HIGHER INTEGRABILITY FOR SOLUTIONS TO VARIATIONAL PROBLEMS WITH FAST GROWTH

ARRIGO CELLINA AND MARCO MAZZOLA

Abstract. We prove higher integrability properties of solutions to variational problems of minimizing
(1)

$$
\int_{\Omega}\left[e^{f(\|\nabla u(x)\|)}+g(x, u(x))\right] d x
$$

where f is a convex function satisfying some additional conditions.

1. Introduction

In this paper we consider the properties of a solution \tilde{u} to the problem of minimizing

$$
\begin{equation*}
\int_{\Omega}\left[e^{f(\|\nabla u(x)\|)}+g(x, u(x))\right] d x \tag{2}
\end{equation*}
$$

In general, in order to establish the validity of the Euler Lagrange equation for the solution to this problem, i.e., in order to prove that, for every admissible variation η, the equation

$$
\begin{equation*}
\int_{\Omega}\left\{e^{f(\|\nabla \tilde{u}(x)\|)} f^{\prime}(\|\nabla \tilde{u}(x)\|)\left\langle\frac{\nabla \tilde{u}(x)}{\|\nabla \tilde{u}(x)\|}, \nabla \eta(x)\right\rangle+g_{u}(x, \tilde{u}(x)) \eta(x)\right\} d x=0 \tag{3}
\end{equation*}
$$

holds, one has preliminarly to prove that the integrand is in L^{1}, in particular, that $e^{f(\|\nabla \tilde{u}(\cdot)\|)} f^{\prime}(\|\nabla \tilde{u}(\cdot)\|) \in L_{\text {loc }}^{1}$. However, for Lagrangeans L growing faster than exponential, the integrability of a term like

$$
\int_{\Omega} L(\|\nabla u(x)\|) d x
$$

does not imply the integrability of

$$
\int_{\Omega} \nabla L(\|\nabla u(x)\|) d x
$$

In fact, consider $L(s)=e^{s^{2}}$, so that $L^{\prime}=2 s e^{s^{2}}$. For $n=1$, the function $\xi(\cdot)$ whose derivative is

$$
\xi^{\prime}(t)=\sqrt{-\ln \left(|t|(|\ln (t)|)^{\frac{3}{2}}\right)}
$$

is such that $e^{\xi^{\prime}(t)^{2}}=\frac{1}{|t||\ln (t)|^{\frac{3}{2}}}$ is integrable on $\left(-\frac{1}{2}, \frac{1}{2}\right)$; however, for $|t|$ small,

$$
\begin{gathered}
\xi^{\prime}(t) e^{\xi^{\prime}(t)^{2}}=\frac{1}{|t|(|\ln (t)|)^{\frac{3}{2}}} \sqrt{-\ln \left(|t|(|\ln (t)|)^{\frac{3}{2}}\right)}> \\
\frac{1}{|t|(|\ln (t)|)^{\frac{3}{2}}} \sqrt{\frac{-1}{2}|\ln (t)|}=\frac{1}{\sqrt{2}|t||\ln (t)|}
\end{gathered}
$$

hence $L^{\prime}\left(\xi^{\prime}(\cdot)\right)$ is not locally integrable.

This problem does not occur when we are able to prove some additional regularity properties of the solution \tilde{u}. When $g=0$, by using a barrier as in [7], one can prove that the gradient of the solution is in $L^{\infty}(\Omega)$; alternatively, taking advantage of the regularity properties of solutions to elliptic equations, as in [2] for the case $L(t)=e^{t^{2}}$, and in [4], [5] for the case $L(t)=e^{f(t)}$, under general assumptions on f, one proves that the gradient of the solution is in $L_{l o c}^{\infty}$. Both these methods demand additional smoothness assumptions: smoothness of the boundary and of the second derivative of f, in the case of a barrier; smoothness of the second derivative of f in the other case.

