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Abstract. We prove higher integrability properties of solutions to variational
problems of minimizing

(1)

Z
Ω

[ef(‖∇u(x)‖) + g(x, u(x))] dx

where f is a convex function satisfying some additional conditions.

1. Introduction

In this paper we consider the properties of a solution ũ to the problem of mini-
mizing

(2)
∫

Ω

[ef(‖∇u(x)‖) + g(x, u(x))] dx.

In general, in order to establish the validity of the Euler Lagrange equation for the
solution to this problem , i.e., in order to prove that, for every admissible variation
η, the equation

(3)
∫

Ω

{ef(‖∇ũ(x)‖)f ′(‖∇ũ(x)‖)〈 ∇ũ(x)
‖∇ũ(x)‖

,∇η(x)〉+ gu(x, ũ(x))η(x)}dx = 0

holds, one has preliminarly to prove that the integrand is in L1, in particular, that
ef(‖∇ũ(·)‖)f ′(‖∇ũ(·)‖) ∈ L1

loc. However, for Lagrangeans L growing faster than
exponential, the integrability of a term like∫

Ω

L(‖∇u(x)‖) dx

does not imply the integrability of∫
Ω

∇L(‖∇u(x)‖) dx.

In fact, consider L(s) = es
2
, so that L′ = 2ses

2
. For n = 1, the function ξ(·) whose

derivative is
ξ′(t) =

√
− ln(|t|(| ln(t)|) 3

2 )

is such that eξ
′(t)2 = 1

|t|| ln(t)|
3
2

is integrable on (− 1
2 ,

1
2 ); however, for |t| small,

ξ′(t)eξ
′(t)2 =

1
|t|(| ln(t)|) 3

2

√
− ln(|t|(| ln(t)|) 3

2 ) >

1
|t|(| ln(t)|) 3

2

√
−1
2
| ln(t)| = 1√

2|t|| ln(t)|
,

hence L′(ξ′(·)) is not locally integrable.
1
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This problem does not occur when we are able to prove some additional regularity
properties of the solution ũ. When g = 0, by using a barrier as in [7], one can prove
that the gradient of the solution is in L∞(Ω); alternatively, taking advantage of
the regularity properties of solutions to elliptic equations, as in [2] for the case
L(t) = et

2
, and in [4],[5] for the case L(t) = ef(t), under general assumptions on f ,

one proves that the gradient of the solution is in L∞loc. Both these methods demand
additional smoothness assumptions: smoothness of the boundary and of the second
derivative of f , in the case of a barrier; smoothness of the second derivative of f in
the other case.

In the present paper we prove a higher integrability result for ũ: our result is
weaker than the local boundedness of ∇ũ, the result proved in [2], [4], [5]; however,
it holds for a larger class of functionals, where, possibly, the stronger boundedness
result might not hold. In fact, we do not assume further regularity on f besides
its being convex and differentiable: in particular, we do not assume the existence
of a second derivative of f , nor we assume its strict convexity. Moreover, we allow
also a dependence on x and on u, assuming that g is a standard Carathéodory
function. Our method of proof is based on a simple variation and on the properties
of polarity.

2. Higher integrability

In what follows, Ω is a bounded open subset of RN . The function f∗ is the polar
or conjugate [6] of f , a possibly extended valued function. Moreover, since there is
no assumption of strict convexity of f , the map f∗ is convex but not necessarily
differentiable: its subgradient will be denoted by ∂f∗: it is a maximal monotone
map. In the Theorem that follows, we use the notation 1

p∂f∗(p) : we mean 0 when
p /∈ Dom(∂f∗) and, when p ∈ Dom(∂f∗), we mean any selection from the set-
valued map p → 1

p∂f∗(p) : since 1
p∂f∗(p) is strictly decreasing, it is multi-valued at

most on a countable set, and any two selections will differ only on a set of measure
zero.

Theorem 1. Let f : R → R be convex, differentiable, symmetric, f(0) = 0 and
assume that ∫ ∞ 1

p∂f∗(p)
dp <∞.

