HIGHER INTEGRABILITY FOR SOLUTIONS TO VARIATIONAL PROBLEMS WITH FAST GROWTH

ARRIGO CELLINA AND MARCO MAZZOLA

ABSTRACT. We prove higher integrability properties of solutions to variational problems of minimizing

(1)
$$\int_{\Omega} [e^{f(\|\nabla u(x)\|)} + g(x, u(x))] dx$$

where f is a convex function satisfying some additional conditions.

1. Introduction

In this paper we consider the properties of a solution \tilde{u} to the problem of minimizing

(2)
$$\int_{\Omega} [e^{f(\|\nabla u(x)\|)} + g(x, u(x))] dx.$$

In general, in order to establish the validity of the Euler Lagrange equation for the solution to this problem , i.e., in order to prove that, for every admissible variation η , the equation

(3)
$$\int_{\Omega} \{e^{f(\|\nabla \tilde{u}(x)\|)} f'(\|\nabla \tilde{u}(x)\|) \langle \frac{\nabla \tilde{u}(x)}{\|\nabla \tilde{u}(x)\|}, \nabla \eta(x) \rangle + g_u(x, \tilde{u}(x)) \eta(x) \} dx = 0$$

holds, one has preliminarly to prove that the integrand is in L^1 , in particular, that $e^{f(\|\nabla \tilde{u}(\cdot)\|)}f'(\|\nabla \tilde{u}(\cdot)\|) \in L^1_{loc}$. However, for Lagrangeans L growing faster than exponential, the integrability of a term like

$$\int_{\Omega} L(\|\nabla u(x)\|) \, dx$$

does not imply the integrability of

$$\int_{\Omega} \nabla L(\|\nabla u(x)\|) \, dx.$$

In fact, consider $L(s) = e^{s^2}$, so that $L' = 2se^{s^2}$. For n = 1, the function $\xi(\cdot)$ whose derivative is

$$\xi'(t) = \sqrt{-\ln(|t|(|\ln(t)|)^{\frac{3}{2}})}$$

is such that $e^{\xi'(t)^2} = \frac{1}{|t||\ln(t)|^{\frac{3}{2}}}$ is integrable on $(-\frac{1}{2}, \frac{1}{2})$; however, for |t| small,

$$\xi'(t)e^{\xi'(t)^2} = \frac{1}{|t|(|\ln(t)|)^{\frac{3}{2}}} \sqrt{-\ln(|t|(|\ln(t)|)^{\frac{3}{2}})} >$$

$$\frac{1}{|t|(|\ln(t)|)^{\frac{3}{2}}}\sqrt{\frac{-1}{2}|\ln(t)|} = \frac{1}{\sqrt{2}|t||\ln(t)|},$$

hence $L'(\xi'(\cdot))$ is not locally integrable.

1

This problem does not occur when we are able to prove some additional regularity properties of the solution \tilde{u} . When g=0, by using a barrier as in [7], one can prove that the gradient of the solution is in $L^{\infty}(\Omega)$; alternatively, taking advantage of the regularity properties of solutions to elliptic equations, as in [2] for the case $L(t)=e^{t^2}$, and in [4],[5] for the case $L(t)=e^{f(t)}$, under general assumptions on f, one proves that the gradient of the solution is in L^{∞}_{loc} . Both these methods demand additional smoothness assumptions: smoothness of the boundary and of the second derivative of f, in the case of a barrier; smoothness of the second derivative of f in the other case.

In the present paper we prove a higher integrability result for \tilde{u} : our result is weaker than the local boundedness of $\nabla \tilde{u}$, the result proved in [2], [4], [5]; however, it holds for a larger class of functionals, where, possibly, the stronger boundedness result might not hold. In fact, we do not assume further regularity on f besides its being convex and differentiable: in particular, we do not assume the existence of a second derivative of f, nor we assume its strict convexity. Moreover, we allow also a dependence on x and on u, assuming that g is a standard Carathéodory function. Our method of proof is based on a simple variation and on the properties of polarity.