In the present paper we prove a higher integrability result for \tilde{u} : our result is weaker than the local boundedness of $\nabla \tilde{u}$, the result proved in [2], [4], [5]; however, it holds for a larger class of functionals, where, possibly, the stronger boundedness result might not hold. In fact, we do not assume further regularity on f besides its being convex and differentiable: in particular, we do not assume the existence of a second derivative of f, nor we assume its strict convexity. Moreover, we allow also a dependence on x and on u, assuming that g is a standard Carathéodory function. Our method of proof is based on a simple variation and on the properties of polarity.

2. Higher integrability

In what follows, Ω is a bounded open subset of \mathbb{R}^{N}. The function f^{*} is the polar or conjugate [6] of f, a possibly extended valued function. Moreover, since there is no assumption of strict convexity of f, the map f^{*} is convex but not necessarily differentiable: its subgradient will be denoted by ∂f^{*} : it is a maximal monotone map. In the Theorem that follows, we use the notation $\frac{1}{p \partial f^{*}(p)}$: we mean 0 when $p \notin \operatorname{Dom}\left(\partial f^{*}\right)$ and, when $p \in \operatorname{Dom}\left(\partial f^{*}\right)$, we mean any selection from the setvalued map $p \rightarrow \frac{1}{p \partial f^{*}(p)}$: since $\frac{1}{p \partial f^{*}(p)}$ is strictly decreasing, it is multi-valued at most on a countable set, and any two selections will differ only on a set of measure zero.
Theorem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be convex, differentiable, symmetric, $f(0)=0$ and assume that

$$
\int^{\infty} \frac{1}{p \partial f^{*}(p)} d p<\infty
$$

Let g be differentiable with respect to u, and let g and g_{u} be Carathéodory functions, and assume that for every U there exists $\alpha_{U} \in L_{l o c}^{1}$ such that $|v| \leq U$ implies $\left|g_{u}(x, v)\right| \leq \alpha_{U}(x)$. Let $\tilde{u} \in u^{0}+W_{0}^{1,1}(\Omega)$ be a locally bounded solution to the problem of minimizing

$$
\int_{\Omega}\left[e^{f(\|\nabla u(x)\|)}+g(x, u(x))\right] d x .
$$

Then, for every function ξ such that $\int_{\Omega} e^{f(\xi(x))} d x<\infty$, we have that

$$
e^{f(\|\nabla \tilde{u}(\cdot)\|)} f^{\prime}(\|\nabla \tilde{u}(\cdot)\|) \xi(\cdot) \in L_{l o c}^{1}(\Omega)
$$

The result applies, in particular, to the function $\xi(x)=\|\nabla \tilde{u}(x)\|$, so that we have $e^{f(\|\nabla \tilde{u}(\cdot)\|)} f^{\prime}(\|\nabla \tilde{u}(\cdot)\|)\|\nabla \tilde{u}(\cdot)\| \in L_{l o c}^{1}(\Omega)$.
Examples. The map $f(s)=s-2 \sqrt{s+1}+2$ is convex, differentiable and of linear growth. Its conjugate is the extended-valued function $f^{*}(p)=\frac{p^{2}}{1-|p|}$ for $|p|<1$, $=\infty$ elsewhere. The conditions of the theorem are satisfied.

A map satisfying the assumption of the Theorem is $f(s)=2 e^{s^{\frac{1}{2}}}\left(s^{\frac{1}{2}}-1\right)-s$; then $f^{* \prime}(p)=(\ln (p+1))^{2}$ and $\int^{\infty} \frac{1}{p(\ln (p+1))^{2}} d p<\infty$.

A map f that does not satisfy the assumption of the Theorem is $f(s)=\frac{1}{e}\left(e^{s}-\right.$ $s-1$); in this case, we have $f^{* \prime}(p)=1+\ln \left(p+\frac{1}{e}\right)$.

