a
linear boundary function u0, exhibiting the Lavrentiev phenomenon. Connections
between the regularity of a solution and the non-occurrence of Lavrentiev’s phe-
nomenon have been pointed out in [5]. An exhaustive literature on the Lavrentiev
phenomenon can be found in [2].

In [3], Lemma 2.1, Esposito, Leonetti and Mingione prove that the phenomenon
does not occur for functionals of the form∫

Ω

f(∇v(x)) dx

provided that Ω is the unit ball, f is a convex C2(RN ) function and the growth of
f is of the (p − q) type, i.e., m|z|p ≤ f(z) ≤ L(1 + |z|)q, with 2 ≤ q < p < 2 + q;
in addition, some further growth conditions on the first and second derivatives of
f are assumed.

The purpose of the present paper is to prove the following result, an approxi-
mation result that, in particular, guarantees the non-occurrence of the Lavrentiev
phenomenon.

Theorem 1. Let Ω ⊂ RN be an open bounded set, with ∂Ω ∈ C2; let u0 ∈ C2(Ω);
let L : [0,∞) → [0,∞) be convex and such that L(0) = 0. Let u ∈ u0 + W 1,1(Ω) be
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bounded on Ω and such that ∫
Ω

L(|∇u(x)|) dx < ∞.

Then, given ε > 0, there exists uε ∈ u0 +W 1,1(Ω), with uε Lipschitzean on Ω, such
that ∫

Ω

L(|∇uε(x)|) dx ≤
∫

Ω

L(|∇u(x)|) dx + ε.

The previous Theorem contains neither regularity nor growth assumptions on
the Lagrangian L, besides its being convex.

In Manià’s example, one reaches the conclusion of the existence of the Lavren-
tiev phenomenon by a rather long and clever computation. A much simpler com-
putation, consisting in approximating the solution x(t) = t

1
3 by the Lipschitzean

function

xh(t) =
{

ht for 0 ≤ t ≤ h−
3
2

t
1
3 for h−

3
2 ≤ t ≤ 1

shows that, as the parameter h → +∞, the difference between the value of the in-
tegral functional computed on xh and the same integral computed on the solution,
diverges to +∞. This fact, although surprising, is not, by itself, sufficient to estab-
lish the validity of the Lavrentiev phenomenon. The proof of the non-occorrence
of the Lavrentiev phenomenon that we present in this paper will be largely based
on the following claim: if we are able to define a function wh, analogous to the
function xh, issuing from the boundary datum in a ”linear” way, such that, as the
parameter h diverges, the difference of the integrals computed along wh and along
the solution, converges to zero, then the the Lavrentiev phenomenon does not oc-
cur. To show that the difference of the two integrals converges to zero, we will use
the fact that an affine function is always a solution, among the function satisfying
the same boundary conditions, of a convex variational problem depending only on
the gradient. This fact is independent of any further regularity assumption on the
Lagrangian L. Hence, we shall need regularity on the boundary datum u0 to build
the ”linear” approximation, but we shall not need any regularity on L.

Finally, notice that, when u is a solution, the boundedness of u follows from the
boundedness of u0 under mild additional conditions [4].

2. Notations and preliminary results

We shall use the following notation. B(x, δ) is the open ball centered at x of
radius δ. The Lebesgue measure of a subset A of RN is |A|; ωN is the measure of the
unit ball; the complement of Ω is CΩ; d(x) = dist(x,CΩ), a Lipschitzean function of
Lipschitz constant 1; diam is the diameter of Ω; Ωδ = {x ∈ Ω : d(x) ≤ δ}. dH is the
Hausdorff distance; the normal to ∂Ω at the point y, pointing towards the interior
of Ω, is ν(y); T (y) is the tangent plane to ∂Ω at y and T 1(y) = {τ ∈ T (y) : |τ | = 1}.
A vector x ∈ RN will be often written as (x̂, xN ). The Hessian matrix of a function
φ is Hφ. For the coarea Theorem and the notion of Jacobian of a map g : RN → Rn

we refer to [6].
With the above notations, we summarize the assumptions of Theorem (1) assum-

ing that there exists K > 1 such that: |∇u0| ≤ K; |Hu0 | ≤ K; the map y 7→ ν(y) is
Lipschitzean of constant K. Moreover, dH(T (y1), T (y2)) ≤ K|y2−y1|. In addition,
there exists M ≥ 1 such that for x ∈ Ω, |u(x)| ≤ M , |u0(x)| ≤ M .
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In what follows, a constant h will be chosen; apart from further conditions, we
shall always assume that h > 3K.

Definition 1. For x ∈ Ω, set

(1) wh
+(x) = min{u0(z) + h|z − x| : z ∈ ∂Ω}

and

(2) wh
−(x) = max{u0(z)− h|z − x| : z ∈ ∂Ω}.

Finally, set

Mh(x) =

 wh
+(x) when u(x) > wh

+(x)
u(x) when wh

−(x) ≤ u(x) ≤ wh
+(x)

wh
−(x) when u(x) < wh

−(x)

The following Lemmas will be essential to the proof of Theorem 1. They will be
used to smooth the approximating function Mh.

Lemma 1. Let Ω and u0 be as in Theorem 1. Let y = y(x) be a point where
wh

+(x) = u0(y(x)) + h|y(x)− x|. Then
i) |y − x| ≤ h+K

h−K d(x) ≤ 2d(x) and |wh
+(x)− u0(y(x))| ≤ [K + h]d(x) and

ii) (uniqueness) there exist h∗ and d∗: h ≥ h∗ and d(x) ≤ d∗ imply that y = y(x)
is uniquely defined and we have

|y − x| =
wh

+(x)− u0(y)
h

.

The same inequalities hold for wh
−, provided that in ii) we read |y−x| = u0(y)−wh

−(x)

h .

Proof. We shall prove the inequalities for wh
+. Ad i). Let y∗ ∈ ∂Ω be such that

|y∗ − x| = d(x). From the definition of wh
+ we have that u0(y∗) + hd(x) ≥ u0(y) +

h|y − x|, hence h|y − x| ≤ hd(x) + |u0(y∗)− u0(y)| ≤ hd(x) + K|y∗ − y| ≤ hd(x) +
K[|y − x|+ d(x)], so that

(3) |y − x| ≤ (
h + K

h−K
)d(x);

again from u0(y∗) + hd(x) ≥ wh
+(x) we infer

|wh
+(x)− u0(x)| ≤ |u0(y∗)− u0(x)|+ hd(x) ≤ K|y∗ − x|+ hd(x) = [K + h]d(x)

thus proving i).
Ad ii). Whenever the minimum is attained at a point y, since y is a constrained

minimum point, we must have

(4) ∇u0(y) + h
y − x

|y − x|
= ∇

(
u0(y) + h|y − x|

)
= λν(y),

so that, for any τ in T (y),

(5) 〈∇u0(y), τ〉 = −h〈 y − x

|y − x|
, τ〉.

Assume that y1 and y2 are points where the minimum is attained; set r = |x −
y2| − |x− y1|, so that |r| ≤ |y2 − y1|.

