ALMGREN-TYPE MONOTONICITY METHODS FOR THE CLASSIFICATION
OF BEHAVIOR AT CORNERS OF SOLUTIONS TO
SEMILINEAR ELLIPTIC EQUATIONS

VERONICA FELLI AND ALBERTO FERRERO

ABSTRACT. A monotonicity approach to the study of the asymptotic behavior near corners of
solutions to semilinear elliptic equations in domains with a conical boundary point is discussed.
The presence of logarithms in the first term of the asymptotic expansion is excluded for boundary
profiles sufficiently close to straight conical surfaces.

1. INTRODUCTION

This paper presents a monotonicity approach to the study of the asymptotic behavior near
corners of solutions to semilinear elliptic equations
V(ap)

||

in a domain Q@ C RN, N > 2, having the origin as a conical boundary point. The coefficients
b:Q — RN and h : © — R are possibly singular at 0 but satisfy suitable decaying conditions
(see assumptions (12) and (13) below) which make the corresponding terms negligible with respect
to the homogeneity of the operator, while the nonlinearity f has at most critical growth in the
Sobolev sense (see assumptions (16-17)).

Due to their own theoretical interest and their numerical application to convergence analysis
of finite element approximations, regularity and asymptotics near corners of solutions to linear
elliptic equations in domains with piecewise boundary have been intensively studied and a large
literature has been devoted to this subject (see [3], the monographs [6] and [17, Chapter 3], the
surveys [11, 13], and the references therein). Some early contributions in this field date back
to papers [14, 22] which use methods based on conformal maps and integral representation to
derive asymptotic expansions for harmonic functions at a common endpoint of two analytic arcs
delimiting the 2-dimensional simply connected domain; such asymptotic development excludes the
presence of logarithmic terms for irrational values of «, where ar is the opening of the corner. On
the other hand, a simple example shows that, if « = ™, n,m € N\ {0}, is a rational number,
then there exist harmonic functions with smooth trace on the boundary of the domain but having
a logarithmic term in the leading part of the asymptotic expansion: it is sufficient to consider the
classical example u(z,y) = (2™ log z), 2 = x + iy, in the domain

{(x,y) = (rcosf,rsinf) € R* : r > 0,0 € (0,7/m)}.

In [14, Theorem 3.4] logarithmic terms are excluded in the leading expansion term in the case of
homogeneous boundary conditions also for rational values of a.

Related results for semilinear Dirichlet problems on plane domains with corners were obtained in
[12, 23]; see also [15] for the study of existence and nonexistence of solutions to singular semilinear
elliptic equations on cone-like domains. We mention that edge asymptotics (which is naturally
related to corner asymptotics) is investigated in [5] (see also the references therein).

In the spirit of the paper [20], which provides asymptotics of positive solutions to p-Laplace
equations with forcing terms and non-homogeneous boundary conditions on straight N-dimensional

(1) — div(A(2) Vu(2)) + b(z) - Va(z) - —12u(e) = hz)u(z) + f(z, u(x))
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cones, we mean to describe the rate and the shape of solutions to (1) near corners of domains which
are perturbations of cones, by relating them to the eigenvalues and the eigenfunctions of a limit
operator on the spherical cap measuring the opening of the vertex. The method this paper is
proposing for valuating the asymptotic behavior of solutions to (1) is based on the monotonicity
method introduced by Almgren [2] in 1979 and then extended by Garofalo and Lin [10] to elliptic
operators with variable coefficients in order to prove unique continuation properties. Monotonicity
methods were recently used in [7, 8, 9] to prove not only unique continuation but also precise
asymptotics near singularities of solutions to linear and semilinear elliptic equations with singular
potentials, by extracting such precious information from the behavior of the quotient associated
with the Lagrangian energy. Almgren type formulas were also used in [1] to prove unique contin-
uation at the boundary; the diffeomorphic deformation of the domain performed in [1] (see also
[18]) to get rid of the boundary contributions inspires our construction of the equivalent problem
(37) in section 2, for which a monotonicity formula is derived in section 5.

As a byproduct of our asymptotic analysis we also obtain a unique continuation principle for
solutions of (1) vanishing with infinite order at the conical point of the boundary.

The strengths of the monotonicity formula approach are described in the note [9]: they essen-
tially rely in the sharpness of the asymptotics derived, in the possibility of allowing quite general
perturbing potentials, and in the unified approach to linear and nonlinear equations.

In subsection 1.1 we introduce notation and assumptions needed to state our main result The-
orem 1.1.

1.1. Assumptions and main results. For N > 2, let ¢ : R¥=! = R and ¢ : S¥2 — R such
that, for some § > 0,

2) p(0) =0, ¢eC*RN"1\{0}),
(3) geCHSN7?) if N >3,
I/ESN_2 t
(5) SUp, esn -2 ‘VSO(W) — g — VSN—W(V)‘ =0(r"), ifN=>3, ast— 0"
sup,e(—1,13 | (tv) — g(v)v| = O(t’), N =2 |
(6) |D*p(2")| = O('| ") as |a’| — 0.

As we will show in Lemma 2.1, assumptions (2-5) imply that there exists Cp > 0 such that
(7) lo(z') — Vp(z') - 2’| < Cola’|**? for all 2/ in a neighborhood of 2’ = 0.
Furthermore, from (3) it follows that the function g : RN 71 — R,

po(a) = 2'|g(&r), if 2’ € RN=1\ {0},
~ o, if 2/ =0,

f.l/'/
||

satisfies
po € CORN™Y) and o € C'(RV 71\ {0}).
Hence the cone in RY with vertex in 0 defined as
(8) C:={(,zn) ERN" ' xR:ay > po(z)}
is open. In particular,
Cc=cnsht

is an open connected subset of SNV ~1.
Let ©Q be an open subset of RY such that, for some R > 0,

(9) QONBr={z=(2';2n) € Br:zny > p(2)},

where Bp denotes the ball {z € RY : |z| < R} in R with center at 0 and radius R, see figure 1.
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FIGURE 1. An example of domain 2.

Let A:Q — Mpyxn (with Myxn denoting the space of N x N real matrices) satisfying

(10) A5 = (A)Lj S Wl’oo(Q) foralli,j=1,..., N, Q5 = Qji,
there exists Cy > 0 such that A(z)¢- €& > Cal€|? for all £ € RY and z € Q.
We observe that under assumption (10), the functions a;; are actually Lipschitz continuous func-

tions on €; moreover, due to symmetry and positive definiteness of A, up to some change of
variable, it is not restrictive to assume that

(11) A(0) = Idy,

where Idy denotes the identity N x N matrix. Let us assume

(12) b e Lig (A RY),  [b(z)| = O(lz|~'*°) as |z =0,
(13) he LX(Q), h(z)=0(z|"2T) as|z| —0.

It is not restrictive to assume that the positive constants ¢’s of formulas (4), (5), (12), and (13)
are the same and that § € (0,1). Let V : S¥~1 — R such that

V=0, it N =2,
(14) Ly := sup % <400 and A(V)<1, if N >3,
0,resV -1
OF#T

where, for N > 3,

/III’QV(x/Ix\)vQ(w)dx
(15) AV) = sup €
veD12(0)\{0} /\Vo(w)|2dx
C

and D12(C) denotes the completion of C°(C) with respect to the norm

1/2
lullorae) = ([ [Fu(eiPac)
Let f:Q xR — R such that

(16) feC’QxR), FeCQxR), s~ f(zx,s)c CYR) forae. =€,

Cr(lsl® + 1sI*"), if N >3,
Ct(|s]* + |s|P), for some p>2, if N=2,

(A7) |f(x,8)s| + |falz, 5)s%| + Vo F (2, 5)||2] < {

for a.e. x € Q and all s € R, where F(z,s) = [; f(x,t)dt, 2* = 2N /(N — 2) is the critical Sobolev
exponent, Cy > 0 is a constant independent of = € 2 and s € R, V_F denotes the gradient of F

with respect to the x variable, and f!(z,s) = %(x, s).
Let ©1(V) be the first eigenvalue of the operator Ly := —Agn-1 — V' on the spherical cap

C ¢ SV~ under null Dirichlet boundary conditions. By classical spectral theory, the spectrum of
the operator Ly is discrete and consists in a nondecreasing diverging sequence of eigenvalues

(V) < pa(V) <o < (V) < -
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with finite multiplicity the first of which admits the variational characterization

a8) (V) = Jo [IVex-16@)[* ~ V(O)[0(0)] do(6)
weHE(C)\{0} Jo [0 (0)|? do(6)
Moreover p1 (V) is simple and its associated eigenfunctions do not change sign in C.
The main result of the present paper provides an evaluation of the behavior at the corner 0 of
weak solutions u € H'(Q2) to

V(=
— div(A(z)Vu(z)) + b(z) - Vu(z) — |Ecw2)u(x) = h(z)u(z) + flz,u(z)), inQ,

u=0, on 02 N Bg.

(19)

Theorem 1.1. Let A, b, f,h,V as in assumptions (10-17) and let Q satisfying (9) and (2-6). Let
u € HY(Q) \ {0} be a non-trivial weak solution to (19). Then, there exist kg € N, ko > 1, and
an eigenfunction of the operator Ly = —Agn-1 — V associated to the eigenvalue py, (V) such that

[l L2sv-1) =1 and

I O R B (S RTIR C BP P

in HY(By), in CL%(CNBy) and in LS (B1\{0}) for any a € (0,1), with u being trivially extended
outside Q.

As a direct consequence of Theorem 1.1, the following point-wise upper bound holds.

Corollary 1.2. Under the same assumptions as in Theorem 1.1, let uw € H* () \ {0} be a non-
trivial weak solution to (19). Then, there exists kg € N, ko > 1, such that

N-—2

— 2
u(x):O(\xr¥+ (%3 )+Hko(v)) as |z| = OF.

A further relevant consequence of our asymptotic analysis is the following unique continuation
principle, whose proof follows straightforwardly from Theorem 1.1.

Corollary 1.3. Under the same assumptions as in Theorem 1.1, let u € H*(Q) \ {0} be a weak
solution to (19) such that u(z) = O(|z|¥) as |z| — 0, for any k € N. Then u =0 in Q.

Theorem 1.1 will be proved by introducing an auxiliary equivalent problem obtained as a dif-
feomorphic deformation of the original problem (19). More precisely, letting Cy be as in (7), we
define the local diffeomorphism
(21) v RN — RNv \Il(y) = \I’(ylvyN) = (yl?yN + 200|y‘1+5)'

If u € H'(Q) is a weak solution to (19), then w = wo W weakly solves (in the intersection of ¥=1(£2)
with a sufficiently small neighborhood of 0)

- . V(4 . -
(22) — div(A(y)Vu(y)) + bly) - Vul(y) - (yf;') (y) = h(y)w(y) + fly, w(y))
where
(23) Aly) = | det Jac ¥(y)|(Jac ¥ (y)) A (y))((Jac ¥(y))T) 7,
(24) b(y) = | det Jac ¥(y)[b(¥(y))((Jac ¥(y))T) 7,
(25) Fly,s) = | det Jac 0 (y)| f (¥ (y), ), .
(26) h(y) = | det Jac ¥ (y) |1 (¥ (y)) + | det Jac U (y)| Visen V()
O
V(i)
+ (| det Jac ¥ (y)| — 1) Ve

For the auxiliary problem (22) an Almgren monotonicity formula is used to describe the rate and the
shape of the singularity of solutions, by relating them to the eigenvalues and the eigenfunctions
of the angular operator Ly on the spherical cap C'. The behavior of solutions of the auxiliary
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problem (22) (and then of the original one (1)) near the corner is indeed classified on the basis of
the limit of the following Almgren type frequency function

~ ~ V() ~ ~
oY N = " Jy-1@)nB, (AVw Vw+b-Vww— —5 |w|? — hw? — f(y, w)w) dy
fqﬁl(n)maBr A(\Z)\g.y w?(y) do(y)

which is defined for r > 0 sufficiently small (see (110) and (134)).

Theorem 1.4. Let A,b, f,h,V as in assumptions (10-17) and let Q satisfying (9) and (2-6). Let
ue HY(Q)\ {0} be a non-trivial weak solution to (19) and w = uwo ¥ with U as in (21). Letting
N as in (27), there exists kg € N, kg > 1, such that

lim N(r) = N2 + \/<N2_2)2 + pgy (V).

r—0+ 2

Furthermore there exists ¢ € HY(C) C HY(SN1) eigenfunction of the operator Ly = —Agn—1 —V
associated to the eigenvalue py, (V) such that

@28) ATV e My ) - IxN22+v(N22)2+uko(V)¢(|m> A0
X

in H'(By) and in C\.*(C N By) for any o € (0,1).

loc

Furthermore, Theorem 7.6 will provide more precise informations on the limit angular profile :
if m > 1 is the multiplicity of the eigenvalue g, (V) and {t; : jo < i < jo +m — 1} is an L?(C)-
orthonormal basis for the eigenspace associated to jux, (V'), then the eigenfunction ¢ in (28) (which
coincides with the one appearing in (20), as clarified in the proof of Theorem 1.1, see section 7)

can be written as
Jjo+m—1
Y(0) = Z Bii(0),
t=Jjo
where the coefficients §; can be represented in terms of the Cauchy’s integral type formula (215).

We emphasize that our monotonicity approach allows excluding the presence of logarithmic
factors in the leading term of the asymptotic expansion; we refer to [9] for a detailed comparison
between the monotonicity approach to asymptotic analysis and the results obtained in earlier
literature (see e.g. [5, 6, 11, 13, 14, 17, 22, 23]) by integral representation and Mellin transform
methods.

In section 8 we produce an example in dimension N = 2 of a harmonic function on a domain
with a corner of any amplitude and delimited by arcs violating assumptions (4-5), satisfying
null Dirichlet boundary conditions but exhibiting dominant logarithmic terms in its asymptotic
expansion. Hence assumptions (4-5) are crucial for excluding the presence of logarithms, even
under null boundary conditions. Besides the failure of conditions (4-5), other possible reasons of
occurring of logarithms in the expansion could be boundary conditions (even if very regular when
the amplitude is resonant, see [14, 22]) or lack of linearity with respect to the first derivatives of
u, see [23].

Notation. We list below some notation used throughout the paper.

- For all 7 > 0, B, denotes the ball {z € RV : |z| < r} in R with center at 0 and radius r.
- My« n denotes the space of N x N real matrices.

- Idy denotes the identity N x N matrix .

- For every vector field ¥ € C1(RY RY), Jac ¥ denotes the Jacobian matrix.