Remark 1. In Theorem 1 we assume the solution \tilde{u} to be locally bounded. The validity of this assumption can be guaranteed:
i) when $g=0$, assuming that the boundary datum u^{0} is in L^{∞}, through a standard comparison result, noticing that, with the exception of the case $f \equiv 0, e^{f(\|v\|)}$ is a strictly convex function of z.
ii) in general, assuming that there exist $p \in \mathbb{R}^{+}, \alpha \in L^{1}(\Omega)$ and $\beta \in \mathbb{R}$ such that $u_{0} \in W^{1, p}(\Omega)$ and

$$
|g(x, u)| \leq \alpha(x)+\beta|u|^{p}
$$

In fact, with the exception of the case $f \equiv 0$, there are A and $B>0$ such that that $f(t) \geq A+B t$; hence, fix N^{*} larger than $\sup \{N, p\}$. For suitable constants, we have

$$
\begin{gathered}
\infty>\int_{\Omega}\left[e^{f(\|\nabla \tilde{u}(x)\|)}+g(x, \tilde{u}(x))\right] d x \geq \int_{\Omega}\left[e^{A+B\|\nabla \tilde{u}(x)\|}-|\alpha(x)|-|\beta||\tilde{u}(x)|^{p}\right] d x \\
\geq A_{1}+B_{1}\|\nabla \tilde{u}(x)\|_{L^{N^{*}}(\Omega)}^{N^{*}}-|\beta|\|\tilde{u}\|_{L^{p}(\Omega)}^{p} \\
\geq A_{1}+B_{1}\|\nabla \tilde{u}(x)\|_{L^{N^{*}}(\Omega)}^{N^{*}}-C_{1}\left\|u_{o}\right\|_{L^{p}(\Omega)}^{p}-C_{1}\left\|\tilde{u}-u_{o}\right\|_{L^{p}(\Omega)}^{p} .
\end{gathered}
$$

By Poincaré's inequality,

$$
\infty>A_{2}+B_{1}\|\nabla \tilde{u}(x)\|_{L^{N^{*}}(\Omega)}^{N^{*}}-C_{2}\left\|\nabla \tilde{u}-\nabla u_{0}\right\|_{L^{p}(\Omega)}^{p} .
$$

By Holder's inequality,

$$
\infty>A_{2}+B_{1}\|\nabla \tilde{u}(x)\|_{L^{N^{*}}(\Omega)}^{N^{*}}-C_{3}\left\|\nabla u_{0}\right\|_{L^{p}(\Omega)}^{p}-D\|\nabla \tilde{u}\|_{L^{N^{*}}(\Omega)}^{p},
$$

so that there are positive constants h and k such that

$$
\infty>-h+k\|\nabla \tilde{u}(x)\|_{L^{N^{*}}(\Omega)}^{N^{*}} .
$$

Hence, \tilde{u} belongs to $C_{B}(\Omega)([1])$.
The proof of Theorem 1 relies on directly comparing the value of the functional on the solution \tilde{u} and on a variation $\tilde{u}+\varepsilon v$. For it, we shall need the following Lemmas.

Lemma 1. Let $G: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ be upper semicontinuous, strictly increasing and such that $G(0)=\{0\}$. Assume that, for a selection g from G,

$$
\begin{equation*}
\int^{\infty} g\left(\frac{1}{s}\right) d s<\infty \tag{4}
\end{equation*}
$$

Then, the implicit Cauchy problem

$$
x(t) \in G\left(x^{\prime}(t)\right), \quad x(0)=0
$$

admits a solution \tilde{x}, positive on some interval $(0, \tau)$.
Notice that the condition expressed by (4) is independent on the selection g; in fact, G is multi-valued at most on countably many points, and the map $s \rightarrow \frac{1}{s}$ is strictly monotonic.

