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Abstract

We propose a class of discrete-time stochastic volatility models that, in a parsimonious way, captures the
time-varying higher moments observed in financial series. Three desirable results are obtained. First, we
have a recursive procedure for the log-price characteristic function which allows a semi-analytical formula for
option prices as in Heston and Nandi [2000]. Second, we reproduce some features of the VIX Index. Finally,
we derive a simple formula for the VIX index and use it for option pricing.
Keywords: Affine Stochastic Volatility; VIX; Implied Volatility Surface.

The Black and Scholes model [see Black and Scholes, 1973] is probably the most famous model proposed
for option pricing. Despite its success, the drawbacks in representing the real markets are well documented
by an increasing empirical literature. Since Mandelbrot [1963], empirical results have shown that the process
describing the log-returns is far from the Brownian motion one. Indeed the financial time series exhibit heavy
tails, asymmetric distribution, persistence and clustering in volatility [see Embrechts et al., 1997].

Several models have been proposed in continuous and discrete time. Merton [1976] introduced jump diffusion
model where the dynamics of log returns is a Lévy process given by the sum of a continuous diffusion process
(Brownian motion with drift) with a pure jump one (compound Poisson). The Lévy processes have almost
surely right-continuous sample paths with stationary and independent increments. Their marginal distribution
can be derived using characteristic functions [see Schoutens, 2003, Cont and Tankov, 2003, for a general
survey]. A special attention deserves the process whose distribution at time one is a normal variance-mean
mixture. Particular cases widely applied in finance are the variance gamma process introduced by Madan and
Seneta [1990], the normal inverse gaussian [see Barndorff-Nielsen and Shephard, 2001], the hyperbolic and the
generalized hyperbolic [see Barndorff-Nielsen, 1977, Eberlein and Prause, 1998]. Although Lévy processes are
able to represent some features of financial time series, the independence hypothesis makes them inadequate in
capturing the time-dynamic of higher moments.

A way to overcome these limits is by using the stochastic volatility models for describing the log-returns
dynamics. There are two sources of risk in these models: the first drives the volatility dynamics and the second
directly the log-returns. The main problem is that the volatility process is not observable in the market.
In discrete-time the most commonly used class for modelling the financial time series is the family of Garch
models. Despite the success in financial econometrics and risk management, their use for option pricing is not
yet very well understood, as observed in Christoffersen et al. [2012]. Monte Carlo technique is often used to
compute option prices in Garch models [see Duan, 1995, Duan and Simonato, 1998, for the efficiency of Monte
Carlo estimator]. Another approach is using approximate formulas based on Edgeworth expansion [see Duan
et al., 1999, 2006]. It is well known that the Monte Carlo procedure is time consuming when calibration exercise
is considered, while the Edgeworth expansion seems to be less accurate for option prices with long-medium
maturities.

A major breakthrough occurred with the paper of Heston and Nandi [2000] where the authors derive a
recursive procedure for the characteristic function of the log-price at maturity, obtaining a semi-analytical
formula for European call option based on inverse Fourier transform, as in Carr and Madan [1999]. Following the
same idea a new class of Garch models, namely affine Garch, has been developed assuming different assumption
for the innovations. In particular, Christoffersen et al. [2006] considered the Inverse Gaussian innovations while
Bellini and Mercuri [2007] Gammma innovations. Later Mercuri [2008] generalized further the class of affine
Garch models assuming that the log-returns are conditionally Tempered Stable distributed [see Ornthanalai,
2008, for more details on affine Garch models].

As observed in Christoffersen et al. [2006], the extreme asymmetry of the affine Garch models gives an
advantage for options with very short maturity. However the fit is less accurate for options with medium
maturity probably due to the fact that the medium term return distribution slowly converges to bell shaped
one.

1



To overcome this limit, starting from the affine Garch model and assuming that the conditional distribution
of log returns is a normal variance mean mixture, we construct a discrete time stochastic volatility model in
a simple way. Indeed, substituting the mixing random variable with an affine Garch, we obtain a recursive
procedure for computation of the characteristic function of log-price at maturity. Option prices are obtained
via Fourier transform.

Feunou and Tedongap [2012] constructed a discrete time stochastic volatility model with time-varying con-
ditional skewness. They decompose the joint distribution of returns and latent variables. As a first step they
suppose that the distribution of returns, conditioned on latent variables and past information, is an inverse
gaussian. The next step is the assumption that latent variables follow a multivariate gamma autoregressive
process with mutually independent components.
Even in our construction methodology of discrete time stochastic volatility models we make two assumptions:
the first is that the conditional distribution of returns is a normal variance mean mixture and the second is the
autoregressive structure for the latent variable. Instead of assuming a particular process for the latent variable,
we use the information obtained from the quoted VIX index to model it.

A desirable feature of our model is the possibility to obtain time-varying higher moments. Volatility [see
Chicago Board Options Exchange, 2003] and Skew [see Chicago Board Options Exchange, 2011] indexes cannot
exist in a world with constant higher moments since they would be useless. Time-dependence of these moments
is coherent with price movements observed in the market making our approach more realistic.
In our model, it is possible to extrapolate information from the VIX data and use it in option pricing. Indeed we
find a linear relation between the variance dynamics and the square of VIX (a similar result has been obtained
by Zhang and Zhu 2006 under the Heston model and by Hao and Zhang 2013 under Garch assumption).

The VIX index was introduced by the Chicago Board Options Exchange (CBOE) in 1993 and was designed
to measure the markets expectation of 30-day volatility of at-the money S&P100 Index (OEX) option prices. In
2003, CBOE together with Goldmann Sachs substantially modified the VIX index. The OEX has been replaced
by the SPX and a new methodology of evaluating the VIX was proposed (see the CBOE White Paper Chicago
Board Options Exchange [2003] for details). Although the VIX index reflects only the market risk and doesn’t
take into account liquidity and systematic risk [see Dhaene et al., 2011], the markets participants use it as a
Fear Index since they believe that the implied volatility reflects the sentiment of fear.
From empirical point of view, VIX’s movements seem to be mean reverting. There is a negative correlation
between VIX and the S&P500, therefore the practitioners take long position on VIX futures to hedge during
crisis periods as an alternative to the classical straddle or strangle strategy. In addition there are some attempts
in using this index to predict the start and the end of crisis by looking at the historical levels reached in different
market phases. For example a level higher than 50 per cent was observed only during deep crisis.

