ON THE NON-OCCURRENCE OF THE LAVRENTIEV
PHENOMENON

GIOVANNI BONFANTI AND ARRIGO CELLINA

ABSTRACT. We show that the Lavrentiev’s phenomenon does not occur for
functionals of the form

[ L4vu@)) da,
Q

where L is an arbitrary convex function, provided that both 8Q and v are of
class C2.

1. INTRODUCTION

In 1927 a remarkable paper by N. Lavrentiev [7] presented an example of a
variational functional over the interval (a,b), with boundary conditions u(a) = a,
u(b) = B, whose infimum over the set of absolutely continuous functions was strictly
lower than the infimum of the same functional over the set of Lipschitzean functions
satisfying the same boundary conditions. Since then, this phenomenon is called the
Lavrentiev phenomenon. In 1934, B. Mania published a simpler example of this
phenomenon [8] and, in 1993, Alberti and Serra Cassano [1] did show that the
phenomenon does not occur for autonomous integrands over a one-dimensional
integration set.

When the integration set is a subset  of R"V, the boundary condition is described
by the inclusion u — u° € VVO1 '1(Q) and, in order for the problem of the occurrence
of the Lavrentiev phenomenon to make sense, u° is a Lipschitzean function on €;
in section 5 we present a modification of Mania’s functional on Q@ C R? with a
linear boundary function u°, exhibiting the Lavrentiev phenomenon. Connections
between the regularity of a solution and the non-occurrence of Lavrentiev’s phe-
nomenon have been pointed out in [5]. An exhaustive literature on the Lavrentiev
phenomenon can be found in [2].

In [3], Lemma 2.1, Esposito, Leonetti and Mingione prove that the phenomenon
does not occur for functionals of the form

/Q F(Vo(@)) de

provided that € is the unit ball, f is a convex C?(RY) function and the growth of
f is of the (p — q) type, i.e., m|z|P < f(z) < L(1 + |2|)%, with 2 < g < p < 2+ g;
in addition, some further growth conditions on the first and second derivatives of
f are assumed.

The purpose of the present paper is to prove the following result, an approxi-
mation result that, in particular, guarantees the non-occurrence of the Lavrentiev
phenomenon.

Theorem 1. Let Q C RN be an open bounded set, with 9Q € C?; let u® € C?(Q);
let L:[0,00) — [0,00) be convex and such that L(0) = 0. Let u € u® + WH1(Q) be
1
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bounded on € and such that
/ L(Vu())) dz < oo.
Q

Then, given € > 0, there exists u. € u® +W1H(Q), with u. Lipschitzean on Q, such
that
/ L(|Vue(2)]) de < / L(|Vu(x)|) dz + €.
Q

Q

The previous Theorem contains neither regularity nor growth assumptions on
the Lagrangian L, besides its being convex.

In Mania’s example, one reaches the conclusion of the existence of the Lavren-
tiev phenomenon by a rather long and clever computation. A much simpler com-
putation, consisting in approximating the solution z(t) = t3 by the Lipschitzean
function

on(t) = { ht for 0 < t < h3
t3 forh 2 <t<1
shows that, as the parameter h — +oo, the difference between the value of the in-
tegral functional computed on x;, and the same integral computed on the solution,
diverges to +o0o. This fact, although surprising, is not, by itself, sufficient to estab-
lish the validity of the Lavrentiev phenomenon. The proof of the non-occorrence
of the Lavrentiev phenomenon that we present in this paper will be largely based
on the following claim: if we are able to define a function wy, analogous to the
function xp, issuing from the boundary datum in a “linear” way, such that, as the
parameter h diverges, the difference of the integrals computed along wy and along
the solution, converges to zero, then the the Lavrentiev phenomenon does not oc-
cur. To show that the difference of the two integrals converges to zero, we will use
the fact that an affine function is always a solution, among the function satisfying
the same boundary conditions, of a convex variational problem depending only on
the gradient. This fact is independent of any further regularity assumption on the
Lagrangian L. Hence, we shall need regularity on the boundary datum u° to build
the ”linear” approximation, but we shall not need any regularity on L.

Finally, notice that, when w is a solution, the boundedness of u follows from the

boundedness of u° under mild additional conditions [4].

2. NOTATIONS AND PRELIMINARY RESULTS

We shall use the following notation. B(z,d) is the open ball centered at x of
radius 6. The Lebesgue measure of a subset A of RY is |A|; wy is the measure of the
unit ball; the complement of Q is CQ; d(x) = dist(x, C2), a Lipschitzean function of
Lipschitz constant 1; diam is the diameter of Q; Qs = {z € Q : d(x) < 6}. dp is the
Hausdorff distance; the normal to 92 at the point y, pointing towards the interior
of Q, is v(y); T(y) is the tangent plane to OQ at y and T (y) = {7 € T'(y) : |7| = 1}.
A vector x € RY will be often written as (%, zy). The Hessian matrix of a function
¢ is Hyg. For the coarea Theorem and the notion of Jacobian of a map g : RN — R"
we refer to [6].

With the above notations, we summarize the assumptions of Theorem (1) assum-
ing that there exists K > 1 such that: |Vu®| < K; |Huo| < K; the map y — v(y) is
Lipschitzean of constant K. Moreover, dg (T'(y'), T(y?)) < K|y?>—y'|. In addition,
there exists M > 1 such that for x € Q, Ju(z)| < M, [u°(z)| < M.
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In what follows, a constant A will be chosen; apart from further conditions, we
shall always assume that h > 3K.