2. AN EQUIVALENT PROBLEM

In this section we construct an auxiliary equivalent problem by a diffeomorphic deformation of
the domain.

Lemma 2.1. Under assumptions (2-5), there exists Cy > 0 such that (7) holds.
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PRrROOF. From (4) and (5), we can estimate, for N > 3,

(@) - V(') -o'| < |2/ (Vo) —9(En) &) - &

’

wed — ()| + 1o

|
= lo'|| £ — g (27| + 11| (Veola) — g(gE) o7 — Vonsg (7)) - 2| = OU'+)
as |2'| — 07 thus proving (7). The proof for N = 2 is similar. O
We notice that the function W defined in (21) satisfies ¥ € C*(RY,RY),
1 0 0 0
0 1 0 0
JacU(y, yn) = : : : :
0 0 1 0
200@%% 200@%% o 200@%ny1 1+ QCOWI‘%Z/N

for all (y/,yn) # 0, and Jac ¥(0) = Idy. Hence there exists a bounded neighborhood U C R¥ of
0 such that the restriction \I/|U : U — Y(U) is a C'-diffeomorphism. Let us denote as

(29) Q=01 (QNY0))
and let us consider the function
(30) &(y/) = \Ij_l(y/uso(y/)) *EN, EN = (0707 7071)7

which is well defined in a sufficiently small neighborhood of 0 in RV 1.

Lemma 2.2. There ezists R > 0 such that

145 ~
(31) W) +2C (V1P +18W)1?) = =) forally e RN || <R,
and
(32) QN Bg={(¥,yn) € Bz :yn > 3y}

PROOF. From the definition of ¢ we have that
VN e(y) =, 2), ie (s e(y) = V(Y 0()
for all y' € RN~ such that (v, ¢(y')) € ¥(U), which implies (31) for some R > 0 sufficiently small.

To prove (32) we observe that there exists Ry > 0 such that for every fixed 2/ € RN~! |2/| < Ry,
the function

t e (—.R()7 Ro) — \Il_l(x/,t) -enN

is strictly increasing with respect to ¢, since its derivative

d 1

2w ) - ) =
dt( @8N ) = Te A T o @, O T (@) - en
is strictly positive provided Ry is sufficiently small. In particular, letting x = ¥(y) in a sufficiently
small neighborhood of 0, xx > ¢(2') if and only if U=1(2/,zy) - ey > U L(a', p(2')) - ey and
hence if and only if yy > @(y’), which, in view of (9) yields the conclusion. |

Remark 2.3. From assumption (4) and (31), it follows that

p(t
(33) sup plty) g)| =0t ast— 0T,
veSN—2 t
which implies
(34) B(y") — o)l = O(y'I'*?) as [y'| — 0F.
Furthermore, from assumption (5) and (31), there also holds
(35) V&) = Vo) = Oly'1°) as ly'] = 07,

whereas assumption (6) implies that
(36) 1D*3(y)| = O(ly'|”") asly'| = 0.
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If u € H'(Q) is a weak solution to (19), then w = wo ¥ € H'(Q) is, up to shrinking R > 0, a
weak solution to

- . V(£ . N -
— div(A(y)Vu(y)) + bly) - Va(y) - l(yf;)w(y) = h(y)w(y) + fly,w(y)), inQ,

w =0, on 92N B,

(37)

where E,B,ﬁ, f are as in (23-26).
Lemma 2.4. Let A, b, U, f h,V as in assumptions (10-17), (21), and g,g,fﬁ as (23-26). Then

Ae CO(E,MNxN% Ae Wli)coo(Q \ {0} Myxn), A(0) =Idy, (A)y = (A),
(38) A(y)E - €= Cx|€? for all € e RN,y € Q, and some C 5 > 0,
A A

AW £(rn ) = Oyl ") and  A(y) —Idy = O(Jyl®) as y| — 0,
(39) be L (QRY), [|b(y)|=0(y"'*) as|yl =0,
(40) f € CO(Q x R), Fe C’l(ﬁ xR), s~ f(y,s) € CY(R) for a.e. y € (NZ,
Cills] +1s*"), if N >3
Cils|* +1s[P), if N =2,
(42) he Lf:c@z), E(y) = Oyl ***) as |yl =0,

@1) 1 F(y,9)sl+ 1Ly, 8)5°] + IV Ey, 9)llyl < {

where F (y,s fo = |det Jac ¥ (y)|F (¥ (y),s).

PRrOOF. Estimates (38741) follow from (23-25), (27-28), and assumptions (1
prove estimate (42), we first observe that (13) implies |det Jac U (y)|h(T(y)
ly| = 0. From (14) and

W(y)| = [y|(1+0(yl"), W(y)=y+O0(yl"™) aslyl —0,

v (fae - |yl|>‘

o

0-12), (16-17). To
) = O(ly| %) as

it follows that

U (y)
V(ED) V()

e
Ly U(y) Y o
S lyl2(1 4 O(|y|°)) | ly[(1 + O(Jy[°)) Iyl‘ ly2(L+O(yl%)  |yI?
B Ly W (y) —y + O(ly|**+9)| O(lyl°) _
SRR o) waroqpy Ve pray oy ~ O

which, taking into account that | det Jac ¥(y)| = 1+ O(|y|%) as |y| — 0, yields (42). O

Vimwan) — V()

W (y)[?

+

~

F [V oo sv-1)

—246
|72+)

)

Lemma 2.5. Let A as in assumptions (10-11) and A as in (23). Then

_ yi +O(ly*), fl1<i<N-1,
(Ay)y): = —2Co(1 + 0)|y|~*0ly)? "
YN 0( )‘y|_1+5|y| O(‘y|2), Zfl - N
1+2Co(1+0)|yl YN

asy — 0.
PROOF. The proof follows from (27-28), direct calculations and the estimate
a3 (¥(y)) — 651 = O(lyl) as [yl -0,
which is a consequence of (10) and (11). O

Let us consider the exterior unit normal 7 to 9Q N B 5. From (31) and (32), it follows that

(Vo(y'), —1) ! (Vsa(y’) —2Co(1 + )|y~ _1>
)2+ 1 '

43 =
W) W) = et - Ve T+ 2Co(1 + )yl oy
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Lemma 2.6. Let A as in assumptions (10-11), A as in (23), Q0 as in (29) with Q satisfying (9),
(2-5), and U as in (43). Then A(y)y-v(y) = 0 for ally € (02N B,)\ {0} provided r is sufficiently
small.

PROOF. Taking into account that yx = @(y') and |y|? +|5(y')|? = |y|? on 8S~)ﬂB§, from Lemma
2.5, (43), and (31), we deduce that

(VIVEGTE+ DA - o) = Tt I o)

Y Vo) —e(y) +2Coly| T
O 142C(1+6)|y| " HoyN +Oyl").

Hence Lemma 2.1 yields
Coly['+?

VIVEWIP + DAW - 70) > 1500 4 gy irgy T O 20

provided |y| is sufficiently small. a

The above lemma ensures that, under assumptions (2-5), (9-11), (29), and (23), up to shrinking
R > 0 there holds

(44) Aly)y - (y) =0 forall y € (92N Bg) \ {0}.

3. HARDY TYPE INEQUALITIES (N > 3)

Throughout this section we assume N > 3. The following lemma establishes the relation between
the values A(V') defined in (15) and w1 (V') defined in (18) and the positivity of the quadratic form
associated with the principal part of the elliptic operator on the limit domain C defined in (8).

Lemma 3.1. If N >3 and V € L>(SN~1), then the following conditions are equivalent:
Jo IVo(z)|?dx — [, V(x/lw‘ (x) dx

i inf > 0;
0 uEDLl?I}C)\{O} Jo IVu(z |2 dx
i) AV) <1

932

i) (V) > —(532)
PROOF. The equivalence between i) and ii) follows from the definition of A(V'), see (15). The
equivalence between 1) and iii) can be proved arguing as in [19, Proposition 1.3 and Lemma 1.1]. O

Let Q be as in (29) with Q satisfying (9) and (2-5), and @ be as (30). For every r € (0, R) let
us denote
(45) Cr =SV N (FQ) = (W yw) €SV iy > T B(ry))

and, for V € L>®(SN~1), let us consider the first eigenvalue p; (V,r) of the operator —Agnv—1 — V
on the spherical cap C, under null Dirichlet boundary conditions, i.e.

Jor [[Van-19(0)|* = V(0)|(0)[?] do(6)
YEH (C\ {0} Jo, [¥(0)[2 do(6) '

(46) pa(Vyr) =
We also define

max e V(O)[(0)1? do(9) |
SEHCNOD [, [[Vor-00)] + (572) (O] do )

Lemma 3.2. Let N >3, V € L>®(SN™Y), uy(V,r) be defined in (46), u1 (V) in (18), A(V,7) in
(47), and A(V') in (15), Then

(47) AV,r) =

(48) Jim (Vo) = (V)
and
(49) lim A(V,r) = A(V).

r—0+
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ProoOF. We first claim that
(50) for every ¢ € C2°(C') there exists 1o > 0 such that suppt C C, for all r € (0,79).
To prove the claim, let us consider ¢ € C2°(C) and denote K = supp. Since K is compact, we

have that

0= min — ")) > 0.
(y’,yN)eK(yN eo(y'))

From (33), there exists r¢ such that

‘M _g(y)‘ <6 forallte(0,7) and for all v € SN=2,

Then for all r € (0,79) and (y',yn) € K we have that

n_ory)| o ely) oy
’@O(y) , —lyl r|y’| g(|y/|)‘ <0
and hence
~ r ! ~ r ! ~ r /
B @(ry) > (uw — wo(')) — ooy) — w(ry) > 65— |oo(y) — w(ry) 50

which implies that K C C,. for all r € (0,rg), thus proving claim (50).
From (50) it follows that for every ¢ € C°(C) there exists ro > 0 such that, for all r € (0,79),
2
Jo, [9sx 10 @) = VOO do6) _ f, [Vor-rv(@)] = V{OI(©)] do (o)
Jo, [0 (0)]? do(6) Jo [%(0)? do(6) '

pa(Vyr) <

Hence

2
Vsnv-1p(0)|” — V(0 0)|?] do (6
tansup s (v, ) < Je Vv @] = VOW©)P] do(6)
r—0t Je [(0)2 do(0)
for all 1 € C°(C). By density of C°(C) in H(C), we conclude that

limsup s (V, ) < pur (V).

r—0+

To prove (48), it remains to show that
(51) liminf i1 (V,7) = pa (V).
r—0+

Arguing by contradiction, let us assume that (51) fails, then there exists {rynen C (0, R) such
that lim, oo 7, = 0 and lim,, 4 oo 1 (V,7,) < p1 (V). For all n, let 4, € H}(C,., ) such that

/~L1(Vﬂ’n)=/ [[Ver—1 (@) = V(0)[10n(0)[*] dor(9) and / [ (0)]? dor(6) = 1.

Let us identify 1, with its trivial extension in S¥~! which belongs to H'(SV~1!). It is easy to
verify that {1, }nen is bounded in H'(SV 1) so that there exists a subsequence 1),,, weakly and a.e.
converging to some 1 in H'(SV~1). By compactness of the embedding H!(SV~1) — L2(SVN-1),
we have that fSN,l 1? =1 and by weakly lower semicontinuity

(52) /S [[Vavi6:(8)> = V(O)[6:(8)?] dor(6)

< lim inf [[Vsn =12, (0)]” = V() |, (0)[2] dor(9) = lim inf iy (V, 7, ) < pua(V)-

k—oo  JegN-1

By a.e. convergence of 1, to 1, it is easy to verify that 1 € Hg(C) thus implying that
)< [ Ve 0@ VOO oo

giving rise to a contradiction with (52). (48) is thereby proved. The proof of (49) can be derived
in similar way after observing that

fc 2d0(9)
max
WEHF(CONO} [ [|Ven-11)(0 | +( ) 19(6)[2] do (6 )
see [19, Lemma 1.1]. O

A(V) =
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We extend to singular potentials on corner sets the Hardy type inequality with boundary terms
proved by Wang and Zhu in [21]. For every r € (0, R) let us denote

(53) Q. =QNB,, S =(0B)NQ, T,=(Q)NB,,
so that 99, = S, UT,.

Lemma 3.3. Let N > 3 and V € L®(SN~1). For every r € (0,R) and v € H'(,) such that
v =0 on Iy, the following inequality holds

o [ (wewr - e ) a N2 [ e

L (5 )it

PROOF. Let v € C°(Q N B,) for some r € (0, R). Passing to polar coordinates and denoting as
0 the trivial extension of v in B,, we have that © € C*°(B,.) and

VLN N2,
@) [ (19o0F - ) ) ay+ T2 [ i) ao

r

:/OT (sN—l/Cs |asv(s,9)|2da(9))ds+N2;2rN—1/Q v?(r,0) do (0)

NG (Vs (5,0 ~VO)(5,0)] do(0)) s

" N -2
= / (/ sN10,0(s, 0)|? ds) do(f) + ———rN"1 / % (r,0) do(6)
SN—1 0 2r SN-1
+/ (SN_g/ [[Ven-1v(s,0)]* = V(0)v*(s,0)] da(@)) ds.
0 .
For all § € SN1 let g € C>(0,7) be defined by ¢4 (r) = 9(r,0), and $y € C°°(B,.) be the radially

symmetric function given by @g(x) = g (|z]). We notice that 0 ¢ supp @p. The Hardy inequality
with boundary term proved in [21] yields

(56) /SM (/O sN_1|8517(s,9)2ds) do(8) + N2; QTN—l/SM #(r,0) do (6)
—— [ ([ e T2 [ . Fata) ) do(6)

r

(L e
_ <N2‘2) /SM (/0 32;1@2(5,9) ds) do() = <N2_2> /QT ”jc('fj) dz,

where wy_1 denotes the volume of the unit sphere S¥ =1, ie. wy_1 = fstl do(#). On the other
hand, from the definition of (V) s), see (46), it follows that, for every s € (0,r),

(57) / (\ngvfw(s,@)\2 - V(G)UZ(S,G)) do(0) > ,ul(s,V)/ v%(s,0) do().

