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Abstract. A monotonicity approach to the study of the asymptotic behavior near corners of
solutions to semilinear elliptic equations in domains with a conical boundary point is discussed.
The presence of logarithms in the first term of the asymptotic expansion is excluded for boundary
profiles sufficiently close to straight conical surfaces.

1. Introduction

This paper presents a monotonicity approach to the study of the asymptotic behavior near
corners of solutions to semilinear elliptic equations

(1) − div(A(x)∇u(x)) + b(x) · ∇u(x)−
V
(
x
|x|

)

|x|2 u(x) = h(x)u(x) + f(x, u(x))

in a domain Ω ⊂ R
N , N > 2, having the origin as a conical boundary point. The coefficients

b : Ω → R
N and h : Ω → R are possibly singular at 0 but satisfy suitable decaying conditions

(see assumptions (12) and (13) below) which make the corresponding terms negligible with respect
to the homogeneity of the operator, while the nonlinearity f has at most critical growth in the
Sobolev sense (see assumptions (16–17)).

Due to their own theoretical interest and their numerical application to convergence analysis
of finite element approximations, regularity and asymptotics near corners of solutions to linear
elliptic equations in domains with piecewise boundary have been intensively studied and a large
literature has been devoted to this subject (see [3], the monographs [6] and [17, Chapter 3], the
surveys [11, 13], and the references therein). Some early contributions in this field date back
to papers [14, 22] which use methods based on conformal maps and integral representation to
derive asymptotic expansions for harmonic functions at a common endpoint of two analytic arcs
delimiting the 2-dimensional simply connected domain; such asymptotic development excludes the
presence of logarithmic terms for irrational values of α, where απ is the opening of the corner. On
the other hand, a simple example shows that, if α = n

m , n,m ∈ N \ {0}, is a rational number,
then there exist harmonic functions with smooth trace on the boundary of the domain but having
a logarithmic term in the leading part of the asymptotic expansion: it is sufficient to consider the
classical example u(x, y) = ℑ(zm log z), z = x+ iy, in the domain

{(x, y) = (r cos θ, r sin θ) ∈ R
2 : r > 0, θ ∈ (0, π/m)}.

In [14, Theorem 3.4] logarithmic terms are excluded in the leading expansion term in the case of
homogeneous boundary conditions also for rational values of α.

Related results for semilinear Dirichlet problems on plane domains with corners were obtained in
[12, 23]; see also [15] for the study of existence and nonexistence of solutions to singular semilinear
elliptic equations on cone-like domains. We mention that edge asymptotics (which is naturally
related to corner asymptotics) is investigated in [5] (see also the references therein).

In the spirit of the paper [20], which provides asymptotics of positive solutions to p-Laplace
equations with forcing terms and non-homogeneous boundary conditions on straightN -dimensional
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cones, we mean to describe the rate and the shape of solutions to (1) near corners of domains which
are perturbations of cones, by relating them to the eigenvalues and the eigenfunctions of a limit
operator on the spherical cap measuring the opening of the vertex. The method this paper is
proposing for valuating the asymptotic behavior of solutions to (1) is based on the monotonicity
method introduced by Almgren [2] in 1979 and then extended by Garofalo and Lin [10] to elliptic
operators with variable coefficients in order to prove unique continuation properties. Monotonicity
methods were recently used in [7, 8, 9] to prove not only unique continuation but also precise
asymptotics near singularities of solutions to linear and semilinear elliptic equations with singular
potentials, by extracting such precious information from the behavior of the quotient associated
with the Lagrangian energy. Almgren type formulas were also used in [1] to prove unique contin-
uation at the boundary; the diffeomorphic deformation of the domain performed in [1] (see also
[18]) to get rid of the boundary contributions inspires our construction of the equivalent problem
(37) in section 2, for which a monotonicity formula is derived in section 5.

As a byproduct of our asymptotic analysis we also obtain a unique continuation principle for
solutions of (1) vanishing with infinite order at the conical point of the boundary.

The strengths of the monotonicity formula approach are described in the note [9]: they essen-
tially rely in the sharpness of the asymptotics derived, in the possibility of allowing quite general
perturbing potentials, and in the unified approach to linear and nonlinear equations.

In subsection 1.1 we introduce notation and assumptions needed to state our main result The-
orem 1.1.

1.1. Assumptions and main results. For N > 2, let ϕ : RN−1 → R and g : SN−2 → R such
that, for some δ > 0,

ϕ(0) = 0, ϕ ∈ C2(RN−1 \ {0}),(2)

g ∈ C1(SN−2) if N > 3,(3)

sup
ν∈SN−2

∣∣∣ϕ(tν)
t

− g(ν)
∣∣∣ = O(tδ) as t→ 0+,(4)

{
supν∈SN−2

∣∣∇ϕ(tν)− g(ν)ν −∇SN−2g(ν)
∣∣ = O(tδ), if N > 3,

supν∈{−1,1}

∣∣ϕ′(tν)− g(ν)ν
∣∣ = O(tδ), if N = 2

as t→ 0+,(5)

|D2ϕ(x′)| = O(|x′|−1) as |x′| → 0.(6)

As we will show in Lemma 2.1, assumptions (2–5) imply that there exists C0 > 0 such that

(7) |ϕ(x′)−∇ϕ(x′) · x′| 6 C0|x′|1+δ for all x′ in a neighborhood of x′ = 0.

Furthermore, from (3) it follows that the function ϕ0 : RN−1 → R,

ϕ0(x
′) :=

{
|x′|g

(
x′

|x′|

)
, if x′ ∈ R

N−1 \ {0},
0, if x′ = 0,

satisfies

ϕ0 ∈ C0(RN−1) and ϕ0 ∈ C1(RN−1 \ {0}).
Hence the cone in R

N with vertex in 0 defined as

(8) C :=
{
(x′, xN ) ∈ R

N−1 × R : xN > ϕ0(x
′)
}

is open. In particular,

C = C ∩ S
N−1

is an open connected subset of SN−1.
Let Ω be an open subset of RN such that, for some R > 0,

(9) Ω ∩BR = {x = (x′, xN ) ∈ BR : xN > ϕ(x′)},
where BR denotes the ball {x ∈ R

N : |x| < R} in R
N with center at 0 and radius R, see figure 1.
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Figure 1. An example of domain Ω.

Let A : Ω → MN×N (with MN×N denoting the space of N ×N real matrices) satisfying
{
aij = (A)ij ∈W 1,∞(Ω) for all i, j = 1, . . . , N, aij = aji,

there exists CA > 0 such that A(x)ξ · ξ > CA|ξ|2 for all ξ ∈ R
N and x ∈ Ω.

(10)

We observe that under assumption (10), the functions aij are actually Lipschitz continuous func-

tions on Ω; moreover, due to symmetry and positive definiteness of A, up to some change of
variable, it is not restrictive to assume that

A(0) = IdN ,(11)

where IdN denotes the identity N ×N matrix. Let us assume

b ∈ L∞
loc(Ω,R

N ), |b(x)| = O(|x|−1+δ) as |x| → 0,(12)

h ∈ L∞
loc(Ω), h(x) = O(|x|−2+δ) as |x| → 0.(13)

It is not restrictive to assume that the positive constants δ’s of formulas (4), (5), (12), and (13)
are the same and that δ ∈ (0, 1). Let V : SN−1 → R such that





V ≡ 0, if N = 2,

LV := sup
θ,τ∈S

N−1

θ 6=τ

|V (θ)−V (τ)|
|θ−τ | < +∞ and Λ(V ) < 1, if N > 3,(14)

where, for N > 3,

(15) Λ(V ) := sup
v∈D1,2(C)\{0}

∫

C

|x|−2V (x/|x|) v2(x) dx
∫

C

|∇v(x)|2 dx

and D1,2(C) denotes the completion of C∞
c (C) with respect to the norm

‖u‖D1,2(C) :=

(∫

C

|∇u(x)|2 dx
)1/2

.

Let f : Ω× R → R such that

f ∈ C0(Ω× R), F ∈ C1(Ω× R), s 7→ f(x, s) ∈ C1(R) for a.e. x ∈ Ω,(16)

|f(x, s)s|+ |f ′s(x, s)s2|+ |∇xF (x, s)||x| 6
{
Cf (|s|2 + |s|2∗), if N > 3,

Cf (|s|2 + |s|p), for some p > 2, if N = 2,
(17)

for a.e. x ∈ Ω and all s ∈ R, where F (x, s) =
∫ s
0
f(x, t) dt, 2∗ = 2N/(N − 2) is the critical Sobolev

exponent, Cf > 0 is a constant independent of x ∈ Ω and s ∈ R, ∇xF denotes the gradient of F

with respect to the x variable, and f ′s(x, s) =
∂f
∂s (x, s).

Let µ1(V ) be the first eigenvalue of the operator LV := −∆SN−1 − V on the spherical cap
C ⊂ S

N−1 under null Dirichlet boundary conditions. By classical spectral theory, the spectrum of
the operator LV is discrete and consists in a nondecreasing diverging sequence of eigenvalues

µ1(V ) 6 µ2(V ) 6 · · · 6 µk(V ) 6 · · ·
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with finite multiplicity the first of which admits the variational characterization

(18) µ1(V ) = min
ψ∈H1

0 (C)\{0}

∫
C

[∣∣∇SN−1ψ(θ)
∣∣2 − V (θ)|ψ(θ)|2

]
dσ(θ)∫

C
|ψ(θ)|2 dσ(θ) .

Moreover µ1(V ) is simple and its associated eigenfunctions do not change sign in C.
The main result of the present paper provides an evaluation of the behavior at the corner 0 of

weak solutions u ∈ H1(Ω) to

(19)




− div(A(x)∇u(x)) + b(x) · ∇u(x)−

V
(
x
|x|

)

|x|2 u(x) = h(x)u(x) + f(x, u(x)), in Ω,

u = 0, on ∂Ω ∩BR.
Theorem 1.1. Let A,b, f, h, V as in assumptions (10–17) and let Ω satisfying (9) and (2–6). Let
u ∈ H1(Ω) \ {0} be a non-trivial weak solution to (19). Then, there exist k0 ∈ N, k0 > 1, and
an eigenfunction of the operator LV = −∆SN−1 − V associated to the eigenvalue µk0(V ) such that
‖ψ‖L2(SN−1) = 1 and

(20) λ
N−2

2 −
√
(N−2

2 )
2
+µk0

(V ) u(λx) → |x|−
N−2

2 +
√
(N−2

2 )
2
+µk0

(V )ψ

(
x

|x|

)
as λ→ 0+

in H1(B1), in C
1,α
loc (C∩B1) and in C0,α

loc (B1 \{0}) for any α ∈ (0, 1), with u being trivially extended
outside Ω.

As a direct consequence of Theorem 1.1, the following point-wise upper bound holds.

Corollary 1.2. Under the same assumptions as in Theorem 1.1, let u ∈ H1(Ω) \ {0} be a non-
trivial weak solution to (19). Then, there exists k0 ∈ N, k0 > 1, such that

u(x) = O
(
|x|−

N−2
2 +

√
(N−2

2 )
2
+µk0

(V )
)

as |x| → 0+.

A further relevant consequence of our asymptotic analysis is the following unique continuation
principle, whose proof follows straightforwardly from Theorem 1.1.

Corollary 1.3. Under the same assumptions as in Theorem 1.1, let u ∈ H1(Ω) \ {0} be a weak
solution to (19) such that u(x) = O(|x|k) as |x| → 0, for any k ∈ N. Then u ≡ 0 in Ω.

Theorem 1.1 will be proved by introducing an auxiliary equivalent problem obtained as a dif-
feomorphic deformation of the original problem (19). More precisely, letting C0 be as in (7), we
define the local diffeomorphism

(21) Ψ : RN → R
N , Ψ(y) = Ψ(y′, yN ) := (y′, yN + 2C0|y|1+δ).

If u ∈ H1(Ω) is a weak solution to (19), then w = u◦Ψ weakly solves (in the intersection of Ψ−1(Ω)
with a sufficiently small neighborhood of 0)

(22) − div(Ã(y)∇w(y)) + b̃(y) · ∇w(y)−
V
(
y
|y|

)

|y|2 w(y) = h̃(y)w(y) + f̃(y, w(y))

where

Ã(y) = | det JacΨ(y)|(JacΨ(y))−1A(Ψ(y))((JacΨ(y))T )−1,(23)

b̃(y) = | det JacΨ(y)|b(Ψ(y))((JacΨ(y))T )−1,(24)

f̃(y, s) = | det JacΨ(y)|f(Ψ(y), s),(25)

h̃(y) = | det JacΨ(y)|h(Ψ(y)) + | det JacΨ(y)|
(
V
( Ψ(y)
|Ψ(y)|

)

|Ψ(y)|2 −
V
(
y
|y|

)

|y|2

)
(26)

+
(
| det JacΨ(y)| − 1

)V
(
y
|y|

)

|y|2 .

For the auxiliary problem (22) an Almgren monotonicity formula is used to describe the rate and the
shape of the singularity of solutions, by relating them to the eigenvalues and the eigenfunctions
of the angular operator LV on the spherical cap C. The behavior of solutions of the auxiliary
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problem (22) (and then of the original one (1)) near the corner is indeed classified on the basis of
the limit of the following Almgren type frequency function

N (r) =
r
∫
Ψ−1(Ω)∩Br

(
Ã∇w · ∇w + b̃ · ∇ww − V ( y

|y|
)

|y|2 |w|2 − h̃w2 − f̃(y, w)w
)
dy

∫
Ψ−1(Ω)∩∂Br

Ã(y)y·y
|y|2 w2(y) dσ(y)

,(27)

which is defined for r > 0 sufficiently small (see (110) and (134)).

Theorem 1.4. Let A,b, f, h, V as in assumptions (10–17) and let Ω satisfying (9) and (2–6). Let
u ∈ H1(Ω) \ {0} be a non-trivial weak solution to (19) and w = u ◦ Ψ with Ψ as in (21). Letting
N as in (27), there exists k0 ∈ N, k0 > 1, such that

lim
r→0+

N (r) = −N − 2

2
+

√(
N − 2

2

)2
+ µk0(V ).

Furthermore there exists ψ ∈ H1
0 (C) ⊂ H1(SN−1) eigenfunction of the operator LV = −∆SN−1 −V

associated to the eigenvalue µk0(V ) such that

(28) λ
N−2

2 −
√
(N−2

2 )
2
+µk0

(V )w(λx) → |x|−
N−2

2 +
√
(N−2

2 )
2
+µk0

(V )ψ

(
x

|x|

)
as λ→ 0+

in H1(B1) and in C1,α
loc (C ∩B1) for any α ∈ (0, 1).

Furthermore, Theorem 7.6 will provide more precise informations on the limit angular profile ψ:
if m > 1 is the multiplicity of the eigenvalue µk0(V ) and {ψi : j0 6 i 6 j0 +m − 1} is an L2(C)-
orthonormal basis for the eigenspace associated to µk0(V ), then the eigenfunction ψ in (28) (which
coincides with the one appearing in (20), as clarified in the proof of Theorem 1.1, see section 7)
can be written as

ψ(θ) =

j0+m−1∑

i=j0

βiψi(θ),

where the coefficients βi can be represented in terms of the Cauchy’s integral type formula (215).
We emphasize that our monotonicity approach allows excluding the presence of logarithmic

factors in the leading term of the asymptotic expansion; we refer to [9] for a detailed comparison
between the monotonicity approach to asymptotic analysis and the results obtained in earlier
literature (see e.g. [5, 6, 11, 13, 14, 17, 22, 23]) by integral representation and Mellin transform
methods.

In section 8 we produce an example in dimension N = 2 of a harmonic function on a domain
with a corner of any amplitude and delimited by arcs violating assumptions (4–5), satisfying
null Dirichlet boundary conditions but exhibiting dominant logarithmic terms in its asymptotic
expansion. Hence assumptions (4–5) are crucial for excluding the presence of logarithms, even
under null boundary conditions. Besides the failure of conditions (4–5), other possible reasons of
occurring of logarithms in the expansion could be boundary conditions (even if very regular when
the amplitude is resonant, see [14, 22]) or lack of linearity with respect to the first derivatives of
u, see [23].

Notation. We list below some notation used throughout the paper.

- For all r > 0, Br denotes the ball {x ∈ R
N : |x| < r} in R

N with center at 0 and radius r.
- MN×N denotes the space of N ×N real matrices.
- IdN denotes the identity N ×N matrix .
- For every vector field Ψ ∈ C1(RN ,RN ), JacΨ denotes the Jacobian matrix.

2. An equivalent problem

In this section we construct an auxiliary equivalent problem by a diffeomorphic deformation of
the domain.

Lemma 2.1. Under assumptions (2–5), there exists C0 > 0 such that (7) holds.
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Proof. From (4) and (5), we can estimate, for N > 3,

|ϕ(x′)−∇ϕ(x′) · x′| 6 |x′|
∣∣∣ϕ(x

′)
|x′| − g

(
x′

|x′|

)∣∣∣+ |x′|
∣∣∣
(
∇ϕ(x′)− g

(
x′

|x′|

)
x′

|x′|

)
· x′

|x′|

∣∣∣

= |x′|
∣∣∣ϕ(x

′)
|x′| − g

(
x′

|x′|

)∣∣∣+ |x′|
∣∣∣
(
∇ϕ(x′)− g

(
x′

|x′|

)
x′

|x′| −∇SN−2g
(
x′

|x′|

))
· x′

|x′|

∣∣∣ = O(|x′|1+δ)

as |x′| → 0+ thus proving (7). The proof for N = 2 is similar. �

We notice that the function Ψ defined in (21) satisfies Ψ ∈ C1(RN ,RN ),

JacΨ(y′, yN ) =




1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

2C0
1+δ

|y|1−δ y1 2C0
1+δ

|y|1−δ y2 · · · 2C0
1+δ

|y|1−δ yN−1 1 + 2C0
1+δ

|y|1−δ yN




for all (y′, yN ) 6= 0, and JacΨ(0) = IdN . Hence there exists a bounded neighborhood U ⊂ R
N of

0 such that the restriction Ψ
∣∣
U
: U → Ψ(U) is a C1-diffeomorphism. Let us denote as

(29) Ω̃ := Ψ−1(Ω ∩Ψ(U))

and let us consider the function

(30) ϕ̃(y′) = Ψ−1(y′, ϕ(y′)) · eN , eN = (0, 0, · · · , 0, 1),
which is well defined in a sufficiently small neighborhood of 0 in R

N−1.

Lemma 2.2. There exists R̃ > 0 such that

(31) ϕ̃(y′) + 2C0

(
|y′|2 + |ϕ̃(y′)|2

) 1+δ
2 = ϕ(y′) for all y′ ∈ R

N−1, |y′| < R̃,

and

(32) Ω̃ ∩BR̃ = {(y′, yN ) ∈ BR̃ : yN > ϕ̃(y′)}.
Proof. From the definition of ϕ̃ we have that

Ψ−1(y′, ϕ(y′)) = (y′, ϕ̃(y′)), i.e. (y′, ϕ(y′)) = Ψ(y′, ϕ̃(y′))

for all y′ ∈ R
N−1 such that (y′, ϕ(y′)) ∈ Ψ(U), which implies (31) for some R̃ > 0 sufficiently small.