The paper is organized as follows. Section 2, explains how we build the stochastic volatility model in discrete
time. In Section 3 we prove that, in our setup, the VIX index is an autoregressive process with heteroscedastic
innovations: we derive a linear relation between the unobservable variance and the current level of VIX index. In
section 4 we derive explicit formulas specifying the conditional distribution of log returns. Section 5 is devoted
to investigate the behavior of implied volatility surface in our framework. We outline the steps implied by our
methodology and give some empirical results using the implied volatility surface obtained by Bloomberg data
provider.

1 General Setup

The aim of this work is to propose a class of stochastic volatility models, in discrete time, through which we
are able to price in a simple way options using the information extrapolated from the VIX index.
Given a filtered probability space (Ω,F ,Ft,P), we consider a market with two assets:
- riskless with dynamics: Bt = Bt−1 exp(r)
- risky with price dynamics:

St = St−1 exp(Xt)

Xt = r + λ0ht + λ1Vt + σ
√

VtZt (1)

where: r is the deterministic free rate observed in the market; Xt is a discrete time stochastic process with
continuous state space; Zt ∼ N(0, 1), ∀t = 1, ..., T and is independent from Vt; Vt is a positive adapted process
such that the conditional moment generating function exists and has the following form:

E[exp(cVt)|Ft−1] = exp(htf(c, θ)) (2)
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∀ fixed vector θ, ∃ δ > 0 such that ∀c ∈ (−δ, δ) the function f(c, θ) ∈ C∞ and f(0, θ) = 0.
From (2) we have:

E[Vt|Ft−1] =
∂E[exp(cVt)|Ft−1]

∂c

∣
∣
∣
∣
c=0

We define the function g(θ) as a partial derivative

g(θ) :=
∂f(c, θ)

∂c

∣
∣
∣
∣
c=0

(3)

and obtain an analytical expression for conditional mean of Vt:

E[Vt|Ft−1] = htg(θ) (4)

In particular we define a dynamic for ht so that it becomes a predictable process.

ht = α0 + α1Vt−1 + βht−1.

By adding and subtracting the quantity α1g(θ) we obtain a new representation

ht = α0 + (α1g(θ) + β)ht−1 + α1(Vt−1 − g(θ)ht−1). (5)

Observe that ht is an AR(1) with heteroscedastic error Vt−1 − g(θ)ht−1. Therefore if we extrapolate from the
market the time series of ht, the generalized least square technique gives us estimates for the quantities α0, α1,

and α1g(θ) + β. The process ht is positive if the parameters α0, α1 and β are non negative.
In our model, the conditional variance evolves according to the stochastic process ht:

V ar [Xt| Ft−1] = ht
∂2f(c, θ)

(∂c)2

∣
∣
∣
∣
c=0

.

An essential requirement, based on empirical evidence, is the negative correlation between the variable describing
the returns and the volatility one. In this case we must have that:

Cov (Vt,Xt| Ft−1) = λ1V ar(Vt|Ft−1) < 0 (6)

i.e. we need λ1 < 0.
We make the basic assumption that the constant term σ appearing in the dynamics of log-returns is non negative.
In the special case when σ = 0 the process describing Xt is an affine Garch as in Christoffersen et al. [2006],
Bellini and Mercuri [2007] and Mercuri [2008].

Our approach tries to generalize the Lévy processes built on the normal variance mean mixture since we in-
troduce a dependence structure. Indeed the conditional distribution evolves through time due to the predictable
process ht.

In order to price at the reference time t an european call option with maturity T , we need the distribution
of ST given the information at the evaluation date. Here, we provide a simple recursive procedure that allows
to obtain the conditional moment generating function using a similar approach as that introduced in Heston
and Nandi [2000].

Proposition 1 Under condition (2), the moment generating function of the random variable lnST given the
information at time t exists and is given by:

E[exp(c ln (ST ))|Ft] = Sc
t exp[A(t;T, c) +B(t;T, c)ht+1]

The time-dependent coefficients A(t;T, c) and B(t;T, c) are:







A(t;T, c) = cr +A(t+ 1;T, c) + α0B(t+ 1;T, c)
B(t;T, c) = cλ0 + βB(t+ 1;T, c)+

f(cλ1 + α1B(t+ 1;T, c) + c2σ2

2 , θ)

(7)

with the following conditions:
A(T ;T, c) = 0
B(T ;T, c) = 0.

(see appendix 5.1)
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The existence of m.g.f. allows to obtain the characteristic function since the latter is the former evaluated on
the complex number and the distribution function is achieved by the inverse Fourier transform.

Our aim is to evaluate options prices and implied volatility indexes therefore we are interested in the
distribution of the underlying asset under the Q measure. The following proposition is necessary to avoid
arbitrage opportunities as stated in the first theorem of asset pricing.

Proposition 2 Under the assumptions E(St) < +∞ and λ0 = −f(λ1 + σ2

2 , θ), the discounted price is a
martingale.
(see Appendix 5.2)

We have obtained in prop.1 the m.g.f. for the underlying. The next step is the evaluation of European call
option as in Heston [1993]

C(K,T ) = S0Π1 −Ke−rTΠ2

Π1 =
1

2
+

1

π

∫ +∞

0

ℜ
(

K−iuE
Q
0 [S

i(u−i)
T ]

iuE
Q
0 [ST ]

)

du

Π2 =
1

2
+

1

π

∫ +∞

0

ℜ
(

K−iuE
Q
0 [Siu

T ]

iu

)

du

The exercise probabilities Π1 and Π2 can be computed following Feller [1968].