For any τ i ∈ T (yi), from (5) we infer

0 = 〈x− y2 + |x− y2|∇u0(y2)
h

, τ2〉 = 〈x− y1 + |x− y1|∇u0(y1)
h

, τ1〉
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so that

(6) 〈x− y2 + |x− y2|∇u0(y2)
h

, τ1〉 − 〈x− y1 + |x− y1|∇u0(y1)
h

, τ1〉 =

〈x− y2 + |x− y2|∇u0(y2)
h

, τ1 − τ2〉.

There exists η∗ such that: for any y2 with |y2 − y1| ≤ η∗ there is τ ∈ T (y1) (with
τ depending on y2) such that

〈 y1 − y2

|y1 − y2|
, τ〉 ≥ 1

2
.

We have

〈x− y2 + |x− y2|∇u0(y2)
h

, τ〉 − 〈x− y1 + |x− y1|∇u0(y1)
h

, τ〉

= 〈y1 − y2 + r
∇u0(y2)

h
, τ〉 − |x− y1|〈∇u0(y1)−∇u0(y2))

h
, τ〉

= |y1 − y2|〈 y1 − y2

|y1 − y2|
, τ〉+ r〈∇u0(y2)

h
, τ〉 − |x− y1|〈∇u0(y1)−∇u0(y2))

h
, τ〉.

Set d1 = min{η∗

4 , 1}, so that d(x) ≤ d1 implies |y1 − y2| ≤ η∗ and, from equation
(6), we obtain, for any τ1 ∈ T (y1),

〈x− y2 + |x− y2|∇u0(y2)
h

, τ1 − τ2〉 ≥ 1
2
|y1 − y2| − 3|y2 − y1|K

h
.

Consider the left hand side for τ1 = τ ; choose τ2 ∈ T 1(y2) so that |τ2 − τ | ≤
K|y1 − y2|; we obtain

2d(x)(1 +
K

h
)K|y1 − y2| ≥ 1

2
|y1 − y2| − 3|y2 − y1|K

h
;

choosing h = 12K and d∗ = min{d1, 1
20K }, the previous inequality implies |y2 −

y1| = 0.
It is easy to check that ∇wh

+ is constant of norm h along the line segment joining
y to x and is directed in the direction from y to x; hence we have the identity

(7) |y − x| =
wh

+(x)− u0(y)
h

.

�

Lemma 2. Let v ∈ W 1,1(Ω) be such that |v(x)| ≤ M a.e. on Ω and, on Ω \ Ωδ,
define the function

ṽ(x) =
1

|B(x, δ)|

∫
B(x,δ)

v(z) dz.

Then: i) ṽ is Lipschitzean of constant NM 1
δ and, ii) ṽ is a.e. differentiable and,

at a point x of differentiability, we have ∇ṽ(x) = 1
ωN δN

∫
B(0,δ)

∇v(x− z) dz.

Proof. Ad i).

|ṽ(x2)− ṽ(x1)| =

∣∣∣∣∣ 1
|B(x2, δ)|

∫
B(x2,δ)

v(z) dz − 1
|B(x1, δ)|

∫
B(x1,δ)

v(z) dz

∣∣∣∣∣
≤ 1

ωNδN
M |B(x1, δ)4B(x2, δ)|
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and |B(x1, δ)4B(x2, δ)| ≤ 2ωNδN ≤ ωNδN−1|x1 − x2| when |x1 − x2| ≥ 2δ,
while, when |x1 − x2| < 2δ, |B(x1, δ)4B(x2, δ)| ≤ ωN [(δ + |x1 − x2|)N − δN ] ≤
NωNδN−1|x1 − x2| so that, in either case,

|ṽ(x2)− ṽ(x1)| ≤ NM
1
δ
|x1 − x2|.

Ad ii). From i) we have that there exists Ω∗δ ⊂ Ωδ of full measure, such that ṽ is
differentiable on Ω∗δ . Hence, for x ∈ Ω∗δ , there exists a vector ∇ṽ(x) and a function
ε(h), ε(h) → 0 as h → 0, such that, for every h sufficiently small, we have

ṽ(x + h)− ṽ(x) = 〈∇ṽ(x), h〉+ |h|ε(h).

Consider one coordinate direction ei. On almost every line parallel to ei, the map
t 7→ v(x + tei) is absolutely continuous; there exists Ωi

δ of full measure such that
x ∈ Ωi

δ and t small imply

ṽ(x + tei)− ṽ(x) =
1

ωNδN

∫
B(0,δ)

v(x− z + tei)− v(x− z) dz

=
1

ωNδN

∫
B(0,δ)

[
∫ 1

0

〈∇u(x− z + stei), tei〉 ds] dz

=
1

ωNδN
[
∫

B(0,δ)

〈∇v(x− z), tei〉 dz

+
∫

B(0,δ)

[
∫ 1

0

〈∇u(x− z + stei)−∇v(x− z), tei〉 ds] dz]

= 〈 1
ωNδN

∫
B(0,δ)

∇v(x− z) dz, tei〉+ ri(t)

and

ri(t) =
1

ωNδN

∫ 1

0

[
∫

[B(0,δ)−stei]\B(0,δ)

〈∇v(x− z), tei〉 dz

−
∫

B(0,δ)\[B(0,δ)−stei]

〈∇v(x− z), tei〉 dz]ds

so that ri(t)
|t| → 0. Hence, for x ∈ Ω∗δ ∩ [∩iΩi

δ], we have

∇ṽ(x) =
1

ωNδN

∫
B(0,δ)

∇v(x− z) dz.

�

Lemma 3. Assume that either i) g is measurable and such that |g(x)| ≤ Dd(x) or,
ii), that g is Lipschitzean with Lipschitz constant D. Then, there exists D∗ such
that the function

g̃(x) =
1

|B(x, d(x))|

∫
B(x,d(x))

g(z) dz

is Lipschitzean of constant D∗.

Proof. Fix x1 and x2, let d(x2) ≥ d(x1), let y1 and y2 in ∂Ω be the nearest points
to x1 and x2. From |x2 − y2| ≤ |x2 − y1| ≤ |x2 − x1|+ |x1 − y1|, we obtain

(8) |x2 − x1| ≥ d(x2)− d(x1).
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On the segment [y2, x2], let x2∗ be such that d(x2∗) = |y2 − x2∗| = d(x1). We have

(9) |x1 − x2∗| ≤ |x1 − x2|+ |x2 − x2∗| = |x1 − x2|+ (d(x2)− d(x1)) ≤ 2|x1 − x2|.
Ad i). We have

|g̃(x2)− g̃(x1)| =∣∣∣∣∣ 1
|B(x2, d(x2))|

∫
B(x2,d(x2))

g(z) dz − 1
|B(x1, d(x1))|

∫
B(x1,d(x1))

g(z) dz

∣∣∣∣∣
≤ 1
|B(x2, d(x2))|

|
∫

B(x2,d(x2))

g(z) dz −
∫

B(x1,d(x1))

g(z) dz|

+
∫

B(x1,d(x1))

|g(z)| dz| 1
|B(x2, d(x2))|

− 1
|B(x1, d(x1))|

| = α + β.