To prove (32) we observe that there exists R0 > 0 such that for every fixed x′ ∈ R
N−1, |x′| < R0,

the function

t ∈ (−R0, R0) 7→ Ψ−1(x′, t) · eN
is strictly increasing with respect to t, since its derivative

d

dt

(
Ψ−1(x′, t) · eN

)
=

1

1 + 2C0(1 + δ)|Ψ−1(x′, t)|−1+δΨ−1(x′, t) · eN
is strictly positive provided R0 is sufficiently small. In particular, letting x = Ψ(y) in a sufficiently
small neighborhood of 0, xN > ϕ(x′) if and only if Ψ−1(x′, xN ) · eN > Ψ−1(x′, ϕ(x′)) · eN and
hence if and only if yN > ϕ̃(y′), which, in view of (9) yields the conclusion. �

Remark 2.3. From assumption (4) and (31), it follows that

(33) sup
ν∈SN−2

∣∣∣ ϕ̃(tν)
t

− g(ν)
∣∣∣ = O(tδ) as t→ 0+,

which implies

(34) |ϕ̃(y′)− ϕ0(y
′)| = O(|y′|1+δ) as |y′| → 0+.

Furthermore, from assumption (5) and (31), there also holds

(35) |∇ϕ̃(y′)−∇ϕ0(y
′)| = O(|y′|δ) as |y′| → 0+,

whereas assumption (6) implies that

(36) |D2ϕ̃(y′)| = O(|y′|−1) as |y′| → 0.
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If u ∈ H1(Ω) is a weak solution to (19), then w = u ◦ Ψ ∈ H1(Ω̃) is, up to shrinking R̃ > 0, a
weak solution to

(37)




− div(Ã(y)∇w(y)) + b̃(y) · ∇w(y)−

V
(
y
|y|

)

|y|2 w(y) = h̃(y)w(y) + f̃(y, w(y)), in Ω̃,

w = 0, on ∂Ω̃ ∩BR̃,

where Ã, b̃, h̃, f̃ are as in (23–26).

Lemma 2.4. Let A,b,Ψ, f, h, V as in assumptions (10–17), (21), and Ã, b̃, f̃ , h̃ as (23–26). Then




Ã ∈ C0(Ω̃,MN×N ), Ã ∈W 1,∞
loc (Ω̃ \ {0},MN×N ), Ã(0) = IdN , (Ã)ij = (Ã)ji,

Ã(y)ξ · ξ > CÃ|ξ|2 for all ξ ∈ R
N , y ∈ Ω̃, and some CÃ > 0,

‖dÃ(y)‖L(RN ,MN×N ) = O(|y|−1+δ) and Ã(y)− IdN = O(|y|δ) as |y| → 0,

(38)

b̃ ∈ L∞
loc(Ω̃,R

N ), |b̃(y)| = O(|y|−1+δ) as |y| → 0,(39)

f̃ ∈ C0(Ω̃× R), F̃ ∈ C1(Ω̃× R), s 7→ f̃(y, s) ∈ C1(R) for a.e. y ∈ Ω̃,(40)

|f̃(y, s)s|+ |f̃ ′s(y, s)s2|+ |∇yF̃ (y, s)||y| 6
{
Cf̃ (|s|2 + |s|2∗), if N > 3,

Cf̃ (|s|2 + |s|p), if N = 2,
(41)

h̃ ∈ L∞
loc(Ω̃), h̃(y) = O(|y|−2+δ) as |y| → 0,(42)

where F̃ (y, s) =
∫ s
0
f̃(y, t) dt = | det JacΨ(y)|F (Ψ(y), s).

Proof. Estimates (38–41) follow from (23–25), (27–28), and assumptions (10–12), (16–17). To
prove estimate (42), we first observe that (13) implies | det JacΨ(y)|h(Ψ(y)) = O(|y|−2+δ) as
|y| → 0. From (14) and

|Ψ(y)| = |y|(1 +O(|y|δ)), Ψ(y) = y +O(|y|1+δ) as |y| → 0,

it follows that
∣∣∣∣∣
V
( Ψ(y)
|Ψ(y)|

)

|Ψ(y)|2 −
V
(
y
|y|

)

|y|2

∣∣∣∣∣ 6
∣∣∣∣∣
V
( Ψ(y)
|Ψ(y)|

)
− V

(
y
|y|

)

|Ψ(y)|2

∣∣∣∣∣+
∣∣∣∣∣V
(
y
|y|

)( 1

|Ψ(y)|2 − 1

|y|2
)∣∣∣∣∣

6
LV

|y|2(1 +O(|y|δ))

∣∣∣∣
Ψ(y)

|y|(1 +O(|y|δ)) −
y

|y|

∣∣∣∣+ ‖V ‖L∞(SN−1)

∣∣∣∣
1

|y|2(1 +O(|y|δ)) −
1

|y|2
∣∣∣∣

=
LV

|y|2(1 +O(|y|δ))
|Ψ(y)− y +O(|y|1+δ)|

|y|(1 +O(|y|δ)) + ‖V ‖L∞(SN−1)
O(|y|δ)

|y|2(1 +O(|y|δ)) = O(|y|−2+δ),

which, taking into account that | det JacΨ(y)| = 1 +O(|y|δ) as |y| → 0, yields (42). �

Lemma 2.5. Let A as in assumptions (10–11) and Ã as in (23). Then

(Ã(y)y)i =




yi +O(|y|2), if 1 6 i 6 N − 1,

yN − 2C0(1 + δ)|y|−1+δ|y′|2
1 + 2C0(1 + δ)|y|−1+δyN

+O(|y|2), if i = N,

as y → 0.

Proof. The proof follows from (27–28), direct calculations and the estimate

|aij(Ψ(y))− δij | = O(|y|) as |y| → 0,

which is a consequence of (10) and (11). �

Let us consider the exterior unit normal ν̃ to ∂Ω̃ ∩BR̃. From (31) and (32), it follows that

ν̃(y′, yN ) =
(∇ϕ̃(y′),−1)√
|∇ϕ̃(y′)|2 + 1

=
1√

|∇ϕ̃(y′)|2 + 1

(∇ϕ(y′)− 2C0(1 + δ)|y|−1+δy′

1 + 2C0(1 + δ)|y|−1+δyN
,−1

)
.(43)
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Lemma 2.6. Let A as in assumptions (10–11), Ã as in (23), Ω̃ as in (29) with Ω satisfying (9),

(2–5), and ν̃ as in (43). Then Ã(y)y · ν̃(y) > 0 for all y ∈ (∂Ω̃∩Br) \ {0} provided r is sufficiently
small.

Proof. Taking into account that yN = ϕ̃(y′) and |y′|2+ |ϕ̃(y′)|2 = |y|2 on ∂Ω̃∩BR̃, from Lemma
2.5, (43), and (31), we deduce that

(
√

|∇ϕ̃(y′)|2 + 1)Ã(y)y · ν̃(y) = y′ · ∇ϕ(y′)− yN
1 + 2C0(1 + δ)|y|−1+δyN

+O(|y|2)

=
y′ · ∇ϕ(y′)− ϕ(y′) + 2C0|y|1+δ

1 + 2C0(1 + δ)|y|−1+δyN
+O(|y|2).

Hence Lemma 2.1 yields

(
√

|∇ϕ̃(y′)|2 + 1)Ã(y)y · ν̃(y) > C0|y|1+δ
1 + 2C0(1 + δ)|y|−1+δyN

+O(|y|2) > 0

provided |y| is sufficiently small. �

The above lemma ensures that, under assumptions (2–5), (9–11), (29), and (23), up to shrinking

R̃ > 0 there holds

(44) Ã(y)y · ν̃(y) > 0 for all y ∈ (∂Ω̃ ∩BR̃) \ {0}.

3. Hardy type inequalities (N > 3)

Throughout this section we assumeN > 3. The following lemma establishes the relation between
the values Λ(V ) defined in (15) and µ1(V ) defined in (18) and the positivity of the quadratic form
associated with the principal part of the elliptic operator on the limit domain C defined in (8).

Lemma 3.1. If N > 3 and V ∈ L∞(SN−1), then the following conditions are equivalent:

i) inf
u∈D1,2(C)\{0}

∫
C |∇v(x)|2dx−

∫
C
V (x/|x|)

|x|2 v2(x) dx
∫
C |∇v(x)|2 dx

> 0;

ii) Λ(V ) < 1;

iii) µ1(V ) > −
(
N−2
2

)2
.

Proof. The equivalence between i) and ii) follows from the definition of Λ(V ), see (15). The
equivalence between i) and iii) can be proved arguing as in [19, Proposition 1.3 and Lemma 1.1]. �

Let Ω̃ be as in (29) with Ω satisfying (9) and (2–5), and ϕ̃ be as (30). For every r ∈ (0, R̃) let
us denote

Cr = S
N−1 ∩

(
1
r Ω̃
)
= {(y′, yN ) ∈ S

N−1 : yN > r−1ϕ̃(ry′)}(45)

and, for V ∈ L∞(SN−1), let us consider the first eigenvalue µ1(V, r) of the operator −∆SN−1 − V
on the spherical cap Cr under null Dirichlet boundary conditions, i.e.

(46) µ1(V, r) = min
ψ∈H1

0 (Cr)\{0}

∫
Cr

[∣∣∇SN−1ψ(θ)
∣∣2 − V (θ)|ψ(θ)|2

]
dσ(θ)∫

Cr
|ψ(θ)|2 dσ(θ) .

We also define

(47) Λ(V, r) = max
ψ∈H1

0 (Cr)\{0}

∫
Cr
V (θ)|ψ(θ)|2 dσ(θ)

∫
Cr

[∣∣∇SN−1ψ(θ)
∣∣2 +

(
N−2
2

)2|ψ(θ)|2
]
dσ(θ)

.

Lemma 3.2. Let N > 3, V ∈ L∞(SN−1), µ1(V, r) be defined in (46), µ1(V ) in (18), Λ(V, r) in
(47), and Λ(V ) in (15). Then

(48) lim
r→0+

µ1(V, r) = µ1(V )

and

(49) lim
r→0+

Λ(V, r) = Λ(V ).
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Proof. We first claim that

(50) for every ψ ∈ C∞
c (C) there exists r0 > 0 such that suppψ ⊆ Cr for all r ∈ (0, r0).

To prove the claim, let us consider ψ ∈ C∞
c (C) and denote K = suppψ. Since K is compact, we

have that
δ = min

(y′,yN )∈K
(yN − ϕ0(y

′)) > 0.

From (33), there exists r0 such that
∣∣∣ ϕ̃(tν)

t
− g(ν)

∣∣∣ < δ for all t ∈ (0, r0) and for all ν ∈ S
N−2.

Then for all r ∈ (0, r0) and (y′, yN ) ∈ K we have that
∣∣∣∣ϕ0(y

′)− ϕ̃(ry′)

r

∣∣∣∣ = |y′|
∣∣∣∣
ϕ̃(ry′)

r|y′| − g
( y′
|y′|
)∣∣∣ < δ

and hence

yN − ϕ̃(ry′)

r
> (yN − ϕ0(y

′))−
∣∣∣∣ϕ0(y

′)− ϕ̃(ry′)

r

∣∣∣∣ > δ −
∣∣∣∣ϕ0(y

′)− ϕ̃(ry′)

r

∣∣∣∣ > 0

which implies that K ⊆ Cr for all r ∈ (0, r0), thus proving claim (50).
From (50) it follows that for every ψ ∈ C∞

c (C) there exists r0 > 0 such that, for all r ∈ (0, r0),

µ1(V, r) 6

∫
Cr

[∣∣∇SN−1ψ(θ)
∣∣2 − V (θ)|ψ(θ)|2

]
dσ(θ)∫

Cr
|ψ(θ)|2 dσ(θ) =

∫
C

[∣∣∇SN−1ψ(θ)
∣∣2 − V (θ)|ψ(θ)|2

]
dσ(θ)∫

C
|ψ(θ)|2 dσ(θ) .

Hence

lim sup
r→0+

µ1(V, r) 6

∫
C

[∣∣∇SN−1ψ(θ)
∣∣2 − V (θ)|ψ(θ)|2

]
dσ(θ)∫

C
|ψ(θ)|2 dσ(θ)

for all ψ ∈ C∞
c (C). By density of C∞

c (C) in H1
0 (C), we conclude that

lim sup
r→0+

µ1(V, r) 6 µ1(V ).

To prove (48), it remains to show that

(51) lim inf
r→0+

µ1(V, r) > µ1(V ).

Arguing by contradiction, let us assume that (51) fails, then there exists {rn}n∈N ⊂ (0, R̃) such
that limn→+∞ rn = 0 and limn→+∞ µ1(V, rn) < µ1(V ). For all n, let ψn ∈ H1

0 (Crn) such that

µ1(V, rn) =

∫

Crn

[∣∣∇SN−1ψn(θ)
∣∣2 − V (θ)|ψn(θ)|2

]
dσ(θ) and

∫

Crn

|ψn(θ)|2 dσ(θ) = 1.

Let us identify ψn with its trivial extension in S
N−1 which belongs to H1(SN−1). It is easy to

verify that {ψn}n∈N is bounded inH1(SN−1) so that there exists a subsequence ψnk
weakly and a.e.

converging to some ψ in H1(SN−1). By compactness of the embedding H1(SN−1) →֒ L2(SN−1),
we have that

∫
SN−1 ψ

2 = 1 and by weakly lower semicontinuity

(52)

∫

SN−1

[∣∣∇SN−1ψ(θ)
∣∣2 − V (θ)|ψ(θ)|2

]
dσ(θ)

6 lim inf
k→∞

∫

SN−1

[∣∣∇SN−1ψnk
(θ)
∣∣2 − V (θ)|ψnk

(θ)|2
]
dσ(θ) = lim inf

k→∞
µ1(V, rnk

) < µ1(V ).

By a.e. convergence of ψnk
to ψ, it is easy to verify that ψ ∈ H1

0 (C) thus implying that

µ1(V ) 6

∫

SN−1

[∣∣∇SN−1ψ(θ)
∣∣2 − V (θ)|ψ(θ)|2

]
dσ(θ)

giving rise to a contradiction with (52). (48) is thereby proved. The proof of (49) can be derived
in similar way after observing that

Λ(V ) = max
ψ∈H1

0 (C)\{0}

∫
C
V (θ)|ψ(θ)|2 dσ(θ)

∫
C

[∣∣∇SN−1ψ(θ)
∣∣2 +

(
N−2
2

)2|ψ(θ)|2
]
dσ(θ)

,

see [19, Lemma 1.1]. �
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We extend to singular potentials on corner sets the Hardy type inequality with boundary terms
proved by Wang and Zhu in [21]. For every r ∈ (0, R̃) let us denote

Ωr = Ω̃ ∩Br, Sr = (∂Br) ∩ Ω̃, Γr = (∂Ω̃) ∩Br,(53)

so that ∂Ωr = Sr ∪ Γr.

Lemma 3.3. Let N > 3 and V ∈ L∞(SN−1). For every r ∈ (0, R̃) and v ∈ H1(Ωr) such that
v = 0 on Γr, the following inequality holds

(54)

∫

Ωr

(
|∇v(y)|2 −

V ( y|y| )

|y|2 v2(y)

)
dy +

N − 2

2r

∫

Sr

v2(y) dσ

>

∫

Ωr

((
N − 2

2

)2
+ µ1(V, |y|)

)
v2(y)

|y|2 dy.

Proof. Let v ∈ C∞
c (Ω̃ ∩ Br) for some r ∈ (0, R̃). Passing to polar coordinates and denoting as

ṽ the trivial extension of v in Br, we have that ṽ ∈ C∞(Br) and

∫

Ωr

(
|∇v(y)|2 −

V ( y|y| )

|y|2 v2(y)

)
dy +

N − 2

2r

∫

Sr

v2(y) dσ(55)

=

∫ r

0

(
sN−1

∫

Cs

|∂sv(s, θ)|2 dσ(θ)
)
ds+

N − 2

2r
rN−1

∫

Cr

v2(r, θ) dσ(θ)

+

∫ r

0

(
sN−3

∫

Cs

[
|∇SN−1v(s, θ)|2 − V (θ)v2(s, θ)

]
dσ(θ)

)
ds

=

∫

SN−1

(∫ r

0

sN−1|∂sṽ(s, θ)|2 ds
)
dσ(θ) +

N − 2

2r
rN−1

∫

SN−1

ṽ2(r, θ) dσ(θ)

+

∫ r

0

(
sN−3

∫

Cs

[
|∇SN−1v(s, θ)|2 − V (θ)v2(s, θ)

]
dσ(θ)

)
ds.

For all θ ∈ S
N−1, let ϕθ ∈ C∞(0, r) be defined by ϕθ(r) = ṽ(r, θ), and ϕ̃θ ∈ C∞(Br) be the radially

symmetric function given by ϕ̃θ(x) = ϕθ(|x|). We notice that 0 6∈ supp ϕ̃θ. The Hardy inequality
with boundary term proved in [21] yields

∫

SN−1

(∫ r

0

sN−1|∂sṽ(s, θ)|2 ds
)
dσ(θ) +

N − 2

2r
rN−1

∫

SN−1

ṽ2(r, θ) dσ(θ)(56)

=
1

ωN−1

∫

SN−1

(∫

Br

|∇ϕ̃θ(x)|2 dx+
N − 2

2r

∫

∂Br

|ϕ̃θ(x)|2 dσ
)
dσ(θ)

>
1

ωN−1

(
N − 2

2

)2 ∫

SN−1

(∫

Br

|ϕ̃θ(x)|2
|x|2 dx

)
dσ(θ)

=

(
N − 2

2

)2 ∫

SN−1

(∫ r

0

sN−1

s2
ṽ2(s, θ) ds

)
dσ(θ) =

(
N − 2

2

)2 ∫

Ωr

v2(x)

|x|2 dx,

where ωN−1 denotes the volume of the unit sphere S
N−1, i.e. ωN−1 =

∫
SN−1 dσ(θ). On the other

hand, from the definition of µ1(V, s), see (46), it follows that, for every s ∈ (0, r),

(57)

∫

Cs

(
|∇SN−1v(s, θ)|2 − V (θ)v2(s, θ)

)
dσ(θ) > µ1(s, V )

∫

Cs

v2(s, θ) dσ(θ).

From (55), (56), and (57), we deduce that

∫

Ωr

(
|∇v(y)|2 −

V ( y|y| )

|y|2 v2(y)

)
dy +

N − 2

2r

∫

Sr

v2(y) dσ >

∫

Ωr

[(
N − 2

2

)2
+ µ1(|x|, V )

]
v2(x)

|x|2 dx

for all v ∈ C∞
c (Ω̃ ∩ Br), which, by density, yields the stated inequality for all H1(Ωr)-functions

vanishing on Γr. �
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Corollary 3.4. Let N > 3 and V ∈ L∞(SN−1) such that Λ(V ) < 1, where Λ(V ) is defined in

(15). Then, there exist R0 ∈ (0, R̃) and CN,V > 0 such that, for every r ∈ (0, R0) and v ∈ H1(Ωr)
such that v = 0 on Γr, the following inequalities hold

(58)

∫

Ωr

(
|∇v(y)|2 −

V ( y|y| )

|y|2 v2(y)

)
dy +

N − 2

2r

∫

Sr

v2(y)dσ >
1

2

((
N − 2

2

)2
+ µ1(V )

)∫

Ωr

v2(y)

|y|2 dy,

(59)

∫

Ωr

(
|∇v(y)|2 −

V ( y|y| )

|y|2 v2(y)

)
dy +

1 + Λ(V )

2

N − 2

2r

∫

Sr

v2(y)dσ >
1− Λ(V )

2

∫

Ωr

|∇v(y)|2 dy,

and
∫

Ωr

(
|∇v(y)|2 −

V ( y|y| )

|y|2 v2(y)

)
dy +

N − 2

2r

Λ(V ) + 3

4

∫

Sr

v2(y) dσ(60)

> CN,V

(∫

Ωr

(
|∇v(y)|2 + v2(y)

|y|2
)
dy + ‖v‖2L2∗ (Ωr)

)
.