Cs Cs

From (55), (56), and (57), we deduce that
. VgD, N -2 ) N -2V
| (wewr - ) ay+ 52 [ wars [ l(2 )+ slel.v)

for all v € C°(Q N B,.), which, by density, yields the stated inequality for all H'(2,)-functions
vanishing on T, 0

v2(z)
a2 ¢

WV
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Corollary 3.4. Let N > 3 and V € L®(SN~1) such that A(V) < 1, where A(V) is defined in

(15). Then, there exist Ry € (0, R) and Cn.v > 0 such that, for every r € (0, Rg) and v € H'(€,.)
such that v =0 on Ty, the following inequalities hold

(58) /QF(IW(y)I2 - V;FQ')UQ(y)>dy + N2; Q/Srﬁ(y)do ;((1\7;2)2 +u1(V))/QTU|2y(g) dy,

V(4 _ _
o) [ (19w - (z')v2<y>)dy+”A(V)N ? [ e > =5 o) ay

WV

[l 2 2r
and
. Vi), N—-2A(V)+3 )
(60) | (9o - ay+ 20 [ ) an

v*(y)

T

PRrROOF. Inequality (58) follows from Lemmas 3.2 and 3.3. To prove (59) we observe that if
Ry is sufficiently small, then, by (49) and assumption (14), A(V,r) < % for all r € (0, Rp).
Consequently for all v € C°(Q N B,.) with r € (0, Ry), from (47) and (56), it follows

/Qrvé'%')vz(y) dy = /O T sN3< /C 5 V(0)v*(s,0) da(&))ds

< /O sN‘3A(V,s)</CS [|VSva(s,9)|2 + <N2_2>2|v(8,9)|2] da(@))ds
_ A(VQM/TSN_:,)(/CS DVSN_W(S,QHZ (]\7;2)2|v(s,9)|2} da(a))ds

0

< % ' 3N3(/Cs |VSNIU(S,9)|2da(e)) +5N1</cs |85{)(s,6)|2d0(6)>>ds

0
METNA / 1,2(7,, 6) do(6)
2 2r o
1

- wewr a2 [ i)

which yields (59) by density. From summation of (58) and (59) and Sobolev embeddings, it follows
that, for every r € (0, Rg) and v € H(€,.) such that v =0 on T,

o~ L) N-23+A(V) [ ,
o0 [ (9P - e )ay+ T2 [ ) an

> %an{(N;?) s 1= a0 ([ P dy)w,

r

where Sy > 0 is the best constant of the Sobolev embedding H*(B;) C L2 (B;). By summing up
(58), (59), (61), we conclude that (60) holds with

O — min{l,gN/2}min{(%)Q—&—ul(V)J—A(V)}
NV = G .

O

Repeating the same arguments carried out in this section for the family of domains €2,., we can
prove analogous estimates on the domains €, UC.

Corollary 3.5. Under the same assumptions as in Corollary 3.4, there exists Eo such that for
every r € (0,Rg) and v € H (2, UC) such that v =0 on 9(Q. UC) N By, the following inequality
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holds

Yy

2 V) N-2A(V)+3 :
/QTUC (Vv(y) y[2 v (y)> dy + o 1 /@UC)Q@BTU (y) do

2 v*(y) 2
> Cny Vo))" + —57 | dy + [vll 725 9, 0c) |-
Q.uc lyl

4. A BREzIS-KATO TYPE ESTIMATE IN DIMENSION N > 3

Throughout this section, we assume Z,B,E as in (23), (24), (26) with A, b, U A,V as in as-
sumptions (10-15), (21), and let © as in (29) with Q satisfying (9) and (2-5). We also assume that
W € L] () satisfies the form-bounded condition

Jo W ()|v(y) dy

”””ip(ﬁ)

< +09,
veH(Q)\{0}

see [16]. The above condition in particular implies that for every v € H(€), Wv € H= (). Let
w e HY(Q)\ {0} be a weak solution to

~ . V(&L - ~
— div(A(y)Vu(y)) + bly) - Vuly) - é’fg)w(y) = h(y)w(y) + W(y)w(y), in Q,

w =0, on 92N Bg.

(62)

Proposition 4.1. Let N > 3 and let w be a weak solution of (62). If W, € LN/Q(Q) letting

e %min{ﬁ—&?‘}, if A(V)>0
&r it A(V) =

2

then for every 1 < q < qiim there exists rq > 0 depending on g, N, A b V, h such that w € L1 Q)
with Q. as in (53)

PROOF. Forany 2 <7 < Q%qhm define C(71) := %—2 and let £, > 0 be large enough so that

QN{Wy (y)>6-}

where
. Jex [V6(w) Pdy
 geDh2(RV)\{0} (fRN lo(y)|2" y)2/2* '

For any ¢ € H} (§~2), by Hélder and Sobolev inequalities and (63), we have

/§W<y)|¢<y)|2dy<eT/§|¢(y)|2dy+( [ wiw ) (/ o(y)* dy)

Qm{W+ V>0, }
<t [ totwPay+ 2RO [ go)p ay

Let 7 € (0, R) small to chosen later and n € C2°(B,) be such that n = 1 in B, /5. Let us define
v(y) == n(y)w(y) € HE(Q,). Then v is a H'(Q,)-weak solution of the equation

Vi) = .
e v(y) = h(y)v(y) + W(y)v(y) +g(y), inQ,

where g(y) = — div(A(y) Vn(y))w(y) — 24(y) Vw(y) - Vi(y) + (b(y) - Vi(y))w(y) € L*(Q). For any
n € N, n > 1, let us define the function v™ := min{|v|,n}. Testing (65) with (v")"2v € H}(Q,)

2
%

(65) —div(A(y)Vo(y)) + b(y) - Vo(y) —
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we obtain

(66) /Q (0" (1)) Ay)Vo(y) - Voly) dy

. 2)/ () 1o(9) X ot <o () A(y) V() -Voly) dy —/

Q, Q, lyl

=—/ (b(y) - Vo) (") v(y )dy+/ h(y) (™ ()20 (y) dy
Q.

Q,
/ W (y) (0" ()"0 (y) dy +/Q 9y (" () *o(y) dy.
We observe that the following identities hold true
- AV((v™) 2 10)-V((v™)5 1) = (v")T 2AVe- Vo + T2 (myr=2y |\ AVY- Vo,
6
IV ((0")E 1) 2 = (07)7 72| Vol + C22 (07) 72 <y | Vo2,

By (39), (67), Holder and Hardy inequalities, we have

[ BTt )l ] s [ 9o e

< ( [ (vn(y))f_awyydy)”? (/ (0" ()T o(y)? dy)“

\ lyl?

(68)

N_2" QT|V<<v"(y>>%—1v<y>>|2dy

for some positive constant C depending only on b.
Then by (66), (59) applied to the function (v")2 ~!v, (64) applied to ¢ = (v™)% 1w, (68), (38),
(42) and classical Hardy inequality, we obtain

(69) C(r)(1 - K,ﬂ’&)/g V(" ()2 o)) dy

V(L - 7
</Q (lyl)((vn(y))z—lv(y)fdy_/Q (lo(y)-vu(y))(u”(y))T—%(y)dy+/Q h(y) (0" (y))Eu(y))* dy

|yl?

+/Q W(y)((v”(y))%‘lv(y))2dy+/B 9(y) (0™ (y))v(y) dy

~ 2 T) — — T
<[P 2 e o) e 2O sty

2 N —
o™ T—2 v 2 " 9 v
wtr [ @ 0w b+ [ ol )l dy

for some positive constants K ; depending on A and (5 depending on h.
Arguing as in [9, Proposition 2.3], we can easily estimate

(70) /Q 19(0) (" ()72 Jo(y)] dy

- 2
1 T—1( wN_1 2T D 27 N N9 _1/ E} 2

< —|lgll7 T 2(r=1) S n 2 dv.
ol + T (S2) W)y
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Inserting (70) into (69) and using Sobolev embedding, we obtain

20(r) — A(V) — 1 S 2 V)
(71) SN[ 1 - (Corz+ 5+ a(g=) )
T VANIPR o - 5= a)
_ (]]Vvl) ey N+25N1} ( / (" (1)) 5 o (y)? dy)
Q-

-
1 T n T—2 2
< ol + 6 [ @00 b

Since 7 < Zqim then 2C(7) — A(V) — 1 is positive and % — N + 2 is also positive. Hence
we may fix r small enough in such a way that the left hand side of (71) becomes positive. Since
v € L™(B,), letting n — 400, the right hand side of (71) remains bounded and hence by Fatou
Lemma we infer that v € L%T(B,a). Since 7 = 1 in B,/ we may conclude that w € L%T(BT/z).

This completes the proof of the lemma. O

5. THE MONOTONICITY FORMULA

Let A,E,f,f; be as in (23-26) with A, b, ¥, f, h, V as in assumptions (10-17), (21). Let Q be
as in (29) with Q satisfying (9) and (2-5). Let w € H(2) \ {0} be a non-trivial weak solution
to (37).

For every 7 € (0, R) let us define

1 - - V(4L ~ _

(72) D(r) = m/ (AVw -Vw+b-Vow — |§/|y2|) lw|* — hw? — f(y,w)w> dy,
Q.

1
1) HO) = S [ st do),
where
(74) n(y) = nly' yn) = lyl > Ay)y - -
Lemma 5.1. Let N > 2 and let ju as in (74) with A as in (23). Then

1

75 = O(ly)) =1+ 0(y 0
(75) wy) = 1 TG0 T DTy (ly) =1+0(y°) aslyl —0,
(76) Vily) = O(ly| %) as |yl = 0.

Proor. Estimate (75) follows from Lemma 2.5 and direct calculations. Differentiating (74) we
obtain

Viuly) = =2y~ (Ay)y - v)y + [yl 2 ([dAY)y)y + 2ly| 2 Ay)y.
From (75) and (38) we then deduce

2yl %y _ _
Vily) = =175 2Co(5|+| Dynly 17 O(1) + Iyl ~20(lyl***) + 2ly| =2 (y + O(|y[***))
400(5 + l)yN|y|_3+6y —146 Z146
= 1526000 + Dywly e+ O =00
as |y| — 0. 0

Lemma 5.2. Let N > 2 and let A,V be as in (14), (23) with A as in (10-11). Define the function
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Then we have

(77)  Bly) =y+O0(y["") = O(lyl) as |y| =0,

(78) Jac B(y) = A(y) + O(|y|°) = Idn + O(Jy|°) as ly| — 0,

(79) divB(y) = N + O(ly|) as |y| — 0,

(80)  Bly) - Ven1V(y/lyl) =y - VvV (y/ly)) + O(ly|' ) = O(|y[***) as |y| — 0,

Proor. It follows from the definitions of 3 and pu. O

From (38-42) we we derive the following lemma.

Lemma 5.3. Let N >2. Then H € W '(0,R) and

loc
2
(81) )= oy [ pwtn) G 0)do) + HOOG) as v 0°
in a distributional sense and for a.e. v € (0, R), where v = v(y) is the unit outer normal vector to
S, i.e

(82) v(y) = ﬁ

PrROOF. We notice that, for all r € (0, é),

H(’I‘):/ w(r0)|w(rd)|*do

r

where C, is defined in (45). For every ¢ € C°(0, R

/OEH(t)qS’(t) dt = /OE (/Ct (t0)|w(t0)| da>¢’ W'Vé(y)dy

- [ el )i

__/~w() ()&ﬁvw(ly)u() ()-(y)é(y)dy

@z

R
_— /O < /C (2(t0)w(t0)Vw(0) - 6+ w(0) V u(t6) -9)da)q’)(t) dt,
where ¢(y) := ¢(|y|). Hence
(83) H'(t) = / (2u(t)w(t0)Vw(td) - 0) do —|—/ (w?(t0)Vu(th) - 0)do
Cy Cy

in a distributional sense in (0, R). From w, %—f € L?(Qf) we deduce that H € VVJ)C1 (0,R). Fur-
thermore (83) holds a.e. and can be rewritten as

ow

() = 7 [ uo)u) G w)io) + =5 [ 02 0)Vulo) - v(0)do(y)

~ s [ el G )dats) + H0( )
as t — 0" thus proving (81). O

Lemma 5.4. Let N > 2. Let D and H the functions defined in (72-73). Then

2

(84) H'(r) = 5= /s (AVw - vyw do(y) + H(r)O(r~*°),

(85) H'(r) = 2D(r) + H(r)OG—)

asr — 0F.
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Proor. We have that

/ (/TVw -v)wdo :/ uwg—wdaJr %/ o - V(w?) do
S, S v S

where
aly) = 1(y)(By) —y)
[yl '
Since a(y) - y = 0 and, in view of (76), (77), and (79),
diva= (Th-u )@+ Liaivs - N) = 0y +) aslyl 0,

we deduce that
it w 1 : 2 3 —24+N+35
(AVw - v)wdo = pw——do — = [ div(e)w” do = —do + O(r VH(r)
S, S, aV 2 S, aV
and hence (84) follows from (81). Multiplying equation (37) by w and integrating on ., from (84)
we obtain that

rN=2D(r) = /S (va ‘v)wdo =

N—-1

H'(r) + O(r "N+ H{(r)

as r — 07, thus proving (85). O
We proceed by distinguishing the cases N > 3 and N = 2.

5.1. The case N > 3. By (41) and Sobolev embedding, we infer that the function

fyw®) :

W(y) = %a if ’LU(y) # 05

0, if w(y) =0,
belongs to LY/ 2( ) and hence we may apply Proposition 4.1 to the function w. Therefore, through-
out this section, we may fix
(86) 2" < q < qiim
and 74 as in Proposition 4.1 in such a way that w € L(Q,, ).
Lemma 5.5. There exist 1o € (0, min{R,r,}) and a constant C = C(N,V, A, b, f, h,w) > 0 de-
pending on N, V, A b 1, h w but independent of r such that such that, for all r € (0,79),

(i) wly)>1/2 forally € By,

@) 2 (00 + X 200) ([ (Wuwr+ L)+ ol )
(i) H(r) >0, T

where D and H are defined in (72) and (753).

