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Abstract. The volume of a Cartier divisor is an asymptotic invariant, which measures the
rate of growth of sections of powers of the divisor. It extends to a continuous, homogeneous,
and log-concave function on the whole Néron–Severi space, thus giving rise to a basic in-
variant of the underlying projective variety. Analogously, one can also define the volume
function of a possibly non-complete multigraded linear series.

In this paper we will address the question of characterizing the class of functions arising
on the one hand as volume functions of multigraded linear series and on the other hand as
volume functions of projective varieties.

In the multigraded setting, inspired by the work of Lazarsfeld and Mustaţă [16] on Ok-
ounkov bodies, we show that any continuous, homogeneous, and log-concave function ap-
pears as the volume function of a multigraded linear series. By contrast we show that there
exists countably many functions which arise as the volume functions of projective varieties.
We end the paper with an example, where the volume function of a projective variety is
given by a transcendental formula, emphasizing the complicated nature of the volume in the
classical case.

Introduction

Let X be a smooth complex projective variety of dimension n over the complex numbers,
let D be a Cartier divisor on X. The volume of D is defined as

volX(D) = lim sup
k→∞

dimC(H0(X,OX(kD)))

kn/n!
.

The volume and its various versions have recently played a crucial role in several important
developments in higher dimensional geometry, see for example [23], [9].

In the classical setting of ample divisors, the volume ofD is simply its top self-intersection.
Starting with the work of Fujita [7], Nakayama [18], and Tsuji [24], it became gradually clear
that the volume of big divisors — that is, ones with volX(D) > 0 — displays a surprising
number of properties analogous to that of ample ones. Notably, it depends only on the
numerical class of D, it is homogeneous of degree n, and satisfies a Lipschitz-type property
([15, Section 2.2.C]). Consequently, one can extend the volume to a continuous function

volX : N1(X)R −→ R+ ,

where by N1(X)R we mean the finite-dimensional real vector space of numerical equivalence
classes of R-divisors. Besides continuity and homogeneity, another important feature of the
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volume function is log-concavity of degree n, i.e. for any two classes ξ, ξ′ ∈ Big(X)R we have

volX(ξ + ξ′)1/n ≥ volX(ξ)1/n + volX(ξ′)1/n .

Given a sufficient amount of information, the volume function associated to a variety can be
explicitly computed under certain circumstances. Examples include all smooth surfaces [2],
toric varieties [12], and homogeneous spaces.

However, beside what has been mentioned above, relatively little is known about its
global behavior, and understanding it more clearly remains a very important quest.1

In [16], Lazarsfeld and Mustaţă showed that in fact most of the properties of volX are
quite formal in nature, and their validity can be extended to the non-complete multigraded
setting. Specifically, fix a choice of Cartier divisors D = (D1, . . . , Dρ) on X (where ρ is
an arbitrary positive integer for the time being, but soon it will be dimR N1(X)R), and set
mD = m1D1 + . . .+mρDρ for any m = (m1, . . . ,mρ) ∈ Nρ. A multigraded linear series W•
on X associated to D1, . . . , Dρ consists of subspaces

Wm ⊆ H0(X,OX(mD)) ,

such that R(W•) = ⊕Wm is a subalgebra of the section ring

R(D1, . . . , Dρ) = ⊕m∈NρH
0(X,OX(mD)) .

The support of W• is then defined to be the closed convex cone in Rρ
+ spanned by all multi-

indices m ∈ Nρ such that Wm 6= 0. Given a ∈ Nρ, set

volW•(a)
def
= lim sup

k→∞

dimC(Wk·a)

kn/n!
.

Exactly as in the complete case, the above assignment defines the volume function of W•

volW• : Nρ −→ R+ .

Based on earlier work of Okounkov, [19] and [20], the authors of [16] associate a convex cone
— the so-called Okounkov cone — to a multigraded linear series on a projective variety. With
the help of convex geometry and semigroup theory they show that the formal properties of
the global volume function persist in the multigraded setting under very mild hypotheses.

Precisely as in the global case, the function m 7→ volW•(m) extends uniquely to a
continuous function

volW• : int(supp(W•)) −→ R+ ,

which is homogeneous, log-concave of degree n, and extends continuously to the entire
supp(W•). The construction generalizes the classical case: whenever X is an irreducible
projective variety, the cone of big divisors Big(X)R is pointed and volX vanishes outside
of it. Pick Cartier divisors D1, . . . , Dρ on X, whose classes in N1(X)R generate a cone
containing Big(X)R. Then volX = volW• on Big(X)R, where W• = R(D1, . . . , Dρ).

In this ”in vitro” setting, we prove first that in fact any continuous, homogeneous, and
log-concave function arises as the volume function of an appropriate multigraded linear series.