2. Higher integrability

In what follows, Ω is a bounded open subset of \mathbb{R}^N . The function f^* is the *polar* or *conjugate* [6] of f, a possibly extended valued function. Moreover, since there is no assumption of strict convexity of f, the map f^* is convex but not necessarily differentiable: its subgradient will be denoted by ∂f^* : it is a maximal monotone map. In the Theorem that follows, we use the notation $\frac{1}{p\partial f^*(p)}$: we mean 0 when $p \notin Dom(\partial f^*)$ and, when $p \in Dom(\partial f^*)$, we mean any selection from the set-valued map $p \to \frac{1}{p\partial f^*(p)}$: since $\frac{1}{p\partial f^*(p)}$ is strictly decreasing, it is multi-valued at most on a countable set, and any two selections will differ only on a set of measure zero.

Theorem 1. Let $f : \mathbb{R} \to \mathbb{R}$ be convex, differentiable, symmetric, f(0) = 0 and assume that

$$\int^{\infty} \frac{1}{p\partial f^*(p)} dp < \infty.$$

Let g be differentiable with respect to u, and let g and g_u be Carathéodory functions, and assume that for every U there exists $\alpha_U \in L^1_{loc}$ such that $|v| \leq U$ implies $|g_u(x,v)| \leq \alpha_U(x)$. Let $\tilde{u} \in u^0 + W_0^{1,1}(\Omega)$ be a locally bounded solution to the problem of minimizing

$$\int_{\Omega} \left[e^{f(\|\nabla u(x)\|)} + g(x, u(x))\right] dx.$$

Then, for every function ξ such that $\int_{\Omega} e^{f(\xi(x))} dx < \infty$, we have that

$$e^{f(\|\nabla \tilde{u}(\cdot)\|)}f'(\|\nabla \tilde{u}(\cdot)\|)\xi(\cdot) \in L^1_{loc}(\Omega).$$

The result applies, in particular, to the function $\xi(x) = \|\nabla \tilde{u}(x)\|$, so that we have $e^{f(\|\nabla \tilde{u}(\cdot)\|)}f'(\|\nabla \tilde{u}(\cdot)\|)\|\nabla \tilde{u}(\cdot)\| \in L^1_{loc}(\Omega)$.

Examples. The map $f(s) = s - 2\sqrt{s+1} + 2$ is convex, differentiable and of linear growth. Its conjugate is the extended-valued function $f^*(p) = \frac{p^2}{1-|p|}$ for |p| < 1, $= \infty$ elsewhere. The conditions of the theorem are satisfied.

A map satisfying the assumption of the Theorem is $f(s) = 2e^{s^{\frac{1}{2}}}(s^{\frac{1}{2}}-1)-s$; then $f^{*\prime}(p) = (\ln(p+1))^2$ and $\int_{-\infty}^{\infty} \frac{1}{p(\ln(p+1))^2} dp < \infty$.

A map f that does not satisfy the assumption of the Theorem is $f(s) = \frac{1}{e}(e^s - s - 1)$; in this case, we have $f^{*'}(p) = 1 + \ln(p + \frac{1}{e})$.

Remark 1. In Theorem 1 we assume the solution \tilde{u} to be locally bounded. The validity of this assumption can be quaranteed:

- i) when g=0, assuming that the boundary datum u^0 is in L^{∞} , through a standard comparison result, noticing that, with the exception of the case $f\equiv 0$, $e^{f(\|v\|)}$ is a strictly convex function of z.
- ii) in general, assuming that there exist $p \in \mathbb{R}^+$, $\alpha \in L^1(\Omega)$ and $\beta \in \mathbb{R}$ such that $u_0 \in W^{1,p}(\Omega)$ and

$$|g(x,u)| \le \alpha(x) + \beta |u|^p$$
.