Consider α.

α ≤ 1
|B(x2, d(x2))|

{
|
∫

B(x2,d(x2))

g(z) dz −
∫

B(x2∗,d(x2∗))

g(z) dz|

+|
∫

B(x2∗,d(x2∗))

g(z) dz −
∫

B(x1,d(x1))

g(z) dz|

}
=

1
|B(x2, d(x2))|

{α1 + α2}.

Since B(x2∗, d(x2∗)) ⊂ B(x2, d(x2)), we have

α1 = |
∫

B(x2,d(x2))\B(x2∗,d(x2∗))

g(z) dz| ≤ ωN [(d(x2))N − (d(x2∗))N ] · 2Dd(x2)

≤ 2DωNPN (d(x2))N (d(x2)− d(x2∗)) = 2DωNPN (d(x2))N (d(x2)− d(x1)).
Also,

α2 ≤
∫

B(x2∗,d(x1))4B(x1,d(x1))

|g(z) dz| ≤ 2Dd(x1)|B(x2∗, d(x1))4B(x1, d(x1))|,

and we have: when 2d(x1) ≤ |x1 − x2∗|, it follows |B(x2∗, d(x1))4B(x1, d(x1))| =
2ωN (d(x1))N ≤ ωN (d(x1))N−1|x1 − x2∗|; when 2d(x1) > |x1 − x2∗|,

|B(x2∗, d(x1))4B(x1, d(x1))| ≤ ωN [(d(x1) + |x1 − x2∗|)N − d(x1))N ]

≤ ωN |x1 − x2∗|PN (d(x1) + |x1 − x2∗|)N−1 ≤ ωN |x1 − x2∗|PN (3d(x1))N−1.

In either case,

(10) |B(x2∗, d(x1))4B(x1, d(x1))| ≤ ωN |x1 − x2∗|3N−1PN (d(x1))N−1.

Hence, α2 ≤ 2 · 3N−1DωNPN (d(x1))N |x1 − x2∗|, so that

α ≤ 2DPN [(d(x2)− d(x1)) + 3N−1|x1 − x2∗|].
From (8) and (9) we obtain

α ≤ 2DPN (1 + 2 · 3N−1)|x1 − x2|.
Consider β. We have

∫
B(x1,d(x1))

|g(z)| dz ≤ ωN (d(x1))N · 2Dd(x1) and

(11) | 1
|B(x2, d(x2))|

− 1
|B(x1, d(x1))|

| = |B(x2, d(x2))| − |B(x1, d(x1))|
|B(x1, d(x1))||B(x2, d(x2))|

=
1

ωN

(d(x2))N − (d(x1))N

(d(x2))N (d(x1))N
≤ PN

ωN

(d(x2)− d(x1))
d(x2)(d(x1))N
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so that

(12) β ≤ 2DPN (d(x2)− d(x1)) ≤ 2DPN |x2 − x1|.
We have obtained

|g̃(x2)− g̃(x1)| ≤ 2DPN (2 + 2 · 3N )|x2 − x1|.
Ad ii).

|g̃(x2)− g̃(x1)| = |g(x2)− g(x1) +
1

|B(x2, d(x2))|

∫
B(x2,d(x2))

(g(z)− g(x2)) dz

− 1
|B(x1, d(x1))|

∫
B(x1,d(x1))

(g(z)− g(x1)) dz|

a) When |x2 − x1| ≥ d(x2) + d(x1)

| 1
|B(x2, d(x2))|

∫
B(x2,d(x2))

(g(z)− g(x2)) dz

− 1
|B(x1, d(x1))|

∫
B(x1,d(x1))

(g(z)− g(x1)) dz|

≤ Dd(x2) + Dd(x1) ≤ D|x2 − x1|.
b) Let |x2 − x1| ≤ d(x2) + d(x1). We have

|g̃(x2)− g̃(x1)|

≤ |g(x2)− g(x1)|+ | 1
ωN (d(x2))N

∫
B(x2,d(x2))\B(x1,d(x1))

(g(z)− g(x2)) dz|

+| 1
ωN (d(x1))N

∫
B(x1,d(x1))\B(x2,d(x2))

(g(z)− g(x1)) dz|

+|
∫

B(x1,d(x1))∩B(x2,d(x2))

[
1

ωN (d(x2))N
(g(z)−g(x2))− 1

ωN (d(x1))N
(g(z)−g(x1))] dz|

= |g(x2)− g(x1)|+ α + β + γ.

We have
|α| ≤ Dd(x2)

1
(d(x2))N

[(d(x2) + |x2 − x1|)N − (d(x1))N ];

since d(x2)− d(x1) ≤ |x2 − x1| ≤ 2d(x2), we obtain

|α| ≤ D

(d(x2))N−1
2|x2 − x1|PN (3d(x2))N−1 = 2PN3N−1D|x2 − x1|.

Consider β; we have

|β| ≤ D

ωN (d(x1))N−1
|B(x1, d(x1)) \B(x2, d(x2))|.

Since B(x1, d(x2)−|x2−x1|) ⊂ B(x2, d(x2)), we infer B(x1, d(x1))\B(x2, d(x2)) ⊂
B(x1, d(x1)) \B(x1, d(x2)− |x2 − x1|), hence

|B(x1, d(x1)) \B(x2, d(x2))| ≤ ωN [((d(x1))N − (d(x2)− |x2 − x1|)N ]

≤ ωN

(
d(x1)− d(x2) + |x2 − x1|

)
PN (2d(x1))N−1 ≤ ωN |x2 − x1|PN (2d(x1))N−1

and
|β| ≤ DPN2N−1|x2 − x1|.
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Consider γ; write the absolute value of the integrand as

| 1
ωN (d(x2))N

(g(z)− g(x2))− 1
ωN (d(x2))N

(g(z)− g(x1))

+
1

ωN (d(x2))N
(g(z)− g(x1))− 1

ωN (d(x1))N
(g(z)− g(x1))|

= | 1
ωN (d(x2))N

(g(x1)− g(x2)) + (g(z)− g(x1))(
1

ωN (d(x2))N
− 1

ωN (d(x1))N
)|

Since |B(x1, d(x1)) ∩B(x2, d(x2))| ≤ ωN (d(x1))N , we obtain

γ ≤
[

D

ωN (d(x2))N
|x2 − x1|+ Dd(x1)

(
(d(x2))N − (d(x1))N

ωN (d(x1))N (d(x2))N

)]
ωN (d(x1))N

≤ D|x2 − x1|+ D
d(x1)
d(x2)

PN (d(x2)− d(x1)) ≤ D(1 + PN )|x2 − x1|.

�

3. Differentiability results

Let P ∈ ∂Ω; we choose as coordinate system (depending on P ) the one that
has the origin in P and the xN axis in the direction of the normal to the inside
of Ω, so that, for i < N , the xi axis is on the tangent plane to P . On this
system, ∂Ω is described locally by xN = φ(x̂), with φ a smooth function such that
φ(0̂) = ∇φ(0̂) = 0; given Φ ≤ 1, we shall call BΦ(P ) the maximal open ball centered
at 0̂ in RN−1 such that, for x̂ ∈ BΦ, we have |∇φ(x̂)| < Φ.