2 VIX Index

In this section we provide a linear relation between the current value of VIX squared and the dynamics of the
ht process defined above. A similar result have been proposed in Zhang and Zhu [2006] under the assumption
that the SPX dynamics is described by Heston [1993]. The Methodology of computing the VIX index is based
on the replication of a variance swap [see Demeterfi et al., 1999]. The current level of VIX is related to
a portfolio composed by out-of-the money call/put options on the S&P500. Although the VIX depends on
available options and can be considered a corridor implied volatility index, it is reasonable to assume that strike
prices vary continuously from 0 to +∞. Neglecting the discretization error and the VIX squared formula can
be written as:

(
V IXt

100

)2

=
2er(T−t)

T − t

[
∫ S∗

0

1

K2
P (St,K)dK +

+

∫ +∞

S∗

1

K2
C(St,K)dK

]

=

=
2er(T−t)

T − t

[

E
Q
t

(
ST − S∗

S∗
− ln

(
ST

S∗

))]

. (8)

C(St,K) and P (St,K) are out-of-the money call and put option prices. S∗ is the forward price of the SPX
index.
The main result of our model is reported in the following proposition.

Proposition 3 Under the conditions:

α1g(θ) + β < 1

λ1g(θ)− f
(

λ1 +
σ2

2 , θ
)

≤ 0

ht+1 > 0

(9)

the VIX squared is an affine linear function of the predictable process ht:
(
V IXt

100

)2

= −2er(T−t)

T − t
[C(t;T ) +D(t;T )ht+1] (10)

where C(t;T ) and D(t;T ) are functions of the model parameters, given by






C(t;T ) = α0 [λ1g(θ) + λ0]

{

T−t−1−[α1g(θ)+β]
1−[α1g(θ)+β](T−t)−1

1−[α1g(θ)+β]

1−[α1g(θ)+β]

}

D(t;T ) = [λ1g(θ) + λ0]
1−[α1g(θ)+β]T−t

1−[α1g(θ)+β]

(11)

with T − t = 30 days.
(See Appendix 5.3)
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Considering the fact that VIX is a measure of options on S&P500 implied volatility with time to maturity
30 days, equation (10) becomes:

(
V IXt

100

)2

= −2er30

30
[C30 +D30ht+1]

where r is the one month libor rate on daily basis.
We define the adjusted VIX as:

V IX
adj
t = − 30

2er30
V IX2

t

104

Notice that V IX
adj
t < 0 ∀t since it is a decreasing linear transformation of the VIX squared.

Using proposition 3 we have:

V IX
adj
t = C30 +D30ht+1 ⇒ ht+1 =

V IX
adj
t − C30

D30
(12)

The requirement ht+1 > 0 implies that 0 > V IX
adj
t > C30 ∀t.

Using the definition (5) of ht, we have following proposition:

Proposition 4 Under the same conditions of the prop 3, defining the heteroschedastic error term τt := α1(Vt−
g(θ)ht)D30, the V IX

adj
t is an AR(1) defined as:

V IX
adj
t = int+ slopeV IX

adj
t−1 + τt

where {
int = 30α0 (λ1g(θ) + λ0)
slope = α1g(θ) + β

(see Appendix 5.4)

Although the expression for τt may appear a little complex, in practice using this definition we can show
that our model becomes a Garch one in the sense that a one-step distribution depends only on the previous
VIX level. Given the model parameters, the current and one-day-ahead VIX level we have:

τt+1 = V IXt+1 − int− slopeV IXt.

From equation (12) we extract ht+1 and obtain the value of the main ”unobservable” variable of our model, i.e
Vt+1:

Vt+1 = g(θ) +
τt+1

α1D30
.

The knowledge of Vt+1 allows us to exploit the advantages of working with stochastic volatility models while
preserving the low level of estimation difficulty as in Garch models.
Once estimated int and slope we can redefine D30 and C30 in order to extrapolate a multiple of ht+1 from the
quoted V IXt. In particular we get:

D30 =
D∗

30

α0
=

int
(
1− slope30

)

30 ∗ (1− slope)

1

α0

C30 =




29− slope 1−slope29

1−slope

1− slope




int

30

V IX
adj
t − C30

D∗
30

=
ht+1

α0
> 0

The quantity ht+1

α0
can be used to compute the m.g.f. of ln(ST )|Ft needed in option pricing. If slope < 1,

V IX
adj
t is mean reverting. The long term mean and the reverting speed are respectively:

int

1− slope
, 1− slope.

The conditional mean of the error term is zero but we are in presence of heteroskedasticity:

E [τt| Ft−1] = 0, V ar [τt| Ft−1] = α2
1D

2
30V ar [Vt| Ft−1] .
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Although cov [τt+1, τt| Ft−1] = 0 and cov
[
τt+1, τ

2
t

∣
∣Ft−1

]
= 0, the error time-dependence structure is more

complex than a linear one. The following quantities are different from zero and time dependent:

cov
[
τ2t+1, τt

∣
∣Ft−1

]
= α3

1D
3
30

∂2f

(∂c)2

∣
∣
∣
∣
c=0

[

α0 + α1
∂2f

(∂c)2

∣
∣
∣
∣
c=0

]

ht

cov
[
τ2t+1, τ

2
t

∣
∣Ft−1

]
= α4

1D30
∂2f(c, θ)

(∂c)2

∣
∣
∣
∣
c=0

[

α0 + (α1g(θ) + β)
∂2f(c, θ)

(∂c)2

∣
∣
∣
∣
c=0

h2
t + α2

1µ3

]

where µ3 = E
[
(Vt − g(θ))3

∣
∣Ft−1

]
.

These observations give us the possibility to estimate the parameters that control the dynamics of ht directly
from VIX time series without any explicit distributional assumption on Vt|Ft−1 [see J. and A., 1991, Campbell
et al., 1997, for estimation techniques in autoregressive models with heteroskedastic errors].