1In their interesting paper [3], Boucksom-Favre-Jonsson found a nice formula for the derivative of volX
in any direction.
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Theorem A. Let K ⊆ Rρ
+ be a closed convex cone with non-empty interior, f : K → R+

a continuous function, which is non-zero, homogeneous, and log-concave of degree n in the
interior of K. Let X be an arbitrary smooth, projective toric variety of dimension n and
Picard number ρ. Then there exists a multigraded linear series W• on X such that volW• ≡ f
on the interior of K. Moreover we have supp(W•) = K.

As a consequence, notice that the volume function volW• of a multigraded linear series
W• can be pretty wild. This is due to the following connection. Alexandroff [1] showed that
a function as in Theorem A is almost everywhere twice differentiable; at the same time, one
can give examples of functions of this sort, which are nowhere three times differentiable (cf.
Remark 1.2). This gives a positive answer to [16, Problem 7.2].

For the proof of Theorem A we first check that any function as in the statement is the
Euclidean volume function of a pointed cone. Then using toric geometry we associate to
a multigraded linear series a pointed cone. We finish the proof of Theorem A by giving a
recipe for the inverse process, constructing a multigraded linear series from a cone.

It follows from Theorem A that there exist uncountably many volume functions in the
non-complete case. In comparison, in the complete case we prove that in fact there are only
countably many of them:

Theorem B. Let VZ = Zρ be a lattice inside the vector space VR = VZ ⊗Z R. Then there
exist countably many functions fj : VR → R+ with j ∈ N, so that for any irreducible
projective variety X of dimension n and Picard number ρ, we can construct an integral
linear isomorphism

πX : VR → N1(X)R
with the property that volX ◦ πX = fj for some j ∈ N.

We prove Theorem B in the case of smooth varieties. The general case follows easily by
appealing to resolution of singularities. The heart of the proof is a careful analysis of the
variation of the volume function in families coming from multi-graded Hilbert schemes.
This approach enables us to establish analogous statements for the ample, nef, big, and
pseudoeffective cones. We would like to point out that the countability of ample or nef cones
also follows from the work of Campana and Peternell [4] on the algebraicity of these cones.

An amusing application of Theorem B concerns the set of volumes V ⊆ R+, which is
the set of all non-negative real numbers arising as the volume of a Cartier divisor on some
irreducible projective variety. Using Theorem B, one can deduce that V has the structure of
a countable multiplicative semigroup (cf. Remark 2.3). By contrast, in the last section we
give an example of a four-fold whose volume function is given by a transcendental function,
deepening further the mystery surrounding the volume function in the classical case. In
particular, the same example provides a Cartier divisor with transcendental volume, thus
the set of volumes V contains transcendental numbers as well.
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1. Volume functions of non-complete linear series

In this section we study the volume function of a multigraded linear series and verify that
any non-zero continuous homogeneous log-concave function appears as the volume function
of some multigraded linear series on a smooth projective toric variety of dimension n.

First we introduce some notation. In the course of this section X will be a smooth
projective toric variety of dimension n with an action of a torus T = N ⊗Z C∗. Denote
by M ' Zn the character lattice of T and assume the existence of a fixed isomorphism
α : M → Zn. In particular, the Euclidean volume of an open set in MR is well-defined.

For any choice D = (D1, . . . , Dρ) of (not necessarily different) toric Cartier divisors on
X define

Γ(D)
def
=
{

(u,m) ∈M × Nρ | χu ∈ H0
(
X,OX(mD)

)}
.

Note that Γ(D) is finitely generated, and spans a polyhedral cone ∆(D) in MR × Rρ
+. Note

moreover that if k is a natural number then

∆(kD) = {(kv, w)|(v, w) ∈ ∆(D)}.

Theorem 1.1. Let K ⊆ Rρ
+ be a closed convex cone with non-empty interior, f : K → R+

be a continuous function, which is non-zero, homogeneous and log-concave of degree n in the
interior of K. Then there exists a multi-divisor D = (D1, . . . , Dρ), and a multigraded linear
series W• on X with Wm ⊆ H0(X,OX(mD))) for any m ∈ Nρ, such that supp(W•) = K
and volW• = f on the interior of K.

Remark 1.2. It is relatively easy to use Theorem 1.1 to produce examples of linear series
whose volume function is not very regular. Indeed, functions as in Theorem 1.1 can be
constructed from continuous concave functions g : B → R+ defined on a bounded convex
body B ⊆ Rρ−1. For this let H ⊆ Rρ

+ be an affine hyperplane, not containing the origin,
such that H ∩K = B is bounded. The function

g
def
= n
√
f : B → R+

then extends uniquely to a function on K satisfying the hypotheses of Theorem 1.1. In
dimension one for example, continuous concave functions can be generated from arbitrary
negative bounded continuous functions by integrating twice. So taking a negative, bounded
and nowhere differentiable continuous function defined on a closed interval, and integrating
it twice, we obtain a continuous, concave and nowhere three times differentiable function.