Set

ν =


−φx1

.

.

.
−φxN−1

1

 ; τ1 =


1
0
.
.
.
φx1

 ; ... : τN−1 =


0
.
.
.
1
φxN−1


and

ν =
ν

|ν|
; τi =

τ i

|τ i|
Given a point x ∈ Ω, as before we denote by y(x) the point in ∂Ω where the

minimum in (1) is attained. We shall consider the map x 7→ ŷ; J(ŷ) is the Jacobian
of this map.

Lemma 4 (Differentiability lemma). For every η there exist h̃ and Φ̃ such that
h ≥ h̃ and Φ ≤ Φ̃ imply that the map x 7→ ŷ is well defined and differentiable on
Ω 3M

h
, and we have

1− η

1 + η
≤ J(ŷ) ≤

√
1 + η2

(1− η)
.

Being the case N = 2 substantially simpler than the general case, we present
it separately. In the Proof of this Lemma we shall consider partial derivatives
evaluated at different points; it will be convenient to set f ′j to denote the partial
derivative of the (scalar-valued) function f with respect to its j-th variable.
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Proof. The case N = 2. a) We first claim that the map ∇wh
+ is a known function

when computed at a generic point (y1, φ(y1)) ∈ ∂Ω. In fact, from u0(y1, φ(y1)) ≡
wh

+(y1, φ(y1)) we obtain

d

dy1
u0(y1, φ(y1)) = 〈∇u0, τ〉 =

d

dy1
wh

+(y1, φ(y1)) = 〈∇wh
+, τ〉

so that

(13) 〈∇wh
+(y1, φ(y1)), τ〉 ≡ 〈∇u0(y1, φ(y1)), τ〉;

since the norm of ∇wh
+ is h, we also have

〈∇wh
+(y1, φ(y1)), ν〉 =

√
h2 − 〈∇u0(y1, φ(y1)), τ〉2.

Let ei be the coordinate directions; writing

e1 = 〈τ, e1〉τ + 〈ν, e1〉ν; e2 = 〈τ, e2〉τ + 〈ν, e2〉ν
we obtain the cartesian coordinates of ∇wh

+, i.e.,

(14)
(

(wh
+)′1

(wh
+)′2

)
=
(
〈∇wh

+, e1〉
〈∇wh

+, e2〉

)
=
(
〈∇wh

+, τ〉〈τ, e1〉+ 〈∇wh
+, ν〉〈ν, e1〉

〈∇wh
+, τ〉〈τ, e2〉+ 〈∇wh

+, ν〉〈ν, e2〉

)
=
(
〈∇u0, τ〉〈τ, e1〉+

√
h2 − 〈∇u0, τ〉2〈ν, e1〉

〈∇u0, τ〉〈τ, e2〉+
√

h2 − 〈∇u0, τ〉2〈ν, e2〉

)
In particular,

(15) (wh
+)′1(y1, φ(y1)) ≡ [〈∇u0, τ〉〈τ, e1〉+

√
h2 − 〈∇u0, τ〉2〈ν, e1〉]|(y1,φ(y1))

b) Consider h∗ and d∗ defined in Lemma 1. We can assume that h∗ ≥ 3M
d∗ . For

every h ≥ h∗ and d(x) ≤ d∗, the map (depending on h) x 7→ y(x) = (y1, φ(y1)) is
well defined. We claim that y1 is a differentiable function of x.

Recalling that ∇wh
+ is constant along the line segment joining (x1, x2) and

(y1, φ(y1)), we obtain the identity

(16) ∇wh
+(x1, x2) =

(
〈∇u0, τ〉〈τ, e1〉+

√
h2 − 〈∇u0, τ〉2〈ν, e1〉

〈∇u0, τ〉〈τ, e2〉+
√

h2 − 〈∇u0, τ〉2〈ν, e2〉

)
where the right hand side is computed at the point (y1(x), φ(y1(x))).

The points x and y are related by the identity x = y + |x − y| x−y
|x−y| , i.e., from

(7), by
(17)(

x1

x2

)
=
(

y1(x)
φ(y1(x))

)
+

(wh
+(x)− u0(y1(x), φ(y1(x))))

h

∇wh
+(y1(x), φ(y1(x))

h
.

in particular,

x1 ≡ y1 +
1
h2

(wh
+(x1, x2)− u0(y1, φ(y1))(wh

+)′1(y1, φ(y1));

differentiating with respect to x1 this identity, we have

1 ≡ (y1)x1 +
1
h2
{[(wh

+)x1 −
(
〈∇u0, τ〉 · (y1)x1

)
](wh

+)′1(y1, φ(y1))

+(wh
+ − u0(y1, φ(y1)))〈∇((wh

+)′1), τ〉 · (y1)x1}
and

0 ≡ (y1)x2 +
1
h2
{[(wh

+)x2 −
(
〈∇u0, τ〉 · (y1)x2

)
](wh

+)x1(y1, φ(y1))
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+(wh
+ − u0(y1, φ(y1)))〈∇((wh

+)′1), τ〉 · (y1)x2}.
From (16), we have (wh

+)′i(y1, φ(y1)) = (wh
+)′i(x1, x2) and we obtain

(y1)x1 =
1− 1

h2 ((wh
+)′1)

2

1− 1
h2 [〈∇u0, τ〉(wh

+)′1 − (wh
+ − u0(y1, φ(y1)))〈∇((wh

+)′1), τ〉]
and

(y1)x2 =
− 1

h2 (wh
+)′1(w

h
+)′2

1− 1
h2 [〈∇u0, τ〉(wh

+)′1 − (wh
+ − u0(y1, φ(y1)))〈∇((wh

+)′1), τ〉]
.

c) We wish to estimate the Jacobian of the map x 7→ y1. Differentiating (15),
d

dy1
(wh

+)′1(y1, φ(y1)) = 〈∇((wh
+)′1), τ〉 = (〈∇u0, τ〉)y1〈τ, e1〉+ 〈∇u0, τ〉(〈τ, e1〉)y1

−〈∇u0, τ〉(〈∇u0, τ〉)y1√
h2 − 〈∇u0, τ〉2

〈ν, e1〉+
√

h2 − 〈∇u0, τ〉2(〈ν, e1〉)y1 = A + B + C + D;

also

(
d

dy1
〈∇u0, τ〉) 1√

1 + (φ′)2
= τT Hu0τ +

φ′′

(1 + (φ′)2)
3
2
〈∇u0, ν〉

and

(〈τ, e1〉)y1 = − φ′φ′′

(1 + (φ′)2)
3
2
; (〈ν, e1〉)y1 = − φ′′

(1 + (φ′)2)
3
2
.

We have |(wh
+)′1| ≤ h and |∇u0| ≤ K; |〈∇u0, τ〉| ≤ K

√
1 + (φ′(y1))2. Recalling

that Φ < 1 and h > 3K,

|A| ≤ 2K + K2; |B| ≤ K2; |C| ≤ 2K + K2

h
K ≤ K2; |D| ≤ hK,

so that
| d

dy1
(wh

+)′1(y1, φ(y1))| ≤ K1 + Kh.