Proof. Set $\gamma=G^{-1}: \gamma$ is single-valued, continuous and $\gamma(0)=0$. We claim that for every $z>0$

$$
\int_{(0, z)} \frac{1}{\gamma(y)} d y=z \frac{1}{\gamma(z)}+\operatorname{meas}(R)
$$

where $R=\left\{(y, x): 0 \leq y \leq z ; \frac{1}{\gamma(z)} \leq x \leq \frac{1}{\gamma(y)}\right\}$. In fact, we have also that $R=\left\{(x, y): 0 \leq y \leq \gamma^{-1}\left(\frac{1}{x}\right) ; \frac{1}{\gamma(z)} \leq x<\infty\right\}$, so that meas $(R)=\int_{\frac{1}{\gamma(z)}}^{\infty} \gamma^{-1}\left(\frac{1}{y}\right) d y=$ $\int_{\frac{1}{\gamma(z)}}^{\infty} g\left(\frac{1}{s}\right) d s$, that is finite by assumption.

Hence, the map $\Phi(x)=\int_{0}^{x} \frac{1}{\gamma(y)} d y$ is well defined, differentiable, positive for $x>0$ and $\Phi(0)=0$. Define $\tilde{x}(t)$ implicitely by

$$
\Phi(\tilde{x}(t))-t=0 ;
$$

then, \tilde{x} is a differentiable function, $\tilde{x}(0)=0$ and $x^{\prime}(t)=\gamma(x(t))$.
Let $O \subset \subset \Omega$, set $O_{\delta}=O+B(0, \delta)$ and let $\delta>0$ be such that $\overline{O_{\delta}}$ is in Ω.
Lemma 2. Let f be as in Theorem 1. Then, for every non-negative ξ in $L^{1}\left(O_{\delta}\right)$ and $U \in \mathbb{R}$, there exist $\eta \in C_{c}^{1}\left(O_{\delta}\right)$ and K such that

$$
f(\xi(1-\varepsilon \eta)+\varepsilon\|\nabla \eta\| U)-f(\xi) \leq \varepsilon K .
$$

Proof. Consider the function

$$
\begin{equation*}
G(z)=z \frac{2 U}{\partial f^{*}\left(\frac{1}{z}\right)} \tag{5}
\end{equation*}
$$

We claim that G satisfies the assumptions of Lemma 1. In fact, $G(0)=\{0\}$ and G is a strictly increasing multi-valued map (single-valued except on a countable set); we have

$$
G\left(\frac{1}{x^{\prime}}\right)=\frac{2 U}{x^{\prime} \partial f^{*}\left(x^{\prime}\right)}
$$

so that, by the assumptions of Lemma 2, the condition of Lemma 1 is satisfied.
Consider \tilde{x}, the solution to $\tilde{x} \in G\left(\tilde{x}^{\prime}\right)$, provided by Lemma 1. Define η as follows. Let $d(x)$ be the distance from a point $x \in O_{\delta}$ to ∂O_{δ} and set

$$
\eta(x)=\inf \left\{\frac{1}{\tilde{x}(\delta)} \tilde{x}(d(x)), 1\right\}
$$

so that, in particular, $\eta=1$ on O. Almost everywhere, d is differentiable with $\|\nabla d\|=1$ and, at a point of differentiability, we have

$$
\nabla \eta(x)=\left\{\begin{array}{ll}
0 & \text { if } d(x)>\delta \\
\frac{1}{\tilde{x}(\delta)} \tilde{x}^{\prime}(d(x)) \nabla d(x) & \text { if } d(x)<\delta
\end{array} .\right.
$$

Hence, a.e., we have that $\|\nabla \eta\| \leq \frac{1}{\tilde{x}(\delta)} \tilde{x}^{\prime}(\delta)$ and that, either $\nabla \eta=0$, or that

$$
\eta=\frac{1}{\tilde{x}(\delta)} \tilde{x}=\frac{1}{\tilde{x}(\delta)} \tilde{x}^{\prime} \frac{2 U}{\partial f^{*}\left(\frac{1}{\tilde{x}^{\prime}}\right)}=\|\nabla \eta\| h(\tilde{x}(\delta)\|\nabla \eta\|)
$$

with $h(z)=\frac{2 U}{\partial f^{*}\left(\frac{1}{z}\right)}$, an increasing function.