Definition 1. For x € Q, set

(1) wh (z) = min{u®(2) + h|z — 2| : 2 € 99}
and
(2) w" (z) = max{u®(z) — hlz — z| : z € 9Q}.
Finally, set
wh (z) when u( ) > wh (z)
M"(z)=1{ wu(x)  when w'(z) <u(z) < wh(z)
wh (z)  when u(z) < w (x)

The following Lemmas will be essential to the proof of Theorem 1. They will be
used to smooth the approximating function M".

Lemma 1. Let Q and u® be as in Theorem 1. Let y = y(x) be a point where
wh (z) = u(y(x)) + hly(z) — z|. Then

i)y —x| < thKd( ) < 2d(z) and |w" (z) — u(y(z))| < [K + hld(z) and

it) (uniqueness) there exist h* and d*: h > h* and d(x) < d* imply that y = y(x)
is uniquely defined and we have

ly — x| =

The same inequalities hold for w" , provided that in i) we read |y—2x| = M
Proof. We shall prove the inequalities for w_’; Ad i). Let y* € 99Q be such that
ly* — z| = d(z). From the definition of w we have that u(y*) + hd(z) > u°(y) +
hly — x|, hence hly — x| < hd(x) + [u®(y*) — u’(y)| < hd(z) + K|y — y| < hd(z) +
K[|y — x| + d(z)], so that

h+ K
< (2T .
®) -l < ()
again from u°(y*) + hd(z) > w'; (x) we infer
0

wh () = u(2)] < [u(y") — u’(2)| + hd(z) < Kly* — 2| + hd(x) = [K + h]d(z)

thus proving i).
Ad ii). Whenever the minimum is attained at a point y, since y is a constrained
minimum point, we must have

(4) Vau'(y )+h|y_x| V (u’(y) + hly — z|) = Av(y),
so that, for any 7 in T'(y),
y—x
) Vul(y), 7) = —h ,T).
5) (Ve(y).7) = —h{ A=)
Assume that y' and y? are points where the minimum is attained; set r = |z —

y?| = |z — '], so that |r] < |y —4].
For any 7 € T(y"), from (5) we infer

Vul(y?)
h

Vil (y')

0= (z—y°+|z—y? 772>:<I*y1+|x*y1|7h .7
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so that

VUO y2 VUO yl
© w1 ) oy ey T oy
0(y)2
(x—y*+ II*yQILUh(y ) - 7).
There exists n* such that: for any y? with |y? — y!| < n* there is 7 € T(y!) (with

7 depending on y?) such that

1 2
y -y 1
LTy >,
<Iyl—yQI )25
‘We have
0,2 0,1
R IR IALL R
:<y1_y2+rvu0(y2) 7_>_|x_y1|<vu0(y1)_vu0(y2)) T>
ho h ’
1 2 07,2 0,1 07,2
Y-y Vu®(y Vu'(yr) — Vu’(y
— 1~ Pl T o - PRI oy

h
Set d! = min{%, 1}, so that d(af < d* implies |y! — y?| < n* and, from equation
Y

)
(6), we obtain, for any 71 € T(y!),
Vul(y?)

h

Consider the left hand side for 71 = 7; choose 72 € T'(y?) so that |72 — 7| <
K|y' — 3?|; we obtain

1 K
(x—y* + |z — 771772>Zglylfyz\*iﬂyzfyllﬁ-

K 1 K
2d(x)(1+ Ky — v > Sly' —y°| = 3ly* — 'l
h 2 h
choosing h = 12K and d* = min{d", m%}’ the previous inequality implies |y? —
1
yt|=0.
It is easy to check that Vwi is constant of norm h along the line segment joining
y to x and is directed in the direction from y to x; hence we have the identity

~wl(z) —u’(y)
(7) ly —z| = %

O

Lemma 2. Let v € WHY(Q) be such that |v(x)| < M a.e. on Q and, on Q\ Qs,
define the function

U = ; v(z)dz
") = B9 /B(m (=) dz.

Then: i) U is Lipschitzean of constant NM% and, i) ¥ is a.e. differentiable and,
at a point x of differentiability, we have Vi (z) = ﬁ fB(o 5) Vou(z — z) dz.

Proof. Ad 1).

1 1
_ v(z)dz — ———— v(z)dz
|B(22,0)| JB(22,6) (2) |B(x!,0) JBar,5) =)

1
5NM|B(3;1,6)AB(:E2,5)\

[5(2?) — o(a")| =

WN
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and |B(z!,6)AB(22%,0)| < 2wndY < wydV 7zl — 22| when |2! — 22| > 20,
while, when |z! — 22| < 26, |B(2,0)AB(2%,0)| < wn|[(6 + |zt — 22|)N — V] <
NwnoN~ta! — 22| so that, in either case,

1
|o(z?) — o(2)] < NM5|951 — 27

Ad ii). From i) we have that there exists 0§ C Qs of full measure, such that o is
differentiable on Q5. Hence, for x € QF, there exists a vector Vo(z) and a function
g(h), e(h) — 0 as h — 0, such that, for every h sufficiently small, we have

o(x 4+ h) —0(x) = (Vo(x), h) + |hle(h).