Recalling i) of Lemma 1, on the set Ω 3M
h

we have wh
+(x)−u0(y(x)) = h|x−y(x)| ≤

h · 2 3M
h = 6M , so that

|(wh
+(x)− u0(y1, φ(y1)))

1
h2

(
d

dy1
(wh

+)′1)| ≤ 6M
1
h2

(K1 + Kh);

in addition,

|〈∇u0, τ〉 1
h2

(wh
+)′1| ≤ 2K

1
h2

h;

we have obtained that the denominator satisfies

1 +
2
h2

[3M(K1 + 2Kh)]

≥ 1− 1
h2

[〈∇u0, τ〉(wh
+)′1 − (wh

+ − u0(y1, φ(y1)))〈∇((wh
+)′1), τ〉]

≥ 1− 2
h2

[3M(K1 + 2Kh)].

In addition, from (16), we have 1
h |w

h
x1
| ≤ K

h + Φ and | 1
h2 wh

x1
wh

x2
| ≤ K

h + Φ so
that we can make either term arbitrarily small by choosing 1

h and Φ small.
d) Fix η. Fix h̃ so large and Φ̃ so small that h ≥ h̃ and Φ ≤ Φ̃ imply:

1− η ≤ 1− 1
h2

[〈∇u0, τ〉(wh
+)′1 − (wh

+ − u0(y1, φ(y1)))〈∇((wh
+)′1), τ〉] ≤ 1 + η;
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1
h2

((wh
+)′1)

2 ≤ η and | 1
h2

(wh
+)′1(w

h
+)′2| ≤ η.

We obtain, for every x ∈ Ω 3M
h

,

1− η

1 + η
≤ (y1)x1 ≤

1
1− η

; 0 ≤ |(y1)x2 | ≤ η

and

(18)
1− η

1 + η
≤ J((y1)(x)) =

√
(y1)2x1

+ (y1)2x2
≤
√

1 + η2

(1− η)
.

�

Proof. The general case. a) Consider a generic point (ŷ, φ(ŷ)) ∈ ∂Ω, so that τi =
τi(ŷ) and ν = ν(ŷ): we claim that the map ∇wh

+ is known when computed at
(ŷ, φ(ŷ)). In fact, from u0(ŷ, φ(ŷ)) ≡ wh

+(ŷ, φ(ŷ)), we obtain

d

dyi
u0(ŷ, φ(ŷ)) = 〈∇u0, τ i〉 =

d

dyi
wh

+(ŷ, φ(ŷ)) = 〈∇wh
+, τ i〉

so that

(19) 〈∇wh
+(ŷ, φ(ŷ)), τi〉 = 〈∇u0(ŷ, φ(ŷ)), τi〉.

For a vector v in RN , let P (v) be the projection of v on the tangent plane; write
v = 〈v, ν〉ν +

∑
aiτi, so that

∑
aiτi = P (v); we obtain, for the coefficients ai, the

system

(20) 〈v, τj〉 =
∑

i

ai〈τi, τj〉;

In particular, for the vector ∇wh
+, we obtain

(21) ∇wh
+ = 〈∇wh

+, ν〉ν +
∑

i=1,...,N−1

aiτi

and, from (19), (20) becomes

(22) 〈∇u0, τj〉 =
∑

ai〈τi, τj〉

The coefficient matrix T = (〈τi, τj〉) of system (22) converges to (δi,j) as Φ → 0;
hence, for every Φ small, system (22) is solvable.

We also have
h2 = |∇wh

+|2 = 〈∇wh
+, ν〉2 + (P (∇wh

+))2

and we obtain

(23) 〈∇wh
+, ν〉 =

√√√√h2 − (
N−1∑
i=1

a2
i +

∑
i,l=1,...,N−1;i 6=l

aial〈τi, τl〉)

b) Equations (19) and (23) provide 〈∇wh
+, τi〉 and 〈∇wh

+, ν〉; in order to obtain
the Cartesian coordinates of ∇wh

+, write, for j = 1, ..., N ,

(24) ej = 〈ej , ν〉ν +
∑

i=1,...,N−1

bj
i τi.

We have

(wh
+)′j = 〈∇wh

+, ej〉 = 〈ej , ν〉〈∇wh
+, ν〉+

∑
i=1,...,N−1

bj
i 〈∇wh

+, τi〉
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hence

(25) 〈∇wh
+, ej〉(ŷ, φ(ŷ))

≡ [〈ej , ν〉

√√√√h2 − (
N−1∑
i=1

a2
i +

∑
i,l=1,...,N−1;i 6=l

aial〈τi, τl〉) +
N−1∑
i=1

bj
i 〈∇u0, τi〉]|(ŷ,φ(ŷ)).

c) We have the identity

(26)
(

x̂
xN

)
=
(

ŷ(x)
φ(ŷ(x))

)
+

(wh
+(x)− u0(ŷ(x), φ(ŷ(x))))

h

∇wh
+(ŷ(x), φ(ŷ(x))

h
.

Differentiate with respect to xj the first N − 1 lines and recall that (wh
+)′j(x) =

(wh
+)′j(ŷ, φ(ŷ)), to have

δi,j = yi
xj

+
1
h2

[(
(wh

+)xj
−
∑

l

〈∇u0, τ l〉 · yl
xj

)
(wh

+)xi

+(wh
+ − u0)

∑
l

〈∇((wh
+)′i), τ l〉yl

xj

]
,

where 〈∇((wh
+)′i), τ l〉, u0 and 〈∇u0, τ l〉 are computed at the point (ŷ, φ(ŷ)). Hence,

for i = 1, ..., N − 1 and j = 1, ..., N ,

(27) δi,j −
1
h2

(wh
+)′i(w

h
+)′j

= yi
xj

+
1
h2

{∑
l

[wh
+〈∇((wh

+)′i), τ l〉 − (wh
+)xi〈∇u0, τ l〉 − u0〈∇((wh

+)′i), τ l〉]yl
xj

}
.