Let g be differentiable with respect to u, and let g and gu be Carathéodory functions,
and assume that for every U there exists αU ∈ L1

loc such that |v| ≤ U implies
|gu(x, v)| ≤ αU (x). Let ũ ∈ u0 + W 1,1

0 (Ω) be a locally bounded solution to the
problem of minimizing ∫

Ω

[ef(‖∇u(x)‖) + g(x, u(x))] dx.

Then, for every function ξ such that
∫
Ω
ef(ξ(x)) dx <∞, we have that

ef(‖∇ũ(·)‖)f ′(‖∇ũ(·)‖)ξ(·) ∈ L1
loc(Ω).

The result applies, in particular, to the function ξ(x) = ‖∇ũ(x)‖, so that we
have ef(‖∇ũ(·)‖)f ′(‖∇ũ(·)‖)‖∇ũ(·)‖ ∈ L1

loc(Ω).
Examples. The map f(s) = s− 2

√
s+ 1 + 2 is convex, differentiable and of linear

growth. Its conjugate is the extended-valued function f∗(p) = p2

1−|p| for |p| < 1,
= ∞ elsewhere. The conditions of the theorem are satisfied.
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A map satisfying the assumption of the Theorem is f(s) = 2es
1
2 (s

1
2 − 1) − s;

then f∗′(p) = (ln(p+ 1))2 and
∫∞ 1

p(ln(p+1))2 dp <∞.

A map f that does not satisfy the assumption of the Theorem is f(s) = 1
e (e

s −
s− 1); in this case, we have f∗′(p) = 1 + ln(p+ 1

e ).

Remark 1. In Theorem 1 we assume the solution ũ to be locally bounded. The
validity of this assumption can be guaranteed:

i) when g = 0, assuming that the boundary datum u0 is in L∞, through a standard
comparison result, noticing that, with the exception of the case f ≡ 0, ef(‖v‖) is a
strictly convex function of z.

ii) in general, assuming that there exist p ∈ R+, α ∈ L1(Ω) and β ∈ R such that
u0 ∈W 1,p(Ω) and

|g(x, u)| ≤ α(x) + β|u|p.

In fact, with the exception of the case f ≡ 0, there are A and B > 0 such that
that f(t) ≥ A + Bt; hence, fix N∗ larger than sup{N, p}. For suitable constants,
we have

∞ >

∫
Ω

[ef(‖∇ũ(x)‖) + g(x, ũ(x))] dx ≥
∫

Ω

[eA+B‖∇ũ(x)‖ − |α(x)| − |β||ũ(x)|p] dx

≥ A1 +B1‖∇ũ(x)‖N
∗

LN∗ (Ω) − |β|‖ũ‖pLp(Ω)

≥ A1 +B1‖∇ũ(x)‖N
∗

LN∗ (Ω) − C1‖uo‖pLp(Ω) − C1‖ũ− uo‖pLp(Ω).

By Poincaré’s inequality,

∞ > A2 +B1‖∇ũ(x)‖N
∗

LN∗ (Ω) − C2‖∇ũ−∇u0‖pLp(Ω).

By Holder’s inequality,

∞ > A2 +B1‖∇ũ(x)‖N
∗

LN∗ (Ω) − C3‖∇u0‖pLp(Ω) −D‖∇ũ‖p
LN∗ (Ω)

,

so that there are positive constants h and k such that

∞ > −h+ k‖∇ũ(x)‖N
∗

LN∗ (Ω).

Hence, ũ belongs to CB(Ω) ([1]).
The proof of Theorem 1 relies on directly comparing the value of the functional

on the solution ũ and on a variation ũ + εv. For it, we shall need the following
Lemmas.

Lemma 1. Let G : R → 2R be upper semicontinuous, strictly increasing and such
that G(0) = {0}. Assume that, for a selection g from G,

(4)
∫ ∞

g(
1
s
)ds <∞.

Then, the implicit Cauchy problem

x(t) ∈ G(x′(t)), x(0) = 0

admits a solution x̃, positive on some interval (0, τ).