Consider one coordinate direction e;. On almost every line parallel to e;, the map
t — v(x + te;) is absolutely continuous; there exists 0} of full measure such that
x € Q5 and t small imply

O(x +te;) —o(z) = WN% 50 6)v(x—z—|—tei) —v(zx —2)dz
1 ) 1
= Vu(x — z + ste;), te;) ds| dz
b s L (0 ) tes) ds]
1

= — Vou(x — z),te;) dz
u)N(;JV[B(Oﬁ)( (x — 2), te;)

" /13(0,5) [/0 (Vu(z — z + ste;) — Vo(z — 2), te;) ds] dz]

1
= Vou(x — z)dz, te;) + ri(t
ol IPRLCEDR SRR

1 1
ri(t) = 7/ [/ (Vo(z — z),te;) dz
wnON Jo ) 1B(0,6)—stes\B(0,6)

(Vo(z — z),te;) dz]ds

and

/B(O,(S)\[B(O,é)—stei]
so that “ — 0. Hence, for z € QN [N;Q%], we have

[t]
Vi(z) 1/ Vo(r - 2)d
V) = ————= v\ — 2 Z.
wnoN Jp0.5)

O

Lemma 3. Assume that either i) g is measurable and such that |g(z)| < Dd(z) or,

i), that g is Lipschitzean with Lipschitz constant D. Then, there exists D* such

that the function

(1) =

)=
|B(z,d())| JB(s,a(2))

is Lipschitzean of constant D*.

g 9(z)dz

Proof. Fix ! and 22, let d(2?) > d(x!), let y! and y? in OQ be the nearest points
to ! and 22, From |22 — y?| < |22 — y!| < |22 — 2| + |2! — y!|, we obtain

(8) 0% = at| > d(2?) — d(z").
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On the segment [y2, 2%], let 22* be such that d(z?*) = |y? — 2%*| = d(x!). We have
(9) [a' = 2| < o' = 2| + [0® — 2| = |2! = 2?| + (d(2?) — d(21)) < 2[a’ — 2.
Ad i). We have
9(2%) = g(a")| =
- (2)d 1 (2)d
_ g(2)dz — ———— g(z)dz
|B(2?,d(2?))] /B2 a(2)) |B(z!, d(z"))] /B a1y
1
<L o(z)dz — | 9(2) dz|
|B(z?,d(x?))]" JB(a2,d(2)) B(at,d(a1))
1 1
+f 9(2)] dz| -
B(at d(z1)) [B(x?,d(2?))|  |B(z', d(z"))]
Consider a.

i,
al ————— g(z)dz —/ g(z)dz
|B(22,d(z?))| {' B(22,d(?)) (2) B(22*,d(z2*)) (=) dz|

1
+/ gzdz—/ 9(2)dz| p = {01 + a2}.
| B(a?* d(x?*)) = Bt d(x1) ()l 0 = [pae a@y o T

Since B(x?*,d(z**)) C B(z?,d(x?)), we have

| =a+p.

ap = | 9(2) dz| < w[(d(@*)™ = (d(2*))™] - 2Dd(a?)
B(e2,d(e)\ B(z* d(a2"))

< 2Dwy Py (d(z®))N (d(2?) — d(2**)) = 2Dwy Py (d(z*))N (d(2?) — d(z)).
Also,

oy < / l9(=) d2] < 2Dd(2")| B>, d(z" ) AB(", d(z"),
B(z2*,d(z1))AB(z1,d(z1))

and we have: when 2d(x!) < |2! — 22*|, it follows |B(2%*,d(z!))AB(2!,d(z"))| =
20N (d(2z'))N <wy(d(z))N 1zt — 22*|; when 2d(z!) > |2t — 22¥,

|B(2®,d(«"))AB(a,d(ah))] < wn[(d(ah) + [t — 2 )Y — d(z"))Y]
<wpylzt = 2% |Py(d(zh) + |2t — 22V < wylat — 2% | Py (3d(2)N L
In either case,
(10) |B(z?*,d(x"))AB(z', d(z"))| < wyl|zt — 223V 1 Py (d(2')V L.
Hence, ap < 2-3¥"1Dwy Py (d(x!))V|z! — 22*|, so that
o < 2DPy[(d(x?) — d(2')) + 3V~ Yal — 2.
From (8) and (9) we obtain
a < 2DPyn(142-3V Y|zt — 22
Consider 5. We have ‘/\B(‘Tl7d($l)) l9(2)| dz < wy (d(z'))N - 2Dd(z") and

_ 1 = |B(2?,d(2?))| — | B(xz", d(z1))]
| B!, d(2))] |B(at, d(x"))||B(2?, d(x?))|

(
(

1

(11) |\B(x27d(x2

~—
~—
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so that
(12) B < 2DPy(d(z?®) — d(2')) < 2DPy|2® — 2.
We have obtained
3(c?) - glah)] < 2DPy(2+2-3V)]a? o'
Ad ii).
1
m B(x2, d(r2))(g(

(9(z) —g(z?)) dz

z) = g(a?)) dz

a) When |22 — 21| > d( )+d(
1
‘|B<x2,d<x2>>\ (et e
1 1
TTBEE A oo aey T IV
< Dd(2*) + Dd(z') < D|a? — x'|.
b) Let |22 — 2| < d(2?) + d(a!). We have
19(2%) — g(z")]

<lg(z?) = g(=")] +| (%)) dz|

: /
9(z) —g
wn (d(z2))N B(z2,d(m2))\B(ml,d(m1))(

! (9(2) — g(ah)) d]

wn (d(z1))N /B(:vl,d(zl))\B(m?,d(z?))