PrOOF. Estimate (¢) near 0 follows from the definition of p. To prove (ii), we observe that, from
(72), (73), (75), and (38-42), it follows that

(o0 Xm0 s [ (Vw<y>2—v( o), ww) dyt 5520406 [ w)do

lyl?

couy [ (1vumi+ WY dy - ¢z, | fw)?
Q Y e A A S L A (2

V(i) N—-2AV)+3
> /m <VU’(Z/)2 Tl wz(y)) dy + 27,4/& w?(y) do

= (0 ~coluti, ) ([ (1wt + Y dy + e, )

as r — 07, which, together with (60), yields (i¢) provided r is sufficiently small.
To prove the positivity of H near 0, suppose by contradiction that there exists a sequence
rn — 07 such that H(r,) = 0. Since u(y) > 0 if |y is sufficiently small, then w = 0 a.e. on S, for

s
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n sufficiently large and thus w € H{ (€2,, ). Multiplying both sides of (37) by w and using estimate
(i), we obtain, for n sufficiently large,
y
V()

0= / (ﬁVw Vw+b-Vww — e lw|? — hw|* — f(y, w(y))w> dy
)

Tn

_ w2 Y
([ (1vuwP+ ) dyt ol )

n

which implies w = 0 in €, for n large. Applying away from 0 classical unique continuation
principles for second order elliptic equations with locally bounded coefficients (see e.g. [24]), we
conclude that w = 0 a.e. in €2, a contradiction. O

Remark 5.6. If w € H' () is a weak solution to (37), with 4, b, f, h as in (23-26), A, b, U, f,h, V
as in assumptions (10-17), (21), and Q as in (29) with © satisfying (9) and (2), then by classical
elliptic regularity theory and a Brezis-Kato type iteration [4], we have that w € Wlif(ﬁ) for
all 1 < p < oo. In particular w € leoc(ﬁ) N C’llof(ﬁ) for all @ € (0,1). Using a local C?-
parametrization of the boundary away from the origin (see assumption (2)) and classical regularity
results for elliptic equations with homogeneous boundary conditions on half-spaces, we can deduce
that w € C’La(ﬁé \{0}) NH?(Qz\ Q,) for all r € (0, R).

loc

Proposition 5.7. Let N > 3, E,B,f,ﬁ as in (23-26) with A, b, U, f,h,V as in (10-17), (21),
and let Q as in (29) with Q@ satisfying (9) and (2-5). Ifw € HY(Q)\ {0} is a weak solution to (37),
then for a.e. r € (0, R)

~ AVw - v|2 2 ~
(87) r/ (AVw~Vw)dU—2r/ Mda—/ M(Aﬂ-ﬁ)(Ay-D)da
Sy S, H r, M

= / (div B)AVw - Vw dy — 2/ (Jac B)(AVw) - Vw dy

Q. Q.

+ / (dAVw)Vw - B dy — / 2(8 - Vuw)(b - Vw) dy

Q, Q,

[ VB =2V D 7 T V) gy [ VO
Q.

|y|? s, |yl?

—|—2/ (B~Vw)i~zwdy—2/ (Vyﬁ(y,w)~ﬁ+ﬁ(y,w)divﬁ)dy+2r/ ﬁ(y,w)da,
Q. S,

r

where B(y) := i(é))y.

PROOF. By Remark 5.6, w € H2 (Q5) N C*(Q5 \ {0}) and hence for all r € (0, R) the following
Rellich-Necas identity

(88) div ((AVw - Vw)B — 2(8 - Vw)AVw) = (div B)AVw - Vw — 2(Jac B)(AVw) - Vw
+ (dAVw)Vw - B —2(8 - Vw)(b - V)
V(y/lyl)

lyl?
is satisfied in a weak sense in Q3 \ Q.. By (41) and Hardy inequality, we have

/ ! [ (1vutwr+ S 4 ) o as

_ w2 w?(y) F(y. w 50
= [ (1wtP + 2 4 1F 1) ay <+

R

+2 (8- Vw)w + 2(8 - Vw)hw + 2(8 - V) f(y, w)

and hence there exists a decreasing sequence {4, } C (0, E) such that lim,, o 0, = 0 and

2 wQ(y)
(89) 0 (|Vw<y>| + 2k

+ ﬁ(ZJaw(?J)M) do — 0 asn — —+oo.
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Let r € (0, R). Integrating (88) in ©, \ 5, and taking into account Remark 5.6, we obtain

(90) /S(ﬁVw~Vw)ﬁ'1/da—2/S(,B-Vw)gVuwuda—/ (AVw - Vw)B - vdo

Ssp

—|—2/ (,@-Vw)ng-l/da—F/ (AVVHJ'VIU)B'DdO'—Q/ (8- Vw)AVw - i do
S5, r \L's,,

T\F5n

= / (div B)AVw - Vw dy — 2/ (Jac B)(AVw) - Vw dy
1\, )\,

+ / (dAVW)Vw - B dy — / 2(8 - Vw)(b - Vu) dy
Q,:\Qs,, Q,:\Qs,,

V) g o
H/nr\ns" (B V) dy—|—2/

|yl? Qr\Qs,,

(B Vw)hwdy +2 / (B V) f(y,w) dy

QT\Q(S’!L

with v as in (82) and ¥ as in (43). Since 3 -y = |y|?, integration by parts yields

(91) / V(y/lyl)(ﬁ,vw)wdy
Q,:\Qs,,

ly|?
_ }/ Viy/ly)) div B — 2V (y/ly|) + |yl =B - Vex-1V(y/ly|) w?(y) dy
2 Ja\0s, \yl2
Vy/\yl w2 do — On Vy/ly), »
ly|? 2 Jss, lv?

and
(92) / (8- V) f(y, w) dy = — / (V,Fly.w) - B+ Fly, w)div ) dy
Qr\Qs,, Q:\Qs5,

—H‘/ F(y,w)do — 6, F(y,w) do.
ST Sén

By definition of 3

(93) B-Vw = %ng ‘v on S.
Since w = 0 on I,

(94) Vw = £|Vw|? a.e. onT,
Taking into account (91-94), (90) becomes

~ A . 2 ~
95) r / (AVw - Vw) do — 2r / [AVw v o s, / (AVw - V) do
S, S H Ssp,
A 12 2
g, [ B [ UG )y 0y
Ssp K ~\Ts,, K

/ (divB)AVw - Vw dy — 2 / (Jac B)(AVw) - Vw dy
Q,:\Qs, Q-\Qs,,

+ / (dAVw)Vw - B dy — / 2(8 - Vw) (b - Vw) dy
Q. \Qs, Qr\Qs,,

d 1 N—-1
_/ Vi(y/lyl) divB — 2V(y/\y|);|y| B - Vsn-1V(y/ly|) w?(y) dy
Q,:\Qs,, ly
Viy/lyl) 2 Vy/lyl) - =
2do — 6, | — w24 - Vw)hw d
wr [ S T o2 8 Vulhudy

- 2/ (Vyﬁ(y,w) B+ f‘(y,w) div 8) dy + 27"/ ﬁ(y,w) do — 25n/ f‘(y,w) do.
Q,\Qs, S, Ss.,
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Letting n — oo in (95) and using (89), Lemma 5.2, and (38), we obtain that

2 ~ ~
/ M(Aﬁ'ﬁ)(Ay'ﬂ)dO'<+OO
r. M

and (87) holds. O

Lemma 5.8. If q is as in (86), the function

g(r) = - - *Cllii
(fo, lw@lzay) ™

g€ LY0,r0) and g=0 ae. in (0,7g).

1s well defined and satisfies

Furthermore

CONNY NS (P gz o 9012 (D) + 252 1))

for a.e. r € (0,r9) and

" 2% /N q
(97) /0 o(s)ds < Nl 2%, r*

for all r € (0,79).

ProOOF. From Lemma 5.5, [o lw(y )| dy > 0 for any r € (0,70) and g is well defined in (0,7¢).

Let us denote 5 = q > 0. By a direct calculation, we have that

P fs lw|* do
(Jo, lw(w)dy)

v ([ T |w<y>|2*dy)w) —sr( T w<y>|2*dy)w}

in the distributional sense and for a.e. r € (0,79). Since

1/N 1/N
lim 7*6(/ lw(y)|? dy) =0 and (/ lw(y)|? dy> =0(1)
r—0F Q. Q.
as r — 0%, we have that g € L'(0,70). Furthermore, (97) follows from integration of (98).
To prove (96) we observe that, by Holder inequality, Proposition 4.1, and Lemma 5.5,
-~ % 2%
([ e a) "= ([ wwra) ([ wwe )
Q, Q. Qr
s -
WN-1\N 2= ——1 B+N—2 N —2
< (57 ol Foa, O (00 4 22 G)

for all r € (0,r), thus implying (96). |

(98) g(r) =

1

Lemma 5.9. The function D defined in (72) belongs to WIOC(O,TO) and

1 ~ 2(q—2%)
N ) 146 1422 N-—2
(99) D'(r) = B(r)+ N2 /Srb Vw wdo + O( +r g(r)) (D(r) + 75 H(r))
as v — 0%, in a distributional sense and for a.e. r € (0,7¢), where
2 AVw - v|? 1 2 N
(100) B(r) := - / AV v - / Vol 3. 5)(Fy - 5) do
r Sy 1% r r, M

and rg 18 as in Lemma 5.5.
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PRrROOF. By (87) and Lemmas 2.4 and 5.2, we have that

(101) / (AVw-Vw) do v y/lm
S, |

A .02 2
:2/ Mda+ / [Vwl® D (Ap - v)(Ay - ) do
S, H rJr, M

(v vwar [ R w)

T

92 - - -
=2 [ (VP v+ NFww) dy+2 [ Flyuw)do

r

~ 2 *
+ O(r_1+5)(/ AVuw - Vw dy +/ “ (g) dy +/ <|w|2 + |wl? ) dy).
Q, Q, |y| Q

From (72) and (101) we obtain

N -2 ~ ~ Vi ~ .

1 ~ ~ 1% ~ -
+ m/s <AVw -Vw+b - Vow — e lw|* — hlw|? — f(y,w(y))w) do

BO)+ vy [ (V=2 0w = 29, Fgw) -y = 2N F0)) dy

b [ (B Vww =Tl = )+ 2F ) ) do

r

~ 2 *
+O(r1N+5)(/ AVw~dey+/ £ (32/) +/ (|w|2+|w|2 )dy)
Q, Q, |yl Q

r

From (41), Holder inequality, Proposition 4.1, and Lemma 5.5 (i7), we have that, for all € (0, 7o),

003) |y [ (9 = 2700w~ 29, Pt 0) -y~ 28F (o))
2NC'; .
<t [ @ P dy

r

2NC'; 2
f (WN*1>N 2 2% /
< —— + .
FN—1 ( N r ||w||L2 (QT)> ( o, lw(y)

2/2*
2 dy)
2(g—2%)

2NC; 2(q—2%) w o2 WN_1\" ~g— N -2
fo—142ta== ) N—-1 q N—1 q 2% _9
< — q _—
S & r (( ) ro" + ( ~ ) ||wHLq Q. )) (D(r) + 5 H(r)>

On the other hand, from (42), Lemma 5.5 (7), (73), (41), (96), we can estimate

(104) TN%/S <ﬁ|w|2 + fy, w(y))w — 2F(y, w)>da = O(g(r) +7r7'%) (D(r) + N2_2H(r)).
In view of (103), (104), and estimate (4¢) in Lemma 5.5, (102) yields (99). O

Lemma 5.10. Let D and H be the functions defined in (72-73), ro be as in Lemma 5.5, and
denote

(105) Y= {re(0,r0) : D'(r)H(r) < H'(r)D(r)}.
If X # 0 and 0 is a limit point of 3, then

D'(r) = B(r) + o(r*1+5 T i g(r)) (D(r) + N;2H(r)>
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PRrOOF. From (87), (77-80), (38-42), Lemma 5.5 (i), and (73) we have that
! AVw - Vw)do = rB(r) + O(r~N+2 Vo) + 29 4
s [ (AVuw)ds =r8()+ 00 ( [ (190l + T8 )yt ul o,

r

+ O H(r) +0(T—N+3)/ wf2 do

S

which, in view of Lemma 5.5 and (96), implies

(106) - . / (AVw - V) do = rB(r) + O(1 + rg(r)) (D(T) + NQQH(T)>

as r — 07. From (39), Schwarz inequality, Lemma 5.5 (i), (73), (38), and (106), we have that

1 B 1 1/2
(107) TN—2/ b-wadcr—O(rH‘s)(TN_?)/S Vdea) H(r)

T :0(7«—1+5)<TN13/ (AVw - Vw)da) VH(r)

.

T

= O(r"2)\/rB(r)H(r) + O(r "+ + g(r) (D H(r))
as r — 07. From Lemma 5.9 and (107), it follows that
B(r) = D'(r) - erf2 /S b Vuwwdo +0(r 10 4 14 (D H(r)>
= D/(r) + O ) /rBVH(r) + 0719 4 15455 +g(r)) D(r) + NQQH(T)>
<D'(r) + Bg’) + O(T*W £ ) (D( ) + NQQH(T))
thus yielding
(108) B(r) <2D'(r) + O (70 47 55 4 (1) (D( J+ 2 ))

as 7 — 0%. From (108), (85), and the fact that D'H < H'D a.e. in X, we deduce that, as r — 07,
rey,

rB(r)H(r) < 20H'(r)D(r) + O (1 +175 4 rg(r)) <D(r)+N2_2H(r))2

2(q—2%)

=2rD(r) (iD(r) + H(T‘)O(T—1+5)> + O(r +7r 7 +rg(r )) (D(T) + N2_2H(r)>2

=4D?(r) + O(r‘;)D(r)H(r) + O(’f‘5 + TZ(qZQ*) + rg(r)) (D(T) + N22H(7’)>

2
=O0(1+rg(r)) (D( )+ ¥H( ))

which implies
(109) VrB(r)H(r) = O(1+rg(r)) (D(r) + N2_2H(7")> asr — 0T, rex.
Combining (107) and (109), we obtain
T‘N 5 / b Vwwdos = O(r 10 g(r ) (D(r) + N2_2H(T)> asr— 0t rey
which, together with Lemma 5.9, yields the conclusion. |

In view of Lemma 5.5, the Almgren type frequency function

(110) N(r) =
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is well defined in (0,7). Furthermore, by Lemmas 5.3 and 5.9, A" € W,>'(0,7). The following
lemma provides the existence of a finite limit of N'(r) as r — 0%,

Lemma 5.11. Let N : (0,r9) — R be defined in (110). Then the limit

= i
i rig)1+ N(T)
exists, is finite and
N -2
(111) vz -
2
Proor. By Lemma 5.5,
N -2
(112) N(T) > —T for all r € (O,T'o).