Proof. Inequality (58) follows from Lemmas 3.2 and 3.3. To prove (59) we observe that if

R0 is sufficiently small, then, by (49) and assumption (14), Λ(V, r) < Λ(V )+1
2 for all r ∈ (0, R0).

Consequently for all v ∈ C∞
c (Ω̃ ∩Br) with r ∈ (0, R0), from (47) and (56), it follows

∫

Ωr

V ( y|y| )

|y|2 v2(y) dy =

∫ r

0

sN−3

(∫

Cs

V (θ)v2(s, θ) dσ(θ)

)
ds

6

∫ r

0

sN−3Λ(V, s)

(∫

Cs

[∣∣∇SN−1v(s, θ)
∣∣2 +

(N − 2

2

)2
|v(s, θ)|2

]
dσ(θ)

)
ds

6
Λ(V ) + 1

2

∫ r

0

sN−3

(∫

Cs

[∣∣∇SN−1v(s, θ)
∣∣2 +

(N − 2

2

)2
|v(s, θ)|2

]
dσ(θ)

)
ds

6
Λ(V ) + 1

2

∫ r

0

(
sN−3

(∫

Cs

∣∣∇SN−1v(s, θ)
∣∣2dσ(θ)

)
+ sN−1

(∫

Cs

|∂sṽ(s, θ)|2dσ(θ)
))

ds

+
Λ(V ) + 1

2

N − 2

2r
rN−1

∫

Cr

v2(r, θ) dσ(θ)

=
Λ(V ) + 1

2

(∫

Ωr

|∇v(y)|2 dy + N − 2

2r

∫

Sr

v2(y) dy

)

which yields (59) by density. From summation of (58) and (59) and Sobolev embeddings, it follows
that, for every r ∈ (0, R0) and v ∈ H1(Ωr) such that v = 0 on Γr,

(61)

∫

Ωr

(
|∇v(y)|2 −

V ( y|y| )

|y|2 v2(y)

)
dy +

N − 2

2r

3 + Λ(V )

4

∫

Sr

v2(y) dσ

>
S̃N
4

min

{(
N − 2

2

)2
+ µ1(V ), 1− Λ(V )

}(∫

Ωr

|v(y)|2∗ dy
)2/2∗

,

where S̃N > 0 is the best constant of the Sobolev embedding H1(B1) ⊂ L2∗(B1). By summing up
(58), (59), (61), we conclude that (60) holds with

CN,V =
min

{
1, S̃N/2

}
min

{(
N−2
2

)2
+ µ1(V ), 1− Λ(V )

}

6
.

�

Repeating the same arguments carried out in this section for the family of domains Ωr, we can
prove analogous estimates on the domains Ωr ∪ C.

Corollary 3.5. Under the same assumptions as in Corollary 3.4, there exists R̃0 such that for

every r ∈ (0, R̃0) and v ∈ H1(Ωr ∪ C) such that v = 0 on ∂(Ωr ∪ C) ∩ Br, the following inequality
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holds
∫

Ωr∪C

(
|∇v(y)|2 −

V ( y|y| )

|y|2 v2(y)

)
dy +

N − 2

2r

Λ(V ) + 3

4

∫

(Ω̃∪C)∩∂Br

v2(y) dσ

> CN,V

(∫

Ωr∪C

(
|∇v(y)|2 + v2(y)

|y|2
)
dy + ‖v‖2L2∗ (Ωr∪C)

)
.

4. A Brezis-Kato type estimate in dimension N > 3

Throughout this section, we assume Ã, b̃, h̃ as in (23), (24), (26) with A,b,Ψ, h, V as in as-

sumptions (10–15), (21), and let Ω̃ as in (29) with Ω satisfying (9) and (2–5). We also assume that

W ∈ L1
loc(Ω̃) satisfies the form-bounded condition

sup
v∈H1(Ω̃)\{0}

∫
Ω̃
|W (y)|v2(y) dy
‖v‖2

H1(Ω̃)

< +∞,

see [16]. The above condition in particular implies that for every v ∈ H1(Ω̃), Wv ∈ H−1(Ω̃). Let

w ∈ H1(Ω̃) \ {0} be a weak solution to

(62)




− div(Ã(y)∇w(y)) + b̃(y) · ∇w(y)−

V
(
y
|y|

)

|y|2 w(y) = h̃(y)w(y) +W (y)w(y), in Ω̃,

w = 0, on ∂Ω̃ ∩BR̃.

Proposition 4.1. Let N > 3 and let w be a weak solution of (62). If W+ ∈ LN/2(Ω̃), letting

qlim :=

{
2∗

2 min
{

8
Λ(V )+1 − 2, 2∗

}
, if Λ(V ) > 0,

(2∗)2

2 , if Λ(V ) = 0,

then for every 1 6 q < qlim there exists rq > 0 depending on q,N, Ã, b̃, V, h̃ such that w ∈ Lq(Ωrq )
with Ωrq as in (53).

Proof. For any 2 < τ < 2
2∗ qlim define C(τ) := 4

τ+2 and let ℓτ > 0 be large enough so that

(63)

( ∫

Ω̃∩{W+(y)>ℓτ}

W
N
2

+ (y) dy

)2
N

<
SN (2C(τ)− Λ(V )− 1)

4

where

SN = inf
φ∈D1,2(RN )\{0}

∫
RN |∇φ(y)|2dy

(∫
RN |φ(y)|2∗dy

)2/2∗ .

For any φ ∈ H1
0 (Ω̃), by Hölder and Sobolev inequalities and (63), we have

∫

Ω̃

W (y)|φ(y)|2 dy 6 ℓτ

∫

Ω̃

|φ(y)|2 dy +
( ∫

Ω̃∩{W+(y)>ℓτ}

W
N
2

+ (y) dy

)2
N
(∫

Ω̃

|φ(y)|2∗ dy
)2

2∗

(64)

6 ℓτ

∫

Ω̃

|φ(y)|2 dy + 2C(τ)− Λ(V )− 1

4

∫

Ω̃

|∇φ(y)|2 dy.

Let r ∈ (0, R̃) small to chosen later and η ∈ C∞
c (Br) be such that η ≡ 1 in Br/2. Let us define

v(y) := η(y)w(y) ∈ H1
0 (Ωr). Then v is a H1(Ωr)-weak solution of the equation

(65) − div(Ã(y)∇v(y)) + b̃(y) · ∇v(y)−
V ( y|y| )

|y|2 v(y) = h̃(y)v(y) +W (y)v(y) + g(y), in Ωr,

where g(y) = − div(Ã(y)∇η(y))w(y)−2Ã(y)∇w(y) ·∇η(y)+(b̃(y) ·∇η(y))w(y) ∈ L2(Ωr). For any
n ∈ N, n > 1, let us define the function vn := min{|v|, n}. Testing (65) with (vn)τ−2v ∈ H1

0 (Ωr)
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we obtain

(66)

∫

Ωr

(vn(y))τ−2Ã(y)∇v(y) · ∇v(y) dy

+ (τ − 2)

∫

Ωr

(vn(y))τ−3|v(y)|χ{|v(y)|<n}(y)Ã(y)∇v(y) ·∇v(y) dy −
∫

Ωr

V ( y|y| )

|y|2 (vn(y))τ−2v2(y) dy

= −
∫

Ωr

(b̃(y) · ∇v(y))(vn(y))τ−2v(y) dy +

∫

Ωr

h̃(y)(vn(y))τ−2v2(y) dy

+

∫

Ωr

W (y)(vn(y))τ−2v2(y) dy +

∫

Ωr

g(y)(vn(y))τ−2v(y) dy.

We observe that the following identities hold true

(67)




Ã∇((vn)

τ
2−1v)·∇((vn)

τ
2−1v) = (vn)τ−2Ã∇v ·∇v + (τ−2)(τ+2)

4 (vn)τ−2χ{|v|<n}Ã∇v ·∇v,

|∇((vn)
τ
2 −1v)|2 = (vn)τ−2|∇v|2 + (τ−2)(τ+2)

4 (vn)τ−2χ{|v|<n}|∇v|2.

By (39), (67), Hölder and Hardy inequalities, we have

∣∣∣∣
∫

Ωr

(b̃(y) · ∇v(y))(vn(y))τ−2v(y) dy

∣∣∣∣ 6 C
b̃

∫

Ωr

|∇v(y)| (v
n(y))τ−2|v(y)|

|y|1−δ dy(68)

6 C
b̃
rδ
(∫

Ωr

(vn(y))τ−2|∇v(y)|2dy
)1/2(∫

Ωr

((vn(y))
τ
2−1v(y))2

|y|2 dy

)1/2

6
2C

b̃

N − 2
rδ
∫

Ωr

|∇((vn(y))
τ
2−1v(y))|2dy

for some positive constant C
b̃
depending only on b̃.

Then by (66), (59) applied to the function (vn)
τ
2 −1v, (64) applied to φ = (vn)

τ
2−1v, (68), (38),

(42) and classical Hardy inequality, we obtain

C(τ)(1−KÃ r
δ)

∫

Ωr

|∇((vn(y))
τ
2−1v(y))|2 dy(69)

6

∫

Ωr

V ( y|y| )

|y|2 ((vn(y))
τ
2−1v(y))2 dy −

∫

Ωr

(b̃(y) · ∇v(y))(vn(y))τ−2v(y) dy +

∫

Ωr

h̃(y)((vn(y))
τ
2−1v(y))2 dy

+

∫

Ωr

W (y)((vn(y))
τ
2−1v(y))2 dy +

∫

Br

g(y)(vn(y))τ−2v(y) dy

6

[
Λ(V ) + 1

2
+

2C
b̃

N − 2
rδ + Ch̃

(
2

N − 2

)2
rδ +

2C(τ)− Λ(V )− 1

4

] ∫

Ωr

|∇((vn(y))
τ
2 −1v(y))|2 dy

+ℓτ

∫

Ωr

(vn(y))τ−2(v(y))2 dy +

∫

Ωr

|g(y)|(vn(y))τ−2|v(y)| dy ,

for some positive constants KÃ depending on Ã and Ch̃ depending on h̃.
Arguing as in [9, Proposition 2.3], we can easily estimate

(70)

∫

Ωr

|g(y)|(vn(y))τ−2|v(y)| dy

6
1

τ
‖g‖τL2(Ωr)

+
τ − 1

τ

(
ωN−1

N

) τ
2(τ−1)

− 2
2∗

r
Nτ

2(τ−1)
−N+2S−1

N

∫

Ωr

|∇((vn(y))
τ
2 −1v(y))|2 dy.
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Inserting (70) into (69) and using Sobolev embedding, we obtain

SN

[
2C(τ)− Λ(V )− 1

4
−
(
C(τ)KÃ +

2C
b̃

N − 2
+ Ch

( 2

N − 2

)2)
rδ(71)

− τ − 1

τ

(
ωN−1

N

) τ
2(τ−1)

− 2
2∗

r
Nτ

2(τ−1)
−N+2S−1

N

](∫

Ωr

|(vn(y)) τ
2−1v(y)|2∗ dy

)2/2∗

6
1

τ
‖g‖τL2(Ωr)

+ ℓτ

∫

Ωr

(vn(y))τ−2(v(y))2 dy.

Since τ < 2
2∗ qlim then 2C(τ) − Λ(V ) − 1 is positive and Nτ

2(τ−1) − N + 2 is also positive. Hence

we may fix r small enough in such a way that the left hand side of (71) becomes positive. Since
v ∈ Lτ (Br), letting n → +∞, the right hand side of (71) remains bounded and hence by Fatou

Lemma we infer that v ∈ L
2∗

2 τ (Br). Since η ≡ 1 in Br/2 we may conclude that w ∈ L
2∗

2 τ (Br/2).
This completes the proof of the lemma. �

5. The monotonicity formula

Let Ã, b̃, f̃ , h̃ be as in (23–26) with A,b,Ψ, f, h, V as in assumptions (10–17), (21). Let Ω̃ be

as in (29) with Ω satisfying (9) and (2–5). Let w ∈ H1(Ω̃) \ {0} be a non-trivial weak solution
to (37).

For every r ∈ (0, R̃) let us define

D(r) =
1

rN−2

∫

Ωr

(
Ã∇w · ∇w + b̃ · ∇ww −

V
(
y
|y|

)

|y|2 |w|2 − h̃w2 − f̃(y, w)w

)
dy,(72)

H(r) =
1

rN−1

∫

Sr

µ(y)w2(y) dσ(y),(73)

where

µ(y) = µ(y′, yN ) = |y|−2Ã(y)y · y.(74)

Lemma 5.1. Let N > 2 and let µ as in (74) with Ã as in (23). Then

µ(y) =
1

1 + 2C0(δ + 1)yN |y|−1+δ
+O(|y|) = 1 +O(|y|δ) as |y| → 0,(75)

∇µ(y) = O(|y|−1+δ) as |y| → 0.(76)

Proof. Estimate (75) follows from Lemma 2.5 and direct calculations. Differentiating (74) we
obtain

∇µ(y) = −2|y|−4(Ã(y)y · y)y + |y|−2(dÃ(y)y)y + 2|y|−2Ã(y)y.

From (75) and (38) we then deduce

∇µ(y) = − 2|y|−2y

1 + 2C0(δ + 1)yN |y|−1+δ
+O(1) + |y|−2O(|y|1+δ) + 2|y|−2

(
y +O(|y|1+δ)

)

=
4C0(δ + 1)yN |y|−3+δy

1 + 2C0(δ + 1)yN |y|−1+δ
+O(|y|−1+δ) = O(|y|−1+δ)

as |y| → 0. �

Lemma 5.2. Let N > 2 and let Ã, V be as in (14), (23) with A as in (10-11). Define the function

β(y) :=
Ã(y)y

µ(y)
.
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Then we have

β(y) = y +O(|y|1+δ) = O(|y|) as |y| → 0,(77)

Jacβ(y) = Ã(y) +O(|y|δ) = IdN +O(|y|δ) as |y| → 0,(78)

divβ(y) = N +O(|y|δ) as |y| → 0,(79)

β(y) · ∇SN−1V (y/|y|) = y · ∇SN−1V (y/|y|) +O(|y|1+δ) = O(|y|1+δ) as |y| → 0,(80)

Proof. It follows from the definitions of β and µ. �

From (38–42) we we derive the following lemma.

Lemma 5.3. Let N > 2. Then H ∈W 1,1
loc (0, R̃) and

(81) H ′(r) =
2

rN−1

∫

Sr

µ(y)w(y)
∂w

∂ν
(y)dσ(y) +H(r)O(r−1+δ) as r → 0+

in a distributional sense and for a.e. r ∈ (0, R̃), where ν = ν(y) is the unit outer normal vector to
Sr, i.e

(82) ν(y) =
y

|y| .

Proof. We notice that, for all r ∈ (0, R̃),

H(r) =

∫

Cr

µ(rθ)|w(rθ)|2dσ

where Cr is defined in (45). For every φ ∈ C∞
c (0, R̃)

∫ R̃

0

H(t)φ′(t) dt =

∫ R̃

0

(∫

Ct

µ(tθ)|w(tθ)|2dσ
)
φ′(t) dt =

∫

ΩR̃

µ(y)w2(y)ν(y)

|y|N−1
· ∇φ̃(y) dy

= −
∫

ΩR̃

div
(
µ(y)w2(y)

y

|y|N
)
φ̃(y) dy =

= −
∫

ΩR̃

w2(y)∇µ(y) + 2w(y)µ(y)∇w(y)
|y|N−1

· ν(y)φ̃(y) dy

= −
∫ R̃

0

(∫

Ct

(
2µ(tθ)w(tθ)∇w(tθ) · θ + w2(tθ)∇µ(tθ) · θ

)
dσ

)
φ(t) dt,

where φ̃(y) := φ(|y|). Hence

(83) H ′(t) =

∫

Ct

(
2µ(tθ)w(tθ)∇w(tθ) · θ

)
dσ +

∫

Ct

(
w2(tθ)∇µ(tθ) · θ

)
dσ

in a distributional sense in (0, R̃). From w, ∂w∂ν ∈ L2(ΩR̃) we deduce that H ∈ W 1,1
loc (0, R̃). Fur-

thermore (83) holds a.e. and can be rewritten as

H ′(t) =
2

tN−1

∫

St

µ(y)w(y)
∂w

∂ν
(y)dσ(y) +

1

tN−1

∫

St

w2(y)∇µ(y) · ν(y)dσ(y)

=
2

tN−1

∫

St

µ(y)w(y)
∂w

∂ν
(y)dσ(y) +H(t)O(t−1+δ)

as t→ 0+ thus proving (81). �

Lemma 5.4. Let N > 2. Let D and H the functions defined in (72–73). Then

H ′(r) =
2

rN−1

∫

Sr

(Ã∇w · ν)w dσ(y) +H(r)O(r−1+δ),(84)

H ′(r) =
2

r
D(r) +H(r)O(r−1+δ)(85)

as r → 0+.
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Proof. We have that∫

Sr

(Ã∇w · ν)w dσ =

∫

Sr

µw
∂w

∂ν
dσ +

1

2

∫

Sr

α · ∇(w2) dσ

where

α(y) =
µ(y)(β(y)− y)

|y| .

Since α(y) · y = 0 and, in view of (76), (77), and (79),

divα =

(∇µ
|y| − µ

y

|y|3
)
(β − y) +

µ

|y| (divβ −N) = O(|y|−1+δ) as |y| → 0,

we deduce that∫

Sr

(Ã∇w · ν)w dσ =

∫

Sr

µw
∂w

∂ν
dσ − 1

2

∫

Sr

div(α)w2 dσ =

∫

Sr

µw
∂w

∂ν
dσ +O(r−2+N+δ)H(r)

and hence (84) follows from (81). Multiplying equation (37) by w and integrating on Ωr, from (84)
we obtain that

rN−2D(r) =

∫

Sr

(Ã∇w · ν)w dσ =
rN−1

2
H ′(r) +O(r−2+N+δ)H(r)

as r → 0+, thus proving (85). �

We proceed by distinguishing the cases N > 3 and N = 2.

5.1. The case N > 3. By (41) and Sobolev embedding, we infer that the function

W (y) :=

{
f̃(y,w(y))
w(y) , if w(y) 6= 0,

0, if w(y) = 0,

belongs to LN/2(Ω̃) and hence we may apply Proposition 4.1 to the function w. Therefore, through-
out this section, we may fix

(86) 2∗ < q < qlim

and rq as in Proposition 4.1 in such a way that w ∈ Lq(Ωrq ).

Lemma 5.5. There exist r0 ∈ (0,min{R̃, rq}) and a constant C = C(N,V, Ã, b̃, f̃ , h̃, w) > 0 de-

pending on N , V , Ã, b̃, f̃ , h̃, w but independent of r such that such that, for all r ∈ (0, r0),

(i) µ(y) > 1/2 for all y ∈ Br,

(ii) rN−2

(
D(r) +

N − 2

2
H(r)

)
> C

(∫

Ωr

(
|∇w(y)|2 + w2(y)

|y|2
)
dy + ‖w‖2L2∗ (Ωr)

)
,

(iii) H(r) > 0,

where D and H are defined in (72) and (73).

