HIGHER INTEGRABILITY FOR SOLUTIONS TO VARIATIONAL
PROBLEMS WITH FAST GROWTH

ARRIGO CELLINA AND MARCO MAZZOLA

ABSTRACT. We prove higher integrability properties of solutions to variational
problems of minimizing

(1) /Q[ef(HVu(I)H) + g(z, u(z))] dz

where f is a convex function satisfying some additional conditions.

1. INTRODUCTION
In this paper we consider the properties of a solution % to the problem of mini-
mizing
) I 4 (0, u(w))] da
Q

In general, in order to establish the validity of the Euler Lagrange equation for the
solution to this problem , i.e., in order to prove that, for every admissible variation
7, the equation

u(x)

el V@l ¢ U w(z, w(z))n(x) de =
/{ vz )H)<HV @ Vin(x)) + gu(z, u(z))n(x) e = 0

holds, one has preliminarly to prove that the integrand is in L', in particular, that

6f(”V“( Dy(|va(-)|) € L},.. However, for Lagrangeans L growing faster than

exponential, the integrability of a term like

/ L(|Vu(z)]) dx
Q

does not imply the integrability of

/ V(| Vu(z)|) d
Q

In fact, consider L(s) = e, so that L' = 2se* . For n = 1, the function &(-) whose
derivative is

€(0) = /= n(tl(|n(e) )
is such that ¢’ = m is integrable on (—3, 3); however, for |¢| small,
n 2
’ 2 1 3
g(t)et V" = /= In([t| (| n(t)]) ?) >
IEEGDE \/
-1
[ In(t)]
[¢l(| In(H)])* \ln 2 \fltllh[1 Ol

hence L'(£’(+)) is not locally mtegrable.
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This problem does not occur when we are able to prove some additional regularity
properties of the solution 4. When g = 0, by using a barrier as in [7], one can prove
that the gradient of the solution is in L®°(2); alternatively, taking advantage of
the regularity properties of solutions to elliptic equations, as in [2] for the case
L(t) = ', and in [4],[5] for the case L(t) = e/ () under general assumptions on f,
one proves that the gradient of the solution is in Lj}.. Both these methods demand
additional smoothness assumptions: smoothness of the boundary and of the second
derivative of f, in the case of a barrier; smoothness of the second derivative of f in
the other case.

In the present paper we prove a higher integrability result for u: our result is
weaker than the local boundedness of Vi, the result proved in [2], [4], [5]; however,
it holds for a larger class of functionals, where, possibly, the stronger boundedness
result might not hold. In fact, we do not assume further regularity on f besides
its being convex and differentiable: in particular, we do not assume the existence
of a second derivative of f, nor we assume its strict convexity. Moreover, we allow
also a dependence on x and on u, assuming that g is a standard Carathéodory
function. Our method of proof is based on a simple variation and on the properties
of polarity.

2. HIGHER INTEGRABILITY

In what follows, Q is a bounded open subset of RY. The function f* is the polar
or conjugate [6] of f, a possibly extended valued function. Moreover, since there is
no assumption of strict convexity of f, the map f* is convex but not necessarily
differentiable: its subgradient will be denoted by J0f*: it is a maximal monotone
map. In the Theorem that follows, we use the notation m: we mean 0 when
p ¢ Dom(9f*) and, when p € Dom(9f*), we mean any selection from the set-
valued map p — m: since m is strictly decreasing, it is multi-valued at
most on a countable set, and any two selections will differ only on a set of measure
zZero.

Theorem 1. Let f : R — R be convex, differentiable, symmetric, f(0) = 0 and

assume that
/ - ;dp < o0
pdf*(p) '

Let g be differentiable with respect to u, and let g and g, be Carathéodory functions,
and assume that for every U there exists ay € Llloc such that |v| < U implies
gu(z,v)| < ap(z). Let 4 € u® + Wy ' (Q) be a locally bounded solution to the
problem of minimizing

/Q[ef(l\Vu(r)H) + g(x, u(z))] de.