In fact, with the exception of the case $f \equiv 0$, there are A and B > 0 such that that $f(t) \geq A + Bt$; hence, fix N^* larger than $\sup\{N, p\}$. For suitable constants, we have

$$\infty > \int_{\Omega} \left[e^{f(\|\nabla \tilde{u}(x)\|)} + g(x, \tilde{u}(x)) \right] dx \ge \int_{\Omega} \left[e^{A+B\|\nabla \tilde{u}(x)\|} - |\alpha(x)| - |\beta| |\tilde{u}(x)|^p \right] dx \\
\ge A_1 + B_1 \|\nabla \tilde{u}(x)\|_{L^{N^*}(\Omega)}^{N^*} - |\beta| \|\tilde{u}\|_{L^p(\Omega)}^p \\
\ge A_1 + B_1 \|\nabla \tilde{u}(x)\|_{L^{N^*}(\Omega)}^{N^*} - C_1 \|u_o\|_{L^p(\Omega)}^p - C_1 \|\tilde{u} - u_o\|_{L^p(\Omega)}^p.$$

By Poincaré's inequality,

$$\infty > A_2 + B_1 \|\nabla \tilde{u}(x)\|_{L^{N^*}(\Omega)}^{N^*} - C_2 \|\nabla \tilde{u} - \nabla u_0\|_{L^p(\Omega)}^p.$$

By Holder's inequality,

$$\infty > A_2 + B_1 \|\nabla \tilde{u}(x)\|_{L^{N^*}(\Omega)}^{N^*} - C_3 \|\nabla u_0\|_{L^p(\Omega)}^p - D \|\nabla \tilde{u}\|_{L^{N^*}(\Omega)}^p,$$

so that there are positive constants h and k such that

$$\infty > -h + k \|\nabla \tilde{u}(x)\|_{L^{N^*}(\Omega)}^{N^*}.$$

Hence, \tilde{u} belongs to $C_B(\Omega)$ ([1]).

The proof of Theorem 1 relies on directly comparing the value of the functional on the solution \tilde{u} and on a variation $\tilde{u} + \varepsilon v$. For it, we shall need the following Lemmas.

Lemma 1. Let $G : \mathbb{R} \to 2^{\mathbb{R}}$ be upper semicontinuous, strictly increasing and such that $G(0) = \{0\}$. Assume that, for a selection g from G,

$$\int_{-\infty}^{\infty} g(\frac{1}{s})ds < \infty.$$

Then, the implicit Cauchy problem

$$x(t) \in G(x'(t)), \qquad x(0) = 0$$

admits a solution \tilde{x} , positive on some interval $(0,\tau)$.

Notice that the condition expressed by (4) is independent on the selection g; in fact, G is multi-valued at most on countably many points, and the map $s \to \frac{1}{s}$ is strictly monotonic.

Proof. Set $\gamma = G^{-1}$: γ is single-valued, continuous and $\gamma(0) = 0$. We claim that for every z > 0

$$\int_{(0,z)} \frac{1}{\gamma(y)} dy = z \frac{1}{\gamma(z)} + meas(R),$$

where $R=\{(y,x):0\leq y\leq z;\frac{1}{\gamma(z)}\leq x\leq \frac{1}{\gamma(y)}\}$. In fact, we have also that $R=\{(x,y):0\leq y\leq \gamma^{-1}(\frac{1}{x});\frac{1}{\gamma(z)}\leq x<\infty\}$, so that $meas(R)=\int_{\frac{1}{\gamma(z)}}^{\infty}\gamma^{-1}(\frac{1}{y})dy=\int_{\frac{1}{\gamma(z)}}^{\infty}g(\frac{1}{s})ds$, that is finite by assumption.

Hence, the map $\Phi(x) = \int_0^x \frac{1}{\gamma(y)} dy$ is well defined, differentiable, positive for x > 0 and $\Phi(0) = 0$. Define $\tilde{x}(t)$ implicitely by

$$\Phi(\tilde{x}(t)) - t = 0;$$

then, \tilde{x} is a differentiable function, $\tilde{x}(0) = 0$ and $x'(t) = \gamma(x(t))$.

Let $O \subset\subset \Omega$, set $O_{\delta} = O + B(0, \delta)$ and let $\delta > 0$ be such that $\overline{O_{\delta}}$ is in Ω .