System (27) has the form

(28)

 1 + σ1,1 σ1,2 . σ1,N

. . . .
σN−1,1 1 + σN−1,2 . σN−1,N


=

 (1 + η1,1) . η1,N−1

. . .
ηN−1,1 . (1 + ηN−1,N−1)

 y1
x1

y1
x2

. y1
xN

. . . .
yN−1

x1
yN−1

x2
. yN−1

xN


with

ηi,l =
1
h2

[wh
+〈∇((wh

+)′i), τ l〉 − (wh
+)xi〈∇u0, τ l〉 − u0〈∇((wh

+)′i), τ l〉]

We claim that system (28) is solvable in the unknowns yi
xj

; for this it is enough to
show that the ηi,l can be made arbitrarily small.

d) The expression for ηi,l contains second derivatives of the function wh
+, com-

puted at (ŷ(x), φ(ŷ(x))), that can be obtained differentiating (25); in turn, this
requires the existence of the derivatives of ai and of the bi

j . We have the derivatives
of ai by differentiating the identity, obtained from (22),

(29) 〈∇u0(ŷ, φ(ŷ)), τ j(ŷ)〉 ≡
∑

ai(ŷ)〈τi(ŷ), τ j(ŷ)〉;

we have
∂

∂yl
〈∇u0, τ j〉 = (τ j)T Hu0τ l + u0

yN
φyjyl

=
∑

[(ai)yl
〈τi, τ j〉+ ai

∂

∂yl
〈τi, τ j〉]
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i.e.,

(30) (τ j)T Hu0τ l + u0
yN

φyjyl
−
∑

i

ai
∂

∂yl
〈τi, τ j〉 =

∑
i

(ai)yl
〈τi, τ j〉

Again, for all Φ sufficiently small, system (30) is solvable and (ai)yj exist.
Consider (24) and take scalar products with ∇u0; since the left hand side is

differentiable, so is the right hand side and we obtain

(31) (〈ej ,∇u0〉)xl
− [〈ν, ej〉〈ν,∇u0〉]xl

=
∑

r=1,...,N−1

(bj
r〈τr,∇u0〉)xl

Finally, consider (25); since we have shown that the right hand side is differen-
tiable, so is the left hand side and we obtain

(32)
∂

∂yl
〈∇wh

+, ej〉(ŷ, φ(ŷ)) = (〈ej , ν〉)yl

√
h2 − (

∑
i

a2
i +

∑
i 6=j

aiaj〈τi, τj〉)

+〈ej , ν〉

√h2 − (
∑

i

a2
i +

∑
i 6=j

aiaj〈τi, τj〉)


yl

+
∑

i=1,...,N−1

(bj
i 〈∇u0, τi〉)yl

e) Consider the following estimates as Φ → 0.
We have that, as Φ → 0, for j = 1, ..., N − 1, τj → ej , while ν → eN ; from (22)

we obtain
aj → 〈∇u0(0̂, 0), ej〉 = u0

yj
(0̂, 0)

so that,

〈∇wh
+, ν〉 →

√
h2 −

∑
i

(〈∇u0, ei〉)2

and √
h2 − (

∑
i

a2
i +

∑
i 6=j

aiaj〈τi, τj〉) →

√√√√h2 −
N−1∑
i=1

(〈∇u0, ei〉)2

We also have

(〈ej , ν〉) →
{

0 when j 6= N
1 when j = N

and, from (24), we obtain bi
j → δij ; moreover,

(〈ej , ν〉)yl
→
{
−φyjyl

when j 6= N
0 when j = N

〈ν,∇u0〉 → u0
yN

and (〈ν,∇u0〉)yl
→ −

∑
i=1,...,N−1

φyiyl
u0

yi
+ u0

yN yl

From (25) we infer

(33) (wh
+)xj = 〈∇wh

+, ej〉 →
{
〈∇u0, ej〉 for j < N√

h2 −
∑

i〈∇u0, ei〉2 for j = N

From ∂
∂yl

φyi√
1+φ2

yi

→ φyiyl
we infer that ∂

∂yl
〈τi, τj〉 → 0; hence, solving system (30),

we obtain
(aj)yl

→ (Hu0)j,l + u0
yN

φyjyl
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that implies that there exists H1 such that, for all sufficiently small Φ and all h,
|(aj)yl

| ≤ H1. Hence, there exists H2 such that

∂

∂yl

√
h2 − (

∑
i

a2
i +

∑
i 6=j

aiaj〈τi, τj〉)

=

∑
i 2ai(ai)yl

+
∑

i 6=j [(aiaj)yl
〈τi, τj〉+ aiaj(〈τi, τj〉)yl

]

2
√

h2 − (
∑

i a2
i +

∑
i 6=j aiaj〈τi, τj〉)

≤ H2

From (31) we obtain∑
r=1,...,N−1

(bj
r〈τr,∇u0〉)yl

→
{

u0
yjyl

+ φyjyl
u0

yN
j 6= N∑

i φyiyl
u0

yi
j = N

that yields the existence of H3 such that, for all Φ sufficiently small,

|
∑

r=1,...,N−1

(bj
r〈τr,∇u0〉)yl

| ≤ H3.

Then, from (32),

| ∂

∂yl
〈∇wh

+, ej〉(ŷ, φ(ŷ))| ≤ 2Kh + H2 + H3

Since |(wh
+)xj | ≤ h, on the set Ω 3M

h
we obtain

|ηi,l| ≤
1
h2

[6M(2Kh + H2 + H3) + 2Kh].

f) Consider system (27) and notice that i < N : from (33) we obtain that each
σi,j can be made arbitrarily small by choosing 1

h and Φ small. From (27) we obtain
that, as both Φ and 1

h → 0, yi
xj
→ δij , with i = 1, ..., N − 1 and j = 1, ..., N .

The determinant of the minor of the matrix (yi
xj

) obtained by suppressing the
last column, (yi

xN
), converges to 1, while the determinants of all the other square

matrices, that must contain the last column, tend to 0. Hence, by the formula for
the Jacobian ([6], p. 89), given η, we can find h̃ ≥ h∗ and Φ̃ such that h ≥ h̃ and
Φ ≤ Φ̃ imply that, for x ∈ Ω 3M

h
,

1− η

1 + η
≤ J(ŷ(x)) ≤

√
1 + η2

(1− η)
.

�

4. Proof of Theorem 1

The Proof of Theorem 1 is partially based on the following fact: the problem of
minimizing ∫ b

a

L(|u′(t)|) dt

on the set of u : [a, b] → RN absolutely continuous and satisfying u(a) = α;u(b) =
β, where L is a convex function defined on R, admits the solution

ũ(t) = α +
β − α

b− a
(t− a).
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We shall need the following Definitions. In it, and for the remainder of this

section, for ξ ∈ BΦ(P ), we set yξ =
(

ξ
φ(ξ)

)
.

Definition 2. For given h, Φ, δ, and for P ∈ ∂Ω, set,

V +
h,Φ,δ(P ) ={

x ∈ Ω : x = yξ + `
∇wh

+(yξ)
h

; ξ ∈ BΦ(P ); ` ∈ (0, `∗); d(yξ + `∗
∇wh

+(yξ)
h

) = δ

}
.

For a measurable subset Z of the ball BΦ(P ), set V +
Z to be the subset of V +

h,Φ,δ(P )
such that ξ ∈ Z.

Set
V −

h,Φ,δ(P ) ={
x ∈ Ω : x = yξ − `

∇wh
−(yξ)
h

; ξ ∈ BΦ(P ); ` ∈ (0, `∗); d(yξ − `∗
∇wh

−(yξ)
h

) = δ

}
.

For a measurable subset Z of the ball BΦ(P ), set V −
Z to be the subset of V −

h,Φ,δ(P )
such that ξ ∈ Z.