Then, for every function & such that fﬂ el €®) dx < oo, we have that
JUIVEOD £V a(-)DE() € Line(S).

The result applies, in particular, to the function &(x) = ||Va(z)||, so that we
have e/ IVEOD (VA () ) IVa( )| € Li, ().
Examples. The map f(s) = s —2v/s+ 1 + 2 is convex, differentiable and of linear
growth. Its conjugate is the extended-valued function f*(p) = 1572% for |p| < 1,
= oo elsewhere. The conditions of the theorem are satisfied.
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A map satisfying the absumption of the Theorem is f(s) = 2¢e°
then f*(p) = (In(p +1))? and [~ de < 0.

A map f that does not satisfy the assumption of the Theorem is f(s) = L(e® —
s —1); in this case, we have f*(p) =1+1In(p+ 1).

Remark 1. In Theorem 1 we assume the solution @ to be locally bounded. The
validity of this assumption can be guaranteed:

i) when g = 0, assuming that the boundary datum u® is in L°°, through a standard
comparison result, noticing that, with the exception of the case f =0, efIV) s q
strictly convex function of z.

ii) in general, assuming that there exist p € RY, a € L*(Q) and 3 € R such that
ug € WHP(Q) and

0

l9(z,u)| < (@) + Blul”.

In fact, with the exception of the case f = 0, there are A and B > 0 such that
that f(t) > A + Bt; hence, fix N* larger than sup{N,p}. For suitable constants,
we have

o> [ IV ¢ g i) da > [ AP — joga)| - |8]fa(e) 7] da

Q
> Ay + Bi||Va(z )||LN* ‘ﬁl”uHLP(Q

> A1+ B IIVﬂ(fU)HfN*(Q Cl””O”m(Q) Chlla — U’U”Z[)/p(Q)'
By Poincaré’s inequality,
00 > Ay + B[ Via(2) | x+ ) = Col Vit = Vo7,
By Holder’s inequality,

00 > Ay + Bil|Vit(a) [N+ gy — CallVeoll%qy — DIVl ue

so that there are positive constants h and k such that
~ N*
00 > —h + k||Vi(z)| py- q)-

Hence, 4 belongs to Cp(€2) ([1]).

The proof of Theorem 1 relies on directly comparing the value of the functional
on the solution @ and on a variation 4 + ev. For it, we shall need the following
Lemmas.

Lemma 1. Let G : R — 28 be upper semicontinuous, strictly increasing and such
that G(0) = {0}. Assume that, for a selection g from G,

* 1
(4) / g(g)ds < 00.
Then, the implicit Cauchy problem

2(t) € Gl'(t),  z(0)=0

admits a solution &, positive on some interval (0, 7).

Notice that the condition expressed by (4) is independent on the selection g; in

fact, G is multi-valued at most on countably many points, and the map s — % is

strictly monotonic.
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Proof. Set v = G~1: 7 is single-valued, continuous and v(0) = 0. We claim that
for every z > 0

1 1
——dy = z—— + meas(R),
/<o,z> V() 7(2) F)

where R = {(y,2) : 0 < y < z;ﬁ <z < ﬁ} In fact, we have also that

R={(z,y):0<y< ’y’l(%); 7(1Z) < < o0}, so that meas(R) = f% yfl(i)dy =

5 g(é)ds, that is finite by assumption.
)

Hence, the map ®(x) = fox ﬁdy is well defined, differentiable, positive for
x>0 and ®(0) = 0. Define Z(¢) implicitely by

DE(H) — t =
then, # is a differentiable function, Z(0) = 0 and z'(t) = y(z(t)). O

Let O CC Q, set O5 = O + B(0,4) and let § > 0 be such that Og is in Q.