S 2)—q(z? v 2)—g(z!))] dz
H /B N e UL B o e e MU R CNEE

=1lg(z*) = g(@") +a+ B +7.

+|

We have )
W[(d($2) + |2 — ')V = (d(z")N];

since d(z?) — d(z') < |2% — 2| < 2d(z?), we obtain

laf < L_
(d(22))N -1

Consider 3; we have
D 2 d(at 22 d( 22
18] < on (@) T [B(x",d(z")) \ B(z”, d(x7))].

Smce B(x!, d(z?) - |x2fx |) € B(x2,d(z?)), we infer B(x!,d(z'))\ B(2?, d(x?)) C
B(a', d(z")) \ B(z!,d(2?) — |2? — 2']), hence

Bz, d(a")) \ B(2?,d(2*))| < wn[((d(z"))Y = (d(2?) = [a* = 2 )¥]

< wpn (d( Y —d(z?) + |2% - x1|) PN(Zd(xl))N71 < wN|a:2 — xl\PN(Zd(xl))Nfl
and

la| < Dd(a?)

2l2% — 2Py (3d(z*))N ! = 2PN 3N TID|2? — 2!

13| < DPN2N7Ya2? — 2.
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Consider ~; write the absolute value of the integrand as

e ) — 90 — S ) — g(a)
o ) —9(8) = S (9(0) — a(eh)
|t 01 — e + (00~ 9Ny — )
Since [B(z", d(")) N B(a?2, d(22))| < wx(d(z"))N, we obtain
< [t 1 e (S )| v
< Dlz* —z'|+ DSE;;PN(d(ﬁ) —d(z')) < D(1 4 Py)|z? — 2.

3. DIFFERENTIABILITY RESULTS

Let P € 09); we choose as coordinate system (depending on P) the one that
has the origin in P and the xy axis in the direction of the normal to the inside
of €, so that, for ¢ < N, the x; axis is on the tangent plane to P. On this
system, 9 is described locally by zn = ¢(&), with ¢ a smooth function such that
$(0) = V(0) = 0; given ® < 1, we shall call Bg(P) the maximal open ball centered
at 0 in RN~ such that, for & € Bg, we have |[Vé(2)| < ®.

Set
7¢I1 1 0
0
v=| T1i=| P TNl =
—Prn_y . 1
1 ¢I1 d)zN—l
and
v Ti
V= "=Ti = —7
7| |7l

Given a point z € Q, as before we denote by y(z) the point in 92 where the
minimum in (1) is attained. We shall consider the map = — ¢; J(§) is the Jacobian
of this map.

Lemma 4 (Differentiability lemma). For every n there exist h and ® such that
h>h and ® < ® imply that the map = — 7 is well defined and differentiable on

Q%, and we have
1- v1 2
L+n (1—n)

Being the case N = 2 substantially simpler than the general case, we present
it separately. In the Proof of this Lemma we shall consider partial derivatives
evaluated at different points; it will be convenient to set fj’- to denote the partial
derivative of the (scalar-valued) function f with respect to its j-th variable.
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Proof. The case N = 2. a) We first claim that the map Vwi is a known function
when computed at a generic point (y1,¢(y1)) € 9. In fact, from u®(y1, d(y1)) =
w” (y1,¢(y1)) we obtain

Py, 6(3) = (V) = (1, 6(n)) = (Ve 7)
Y1

dy
so that
(13) (Vwl (1, 6(11)), 7) = (V' (y1, 6(11)), 7);
since the norm of th is h, we also have

<V’U)+ (yh \/h2 VUO yla ¢(y1))7 T>2'
Let e; be the coordinate dlrectlons; writing
e1 = (1,e1)T + (v, e1)v; es = (1,e2)7 + (v, e2)v

we obtain the cartesian coordinates of Vwi, ie.,
(14) (wi)ll _ <V’UJ5'7'_7 61> _ <vwf|l—a T> <7—1 61> + <
(wi)é <VU}QL_, €2> <vw—}:-7 T> <T7 62> + <
_ ( (Vul, 7 {7, e1) + \/h? — (VuO, 7)2(v,e1)
- )

(Vul, 7)(T, e2) + /h2 — (Vud, 7)2(v, eo
In particular,

(15)  (wh)i(yr, o)) = (V' 7)(r, e1) + /B2 = (Vul, 7)2(v, e1)][ (g1 601

b) Consider h* and d* defined in Lemma 1. We can assume that h* > 3{%. For
every h > h* and d(z) < d*, the map (depending on h) z — y(z) = (y1,¢(y1)) is
well defined. We claim that y; is a differentiable function of x.