Notice that the condition expressed by (4) is independent on the selection g; in
fact, G is multi-valued at most on countably many points, and the map s → 1

s is
strictly monotonic.
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Proof. Set γ = G−1: γ is single-valued, continuous and γ(0) = 0. We claim that
for every z > 0 ∫

(0,z)

1
γ(y)

dy = z
1

γ(z)
+meas(R),

where R = {(y, x) : 0 ≤ y ≤ z; 1
γ(z) ≤ x ≤ 1

γ(y)}. In fact, we have also that
R = {(x, y) : 0 ≤ y ≤ γ−1( 1

x ); 1
γ(z) ≤ x <∞}, so that meas(R) =

∫∞
1

γ(z)
γ−1( 1

y )dy =∫∞
1

γ(z)
g( 1
s )ds, that is finite by assumption.

Hence, the map Φ(x) =
∫ x
0

1
γ(y)dy is well defined, differentiable, positive for

x > 0 and Φ(0) = 0. Define x̃(t) implicitely by

Φ(x̃(t))− t = 0;

then, x̃ is a differentiable function, x̃(0) = 0 and x′(t) = γ(x(t)). �

Let O ⊂⊂ Ω, set Oδ = O +B(0, δ) and let δ > 0 be such that Oδ is in Ω.

Lemma 2. Let f be as in Theorem 1. Then, for every non-negative ξ in L1(Oδ)
and U ∈ R, there exist η ∈ C1

c (Oδ) and K such that

f(ξ(1− εη) + ε‖∇η‖U)− f(ξ) ≤ εK.

Proof. Consider the function

(5) G(z) = z
2U

∂f∗( 1
z )
.

We claim that G satisfies the assumptions of Lemma 1. In fact, G(0) = {0} and G
is a strictly increasing multi-valued map (single-valued except on a countable set);
we have

G(
1
x′

) =
2U

x′∂f∗(x′)

so that, by the assumptions of Lemma 2, the condition of Lemma 1 is satisfied.
Consider x̃, the solution to x̃ ∈ G(x̃′), provided by Lemma 1. Define η as follows.

Let d(x) be the distance from a point x ∈ Oδ to ∂Oδ and set

η(x) = inf
{

1
x̃(δ)

x̃(d(x)), 1
}

so that, in particular, η = 1 on O. Almost everywhere, d is differentiable with
‖∇d‖ = 1 and, at a point of differentiability, we have

∇η(x) =

{
0 if d(x) > δ

1
x̃(δ) x̃

′(d(x))∇d(x) if d(x) < δ
.

Hence, a.e., we have that ‖∇η‖ ≤ 1
x̃(δ) x̃

′(δ) and that, either ∇η = 0, or that

η =
1

x̃(δ)
x̃ =

1
x̃(δ)

x̃′
2U

∂f∗( 1
x̃′ )

= ‖∇η‖h(x̃(δ)‖∇η‖)

with h(z) = 2U
∂f∗( 1

z )
, an increasing function.
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Set F (ε, ξ) = f((1 − εη(x))ξ(x) + ε‖∇η(x)‖U). From the convexity of f , we
obtain
(6)

F (ε, ξ)−f(ξ) ≤

{
εf ′(ξ(1− εη) + ε‖∇η‖U)[−ηξ + ‖∇η‖U ] if− ηξ + ‖∇η‖U > 0
εf ′(ξ)[−ηξ + ‖∇η‖U ] if− ηξ + ‖∇η‖U ≤ 0

.

In the second case, take K to be 0. In the first case, we cannot have ∇η = 0, hence
we have, a.e., η = ‖∇η‖h(x̃(δ)‖∇η‖) and

f(ξ(1− εη) + ε‖∇η‖U)− f(ξ) ≤ ε‖∇η‖f ′(ξ(1− εη) + εηU)[−h(x̃(δ)‖∇η‖)ξ + U ].