Lemma 2. Let f be as in Theorem 1. Then, for every non-negative ξ in $L^1(O_\delta)$ and $U \in \mathbb{R}$, there exist $\eta \in C^1_c(O_\delta)$ and K such that

$$f(\xi(1-\varepsilon\eta)+\varepsilon\|\nabla\eta\|U)-f(\xi)\leq \varepsilon K.$$

Proof. Consider the function

(5)
$$G(z) = z \frac{2U}{\partial f^*(\frac{1}{z})}.$$

We claim that G satisfies the assumptions of Lemma 1. In fact, $G(0) = \{0\}$ and G is a strictly increasing multi-valued map (single-valued except on a countable set); we have

$$G(\frac{1}{x'}) = \frac{2U}{x'\partial f^*(x')}$$

so that, by the assumptions of Lemma 2, the condition of Lemma 1 is satisfied.

Consider \tilde{x} , the solution to $\tilde{x} \in G(\tilde{x}')$, provided by Lemma 1. Define η as follows. Let d(x) be the distance from a point $x \in O_{\delta}$ to ∂O_{δ} and set

$$\eta(x) = \inf \left\{ \frac{1}{\tilde{x}(\delta)} \tilde{x}(d(x)), 1 \right\}$$

so that, in particular, $\eta = 1$ on O. Almost everywhere, d is differentiable with $\|\nabla d\| = 1$ and, at a point of differentiability, we have

$$\nabla \eta(x) = \begin{cases} 0 & \text{if } d(x) > \delta \\ \frac{1}{\tilde{x}(\delta)} \tilde{x}'(d(x)) \nabla d(x) & \text{if } d(x) < \delta \end{cases}.$$

Hence, a.e., we have that $\|\nabla \eta\| \leq \frac{1}{\tilde{x}(\delta)}\tilde{x}'(\delta)$ and that, either $\nabla \eta = 0$, or that

$$\eta = \frac{1}{\tilde{x}(\delta)}\tilde{x} = \frac{1}{\tilde{x}(\delta)}\tilde{x}'\frac{2U}{\partial f^*(\frac{1}{\tilde{x}'})} = \|\nabla \eta\|h(\tilde{x}(\delta)\|\nabla \eta\|)$$

with $h(z) = \frac{2U}{\partial f^*(\frac{1}{z})}$, an increasing function.

Set $F(\varepsilon,\xi) = f((1-\varepsilon\eta(x))\xi(x) + \varepsilon\|\nabla\eta(x)\|U)$. From the convexity of f, we obtain

$$F(\varepsilon,\xi) - f(\xi) \le \begin{cases} \varepsilon f'(\xi(1-\varepsilon\eta) + \varepsilon \|\nabla\eta\|U)[-\eta\xi + \|\nabla\eta\|U] & \text{if } -\eta\xi + \|\nabla\eta\|U > 0\\ \varepsilon f'(\xi)[-\eta\xi + \|\nabla\eta\|U] & \text{if } -\eta\xi + \|\nabla\eta\|U \le 0 \end{cases}$$

In the second case, take K to be 0. In the first case, we cannot have $\nabla \eta = 0$, hence we have, a.e., $\eta = \|\nabla \eta\|h(\tilde{x}(\delta)\|\nabla \eta\|)$ and

$$f(\xi(1-\varepsilon\eta)+\varepsilon\|\nabla\eta\|U)-f(\xi)\leq\varepsilon\|\nabla\eta\|f'(\xi(1-\varepsilon\eta)+\varepsilon\eta U)[-h(\tilde{x}(\delta)\|\nabla\eta\|)\xi+U].$$

In addition, from $-\eta \xi + \|\nabla \eta\|U > 0$, we infer $\xi \leq \frac{U}{h(\tilde{x}(\delta)\|\nabla \eta\|)}$, so that

$$|\xi(1-\varepsilon\eta) + \varepsilon\|\nabla\eta\| \le \frac{U}{h(\tilde{x}(\delta)\|\nabla\eta\|)} + \varepsilon\|\nabla\eta\|U$$

and

$$\|\nabla \eta\|f'(\xi(1-\varepsilon\eta)+\varepsilon\eta U)\leq \|\nabla \eta\|f'(\frac{U}{h(\tilde{x}(\delta)\|\nabla \eta\|)}+\varepsilon\|\nabla \eta\|U).$$