3 Special cases

3.1 Normal Variance Mean Mixture

The conditional distribution of log returns belongs to the normal variance mean mixture family since Zt in (1)
is normally distributed. An univariate normal variance-mean mixture [see Barndorff-Nielsen et al., 1982] is a
random variable defined as:

X
d
=µ+ λV + σ

√
V Z

where Z and V are independent univariate random variables, Z ∼ N(0, 1), and V is defined on the positive real
line. Below we introduce three special cases of our approach where the conditional distribution of log returns is
respectively variance gamma [see Madan and Seneta, 1990], normal inverse gaussian [see Barndorff-Nielsen and
Shephard, 2001] and normal tempered stable [see Barndorff-Nielsen and Shephard, 2001].

3.2 Dynamic Variance Gamma

Assuming that the affine Garch process Vt is conditionally gamma distributed [see Bellini and Mercuri, 2007]
than Xt in (1) follows a Dynamic Variance Gamma model introduced by Bellini and Mercuri [2011].
The conditional moment generating function of the Vt is:

E
[
ecVt

∣
∣Ft−1

]
= exp [−ht ln (1− c)]

f(c, θ) = − ln (1− c)
g(θ) = 1

The system 7 becomes:







A(t;T, c) = cr +A(t+ 1;T, c) + α0B(t+ 1;T, c)
B(t;T, c) = cλ0 + βB(t+ 1;T, c)+

− ln
(

1− cλ1 − α1B(t+ 1;T, c)− c2σ2

2

) (13)

The system (11) becomes







C(t;T, c) = α0 (λ1 + λ0)

{

(T−t)−(α1+β)
1−(α1+β)T−t−1

1−(α1+β)

1−(α1+β)

}

D(t;T, c) = (λ1 + λ0)
1−(α1+β)T−t

1−(α1+β)

(14)

with final conditions C(T ;T, c) = 0 and D(T ;T, c) = 0. We have the following restrictions on parameters:







λ1 ≤ 0

λ0 = ln
(

1− λ1 − σ2

2

)

α1 + β ≤ 1

λ1 + ln
(

1− λ1 − σ2

2

)

≤ 0

(15)

For the last restriction a sufficient condition is 0 ≤ σ ≤
√
2.
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3.3 Dynamic Normal Inverse Gaussian

If the affine Garch process Vt is conditionally inverse gaussian distributed [see Christoffersen et al., 2006] than
log-returns Xt, given the information at time t− 1, have a normal inverse gaussian distribution [see Barndorff-
Nielsen, 1997].
The density of inverse gaussian distribution is:

fV (v) =
ht√
2πv3

exp

[

−1

2

(√
v − ht√

x

)2
]

The conditional moment generating function of the Vt is:

E
[
ecVt

∣
∣Ft−1

]
= exp

[
ht

(
1−

√
1− 2c

)]

f(c, θ) =
(
1−

√
1− 2c

)

g(θ) = 1

The system 7 becomes: 





A(t;T, c) = xr +A(t+ 1;T, c) + α0B(t+ 1;T, c)
B(t;T, c) = cλ0 + βB(t+ 1;T, c)+

√

1− 2
(
cλ1 + α1B(t+ 1;T, c) + c2σ2

2

)
(16)

The system (11) becomes







C(t;T, c) = α0 (λ1 + λ0)

{

(T−t)−(α1+β)
1−(α1+β)T−t−1

1−(α1+β)

1−(α1+β)

}

D(t;T, c) = (λ1 + λ0)
1−(α1+β)T−t

1−(α1+β)

(17)

with final conditions C(T ;T, c) = 0 and D(T ;T, c) = 0. We have the following restrictions on the parameters:







λ1 ≤ 0

λ0 = −
(

1−
√

1− 2
(
λ1 +

σ2

2

)
)

λ1 − 1 +
√

1− 2
(
λ1 +

σ2

2

)
< 0

α1 + β < 0

(18)

A sufficient condition for λ1 − 1 +
√

1− 2
(
λ1 +

σ2

2

)
< 0 is:

0 ≤ σ2 ≤ 1

3.4 Dynamic Normal Tempered Stable

When the affine process Vt is the model proposed in Mercuri [2008] than log returns follow a conditional normal
tempered stable as introduced in Barndorff-Nielsen and Shephard [2001]. We recall that the normal tempered
stable is obtained as a normal variance mean mixture where the mixing density is a the tempered stable [see
Tweedie, 1984] that is obtained by tempering the tail of a positively skewed α−stable distribution with an
exponential function. This distribution has all finite moments. The normal tempered stable has as special cases
the variance gamma and the normal inverse gaussian.
The conditional moment generating function of Vt|Ft−1 is:

E
[
ecVt

∣
∣Ft−1

]
= exp

[

htb
(

1− (1− 2cb−1/α)α
)]

(19)

where α ∈ (0, 1) and b > 0.
Comparing (19) with (2), we have:

f(c, θ) = b
(

1− (1− 2cb−1/α)α
)

and
g(θ) = 2αb(α−1)/α.
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Applying prop. 1, we obtain the recursive system for time dependent coefficients:







A(t;T, c) = cr +A(t+ 1;T, c) + α0B(t+ 1;T, c)
B(t;T, c) = cλ0 + βB(t+ 1;T, c)+

b
{

1−
[

1− 2b−
1
α

(

cλ1 + αB(t+ 1;T, c) + c2σ2

2

)]α} (20)

From prop. 2 we have the following constraint

λ0 = −b

[

1−
(

1− 2

(

λ1 +
σ2

2

)

b1/α
)α]

and, implementing the fast Fourier transform, we evaluate an european call option.
Using prop. 3, we obtain the following time coefficients that allows us to extrapolate ht from current level of
VIX: 





C(t;T ) = α0

(
2αb(α−1)/αλ1 + λ0

)
∗

∗







(T−t)−(2αb(α−1)/αα1+β)
1−(2αb(α−1)/αα1+β)

T−t−1

1−(2αb(α−1)/αα1+β)
1−(2αb(α−1)/αα1+β)







D(t;T ) = (2αb(α−1)/αλ1 + λ0)
1−(2αb(α−1)/αα1+β)

T−t

1−(2αb(α−1)/αα1+β)

. (21)

In this case the condition (9) becomes:

{

2αb(α−1)/αλ1 − b
[

1−
(

1− 2
(

λ1 +
σ2

2

)

b−1/α
)α]

≤ 0.