Recalling that Vwi is constant along the line segment joining (x1,x2) and
(y1,9(y1)), we obtain the identity

h (Vb T (T er) + —(Vud, 7)%(v,e1)
16 Vuile,m)= ( (Vu0, 7)(7, e2) + h2 (Vu0, 7)2 (v, e5) >
where the right hand side is computed at the point (y1(z), #(y1(z))).
The points = and y are related by the identity © = y + |z — y| > = é/l’ i.e., from
(7), by
(17)
( 1 ) _ ( yi(z) ) n (wl () — w1 (2), (y1 (2)))) V'l (y1 (@), (g1 ()
T2 d(y1(z)) h h

in particular,

o1 = 1+ oy (01,22) = 00, 6(0) (W) (01, 60 )

differentiating with respect to x; this identity, we have
1
1= (y1)a, + ﬁ{[(wi)xl = ((Vu%,7) - (h1)e )N (W) 1 (91, 6(31))
+H(wlh = u® (g1, o))V (@Wh)1), 7) - (Y1) }

and

0= (y1)e, + %{[(wfi)m = (Va7 - (1) ) (@] ), (51, E(31))



10 G. BONFANTI AND A. CELLINA

+(w.'i (g1, o))V (Wh)1),7) - (y1)as }-

From (16), we have (w”)!(y1, ¢(y1)) = ()i (21, 22) and we obtain

(y1) _ 1- ((wi) )2
1= BV, T (wh)) - (w’+ —u0(y1, Sy)(V((wh)}), 7)]
and
() —%wi) (wh)h

T 1 &Vl 7))y — (wh = u(yn, o (u))V(w))), 7]
¢) We wish to estimate the Jacobian of the map = — y;. Differentiating (15),

d%l(ﬂ)i(ymﬁ(yl)) = (V((w}))),7) = (Vu’, 7))y, (7, e1) + (Vi 7) (7, 1))y

(Vb (Ve 7))y,

(v,e1) + Vh? = (Vu®,7)2((v,e1))y, = A+ B+ C+ D;

—<VU0,T>2
also
d 0 1 T ¢7H ul, v
(TM<V“ ’T>)\/TW =7 Hypt+ (1+(¢,)2)%<V V)
and
_ _%' v, ey = _¢7N'
(redn =~ oy W en =~y

We have |(w})}| < h and [Vu°| < K; (Vu®,7)| < K\/1+ (¢/(y1))?. Recalling
that ® < 1 and h > 3K,

2K + K?

A <2K + K% |B]< K% |C] < —

K <K?* |D|<hK,

so that p
|E(w+) 1(y1, (1)) < K1+ Kh.

Recalling i) of Lemma 1, on the set Qsu we have wh (z) —u®(y(z)) = hlz—y(z)| <
th% = 6M, so that

() = om0 5 - (WD) < 6M 3y (K -+ K
in addition, .
(Vu?, T>h2( )|<2K h;

we have obtained that the denominator satisfies

2
Lt 5 [BM(K) +2Kh)]

1- hlg [(Vu®, 7)(wh)) = (W —u(y1, () {V (w]))), 7))

> 1- ﬁ[?)M(Kl +2Kh)).

In addition, from (16), we have |w? | < & + & and |Lw! wh | < £ 4+ & so
that we can make either term arbitrarily small by choosing % and ® small.
d) Fix n. Fix h so large and ® so small that h > h and ® < & imply:

L=< 1= 5Vl P — (=0, G )T (@), 7] < 1+

Y]
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()2 < and | () ()] < .

We obtain, for every = € QS}ﬂ,

Ty <0 < g 0<lnl <5
and
(18) 1%; = Jy)@) = /w2, + )z, < ﬁ

O

Proof. The general case. a) Consider a generic point (§,¢(g)) € 9%, so that 7, =
7:(9) and v = v(§): we claim that the map Vw” is known when computed at

(9, (9)). In fact, from u’(g, 6(9)) = w'i (4, 6(7)), we obtain

(5 0(0)) = (V.7 = G-l (5,9(3) = (Va7

dy;
so that

(19) (Vwlt (5, 6(9)), ) = (Vu' (5, 6(9)), 72).

For a vector v in RY let P(v) be the projection of v on the tangent plane; write
v = {(v,v)v+ > a;7, so that > a;7; = P(v); we obtain, for the coefficients a;, the
system

(20) (v,75) Zaz TisTj);

In particular, for the vector Vuw” %, we obtain

(21) Vult = (Vul, vyv + Z a;T;
i=1,..,N—1

and, from (19), (20) becomes

(22) (Vu, 7;) Zal Tiy Tj)

The coefficient matrix T' = ((r;, 7;)) of system (22) converges to (4; ;) as & — 0;
hence, for every ® small, system (22) is solvable.
We also have
= [Vl P = (Vuh.0)? + (P(Va})?

and we obtain

N-1

(23) (Vuwl,v) = |h? - (Z a? + Z a;a;{Ti, 1))

i=1 id=1,...,N—1;il

b) Equations (19) and (23) provide (Vw”,7;) and (Vw/:,v); in order to obtain
the Cartesian coordinates of Vwi, write, for j =1,..., N,
(24) ej = (ej, V)V + Z b7
i=1,...,N—1

We have

(Wh); = (Vult e;) = (e, ) (V) + Y bl(Vul,7)
i=1,...,N—1
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hence
(25) (Vw't, e;) (@, 9(5))
N-1 N-—1 .
=lejv)y | W2 =D ai+ Y aalmm)+ Y 0V )]l g0
i=1 il=1,...,N—1;i#l i=1

¢) We have the identity
(26) ( i ) _ ( j(z) ) N (wh (2) — u’(G(2), 6(5(2)))) V' (§(x), $(§())
TN ¢4 (x)) h h '
Differentiate with respect to x; the first N — 1 lines and recall that (wi); (z) =
(W) (3, ¢(9)), to have

.1
015 = Ya, + 33

((w—]-it-)fﬂj - Z<VUO,?Z> . yig) (wi)ﬂm

l
uh —u0>z<v<<wi>;>,n>y;j],

where (V((wh)}),71), u® and (Vu®,7,) are computed at the point (7, ¢(§)). Hence,
fori=1,...N—land j=1,...,N,