If the set X defined in (105) is empty or if 0 is not a limit point of 3, then N’(r) > 0 in a right
neighborhood of 0 and hence N is nondecreasing near 0 and admits a limit as 7 — 07 which is
necessarily finite in view of (112). If ¥ # () and 0 is a limit point of X, then from Lemma 5.10,
(85), and (100), we have that

D'(r)H (r) — H'(r)D(r)
H2(r)
B Bgigr) - 5;((?) (gH/(r) + H(r)O(r5)>
O[T ) (W) + 22
([, B o) ([, murdo) + ( f, ptda ) ([, SHEOEDELD 4y )
= (fsr MdeU)z
2(q—2%)

O(r%) + O (r 19 4y~ 1455 +g(r))<}\/(r)+N_2)

(113) N'(r) =

CrU@)? | H )
2 H2(r) H(r)

2

as T — 07, r € ¥. In view of (84), there holds

(H'(r)* = 721%1—2(/3 (AVw - v)w dv(y))
+ H (r)O(r>) 4+ 2H(r)O(r ™) (H'(r) = H(r)O(r ™))

which yields

~ 2
(114) (H' ’I“))2 _ 4(IST(AVU) Sv)w dO’(y)) . O(r‘_2+25) n m

(r=1%9).
H2(r) ( fST udeU)Q H(r)

Moreover (85) implies

(115) = %N(r) + O(r~1+9),
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From (113), (114), and (115), it follows that

(116) M) = I B
N fSr pw3do

2r [(f& M da) (IST uw2da> - (fST(EVw “v)w da(y)>2]
H'(r)

( Js, “wzdg) 2
Hr) (N )

o(r))
fr,‘ wdg . 2r[(fST |A~V+V|2 da) (f Muﬂdo) ( s ( (AVw - v)wdo(y ))2}
(fST ,uw2d0)2

Js pw?do
.
2(¢—2%)

+O0(r 1) + O(riH‘s +r T 4 g(r)) (N(r) + N2_2>

+

2(¢—2%)

+ O(r®) + O(r™1+2) 4 O (=140 4 =155

asr — 07, r € ¥. From (116), Lemma 2.6, and Schwarz inequality, it follows that

N (r) > O( —146 4 12 = +g(r)) (N(r) + Z)

asr — 0%, r € 3. Since N'(r) = 0 a.e. in (0,79) \ ¥, the above inequality is trivially satisfied as
r— 0%, r e (0,79) \ X. Hence there exists some r; € (0,79) and ¢; > 0 such that

NY' N 2(g=2%)
(117) (/\/’+ 2) (r) =2 —a1 (N(r) + 2) (r—1+5 +r T 1 g(r ))
for a.e. r € (0,71). After integration over (r,r1) it follows that

N N ) 2(q—2%) 1
N(r)<—5—|— (N(r1)+2> exp (61(7;514'2@32*)7"1 a +/O g(s)ds)>

for any r € (0,71), thus proving that there exists co > 0 such that
(118) N(r) <ep forallre (0,7).

2(g—2%)

Estimates (117), (118), and the fact that 7 — =4 4= ""a— 4 g(r) € L'(0,r,) imply that
N’ is the sum of a nonnegative function and of a L'-function on (0,7). Therefore

N(r) = N (1) — / YN (s) ds

admits a limit as r — 07 which is necessarily finite in view of (118) and (112). O

Lemma 5.12. There exists r1 € (0,79) and K1 > 0 such that

(119) H(r) < Kir* for all v € (0,71)

and

(120) H2r)< K1H(r) forallr e (0,71/2).

Furthermore, for any o > 0 there exists a constant Ky(o) > 0 depending on o such that
(121) H(r) > Ky(o)r>*  for all v € (0,71).

PROOF. By (112), (118), and Lemma 5.11, there exists r € (0,79) such that N is bounded in
(0,71) and N’ € L*(0,71). Then from (97) and (117) it follows that

(122) / N'(s)ds > —csr®

for some constant ¢z > 0 and all r € (0,r;), where

(123) S:min{a,q_2 }
q
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Therefore by (85) and (122) we deduce that, for r € (0,r7),

H'(r) _ 2N (r)

_9 —144 O(p—1+9 0t
H) " csr +O(r ) asr ,

+ O(TflthS) >

2y
,
which, after integration over the interval (r,71) and up to shrinking 7, yields (119). On the other

hand, from boundedness of A in (0,71), we have that
const

H'(r)  2N(r) _
He e PO

which, for all r € (0,71/2), after integration over the interval (r, 2r) yields

H(2
(2r) < const log 2

log 70

thus proving (120).
Let us prove (121). Since v = lim,_,o+ N (r) and Ié((:)) - % =0

exists 7, > 0 such that N (r) < v+ /4 and % - %

(r=19), for any o > 0 there

< 5 for any r € (0,7,) and hence

!
Ié((:)) < 2y to for all 7 € (0,7,).

Integrating over the interval (r,r,) and by continuity of H outside 0, we obtain (121) for some
constant Ko(o) depending on o. ]

5.2. The case N = 2. The two-dimensional version of Lemma 5.5 we are going to prove in
Lemma 5.14 requires the following Sobolev type inequality with boundary terms.

Proposition 5.13. Let N > 2 and let p € [1,00) with p < 2* =2N/(N —2) if N > 3. Then there
exists a constant C(N,p) > 0 depending only on N and p such that for allr >0

(124) ||v||ip(B‘) < C(N,p) p 2N </ |Vo(z)|*dz + 1/ v () da> for allv € HY(B,)
' B, " JoB

r

PROOF. The proof in the case r = 1 follows from the classical Sobolev inequality and the fact
that the square root of the right hand side of (124) is a norm equivalent to the standard norm of
HY(By). The proof in the case of a general r > 0 follows by scaling. O

In the rest of this subsection, we assume N = 2.

Lemma 5.14. Let N = 2 and let p > 2 as in (17). Then for every e > 0 there exist 7 € (0, R)

and a constant C. = C.(g,p, A, b, f,h,w) > 0 depending on €, p, A, b, f, h, w such that, for all
r € (0,7.),

(1) wuly)>1/2 forally € B,,
i) D) +2(r) > O [ 1VuPay+ 3 [ wido sl ).
(itg) H(r) >0, T T
where D and H are defined in (72) and (73).

PROOF. The positivity of p near 0 follows from its definition. By (42), Holder inequality, and
Proposition 5.13, we have

(125)

/ Tﬁ@)w?(y)dy\ <o) [ W)y

Q’!"
2(2-3)

_as -3 1
<o) (/ " 2dy) lol sy = OG- ( | wuwra -+t [ w%w)
Q L5 () Q, rJs,

r
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as r — 07. Similarly by (39), Holder inequality, and (125) we also have

/Q,,,B(y) - Vw(y) w(y) dy‘ < </Q IVw(y)I2dy>1/2 (/Q [yl 7220w (y) dy>1/2
= 0(r°) </QT Vu(y)Pdy + 71”/& w2do> .

as r — 07. Finally by (41) and Proposition 5.13 we have

/ Fly ww)w(y) dy| < C; / (w?(y) + [w()|”) dy

T

<o) ([ [wotPay+ [ wiao)

T T

(126)

(127)

as r — 07. Inequality (ii) follows from (125-127). Inequality (ii) implies (iii) by proceeding like in
the proof of Lemma 5.5. O

In view of the previous lemma, we can define the Almgren type frequency function N as in
the previous subsection, see (110). We now sketch the proof of the existence of a finite limit of
N as r — 0" in dimension N = 2. To this aim, we first notice that, under assumption (14),
the Pohozaev-type identity (87) proved for N > 3 admits the following extension to the two-
dimensional case.

Proposition 5.15. Let N = 2 and let g B 1, h be as in (23-26) with A,b, ¥, f,h,V as in as-
sumptions (10-17), (21), and let Q as in (29) with Q satisfying (9) and (2-5). If w € H(Q)\ {0}
is a weak solution to (37), then for a.e. r € (0, R)

" A L2 2
(128) 7’/ (AVw-Vw)da—2r/ [AVw vl / Vol G5 o)Ay - 5) do
Sy S, H r, M

= / (div B)AVw - Vw dy — 2/ (Jac B)(AVw) - Vw dy
Q. Q.

+ / (dAVwW)Vw - Bdy — / 2(8 - Vw)(b - Vw) dy
Q. Q

2/ (8- Vw)%wdy — 2/ (Vyﬁ(y,w) B+ F(y,w)div @) dy + 2r/ F(y,w) do.
Q. ¢ S,

ProoF. It is enough to follow the proof of Proposition 5.7 recalling that V =0 for N = 2. ]

The next lemma provides an upper bound for a nonlinear boundary term.

Lemma 5.16. Under the same assumptions of Proposition 5.15, let 71 € (0, R) as in Lemma 5.1/

with e = 1. Let
fS |w|Pdo
g(r) = g

(fQ |w |pdy)

Then g € L*(0,71) and g > 0 a.e. in (0,71). Furthermore

(129) /S lw|Pdo < (/Q

1

p=2
2p

wrdy) " ') (D) + HE))

for a.e. v € (0,71). Moreover for any q > p and all r € (0,71), we have

(g—p)(p—2) (a— P)(P 2)

e 2p
(130) /Og(s)d8<p727r S ol

Proor. We have

—2

(131) g(r) = (IQ f|s;u|w|’;z)+ _ jT(pQ_p?(/ﬂr w(y)lpdy)”zp)
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in the distributional sense and for a.e. r € (0,71) and this clearly implies that g € L(0,7).
Furthermore, (130) follows from integration of (131) and Hoélder inequality. The proof of (129)
follows by Lemma 5.14 and the definition of g. O

Next we state the two-dimensional version of Lemma 5.9.

Lemma 5.17. The function D defined in (72) belongs to VVI})C1 (0, R). Moreover

D(r)+ H(r) >0 for all r € (0,7)
where 7, € (0, R) is as in Lemma 5.14 with e = 1, and
D'(r) = B(r) + / b Vwwdo +0(r~* 4 g(r)) (D(r) + H(r))
Sr
as v — 0%, in a distributional sense and for a.e. r € (0,71), where 5= min{d,4/p} and
AVw - v|2 1 2 ~
B(r) = 2/ [AVw v oy f/ Nl o o)Ay - ) do
S, H rJr, M
PROOF. We give here only a sketch of the proof being essentially similar to the proof Lemma 5.9.

By (128), (72), (125), (126), (127), (41), and Lemma 5.14, we obtain

(132) D'(r) =B(r) + / (B -Vww — hlw? = f(y, w)w + Qﬁ(y,w))da

r

+ O(T‘_H_S) (D(T) + H(T)),
where § = min{d,4/p}. On the other hand, from (41), (42), Lemma 5.14 (i), (73), (129), we can

estimate

(133) / (EW‘ + fly, wiy))w — 2 (y, w))da = 0(g(r) +179) (D(r) + H(r)).

™

In view of (133), (132) yields the conclusion. O

We now give the statement of two-dimensional version of Lemma 5.10.

Lemma 5.18. Let D and H be defined in (72-73), 71 be as in Lemma 5.14, S as in Lemma 5.17,
and denote 3 := {r € (0,7) : D'(r)H(r) < H'(r)D(r)}. If £ # 0 and 0 is a limit point of ©, then

D'(r) = B(r) + O(r™ 4 g(r) ) (D(r) + H(r)) asr— 0", r € X

PROOF. The proof follows that of Lemma 5.10 and exploits Lemma 5.17. O
If 71 is as in Lemma 5.14 (with e = 1), then the function
N D(r)
134 : (0 R =
( ) N ( 7T1) — K, N(T) H(T‘)

is well defined.

Lemma 5.19. Let N': (0,71) — R be defined in (134). Then the limit y := lim,_,q+ N(r) ezists,
18 finite and

(135) v > 0.
PROOF. By Lemma 5.3 and Lemma 5.17 we have that A" € W,2!(0,7,) and N (r) > —1 for all

loc
r € (0,71). As explained in the proof of Lemma 5.11 it is not restrictive to assume that ¥ # ()

and that 0 is a limit point of ¥ since otherwise the convergence of A" as r — 07 is immediate.
Therefore by Lemma 5.18 and (85) we obtain

o, 555 a0 o)+ i), 528525
(fs,. uw2d0)2
)O(ré) + O(r—1+5 + g(r)) (/\/(r) + 1)

(136)  N'(r) =
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asr — 0%, r € 3. Proceeding as in the proof of Lemma 5.11 we arrive to

N'(r) > o(r—1+5 + g(r)) (/w) + ;)

By Lemma 5.16 and integration it follows that A/ is bounded also from above and, in turn, that
N is the sum of a nonnegative function and of a L!-integrable function in a neighborhood of 0.
Therefore A" has a limit as r — 0. Finally, (135) follows immediately from Lemma 5.14 (ii). O

We conclude this subsection with the following estimates on the function H.

Lemma 5.20. There exists 1 € (0,71) and Ky > 0 such that

(137) H(r) < Kir®  for allr € (0,71)

and

(138) H((2r) < K1 H(r) forallr € (0,r1/2).

On the other hand for any o > 0 there exists a constant Ko(o) > 0 depending on o such that
(139) H(r) = Ky(o)r*Y"  for all v € (0,71).

ProOOF. It follows by Lemma 5.19 by proceeding exactly as in the proof of Lemma 5.12. O

6. THE BLOW-UP ARGUMENT

Throughout this section, we let A, lN), f,l~1 be as in (23-26) with A,b, ¥, f, h,V asin 1 assumptions
(10-17), (21). Let Q be as in (29) with © satisfying (9) and (2-6). Let w € H*(Q) \ {0} be a
non-trivial weak solution to (37).

Lemma 6.1. Let v be as in Lemmas 5.11, 5.19 respectively for N > 3 and N = 2. Then

(i) there exists kg € N such that v = —¥=2 4 \/ % + piy (V)5
(ii) for every sequence A\, — 07 there exists a subsequence \,, and v € HY(C) C HY(SV~1)
eigenfunction of the operator Ly = —Agn-1 —V associated to the eigenvalue pg, (V') such

that ”w”Lz(SN*l) =1 and
w(Ap,
L) ()
H(Ank) 2]
weakly in H'(By), strongly in C loc *(C N By) and in CO%(By \ {0}) for any a € (0,1),

loc

strongly in H'(B,) for all r € (0,1), and strongly in L*(0B;), where w is meant to be
trivially extended outside €.