α1 + β < 1
(22)

4 Empirical Analysis

Nowadays studying and understanding the surface implied volatility is a central issue from both practical and
theoretical point of view [see Gatheral, 2006, Alexander, 2008, for the relevance of the volatility surface in
financial literature]. For this reason this section investigates the conditions under which our models are able to
replicate the behavior of the volatility surface. We present as well a simple calibration exercise based on option
volatilities whose underlying is the S&P500 Index.

Table 1 summarizes the steps going from the observation of VIX Index till the computation of the implied
volatility.

Insert here Tab. 1.

At the reference date t we observe the market value of the VIX index. Then we easily obtain ht+1 necessary
for getting the m.g.f. of the underlying. The inverse Fourier transformation allows us to compute the exercise
probabilities appearing into the pricing formula of an European call option. The volatility surface is made up
of points representing each the implied volatility of an option once fixed the strike and the time to maturity.
These points are obtained by inverting the Black and Scholes formula for a call option.

We analyse the effect that each parameter has on the volatility surface. Keeping fixed the other parameters,
we vary separately those that appear directly in log returns dynamics (λ1 and σ), while the parameters (α0, α1

and β) that appear in the dynamics of ht are moved together . We have observed that the parameters have the
same effect for the three models therefore we report the plots only for the DVG one.

Insert here Fig. 1, 2 and 3.

Fixing σ = 0.014, α0 = 0.033, α1 = 0.493 and β = 0.379, we study the surface varying λ1. A symmetric
smile shape is observed when λ1 = 0. As mentioned in Sec. 1 this is the case when the log-returns have a
symmetric distribution. For negative values of the parameter λ1, i.e. in the case of negative skewness, we
observe a twist of the entire surface. By giving different values to this parameter we are able to reproduce the
well-known smirk in the implied volatility surfaces.
Once fixed λ1 = 0, α0 = 0.033,α1 = 0.493 and β = 0.379, we vary σ. The effect is only a parallel shift of the
entire curve. It is interesting to notice that it affects only the implied volatility level but not the shape of the
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surface. A similar phenomenon is achieved by simultaneously increasing the values of the parameters α0, α1

and β for fixed λ and σ.
We have undertaken a detailed study of the DTS model since through the additional parameters a and b it

has the potential to become more flexible in dynamically capturing the main features of the observed volatility
surface.

Insert here Fig. 4.

From figure 4 we observe that a higher level of the parameter a has a double effect: the first is the upward
shift of the implied volatility surface whilst the second is a higher slope for any fixed strike. In particular for
a = 0.9751 the implied volatility surface is less inclined than for a = 0.99. The higher the time to maturity, the
higher is the sensitivity to the parameter a. Changes of the parameter b seem to influence only the slope for
any fixed strike.

We also investigate in details the ability of our models to reproduce the behavior of European option prices
on SPX index. We have two main objectives: to replicate the market option volatilities and to compare the
theoretical VIX derived in our models with the observed one. The dataset is composed by the implied volatility
surfaces observed each Wednesday going from May 2011 to April 2012 (the total number of observations is
1008). Our choice was influenced from the desire to avoid possible turn of week effects. From eqn. 1 we see
that we need the term structure of the risk-free rate in order to compute the m.g.f of the variable lnST . The
Libor curve can be a possible choice though we know it is not the only one. We downloaded the needed curve
from Bloomberg.

The first Wednesdays of each month are the in-sample data (231 observations), the remaining dataset (777
observations) is used for the out-of-sample analysis. We calibrate the model in each in-sample period. The
values obtained for the parameters are the input for the out-of-sample analysis. The error measure considered
is:

√

percMSE =

√
√
√
√

∑K
k=1

∑T
t=1

[
σmkt(k,t)−σtheo(k,t)

σmkt(k,t)

]2

NT ∗NK

where σmkt(k, t), σtheo(k, t) are respectively the implied volatilities observed in the market and those obtained
by the models. NT , NK is the number of the available maturities and strikes.

Tables 4, 5 and 6 report the values of the calibrated parameters and the corresponding in-sample errors.

Insert here Tab. 4, 5 and 6.

Our calibration exercise takes into account the possibility of extrapolating the latent process ht directly
from the VIX index. We find that for the DNTS model the in-sample errors are the lowest except only in one
case where the DNIG model has the best performance. This result strongly supports our initial guess that two
additional parameters would allow to better capture the market dynamics. Observe that if b = 2a and α = 1

a
for a → 0 we obtain the DVG model, while if b = 1 and α = 1

2 the model is the DNIG.
The out-of-sample results strongly support the supremacy of the DNTS model in the considered dataset.

Indeed, computing the
√
percMSE on the entire out-of-sample data, we find that the DNTS reaches an error

level of 5.05% which is a reduction error of 21.10% with respect to DNIG (the second best model). To deeply
analyse the out of sample error, Figure 8 reports the results obtained in 36 out-of-sample Wednesdays. In 72%
of the cases the DNTS shows a lower error level than the other two while the DNIG has the lowest error level
only in 14% of the cases.

Insert here Fig. 8.

We remark that in our model the square of the VIX is an autoregressive process. The conditional expected
value of the VIX is not available in a closed form formula. However, using Jensen’s inequality, we easily derive
the following upper bound that we use in our analysis:

E [V IXt+1| Ft] = E

[√

V IX2
t+1

∣
∣
∣
∣
Ft

]

≤
√

E
[
V IX2

t+1

∣
∣Ft

]
= V IXub

t+1.