(27) dij — ﬁ(wﬁ?(wi)}

= Yo, T % {Z[w.’HV((wi)é),m = (wh)e, (Vu’, 7)) — u0<V((wi)2)m>]yij} :

System (27) has the form

I+o11 012 + OLN
(28) . . .
oN-11 l1+on-—12 . oON-1IN
(IT+m1) - mya Yoo Uty - Ubn
NN—1,1 . (T4+ny-1,n-1) y Nty et gy Nt
with
1 _ _ _
Nig = ﬁ[w-}ﬂv((wi)é)’ﬁ) — (Wh)e, (VU0 7) —u™(V((wh)]), 71)]

We claim that system (28) is solvable in the unknowns y;j; for this it is enough to
show that the 7;; can be made arbitrarily small.

d) The expression for 7;; contains second derivatives of the function wff_, com-
puted at (g(z),d(gy(z))), that can be obtained differentiating (25); in turn, this
requires the existence of the derivatives of a; and of the b; We have the derivatives
of a; by differentiating the identity, obtained from (22),

(29) (Vul (9, 6(9), 7 (@) = Y ai(@)(7:(9),75(9));
we have

0 _ _ _ B 0 _
yylm(’,m = (7)) HooT1 + Uy by, = O _[(0)y, (76, 75) +az‘67ﬂ<7iﬁj>]
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ie.,
(30) (?J)THHO?Z + u2N¢yjyl Zal TMT_] Z(a’i)yl <TL7?]>
Again, for all ® sufficiently small, system (30) is solvable and (a;),, exist.

Consider (24) and take scalar products with Vu?; since the left hand side is
differentiable, so is the right hand side and we obtain

(31) (e, Vu)a, = [ e, VuOoy = D~ (b7, V'),

Finally, consider (25); since we have shown that the right hand side is differen-
tiable, so is the left hand side and we obtain

3 (V)36 = (e, ¢ (et + S

i#]

+(ej,v) \/ Za2 + Zaia] 1)) |+ Z (b7 (Vu®, 7))y

i#] w i=1,...,N—1

e) Consider the following estimates as  — 0.
We have that, as ® — 0, for j =1,...,N — 1, 7; — ¢;, while v — ep; from (22)
we obtain

a; — (Vu’(0,0),e;) = ugj (0,0)
so that,
(Vult,v) = [h2 =" ((Vuo, e;))?
and
N—-1
\/ Za +Zalaj TiyTj)) = «| A% — Z((Vuo,ei>)2
i#£] i=1

We also have
4 0 whenj#N
(<€j’y>)ﬂ{ 1 whenj=N

and, from (24), we obtain b’ — ;;; moreover,

(<€j71/>)yl - { 0_¢9ij when j # N

when j = N

<V’ V’uO) - USN and (<V’ Vu0>>yz - = Z (b’l/ﬂ/lum + uyNyl

i=1,..., -
From (25) we infer
A (Vu? e]> forj < N
(33) (i, = (Ve ) - { V=S Ve forj=N
From % \/% by,y, we infer that 5 <7’z,7’]> — 0; hence, solving system (30),
we obtain

(aj)yz - (Huo)jﬁl + u2N¢yjyl
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that implies that there exists H; such that, for all sufficiently small ® and all h,
|(aj)y,| < Hi. Hence, there exists Hy such that

0
o W2 = (Y ai+ ) aay(n, 7))
l -

i#]

_ 220y + X [(aiag)y (73, 7) + aia; ({73, 7))y
2\/h2 — (0] + Xz aiaj (13, 75))

From (31) we obtain

0 0 .

E : j Py U j#N
bi Tr,vuo — { uy]yl Yy “yn :

(0 Do > By, j=N

that yields the existence of Hs such that, for all ® sufficiently small,
Y (0m, Val))y,| < Hs.

r=1,...,.N—1

< H,

Then, from (32),

0 . N
O@l<vwi7€j>(y,¢(y))| <2Kh+ Hy+ H3

Since |(w'})4,| < h, on the set Qau we obtain
1
0] < 55 [6M (2K + H + Hs) + 2K h).

f) Consider system (27) and notice that ¢ < N: from (33) we obtain that each
0;,; can be made arbitrarily small by choosing % and ® small. From (27) we obtain
that, as both ® and ;+ — 0, y;] — 0, with ¢ = 1,..,N —1and j = 1,...,N.
The determinant of the minor of the matrix (y;7) obtained by suppressing the

last column, (yiN), converges to 1, while the determinants of all the other square
matrices, that must contain the last column, tend to 0. Hence, by the formula for
the Jacobian ([6], p. 89), given 7, we can find A > h* and ® such that h > h and
® < & imply that, for z € Q%,

120 ggay) < AT

(1-mn)

4. PROOF OF THEOREM 1

The Proof of Theorem 1 is partially based on the following fact: the problem of
minimizing

b
/ L(u (1)) dt

on the set of u : [a,b] — R absolutely continuous and satisfying u(a) = a;u(b) =
0B, where L is a convex function defined on R, admits the solution
80—«

at) = a+ s—(t - a).
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We shall need the following Definitions. In it, and for the remainder of this

section, for £ € By (P), we set ye = ( 3 ) _

¢(§)
Definition 2. For given h, ®, §, and for P € 01, set,
Vhf@,&(P) =
v h v h
{JJ EQ:ixz=y +5M;§ € By(P); 0 € (0,0%); d(ye —l—E*M) = 5} .

h h

For a measurable subset Z of the ball By (P), set V,J to be the subset of ‘/;:,Lq),é(P)
such that £ € Z.
Set

Vina s(P) =

h h
{reniomy— T e opyee 0.0y - e T

For a measurable subset Z of the ball Bg(P), set V,; to be the subset of Vhfg&(P)
such that £ € Z.