Proof of Theorem 1. Fix ε. Set ε1 = ε
4

R
Ω L(|∇u(x)|) dx

and let η (0 < η < 1) be such
that

(1 + η)
√

1 + η2

(1− η)2
= (1 + ε1);

consider h̃, and Φ̃ supplied by the Differentiability Lemma for this η; set δ̃ = 3M
h̃

;

recall the function M h̃ in Definition 1.
a) Set Ω+ = {x : u(x) > wh̃

+(x)}, Ω− = {x : u(x) < wh̃
−(x)} and Ω0 =

{x : wh̃
−(x) ≤ u(x) ≤ wh̃

+(x)}. Notice that d(x) ≥ δ̃ implies that wh̃
+(x) =

u0(y(x)) + wh̃
+(x) − u0(y(x)) ≥ −M + h̃|y(x) − x| ≥ 2M > M ≥ u(x), so that

min{wh
+(x), u(x)} = u(x) and Ω+ ⊂ Ωδ̃. In the same way one obtains also Ω− ⊂ Ωδ̃.

Hence, the estimates on the Jacobian of the map x → ŷ, provided by the differen-
tiability Lemma, hold on Ω+ and on Ω−.

We have, almost everywhere in Ω,

|∇M h̃| =
{

h̃ for x ∈ Ω− ∪ Ω+

|∇u| for x ∈ Ω0

so that∫
Ω

L(|∇M h̃(x)|) dx =
∫

Ω−
L(h̃) dx +

∫
Ω+

L(h̃) dx +
∫

Ω0
L(|∇u|) dx

b) We wish to show that

(34)
∫

Ω

L(|∇M h̃(x)|) dx ≤
∫

Ω

L(|∇u(x)|) dx +
ε

2
;

it is enough to show that

(35)
∫

Ω+
L(|h̃|) dx =

∫
Ω+

L(|∇M h̃(x)|) dx ≤
∫

Ω+
L(|∇u(x)|) dx +

ε

4
and

(36)
∫

Ω−
L(|h̃|) dx =

∫
Ω−

L(|∇M h̃(x)|) dx ≤
∫

Ω−
L(|∇u(x)|) dx +

ε

4
.
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c) We hall prove (35), being (36) proved in the same way. Consider ∆ = {x ∈
Ω : d(x) = δ̃

2}: ∆ is a compact subset of Ω. By ii) of Lemma 1, the collection of
open sets, defined in Definition 2, {V +

h̃,Φ̃,δ̃
(P ) : P ∈ ∂Ω} is a covering of ∆. Let

{V +

h̃,Φ̃,δ̃
(Pj) : 1 ≤ j ≤ J} be a finite subcover. We are going to define measurable

subsets Zj of BΦ̃(Pj): set Z = Z1 = BΦ̃(P1); consider P2 and set

Z2 = {ξ ∈ BΦ̃(P2) : (yξ +
δ̃

2
∇wh̃

+(yξ)

h̃
) ∩ V +

Z1
= ∅}.

Having defined Zj up to j̃, set

Zj̃+1 = {ξ ∈ BΦ̃(Pj̃+1) : (yξ +
δ̃

2
∇wh̃

+(yξ)

h̃
) ∩ V +

Zj
= ∅ for 1 ≤ j ≤ j̃};

Hence, every point in ∆ belongs to one and only one V +
Zj

and, by the uniqueness
in Lemma 1, so is for Ωδ̃.

d) We claim that for every j,∫
Ω+∩V +

Zj

L(|∇M h̃(x)|) dx ≤ (1 + ε)
∫

Ω+∩V +
Zj

L(|∇u(x)|) dx.

Apply the coarea theorem [6] to the set Ω+∩V +
Zj

and to the function ŷ(x) to obtain

(37)
∫

Ω+∩V +
Zj

L(|∇u(x)|) dx =
∫

Zj
+
[
∫
{ŷ(x)=ξ}∩(Ω+∩V +

Zj
)

L(|∇u(x)|)
J(ŷ(x))

dH1] dξ;

consider the line segment

(38) Lξ = {yξ + `
∇wh̃

+(yξ)

h̃
: ` ∈ (0, `∗); d(yξ + `∗

∇wh̃
+(yξ)

h̃
) = δ̃} :

we have that {ŷ(x) = ξ} ∩ (Ω+ ∩ VZj ) = Lξ ∩ Ω+. For almost every ξ ∈ Zj the
maps

ũξ(`) = u(yξ + `
∇wh̃

+(yξ)

h̃
),

w̃h̃
+(`) = wh̃

+(yξ + `
∇wh̃

+(yξ)

h̃
)

are absolutely continuous, so that the set Sξ = {` : ũξ(`) > w̃h̃
+(`)} is a (possibly

empty) open set. Then, there are at most countably many open intervals (aj , bj)
such that Sξ = ∪(aj , bj) and ũξ(aj) − w̃h̃

+(aj) = ũξ(bj) − w̃h̃
+(bj) = 0 while, for

` ∈ (aj , bj), ũξ(`) > w̃h̃
+(`). Fix one such (aj , bj). The problem of minimizing∫ bj

aj

L(|v′(`)|) d`; v(aj) = ũξ(aj); v(bj) = ũξ(bj)

admits the solution w̃h̃
+, so that, in particular,∫ bj

aj

L(h̃) d` ≤
∫ bj

aj

L(|ũ′ξ(`)|) d` =
∫ bj

aj

L(|〈∇u(yξ + `
∇wh̃

+(yξ)

h̃
),
∇wh̃

+(yξ)

h̃
〉|) d`.
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Recall that |∇wh̃(yξ)

h̃
| = 1; since L is non-decreasing, we obtain that

L(|〈∇u(yξ + `
∇wh̃

+(yξ)

h̃
),
∇wh̃

+(yξ)

h̃
〉|) ≤ L(|∇u(yξ + `

∇wh̃
+(yξ)

h̃
)|),

hence that

(39)
∫ bj

aj

L(h̃) d` ≤
∫ bj

aj

L(|∇u(yξ + `
∇wh̃

+(yξ)

h̃
|) d`

Since the restriction to Lξ∩Ω+ of the gradient of M h̃ is∇wh̃
+(yξ), hence |∇M h̃| = h̃,

when ` belongs to the intervals (aj , bj), inequality (39) implies

(40)
∫
{ŷ(x)=ξ}∩(VZj

∩Ω+)

L(|∇M h̃|) dH1 ≤
∫
{ŷ(x)=ξ}∩(VZj

∩Ω+)

L(|∇u|) dH1.

By (37), (18) and (40),∫
VZj

∩Ω+
L(|∇u(x)|) dx =

∫
Zj

[
∫
{ŷ(x)=ξ}∩(VZj

∩Ω+)

L(|∇u(x)|)
J(ŷ(x))

dH1] dξ

≥ (1− η)√
1 + η2

∫
Zj

[
∫
{ŷ(x)=ξ}∩(VZj

∩Ω+)

L(|∇u(x)|) dH1] dξ

≥ (1− η)√
1 + η2

∫
Zj

[
∫
{ŷ(x)=ξ}∩(VZj

∩Ω+)

L(|∇M h̃(x)|) dH1] dξ

≥ (1− η)√
1 + η2

∫
Zj

[
∫
{ŷ(x)=ξ}∩(VZj

∩Ω+)

1− η

1 + η

L(|∇M h̃(x)|)
J(ŷ(x))

dH1] dξ

=
(1− η)2

(1 + η)
√

1 + η2

∫
VZj

∩Ω+
L(|∇M h̃(x)|) dx.