Using the prop.4 and eqn. (12), our upper bound becomes:

V IXub
t+1 =

√

−2e30r ∗ 104
30

int+ slopeV IX2
t

where all quantities are on daily basis and the year conversion is necessary for comparison with its observed
level.
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We calibrate the model on the first Wednesday of each month (in total there are 12 calibration period). The
resulting parameters are maintained fixed until the next in-sample day. From Figure 7 and Table 2 we observe
that the DVG model is the one with the worst performance.

Insert here Fig. 6.

Insert here Tab. 3.

Instead of having fixed parameters for the entire month we can decide to make the recalibration period
dynamic. Intuitively, if the market conditions change a lot (i.e. we observe a jump of the implied volatility
from one observation to the other), it is reasonable to think that in order to have a better prediction for the
VIX level we must update the model parameters. This update for us means to recalibrate the model using the
option volatilities observed after the jump has been occurred.
We face the problem of defining the jump in terms of relative daily variation of the VIX Index level. If the
observed VIX level is lower than 30 per cent we recalibrate if next day relative variation is higher than 30%.
For example if the current level of VIX is 15% we recalibrate the model if the next day value is higher than 20%
or lower than 10%. For higher levels of the VIX index (more than 30%) the required daily relative variation is
fixed at 25%. This decision comes from the fact that VIX levels higher than 39% are rarely observed. In Figure
5 we report a comparison between the VIX and S&P500 for the considered dates.

Insert here Fig. 5.

We reduced the number of calibrations going from 12 (when we fixed the parameters for the entire month)
to 9 (if the calibration decision is dependent on the VIX level). Based on this procedure we observe in Figure
7 and Table 2 that all the models predict better the Open values.

Insert here Fig. 7.

Insert here Tab. 2.
The supremacy of the DNTS showed in the calibration exercise seems to be weaker when we try to forecast

the VIX index level. In particular, the DNIG seems to behave better in some extreme market conditions.

5 Appendix

5.1 Conditional Moment Generating Function

Following the approach proposed in Heston and Nandi [2000] we derive a recursive equations for the time
dependent coefficient for the conditional m.g.f. of the random variable ln(ST ) given the available information
at time t. We want to prove that the conditional m.g.f. is given by the following formula:

Et [ exp (c ln (ST ))| Ft] = Sc
t exp [A (t;T, c) +B (t;T, c)ht+1] . (23)

We use the mathematical induction method.

1. We observed that the relation (23) holds at time T since A(T ;T, c) = 0 and B(T ;T, c) = 0.

2. We suppose the relation holds at time t + 1 and, by the law of iterated the conditional expectation, we
prove it at time t.

E [E [Sc
T | Ft+1]| Ft] = E [ exp [A (t+ 1;T, c) +B (t+ 1;T, c)ht+2]| Ft]

= E [exp [c ln (ST ) + cr +A(t+ 1;T, c)

+ cλ0ht+1 + cλ1Vt+1 + cσ
√
Vt+1Zt+1+

+α0B (t+ 1;T, c) + α1B (t+ 1;T, c)Vt+1 + βB (t+ 1;T, c)ht+1 ] | Ft]
= Sc

t exp [cr +A (t+ 1;T, c) + α0B (t+ 1;T, c) + (cλ0 + βB (t+ 1;T, c))ht+1] ∗
∗E
[

exp
[(

cλ1 + α1B (t+ 1;T, c) + c2σ2

2

)

Vt+1

]∣
∣
∣Ft

]

,

(24)

using the conditional m.g.f. of the r.v. Vt+1 equation (24) becomes:

E [E [Sc
T | Ft+1]| Ft] = Sc

t exp [cr +A (t+ 1;T, c) + α0B (t+ 1;T, c)+

+
(

cλ0 + βB (t+ 1;T, c) + f
(

cλ1 + α1B (t+ 1;T, c) + c2σ2

2 , θ
))

ht+1

]
(25)
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By comparing the expression obtained in equation (25) with (23) we obtain the following recursive system:






A(t;T, c) = cr +A(t+ 1;T, c) + α0B(t+ 1;T, c)
B(t;T, c) = cλ0 + βB(t+ 1;T, c)+

f(cλ1 + α1B(t+ 1;T, c) + c2σ2

2 , θ)

(26)

with A(T ;T, c) = 0 and B(T ;T, c) = 0.

5.2 Martingale condition

We want to prove that ∀s ≤ t:

λ0 = −f(λ1 +
σ2

2
; θ)

(1)
=⇒ E

[
St

er

∣
∣
∣
∣
Ft−1

]

= St−1
(2)
=⇒ E

[
St

er(t−s)

∣
∣
∣
∣
Fs

]

= Ss (27)

(
(1)
=⇒)
We assume r constant but the proof holds even assuming r to be a predictable process. By simple calculus, we
obtain

E

[
St

er

∣
∣
∣
∣
Ft−1

]

= St−1 exp

[(

λ0 + f

(

λ1 +
σ2

2
; θ

))

ht−1

]

(28)

substituting λ0 = −f(λ1 +
σ2

2 ; θ) in (28) we obtain the result.

(
(2)
=⇒)
By the iterated law of conditional expectation we have:

E

[
St

er(t−s)

∣
∣
∣
∣
Fs

]

= E

[

E

[
St

er(t−s)

∣
∣
∣
∣
Ft−1

]∣
∣
∣
∣
Fs

]

= E








1

er(t−s−1)
E

[
St

er

∣
∣
∣
∣
Ft−1

]

︸ ︷︷ ︸

St−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

Fs








= ... = E

[
Ss+1

er

∣
∣
∣
∣
Fs

]

= Ss

5.3 VIX Index: derivation formula

We derive an analytical formula for the VIX index when the dynamics of S&P 500 belongs to our class. Defined
S∗ as the forward price with time-to-maturity T − t, we start from the VIX definition:

(
V IXt

100

)2

=
2er(T−t)

T − t







EQ

[
ST − S∗

S∗

∣
∣
∣
∣
Ft

]

︸ ︷︷ ︸

(∗)

−EQ

[

ln

(
ST

S∗

)∣
∣
∣
∣
Ft

]

︸ ︷︷ ︸

(∗∗)







.