Proof. Estimate (i) near 0 follows from the definition of µ. To prove (ii), we observe that, from
(72), (73), (75), and (38–42), it follows that

rN−2

(
D(r)+

N − 2

2
H(r)

)
>

∫

Ωr

(
|∇w(y)|2−

V ( y|y| )

|y|2 w2(y)

)
dy+

N − 2

2r
(1+O(rδ))

∫

Sr

w2(y) dσ

+O(rδ)

∫

Ωr

(
|∇w(y)|2 + w2(y)

|y|2
)
dy − Cf̃‖w‖2

∗−2
L2∗ (Ωr)

‖w‖2L2∗ (Ωr)

>

∫

Ωr

(
|∇w(y)|2 −

V ( y|y| )

|y|2 w2(y)

)
dy +

N − 2

2r

Λ(V ) + 3

4

∫

Sr

w2(y) dσ

+
(
O(rδ)− Cf̃‖w‖2

∗−2
L2∗ (Ωr)

)(∫

Ωr

(
|∇w(y)|2 + w2(y)

|y|2
)
dy + ‖w‖2L2∗ (Ωr)

)

as r → 0+, which, together with (60), yields (ii) provided r is sufficiently small.
To prove the positivity of H near 0, suppose by contradiction that there exists a sequence

rn → 0+ such that H(rn) = 0. Since µ(y) > 0 if |y| is sufficiently small, then w = 0 a.e. on Srn for
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n sufficiently large and thus w ∈ H1
0 (Ωrn). Multiplying both sides of (37) by w and using estimate

(ii), we obtain, for n sufficiently large,

0 =

∫

Ωrn

(
Ã∇w · ∇w + b̃ · ∇ww −

V
(
y
|y|

)

|y|2 |w|2 − h̃|w|2 − f̃(y, w(y))w

)
dy

> C

(∫

Ωrn

(
|∇w(y)|2 + w2(y)

|y|2
)
dy + ‖w‖2L2∗ (Ωrn )

)

which implies w ≡ 0 in Ωrn for n large. Applying away from 0 classical unique continuation
principles for second order elliptic equations with locally bounded coefficients (see e.g. [24]), we

conclude that w = 0 a.e. in Ω̃, a contradiction. �

Remark 5.6. If w ∈ H1(Ω̃) is a weak solution to (37), with Ã, b̃, f̃ , h̃ as in (23–26), A,b,Ψ, f, h, V

as in assumptions (10–17), (21), and Ω̃ as in (29) with Ω satisfying (9) and (2), then by classical

elliptic regularity theory and a Brezis-Kato type iteration [4], we have that w ∈ W 2,p
loc (Ω̃) for

all 1 6 p < ∞. In particular w ∈ H2
loc(Ω̃) ∩ C1,α

loc (Ω̃) for all α ∈ (0, 1). Using a local C2-
parametrization of the boundary away from the origin (see assumption (2)) and classical regularity
results for elliptic equations with homogeneous boundary conditions on half-spaces, we can deduce

that w ∈ C1,α
loc (ΩR̃ \ {0}) ∩H2(ΩR̃ \ Ωr) for all r ∈ (0, R̃).

Proposition 5.7. Let N > 3, Ã, b̃, f̃ , h̃ as in (23–26) with A,b,Ψ, f, h, V as in (10–17), (21),

and let Ω̃ as in (29) with Ω satisfying (9) and (2–5). If w ∈ H1(Ω̃)\{0} is a weak solution to (37),

then for a.e. r ∈ (0, R̃)

(87) r

∫

Sr

(Ã∇w · ∇w) dσ − 2r

∫

Sr

|Ã∇w · ν|2
µ

dσ −
∫

Γr

|∇w|2
µ

(Ãν̃ · ν̃)(Ãy · ν̃) dσ

=

∫

Ωr

(divβ)Ã∇w · ∇w dy − 2

∫

Ωr

(Jacβ)(Ã∇w) · ∇w dy

+

∫

Ωr

(dÃ∇w)∇w · β dy −
∫

Ωr

2(β · ∇w)(b̃ · ∇w) dy

−
∫

Ωr

V (y/|y|) divβ − 2V (y/|y|) + |y|−1β · ∇SN−1V (y/|y|)
|y|2 w2(y) dy + r

∫

Sr

V (y/|y|)
|y|2 w2 dσ

+ 2

∫

Ωr

(β · ∇w)h̃w dy − 2

∫

Ωr

(∇yF̃ (y, w) · β + F̃ (y, w) divβ) dy + 2r

∫

Sr

F̃ (y, w) dσ,

where β(y) := Ã(y)y
µ(y) .

Proof. By Remark 5.6, w ∈ H2
loc(ΩR̃) ∩ C1(ΩR̃ \ {0}) and hence for all r ∈ (0, R̃) the following

Rellich-Nec̆as identity

(88) div
(
(Ã∇w · ∇w)β − 2(β · ∇w)Ã∇w

)
= (divβ)Ã∇w · ∇w − 2(Jacβ)(Ã∇w) · ∇w

+ (dÃ∇w)∇w · β − 2(β · ∇w)(b̃ · ∇w)

+ 2
V (y/|y|)

|y|2 (β · ∇w)w + 2(β · ∇w)h̃w + 2(β · ∇w)f̃(y, w)

is satisfied in a weak sense in ΩR̃ \ Ωr. By (41) and Hardy inequality, we have

∫ R̃

0

[∫

Ss

(
|∇w(y)|2 + w2(y)

|y|2 + |F̃ (y, w(y))|
)
dσ

]
ds

=

∫

ΩR̃

(
|∇w(y)|2 + w2(y)

|y|2 + |F̃ (y, w(y))|
)
dy < +∞

and hence there exists a decreasing sequence {δn} ⊂ (0, R̃) such that limn→+∞ δn = 0 and

(89) δn

∫

Sδn

(
|∇w(y)|2 + w2(y)

|y|2 + |F̃ (y, w(y))|
)
dσ −→ 0 as n→ +∞.
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Let r ∈ (0, R̃). Integrating (88) in Ωr \ Ωδn and taking into account Remark 5.6, we obtain

(90)

∫

Sr

(Ã∇w · ∇w)β · ν dσ − 2

∫

Sr

(β · ∇w)Ã∇w · ν dσ −
∫

Sδn

(Ã∇w · ∇w)β · ν dσ

+ 2

∫

Sδn

(β · ∇w)Ã∇w · ν dσ +

∫

Γr\Γδn

(Ã∇w · ∇w)β · ν̃ dσ − 2

∫

Γr\Γδn

(β · ∇w)Ã∇w · ν̃ dσ

=

∫

Ωr\Ωδn

(divβ)Ã∇w · ∇w dy − 2

∫

Ωr\Ωδn

(Jacβ)(Ã∇w) · ∇w dy

+

∫

Ωr\Ωδn

(dÃ∇w)∇w · β dy −
∫

Ωr\Ωδn

2(β · ∇w)(b̃ · ∇w) dy

+ 2

∫

Ωr\Ωδn

V (y/|y|)
|y|2 (β · ∇w)w dy + 2

∫

Ωr\Ωδn

(β · ∇w)h̃w dy + 2

∫

Ωr\Ωδn

(β · ∇w)f̃(y, w) dy

with ν as in (82) and ν̃ as in (43). Since β · y = |y|2, integration by parts yields

(91)

∫

Ωr\Ωδn

V (y/|y|)
|y|2 (β · ∇w)w dy

= −1

2

∫

Ωr\Ωδn

V (y/|y|) divβ − 2V (y/|y|) + |y|−1β · ∇SN−1V (y/|y|)
|y|2 w2(y) dy

+
r

2

∫

Sr

V (y/|y|)
|y|2 w2 dσ − δn

2

∫

Sδn

V (y/|y|)
|y|2 w2 dσ

and

(92)

∫

Ωr\Ωδn

(β · ∇w)f̃(y, w) dy = −
∫

Ωr\Ωδn

(∇yF̃ (y, w) · β + F̃ (y, w) divβ) dy

+ r

∫

Sr

F̃ (y, w) dσ − δn

∫

Sδn

F̃ (y, w) dσ.

By definition of β

β · ∇w =
r

µ
Ã∇w · ν on Sr.(93)

Since w = 0 on Γr

∇w = ±|∇w|ν̃ a.e. on Γr(94)

Taking into account (91–94), (90) becomes

(95) r

∫

Sr

(Ã∇w · ∇w) dσ − 2r

∫

Sr

|Ã∇w · ν|2
µ

dσ − δn

∫

Sδn

(Ã∇w · ∇w) dσ

+ 2δn

∫

Sδn

|Ã∇w · ν|2
µ

dσ −
∫

Γr\Γδn

|∇w|2
µ

(Ãν̃ · ν̃)(Ãy · ν̃) dσ

=

∫

Ωr\Ωδn

(divβ)Ã∇w · ∇w dy − 2

∫

Ωr\Ωδn

(Jacβ)(Ã∇w) · ∇w dy

+

∫

Ωr\Ωδn

(dÃ∇w)∇w · β dy −
∫

Ωr\Ωδn

2(β · ∇w)(b̃ · ∇w) dy

−
∫

Ωr\Ωδn

V (y/|y|) divβ − 2V (y/|y|) + |y|−1β · ∇SN−1V (y/|y|)
|y|2 w2(y) dy

+ r

∫

Sr

V (y/|y|)
|y|2 w2 dσ − δn

∫

Sδn

V (y/|y|)
|y|2 w2 dσ + 2

∫

Ωr\Ωδn

(β · ∇w)h̃w dy

− 2

∫

Ωr\Ωδn

(∇yF̃ (y, w) · β + F̃ (y, w) divβ) dy + 2r

∫

Sr

F̃ (y, w) dσ − 2δn

∫

Sδn

F̃ (y, w) dσ.
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Letting n→ ∞ in (95) and using (89), Lemma 5.2, and (38), we obtain that
∫

Γr

|∇w|2
µ

(Ãν̃ · ν̃)(Ãy · ν̃) dσ < +∞

and (87) holds. �

Lemma 5.8. If q is as in (86), the function

g(r) :=
r

q−2∗

q
∫
Sr

|w|2∗dσ
( ∫

Ωr
|w(y)|2∗dy

)1− 1
N

is well defined and satisfies

g ∈ L1(0, r0) and g > 0 a.e. in (0, r0).

Furthermore

(96)

∫

Sr

|w|2∗dσ 6

(ωN−1

N

)q−2∗

qN ‖w‖2
∗/N
Lq(Ωr0

)C
−1
g(r)rN−2

(
D(r) +

N − 2

2
H(r)

)

for a.e. r ∈ (0, r0) and

(97)

∫ r

0

g(s) ds 6 N‖w‖2
∗/N

L2∗ (Ωr0
)
r

q−2∗

q

for all r ∈ (0, r0).

Proof. From Lemma 5.5,
∫
Ωr

|w(y)|2∗dy > 0 for any r ∈ (0, r0) and g is well defined in (0, r0).

Let us denote β = q−2∗

q > 0. By a direct calculation, we have that

g(r) =
rβ
∫
Sr

|w|2∗dσ
( ∫

Ωr
|w(y)|2∗dy

)1− 1
N

(98)

= N

[
d

dr

(
rβ
(∫

Ωr

|w(y)|2∗dy
)1/N)

− β r−1+β

(∫

Ωr

|w(y)|2∗dy
)1/N]

in the distributional sense and for a.e. r ∈ (0, r0). Since

lim
r→0+

rβ
(∫

Ωr

|w(y)|2∗dy
)1/N

= 0 and

(∫

Ωr

|w(y)|2∗dy
)1/N

= O(1)

as r → 0+, we have that g ∈ L1(0, r0). Furthermore, (97) follows from integration of (98).
To prove (96) we observe that, by Hölder inequality, Proposition 4.1, and Lemma 5.5,

(∫

Ωr

|w(y)|2∗ dy
)1− 1

N

=

(∫

Ωr

|w(y)|2∗ dy
)1

N
(∫

Ωr

|w(y)|2∗ dy
)2

2∗

6

(ωN−1

N

)β
N ‖w‖

2∗

N

Lq(Ωr0
)C

−1
rβ+N−2

(
D(r) +

N − 2

2
H(r)

)

for all r ∈ (0, r0), thus implying (96). �

Lemma 5.9. The function D defined in (72) belongs to W 1,1
loc(0, r0) and

D′(r) = B(r) +
1

rN−2

∫

Sr

b̃ · ∇wwdσ +O
(
r−1+δ+ r−1+

2(q−2∗)
q + g(r)

)(
D(r) + N−2

2 H(r)
)

(99)

as r → 0+, in a distributional sense and for a.e. r ∈ (0, r0), where

(100) B(r) :=
2

rN−2

∫

Sr

|Ã∇w · ν|2
µ

dσ +
1

rN−1

∫

Γr

|∇w|2
µ

(Ãν̃ · ν̃)(Ãy · ν̃) dσ

and r0 is as in Lemma 5.5.
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Proof. By (87) and Lemmas 2.4 and 5.2, we have that
∫

Sr

(Ã∇w·∇w) dσ −
∫

Sr

V (y/|y|)
|y|2 w2 dσ(101)

= 2

∫

Sr

|Ã∇w · ν|2
µ

dσ +
1

r

∫

Γr

|∇w|2
µ

(Ãν̃ · ν̃)(Ãy · ν̃) dσ

+
N − 2

r

(∫

Ωr

Ã∇w · ∇w dy −
∫

Ωr

V (y/|y|)
|y|2 w2 dy

)

− 2

r

∫

Ωr

(
∇yF̃ (y, w) · y +NF̃ (y, w)

)
dy + 2

∫

Sr

F̃ (y, w) dσ

+O(r−1+δ)

(∫

Ωr

Ã∇w · ∇w dy +
∫

Ωr

w2(y)

|y|2 dy +

∫

Ωr

(
|w|2 + |w|2∗

)
dy

)
.

From (72) and (101) we obtain

D′(r) = − N − 2

rN−1

∫

Ωr

(
Ã∇w · ∇w + b̃ · ∇ww −

V
(
y
|y|

)

|y|2 |w|2 − h̃|w|2 − f̃(y, w(y))w

)
dy(102)

+
1

rN−2

∫

Sr

(
Ã∇w · ∇w + b̃ · ∇ww −

V
(
y
|y|

)

|y|2 |w|2 − h̃|w|2 − f̃(y, w(y))w

)
dσ

=B(r) +
1

rN−1

∫

Ωr

(
(N − 2)f̃(y, w(y))w − 2∇yF̃ (y, w) · y − 2NF̃ (y, w)

)
dy

+
1

rN−2

∫

Sr

(
b̃ · ∇ww − h̃|w|2 − f̃(y, w(y))w + 2F̃ (y, w)

)
dσ

+O(r1−N+δ)

(∫

Ωr

Ã∇w · ∇w dy +
∫

Ωr

w2(y)

|y|2 +

∫

Ωr

(
|w|2 + |w|2∗

)
dy

)
.

From (41), Hölder inequality, Proposition 4.1, and Lemma 5.5 (ii), we have that, for all r ∈ (0, r0),

(103)

∣∣∣∣
1

rN−1

∫

Ωr

(
(N − 2)f̃(y, w(y))w − 2∇yF̃ (y, w) · y − 2NF̃ (y, w)

)
dy

∣∣∣∣

6
2NCf̃
rN−1

∫

Ωr

(
w2(y) + |w(y)|2∗

)
dy

6
2NCf̃
rN−1

((ωN−1

N

) 2
N

r2 + ‖w‖2∗−2
L2∗ (Ωr)

)(∫

Ωr

|w(y)|2∗dy
)2/2∗

6
2NCf̃

C
r−1+

2(q−2∗)
q

((ωN−1

N

) 2
N

r
22∗

q

0 +
(ωN−1

N

)2(q−2∗)
Nq ‖w‖2∗−2

Lq(Ωr0
)

)(
D(r) +

N − 2

2
H(r)

)
.

On the other hand, from (42), Lemma 5.5 (i), (73), (41), (96), we can estimate

1

rN−2

∫

Sr

(
h̃|w|2 + f̃(y, w(y))w − 2F̃ (y, w)

)
dσ = O

(
g(r) + r−1+δ

)(
D(r) +

N − 2

2
H(r)

)
.(104)

In view of (103), (104), and estimate (ii) in Lemma 5.5, (102) yields (99). �

Lemma 5.10. Let D and H be the functions defined in (72–73), r0 be as in Lemma 5.5, and
denote

(105) Σ :=
{
r ∈ (0, r0) : D

′(r)H(r) 6 H ′(r)D(r)
}
.

If Σ 6= ∅ and 0 is a limit point of Σ, then

D′(r) = B(r) +O
(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)(
D(r) +

N − 2

2
H(r)

)

as r → 0+, r ∈ Σ.
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Proof. From (87), (77–80), (38–42), Lemma 5.5 (i), and (73) we have that

1

rN−3

∫

Sr

(Ã∇w · ∇w) dσ = rB(r) +O(r−N+2)

(∫

Ωr

(
|∇w(y)|2 + w2(y)

|y|2
)
dy + ‖w‖2L2∗ (Ωr)

)

+O(1)H(r) +O(r−N+3)

∫

Sr

|w|2∗ dσ

which, in view of Lemma 5.5 and (96), implies

1

rN−3

∫

Sr

(Ã∇w · ∇w) dσ = rB(r) +O(1 + rg(r))

(
D(r) +

N − 2

2
H(r)

)
(106)

as r → 0+. From (39), Schwarz inequality, Lemma 5.5 (i), (73), (38), and (106), we have that

1

rN−2

∫

Sr

b̃ · ∇ww dσ = O(r−1+δ)

(
1

rN−3

∫

Sr

|∇w|2 dσ
)1/2√

H(r)(107)

= O(r−1+δ)

(
1

rN−3

∫

Sr

(Ã∇w · ∇w) dσ
)1/2√

H(r)

= O(r−1+δ)
√
rB(r)H(r) +O

(
r−1+δ + g(r)

)(
D(r) +

N − 2

2
H(r)

)

as r → 0+. From Lemma 5.9 and (107), it follows that

B(r) = D′(r)− 1

rN−2

∫

Sr

b̃ · ∇wwdσ +O
(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)(
D(r) +

N − 2

2
H(r)

)

= D′(r) +O(r−1+δ)
√
rB(r)H(r) +O

(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)(
D(r) +

N − 2

2
H(r)

)

6 D′(r) +
B(r)

2
+O

(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)(
D(r) +

N − 2

2
H(r)

)

thus yielding

B(r) 6 2D′(r) +O
(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)(
D(r) +

N − 2

2
H(r)

)
(108)

as r → 0+. From (108), (85), and the fact that D′H 6 H ′D a.e. in Σ, we deduce that, as r → 0+,
r ∈ Σ,

rB(r)H(r) 6 2rH ′(r)D(r) +O
(
rδ + r

2(q−2∗)
q + rg(r)

)(
D(r) +

N − 2

2
H(r)

)2

= 2rD(r)

(
2

r
D(r) +H(r)O(r−1+δ)

)
+O

(
rδ + r

2(q−2∗)
q + rg(r)

)(
D(r) +

N − 2

2
H(r)

)2

= 4D2(r) +O(rδ)D(r)H(r) +O
(
rδ + r

2(q−2∗)
q + rg(r)

)(
D(r) +

N − 2

2
H(r)

)2

= O
(
1 + rg(r)

)(
D(r) +

N − 2

2
H(r)

)2

which implies

√
rB(r)H(r) = O

(
1 + rg(r)

)(
D(r) +

N − 2

2
H(r)

)
as r → 0+, r ∈ Σ.(109)

Combining (107) and (109), we obtain

1

rN−2

∫

Sr

b̃ · ∇ww dσ = O
(
r−1+δ + g(r)

)(
D(r) +

N − 2

2
H(r)

)
as r → 0+, r ∈ Σ

which, together with Lemma 5.9, yields the conclusion. �

In view of Lemma 5.5, the Almgren type frequency function

(110) N (r) =
D(r)

H(r)
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is well defined in (0, r0). Furthermore, by Lemmas 5.3 and 5.9, N ∈ W 1,1
loc (0, r0). The following

lemma provides the existence of a finite limit of N (r) as r → 0+.