Set $F(\varepsilon, \xi)=f((1-\varepsilon \eta(x)) \xi(x)+\varepsilon\|\nabla \eta(x)\| U)$. From the convexity of f, we obtain
(6)
$F(\varepsilon, \xi)-f(\xi) \leq\left\{\begin{array}{ll}\varepsilon f^{\prime}(\xi(1-\varepsilon \eta)+\varepsilon\|\nabla \eta\| U)[-\eta \xi+\|\nabla \eta\| U] & \text { if }-\eta \xi+\|\nabla \eta\| U>0 \\ \varepsilon f^{\prime}(\xi)[-\eta \xi+\|\nabla \eta\| U] & \text { if }-\eta \xi+\|\nabla \eta\| U \leq 0\end{array}\right.$.
In the second case, take K to be 0 . In the first case, we cannot have $\nabla \eta=0$, hence we have, a.e., $\eta=\|\nabla \eta\| h(\tilde{x}(\delta)\|\nabla \eta\|)$ and
$f(\xi(1-\varepsilon \eta)+\varepsilon\|\nabla \eta\| U)-f(\xi) \leq \varepsilon\|\nabla \eta\| f^{\prime}(\xi(1-\varepsilon \eta)+\varepsilon \eta U)[-h(\tilde{x}(\delta)\|\nabla \eta\|) \xi+U]$.
In addition, from $-\eta \xi+\|\nabla \eta\| U>0$, we infer $\xi \leq \frac{U}{h(\tilde{x}(\delta)\|\nabla \eta\|)}$, so that

$$
\xi(1-\varepsilon \eta)+\varepsilon\|\nabla \eta\| \leq \frac{U}{h(\tilde{x}(\delta)\|\nabla \eta\|)}+\varepsilon\|\nabla \eta\| U
$$

and

$$
\|\nabla \eta\| f^{\prime}(\xi(1-\varepsilon \eta)+\varepsilon \eta U) \leq\|\nabla \eta\| f^{\prime}\left(\frac{U}{h(\tilde{x}(\delta)\|\nabla \eta\|)}+\varepsilon\|\nabla \eta\| U\right)
$$

There exists σ such that, for $\|\nabla \eta\|<\sigma$, we have $\frac{U}{h(\tilde{x}(\delta)\|\nabla \eta\|)}+\varepsilon\|\nabla \eta\| U \leq \frac{2 U}{h(\tilde{x}(\delta)\|\nabla \eta\|)}$. For those x such that $\|\nabla \eta(x)\|<\sigma$, recalling (5),

$$
\begin{gathered}
\|\nabla \eta\| f^{\prime}\left(\frac{U}{h(\tilde{x}(\delta)\|\nabla \eta\|)}+\varepsilon\|\nabla \eta\| U\right) \leq\|\nabla \eta\| f^{\prime}\left(\frac{2 U}{h(\tilde{x}(\delta)\|\nabla \eta\|)}\right) \\
=\|\nabla \eta\| f^{\prime}\left(\partial f^{*}\left(\frac{1}{\tilde{x}(\delta)\|\nabla \eta\|}\right)\right)=\frac{1}{\tilde{x}(\delta)}=K
\end{gathered}
$$

It is left to consider the case $\|\nabla \eta\| \geq \sigma$: in this case, $\xi \leq \frac{U}{h(\tilde{x}(\delta) \sigma)}$ and the result follows from the boundedness of $\|\nabla \eta\|$.