Proof of Theorem 1. Fix e. Set ¢! =
that

WW andletn(0<77< 1) be such
JQ

A+n)vi+n® 1.
2 - (1 +e )7
(1—n)
consider h, and ® supplied by the Differentiability Lemma for this 7; set § = %;

recall the function M" in Definition 1. }

a) Set QF = {z : u(z) > wh(z)}, O = {z : u(@) < w'(z)} and Q° =
{z : wh(z) < u(z) < wl(zx)}. Notice that d(z) > & implies that w’(z) =
u®(y(x)) + wh (x) — u(y(z)) > —M + hly(z) — x| > 2M > M > u(z), so that
min{w” (z),u(z)} = u(z) and QT C Q5. In the same way one obtains also 2~ C Q.
Hence, the estimates on the Jacobian of the map = — g, provided by the differen-
tiability Lemma, hold on Q% and on Q.

We have, almost everywhere in 2,

[ h forz € Q- UQT
VM _{ |Vu| for z € Q°

so that

h = h X h X u X
/QL(|VM (@))) dm—/ L(h) d +/Q+L(h)d +/QOL(\V ) d

o0
b) We wish to show that

(34) [ L0eat @) de < [ L(Tut@) o+ 5

it is enough to show that

(35) / L(R) dz = / LOVMP (2)]) do < / L(Vau()]) de + &
o+ o+ o+ 4

and

(36) /_ L(|h)) dz = /_ L(VM"(2)]) dz < / L(|Vu(z)|) dz + i.
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c¢) We hall prove (35), being (36) proved in the same way. Consider A = {z €
Q:d(z) = 2} Ais a compact subset of Q. By ii) of Lemma 1, the collection of

open sets, defined in Definition 2, {V;j@ 5(P) : P € 0Q} is a covering of A. Let

{Vﬁ+<i> S(Pj) : 1 < j < J} be a finite subcover. We are going to define measurable

subsets Z; of Bg(P;): set Z = Z; = Bz(P1); consider P, and set

5 Vuh Y
Zy ={§ € By(P2) : (ye + 22(5)) nvy, =0}
Having defined Z; up to 7, set
3 V't (y -
Zi1 =16 € Ba(Pyyq) : (ye + 5%) NV, =0 for 1 <j<j};

Hence, every point in A belongs to one and only one VZ':, and, by the uniqueness
in Lemma 1, so is for {2;.
d) We claim that for every j,

/ L(|VM;L(l‘)|) dz < (1 +E)/ L(|Vu(z)|) da.
Q+mvz+j

Q+ mvgj
Apply the coarea theorem [6] to the set Q1N Vzt» and to the function g(z) to obtain

_ L(Vu(@)]) 10 o
(37) /mnvgj L{Vu(@)l) do = /Zj+[/{g(x)=§}m(ﬂ+nvgj) J(g(x)) dH] dg;

consider the line segment

(38) LgZ{yg +£Vw7(yg) :0€(0,07); d(yg +£*V’w%(y§)):5}:

S+

we have that {f(z) = &} N (QT NVz,) = L N QF. For almost every £ € Z; the
maps

wh
g () = u(ye + f%@g)),

. ; V' (ye)
@ (0) = w (ye + f———)

are absolutely continuous, so that the set Se = {£ : @¢(¢) > zb_;ﬁ(é)} is a (possibly
empty) open set. Then, there are at most countably many open intervals (a;, b;)

such that S¢ = U(ay,b;) and @¢(a;) — @' (a;) = ae(b;) — @' (b;) = 0 while, for

0 € (aj,bj), ue(¢) > @" (¢). Fix one such (a;,b;). The problem of minimizing

b;
[ 20@) a6 vlag) = el olby) = sy

J

admits the solution wi, so that, in particular,

Vuwl (ye) ) Vuw

)

(ys)m e

S|+
S+

[ rdacs [T rqaon ac= [ Livate +o

3J J 3J
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Recall that | Y% (y‘)| = 1; since L is non-decreasing, we obtain that
Vel (ve), Vel (ye) vl (ye)
L(I(Vulye + (=), S50 ) < L Valye + ¢=——22))),
h h h

hence that

b b;

J - Jj Yw
(39) / L(h) de < / L(Vul(ye + e%n v

3 3J

Since the restriction to LeNQ™ of the gradient of M"is Vw;_ (ye), hence |VM;‘| =h,
when ¢ belongs to the intervals (a;, b;), inequality (39) implies

(40) L(|VM")) dH* < L(|Vu|) dH".