Lemma 5.11. Let N : (0, r0) → R be defined in (110). Then the limit

γ := lim
r→0+

N (r)

exists, is finite and

(111) γ > −N − 2

2
.

Proof. By Lemma 5.5,

(112) N (r) > −N − 2

2
for all r ∈ (0, r0).

If the set Σ defined in (105) is empty or if 0 is not a limit point of Σ, then N ′(r) > 0 in a right
neighborhood of 0 and hence N is nondecreasing near 0 and admits a limit as r → 0+ which is
necessarily finite in view of (112). If Σ 6= ∅ and 0 is a limit point of Σ, then from Lemma 5.10,
(85), and (100), we have that

N ′(r) =
D′(r)H(r)−H ′(r)D(r)

H2(r)
(113)

=
B(r)H(r)

H2(r)
− H ′(r)

H2(r)

(
r

2
H ′(r) +H(r)O(rδ)

)

+O
(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)(
N (r) +

N − 2

2

)

=
2r
( ∫

Sr

|Ã∇w·ν|2

µ dσ
)( ∫

Sr
µw2dσ

)
+
( ∫

Sr
µw2dσ

)( ∫
Γr

|∇w|2(Ãν̃·ν̃)(Ãy·ν̃)
µ dσ

)

( ∫
Sr
µw2dσ

)2

− r

2

(H ′(r))2

H2(r)
+
H ′(r)

H(r)
O(rδ) +O

(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)(
N (r) +

N − 2

2

)

as r → 0+, r ∈ Σ. In view of (84), there holds

(H ′(r))2 =
4

r2N−2

(∫

Sr

(Ã∇w · ν)w dσ(y)
)2

+H2(r)O(r−2+2δ) + 2H(r)O(r−1+δ)(H ′(r)−H(r)O(r−1+δ))

which yields

(H ′(r))2

H2(r)
=

4
( ∫

Sr
(Ã∇w · ν)w dσ(y)

)2

( ∫
Sr
µw2dσ

)2 +O(r−2+2δ) +
H ′(r)

H(r)
O(r−1+δ).(114)

Moreover (85) implies

(115)
H ′(r)

H(r)
=

2

r
N (r) +O(r−1+δ).
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From (113), (114), and (115), it follows that

(116) N ′(r) =

∫
Γr

|∇w|2(Ãν̃·ν̃)(Ãy·ν̃)
µ dσ

∫
Sr
µw2dσ

+
2r
[( ∫

Sr

|Ã∇w·ν|2

µ dσ
)( ∫

Sr
µw2dσ

)
−
( ∫

Sr
(Ã∇w · ν)w dσ(y)

)2]

( ∫
Sr
µw2dσ

)2

+
H ′(r)

H(r)
O(rδ) +O(r−1+2δ) +O

(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)(
N (r) +

N − 2

2

)

=

∫
Γr

|∇w|2(Ãν̃·ν̃)(Ãy·ν̃)
µ dσ

∫
Sr
µw2dσ

+
2r
[( ∫

Sr

|Ã∇w·ν|2

µ dσ
)( ∫

Sr
µw2dσ

)
−
( ∫

Sr
(Ã∇w · ν)w dσ(y)

)2]

( ∫
Sr
µw2dσ

)2

+O(r−1+δ) +O
(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)(
N (r) +

N − 2

2

)

as r → 0+, r ∈ Σ. From (116), Lemma 2.6, and Schwarz inequality, it follows that

N ′(r) > O
(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)(
N (r) +

N

2

)

as r → 0+, r ∈ Σ. Since N ′(r) > 0 a.e. in (0, r0) \ Σ, the above inequality is trivially satisfied as
r → 0+, r ∈ (0, r0) \ Σ. Hence there exists some r1 ∈ (0, r0) and c1 > 0 such that

(117)

(
N +

N

2

)′

(r) > −c1
(
N (r) +

N

2

)(
r−1+δ + r−1+

2(q−2∗)
q + g(r)

)

for a.e. r ∈ (0, r1). After integration over (r, r1) it follows that

N (r) 6 −N
2

+

(
N (r1) +

N

2

)
exp

(
c1

(
rδ1
δ

+
q

2(q − 2∗)
r

2(q−2∗)
q

1 +

∫ r1

0

g(s) ds

))

for any r ∈ (0, r1), thus proving that there exists c2 > 0 such that

(118) N (r) 6 c2 for all r ∈ (0, r1).

Estimates (117), (118), and the fact that r 7→ r−1+δ + r−1+
2(q−2∗)

q + g(r) ∈ L1(0, r1) imply that
N ′ is the sum of a nonnegative function and of a L1-function on (0, r1). Therefore

N (r) = N (r1)−
∫ r1

r

N ′(s) ds

admits a limit as r → 0+ which is necessarily finite in view of (118) and (112). �

Lemma 5.12. There exists r1 ∈ (0, r0) and K1 > 0 such that

(119) H(r) 6 K1r
2γ for all r ∈ (0, r1)

and

(120) H(2r) 6 K1H(r) for all r ∈ (0, r1/2).

Furthermore, for any σ > 0 there exists a constant K2(σ) > 0 depending on σ such that

(121) H(r) > K2(σ) r
2γ+σ for all r ∈ (0, r1).

Proof. By (112), (118), and Lemma 5.11, there exists r1 ∈ (0, r0) such that N is bounded in
(0, r1) and N ′ ∈ L1(0, r1). Then from (97) and (117) it follows that

(122) N (r)− γ =

∫ r

0

N ′(s) ds > −c3rδ̃

for some constant c3 > 0 and all r ∈ (0, r1), where

(123) δ̃ = min

{
δ,
q − 2∗

q

}
.
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Therefore by (85) and (122) we deduce that, for r ∈ (0, r1),

H ′(r)

H(r)
=

2N (r)

r
+O(r−1+δ) >

2γ

r
− 2c3r

−1+δ̃ +O(r−1+δ) as r → 0+,

which, after integration over the interval (r, r1) and up to shrinking r1, yields (119). On the other
hand, from boundedness of N in (0, r1), we have that

H ′(r)

H(r)
=

2N (r)

r
+O(r−1+δ) 6

const

r
,

which, for all r ∈ (0, r1/2), after integration over the interval (r, 2r) yields

log
H(2r)

H(r)
6 const log 2

thus proving (120).

Let us prove (121). Since γ = limr→0+ N (r) and H′(r)
H(r) −

2N (r)
r = O(r−1+δ), for any σ > 0 there

exists rσ > 0 such that N (r) < γ + σ/4 and H′(r)
H(r) − 2N (r)

r 6 σ
2r for any r ∈ (0, rσ) and hence

H ′(r)

H(r)
<

2γ + σ

r
for all r ∈ (0, rσ).

Integrating over the interval (r, rσ) and by continuity of H outside 0, we obtain (121) for some
constant K2(σ) depending on σ. �

5.2. The case N = 2. The two-dimensional version of Lemma 5.5 we are going to prove in
Lemma 5.14 requires the following Sobolev type inequality with boundary terms.

Proposition 5.13. Let N > 2 and let p ∈ [1,∞) with p 6 2∗ = 2N/(N − 2) if N > 3. Then there
exists a constant C(N, p) > 0 depending only on N and p such that for all r > 0

(124) ‖v‖2Lp(Br)
6 C(N, p) r

2N
p +2−N

(∫

Br

|∇v(x)|2dx+
1

r

∫

∂Br

v2(x) dσ

)
for all v ∈ H1(Br)

Proof. The proof in the case r = 1 follows from the classical Sobolev inequality and the fact
that the square root of the right hand side of (124) is a norm equivalent to the standard norm of
H1(B1). The proof in the case of a general r > 0 follows by scaling. �

In the rest of this subsection, we assume N = 2.

Lemma 5.14. Let N = 2 and let p > 2 as in (17). Then for every ε > 0 there exist r̃ε ∈ (0, R̃)

and a constant Cε = Cε(ε, p, Ã, b̃, f̃ , h̃, w) > 0 depending on ε, p, Ã, b̃, f̃ , h̃, w such that, for all
r ∈ (0, r̃ε),

(i) µ(y) > 1/2 for all y ∈ Br,

(ii) D(r) + εH(r) > Cε

(∫

Ωr

|∇w(y)|2dy + 1

r

∫

Sr

w2dσ + ‖w‖2Lp(Ωr)

)
,

(iii) H(r) > 0,

where D and H are defined in (72) and (73).

Proof. The positivity of µ near 0 follows from its definition. By (42), Hölder inequality, and
Proposition 5.13, we have

∣∣∣∣
∫

Ωr

h̃(y)w2(y)dy

∣∣∣∣ 6 O(1)

∫

Ωr

|y|−2+δw2(y) dy(125)

6 O(1)

(∫

Ωr

|y|− 4−δ
2 dy

)2(2−δ)
4−δ

‖w‖2
L

2(4−δ)
δ (Ωr)

= O(rδ)

(∫

Ωr

|∇w(y)|2dy + 1

r

∫

Sr

w2dσ

)
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as r → 0+. Similarly by (39), Hölder inequality, and (125) we also have
∣∣∣∣
∫

Ωr

b̃(y) · ∇w(y) w(y) dy
∣∣∣∣ 6

(∫

Ωr

|∇w(y)|2dy
)1/2(∫

Ωr

|y|−2+2δw2(y) dy

)1/2

(126)

= O(rδ)

(∫

Ωr

|∇w(y)|2dy + 1

r

∫

Sr

w2dσ

)
.

as r → 0+. Finally by (41) and Proposition 5.13 we have
∣∣∣∣
∫

Ωr

f̃(y, w(y))w(y) dy

∣∣∣∣ 6 Cf̃

∫

Ωr

(w2(y) + |w(y)|p) dy(127)

6 O(r
4
p )

(∫

Ωr

|∇w(y)|2dy + 1

r

∫

Sr

w2dσ

)

as r → 0+. Inequality (ii) follows from (125-127). Inequality (ii) implies (iii) by proceeding like in
the proof of Lemma 5.5. �

In view of the previous lemma, we can define the Almgren type frequency function N as in
the previous subsection, see (110). We now sketch the proof of the existence of a finite limit of
N as r → 0+ in dimension N = 2. To this aim, we first notice that, under assumption (14),
the Pohozaev-type identity (87) proved for N > 3 admits the following extension to the two-
dimensional case.

Proposition 5.15. Let N = 2 and let Ã, b̃, f̃ , h̃ be as in (23–26) with A,b,Ψ, f, h, V as in as-

sumptions (10–17), (21), and let Ω̃ as in (29) with Ω satisfying (9) and (2–5). If w ∈ H1(Ω̃) \ {0}
is a weak solution to (37), then for a.e. r ∈ (0, R̃)

(128) r

∫

Sr

(Ã∇w · ∇w) dσ − 2r

∫

Sr

|Ã∇w · ν|2
µ

dσ −
∫

Γr

|∇w|2
µ

(Ãν̃ · ν̃)(Ãy · ν̃) dσ

=

∫

Ωr

(divβ)Ã∇w · ∇w dy − 2

∫

Ωr

(Jacβ)(Ã∇w) · ∇w dy

+

∫

Ωr

(dÃ∇w)∇w · β dy −
∫

Ωr

2(β · ∇w)(b̃ · ∇w) dy

+ 2

∫

Ωr

(β · ∇w)h̃w dy − 2

∫

Ωr

(∇yF̃ (y, w) · β + F̃ (y, w) divβ) dy + 2r

∫

Sr

F̃ (y, w) dσ.

Proof. It is enough to follow the proof of Proposition 5.7 recalling that V ≡ 0 for N = 2. �

The next lemma provides an upper bound for a nonlinear boundary term.

Lemma 5.16. Under the same assumptions of Proposition 5.15, let r̃1 ∈ (0, R̃) as in Lemma 5.14
with ε = 1. Let

g(r) :=

∫
Sr

|w|pdσ
( ∫

Ωr
|w(y)|pdy

)p+2
2p

.

Then g ∈ L1(0, r̃1) and g > 0 a.e. in (0, r̃1). Furthermore

(129)

∫

Sr

|w|pdσ 6

(∫

Ωr̃1

|w(y)|pdy
)p−2

2p

C
−1

1 g(r)
(
D(r) +H(r)

)

for a.e. r ∈ (0, r̃1). Moreover for any q > p and all r ∈ (0, r̃1), we have

(130)

∫ r

0

g(s) ds 6
2p

p− 2
π

(q−p)(p−2)
2pq r

(q−p)(p−2)
pq ‖w‖

p−2
2

Lq(Ωr̃1
).

Proof. We have

g(r) =

∫
Sr

|w|pdσ
( ∫

Ωr
|w(y)|pdy

)p+2
2p

=
d

dr

(
2p

p− 2

(∫

Ωr

|w(y)|pdy
)p−2

2p
)

(131)
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in the distributional sense and for a.e. r ∈ (0, r̃1) and this clearly implies that g ∈ L1(0, r̃1).
Furthermore, (130) follows from integration of (131) and Hölder inequality. The proof of (129)
follows by Lemma 5.14 and the definition of g. �

Next we state the two-dimensional version of Lemma 5.9.

Lemma 5.17. The function D defined in (72) belongs to W 1,1
loc (0, R̃). Moreover

D(r) +H(r) > 0 for all r ∈ (0, r̃1)

where r̃1 ∈ (0, R̃) is as in Lemma 5.14 with ε = 1, and

D′(r) = B(r) +

∫

Sr

b̃ · ∇wwdσ +O
(
r−1+δ̃ + g(r)

)(
D(r) +H(r)

)

as r → 0+, in a distributional sense and for a.e. r ∈ (0, r̃1), where δ̃ = min{δ, 4/p} and

B(r) := 2

∫

Sr

|Ã∇w · ν|2
µ

dσ +
1

r

∫

Γr

|∇w|2
µ

(Ãν̃ · ν̃)(Ãy · ν̃) dσ.

Proof. We give here only a sketch of the proof being essentially similar to the proof Lemma 5.9.
By (128), (72), (125), (126), (127), (41), and Lemma 5.14, we obtain

D′(r) =B(r) +

∫

Sr

(
b̃ · ∇ww − h̃|w|2 − f̃(y, w)w + 2F̃ (y, w)

)
dσ(132)

+O
(
r−1+δ̃

)(
D(r) +H(r)

)
,

where δ̃ = min{δ, 4/p}. On the other hand, from (41), (42), Lemma 5.14 (i), (73), (129), we can
estimate ∫

Sr

(
h̃|w|2 + f̃(y, w(y))w − 2F̃ (y, w)

)
dσ = O

(
g(r) + r−1+δ

)(
D(r) +H(r)

)
.(133)

In view of (133), (132) yields the conclusion. �

We now give the statement of two-dimensional version of Lemma 5.10.

Lemma 5.18. Let D and H be defined in (72–73), r̃1 be as in Lemma 5.14, δ̃ as in Lemma 5.17,
and denote Σ :=

{
r ∈ (0, r̃1) : D

′(r)H(r) 6 H ′(r)D(r)
}
. If Σ 6= ∅ and 0 is a limit point of Σ, then

D′(r) = B(r) +O
(
r−1+δ̃ + g(r)

)(
D(r) +H(r)

)
as r → 0+, r ∈ Σ.

Proof. The proof follows that of Lemma 5.10 and exploits Lemma 5.17. �

If r̃1 is as in Lemma 5.14 (with ε = 1), then the function

(134) N : (0, r̃1) → R, N (r) =
D(r)

H(r)

is well defined.

Lemma 5.19. Let N : (0, r̃1) → R be defined in (134). Then the limit γ := limr→0+ N (r) exists,
is finite and

(135) γ > 0.

Proof. By Lemma 5.3 and Lemma 5.17 we have that N ∈ W 1,1
loc (0, r̃1) and N (r) > −1 for all

r ∈ (0, r̃1). As explained in the proof of Lemma 5.11 it is not restrictive to assume that Σ 6= ∅
and that 0 is a limit point of Σ since otherwise the convergence of N as r → 0+ is immediate.
Therefore by Lemma 5.18 and (85) we obtain

N ′(r) =
2r
( ∫

Sr

|Ã∇w·ν|2

µ dσ
)( ∫

Sr
µw2dσ

)
+
( ∫

Sr
µw2dσ

)( ∫
Γr

|∇w|2(Ãν̃·ν̃)(Ãx·ν̃)
µ dσ

)

( ∫
Sr
µw2dσ

)2(136)

− r

2

(H ′(r))2

H2(r)
+
H ′(r)

H(r)
O(rδ) +O

(
r−1+δ̃ + g(r)

)(
N (r) + 1

)
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as r → 0+, r ∈ Σ. Proceeding as in the proof of Lemma 5.11 we arrive to

N ′(r) > O
(
r−1+δ̃ + g(r)

)(
N (r) +

1

2

)
.

By Lemma 5.16 and integration it follows that N is bounded also from above and, in turn, that
N ′ is the sum of a nonnegative function and of a L1-integrable function in a neighborhood of 0.
Therefore N has a limit as r → 0+. Finally, (135) follows immediately from Lemma 5.14 (ii). �

We conclude this subsection with the following estimates on the function H.

Lemma 5.20. There exists r1 ∈ (0, r̃1) and K1 > 0 such that

(137) H(r) 6 K1r
2γ for all r ∈ (0, r1)

and

(138) H(2r) 6 K1H(r) for all r ∈ (0, r1/2).

On the other hand for any σ > 0 there exists a constant K2(σ) > 0 depending on σ such that

(139) H(r) > K2(σ) r
2γ+σ for all r ∈ (0, r1).

Proof. It follows by Lemma 5.19 by proceeding exactly as in the proof of Lemma 5.12. �

6. The blow-up argument

Throughout this section, we let Ã, b̃, f̃ , h̃ be as in (23–26) with A,b,Ψ, f, h, V as in assumptions

(10–17), (21). Let Ω̃ be as in (29) with Ω satisfying (9) and (2–6). Let w ∈ H1(Ω̃) \ {0} be a
non-trivial weak solution to (37).

Lemma 6.1. Let γ be as in Lemmas 5.11, 5.19 respectively for N > 3 and N = 2. Then

(i) there exists k0 ∈ N such that γ = −N−2
2 +

√(
N−2
2

)2
+ µk0(V );

(ii) for every sequence λn → 0+ there exists a subsequence λnk
and ψ ∈ H1

0 (C) ⊂ H1(SN−1)
eigenfunction of the operator LV = −∆SN−1 − V associated to the eigenvalue µk0(V ) such
that ‖ψ‖L2(SN−1) = 1 and

w(λnk
x)√

H(λnk
)
→ |x|γψ

( x
|x|
)

weakly in H1(B1), strongly in C1,α
loc (C ∩ B1) and in C0,α

loc (B1 \ {0}) for any α ∈ (0, 1),
strongly in H1(Br) for all r ∈ (0, 1), and strongly in L2(∂B1), where w is meant to be

trivially extended outside Ω̃.

Proof. Let us set

(140) wλ(x) =
w(λx)√
H(λ)

.

We notice that

(141)

∫

Cλ

µ(λθ)(wλ(θ))2dσ = 1

where Cλ is defined in (45). If N > 3, by Lemma 5.5 we have that, for all λ ∈ (0, r0),
(
N (λ) +

N − 2

2

)
>

C

λN−2H(λ)

∫

Ωλ

(
|∇w(x)|2 + w2(x)

|x|2
)
dx(142)

= C

∫

Ωλ/λ

(
|∇wλ(x)|2 + (wλ(x))2

|x|2
)
dx.