Lemma 2. Let f be as in Theorem 1. Then, for every non-negative & in L'(Oj)
and U € R, there ezist n € C1(Os) and K such that

(A —en) +e[[Vnl|U) — f(§) < eK.
Proof. Consider the function

2U
(5) G(z)=2z2—+.
af(3)
We claim that G satisfies the assumptions of Lemma 1. In fact, G(0) = {0} and G
is a strictly increasing multi-valued map (single-valued except on a countable set);

we have
1 2U
G(i/) -
x ' 0f*(x)
so that, by the assumptions of Lemma 2, the condition of Lemma 1 is satisfied.
Consider Z, the solution to & € G(Z'), provided by Lemma 1. Define 7 as follows.
Let d(z) be the distance from a point z € O to 905 and set

n(w) = inf{j(lé)i(d(m)), 1}

so that, in particular, n = 1 on O. Almost everywhere, d is differentiable with
IVd|| =1 and, at a point of differentiability, we have

0 if d(z) >0
Vn(x) = 1 ~7 . .
O (d(x))Vd(x) ifd(x)<d

b

Hence, a.e., we have that [|Vn|| < 5(15) Z'(6) and that, either Vi) = 0, or that

—_
—_

N 2U
’r}: xr =

with h(z) = %, an increasing function.
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Set F(e,&) = f((1 — en(x))é(x) + ¢||Vn(x)||U). From the convexity of f, we
obtain

(6)

Fle,6)—f(€) < {6f’(§(1—577)+E||V77||U)[—77§+ IVnllU] if =g + [[ValU >0

ef' (©)=ng + [VnllU] if —n¢ + [ VnllU <0°

In the second case, take K to be 0. In the first case, we cannot have Vi = 0, hence
we have, a.e., n = ||[Vn||h(z(6)||Vn||) and

FEQ —en) + el VnllU) = f(§) < el Vallf (€1 —en) + enl)[=h(2(6) [Vl + U]
In addition, from —né + ||Vn||U > 0, we infer £ < W, so that

U
§(1 —en) +¢l|Vnll < NEOINZIN +el|VnllU
and U
[Vl £ (E(1 —en) +enl) < ||Vﬁ||f/(Wan”) + ¢l Vnl|lU).

There exists o such that, for || V|| < o, we have m—f—sHVUHU < W[M.

For those x such that ||Vn(z)|| < o, recalling (5),

U W
IVallf (h(f@)\lvnll) +elVallv) < IVallf (h(i(é)Hanl))
! * 1 _ ]- o

It is left to consider the case ||Vn| > o: in this case, £ < h(a’cE{S)J) and the result

follows from the boundedness of || V7]|. O

Lemma 3. Let v non negative and such that

/ pel ) f1() < M.
O

Then, for any & such that fo ef© is bounded, we have that

/ £eTW) 11 (y)
O

is bounded.

Proof. a) Consider the strictly increasing function z(t) = f’(t)ef® and call t = i(2)
its inverse, so that we have
(7) 2= f(i(2)).

We have that i(v) — oo as v — 00. Define the function ¢ as ¢(z) = i(2)z, hence,
in terms of ¢,

(8) o(f'e!V) = tf'ef0.

b) We wish to compute the polar g* of the function g(b) = /(). Define b,
implicitely, setting
z = gl(bz) — ef(bz)f/(bz),
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and notice that the previous equality defines b, uniquely and we have b, = i(2),
where i is defined in a). Then

g% (z) =supbz — g(b) = bzef(bZ)f’(bz) —efbe) —p 5 f(02) = i(z)z — ef(i(2))
b

so that, by (8) and (7), g*(2) < ¢(f'(b:)e! ")) = 6 (f'(i(2))e/U)) = ¢(2).
For any ¢ and b, we have

bf'(t)e! ™ = bu(t) < g"(v(t)) + g(b) < B(v(t)) + g(b)
Set, in the previous inequality, t = ¥ and b = £. From the definition of ¢, we obtain