The quantity in (∗) is 0 since:

EQ

[
ST − S∗

S∗

∣
∣
∣
∣
Ft

]

=
1

Ster(T−t)
EQ [ST | Ft]− 1 = 0.

Given the spot price St, we have ST = St exp
(
∑T

d=t+1 Xd

)

and by substituting in (∗∗) we get the following

expression for VIX squared:

(
V IXt

100

)2

= −2er(T−t)

T − t
E

[
T∑

d=t+1

λ1Vd + λ0hd

∣
∣
∣
∣
∣
Ft

]

︸ ︷︷ ︸

(∆)

(29)

In order to compute the quantity (∆) in (29) we use the mathematical induction method. ∀ l = t, . . . , T we
assume that:

E

[
T∑

d=t+1

λ1Vd + λ0hd

∣
∣
∣
∣
∣
Fl

]

= C(l;T ) +D(l;T )hl+1 +

l∑

d=t+1

λ1Vd + λ0hd (30)
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with C(T ;T ) = 0 and D(T ;T ) = 0. First, we notice that all the quantities on the right side of (30) are known
given the information at time l.

1. Since Vt and ht are respectively adapted and predictable process our assumption is true for l = T if
C(T ;T ) = 0 and D(T ;T ) = 0.

2. We suppose the relation hold at time l + 1 and we prove for time l using the property of conditional
expected value.

E

[
T∑

d=t+1

λ1Vd + λ0hd

∣
∣
∣
∣
∣
Fl

]

= E

[

E

[
T∑

d=t+1

λ1Vd + λ0hd

∣
∣
∣
∣
∣
Fl+1

]∣
∣
∣
∣
∣
Fl

]

. (31)

The quantity on the right hand of equation (31) is equal to:

E

[

C(l + 1;T ) +D(l + 1;T )hl+2 +

l+1∑

d=t+1

λ1Vd + λ0hd

∣
∣
∣
∣
∣
Fl

]

(32)

substituting in (32) the definition of hl+2 we have

C(l + 1;T ) + α0D(l + 1;T ) + (βD(l + 1;T ) + λ0)ht+1 +
∑l

d=t+1(λ1Vd + λ0hd)
+E [ (α1D(l + 1;T ) + λ1)Vl+1| Fl] .

From (4) we get:

C(l + 1;T ) + α0D(l + 1;T ) + [(λ0 + λ1g(θ)) + (β + α1g(θ))D(l + 1;T )]ht+1

+
∑l

d=t+1 λ1Vd + λ0hd

by comparison with (30) we get the following system:

{
C(l;T ) = C(l + 1;T ) +D(l + 1;T )α0

D(l;T ) = [λ1g(θ) + λ0] + (α1g(θ) + β)D(l + 1;T )
(33)

with final conditions C(T ;T ) = 0 and D(T ;T ) = 0.
We show that if the following two conditions are satisfied

• α1g(θ) + β < 1

• λ1g(θ) + λ0 ≤ 0

the right hand of the equation (10) is positive, coherently with the fact of being equal to the squared VIX value.
We notice that D(l;T ) is a linear difference equation whose solution at time l = t, ∀t ≤ T is given by

D(t;T ) = [λ1g(θ) + λ0]
︸ ︷︷ ︸

≤0

1− [α1g(θ) + β]
T−t

1− [α1g(θ) + β]
︸ ︷︷ ︸

>0

The solution of D(l;T ) and the positivity of α0 ensure the negativity of C(t;T ):

C(t;T ) = C(T ;T )
︸ ︷︷ ︸

=0

+D(T ;T )
︸ ︷︷ ︸

=0

+α0

T−1∑

l=t+1

D(l;T )
︸ ︷︷ ︸

<0

= α0 [λ1g(θ) + λ0]







T − t− 1− [α1g(θ) + β] 1−[α1g(θ)+β](T−t)−1

1−[α1g(θ)+β]

1− [α1g(θ) + β]







5.4 VIX Index: autoregressive model

In equation (5), we substitute the expression for ht+1 and ht using the VIX adjusted as in (12). We obtain

V IX
adj
t − C30

D30
= α0 + (α1g(θ) + β)

V IX
adj
t−1 − C30

D30
+ α1(Vt − g(θ)ht) ⇒

V IX
adj
t = α0D30 + C30 [1− (α1g(θ) + β)] + (α1g(θ) + β)

adj
t−1 + α1D30(Vt − g(θ)ht)

12



We can easily observe that V IX
adj
t is an AR(1). Its expression can be written:

V IX
adj
t = int+ slopeV IX

adj
t−1 + τt.

Trivially we have:

int = α0D30 + C30 [1− (α1g(θ) + β)]

slope = (α1g(θ) + β)

τt = α1D30(Vt − g(θ)ht)

Using the explicit solution (11) for C30 and D30 and by rearranging, we get a simple expression for int:

int = α0 (λ1g(θ) + λ0)
1−slope30

1−slope + α0 (λ1g(θ) + λ0)
(

29− slope 1−slope29

1−slope

)

= 30α0 (λ1 + λ0)
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Steps for Theoretical Implied Volatility

1.
(
V IXt

100

)2
= − 2er(T−t)

T−t [C(t;T ) +D(t;T )ht+1] .