/{ym—s}m(vzj na+) /{mz)—s}m(vzj na+)

By (37), (18) and (40),

_ L(|Vu(z)])
/\/ij9+ L{vula)l) do= /zj [/{g(x)—g}m(vznm) J(G(z)) d'] ¢

L(|Vu(x)|) dH'] d¢

> s L
1+n? {9(2)=E}n(Vz; nQF)

L(IVM" (z)|) dH'] d¢

af/ J
L4+ n? Jz; J{g(@)=6)n(vz,n0+)

1 —n L(VM"(2)))

\/1—5—77 / /{y(z) eyn(vznat) L+1 J(g(=))

dHY] dé

 (=n)? i
L(|IVM"(z)|) dx.
1+17 o m T vy o LMD

‘We have obtained

/ LOVMP () de < (1 +gl)/ L(|Vau(z)]) da.
Vgz.NOQ+

sz nQt+

Summing over j, we have

/ LOVM () do < (1+51)/
Q+

Q+

L(Vu(z))) dz < / L(Vu(@))) dz + &,
Q+ 2
thus (34) is proved.
e) Write

M (z) = u’(@) + (M"(z) = MM (y(x)) — (u(z) — u(y(2)));
we have |(M" ()= M" (y(x))—(u®(2)—u(y(2)))| < (h+K)|y(x)—=| < 2(h+K)d()
by i) of Lemma 1. Hence, M" is the sum of a Lipschitzean function and of a function

g such that |g(z)| < Dd(z).
Apply Lemma 3 to infer the existence of D* such that
- 1 -
= M"(z) dz
|B(z,d(z))| B(z,d(z))
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is Lipschitzean of constant D*. Consider L(D*): there exists 6* < § such that
(41) / L(D*) dz < <.

Qi 2

f) Having fixed §*, define the continuous function

e (z) = { T Jae.ae M (2) dz, - when d(a) <07
B fB(z’é*) M"(z) dz,  when d(z) > §*.

From e) and Lemma 2, we have that u. is Lipschitzean and, moreover, that u.|gq =
u%|pq. We claim that

/QLuv (@) d S/QL(IVM ) do+ 2

Write Q = Qg+« U [Q\ Qs+]. Consider the restriction of u. to Q \ Qs«. By ii) of
Lemma 2 (applied to § = §*) we have that, for a.e. € Q\ Qg+,

1 ~
Vuxzi/ VM"(z — 2) dz
8( ) WN(é*)N B(O’(S*) ( )
so that, by the convexity of L(] - |),

1 Ao — ) do
LV < e [, M=) a

and

_ hr A dal de
/Q\Qé* L(|Vue(z)]) dz < VIO /13(075*)[/{2\96* L(VM"(z - 2)|) da] d

h
< /QL(IVM (2)]) da.

By Lemma 3, u. is Lipschitzean of constant D*; from our choice of 6*, we have

/Qé* L(|Vu5(x)|)dx§/ L(D") dr < 5

Qs+

we have proved

/ L(|Vue(z)|) dx :/ L(|Vue(2)|) d:ch/ L(|Vue(x)|) dz
Q Qg+ Q\ Q5%
< / L(VM™) do + £,
Q 2
thus, by (34), proving the Theorem. ([l

5. A TWO-DIMENSIONAL MANIA-TYPE EXAMPLE

Set Q be the square Q = [—1/2,1/2] x [0,1] C R? and let u°(z,y) = y be the
boundary data. We wish to show the occurrence of the Lavrentiev phenomenon,
i.e., that

42 inf inf
(42) vg}l/\ﬁ/(gf(x,y,v,Vv) dxdy<1)é%m/(2f(x,y,v,Vv) dxdy,

where

(oo V) o= { [0~ 2a) 95 4+ 20aly]® — ()} {?)Zm)}
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and W, = {u € WhP(Q) : ulsqg = u}, for p € [1,00]. As one can easily see, the
minimum over W} is non negative and it is attained at u(z, y) = (1-2|z|) &y+2|z|y.
In order to prove (42), we adapt the original proof by B. Mania, [8], to the
two-dimensional case.
Let u be in Ws. By regularity, for any fixed > 0, one can choose o = a(x)
and 8 = B(x) such that a(z) < B(x) and

u(z,ox)) = —[(1 - 22) Va(z) + 2za(z)];
u(z, Bx)) = 5 [(1 - 22)/B(x) + 226(2)].

DN — |

Moreover, if one considers z € [1/8,1/4], then
u(z, B(x)) — u(z,a(x)) = % 12z \3[+ 220] — %[(1 —2z){a + 2z0]
> WT+ §0(w) = 15 /ale) -
> 1—6 Y/ B(x).

OO\)—I

Using Jensen’s inequality and the fact that 8(-) < 1

/11/4 Az /j(x) {la —2x)f+2:cy]3—u3(x,y)}2{gZ(ﬂc,y)}Gdy

/8
1/4 1 2 (ou)®
/ dx/ { (1 — 22) ¥y + 2xy]? [(12x){"/§+2:cy]3} {} dy
1 a(z) 8 ay

72 1/4 { }6
d d
/1 w/a(r) (z,y) ¢ dy
7235 1/4 6
= 8255/1 /043/5@) { x y(f))} d¢

7235 r1/4 33/5(z) — a3/5 () BY2(@) ( oy 6
= 8255 /1/8 3375(z) — a3/5(x) /043/5(1) {ay(x y(ﬁ))} d¢dz

7235 1/4 35 3/s 1 53/0 (z) ou 6
8255/1/8 577 (@) = a2 ()] 33/5(x) — a3/5(x) /QS/S(I) {8y}d£ dz

7230 14 1
857 /1/8 [37() — e 1 ) el e

295 1/4
e | St )~ st
re 1 YA,

825°16 Jis 3 (x)

7%3° 1

825524 8"

Y

Vv

Y

v

v

v
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