In addition, from −ηξ + ‖∇η‖U > 0, we infer ξ ≤ U
h(x̃(δ)‖∇η‖) , so that

ξ(1− εη) + ε‖∇η‖ ≤ U

h(x̃(δ)‖∇η‖)
+ ε‖∇η‖U

and

‖∇η‖f ′(ξ(1− εη) + εηU) ≤ ‖∇η‖f ′( U

h(x̃(δ)‖∇η‖)
+ ε‖∇η‖U).

There exists σ such that, for ‖∇η‖ < σ, we have U
h(x̃(δ)‖∇η‖)+ε‖∇η‖U ≤ 2U

h(x̃(δ)‖∇η‖) .
For those x such that ‖∇η(x)‖ < σ, recalling (5),

‖∇η‖f ′( U

h(x̃(δ)‖∇η‖)
+ ε‖∇η‖U) ≤ ‖∇η‖f ′( 2U

h(x̃(δ)‖∇η‖)
)

= ‖∇η‖f ′(∂f∗( 1
x̃(δ)‖∇η‖

)) =
1

x̃(δ)
= K.

It is left to consider the case ‖∇η‖ ≥ σ: in this case, ξ ≤ U
h(x̃(δ)σ) and the result

follows from the boundedness of ‖∇η‖. �

Lemma 3. Let ψ non negative and such that∫
O

ψef(ψ)f ′(ψ) ≤M.

Then, for any ξ such that
∫
O
ef(ξ) is bounded, we have that∫

O

ξef(ψ)f ′(ψ)

is bounded.

Proof. a) Consider the strictly increasing function z(t) = f ′(t)ef(t) and call t = i(z)
its inverse, so that we have

(7) z = ef(i(z))f ′(i(z)).

We have that i(v) → ∞ as v → ∞. Define the function φ as φ(z) = i(z)z, hence,
in terms of t,

(8) φ(f ′ef(t)) = tf ′ef(t).

b) We wish to compute the polar g∗ of the function g(b) = ef(b). Define bz
implicitely, setting

z = g′(bz) = ef(bz)f ′(bz),
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and notice that the previous equality defines bz uniquely and we have bz = i(z),
where i is defined in a). Then

g∗(z) = sup
b
bz − g(b) = bze

f(bz)f ′(bz)− ef(bz) = bzz − ef(bz) = i(z)z − ef(i(z))

so that, by (8) and (7), g∗(z) ≤ φ(f ′(bz)ef(bz)) = φ(f ′(i(z))ef(i(z))) = φ(z).
For any t and b, we have

bf ′(t)ef(t) = bv(t) ≤ g∗(v(t)) + g(b) ≤ φ(v(t)) + g(b)

Set, in the previous inequality, t = ψ and b = ξ. From the definition of φ, we obtain

ξf ′(ψ)ef(ψ) ≤ φ(f ′(ψ)ef(ψ)) + ef(ξ)

= ψf ′(ψ)ef(ψ) + ef(ξ).

From the assumptions of the Lemma, the proof is completed. �

Proof of Theorem 1. In the proof, we shall first prove the higher integrability result
for the special case where ξ(·) = ‖∇ũ(·)‖ and then extend this result to the general
case.

a) Let O and Oδ as before. Set U = sup{|ũ(x)| : x ∈ Oδ}. Since ũ is a minimum,
for every variation v we have∫

Ω

[ef(‖∇ũ(x)+ε∇v‖) + g(x, ũ(x) + εv(x))] dx ≥
∫

Ω

[ef(‖∇ũ(x)‖) + g(x, ũ(x))] dx.

set v = −ηũ, so that ∇v = −ũ∇η − η∇ũ and |v| ≤ U . For ε > 0 (and ε < 1), we
obtain
(9)∫

Ω

(
ef(‖∇ũ(x)(1−εη)−εũ∇η‖) − ef(‖∇ũ(x)‖)

ε

)
dx ≥ −

∫
Ω

g(x, ũ(x) + εv(x))− g(x, ũ(x))
ε

.

b) By Lemma 2, η can be defined so that, for some K ≥ 0, we have:
(10)
f(‖∇ũ(1−εη)−εũ∇η‖)−f(‖∇ũ‖) ≤ f(‖∇ũ‖(1−εη)+εU‖∇η‖)−f(‖∇ũ‖) ≤ εK.