2. Et [exp(c lnST) |Ft] = Sc
t exp[A(t;T, c) +B(t;T, c)ht+1]

3. E [exp(c lnST ) |Ft]
IFT
=⇒ Π1& Π2

4. C(K,T) = StΠ1 −Ke−r(T−t)Π2

5. C(K,T )
B&S
=⇒ σ(K,T)

Table 1: We report the main steps necessary to obtain the volatility surface in our framework exploiting available
informations from the VIX index.
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(a) λ1 = 0

0.9

0.95

1

1.05

1.1

50

100

150

200

250

300

350

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Volatility surface

0.9 0.95 1 1.05 1.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
European Call Price vs. levels of moneyness

 

 
T = 45
T = 90
T = 180
T = 360

(b) λ1 = −0.006
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(c) λ1 = −0.012

Figure 1: Implied volatility surfaces for σ = 0.014, α0 = 0.033, α1 = 0.493 and β = 0.379 when λ1 varies.
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(a) σ = 0.0133
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(b) σ = 0.014

0.9

0.95

1

1.05

1.1

50

100

150

200

250

300

350

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Volatility surface

0.9 0.95 1 1.05 1.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
European Call Price vs. levels of moneyness

 

 
T = 45
T = 90
T = 180
T = 360

(c) σ = 0.0182

Figure 2: Implied volatility surfaces for λ1 = 0, α0 = 0.033, α1 = 0.493 and β = 0.379 when σ varies.
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(a) α0 = 0.031, α1 = 0.468 and β = 0.360
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(b) α0 = 0.033, α1 = 0.493 and β = 0.379
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(c) α0 = 0.034, α1 = 0.517 and β = 0.397

Figure 3: Implied volatility surfaces for λ1 = 0, σ = 0.014 for varying α0, α1 and β vary.

DVG DNIG DNTS

Open 0,589% 0,005% 0,080%
Closing 0,445% 0,139% 0,064%

High 1,665% 1,081% 1,156%
Low 0,550% 1,133% 1,059%

Table 2: Errors obtained when the calibration decision depends on the VIX index level.
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(a) a = 0.975
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(b) b = 0.569
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(c) a = 0.985
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(d) b = 0.793
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(e) a = 1
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(f) b = 0.814

Figure 4: The plots show the change of the implied volatility surface for increasing values of a (left panel) and
b (right panel).

DVG DNIG DNTS

Open 1,111% 0,029% 0,140%
Closing 0,967% 0,173% 0,004%

High 2,187% 1,047% 1,216%
Low 0,028% 1,167% 0,999%

Table 3: Errors obtained when the calibration is done the first Wednesday of each month.
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Figure 5: Comparison between the VIX and S&P500 Indices.
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Figure 6: Comparison between the predict VIX (upper bound ∗) and next day open, closed, min, max VIX
level using monthly calibration
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Figure 7: Comparison between the predict VIX (upper bound ∗) and next day open, closed, min, max VIX
level using monthly calibration

In sample estimation for DVG

date λ0 λ1 σ α0 α1 β Perc. error

04-May-2011 0.012 -0.012 0.014 0.033 0.493 0.379 0.048

01-Jun-2011 0.036 -0.039 0.069 0.009 0.274 0.148 0.084

06-Jul-2011 0.005 -0.005 0.006 0.033 0.344 0.633 0.027

03-Aug-2011 0.034 -0.035 0.001 0.060 0.317 0.000 0.037

07-Sep-2011 0.008 -0.008 0.011 0.032 0.538 0.444 0.015

05-Oct-2011 0.051 -0.053 0.029 0.028 0.155 0.484 0.024

02-Nov-2011 0.095 -0.100 0.007 0.018 0.057 0.085 0.039

07-Dec-2011 0.060 -0.062 0.007 0.024 0.008 0.454 0.052

04-Jan-2012 0.019 -0.019 0.020 0.023 0.207 0.644 0.048

01-Feb-2012 0.036 -0.038 0.056 0.017 0.014 0.157 0.048

07-Mar-2012 0.042 -0.043 0.029 0.000 0.000 1.000 0.088

Table 4: Estimated parameters for DVG model in sample period
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In sample estimation for DNIG

date λ0 λ1 σ α0 α1 β Perc. error

04-May-2011 0.049 -0.052 0.062 0.006 0.012 0.572 0.039

01-Jun-2011 0.047 -0.050 0.061 0.006 0.016 0.604 0.029

06-Jul-2011 0.009 -0.009 0.011 0.009 0.168 0.816 0.024

03-Aug-2011 0.035 -0.036 0.042 0.029 0.212 0.059 0.022

07-Sep-2011 0.067 -0.072 0.075 0.017 0.120 0.113 0.022

05-Oct-2011 0.007 -0.008 0.010 0.028 0.427 0.564 0.007

02-Nov-2011 0.060 -0.064 0.066 0.007 0.081 0.674 0.019

07-Dec-2011 0.046 -0.048 0.057 0.005 0.008 0.867 0.024

04-Jan-2012 0.029 -0.030 0.019 0.019 0.065 0.733 0.057

01-Feb-2012 0.030 -0.031 0.042 0.023 0.269 0.109 0.034

07-Mar-2012 0.013 -0.014 0.015 0.010 0.211 0.760 0.026

Table 5: Estimated parameters for DNIG model in sample period

In sample estimation for DNTS

date λ0 λ1 σ α0 α1 β b a Perc. error

04-May-2011 0.212 -0.107 0.013 0.002 0.363 0.276 0.814 0.990 0.009

01-Jun-2011 0.066 -0.042 0.039 0.011 0.296 0.000 0.800 0.750 0.019

06-Jul-2011 0.005 -0.005 0.006 0.039 0.380 0.596 1.000 0.500 0.025

03-Aug-2011 0.052 -0.027 0.008 0.012 0.510 0.000 0.897 0.955 0.007

07-Sep-2011 0.005 -0.006 0.009 0.051 0.658 0.409 0.962 0.413 0.015

05-Oct-2011 0.012 -0.016 0.026 0.001 0.116 0.910 0.946 0.345 0.004

02-Nov-2011 0.003 -0.003 0.006 0.133 0.806 0.233 0.863 0.351 0.011

07-Dec-2011 0.085 -0.043 0.010 0.004 0.473 0.072 0.854 0.975 0.005

04-Jan-2012 0.003 -0.005 0.007 0.105 0.772 0.449 1.000 0.341 0.018

01-Feb-2012 0.100 -0.053 0.021 0.001 0.104 0.803 0.800 0.934 0.014

07-Mar-2012 0.018 -0.011 0.007 0.032 0.539 0.090 0.965 0.803 0.024

Table 6: Estimated parameters for DNTS model in sample period
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Figure 8: Out of sample weekly comparison.
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