PROOF. Let us set

(140) w(x) = wAz)
H(X)
We notice that
(141) / p(A\0)(w(6))%do =1
Cx
where C) is defined in (45). If N > 3, by Lemma 5.5 we have that, for all A € (0,7¢),
N -2 C w?(z)
142 > 2
(142) (N()\)“r 5 ) T /m (|Vw(a:)| + FE )dm
()2
-C wa + (“’(‘””) da.
Qx/A ‘$|
Similarly, if N = 2, by Lemma 5.14 we have that, for all A € (0,7),
[of) 1 5
(143) N+ (/ V(z)[2de + © / w )
( 1= H(X) AJs,

A
( |V ( )|2d3:—|—/ (w>‘)2do'>.
Qx/A Ca
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From (118), Lemma 5.19, (142), and (143), we deduce that the trivial extension

wM(x), if ¥ € Qy/A,
0, ifZEEBl\Q)\/A,

is bounded in H'(Bj) uniformly with respect to A € (0,71) with 71 as in Lemmas 5.12 and 5.20.
Therefore, for any given sequence A\, — 07, there exists a subsequence \,, — 0" such that
@ — w weakly in H'(B;) and a.e. in B; for some w € H'(B;). Due to compactness of the
trace embedding H'(B;) — L?(0B)), we obtain that @+ — @ in L?(dB;) and consequently

from (141) [5p |w]?do = 1. In particular w # 0. Moreover w = 0 a.e. in By \ C where C is defined
in (8), as it easily follows from the definition of w*, a.e. convergence of @+ — @ and the fact

(144) for every z € By \ C there exists A\, > 0 such that, for all A € (0,\,), = & Qx/\.

To prove (144), it is enough to observe that if z = (2/,2x) € By \ C, then x5 < ¢o(2') and hence
from (33) Azy < |2'|@(Az’/|2’|) for A sufficiently small. From (32), we deduce that Az/|z'| ¢ Q
for A small which in particular yields @ & 2 /A for A small. This proves claim (144).

By scaling of equation (37), we have that w” weakly solves

(A A 5 A V(\%\) A
—div(A(Az)Vw?(z)) + Ab(Ax) - Vw (z) — FE (x)
(145) = A2h(Ax)w(z) + \/%f()\:m HM\wr(z)), in Qx/A,
w* =0, on 9(Qx/A) N By.

In order to pass to the limit in (145), we observe that
(146) it e C*(CNBy) then &€ CX(Q/A) for sufficiently small \.
Indeed, let us consider £ € C°(C N By) and denote K = supp&. Since K is compact, we have that

7= min (xx — wo(z)) > 0.
(x,VZN)eK( N — ¢o(a'))

From (33), there exists ¢y such that
B(tv)

t
Then for all A € (0,t9) and (2/,zx) € K we have that

—g(v)| <71 forallte (0,t) and for all v € SV 72,

PORIEDY
Al

and hence, by (32), K C Q,/X for all A € (0,tg), thus proving claim (146). Hence we can test

equation (145) with every £ € C°(C N By). From (38) we have that

Ary = @(Ar') = May = po(@”)) + Al2'| (9($’/Ifﬂ'l) -

(147) / A, ) Vs (z) - VE(z) do = / Vuw(z) - VE(x)dr +o(l) as k — +oc.
Q[ Any, CNB;

From (39) and (42)
(148) Ap, / b(An) - Ve ()€ () da — N2 / R(An, z)ws (2)E(2) dz = o(1)
Qi [ Any Qi [ Any,

as k — 4o0o. From (41) and Holder and Sobolev inequalities, we have that, denoting p = 2* if
N >3 and p = p with p asin (17) if N = 2,

(149) —m / FOvnts O ()€ (@) d
H()\nk) Q/\nk //\nk np Ly ny )W (T x)axr

np, [ Any, ny, [ An
+ p—2

~ 2—N+42NX - _
<O @ Ly €l ) + Cphne 7 @™ ||m<31>||£|Im<31>||w\|’£ﬁ(%k) =o(1)
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as k — +o00. Testing equation (145) with £ € C2°(C N By), letting k — +o00, and using (147-149),
we obtain that w is a weak solution to

(150) w BE w =0, in CN By,
w =0, on 0C N By.
For A € (0,71) we define
Uy {(W,yn) ERVN IRy <1} = {(%,yn) e RV X R : |/ <1}

as

A

We notice that Wy is invertible and ¥y '(z/,zn) = (2/,2n — M) Let us fix r € (0,1),
S1, 82, p1, P2, R1, Ro such that 0 < R} < p; <51 <71 <353 < py < Ry <1, and denote

An, s = {0 ) € RN (0,400) : By < VP + (o + 9o))? < R,

Apipz 1= {(y’,yzv) € RV % (0,400) 1 p1 < VIY' 2+ (yn + po(y)? < pz}-
Using (33) it is easy to verify that there exist A\g € (0,71) and ¢o > 0 such that for all A € (0, A\g)

Ua(y' yn) := <y”yN I @()\y'))'

[Ur(y)| = co for every y € Agr, g,

and

(151 {( yw) € RV x (0,400) : \/ P+ (i + A3 0w)) =)

2
{0/ yn) € RN x (0, 400) 11 < ¢ WP+ (i +ABOW)) <2} € A

2
C Ay € {4 un) € RN x (0, +00) J w2+ (gv +A130w)) <1}

namely
Q Q — Q0
(152) \11;1()\)‘ ﬂ(’)Br) - \I/;1<)\)‘ N (Bs, \B31)> C Ay, py CAriRy C \IJ;1<)\A>
for all A € (0, \o). From (145) and (152), the functions v*(y) := w*(¥y(y)) satisfy
(AN A BA A V(i)
—div(A*(y) Vet (y)) + by) - Vory) — -5 5z v  (v)
= )N w) + Ay o (), in Ap, ;.
’UA = 07 on 8AR1,R2 N {(ylayN) ‘YN = 0}7

for all A € (0, Ag), where
AMy) = (Jac Ux(y)) AT () ((Jac Ta(y)T) ™!, b (y) = Ab(ATA(y))((Jac Tx(y)) ",

f)\(yas) =

2

"0

FOUA), VHN)s), B y) = Nh(ATA(y)).

From (36) ||EA|\W1.00(AR11R2) is bounded uniformly with respect to A € (0, A¢). From (39) and (42)
||BA||L00(AR1)R2), HE*HLOOMRLR?) are bounded uniformly with respect to A € (0, \¢). From (41),
Lemmas 5.12 and 5.20, (111), and (135), we have that, denoting again p =2* if N >3 and p =p
with p asin (17) if N =2,
FX (1) A N .
oMy

< const ()\2 + /\(ﬁ*2)(,~,%2+7)|v>\(y)|ﬁ—2) < const (1 4 |vA(y)|i’_2).
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Hence, if we define s = ¢/(p — 2) > N/2 with ¢ as in Proposition 4.1 if N > 3 and ¢ > p — 2 if
N =2, then by (35) and two changes of variables, we obtain

Py, @)
v (y)

1/s
< cons 1+AﬂHuﬂ%2</ h9@N@””@O
AR, Ry

Ls(AR;,Ry)

L 1/s
< const |1+ N2|H(N)|= </ |0 (2)|9|det Jacxpgl(x)mx) ]
By

1/s
< const |1+ 2% (/ |w(x)qu>
L Q)\

Furthermore, up to shrinking \g, it is easy to verify that {’u)‘},\e(O’)\O) is bounded in H'(ARg, r,)
uniformly with respect to A and that

inf inf ( €& > 0.

i
AE(0,M0) EERN\{0} |€|2
YEAR, Ry

=0(1) asA—0".

Therefore, using classical iterative estimates of Brezis-Kato [4] type (see also Proposition 4.1),
standard bootstrap, elliptic regularity theory, (152), (153), we first deduce that

(154)  {v*}ae(o,00) is bounded in C1*(A,, ,,) uniformly with respect to A for all a € (0,1).
From (154) and local Lipschitz continuity of ¢, it follows that, for all z,z € Ux(A,, ,,),
(@) — w(2)] = [N (O3 (@) = ()] < ([0 oo (a0 95 (@) = O3 ()|
[p(Az’) — @(/\Z’)>a
A

< ||’U>\||CO,Q(APLPZ) <|$ — Z‘ +
< const ||'U/\||Cl),a(Aplﬁp2)‘x — 2|4,
while from (154) and (36) we deduce
|Vw)‘(33) — Vw’\(z)| < ’(VUA< 71(95)) — Vv)‘( 71(;2))) Jac \11;1(:1:)‘
+ IVUA (z))(Jac\I/ Yx) - Jaclllgl(z))|
<amm@wwmwummw Ho) = U3 R+ V0 e 4y, ) [FEOE) = VEO)])
< const |z — z|*.

In particular, the above estimates yield that |jw* ||Cl,a(\1;/\(Aplvp2)) is bounded uniformly with respect
to A € (0, A\g) for all @ € (0,1), and hence, taking into account (152),

(155) [ | ) is bounded uniformly with respect to A € (0, o)

o _
oo (22N (Boy\B.y)

for all @ € (0,1). (155) implies that ||{E>‘||CO,Q(B52\§SI) is bounded uniformly with respect to
A € (0,\g), and hence

(156) {0} re(0,00) s relatively compact in C% (B, \ By, ),

for all & € (0,1). From (151) and (155) it follows that

(157) {Vi*}re(0,00) is relatively compact in L?(9B,).

and consequently, from weak convergence w*» — @ in H'(B;) we deduce that for every r € (0, 1)
(158) Vit — Vo in L*(0B,).

From (156), (155), and compact embedding of Holder spaces, reasoning as in the proof of (146),
we also obtain that for all « € (0,1)

(159) @M — @ in C(By\ {0}) and w — @ in CL%(C N By).

loc
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Testing equation (145) with w* and integrating over (€2,/A) N B, with r € (0,1), we obtain

(160) / A\z)Vu(z) - Vu (z) do + A / b(\z) - Vo (z)w (z) dz
(Q2x/N)NB, (Q2x/AN)NB,

Vi h
(2x/N)NB,.

|z|? (92 /N)NB,
)\2
VH(A) J@x/nnB,

From (38) and boundedness of {@} ¢ (0,5,) in H*(B1) we have that

+

fOx, /H N w (z))w (z) da:+/ Az) Vo (z)-v(z)w (z) do ().

(Qx/A\)NOB;

(161) / Az) Vo (z) - Vu (z) de = / |V (x)]? dz + O(\°) as A — 0.
(Qx/MNB, (@x/NNB,
From (39) and (42) we have that
(162) )\/ b(Az) - Vo (z)w (z) de = O(A?) as A — 0
(QA/X)QBT
and
(163) /\2/ h(Az)|w(@)]? dz = O(X°) as A — 0F.
(Qx/2)NB-

Proceeding as in (149) we can prove that
)\2
VHA) J@x/nns,

By (160-164), (38), and (155), we obtain

V(& A

IV (z)]? - (1) lw(2))? ) do = 0w X dor + o1)
|z[? ov
(Qx/N)NB, (Qx/N)NOB,.

A

(164) fOz, /HNw (z)w(z) de = o(1) as A — 0F.

as A — 0%, so that, along the sequence \,,, by (158), the strong convergence w™"» — @ in

L?(0B,.), and (150), we obtain for any positive constant C

V T
lim / <|Vw/\”k ($)|2 de — (\2\) |u/\”k (.T)|2> dx
k—4o00 (Q)‘"k/x"'k )NB, |$|
C
+— wnk (2)[? do(x)
T J(Qx,, /A, )NOB;

0w, | C P
— /C (z)w(z) do(z) + — /C o [w(z)|” do(z)

NOB,. 61/ T

T Ve e
_/cm;r [V (z)] dx—/ P w(z)| da:+r/maBr [w(z)|” do(x)

CNB;,

as k — 400 and consequently

V(&
fim ( / (Iv(mw — @)(2)? dx (\gl) (@ — @)z(x)) .
koo (Q*"k/*nk UC)NB, |g:‘
C o,
+ (0 — w)*(x)do(z) | =0,
T J (@, /An, UC)NDB,

which, in view of Corollary 3.5 with Ar in place of r and through the change of variable y = Az
yields the strong convergence

(165) @k —w  in HY(B,).
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According to (145) we define the functions
Dy(r)

1 _ N
= N2 /( o hon <A(Anky)VwA"k (1) - Ve (1) + A, b(An,y) - Vet (y) whns (y)>dy
Ang, "k NBy

1 V(i) N
_‘Tviit/’ (?2hu*%(yﬂz—%Aikh(Ankynuﬂnk(yﬂ2>dy
" (@, A 0By \ Y]
A2

—— F Oy VH g )w e (y))w (y)dy,
rN=2/H\n) Jon,, 0" ’

Hk(T)* 1

=57 pn, ) [ (y)]* do(y).

/(ank_ /An, )NOB,
By (161-165) we infer that, for any r € (0, 1),

(166) Dy(r) = Dg(r) and Hy(r) — Hg(r)
as k — +oo where

V(L
Dg(r) := Tlez /CﬂB,» <V1ﬂ(y)2 - |(y|2|)@2(y)> dy and Hg(r):= 171 /crwaBr wido.

rN

By (150) and (14) we have that Hgz(r) > 0 for all r € (0, 1). Therefore the function

D~
(167) Ng(r) = HZE:; for any r € (0,1)
is well defined. Moreover by direct computation one verifies that
Dy (r)
168 = An
( ) Hk (T) N( kT)
for all » € (0,1). By (166-168), Lemmas 5.11 and 5.19, letting k¥ — +o0, we obtain
(169) Ng(r) =~ forallre (0,1),

where v is as in Lemmas 5.11 and 5.19.
Proceeding as in Propositions 5.7 and 5.15, Lemmas 5.9, 5.17 and 5.4, and taking into account
that w solves problem (150) in the domain C N By, we deduce that Dg, Hz, Ng € Wl’l(O7 1) and

loc
ow ow |?
(r) = 2r2_N/ Yl o = 2r2_N/ N do
CNOB, OB, ov

Hi(r) = 27‘1*N/ 9w wdo = 27"17N/ 9w w do
cndB, OV 9
Da(r) = 5 Hy(r) ,

20((Jon, 192 40) (Jow, d7) = (Jon, 32 @) |
( faBr 1172(10)2

for a.e. 7 € (0,1). On the other hand, by (169), N is a constant function thus implying

. ~ 2
(/ 0w da) (/ @Qda) — < 811}117d0> =0.
B, B, B, v

v
The above identity shows that the functions % and w have the same direction as vectors in

L?(0B,) and hence there exists a function n = n(r) such that

(170) g—w(rﬁ) = n(r)w(r,0) for a.e. r € (0,1), § € SN1
v

D

S

Nj(r) =

Since necessarily n(r) = 2%%(8), then n € L] _(0,1). Integration of (170) yields

w(r,0) = e\ " d55(1,0) = o(r)(6) for all r € (0,1), § € SN~ |
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where @(r) = /i 1) 45 and 1 (0) = w(1,0). We notice that 1» € H}(C) and (150) may be written
in polar coordinates as

(—so”(r) N so’m) 60— 20 Lope) =0 i (0.1) x C.

r 72

Taking r fixed we may observe that ¢) has to be necessarily an eigenfunction of the operator Ly
on C' C S¥~1 with homogeneous Dirichlet boundary conditions. Hence, if we denote by, (V)
the corresponding eigenvalue, it follows that ¢ solves the equation

) - X gy 19 oy — 0w 0,1),

The general solution of the above equation is given by

+ _
90(70) = cl/ro-ko + CQTUICO? C1,C2 € Ra

where o} = — 832 & \/(%)2 + iy (V). We observe that the function |z|7 ot (%) ¢ H*(By)

Ja]
n
and hence ¢y = 0. Moreover (1) = 1 implies ¢; = 1, so that w takes the form w(r, ) = r7*o1)(8).
Finally, inserting this representation of w in Az and taking into account that

Dy(r) v Hi(r) 7 Jenop, 5e0do

Na(r) = Hy(r)  2Ha(r)  Jopgp, @2do

from (169) it follows that 0,':0 = ~v. The proof is thereby complete. a
We now study the behavior of H()\) as A — 0%.
Lemma 6.2. Let v as in Lemmas 5.11 and 5.19. Then
lim A" H(\)
A—0F
exists and is finite.