' ()e ) < o(f (1)e? ) + /O

— wf/(w)ef(ib) + /O,
From the assumptions of the Lemma, the proof is completed. [

Proof of Theorem 1. In the proof, we shall first prove the higher integrability result
for the special case where £(-) = | Va(-)|| and then extend this result to the general
case.

a) Let O and Oy as before. Set U = sup{|a(x)| : © € Os}. Since @ is a minimum,
for every variation v we have

JIFIT5 D o) + oo > [ [FI75D 4 g, )] do

Q Q

set v = —n4, so that Vv = —aVn —nVa and |v] < U. For € > 0 (and € < 1), we
obtain

(9)

/ (ef(IVﬁ(r)(l—sn)—sﬂan) _ ef(IVﬁ(m)l)> . _/ g9z, a(z) + ev(x)) — g(z,al(z))
Q € n Q .

b) By Lemma 2,  can be defined so that, for some K > 0, we have:
(10)
fUIVu(l—en) —eaVnl)) — f([Val)) < f([Vall(1—en)+eUl[Vnl)) - f([IVal) < eK.

Set F(e, Vi) = f((1 —en(x))||Va(z)|| + ¢||Vn(z)||U). From (9), we have
g(z,u(x) + ev(x)) — gz, u(z)) eF(eva) _ ofIva(@)l)
7/9 < /Q < > dx

S 9

<6F(8,Vﬂ)sK+€K _ 6f(llvﬂ(ar)l))
- / dx
Q g

. / e |:65K _ ef(IVﬂ(w)l)—F(&Vﬂ)ﬁK)} o
O 3

/ P (Vi) K {GEK —14+1-— ef(IIVﬂ(fr)l)F(s’Vﬂ)JrsK)] .
Q 5
The previous inequality can be written as

[ o {K—l] i [ (e, i(a) + ev(a)) — gl la))

€

_ fAIval)—(F(e,Va)—eK) _
/eF(E’VU)*EK {e 1} dx.
Q 3
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¢) From (10) we infer that F(e, Vi) — eK < f(||Va(z)|); moreover, eEKE_l
Ke¥. In addition,

|9($,ﬂ(l’) +ev(z)) — gz, u(z))
5

| = |gu(®, ue,o)nu(z)|
for some value u. , in the interval of extremes @(z) and @(z) — en(z)a(x), so that

|9u (@, ue 2 )n(x)u(z)| < lav (2)]U.

Hence, the left hand side of (11) is bounded by some M, independent of .
d) Consider the right hand side. For some t. , in the interval of extremes ||Vl
and (1 —en)||Va| + ¢||Vn||U, we have

F(A=enVall + e VallU) = f(IVal)) = ef (te ) (=nllVal + [Vl U).

Ase — 0, t., — ||Va(x)| pointwise, so that f/(t.,) converges to f'(|Va(z)|]);
moreover, f(||Vil) — (F(e, Vi) —eK) = —ef'(te)(=nlVall + [[VnlU) + eK =
—ef'(IVal)(=nlIVall + [[Vnl|U) + eK + eo(1), so that

efUIVal)—(F(e,Va)—eK) _ 1

€
converges pointwise to K + f/(||Va|)(n|Va| — ||[Vn||U). In addition, by (10),
eK — f(1—en)||Va| +<||Vnl|U) + f(||Vil[) > 0, so that the integrand at the right
hand side is non negative. Finally, pointwise, e (&:V#)—¢K IVa(@)I) | Hence,
applying Fatou’s lemma, we obtain

N

/Qef(HVﬁH) (K + f(IVal) (| Val — [[Vnl|U)] < M.

Since K + f/(|Val)(nIVa| — |Vn||U) > 0, and Vi =0 and n = 1 on O, we have
obtained that

(12) /O IVale! IV f/(|val) < M.

This proves the result for the case & = ||Val|. An application of Lemma 3
completes the proof.
(I

Notice that @ does not have to be a minimizer: a local minimizer would do.
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