Similarly, if N = 2, by Lemma 5.14 we have that, for all λ ∈ (0, r̃1),

(
N (λ) + 1

)
>

C1

H(λ)

(∫

Ωλ

|∇w(x)|2dx+
1

λ

∫

Sλ

w2

)
(143)

= C1

(∫

Ωλ/λ

|∇wλ(x)|2dx+

∫

Cλ

(wλ)2dσ

)
.
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From (118), Lemma 5.19, (142), and (143), we deduce that the trivial extension

w̃λ(x) =

{
wλ(x), if x ∈ Ωλ/λ,

0, if x ∈ B1 \ Ωλ/λ,
is bounded in H1(B1) uniformly with respect to λ ∈ (0, r1) with r1 as in Lemmas 5.12 and 5.20.
Therefore, for any given sequence λn → 0+, there exists a subsequence λnk

→ 0+ such that
w̃λnk ⇀ w̃ weakly in H1(B1) and a.e. in B1 for some w̃ ∈ H1(B1). Due to compactness of the
trace embedding H1(B1) →֒ L2(∂B1), we obtain that w̃λnk → w̃ in L2(∂B1) and consequently
from (141)

∫
∂B1

|w̃|2dσ = 1. In particular w̃ 6≡ 0. Moreover w̃ = 0 a.e. in B1 \ C where C is defined

in (8), as it easily follows from the definition of w̃λ, a.e. convergence of w̃λnk → w̃ and the fact

for every x ∈ B1 \ C there exists λx > 0 such that, for all λ ∈ (0, λx), x 6∈ Ωλ/λ.(144)

To prove (144), it is enough to observe that if x = (x′, xN ) ∈ B1 \ C, then xN < ϕ0(x
′) and hence

from (33) λxN < |x′|ϕ̃
(
λx′/|x′|

)
for λ sufficiently small. From (32), we deduce that λx/|x′| 6∈ Ω̃

for λ small which in particular yields x 6∈ Ωλ/λ for λ small. This proves claim (144).
By scaling of equation (37), we have that wλ weakly solves

(145)





− div(Ã(λx)∇wλ(x)) + λb̃(λx) · ∇wλ(x)−
V
(
x
|x|

)

|x|2 wλ(x)

= λ2h̃(λx)wλ(x) + λ2√
H(λ)

f̃(λx,
√
H(λ)wλ(x)), in Ωλ/λ,

wλ = 0, on ∂(Ωλ/λ) ∩B1.

In order to pass to the limit in (145), we observe that

(146) if ξ ∈ C∞
c (C ∩B1) then ξ ∈ C∞

c (Ωλ/λ) for sufficiently small λ.

Indeed, let us consider ξ ∈ C∞
c (C ∩B1) and denote K = supp ξ. Since K is compact, we have that

τ = min
(x′,xN )∈K

(xN − ϕ0(x
′)) > 0.

From (33), there exists t0 such that
∣∣∣ ϕ̃(tν)

t
− g(ν)

∣∣∣ < τ for all t ∈ (0, t0) and for all ν ∈ S
N−2.

Then for all λ ∈ (0, t0) and (x′, xN ) ∈ K we have that

λxN − ϕ̃(λx′) = λ(xN − ϕ0(x
′)) + λ|x′|

(
g(x′/|x′|)−

ϕ̃(λ|x′| x′

|x′| )

λ|x′|

)
> 0

and hence, by (32), K ⊂ Ωλ/λ for all λ ∈ (0, t0), thus proving claim (146). Hence we can test
equation (145) with every ξ ∈ C∞

c (C ∩B1). From (38) we have that

(147)

∫

Ωλnk
/λnk

Ã(λnk
x)∇wλnk (x) · ∇ξ(x) dx =

∫

C∩B1

∇w̃(x) · ∇ξ(x) dx+ o(1) as k → +∞.

From (39) and (42)

(148) λnk

∫

Ωλnk
/λnk

b̃(λnk
x) · ∇wλnk (x)ξ(x) dx− λ2nk

∫

Ωλnk
/λnk

h̃(λnk
x)wλnk (x)ξ(x) dx = o(1)

as k → +∞. From (41) and Hölder and Sobolev inequalities, we have that, denoting p̃ = 2∗ if
N > 3 and p̃ = p with p as in (17) if N = 2,

(149)
λ2nk√
H(λnk

)

∣∣∣∣∣

∫

Ωλnk
/λnk

f̃(λnk
x,
√
H(λnk

)wλnk (x))ξ(x) dx

∣∣∣∣∣

6 Cf̃λ
2
nk

∫

Ωλnk
/λnk

|wλnk (x)||ξ(x)| dx+ Cf̃λ
2
nk

∫

Ωλnk
/λnk

|w(λnk
x)|p̃−2|wλnk (x)||ξ(x)| dx

6 Cf̃λ
2
nk
‖w̃λnk ‖H1(B1)‖ξ‖H1(B1) + Cf̃λ

2−N+ 2N
p̃

nk ‖w̃λnk ‖Lp̃(B1)‖ξ‖Lp̃(B1)‖w‖
p̃−2
Lp̃(Ωλnk

)
= o(1)
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as k → +∞. Testing equation (145) with ξ ∈ C∞
c (C ∩B1), letting k → +∞, and using (147–149),

we obtain that w̃ is a weak solution to

(150)




−∆w̃ −

V
(
x
|x|

)

|x|2 w̃ = 0, in C ∩B1,

w̃ = 0, on ∂C ∩B1.

For λ ∈ (0, r1) we define

Ψλ : {(y′, yN ) ∈ R
N−1 × R : |y′| 6 1} → {(y′, yN ) ∈ R

N−1 × R : |y′| 6 1}
as

Ψλ(y
′, yN ) :=

(
y′, yN +

ϕ̃(λy′)

λ

)
.

We notice that Ψλ is invertible and Ψ−1
λ (x′, xN ) :=

(
x′, xN − ϕ̃(λx′)

λ

)
. Let us fix r ∈ (0, 1),

s1, s2, ρ1, ρ2, R1, R2 such that 0 < R1 < ρ1 < s1 < r < s2 < ρ2 < R2 < 1, and denote

AR1,R2
:=
{
(y′, yN ) ∈ R

N−1 × (0,+∞) : R1 <
√
|y′|2 + (yN + ϕ0(y′))2 < R2

}
,

Aρ1,ρ2 :=
{
(y′, yN ) ∈ R

N−1 × (0,+∞) : ρ1 <
√

|y′|2 + (yN + ϕ0(y′))2 < ρ2

}
.

Using (33) it is easy to verify that there exist λ0 ∈ (0, r1) and c0 > 0 such that for all λ ∈ (0, λ0)

|Ψλ(y)| > c0 for every y ∈ AR1,R2

and

(151)
{
(y′, yN ) ∈ R

N−1 × (0,+∞) :

√
|y′|2 +

(
yN + λ−1ϕ̃(λy′)

)2
= r
}

⊆
{
(y′, yN ) ∈ R

N−1 × (0,+∞) : s1 <

√
|y′|2 +

(
yN + λ−1ϕ̃(λy′)

)2
< s2

}
⊆ Aρ1,ρ2

⊆ AR1,R2
⊆
{
(y′, yN ) ∈ R

N−1 × (0,+∞) :

√
|y′|2 +

(
yN + λ−1ϕ̃(λy′)

)2
< 1
}

namely

Ψ−1
λ

(
Ωλ
λ

∩ ∂Br
)

⊆ Ψ−1
λ

(
Ωλ
λ

∩ (Bs2 \Bs1)
)

⊆ Aρ1,ρ2 ⊆ AR1,R2
⊆ Ψ−1

λ

(
Ωλ
λ

)
(152)

for all λ ∈ (0, λ0). From (145) and (152), the functions vλ(y) := wλ(Ψλ(y)) satisfy




− div(Ãλ(y)∇vλ(y)) + b̃λ(y) · ∇vλ(y)− V
(

Ψλ(y)

|Ψλ(y)|

)

|Ψλ(y)|2
vλ(y)

= h̃λ(y)vλ(y) + f̃λ(y, vλ(y)), in AR1,R2
,

vλ = 0, on ∂AR1,R2
∩ {(y′, yN ) : yN = 0},

for all λ ∈ (0, λ0), where

Ãλ(y) = (JacΨλ(y))
−1Ã(λΨλ(y))((JacΨλ(y))

T )−1, b̃λ(y) = λb̃(λΨλ(y))((JacΨλ(y))
T )−1,

f̃λ(y, s) =
λ2√
H(λ)

f̃(λΨλ(y),
√
H(λ)s), h̃λ(y) = λ2h̃(λΨλ(y)).

From (36) ‖Ãλ‖W 1,∞(AR1,R2
) is bounded uniformly with respect to λ ∈ (0, λ0). From (39) and (42)

‖b̃λ‖L∞(AR1,R2
), ‖h̃λ‖L∞(AR1,R2

) are bounded uniformly with respect to λ ∈ (0, λ0). From (41),

Lemmas 5.12 and 5.20, (111), and (135), we have that, denoting again p̃ = 2∗ if N > 3 and p̃ = p
with p as in (17) if N = 2,

∣∣∣∣
f̃λ(y, vλ(y))

vλ(y)

∣∣∣∣ 6 Cf̃λ
2
(
1 + |H(λ)|(p̃−2)/2|vλ(y)|p̃−2

)
(153)

6 const
(
λ2 + λ(p̃−2)( 2

p̃−2+γ)|vλ(y)|p̃−2
)
6 const

(
1 + |vλ(y)|p̃−2

)
.
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Hence, if we define s = q/(p̃ − 2) > N/2 with q as in Proposition 4.1 if N > 3 and q > p̃ − 2 if
N = 2, then by (35) and two changes of variables, we obtain

∥∥∥∥∥
f̃λ(y, vλ(y))

vλ(y)

∥∥∥∥∥
Ls(AR1,R2

)

6 const


1 + λ2|H(λ)| p̃−2

2

(∫

AR1,R2

|vλ(y)|(p̃−2)sdy

)1/s



6 const

[
1 + λ2|H(λ)| p̃−2

2

(∫

B1

|w̃λ(x)|q|det JacΨ−1
λ (x)| dx

)1/s
]

6 const

[
1 + λ2−

N
s

(∫

Ωλ

|w(x)|qdx
)1/s

]
= O(1) as λ→ 0+ .

Furthermore, up to shrinking λ0, it is easy to verify that {vλ}λ∈(0,λ0) is bounded in H1(AR1,R2
)

uniformly with respect to λ and that

inf
λ∈(0,λ0)
y∈AR1,R2

inf
ξ∈RN\{0}

Ãλ(y)ξ · ξ
|ξ|2 > 0.

Therefore, using classical iterative estimates of Brezis-Kato [4] type (see also Proposition 4.1),
standard bootstrap, elliptic regularity theory, (152), (153), we first deduce that

(154) {vλ}λ∈(0,λ0) is bounded in C1,α(Aρ1,ρ2) uniformly with respect to λ for all α ∈ (0, 1).

From (154) and local Lipschitz continuity of ϕ̃, it follows that, for all x, z ∈ Ψλ(Aρ1,ρ2),

|wλ(x)− wλ(z)| = |vλ(Ψ−1
λ (x))− vλ(Ψ−1

λ (z))| 6 ‖vλ‖C0,α(Aρ1,ρ2
)|Ψ−1

λ (x)−Ψ−1
λ (z)|α

6 ‖vλ‖C0,α(Aρ1,ρ2
)

(
|x− z|+ |ϕ̃(λx′)− ϕ̃(λz′)|

λ

)α

6 const ‖vλ‖C0,α(Aρ1,ρ2
)|x− z|α,

while from (154) and (36) we deduce

|∇wλ(x)−∇wλ(z)| 6
∣∣(∇vλ(Ψ−1

λ (x))−∇vλ(Ψ−1
λ (z))

)
JacΨ−1

λ (x)
∣∣

+
∣∣∇vλ(Ψ−1

λ (z))
(
JacΨ−1

λ (x)− JacΨ−1
λ (z)

)∣∣

6 const
(
‖∇vλ‖C0,α(Aρ1,ρ2

)|Ψ−1
λ (x)−Ψ−1

λ (z)|α + ‖∇vλ‖L∞(Aρ1,ρ2
)|∇ϕ̃(λx′)−∇ϕ̃(λz′)|

)

6 const |x− z|α.

In particular, the above estimates yield that ‖wλ‖C1,α(Ψλ(Aρ1,ρ2
)) is bounded uniformly with respect

to λ ∈ (0, λ0) for all α ∈ (0, 1), and hence, taking into account (152),

‖wλ‖
C1,α

(
Ωλ
λ ∩(Bs2

\Bs1
)
) is bounded uniformly with respect to λ ∈ (0, λ0)(155)

for all α ∈ (0, 1). (155) implies that ‖w̃λ‖C0,α(Bs2
\Bs1

) is bounded uniformly with respect to

λ ∈ (0, λ0), and hence

{w̃λ}λ∈(0,λ0) is relatively compact in C0,α(Bs2 \Bs1),(156)

for all α ∈ (0, 1). From (151) and (155) it follows that

(157) {∇w̃λ}λ∈(0,λ0) is relatively compact in L2(∂Br).

and consequently, from weak convergence w̃λnk ⇀ w̃ in H1(B1) we deduce that for every r ∈ (0, 1)

∇w̃λnk → ∇w̃ in L2(∂Br).(158)

From (156), (155), and compact embedding of Hölder spaces, reasoning as in the proof of (146),
we also obtain that for all α ∈ (0, 1)

w̃λnk → w̃ in C0,α
loc (B1 \ {0}) and wλnk → w̃ in C1,α

loc (C ∩B1).(159)
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Testing equation (145) with wλ and integrating over (Ωλ/λ) ∩Br with r ∈ (0, 1), we obtain

(160)

∫

(Ωλ/λ)∩Br

Ã(λx)∇wλ(x) · ∇wλ(x) dx+ λ

∫

(Ωλ/λ)∩Br

b̃(λx) · ∇wλ(x)wλ(x) dx

−
∫

(Ωλ/λ)∩Br

V
(
x
|x|

)

|x|2 |wλ(x)|2 dx = λ2
∫

(Ωλ/λ)∩Br

h̃(λx)|wλ(x)|2 dx

+
λ2√
H(λ)

∫

(Ωλ/λ)∩Br

f̃(λx,
√
H(λ)wλ(x))wλ(x) dx+

∫

(Ωλ/λ)∩∂Br

Ã(λx)∇wλ(x)·ν(x)wλ(x) dσ(x).

From (38) and boundedness of {w̃λ}λ∈(0,λ0) in H
1(B1) we have that

∫

(Ωλ/λ)∩Br

Ã(λx)∇wλ(x) · ∇wλ(x) dx =

∫

(Ωλ/λ)∩Br

|∇wλ(x)|2 dx+O(λδ) as λ→ 0+.(161)

From (39) and (42) we have that

(162) λ

∫

(Ωλ/λ)∩Br

b̃(λx) · ∇wλ(x)wλ(x) dx = O(λδ) as λ→ 0+

and

(163) λ2
∫

(Ωλ/λ))∩Br

h̃(λx)|wλ(x)|2 dx = O(λδ) as λ→ 0+.

Proceeding as in (149) we can prove that

(164)
λ2√
H(λ)

∫

(Ωλ/λ)∩Br

f̃(λx,
√
H(λ)wλ(x))wλ(x) dx = o(1) as λ→ 0+.

By (160–164), (38), and (155), we obtain

∫

(Ωλ/λ)∩Br

(
|∇wλ(x)|2 −

V
(
x
|x|

)

|x|2 |wλ(x)|2
)
dx =

∫

(Ωλ/λ)∩∂Br

∂wλ

∂ν
wλ dσ + o(1)

as λ → 0+, so that, along the sequence λnk
, by (158), the strong convergence w̃λnk → w̃ in

L2(∂Br), and (150), we obtain for any positive constant C̃

lim
k→+∞

(∫

(Ωλnk
/λnk

)∩Br

(
|∇wλnk (x)|2 dx−

V
(
x
|x|

)

|x|2 |wλnk (x)|2
)
dx

+
C̃

r

∫

(Ωλnk
/λnk

)∩∂Br

|wλnk (x)|2 dσ(x)
)

=

∫

C∩∂Br

∂w̃

∂ν
(x)w̃(x) dσ(x) +

C̃

r

∫

C∩∂Br

|w̃(x)|2 dσ(x)

=

∫

C∩Br

|∇w̃(x)|2dx−
∫

C∩Br

V
(
x
|x|

)

|x|2 |w̃(x)|2dx+
C̃

r

∫

C∩∂Br

|w̃(x)|2 dσ(x)

as k → +∞ and consequently

lim
k→+∞

(∫

(Ωλnk
/λnk

∪C)∩Br

(
|∇(w̃λnk − w̃)(x)|2 dx−

V
(
x
|x|

)

|x|2 (w̃λnk − w̃)2(x)

)
dx

+
C̃

r

∫

(Ωλnk
/λnk

∪C)∩∂Br

(w̃λnk − w̃)2(x)dσ(x)

)
= 0,

which, in view of Corollary 3.5 with λr in place of r and through the change of variable y = λx
yields the strong convergence

(165) w̃λnk → w̃ in H1(Br).
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According to (145) we define the functions

Dk(r)

=
1

rN−2

∫

(Ωλnk
/λnk

)∩Br

(
Ã(λnk

y)∇wλnk (y) · ∇wλnk (y) + λnk
b̃(λnk

y) · ∇wλnk (y)wλnk (y)

)
dy

− 1

rN−2

∫

(Ωλnk
/λnk

)∩Br

(
V
(
y
|y|

)

|y|2 |wλnk (y)|2 + λ2nk
h̃(λnk

y)|wλnk (y)|2
)
dy

− λ2nk

rN−2
√
H(λnk

)

∫

(Ωλnk
/λnk

)∩Br

f̃(λnk
y,
√
H(λnk

)wλnk (y))wλnk (y)dy,

Hk(r) =
1

rN−1

∫

(Ωλnk
/λnk

)∩∂Br

µ(λnk
y)|wλnk (y)|2 dσ(y).

By (161–165) we infer that, for any r ∈ (0, 1),

(166) Dk(r) → Dw̃(r) and Hk(r) → Hw̃(r)

as k → +∞ where

Dw̃(r) :=
1

rN−2

∫

C∩Br

(
|∇w̃(y)|2 −

V
(
y
|y|

)

|y|2 w̃2(y)

)
dy and Hw̃(r) :=

1

rN−1

∫

C∩∂Br

w̃2dσ.

By (150) and (14) we have that Hw̃(r) > 0 for all r ∈ (0, 1). Therefore the function

(167) Nw̃(r) :=
Dw̃(r)

Hw̃(r)
for any r ∈ (0, 1)

is well defined. Moreover by direct computation one verifies that

Dk(r)

Hk(r)
= N (λnk

r)(168)

for all r ∈ (0, 1). By (166–168), Lemmas 5.11 and 5.19, letting k → +∞, we obtain

(169) Nw̃(r) = γ for all r ∈ (0, 1),

where γ is as in Lemmas 5.11 and 5.19.
Proceeding as in Propositions 5.7 and 5.15, Lemmas 5.9, 5.17 and 5.4, and taking into account

that w̃ solves problem (150) in the domain C ∩B1, we deduce that Dw̃, Hw̃,Nw̃ ∈W 1,1
loc (0, 1) and

D′
w̃(r) = 2r2−N

∫

C∩∂Br

∣∣∣∣
∂w̃

∂ν

∣∣∣∣
2

dσ = 2r2−N
∫

∂Br

∣∣∣∣
∂w̃

∂ν

∣∣∣∣
2

dσ

H ′
w̃(r) = 2r1−N

∫

C∩∂Br

∂w̃

∂ν
w̃ dσ = 2r1−N

∫

∂Br

∂w̃

∂ν
w̃ dσ

Dw̃(r) =
r

2
H ′
w̃(r) ,

N ′
w̃(r) =

2r
[( ∫

∂Br

∣∣∂w̃
∂ν

∣∣2dσ
)( ∫

∂Br
w̃2dσ

)
−
(∫

∂Br

∂w̃
∂ν w̃ dσ

)2 ]

( ∫
∂Br

w̃2dσ
)2

for a.e. r ∈ (0, 1). On the other hand, by (169), Nw̃ is a constant function thus implying
(∫

∂Br

∣∣∣∣
∂w̃

∂ν

∣∣∣∣
2

dσ

)(∫

∂Br

w̃2dσ

)
−
(∫

∂Br

∂w̃

∂ν
w̃ dσ

)2
= 0.