There exists σ such that, for $\|\nabla \eta\| < \sigma$, we have $\frac{U}{h(\tilde{x}(\delta)\|\nabla \eta\|)} + \varepsilon \|\nabla \eta\| U \le \frac{2U}{h(\tilde{x}(\delta)\|\nabla \eta\|)}$. For those x such that $\|\nabla \eta(x)\| < \sigma$, recalling (5),

$$\|\nabla \eta\|f'(\frac{U}{h(\tilde{x}(\delta)\|\nabla \eta\|)} + \varepsilon\|\nabla \eta\|U) \le \|\nabla \eta\|f'(\frac{2U}{h(\tilde{x}(\delta)\|\nabla \eta\|)})$$
$$= \|\nabla \eta\|f'(\partial f^*(\frac{1}{\tilde{x}(\delta)\|\nabla \eta\|})) = \frac{1}{\tilde{x}(\delta)} = K.$$

It is left to consider the case $\|\nabla \eta\| \geq \sigma$: in this case, $\xi \leq \frac{U}{h(\tilde{x}(\delta)\sigma)}$ and the result follows from the boundedness of $\|\nabla \eta\|$.

Lemma 3. Let ψ non negative and such that

$$\int_{O} \psi e^{f(\psi)} f'(\psi) \le M.$$

Then, for any ξ such that $\int_{O} e^{f(\xi)}$ is bounded, we have that

$$\int_{O} \xi e^{f(\psi)} f'(\psi)$$

is bounded.

Proof. a) Consider the strictly increasing function $z(t) = f'(t)e^{f(t)}$ and call t = i(z) its inverse, so that we have

(7)
$$z = e^{f(i(z))} f'(i(z)).$$

We have that $i(v) \to \infty$ as $v \to \infty$. Define the function ϕ as $\phi(z) = i(z)z$, hence, in terms of t,

(8)
$$\phi(f'e^{f(t)}) = tf'e^{f(t)}.$$

b) We wish to compute the polar g^* of the function $g(b) = e^{f(b)}$. Define b_z implicitely, setting

$$z = g'(b_z) = e^{f(b_z)} f'(b_z),$$

and notice that the previous equality defines b_z uniquely and we have $b_z = i(z)$, where i is defined in a). Then

$$g^*(z) = \sup_{b} bz - g(b) = b_z e^{f(b_z)} f'(b_z) - e^{f(b_z)} = b_z z - e^{f(b_z)} = i(z)z - e^{f(i(z))}$$

so that, by (8) and (7), $g^*(z) \le \phi(f'(b_z)e^{f(b_z)}) = \phi(f'(i(z))e^{f(i(z))}) = \phi(z)$. For any t and b, we have

$$bf'(t)e^{f(t)} = bv(t) \le g^*(v(t)) + g(b) \le \phi(v(t)) + g(b)$$

Set, in the previous inequality, $t=\psi$ and $b=\xi$. From the definition of ϕ , we obtain

$$\xi f'(\psi)e^{f(\psi)} \le \phi(f'(\psi)e^{f(\psi)}) + e^{f(\xi)}$$
$$= \psi f'(\psi)e^{f(\psi)} + e^{f(\xi)}.$$

From the assumptions of the Lemma, the proof is completed.

Proof of Theorem 1. In the proof, we shall first prove the higher integrability result for the special case where $\xi(\cdot) = \|\nabla \tilde{u}(\cdot)\|$ and then extend this result to the general case.

a) Let O and O_{δ} as before. Set $U = \sup\{|\tilde{u}(x)| : x \in O_{\delta}\}$. Since \tilde{u} is a minimum, for every variation v we have

$$\int_{\Omega} \left[e^{f(\|\nabla \tilde{u}(x) + \varepsilon \nabla v\|)} + g(x, \tilde{u}(x) + \varepsilon v(x)) \right] dx \ge \int_{\Omega} \left[e^{f(\|\nabla \tilde{u}(x)\|)} + g(x, \tilde{u}(x)) \right] dx.$$

set $v = -\eta \tilde{u}$, so that $\nabla v = -\tilde{u}\nabla \eta - \eta \nabla \tilde{u}$ and $|v| \leq U$. For $\varepsilon > 0$ (and $\varepsilon < 1$), we obtain