Lemma 3. Let ψ non negative and such that

$$
\int_{O} \psi e^{f(\psi)} f^{\prime}(\psi) \leq M
$$

Then, for any ξ such that $\int_{O} e^{f(\xi)}$ is bounded, we have that

$$
\int_{O} \xi e^{f(\psi)} f^{\prime}(\psi)
$$

is bounded.
Proof. a) Consider the strictly increasing function $z(t)=f^{\prime}(t) e^{f(t)}$ and call $t=i(z)$ its inverse, so that we have

$$
\begin{equation*}
z=e^{f(i(z))} f^{\prime}(i(z)) \tag{7}
\end{equation*}
$$

We have that $i(v) \rightarrow \infty$ as $v \rightarrow \infty$. Define the function ϕ as $\phi(z)=i(z) z$, hence, in terms of t,

$$
\begin{equation*}
\phi\left(f^{\prime} e^{f(t)}\right)=t f^{\prime} e^{f(t)} \tag{8}
\end{equation*}
$$

b) We wish to compute the polar g^{*} of the function $g(b)=e^{f(b)}$. Define b_{z} implicitely, setting

$$
z=g^{\prime}\left(b_{z}\right)=e^{f\left(b_{z}\right)} f^{\prime}\left(b_{z}\right)
$$

and notice that the previous equality defines b_{z} uniquely and we have $b_{z}=i(z)$, where i is defined in a). Then

$$
g^{*}(z)=\sup _{b} b z-g(b)=b_{z} e^{f\left(b_{z}\right)} f^{\prime}\left(b_{z}\right)-e^{f\left(b_{z}\right)}=b_{z} z-e^{f\left(b_{z}\right)}=i(z) z-e^{f(i(z))}
$$

so that, by (8) and (7), $g^{*}(z) \leq \phi\left(f^{\prime}\left(b_{z}\right) e^{f\left(b_{z}\right)}\right)=\phi\left(f^{\prime}(i(z)) e^{f(i(z))}\right)=\phi(z)$.
For any t and b, we have

$$
b f^{\prime}(t) e^{f(t)}=b v(t) \leq g^{*}(v(t))+g(b) \leq \phi(v(t))+g(b)
$$

Set, in the previous inequality, $t=\psi$ and $b=\xi$. From the definition of ϕ, we obtain

$$
\begin{gathered}
\xi f^{\prime}(\psi) e^{f(\psi)} \leq \phi\left(f^{\prime}(\psi) e^{f(\psi)}\right)+e^{f(\xi)} \\
=\psi f^{\prime}(\psi) e^{f(\psi)}+e^{f(\xi)}
\end{gathered}
$$

From the assumptions of the Lemma, the proof is completed.
Proof of Theorem 1. In the proof, we shall first prove the higher integrability result for the special case where $\xi(\cdot)=\|\nabla \tilde{u}(\cdot)\|$ and then extend this result to the general case.
a) Let O and O_{δ} as before. Set $U=\sup \left\{|\tilde{u}(x)|: x \in O_{\delta}\right\}$. Since \tilde{u} is a minimum, for every variation v we have

$$
\int_{\Omega}\left[e^{f(\|\nabla \tilde{u}(x)+\varepsilon \nabla v\|)}+g(x, \tilde{u}(x)+\varepsilon v(x))\right] d x \geq \int_{\Omega}\left[e^{f(\|\nabla \tilde{u}(x)\|)}+g(x, \tilde{u}(x))\right] d x
$$

set $v=-\eta \tilde{u}$, so that $\nabla v=-\tilde{u} \nabla \eta-\eta \nabla \tilde{u}$ and $|v| \leq U$. For $\varepsilon>0$ (and $\varepsilon<1$), we obtain
(9)
$\int_{\Omega}\left(\frac{e^{f(\|\nabla \tilde{u}(x)(1-\varepsilon \eta)-\varepsilon \tilde{u} \nabla \eta\|)}-e^{f(\|\nabla \tilde{u}(x)\|)}}{\varepsilon}\right) d x \geq-\int_{\Omega} \frac{g(x, \tilde{u}(x)+\varepsilon v(x))-g(x, \tilde{u}(x))}{\varepsilon}$.
b) By Lemma $2, \eta$ can be defined so that, for some $K \geq 0$, we have:
(10)
$f(\|\nabla \tilde{u}(1-\varepsilon \eta)-\varepsilon \tilde{u} \nabla \eta\|)-f(\|\nabla \tilde{u}\|) \leq f(\|\nabla \tilde{u}\|(1-\varepsilon \eta)+\varepsilon U\|\nabla \eta\|)-f(\|\nabla \tilde{u}\|) \leq \varepsilon K$.
Set $F(\varepsilon, \nabla \tilde{u})=f((1-\varepsilon \eta(x))\|\nabla \tilde{u}(x)\|+\varepsilon\|\nabla \eta(x)\| U)$. From (9), we have