We have obtained∫
VZj

∩Ω+
L(|∇M h̃(x)|) dx ≤ (1 + ε1)

∫
VZj

∩Ω+
L(|∇u(x)|) dx.

Summing over j, we have∫
Ω+

L(|∇M h̃(x)|) dx ≤ (1 + ε1)
∫

Ω+
L(|∇u(x)|) dx ≤

∫
Ω+

L(|∇u(x)|) dx +
ε

2
,

thus (34) is proved.
e) Write

M h̃(x) = u0(x) + (M h̃(x)−M h̃(y(x))− (u0(x)− u0(y(x)));

we have |(M h̃(x)−M h̃(y(x))−(u0(x)−u0(y(x)))| ≤ (h̃+K)|y(x)−x| ≤ 2(h̃+K)d(x)
by i) of Lemma 1. Hence, M h̃ is the sum of a Lipschitzean function and of a function
g such that |g(x)| ≤ Dd(x).

Apply Lemma 3 to infer the existence of D∗ such that

M̃ h̃(x) =
1

|B(x, d(x))|

∫
B(x,d(x))

M h̃(z) dz
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is Lipschitzean of constant D∗. Consider L(D∗): there exists δ∗ ≤ δ̃ such that

(41)
∫

Ωδ∗

L(D∗) dx <
ε

2
.

f) Having fixed δ∗, define the continuous function

uε(x) =

{
1

|B(x,d(x))|
∫

B(x,d(x))
M h̃(z) dz, when d(x) ≤ δ∗

1
|B(x,δ∗)|

∫
B(x,δ∗)

M h̃(z) dz, when d(x) > δ∗.

From e) and Lemma 2, we have that uε is Lipschitzean and, moreover, that uε|∂Ω =
u0|∂Ω. We claim that∫

Ω

L(|∇uε(x)|) dx ≤
∫

Ω

L(|∇M h̃|) dx +
ε

2
.

Write Ω = Ωδ∗ ∪ [Ω \ Ωδ∗ ]. Consider the restriction of uε to Ω \ Ωδ∗ . By ii) of
Lemma 2 (applied to δ = δ∗) we have that, for a.e. x ∈ Ω \ Ωδ∗ ,

∇uε(x) =
1

ωN (δ∗)N

∫
B(0,δ∗)

∇M h̃(x− z) dz

so that, by the convexity of L(| · |),

L(|∇uε(x)|) ≤ 1
ωN (δ∗)N

∫
B(0,δ∗)

L(|∇M h̃(x− z)|) dz

and∫
Ω\Ωδ∗

L(|∇uε(x)|) dx ≤ 1
ωN (δ∗)N

∫
B(0,δ∗)

[
∫

Ω\Ωδ∗

L(|∇M h̃(x− z)|) dx] dz

≤
∫

Ω

L(|∇M h̃(x)|) dx.

By Lemma 3, uε is Lipschitzean of constant D∗; from our choice of δ∗, we have∫
Ωδ∗

L(|∇uε(x)|) dx ≤
∫

Ωδ∗

L(D∗) dx ≤ ε

2
;

we have proved∫
Ω

L(|∇uε(x)|) dx =
∫

Ωδ∗

L(|∇uε(x)|) dx +
∫

Ω\Ωδ∗

L(|∇uε(x)|) dx

≤
∫

Ω

L(|∇M h̃|) dx +
ε

2
,

thus, by (34), proving the Theorem. �

5. A two-dimensional Manià-type example

Set Ω be the square Q = [−1/2, 1/2] × [0, 1] ⊂ R2 and let u0(x, y) = y be the
boundary data. We wish to show the occurrence of the Lavrentiev phenomenon,
i.e., that

(42) inf
v∈W1

∫
Q

f(x, y, v,∇v) dxdy < inf
v∈W∞

∫
Q

f(x, y, v,∇v) dxdy,

where

f(x, y, u,∇u) :=
{[

(1− 2|x|) 3
√

y + 2|x|y
]3 − u3(x, y)

}2
{

∂u

∂y
(x, y)

}6

,
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and Wp = {u ∈ W 1,p(Q) : u|∂Q = u0}, for p ∈ [1,∞]. As one can easily see, the
minimum overW1 is non negative and it is attained at u(x, y) = (1−2|x|) 3

√
y+2|x|y.

In order to prove (42), we adapt the original proof by B. Manià, [8], to the
two-dimensional case.

Let u be in W∞. By regularity, for any fixed x > 0, one can choose α = α(x)
and β = β(x) such that α(x) < β(x) and

u(x, α(x)) =
1
4
[
(1− 2x) 3

√
α(x) + 2xα(x)

]
;

u(x, β(x)) =
1
2
[
(1− 2x) 3

√
β(x) + 2xβ(x)

]
.

Moreover, if one considers x ∈ [1/8, 1/4], then

u(x, β(x))− u(x, α(x)) =
1
2
[(1− 2x) 3

√
β + 2xβ]− 1

4
[(1− 2x) 3

√
α + 2xα]

≥ 1
4

3
√

β(x) +
1
8
β(x)− 3

16
3
√

α(x)− 1
8
α(x)

≥ 1
16

3
√

β(x).

Using Jensen’s inequality and the fact that β(·) < 1,

∫ 1/4

1/8

dx

∫ β(x)

α(x)

{
[(1− 2x) 3

√
y + 2xy]3 − u3(x, y)

}2
{

∂u

∂y
(x, y)

}6

dy

≥
∫ 1/4

1/8

dx

∫ β(x)

α(x)

{
[(1− 2x) 3

√
y + 2xy]3 − 1

8
[(1− 2x) 3

√
y + 2xy]3

}2{
∂u

∂y

}6

dy

≥ 72

82

∫ 1/4

1/8

dx

∫ β(x)

α(x)

y2

{
∂u

∂y
(x, y)

}6

dy

=
7235

8255

∫ 1/4

1/8

dx

∫ β3/5(x)

α3/5(x)

{
∂u

∂y
(x, y(ξ))

}6

dξ

=
7235

8255

∫ 1/4

1/8

β3/5(x)− α3/5(x)
β3/5(x)− α3/5(x)

∫ β3/5(x)

α3/5(x)

{
∂u

∂y
(x, y(ξ))

}6

dξdx

≥ 7235

8255

∫ 1/4

1/8

[β3/5(x)− α3/5(x)]

(
1

β3/5(x)− α3/5(x)

∫ β3/5(x)

α3/5(x)

{
∂u

∂y

}
dξ

)6

dx

≥ 7235

8255

∫ 1/4

1/8

1
[β3/5(x)− α3/5(x)]5

[u(x, β(x))− u(x, α(x))]6 dx

≥ 7235

8255

∫ 1/4

1/8

1
β3(x)

[u(x, β(x))− u(x, α(x))]6 dx

≥ 7235

8255

1
16

∫ 1/4

1/8

3
√

β(x)
β3(x)

dx

≥ 7235

825524

1
8
.
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