$$\int_{\Omega} \left(\frac{e^{f(\|\nabla \tilde{u}(x)(1-\varepsilon\eta)-\varepsilon \tilde{u}\nabla\eta\|)} - e^{f(\|\nabla \tilde{u}(x)\|)}}{\varepsilon} \right) dx \ge -\int_{\Omega} \frac{g(x,\tilde{u}(x)+\varepsilon v(x)) - g(x,\tilde{u}(x))}{\varepsilon}.$$

b) By Lemma 2, η can be defined so that, for some $K \geq 0$, we have:

$$\widehat{f}(\|\nabla \widetilde{u}(1-\varepsilon\eta)-\varepsilon\widetilde{u}\nabla\eta\|)-f(\|\nabla \widetilde{u}\|)\leq f(\|\nabla \widetilde{u}\|(1-\varepsilon\eta)+\varepsilon U\|\nabla\eta\|)-f(\|\nabla \widetilde{u}\|)\leq \varepsilon K.$$

Set $F(\varepsilon, \nabla \tilde{u}) = f((1 - \varepsilon \eta(x)) \|\nabla \tilde{u}(x)\| + \varepsilon \|\nabla \eta(x)\| U)$. From (9), we have

$$\begin{split} -\int_{\Omega} \frac{g(x,\tilde{u}(x)+\varepsilon v(x))-g(x,\tilde{u}(x))}{\varepsilon} &\leq \int_{\Omega} \left(\frac{e^{F(\varepsilon,\nabla\tilde{u})}-e^{f(\|\nabla\tilde{u}(x)\|)}}{\varepsilon}\right) dx \\ &= \int_{\Omega} \left(\frac{e^{F(\varepsilon,\nabla\tilde{u})-\varepsilon K+\varepsilon K}-e^{f(\|\nabla\tilde{u}(x)\|)}}{\varepsilon}\right) dx \\ &= \int_{\Omega} e^{F(\varepsilon,\nabla\tilde{u})-\varepsilon K} \left[\frac{e^{\varepsilon K}-e^{f(\|\nabla\tilde{u}(x)\|)-F(\varepsilon,\nabla\tilde{u})+\varepsilon K)}}{\varepsilon}\right] dx = \\ &\int_{\Omega} e^{F(\varepsilon,\nabla\tilde{u})-\varepsilon K} \left[\frac{e^{\varepsilon K}-1+1-e^{f(\|\nabla\tilde{u}(x)\|)-F(\varepsilon,\nabla\tilde{u})+\varepsilon K)}}{\varepsilon}\right] dx. \end{split}$$

The previous inequality can be written as

$$(11) \qquad \int_{\Omega} e^{F(\varepsilon,\nabla \tilde{u})-\varepsilon K} \left[\frac{e^{\varepsilon K}-1}{\varepsilon} \right] dx + \int_{\Omega} \frac{g(x,\tilde{u}(x)+\varepsilon v(x))-g(x,\tilde{u}(x))}{\varepsilon} \geq$$

$$\int_{\Omega} e^{F(\varepsilon,\nabla \tilde{u})-\varepsilon K} \left[\frac{e^{f(\|\nabla \tilde{u}\|)-(F(\varepsilon,\nabla \tilde{u})-\varepsilon K)}-1}{\varepsilon} \right] dx.$$

c) From (10) we infer that $F(\varepsilon, \nabla \tilde{u}) - \varepsilon K \leq f(\|\nabla \tilde{u}(x)\|)$; moreover, $\frac{e^{\varepsilon K} - 1}{\varepsilon} \leq Ke^{K}$. In addition,

$$\left|\frac{g(x,\tilde{u}(x)+\varepsilon v(x))-g(x,\tilde{u}(x))}{\varepsilon}\right| = \left|g_u(x,u_{\varepsilon,x})\eta \tilde{u}(x)\right|$$

for some value $u_{\varepsilon,x}$ in the interval of extremes $\tilde{u}(x)$ and $\tilde{u}(x) - \varepsilon \eta(x)\tilde{u}(x)$, so that

$$|g_u(x, u_{\varepsilon,x})\eta(x)\tilde{u}(x)| \le [\alpha_U(x)]U.$$

Hence, the left hand side of (11) is bounded by some M, independent of ε .