$$
\begin{gathered}
-\int_{\Omega} \frac{g(x, \tilde{u}(x)+\varepsilon v(x))-g(x, \tilde{u}(x))}{\varepsilon} \leq \int_{\Omega}\left(\frac{e^{F(\varepsilon, \nabla \tilde{u})}-e^{f(\|\nabla \tilde{u}(x)\|)}}{\varepsilon}\right) d x \\
=\int_{\Omega}\left(\frac{e^{F(\varepsilon, \nabla \tilde{u})-\varepsilon K+\varepsilon K}-e^{f(\|\nabla \tilde{u}(x)\|)}}{\varepsilon}\right) d x \\
=\int_{\Omega} e^{F(\varepsilon, \nabla \tilde{u})-\varepsilon K}\left[\frac{e^{\varepsilon K}-e^{f(\|\nabla \tilde{u}(x)\|)-F(\varepsilon, \nabla \tilde{u})+\varepsilon K)}}{\varepsilon}\right] d x= \\
\int_{\Omega} e^{F(\varepsilon, \nabla \tilde{u})-\varepsilon K}\left[\frac{e^{\varepsilon K}-1+1-e^{f(\|\nabla \tilde{u}(x)\|)-F(\varepsilon, \nabla \tilde{u})+\varepsilon K)}}{\varepsilon}\right] d x .
\end{gathered}
$$

The previous inequality can be written as

$$
\begin{gather*}
\int_{\Omega} e^{F(\varepsilon, \nabla \tilde{u})-\varepsilon K}\left[\frac{e^{\varepsilon K}-1}{\varepsilon}\right] d x+\int_{\Omega} \frac{g(x, \tilde{u}(x)+\varepsilon v(x))-g(x, \tilde{u}(x))}{\varepsilon} \geq \tag{11}\\
\int_{\Omega} e^{F(\varepsilon, \nabla \tilde{u})-\varepsilon K}\left[\frac{e^{f(\|\nabla \tilde{u}\|)-(F(\varepsilon, \nabla \tilde{u})-\varepsilon K)}-1}{\varepsilon}\right] d x .
\end{gather*}
$$

c) From (10) we infer that $F(\varepsilon, \nabla \tilde{u})-\varepsilon K \leq f(\|\nabla \tilde{u}(x)\|)$; moreover, $\frac{e^{\varepsilon K}-1}{\varepsilon} \leq$ $K e^{K}$. In addition,

$$
\left|\frac{g(x, \tilde{u}(x)+\varepsilon v(x))-g(x, \tilde{u}(x))}{\varepsilon}\right|=\left|g_{u}\left(x, u_{\varepsilon, x}\right) \eta \tilde{u}(x)\right|
$$

for some value $u_{\varepsilon, x}$ in the interval of extremes $\tilde{u}(x)$ and $\tilde{u}(x)-\varepsilon \eta(x) \tilde{u}(x)$, so that

$$
\left|g_{u}\left(x, u_{\varepsilon, x}\right) \eta(x) \tilde{u}(x)\right| \leq\left[\alpha_{U}(x)\right] U
$$