The above identity shows that the functions ∂w̃
∂ν and w̃ have the same direction as vectors in

L2(∂Br) and hence there exists a function η = η(r) such that

(170)
∂w̃

∂ν
(r, θ) = η(r)w̃(r, θ) for a.e. r ∈ (0, 1), θ ∈ S

N−1.

Since necessarily η(r) =
H′

w̃(r)
2Hw̃(r) , then η ∈ L1

loc(0, 1). Integration of (170) yields

w̃(r, θ) = e
∫ r
1
η(s) dsw̃(1, θ) = ϕ(r)ψ(θ) for all r ∈ (0, 1), θ ∈ S

N−1 ,
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where ϕ(r) = e
∫ r
1
η(s) ds and ψ(θ) = w̃(1, θ). We notice that ψ ∈ H1

0 (C) and (150) may be written
in polar coordinates as

(
−ϕ′′(r)− N − 1

r
ϕ′(r)

)
ψ(θ)− ϕ(r)

r2
LV ψ(θ) = 0 in (0, 1)× C.

Taking r fixed we may observe that ψ has to be necessarily an eigenfunction of the operator LV
on C ⊂ S

N−1 with homogeneous Dirichlet boundary conditions. Hence, if we denote by µk0(V )
the corresponding eigenvalue, it follows that ϕ solves the equation

−ϕ′′(r)− N − 1

r
ϕ′(r) +

µk0(V )

r2
ϕ(r) = 0 in (0, 1).

The general solution of the above equation is given by

ϕ(r) = c1r
σ+
k0 + c2r

σ−
k0 , c1, c2 ∈ R,

where σ±
k0

= −N−2
2 ±

√(
N−2
2

)2
+ µk0(V ). We observe that the function |x|σ

−
k0ψ( x|x| ) /∈ H1(B1)

and hence c2 = 0. Moreover ϕ(1) = 1 implies c1 = 1, so that w̃ takes the form w̃(r, θ) = rσ
+
k0ψ(θ).

Finally, inserting this representation of w̃ in Nw̃ and taking into account that

Nw̃(r) =
Dw̃(r)

Hw̃(r)
=
r

2

H ′
w̃(r)

Hw̃(r)
=
r
∫
C∩∂Br

∂w̃
∂ν w̃ dσ∫

C∩∂Br
w̃2 dσ

,

from (169) it follows that σ+
k0

= γ. The proof is thereby complete. �

We now study the behavior of H(λ) as λ→ 0+.

Lemma 6.2. Let γ as in Lemmas 5.11 and 5.19. Then

lim
λ→0+

λ−2γH(λ)

exists and is finite.

Proof. In view of (119), (137), Lemma 5.5(i) and Lemma 5.14(i), it is sufficient to prove that
the limit exists. By (85) and Lemmas 5.11, 5.19 we have

d

dr

H(r)

r2γ
= −2γr−2γ−1H(r) + r−2γH ′(r)(171)

= 2r−2γ−1(D(r)− γH(r) +H(r)O(rδ)) = 2r−2γ−1H(r)

(∫ r

0

N ′(s)ds+O(rδ)

)
.

Let us define the functions

ν1(r) :=

∫
Γr

|∇w|2(Ãν̃·ν̃)(Ãx·ν̃)
µ dσ

∫
Sr
µw2dσ

+
2r
[( ∫

Sr

|Ã∇w·ν|2

µ dσ
)( ∫

Sr
µw2dσ

)
−
( ∫

Sr
(Ã∇w · ν)w dσ(y)

)2]

( ∫
Sr
µw2dσ

)2

ν2(r) := N ′(r)− ν1(r).

By Lemma 2.6 and Schwartz inequality we have that ν1 > 0. On the other hand from the proofs of
Lemmas 5.11, 5.19, 5.8, 5.16, we infer that the function ν2 is L1-integrable in a right neighborhood
of zero and moreover

(172)

∫ r

0

ν2(s) ds = O(rδ̂), as r → 0+

where

δ̂ =

{
min{δ, (q − 2∗)/q}, if N > 3,

min
{
δ, 4p ,

p−2
2p

}
, if N = 2,

(173)
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with p as in (17) and q as in (86). After integration of (171) over the interval (r, r1) we obtain

H(r1)

r2γ1
− H(r)

r2γ
=

∫ r1

r

2s−2γ−1H(s)

(∫ s

0

ν1(t)dt

)
ds+

∫ r1

r

2s−2γ−1H(s)

(∫ s

0

ν2(t)dt

)
ds(174)

+O

(∫ r1

r

s−2γ−1+δH(s) ds

)
.

From the nonnegativity of ν1 the limit limr→0+
∫ r1
r

2s−2γ−1H(s)
(∫ s

0
ν1(t)dt

)
ds exists. On the

other hand, by (172), (119), (137)
∣∣∣∣s

−2γ−1H(s)

(∫ s

0

ν2(t)dt

)∣∣∣∣ 6 O(1)s−1

∣∣∣∣
∫ s

0

ν2(t) dt

∣∣∣∣ = O(s−1+δ̂) as s→ 0+

which proves that s−2γ−1H(s)
(∫ s

0
ν2(t)dt

)
is L1-integrable in a right neighborhood of the origin.

From (119) and (137) it follows that s−2γ−1+δH(s) = O(s−1+δ) as s→ 0+ and hence s−2γ−1+δH(s)
is L1-integrable in a right neighborhood of the origin. We may therefore conclude that all terms in
the right hand side of (174) admit a limit as r → 0+ thus completing the proof of the lemma. �

7. Straightening the domain

Lemma 7.1. There exists R̂ ∈ (0, R̃) such that the function

Ξ : Ω̃ ∩BR̂ → C ∩BR̂,(175)

Ξ(y) = Ξ(y′, yN ) =
(y′, yN − ϕ̃(y′) + ϕ0(y

′))√
1 +

(ϕ0(y
′)− ϕ̃(y′))2 + 2yN (ϕ0(y

′)− ϕ̃(y′))

|y′|2 + y2N

is invertible. Furthermore, putting Φ = Ξ−1, we have

Φ ∈ C1(C ∩BR̂, Ω̃ ∩BR̂), Φ−1 ∈ C1(Ω̃ ∩BR̂, C ∩BR̂),(176)

Φ(C ∩ ∂Br) = Ω̃ ∩ ∂Br for all r ∈ (0, R̂),(177)

Φ(x) = x+O(|x|1+δ) and JacΦ(x) = IdN +O(|x|δ) as |x| → 0,(178)

Φ−1(y) = y +O(|y|1+δ) and JacΦ−1(y) = IdN +O(|y|δ) as |y| → 0,(179)

det JacΦ(x) = 1 +O(|x|δ) as |x| → 0.(180)

Proof. It follows from the Local Inversion Theorem, (34–35), and direct calculations. �

Let u ∈ H1(Ω) be a weak solution to (19), so that w = u ◦Ψ ∈ H1(Ω̃) weakly solves (37). Then

(181) v = w ◦ Φ = u ◦Ψ ◦ Φ ∈ H1(C ∩BR̂)

is a weak solution to

(182)




− div(Â(x)∇v(x)) + b̂(x) · ∇v(x)−

V
(
x
|x|

)

|x|2 v(x) = ĥ(x)v(x) + f̂(x, v(x)), in C ∩BR̂,

v = 0, on ∂C ∩BR̂,

where

Â(x) = | det JacΦ(x)|(JacΦ(x))−1Ã(Φ(x))((JacΦ(x))T )−1,

b̂(x) = | det JacΦ(x)|b̃(Φ(x))((JacΦ(x))T )−1,

f̂(x, s) = | det JacΦ(x)|f̃(Φ(x), s),
ĥ(x) = |detJacΦ(x)|h̃(Φ(x)) + |detJacΦ(x)|

(
V (

Φ(x)
|Φ(x)|

)

|Φ(x)|2 −
V (

x
|x| )

|x|2

)
+
(
|detJacΦ(x)| − 1

)V ( x
|x|

)

|x|2 .
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By Lemmas 7.1, 2.4, and direct calculations, we obtain

Â(x) = IdN +O(|x|δ) as |x| → 0,(183)

b̂ ∈ L∞
loc(C ∩BR̂,RN ), |b̂(x)| = O(|x|−1+δ) as |x| → 0,(184)

f̂ ∈ C0((C ∩BR̂)× R) and |f̂(x, s)s| 6
{
Cf̂ (|s|2 + |s|2∗), if N > 3,

Cf̂ (|s|2 + |s|p), if N = 2,
(185)

ĥ ∈ L∞
loc(C ∩BR̂), ĥ(x) = O(|x|−2+δ) as |x| → 0.(186)

Lemma 7.2. Let H be as in (73) and v = w ◦ Φ as in (181). Then

H(λ) =
(
1 +O(λδ)

) ∫

C

v2(λθ) dσ(θ),(187)

∫
C∩B1

|∇v̂λ(x)|2dx
H(λ)

= (1 +O(λδ))

∫

Ωλ/λ

|∇wλ(y)|2 dy = O(1),(188)

as λ→ 0+, where wλ is defined in (140) and v̂λ(x) := v(λx).

Proof. From (177), by a change of variable

H(λ) =

∫

C

µ(Φ(λθ))v2(λθ)| det JacΦ(λθ)| dσ(θ)

and ∫
C∩B1

|∇v̂λ(x)|2dx
H(λ)

=

∫

Ωλ/λ

|∇wλ(y) JacΦ(Φ−1(λy))|2| det JacΦ−1(λy)| dy

for all λ ∈ (0, R̂). We conclude from (75), (178–180), and H1-boundedness of {wλ} (see the proof
of Lemma 6.1). �

Lemma 7.3. Let v = w ◦ Φ be as in (181) and let k0 and γ as in Lemma 6.1(i). Then for every
sequence λn → 0+ there exist a subsequence λnk

and ψ ∈ H1
0 (C) ⊂ H1(SN−1) eigenfunction of the

operator LV = −∆SN−1 − V associated to the eigenvalue µk0(V ) such that ‖ψ‖L2(SN−1) = 1, the

convergences of
w(λnk

x)√
H(λnk

)
to |x|γψ

(
x
|x|

)
stated in part ii) of Lemma 6.1 hold, and

v(λnk
·)√∫

C
v2(λnk

θ) dσ(θ)
→ ψ

strongly in L2(C).

Proof. From Lemma 6.1, there exist a subsequence λnk
and ψ ∈ H1

0 (C) ⊂ H1(SN−1) eigen-
function of the operator LV = −∆SN−1 − V associated to the eigenvalue µk0(V ) such that
‖ψ‖L2(SN−1) = 1 and (H(λnk

))−1/2w(λnk
x) → |x|γψ

(
x
|x|

)
in senses claimed in part ii) of Lemma 6.1,

in particular strongly in L2(SN−1) and a.e. on S
N−1. Moreover from H1-boundedness of wλ (see

the proof of Lemma 6.1) and (188) it follows that {v̂λ/
√
H(λ)}λ is bounded in H1(C ∩ B1) and

relatively compact in L2(C). Hence from (187) there exists ψ̃ ∈ L2(C) such that, up to a further
subsequence,

v(λnk
·)√∫

C
v2(λnk

θ) dσ(θ)
→ ψ̃ in L2(C) and a.e.

From (155) together with (120) and (138) which allow extending estimate (155) up to ∂B1, we
have that, in view of (178) and (187), for a.e. θ ∈ S

N−1,

v(λnk
θ)√∫

C
v2(λnk

θ) dσ(θ)
= (1 +O(λδnk

))
w(Φ(λnk

θ))√
H(λnk

)

= (1 +O(λδnk
))

[
w(λnk

θ)√
H(λnk

)
+

(
wλnk

(Φ(λnk
θ)

λnk

)
− wλnk (θ)

)]

=
w(λnk

θ)√
H(λnk

)
+O(λδnk

) → ψ(θ) as k → +∞.
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Then ψ̃ = ψ and the lemma is proved. �

In the sequel we denote by ψi a L
2-normalized eigenfunction of the operator LV = −∆SN−1 −V

on the spherical cap C ⊂ S
N−1 under null Dirichlet boundary conditions associated to the i-th

eigenvalue µi(V ), i.e.

(189)





LV ψi(θ) = µi(V )ψi(θ), in C,

ψi = 0, on ∂C,
∫
SN−1 |ψi(θ)|2 dσ(θ) = 1.

Moreover, we choose the ψi’s in such a way that the set {ψi}i∈N\{0} forms an orthonormal basis

of L2(C). For all i ∈ N, i > 1, and λ ∈ (0, R̂), we also define

(190) ϕi(λ) :=

∫

C

v(λ θ)ψi(θ) dσ(θ).

From Lemma 6.1, there exist j0,m ∈ N, j0,m > 1 such that m is the multiplicity of the eigenvalue
µj0(V ) = µj0+1(V ) = · · · = µj0+m−1(V ) and

(191) γ = lim
r→0+

N (r) = −N − 2

2
+

√(
N − 2

2

)2
+ µi(V ), i = j0, . . . , j0 +m− 1.

Let E0 be the eigenspace of the operator LV associated to the eigenvalue µj0(V ), so that the set
{ψi}i=j0,...,j0+m−1 is an orthonormal basis of E0.

Lemma 7.4. Let v = w ◦Φ be as in (181), j0 and m as in (191) and ϕi as in (190). Then for all

i ∈ {j0, . . . , j0 +m− 1} and R ∈ (0, R̂)

(192) ϕi(λ) = λγ
(
R−γϕi(R) +

2−N − γ

2−N − 2γ

∫ R

λ

s−N+1−γΥi(s)ds

− γR−N+2−2γ

2−N − 2γ

∫ R

0

sγ−1Υi(s) ds

)
+O(λγ+δ̂)

as λ→ 0+ with δ̂ as in (173) and Υi ∈ L1(0, R̂) defined as

(193) Υi(λ) = −
∫

C∩Bλ

(Â(x)− IdN )∇v(x) · ∇SN−1ψi(x/|x|)
|x| dx

+

∫

C∩Bλ

(
− b̂(x) · ∇v(x) + ĥ(x)v(x) + f̂(x, v(x))

)
ψi(x/|x|) dx

+

∫

C∩∂Bλ

(Â(x)− IdN )∇v(x) · x|x|ψi(x/|x|) dσ(x).

Proof. For any λ ∈ (0, R̂), we expand θ 7→ v(λθ) ∈ L2(C) in Fourier series with respect to the
orthonormal basis {ψi} of L2(SN−1) defined in (189), i.e.

(194) v(λ θ) =

∞∑

i=1

ϕi(λ)ψi(θ) in L2(C),

with ϕi is defined in (190). For all i, we consider the distribution ζi on (0, R̂) defined as

D′(0,R̂)〈ζi, ω〉D(0,R̂)

= H−1(BR̂∩C)

〈
div
(
(Â− IdN )∇v

)
− b̂ · ∇v + ĥv + f̂(x, v),

ω(|x|)
|x|N−1

ψi(x/|x|)
〉
H1

0 (BR̂∩C)

for all ω ∈ D(0, R̂). Letting Υi as in (193), by direct calculations we have that

Υ′
i(λ) = λN−1ζi(λ) in D′(0, R̂).(195)
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On the other hand, from the definition of ζi and the fact that v solves (182), it follows that, for
all i, the function ϕi defined in (190) solves

−ϕ′′
i (λ)−

N − 1

λ
ϕ′
i(λ) +

µi(V )

λ2
ϕi(λ) = ζi(λ) in the sense of distributions in (0, R̂),

which can be also written as

−
(
λN−1+2σi

(
λ−σiϕi(λ)

)′)′
= λN−1+σiζi(λ) in the sense of distributions in (0, R̂),

where

(196) σi = −N − 2

2
+

√(
N − 2

2

)2
+ µi(V ).

Let us fix R ∈ (0, R̂). Integrating by parts the right hand side and taking into account (195), we
obtain that there exists ci ∈ R (depending on R) such that

(
λ−σiϕi(λ)

)′
= −λ−N+1−σiΥi(λ)− σiλ

−N+1−2σi

(
ci +

∫ R

λ

sσi−1Υi(s)ds

)

in the sense of distributions in (0, R). In particular ϕi ∈W 1,1
loc (0, R̂). A further integration yields

ϕi(λ) = λσi

(
R−σiϕi(R) +

∫ R

λ

s−N+1−σiΥi(s)ds

)
(197)

+ σiλ
σi

∫ R

λ

s−N+1−2σi

(
ci +

∫ R

s

tσi−1Υi(t)dt

)
ds

= λσi

(
R−σiϕi(R) +

2−N − σi
2−N − 2σi

∫ R

λ

s−N+1−σiΥi(s)ds+
σiciR

−N+2−2σi

2−N − 2σi

)

+
σiλ

−N+2−σi

N − 2 + 2σi

(
ci +

∫ R

λ

tσi−1Υi(t) dt

)
.

Let j0,m ∈ N be as in (191), so that the eigenvalue µj0(V ) = µj0+1(V ) = · · · = µj0+m−1(V ) has
multiplicity m and

(198) γ = lim
r→0+

N (r) = σi, i = j0, . . . , j0 +m− 1,

see Lemma 6.1. Estimate (187) and the Parseval identity yield

(199) H(λ) = (1 +O(λδ))

∫

C

|v(λ θ)|2 dσ(θ) = (1 +O(λδ))
∞∑

i=1

|ϕi(λ)|2, for all 0 < λ 6 R.