d) Consider the right hand side. For some $t_{\varepsilon,x}$ in the interval of extremes $\|\nabla \tilde{u}\|$ and $(1 - \varepsilon \eta) \|\nabla \tilde{u}\| + \varepsilon \|\nabla \eta\| U$, we have

$$f((1-\varepsilon\eta)\|\nabla \tilde{u}\| + \varepsilon\|\nabla \eta\|U) - f(\|\nabla \tilde{u}\|) = \varepsilon f'(t_{\varepsilon,x})(-\eta\|\nabla \tilde{u}\| + \|\nabla \eta\|U).$$

As $\varepsilon \to 0$, $t_{\varepsilon,x} \to \|\nabla \tilde{u}(x)\|$ pointwise, so that $f'(t_{\varepsilon,x})$ converges to $f'(\|\nabla \tilde{u}(x)\|)$; moreover, $f(\|\nabla \tilde{u}\|) - (F(\varepsilon, \nabla \tilde{u}) - \varepsilon K) = -\varepsilon f'(t_{\varepsilon,x})(-\eta \|\nabla \tilde{u}\| + \|\nabla \eta \|U) + \varepsilon K = -\varepsilon f'(\|\nabla \tilde{u}\|)(-\eta \|\nabla \tilde{u}\| + \|\nabla \eta \|U) + \varepsilon K + \varepsilon o(1)$, so that

$$\frac{e^{f(\|\nabla \tilde{u}\|) - (F(\varepsilon, \nabla \tilde{u}) - \varepsilon K)} - 1}{\varepsilon}$$

converges pointwise to $K + f'(\|\nabla \tilde{u}\|)(\eta\|\nabla \tilde{u}\| - \|\nabla \eta\|U)$. In addition, by (10), $\varepsilon K - f((1-\varepsilon\eta)\|\nabla \tilde{u}\| + \varepsilon\|\nabla \eta\|U) + f(\|\nabla \tilde{u}\|) \ge 0$, so that the integrand at the right hand side is non negative. Finally, pointwise, $e^{F(\varepsilon,\nabla \tilde{u})-\varepsilon K} \to e^{f(\|\nabla \tilde{u}(x)\|)}$. Hence, applying Fatou's lemma, we obtain

$$\int_{\Omega} e^{f(\|\nabla \tilde{u}\|)} \left[K + f'(\|\nabla \tilde{u}\|) (\eta \|\nabla \tilde{u}\| - \|\nabla \eta\| U) \right] \le M.$$

Since $K + f'(\|\nabla \tilde{u}\|)(\eta\|\nabla \tilde{u}\| - \|\nabla \eta\|U) \ge 0$, and $\nabla \eta = 0$ and $\eta = 1$ on O, we have obtained that

(12)
$$\int_{O} \|\nabla \tilde{u}\| e^{f(\|\nabla \tilde{u}\|)} f'(\|\nabla \tilde{u}\|) \leq M_{1}.$$

This proves the result for the case $\xi = \|\nabla \tilde{u}\|$. An application of Lemma 3 completes the proof.

Notice that \tilde{u} does not have to be a minimizer: a local minimizer would do.

References

- [1] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975
- [2] G. Lieberman, On the regularity of the minimizer of a functional with exponential growth. Comment. Math. Univ. Carolin. 33 (1992), 45–49
- [3] O. A. LADYENSKAJA, N. N. URALCEVA, Linear and quasi-linear equations of elliptic type. Izdat. "Nauka", Moscow 1964
- [4] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Annali Sc. Norm. Sup. di Pisa 23 (1996) 1–25.
- [5] P. Marcellini, G. Papi, Nonlinear elliptic systems with general growth. J. Differential Equations 221 (2006), no. 2, 412–443.
- [6] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1972.
- [7] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. Roy. Soc. London Ser. A 264 (1969) 413–496.

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI, UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA, VIA R. COZZI 53, 20125 MILANO

E-mail address: arrigo.cellina@unimib.it

Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, 20125 Milano

 $E ext{-}mail\ address: m.mazzola7@campus.unimib.it}$