Set F (ε,∇ũ) = f((1− εη(x))‖∇ũ(x)‖+ ε‖∇η(x)‖U). From (9), we have

−
∫

Ω

g(x, ũ(x) + εv(x))− g(x, ũ(x))
ε

≤
∫

Ω

(
eF (ε,∇ũ) − ef(‖∇ũ(x)‖)

ε

)
dx

=
∫

Ω

(
eF (ε,∇ũ)−εK+εK − ef(‖∇ũ(x)‖)

ε

)
dx

=
∫

Ω

eF (ε,∇ũ)−εK
[
eεK − ef(‖∇ũ(x)‖)−F (ε,∇ũ)+εK)

ε

]
dx =∫

Ω

eF (ε,∇ũ)−εK
[
eεK − 1 + 1− ef(‖∇ũ(x)‖)−F (ε,∇ũ)+εK)

ε

]
dx.

The previous inequality can be written as

(11)
∫

Ω

eF (ε,∇ũ)−εK
[
eεK − 1

ε

]
dx+

∫
Ω

g(x, ũ(x) + εv(x))− g(x, ũ(x))
ε

≥

∫
Ω

eF (ε,∇ũ)−εK
[
ef(‖∇ũ‖)−(F (ε,∇ũ)−εK) − 1

ε

]
dx.
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c) From (10) we infer that F (ε,∇ũ) − εK ≤ f(‖∇ũ(x)‖); moreover, eεK−1
ε ≤

KeK . In addition,

|g(x, ũ(x) + εv(x))− g(x, ũ(x))
ε

| = |gu(x, uε,x)ηũ(x)|

for some value uε,x in the interval of extremes ũ(x) and ũ(x)− εη(x)ũ(x), so that

|gu(x, uε,x)η(x)ũ(x)| ≤ [αU (x)]U.

Hence, the left hand side of (11) is bounded by some M , independent of ε.
d) Consider the right hand side. For some tε,x in the interval of extremes ‖∇ũ‖

and (1− εη)‖∇ũ‖+ ε‖∇η‖U , we have

f((1− εη)‖∇ũ‖+ ε‖∇η‖U)− f(‖∇ũ‖) = εf ′(tε,x)(−η‖∇ũ‖+ ‖∇η‖U).

As ε → 0, tε,x → ‖∇ũ(x)‖ pointwise, so that f ′(tε,x) converges to f ′(‖∇ũ(x)‖);
moreover, f(‖∇ũ‖)− (F (ε,∇ũ)− εK) = −εf ′(tε,x)(−η‖∇ũ‖+ ‖∇η‖U) + εK =
−εf ′(‖∇ũ‖)(−η‖∇ũ‖+ ‖∇η‖U) + εK + εo(1), so that

ef(‖∇ũ‖)−(F (ε,∇ũ)−εK) − 1
ε

converges pointwise to K + f ′(‖∇ũ‖)(η‖∇ũ‖ − ‖∇η‖U). In addition, by (10),
εK− f((1− εη)‖∇ũ‖+ ε‖∇η‖U)+ f(‖∇ũ‖) ≥ 0, so that the integrand at the right
hand side is non negative. Finally, pointwise, eF (ε,∇ũ)−εK → ef(‖∇ũ(x)‖). Hence,
applying Fatou’s lemma, we obtain∫

Ω

ef(‖∇ũ‖) [K + f ′(‖∇ũ‖)(η‖∇ũ‖ − ‖∇η‖U)] ≤M.

Since K + f ′(‖∇ũ‖)(η‖∇ũ‖ − ‖∇η‖U) ≥ 0, and ∇η = 0 and η = 1 on O, we have
obtained that

(12)
∫
O

‖∇ũ‖ef(‖∇ũ‖)f ′(‖∇ũ‖) ≤M1.

This proves the result for the case ξ = ‖∇ũ‖. An application of Lemma 3
completes the proof.

�

Notice that ũ does not have to be a minimizer: a local minimizer would do.
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