We claim that

(200) Υi(λ) = O(λN−2+δ̂+σi) for every i ∈ {j0, . . . , j0 +m− 1} as λ→ 0+,

with δ̂ defined in (173). Let us prove (200). By (119), (137), (183), (188), Hölder inequality and a
change of variable we obtain

∣∣∣∣
∫

C∩Bλ

(Â(x)− IdN )∇v(x) · ∇SN−1ψi(x/|x|)
|x| dx

∣∣∣∣(201)

6 O(λN−2+δ+σi)

∫

C∩B1

|x|δ |∇v̂
λ(x)|√
H(λ)

|∇SN−1ψi(x/|x|)|
|x| dx

6 O(λN−2+δ+σi)

(∫
C∩B1

|∇v̂λ(x)|2dx
H(λ)

)1/2(∫

C∩B1

|x|2δ−2|∇SN−1ψi(x/|x|)|2dx
)1/2

= O(λN−2+δ+σi) as λ→ 0+.
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Similarly, by a change of variable, (39), (42), (119), (137), and boundedness in H1(B1) of the set
{w̃λ}λ (see the proof of Lemma 6.1), we obtain

∫

C∩Bλ

(
− b̂(x) · ∇v(x) + ĥ(x)v(x)

)
ψi(x/|x|) dx = O(λN−2+δ+σi) as λ→ 0+.(202)

Moreover, (41), Proposition 4.1, (119), (137), and boundedness of {w̃λ}λ in H1(B1) imply that
∣∣∣∣
∫

C∩Bλ

f̂(x, v(x))ψi(x/|x|) dx
∣∣∣∣ 6 const

∣∣∣∣
∫

Ωλ

f̃(y, w(y))ψi
( Φ−1(y)
|Φ−1(y)|

)
dy

∣∣∣∣(203)

6 const

∫

Ωλ

(|w(y)|+ |w(y)|p̃−1) dy

6 constλN
√
H(λ)

(∫

Ωλ/λ

|wλ(x)| dx+

∫

Ωλ/λ

|w(λx)|p̃−2|wλ(x)| dx
)

6 constλN+σi

(
‖wλ‖H1(Ωλ/λ) +

(∫

Ωλ/λ

|w(λx)|q̃dx
)p̃−2

q̃

‖wλ‖Lp̃(Ωλ/λ)

)

6 constλN+σi(1 + λ−N(p̃−2)/q̃) = O(λN−2+σi+(2−N p̃−2
q̃ )) = O(λN−2+δ̂+σi) as λ→ 0+,

where p̃ = 2∗ if N > 3 and p̃ = p with p as in (17) if N = 2, while q̃ = q with q is as in (86) if

N > 3 and q̃ = 2p if N = 2, so that 2 − N p̃−2
q̃ > δ̂. In order to estimate the boundary term in

(193), we perform the change of variables x = Φ−1(y) and y = λθ to obtain
∫

C∩∂Bλ

(Â(x)− IdN )∇v(x) · x|x|ψi(x/|x|) dσ(x)

= λN−1

∫

Cλ

(Â(Φ−1(λθ)))− IdN )
(
∇w(λθ)JacΦ(Φ−1(λθ))

)T · Φ−1(λθ)
|Φ−1(λθ)|×

× ψi

(
Φ−1(λθ)
|Φ−1(λθ)|

)
|det JacΦ−1(λθ)| dσ(θ)

and from this, using (178), (179), (180), (183), (119), (137), (120), (138), and (157), we arrive to
∣∣∣∣
∫

C∩∂Bλ

(Â(x)− IdN )∇v(x) · x|x|ψi(x/|x|) dσ(x)
∣∣∣∣(204)

6 O(λN−2+δ+σi)

(∫

Cλ

|∇wλ(θ)|2dσ(θ)
)1/2(∫

Cλ

∣∣∣ψi
(

Φ−1(λθ)
|Φ−1(λθ)|

)∣∣∣
2

dσ(θ)

)1/2

= O(λN−2+δ+σi).

Inserting (201), (202), (203), (204) into (193), the proof of (200) follows.
In the rest of the proof it is not restrictive to assume that σi 6= 0, since otherwise the proof of

the lemma follows immediately from (197). From (200) we deduce that the map

(205) s 7→ s−N+1−σiΥi(s) ∈ L1(0, R)

so that

(206) λσi

(
R−σiϕi(R) +

2−N − σi
2−N − 2σi

∫ R

λ

s−N+1−σiΥi(s)ds+
σiciR

−N+2−2σi

2−N − 2σi

)

= O(λσi) = o(λ−N+2−σi) as λ→ 0+.

On the other hand, by (200) we also have that t 7→ tσi−1Υi(t) ∈ L1(0, R). We now claim that

(207) ci +

∫ R

0

tσi−1Υi(t) dt = 0.

Suppose by contradiction that (207) is not true. Then, by (197) and (206) we infer

(208) ϕi(λ) ∼
σi

N − 2 + 2σi

(
ci +

∫ R

0

tσi−1Υi(t) dt

)
λ−N+2−σi as λ→ 0+.
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If N > 3, Hardy inequality and the fact that v ∈ H1(C ∩BR) imply
∫ R

0

λN−3|ϕi(λ)|2dλ 6

∫ R

0

λN−3

(∫

C

|v(λθ)|2dσ(θ)
)
dλ =

∫

C∩BR

|v(x)|2
|x|2 dx < +∞

thus contradicting (208). If N = 2, (208), (196), and the fact we are assuming σi 6= 0 would imply

lim
λ→0+

|ϕi(λ)| = +∞

and, in turn, by (199) we would have

lim
λ→0+

H(λ) = +∞

in contradiction with (137). Claim (207) is thereby proved. By (197) and (207) we then obtain

ϕi(λ) = λσi

(
R−σiϕi(R) +

2−N − σi
2−N − 2σi

∫ R

λ

s−N+1−σiΥi(s)ds+
σiciR

−N+2−2σi

2−N − 2σi

)
(209)

− σiλ
−N+2−σi

N − 2 + 2σi

∫ λ

0

tσi−1Υi(t) dt.

The proof the lemma follows inserting (207) into (209) and observing that by (200)

σiλ
−N+2−σi

N − 2 + 2σi

∫ λ

0

tσi−1Υi(t) dt = O(λσi+δ̂)

as λ→ 0+. �

The asymptotic behavior of H(λ) as λ→ 0+ is evaluated in the following lemma.

Lemma 7.5. Let H be as in (73) and let γ be as in Lemmas 5.11 and 5.19 respectively in the
cases N > 3 and N = 2. Then

(210) lim
λ→0+

λ−2γH(λ) > 0.

Proof. The fact that the limit in (210) exists and is finite was proved in Lemma 6.2 and hence
we may proceed by contradiction by supposing that limλ→0+ λ

−2γH(λ) = 0. Let j0 and m be as
in (191) and ϕi as in (190). From (199) we deduce that for any i ∈ {j0, . . . , j0 +m− 1}

lim
λ→0+

λ−γϕi(λ) = 0.

Therefore by Lemma 7.4, (198), and (205) we obtain

R−γϕi(R)−
γR−N+2−2γ

2−N − 2γ

∫ R

0

sγ−1Υi(s) ds = − 2−N − γ

2−N − 2γ

∫ R

0

s−N+1−γΥi(s)ds

which replaced in (192) yields

ϕi(λ) = − 2−N − γ

2−N − 2γ
λγ
∫ λ

0

s−N+1−γΥi(s) ds+O(λγ+δ̂) as λ→ 0+.

Inserting in the last estimate (200) we conclude that for any i ∈ {j0, . . . , j0 +m− 1}
ϕi(λ) = O(λγ+δ̂) as λ→ 0+.

This, together with (190), implies

(211)

∫

C

v(λθ)φ(θ) dσ(θ) = O(λγ+δ̂) as λ→ 0+

for any function φ in the eigenspace E0. By (211), (187), (121) in the case N > 3, and (139) with

σ = δ̂ in the case N = 2, we obtain

(212)

∫

C

v(λθ)

‖v̂λ‖L2(C)
φ(θ) dσ(θ) = O(λδ̂/2) = o(1) as λ→ 0+

for any φ ∈ E0. On the other hand, Lemma 7.3 states that for any sequence λn → 0+ there exists
a subsequence λnk

and a function ψ ∈ E0 with ‖ψ‖L2(C) = 1 such that

v(λnk
·)

‖v̂λnk ‖L2(C)

→ ψ
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strongly in L2(C). Therefore, taking φ = ψ in (212) we conclude that

0 = lim
k→+∞

( v̂λnk

‖v̂λnk ‖L2(C)

, ψ
)
L2(C)

= ‖ψ‖2L2(C) = 1

thus giving rise to a contradiction. �

The following theorem is a more precise and complete version of Theorem 1.4.

Theorem 7.6. Let Ã, b̃, f̃ , h̃ be as in (23–26) with A,b,Ψ, f, h, V as in assumptions (10–17),

(21). Let Ω̃ be as in (29) with Ω satisfying (9) and (2–6). Let w ∈ H1(Ω̃) \ {0} be a non-trivial
weak solution to (37). Then, letting N (r) as in (110) and (134), there exists k0 ∈ N, k0 > 1, such
that

(213) lim
r→0+

N (r) = −N − 2

2
+

√(
N − 2

2

)2
+ µk0(V ).

Furthermore, if γ denotes the limit in (213), m > 1 is the multiplicity of the eigenvalue µk0(V )
and {ψi : j0 6 i 6 j0 + m − 1} (j0 6 k0 6 j0 + m − 1) is an L2(C)-orthonormal basis for the

eigenspace associated to µk0(V ), then, denoting again as w its trivial extension outside Ω̃,

(214) λ−γw(λx) → |x|γ
j0+m−1∑

i=j0

βiψi

(
x

|x|

)
as λ→ 0+

in H1(B1) and in C1,α
loc (C ∩B1) for any α ∈ (0, 1), where

(βj0 , βj0+1, . . . , βj0+m−1) 6= (0, 0, . . . , 0)

and

βi =

∫

C

R−γw(Φ(Rθ))ψi(θ) dσ(θ) +
1

2−N − 2γ

∫ R

0

(
2−N − γ

sN−1+γ
− γ

sγ−1

RN−2+2γ

)
Υi(s) ds,(215)

for all R ∈ (0, R̂) for some R̂ > 0, Υi being defined in (193).

Proof. Identity (213) follows immediately from Lemma 6.1. As in the statement of the theorem,
let m be the multiplicity of the eigenvalue µk0(V ) found in Lemma 6.1, j0 ∈ N \ {0}, such that
j0 6 k0 6 j0 +m− 1, µj0(V ) = µj0+1(V ) = · · · = µj0+m−1(V ), and γ = limr→0+ N (r).

In order to prove (214), let {λn}n∈N ⊂ (0,∞) be a sequence such that λn → 0+ as n → +∞.
By Lemmas 6.1, 6.2, 7.3, 7.5, and (187), there exist a subsequence λnj

and βj0 , . . . , βj0+m−1 ∈ R

such that (βj0 , βj0+1, . . . , βj0+m−1) 6= (0, 0, . . . , 0),

(216) λ−γnj
w(λnj

x) → |x|γ
j0+m−1∑

i=j0

βiψi

(
x

|x|

)
in H1(B1) and C

1,α
loc (C ∩B1) for any α ∈ (0, 1)

(with w meant to be trivially extended outside Ω̃), and

(217) λ−γnj
v(λnj

·) →
j0+m−1∑

i=j0

βiψi in L2(C) as j → +∞.

We now prove that the βi’s depend neither on the sequence {λn}n∈N nor on its subsequence

{λnj
}j∈N. Let us fix R ∈ (0, R̂) with R̂ as in Lemma 7.1. Defining ϕi as in (190), from (217) it

follows that, for any i = j0, . . . , j0 +m− 1,

(218) λ−γnj
ϕi(λnj

) =

∫

C

v(λnj
θ)

λγnj

ψi(θ) dσ(θ) →
j0+m−1∑

ℓ=j0

βℓ

∫

SN−1

ψℓ(θ)ψi(θ) dσ(θ) = βi

as j → +∞. On the other hand, from Lemma 7.4, it follows that, for any i = j0, . . . , j0 +m− 1,

λ−γϕi(λ) → R−γϕi(R) +
2−N − γ

2−N − 2γ

∫ R

0

s−N+1−γΥi(s) ds−
γR−N+2−2γ

2−N − 2γ

∫ R

0

sγ−1Υi(s) ds
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as λ→ 0+ and therefore from (218) we deduce that

βi = R−γϕi(R) +
2−N − γ

2−N − 2γ

∫ R

0

s−N+1−γΥi(s) ds−
γR−N+2−2γ

2−N − 2γ

∫ R

0

sγ−1Υi(s) ds,

for any i = j0, . . . , j0 + m − 1. In particular the βi’s depend neither on the sequence {λn}n∈N

nor on its subsequence {λnk
}k∈N, thus implying that the convergence in (216) actually holds as

λ→ 0+ and proving the theorem. �

Proof of Theorem 1.1. Let us first observe that the family of functions

uλ(x) =
u(λx)√
H(λ)

is bounded in H1(B1), where u is meant to be trivially extended outside Ω. Indeed, by the change
of variable λx = Ψ(λy)

∫

B1

|∇uλ(x)|2dx =

∫

Ψ−1(Bλ)

λ

∣∣∣∇w̃λ(y)(JacΨ(λy))−1
∣∣∣
2

|det JacΨ(λy)| dy,
∫

B1

|uλ(x)|2dx =

∫

Ψ−1(Bλ)

λ

|w̃λ(y)|2|det JacΨ(λy)| dy,

and hence from (21), (120), (138), and boundedness in H1(B1) of the set {w̃λ}λ it follows that
{uλ}λ is bounded in H1(B1) uniformly with respect to λ. Hence we can repeat for uλ the same
arguments performed in the proof of Lemma 6.1 for wλ to obtain that {uλ}λ is relatively compact

in C1,α
loc (C ∩B1), in C

0,α
loc (B1 \ {0}), and in H1(B1) and hence, by Lemma 7.5,

{λ−γu(λ·)}λ is relatively compact in C1,α
loc (C ∩B1), in C

0,α
loc (B1 \ {0}), and in H1(B1),(219)

with γ as in Theorem 7.6. Furthermore, from Lemma 7.5, (21), and (155)

|λ−γu(λx)− λ−γw(λx)| =
√
H(λ)

λγ

(
wλ
(Ψ−1(λx)

λ

)
− wλ(x)

)
→ 0

for all x ∈ C ∩B1. From the above limit and Theorem 7.6 we deduce that, for all x ∈ C ∩B1,

λ−γu(λx) → |x|γ
j0+m−1∑

i=j0

βiψi

(
x

|x|

)
as λ→ 0+(220)

with βi and ψi as in Theorem 7.6. Combining (219) and (220) we deduce that

λ−γu(λx) → |x|γ
j0+m−1∑

i=j0

βiψi

(
x

|x|

)
as λ→ 0+

in C1,α
loc (C ∩B1), in C

0,α
loc (B1 \{0}) for all α ∈ (0, 1), and in H1(B1), thus completing the proof. �

8. An example

In this section we show that the presence of a logarithmic term in the asymptotic expansion
cannot be excluded without assuming conditions (4) and (5).

Let us consider a domain Ω ⊂ R
2 admitting a local representation in a neighborhood of the

origin as in (9) where the corresponding function ϕ satisfies (2),

sup
ν∈SN−2

∣∣∣ϕ(tν)
t

− g(ν)
∣∣∣ = o(1) as t→ 0+,

with g as in (3), but not (4–5). To this purpose let us define in Gauss plane the sets

A1 := C \ {z = ix2 ∈ C : x2 6 0}, A2 := C \ {x1 ∈ R ⊂ C : x1 6 0}
and the holomorphic functions η1 : A1 → C, η2 : A2 → C defined as follows:

η1(z) := log r + iθ for any z = reiθ ∈ A1, r > 0, θ ∈
(
−π
2
,
3π

2

)
,

η2(z) := log r + iθ for any z = reiθ ∈ A2, r > 0, θ ∈ (−π, π).
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Given α ∈ (0, 2), we are going to define Ω in such a way that ∂Ω admits at 0 a corner with
amplitude απ. We distinguish the cases α ∈ (0, 1), and α ∈ [1, 2).

The case α ∈ (0, 1). Let us consider the holomorphic function

v1(z) := e
2
αη1(−iz)η1(−iz) for any z ∈ {w ∈ C : ℑw > 0}

and the set

(221) Z1 := {z : ℑz > 0 and ℑ(v1(z)) = 0}.
If z = reiθ with r > 0, θ ∈ (0, π) \ {π2 }, then z ∈ Z1 if and only

(222) r = ρ1(θ) := exp

[
−
(
θ − π

2

)
cot

(
2

α

(
θ − π

2

))]
.

For some fixed σ ∈
(
0, π2 (1− α)

)
, we define the curves γ+σ ⊂ Z1 and γ−σ ⊂ Z1 respectively

parametrized by

(223) γ+σ :

{
x1(θ) = ρ1(θ) cos θ

x2(θ) = ρ1(θ) sin θ
θ ∈

(π
2
− απ

2
− σ,

π

2
− απ

2

)

and

(224) γ−σ :

{
x1(θ) = ρ1(θ) cos θ

x2(θ) = ρ1(θ) sin θ
θ ∈

(π
2
+
απ

2
,
π

2
+
απ

2
+ σ

)
.

If we choose σ > 0 sufficiently small then the union of these two curves is the graph of a function
ϕ defined in a neighborhood U of 0. Moreover ϕ is a Lipschitz function in U , ϕ ∈ C1(U \ {0}) and

(225) lim
t→0−

ϕ(t)

t
= tan

(π
2
+
απ

2

)
, lim

t→0+

ϕ(t)

t
= tan

(π
2
− απ

2

)
.

At this point it is possible to construct a bounded domain Ω ⊂ {z ∈ C : ℑz > 0} satisfying (9) for
some R > 0 sufficiently small. Then we define the harmonic function

u(x1, x2) := ℑ(v1(z)) for any z = x1 + ix2 ∈ Ω.

In polar coordinates the function u reads

(226) u(r, θ) = r
2
α

[
(log r) sin

(
2

α

(
θ − π

2

))
+
(
θ − π

2

)
cos

(
2

α

(
θ − π

2

))]
.

Since Ω is bounded, then u ∈ H1(Ω). From (221–222) and (226) we deduce that u vanishes on
γ+σ ∪ γ−σ and in particular on ∂Ω ∩BR.

Next we show that ϕ does not satisfy (7) for any C0 > 0. Since by (222–224) ϕ is an even
function, it is sufficient to study the behavior of ϕ(x1)− x1ϕ

′(x1) in a right neighborhood of zero.
By (223) and the fact that α ∈ (0, 1) we may assume that θ ∈

(
0, π2

)
and hence, if x1 belongs to a

sufficiently small right neighborhood of 0, by (222) we have

(227)
1

2
log
(
x21 + (ϕ(x1))

2
)
tan

[
2

α

(
arctan

(
ϕ(x1)

x1

)
− π

2

)]
+ arctan

(
ϕ(x1)

x1

)
− π

2
= 0.

By (225) and (227) we have that, as x1 → 0+,

tan

[
2

α

(
arctan

(ϕ(x1)
x1

)
− π

2

)]
= −

2 arctan
(ϕ(x1)

x1

)
− π

log
(
x21 + (ϕ(x1))2

) =
απ

2

1

log x1
+ o

(
1

log x1

)
.(228)

Differentiating both sides of (227) and multiplying by x21 + (ϕ(x1))
2 we obtain the identity

(
x1 + ϕ(x1)ϕ

′(x1)
)
tan

[
2
α

(
arctan

(ϕ(x1)
x1

)
− π

2

)]

+

{
1 +

log
(
x21 + (ϕ(x1))

2
)

α cos2
[
2
α

(
arctan

(ϕ(x1)
x1

)
− π

2

)]
}
(
x1ϕ

′(x1)− ϕ(x1)
)
= 0

and hence (225) and (228) yield

(229) x1ϕ
′(x1)− ϕ(x1) ∼ −α

2π
[
1 + tan2

(
π
2 − απ

2

)]

4

x1

log2 x1
as x1 → 0+.
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This shows that ϕ does not satisfy condition (7).
The case α ∈ [1, 2). Let us consider the holomorphic function

v2(z) := e
2
αη2(−iz)η2(−iz) for any z ∈ C \ {iy : y 6 0}

and the set
Z2 := {z ∈ C \ {iy : y 6 0} : ℑ(v2(z)) = 0}.

Similarly to the previous case one may define two curves γ+σ , γ
−
σ and a corresponding function ϕ

whose graph coincides with γ+σ ∪ γ−σ . Next one may also construct a bounded domain Ω satisfying
(9) for a suitable choice of R > 0 and define a harmonic function u as

u(x1, x2) := ℑ(v2(z)) for any z = x1 + ix2 ∈ Ω.

Finally one can prove that the new function ϕ satisfies (229).
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