PrOOF. In view of (119), (137), Lemma 5.5(i) and Lemma 5.14(i), it is sufficient to prove that
the limit exists. By (85) and Lemmas 5.11, 5.19 we have

d H(r)
dr r2v

(171) = 2y P H (r) + T H (1)
=2r"2"Y(D(r) —yH(r) + H(r)O(r)) = 27“_27_1H(7“)</0TN/(5)CZ5 + 0(7"5))

Let us define the functions

vi(r) =

. QT[(IS,. M do) <fs ,udecr) — (fs,.(‘sz “v)w da(y))Q]
(‘[Sr ,uwzda)2

vo(r) := N'(r) — v1(r).

By Lemma 2.6 and Schwartz inequality we have that 14 > 0. On the other hand from the proofs of
Lemmas 5.11, 5.19, 5.8, 5.16, we infer that the function v is L'-integrable in a right neighborhood
of zero and moreover

(172) /0 vo(s)ds = O(r®),  asr— 0"

where

. min{d, (¢ — 2*)/q}, if N >3,
1 0=
(173) {min{6 4 H}, it N =2,

"p’ 2p
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with p as in (17) and ¢ as in (86). After integration of (171) over the interval (r,r;) we obtain

(174) 11:1(2:1) - Ig:) = / 25”2 H(s) (/0 Vl(t)dt> ds+[1 25" H (s) (/0 Vz(t)dt) ds

+0 </ s (6) ds) .

From the nonnegativity of vy the limit lim, o+ [/ 25727~ H(s) ([, v1(t)dt) ds exists. On the
other hand, by (172), (119), (137)

s H (s) (/US I/Q(t)dt)‘ <O(1)s7!

which proves that s=27"1H (s ( fo vo(t dt) is L'-integrable in a right neighborhood of the origin.
From (119) and (137) it follows that s 7271+ H(s) = O(s71%%) as s — 0T and hence s =27~ 1*9 H (s)
is L'-integrable in a right neighborhood of the origin. We may therefore conclude that all terms in
the right hand side of (174) admit a limit as r — 0" thus completing the proof of the lemma. [J

/ va(t) dt‘ = 0(571+3) as s — 0T
0

7. STRAIGHTENING THE DOMAIN

Lemma 7.1. There exists R € (O,E) such that the function

(1]

(175) : QN Bj — CN By,
(', yn —oy') +vo(y'))
1 eoly) = (') + 2yn (o (y') — 2(y))
Y2+ v

Ey) =2 ,yn) =

-1

1s invertible. Furthermore, putting ® = =", we have

(176) ® e CHCN B ONBg), & 'eC (QNBsCNBR),

(177) ®(CNOB,) =QNdB, foralr e (0,R),

(178) d(z) =z +O(z|**°) and Jac®(z) =Idy + O(|z|°) as |z| — 0,

(179) Yy =y +O0(y|'*°) and Jac® l(y) =Idx +O(ly|°) as|y| — 0,

(180) det Jac®(z) = 14 O(|z|°) as |z| — 0.

ProoOF. It follows from the Local Inversion Theorem, (34-35), and direct calculations. O

Let u € H(Q) be a weak solution to (19), so that w = uo ¥ € H(Q) weakly solves (37). Then

(181) v=wod®=uoVode H'(CNBz)
is a weak solution to
— div(A(z)Vu(z)) + b(z) - Vo(z) — Vi) v(z) = h(z)v(z) + f(z,v(z)), inCNBs
(182) EE ’ ’ R
v =0, on dC N By,
where

~

() = | det Jac B(x)|(Jac () " A(@(x))((Jac (z))") ",

B(:r): |detJac@(m)|5(®(x))((Jac<I>( )) )~ L
(2, 5) = | det Jac ®(x)| f(D(x), 5), o v
h(x) = |detJac & (x)|7(®(z)) + |detTac ®(z )|(V|;g;;;g') - )+(|detJac<I>( ) - 1)
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By Lemmas 7.1, 2.4, and direct calculations, we obtain

(183) Az) =Idy +O(|z|®) as |z| — 0,
(184) be L. (CN B RY), |b(x)| = O(z]**) as |z -0,

- ~ C(|s|>+ |s*), if N>3
185 eC%(CNB3) xR d : < ' ’
(186) he LE.(CNBg), hz)=0(z[">"°) as|z| 0.
Lemma 7.2. Let H be as in (73) and v =wo ® as in (181). Then
(187) HO) = (1+0(\)) / V(M) do(0),

C
fanl Vit (z)|2dx

(188) —(@+00) [ Vet dy =0,

H()) Qx/A
as X — 0T, where w? is defined in (140) and 9 (z) := v(\x).
PrOOF. From (177), by a change of variable

H()\) = /C (®(A))02(\)| det Jac B(AD)| do(6)

and
Vit (z)|*dx
Jers, | @) = / |V (y) Jac ®(® 1 (\y))|*| det Jac @~ (\y)| dy
H(N) Qx /A
for all A € (0, R). We conclude from (75), (178-180), and H'-boundedness of {w*} (see the proof
of Lemma 6.1). O

Lemma 7.3. Let v =wo ® be as in (181) and let ko and v as in Lemma 6.1(i). Then for every
sequence A, — 07 there exist a subsequence A, and ) € H}(C) C HY(SN=1) eigenfunction of the
operator Ly = —Agv-1 — V associated to the eigenvalue iy, (V') such that ||| 2@nv-1) = 1, the

convergences of ;% to |x\71/1(|‘fc—‘) stated in part ii) of Lemma 6.1 hold, and
Vo2 (0, 6) dor(0)

strongly in L*(C).

PROOF. From Lemma 6.1, there exist a subsequence \,, and v € H}(C) c H'(SV~1) eigen-
function of the operator £y = —Agn-1 — V associated to the eigenvalue py, (V) such that
9]l 2@sv-1) = 1 and (H(An, )~ YV2w( N\, ) — |x|7¢(ﬁ) in senses claimed in part ii) of Lemma 6.1,
in particular strongly in L?(SV~1) and a.e. on SV~1. Moreover from H'-boundedness of w* (see
the proof of Lemma 6.1) and (188) it follows that {6*/\/H(\)}x is bounded in H'(C N B;) and
relatively compact in L2(C). Hence from (187) there exists ¢ € L2(C) such that, up to a further

subsequence,
U(A"k )

VS v2(0n,0) dor(60)
From (155) together with (120) and (138) which allow extending estimate (155) up to 9By, we
have that, in view of (178) and (187), for a.e. § € SV 1,

— ¢ in L*(C) and a.e.

v(Ans0) = (14 0O\ w(®(An,0))
Jlotumanm G
= 1+ 008, [ S22 (e () - )

_ w(/\’ﬂka) §
= 7}[()\%) +O(A,,) = ¥(0) as k — +oo.
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Then zﬂ/; =1 and the lemma is proved. O

In the sequel we denote by 1; a L2-normalized eigenfunction of the operator Ly, = —Agn-1 —V
on the spherical cap C C SV~! under null Dirichlet boundary conditions associated to the i-th
eigenvalue p;(V), i.e.

Lypi(0) = ps(V) i(0), in C,
(189) Y; =0, on AC,
Jow—r [0i(0)] dor(8) = 1.

Moreover, we choose the 1;’s in such a way that the set {t;};em o} forms an orthonormal basis
of L*(C). For all i € N;i > 1, and \ € (0,]%), we also define

(190) P = [ v10)i(0) do(0).

From Lemma 6.1, there exist jo,m € N, jg,m > 1 such that m is the multiplicity of the eigenvalue
Mjo(V) = Hjo+1 (V) == :ujoer*l(V) and

2
(191) v = lim N(T)NQ+\/<NQ> + (V) i=jo,....jo+m—1.

r—0t 2 2

Let & be the eigenspace of the operator Ly associated to the eigenvalue p;,(V'), so that the set
{¥i}i=jo,....jo+m—1 is an orthonormal basis of &.

Lemma 7.4. Let v =wo® be as in (181), jo and m as in (191) and ¢; as in (190). Then for all
i € {jo,...,jo+m—1} and R € (0, R)

2—N-—~v

R
—NAL=y.
27N72'y/>\ s i(8)ds

’YR_N+2_2’Y
2N -2y

(192) i) = A7 (R—wm n

R <
/ S1Ly(s) ds) + o+
0
as A — 0T with § as in (178) and T; € Ll(O,I/%) defined as

) VSN—11/)Z($/|$D

dx

— / (A(z) — Idy ) Vo(z)
CNBx

~

[ (= bla) Vota) + he)eta) + Fla o(@))vi(a/o]) da
CNBy

||

PROOF. For any A € (0, R), we expand 6 — v(A\) € L2(C) in Fourier series with respect to the
orthonormal basis {1} of L?(SV~1) defined in (189), i.e.

+/ (A(z) - IdN)Vo(z) - —o(a/)z]) do(z).
CNoBy

(194) v(A0) =D _@i(N¥i(0) in L*(C),
i=1
with ¢; is defined in (190). For all 4, we consider the distribution ¢; on (0, ]/%\) defined as

D/(0,R) <<ivw>1>(o,1§)

= H,l(Bﬁmc)<div (A =TdN)Vv) = b - Vo + ho + f(z,0), |‘;|(1|f)1 wi(x/|x|)>

Hé (Béﬂc)
for all w € D(0, R). Letting Y; as in (193), by direct calculations we have that
(195) T/(A) =AN"1G(A)  in D0, R).
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On the other hand, from the definition of ¢; and the fact that v solves (182), it follows that, for
all 4, the function ¢, defined in (190) solves

N -1 i ~
- () — T(p;()\) + 'ul)(\;/) ©i(A) = ¢i(\) in the sense of distributions in (0, R),

which can be also written as

~

/
- ()\N_HQ‘” (A~ goi(/\))l) = A\NV=1+9i¢,(\)  in the sense of distributions in (0, R),

where

(196) oiN2+\/<N22>2+ui(V).

Let us fix R € (0, ﬁ) Integrating by parts the right hand side and taking into account (195), we
obtain that there exists ¢; € R (depending on R) such that

R

(A7) = AN (A) — g A N2 (cz- +/ sai_lTi(S)d8>
A

in the sense of distributions in (0, R). In particular ¢; € Wlicl (0, ﬁ) A further integration yields

R

197)  pi(h) = A7 (R-fmm) o

R R
+ai)\"i/ g NH1=20 <ci+/ t“ilTi(t)dt>ds
A s

s_NH_""'Ti(s)ds)

2—-N—-o; (R oic;R~N+2-20
= X7 R7pi(R) + o [ s VT (s)ds + S
( il )+2—N—20i/)\ 3 s+ =5 N5,
O.i)\fN+270'i R 1
— | G 7T (E) dt ).
+N—2+20i<c+/,\ ®) )
Let jo,m € N be as in (191), so that the eigenvalue p,, (V) = pjo+1(V) = -+ = tjo+m—1(V) has
multiplicity m and
(198) ~v=lim N(r)=0s, @=Jjo,...,Jo+m—1,
r—0+

see Lemma 6.1. Estimate (187) and the Parseval identity yield

(199)  H(\) = (1+ O(A5))/ [AO)[*do(0) = (1+O0(A\) Y |pi(A)?, forall 0 <A< R.
¢ i=1

We claim that

(200) T:(\) = O(/\N_2+‘§+‘”) for every i € {jo,...,j0 +m—1} as A — 0%,

with & defined in (173). Let us prove (200). By (119), (137), (183), (188), Holder inequality and a
change of variable we obtain

(201) / (A(z) —1dN)Vo(z) - Vov¥ilw/lzl) dx’
CNBy |z]
Noatsio oIV @) Vevawila/lal)]
SOk )~/CﬂB1| | H(\) || !
o [ Jong, [V @) Pz ) 1/2
N—2+46+0; CNB; ELES N (2 /12D 12de
<ol >( o ) ([ P21 ¥es suntoflol oz )

= O(AN72HFo) a5 X — 0.
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Similarly, by a change of variable, (39), (42), (119), (137), and boundedness in H'(Bj) of the set
{@w*} (see the proof of Lemma 6.1), we obtain

(202) / ( —b(z) - Vu(z) +/§(x)v(w))¢i(x/|x|) dr = OV =2F+70) a5 A — 07
CNB,y
Moreover, (41), Proposition 4.1, (119), (137), and boundedness of {@w*}, in H'(B;) imply that

(203) /mB Flav(@)s(e/le]) de

< const

; Fly,w(y )WZ(\@ 1(y))dy‘
< const /gh(lw(y)l + lw(y) P~ dy

< const AV H(A)( / o (@) der + / |w(A$)ﬁ_2|wA(x)|dx>
Qx/A Qx/A

< const AN+ <||wA||H1(m/A) . ( / |w<Ax>|@dx) ||wA||Lﬁ<m>)
/A

< const AN T (1 4 ANB=2)/7) — O()\N72+"’?+(2’N%)) = O()\N_2+5+‘”) as A — 0T,

where p = 2* if N > 3 and p = p with p as in (17) if N =2, while § = ¢ with ¢ is as in (86) if
N >3 and ¢ =2pif N =2, so that 2 — Nqu > §. In order to estimate the boundary term in
(193), we perform the change of variables z = ®~!(y) and y = A0 to obtain