Hence, the left hand side of (11) is bounded by some M, independent of ε.
d) Consider the right hand side. For some $t_{\varepsilon, x}$ in the interval of extremes $\|\nabla \tilde{u}\|$ and $(1-\varepsilon \eta)\|\nabla \tilde{u}\|+\varepsilon\|\nabla \eta\| U$, we have

$$
f((1-\varepsilon \eta)\|\nabla \tilde{u}\|+\varepsilon\|\nabla \eta\| U)-f(\|\nabla \tilde{u}\|)=\varepsilon f^{\prime}\left(t_{\varepsilon, x}\right)(-\eta\|\nabla \tilde{u}\|+\|\nabla \eta\| U)
$$

As $\varepsilon \rightarrow 0, t_{\varepsilon, x} \rightarrow\|\nabla \tilde{u}(x)\|$ pointwise, so that $f^{\prime}\left(t_{\varepsilon, x}\right)$ converges to $f^{\prime}(\|\nabla \tilde{u}(x)\|)$; moreover, $f(\|\nabla \tilde{u}\|)-(F(\varepsilon, \nabla \tilde{u})-\varepsilon K)=-\varepsilon f^{\prime}\left(t_{\varepsilon, x}\right)(-\eta\|\nabla \tilde{u}\|+\|\nabla \eta\| U)+\varepsilon K=$ $-\varepsilon f^{\prime}(\|\nabla \tilde{u}\|)(-\eta\|\nabla \tilde{u}\|+\|\nabla \eta\| U)+\varepsilon K+\varepsilon o(1)$, so that

$$
\frac{e^{f(\|\nabla \tilde{u}\|)-(F(\varepsilon, \nabla \tilde{u})-\varepsilon K)}-1}{\varepsilon}
$$

converges pointwise to $K+f^{\prime}(\|\nabla \tilde{u}\|)(\eta\|\nabla \tilde{u}\|-\|\nabla \eta\| U)$. In addition, by (10), $\varepsilon K-f((1-\varepsilon \eta)\|\nabla \tilde{u}\|+\varepsilon\|\nabla \eta\| U)+f(\|\nabla \tilde{u}\|) \geq 0$, so that the integrand at the right hand side is non negative. Finally, pointwise, $e^{F(\varepsilon, \nabla \tilde{u})-\varepsilon K} \rightarrow e^{f(\|\nabla \tilde{u}(x)\|)}$. Hence, applying Fatou's lemma, we obtain

$$
\int_{\Omega} e^{f(\|\nabla \tilde{u}\|)}\left[K+f^{\prime}(\|\nabla \tilde{u}\|)(\eta\|\nabla \tilde{u}\|-\|\nabla \eta\| U)\right] \leq M
$$

Since $K+f^{\prime}(\|\nabla \tilde{u}\|)(\eta\|\nabla \tilde{u}\|-\|\nabla \eta\| U) \geq 0$, and $\nabla \eta=0$ and $\eta=1$ on O, we have obtained that

$$
\begin{equation*}
\int_{O}\|\nabla \tilde{u}\| e^{f(\|\nabla \tilde{u}\|)} f^{\prime}(\|\nabla \tilde{u}\|) \leq M_{1} \tag{12}
\end{equation*}
$$

This proves the result for the case $\xi=\|\nabla \tilde{u}\|$. An application of Lemma 3 completes the proof.

Notice that \tilde{u} does not have to be a minimizer: a local minimizer would do.

References

[1] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975
[2] G. Lieberman, On the regularity of the minimizer of a functional with exponential growth. Comment. Math. Univ. Carolin. 33 (1992), 45-49
[3] O. A. Ladyenskaja, N. N. Uralceva, Linear and quasi-linear equations of elliptic type. Izdat. "Nauka", Moscow 1964
[4] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Annali Sc. Norm. Sup. di Pisa 23 (1996) 1-25.
[5] P. Marcellini, G. Papi, Nonlinear elliptic systems with general growth. J. Differential Equations 221 (2006), no. 2, 412-443.
[6] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1972.
[7] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. Roy. Soc. London Ser. A 264 (1969) 413-496.

Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, 20125 Milano

E-mail address: arrigo.cellina@unimib.it
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, 20125 Milano

E-mail address: m.mazzola7@campus.unimib.it