/ (A(z) = 1dw) V() - %m—(x/w do ()
CNOBx

V- /C (A(@71(20))) — dx) (Vw(A8)Jac®( ! (A0))) " - Frig); %

X s (,7) |det Jac®~1 (\0)| dor(6)

and from this, using (178), (179), (180), (183), (119), (137), (120), (138), and (157), we arrive to

(204) ’/mBA 2) — Tdx) Vo) - | (/o) doz)

<oy ([ A |W(9)|2d0(9)>”2 (/ k

_ O()\N72+5+U7‘, )

a-1(0) \|? 12
Vi (m)‘ d0(9)>

Inserting (201), (202), (203), (204) into (193), the proof of (200) follows.
In the rest of the proof it is not restrictive to assume that o; # 0, since otherwise the proof of
the lemma follows immediately from (197). From (200) we deduce that the map

(205) s s VHL=9iY (5) € L0, R)
so that

2-N-o; (B oic; R~ N+2-20
2 2\ —0; i 2 —N+1—ai'-ri d 11
(206) (R WRHQ—N—Q@/ s (s)ds + =%
= O0(\7") = o( AN T27o1) as A — 07,
On the other hand, by (200) we also have that ¢ — t7=17;(¢) € L(0, R). We now claim that
R
(207) e+ / 7717 (t) dt = 0.
0
Suppose by contradiction that (207) is not true. Then, by (197) and (206) we infer

, R
(208) ©i(\) ~ ﬁ <ci +/ 71T (1) dt) ANVF2=oi a9 N 0t
_ o, ;
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If N > 3, Hardy inequality and the fact that v € H'(C N Bg) imply

" N-3 2 " N-3 2 |U(33)|2
A lpi (A)]7dA < A [v(A0)|*de(0) ) dX = 5 dr < +00
0 0 el CNBr ||

thus contradicting (208). If N = 2, (208), (196), and the fact we are assuming o; # 0 would imply

lim |p;(\)] =
Jim [ipi(A)] = +o0
and, in turn, by (199) we would have

lim H(\) = +o0

A—01

in contradiction with (137). Claim (207) is thereby proved. By (197) and (207) we then obtain

2—-N—o0; R iCi —N+2—20;
g / 37N+170i’r¢(8)d8—|— oiciR >
A

(209) @i\ =A '(R il + o 2-N-20;

O’i)\iN+2igi A i
- m/o 7T (t) dt.
The proof the lemma follows inserting (207) into (209) and observing that by (200)
O'i)\iNJrziai
N -2+20;
as A — 0F. 0

The asymptotic behavior of H()\) as A — 07 is evaluated in the following lemma.

A N
/ 771 (t) dt = O(\7i+°)
0

Lemma 7.5. Let H be as in (73) and let vy be as in Lemmas 5.11 and 5.19 respectively in the
cases N >3 and N = 2. Then

(210) lim A"2YH(\) > 0.

A—0t

PrOOF. The fact that the limit in (210) exists and is finite was proved in Lemma 6.2 and hence
we may proceed by contradiction by supposing that limy_,o+ A™2YH(A) = 0. Let jo and m be as
in (191) and ¢; as in (190). From (199) we deduce that for any i € {jo,...,j0 + m — 1}

lim A7 7p;(A) =0.
g, AN
Therefore by Lemma 7.4, (198), and (205) we obtain

R—N+2—2fy R 29_N— R
R_’YSOZ(R) — ,}2/7]\77727/0\ sw_l’ri(S) ds = —ﬁ‘/o s_N-&-l—’YTi(S)ds

which replaced in (192) yields

2—N—vy
A

Inserting in the last estimate (200) we conclude that for any i € {jo,...,jo + m — 1}
i(A) = O(XT)  ag A — 0.
This, together with (190), implies

A )
/ sTNHI=YY () ds + O(NF0) as A — 07,
0

(211) /CU()\H)(;S(H) do(0) = O(N) as A — 0F

for any function ¢ in the eigenspace &. By (211), (187), (121) in the case N > 3, and (139) with
o =0 in the case N = 2, we obtain

A0 5

(212) / # #(0)do(0) = O(N/?)=0(1) asA—0F
o [10M L2 (e

for any ¢ € &. On the other hand, Lemma 7.3 states that for any sequence A, — 0% there exists

a subsequence \,, and a function ¢ € & with [|1)[|2(c) = 1 such that

[0* || L2

—
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strongly in L?(C). Therefore, taking ¢ = ¢ in (212) we conclude that
oY

5
0= lim <7, ) = 2 =1
k—+o00 ||1} "k L2(C) ¥ L2(C) ”deLQ(C)
thus giving rise to a contradiction. (]

The following theorem is a more precise and complete version of Theorem 1.4.

Theorem 7.6. Let A,b, f,h be as in (25-26) with A,b, U, f,h,V as in assumptions (10— 17),
(21). Let Q be as in (29) with Q satisfying (9) and (2-6). Let w € H(Q)\ {0} be a non-trivial
weak solution to (37). Then, letting N'(r) as in (110) and (134), there exists ko € N, kg > 1, such
that

o1 o A = N2 ¢ (%52}

r—0+ 2 2

Furthermore, if v denotes the limit in (213), m > 1 is the multiplicity of the eigenvalue pi, (V)
and {; = jo < i < jo+m—1} (Go < ko < jo+m — 1) is an L*(C)-orthonormal basis for the
eigenspace associated to uk,(V'), then, denoting again as w its trivial extension outside Q,

Jo+m—1
(214) A Tw(Az) — |z|” Z ﬁﬂﬁz( |) as A — 0"

=Jo

in H'(By) and in Cloc (CN By) for any « € (0,1), where
(6j076j0+17 v 7Bj0+m71) 7é (0,0, . ,O)

and

R _N-— —1
(215) BpZ/QR_Ww@NRG»wA@dUW)+2_i;_*hué <2SN_HWV'_7R512””>TA@d&

for all R € (0, ﬁ) for some R >0, Y; being defined in (193).

PrOOF. Identity (213) follows immediately from Lemma 6.1. As in the statement of the theorem,
let m be the multiplicity of the eigenvalue iy, (V) found in Lemma 6.1, jo € N\ {0}, such that
jo < ko < jo+m—1, pjo (V) = pj+1(V) = -+ = pjo4m-1(V), and v = lim, o+ N (r).

In order to prove (214), let {\, }nen C (0,00) be a sequence such that A\, — 0T as n — +o0.
By Lemmas 6.1, 6.2, 7.3, 7.5, and (187), there exist a subsequence A, and B, ..., Bjo4m-1 € R

such that (8j,, Bjo+1s- -+ Bjo+m—1) # (0,0,...,0),

Jo+m—1
(216) A w(An,w) — 2| Z 61’(/)1<| |> in H(B,;) and C2%(C N By) for any a € (0,1)

(with w meant to be trivially extended outside €2), and

Jo+m—1
(217) A v(An Z Bip; in L*(C) as j — +oo.
i=jo
We now prove that the f;’s depend neither on the sequence {\,},cny nor on its subsequence

{An, }jen. Let us fix R € (O,ﬁ) with R as in Lemma 7.1. Defining ¢; as in (190), from (217) it
follows that, for any ¢ = jg,...,jo + m — 1,

(M. 0 Jotmt
(7% Zb’e/ Be(0)6:(0) do(0) =

=jo

218 ATw0n) = [
! c
as j — +o00. On the other hand, from Lemma 7.4, it follows that, for any i = jo,...,j0 + m — 1,

B B Q_N_’Y R CNal ,YR N+2—-2~ R B
A 7 (A R 77p;(R)+ ——— =y, d—i/ 7T (s)d
) = BB + 5= [ s @ds=Tgmg [ T as
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as A — 07 and therefore from (218) we deduce that

29_N— R R—N+2—2’y R
Bi =R 7p;(R)+ 7V/ s~ NHL=YY(s) ds — 77/ sT7104(s) ds,
0 0

2—N—2v 2—N—2vy
for any i = jo,...,j0 + m — 1. In particular the §;’s depend neither on the sequence {\,},en
nor on its subsequence {\,, }ren, thus implying that the convergence in (216) actually holds as
A — 0T and proving the theorem. O
Proof of Theorem 1.1. Let us first observe that the family of functions
A
H(A)

is bounded in H!'(Bj), where u is meant to be trivially extended outside 2. Indeed, by the change
of variable Ax = U (\y)

2
/ \Vu/\(x)|2dx:/q/ oy ’Vw )(Jac ¥ (Ay))~ ‘ |det JacW (A\y)| dy,
B,

| @k = [, 18 @)Fdet Jacw(u)] .
B, \I”l(BA)

and hence from (21), (120), (138), and boundedness in H'(Bj) of the set {w’}, it follows that
{u*} is bounded in H'(B;) uniformly with respect to A\. Hence we can repeat for u* the same
arguments performed in the proof of Lemma 6.1 for w* to obtain that {u*}, is relatively compact
in CL*(CNBy), in CH*(By \ {0}), and in H'(B;) and hence, by Lemma 7.5,

loc loc

(219)  {A7Yu(A)}a is relatively compact in Co%(C N By), in C%(By \ {0}), and in H(B,),

loc
with 7 as in Theorem 7.6. Furthermore, from Lemma 7.5, (21), and (155)
_ _ H()\) U—1(\z)
¥ _ o _ A oA
A Y u(Az) = AT Yw(Ax)| e <w ( 3 ) w(z) ] =0
for all x € C N B;. From the above limit and Theorem 7.6 we deduce that, for all z € C N By,

Jo+m—1
(220) Au(x) = |27 Y ﬁmz;z( I) as A — 0F
1=jo

with §; and 1; as in Theorem 7.6. Combining (219) and (220) we deduce that
Jo+m—1
A Tu(Ax) — |x|” Z /Bz%( |> as A — 0"

in CL*(CNBy), in CY%(By\ {0}) for all a € (O, 1), and in H'(By), thus completing the proof. [

loc loc

8. AN EXAMPLE

In this section we show that the presence of a logarithmic term in the asymptotic expansion
cannot be excluded without assuming conditions (4) and (5).

Let us consider a domain  C R? admitting a local representation in a neighborhood of the
origin as in (9) where the corresponding function ¢ satisfies (2),

t
sup pltv) _ gw)|=o(1) ast—0T,
veSN—2 t
with ¢ as in (3), but not (4-5). To this purpose let us define in Gauss plane the sets
A =C\{z=1ixg € C: 2y <0}, Ay :=C\{z; eRCC:2; <0}
and the holomorphic functions 7y : Ay — C, 19 : Ay — C defined as follows:
m(z) :==logr+if forany z=re? ¢ A;,r>0,0¢ (g, 3;),
no(z) :=logr +i0 for any z =re’? € Ay, r >0, 0 € (—7, 7).
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Given a € (0,2), we are going to define ) in such a way that JQ admits at 0 a corner with
amplitude ar. We distinguish the cases a € (0,1), and « € [1,2).
The case « € (0,1). Let us consider the holomorphic function

vy(z) = e%m(_iz)m(—z’z) for any z € {w € C: Sw > 0}
and the set
(221) Zy:={z:%2z>0and I(v1(z)) = 0}.
If z=re' with r >0, 0 € (0,7) \ {3}, then z € Z; if and only

(222) r = p1(6) := exp {— (9 - g) cot <Z (9 - g))} .

For some fixed o € (0, 71— a))7 we define the curves v C Z; and 7, C Z; respectively
parametrized by

0) = p1(0) cos b T arm T o anm
223 i ol pe(T_om _,T_on
(223) To {1’2(9) = p1(0) sin 6 (2 2 727 )
and

_ Jx1(0) = p1(0) cosb T oam T am
224 : be(s+—,o+—+0).
(224) To {mz(e) — p1(0) sin @ (2 272" 2 )

If we choose o > 0 sufficiently small then the union of these two curves is the graph of a function
¢ defined in a neighborhood U of 0. Moreover ¢ is a Lipschitz function in U, ¢ € C*(U \ {0}) and

R0 (7‘(‘ om) . p(t) (77 om)
225 lim —= =1t -+ — lim —= =t - ——].
(225) R O B S G R
At this point it is possible to construct a bounded domain Q C {z € C: Jz > 0} satisfying (9) for
some R > 0 sufficiently small. Then we define the harmonic function
u(xy, x2) = S(v1(2)) for any z = z1 + izg € QL

In polar coordinates the function u reads

(226) u(r,0) = r# {(mgr) sin (2 (0- g)) +(0- g) cos (2 (0- g)ﬂ .

Since € is bounded, then v € H'(Q). From (221-222) and (226) we deduce that u vanishes on
v+ U, and in particular on 9Q N Bp.

Next we show that ¢ does not satisfy (7) for any Cyp > 0. Since by (222-224) ¢ is an even
function, it is sufficient to study the behavior of p(z1) — x1¢’(x1) in a right neighborhood of zero.
By (223) and the fact that o € (0,1) we may assume that 6 € (0, g) and hence, if 21 belongs to a
sufficiently small right neighborhood of 0, by (222) we have

(227) %log (22 + (p(x1))?) tan [i (arctan (‘p(xl)) - g)} + arctan (‘p(xl)> - g =0.

T €

By (225) and (227) we have that, as x; — 01,

9 2arctan (£21) — 7 1 1
(228)  tan { (arctan (M) - W)} = — 5 ( a2 ) — + 0( ) .
a T 2 log (23 + (¢(21))?) 2 logz log 21

Differentiating both sides of (227) and multiplying by 2% + (¢(x1))? we obtain the identity

(w1 + p(e1)¢ (21)) tan |2 ((arctan (£22)) - 7]

Ly los(at+ (e))
o cos? [%(arctan (%ﬁl)) — g)}
and hence (225) and (228) yield

} (219" (21) — @(21)) =0

o?m [1+tan® (5 — 2F)]

asx; — 0.
4 log? 1 !

(229) 19 (x1) — p(21) ~ —
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This shows that ¢ does not satisfy condition (7).
The case « € [1,2). Let us consider the holomorphic function

va(2) := e%m(*i‘z)nz(—iz) for any z € C\ {iy : y < 0}

and the set

Zy:={z€C\ {iy:y <0} :Y(v2(2)) = 0}.

Similarly to the previous case one may define two curves v/, v, and a corresponding function ¢
whose graph coincides with v} U~, . Next one may also construct a bounded domain ) satisfying
(9) for a suitable choice of R > 0 and define a harmonic function u as

u(wy, x2) = I(v2(2)) for any z = x1 + ixs € Q.

Finally one can prove that the new function ¢ satisfies (229).
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