Proof of Theorem 1.1. We consider a toric variety X, together with a multi-divisor D =
(D1, . . . , Dρ). Throughout what follows, we will say that a cone C ⊆ MR × Rρ

+ is MR-
bounded, if for any p ∈ Rρ

+ the volume of the slice {v ∈MR | (v, p) ∈ C} is finite.
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For any MR-bounded cone C let volC : Rρ
+ → R be the function given by the formula

volC(p) = vol({v ∈MR|(v, p) ∈ C}), for any p ∈ Rρ
+

In the next lemma we reduce to the case where f = n!volC for some closed convex cone C.

Lemma 1.3. If f : K −→ R+ is a function as in Theorem A, then there exists an MR-
bounded closed convex cone in C ⊆MR ×K such that

volC(v) = f(v)/n!

for all v ∈ int(K).

Proof. Using the isomorphism α, it will be enough to construct C in Rn ×K. The cone

C
def
=

{
(v, p) ∈ Rn

+ ×K |
∑
i

vi ≤ (f(p))1/n

}
has the required properties. �

From now on, we assume given an MR-bounded cone C ⊂ MR ×K such that volC = f
on int(K). The following lemma proves the theorem in the case where C ⊆ ∆(D).

Lemma 1.4. Let X, D and C be as above, and assume that the multi-divisor D is such that
C ⊆ ∆(D). There is then a multigraded linear series W• with Wm ⊂ H0(OX(mD)) such
that vol(W•) = n!volC on int(K).

Proof. We define W• as follows. For any m ∈ Nρ we set

Wm
def
= 〈χu ∈ H0

(
X,OX(mD)

)
| u ∈ C ∩ (M × {m})〉 .

By construction Wm ·Wn ⊆ Wm+n for all m,n ∈ Nρ and

dimWm = #
(
C ∩ (M × {m})

)
,

hence volW•(m) = n! volC(m). This completes the proof of Lemma 1.4. �

Note in particular that if C is the cone whose existence is guaranteed by Lemma 1.3
then we have that volW• = f on int(K). The function

volW• : int(supp(W•))→ R+

is proportional to the volC . It is therefore continuous, homogeneous and log-concave of
degree n in the interior of supp(W•). Since W• is a subseries of the complete multigraded
linear series defined by D, the function (volW•)

1/n is bounded in the sense that(
volW•(v)

)1/n ≤ k1||v||, for all v ∈ supp(W•)

for some k1 > 0. The concavity of the function (volW•)
1/n, implies that it satisfies a Hölder

condition of exponent 1 (see [21, Theorem 1.5.1])

|
(
volW•(v)

)1/n −
(
volW•(w)

)1/n| ≤ k2||v − w||
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for all v, w ∈ int(supp(W•)). These conditions imply that the function volW• can be extended
continuously to the whole support of W•. To complete the proof of the theorem, it will be
enough to establish the following lemma.

Lemma 1.5. Let C be an MR-bounded closed convex subcone of MR × K and let D =
(D1, . . . , Dρ) be a choice of big Cartier divisors on X. There is then a linear transformation
φ : MR × Rρ →MR × Rρ and an integer k such that

(1) φ(b, 0) = (b, 0) and φ(b, a) = (∗, a) for all b ∈MR and a ∈ Rρ.
(2) φ(C) ⊂ ∆(kD).

Proof. For every i, we consider the set Bi = {w ∈ MR|(w, vi) ∈ ∆(D)}, where vi is the ith
unit vector. The fact that Di is big implies that Bi has non-empty interior. For each i we
pick an element di in the interior of Bi and we consider the map ψ : Rρ →MR given by

ψ(a1, . . . , aρ) =
∑

aidi.

This map has the property that for any a ∈ Rρ
+, (ψ(a), a) is contained in the interiorof ∆(D).

There is a δ > 0 such that for any a ∈ Rρ
+ and any b ∈MR we have that

||b|| < δ||a|| ⇒ (ψ(a) + b, a) ∈ ∆(D).

The cone C being MR-bounded, there is a l such that (v, w) ∈ C ⇒ ||v|| ≤ l||w||. We choose
an integer k > l/δ and consider the map

φ(v, w) = (v + kψ(w), w).

Suppose that (v, w) ∈ C. We then have that

||v/k|| < ||δv/l|| < δ||w||
which implies that

(v/k + ψ(w), w) ∈ ∆(D)

and hence
φ(v, w) = (v + kψ(w), w) ∈ ∆(kD).

This completes the proof of Lemma 1.5. �

The proof of Theorem 1.1 is now complete. Given a function f satisfying the hypotheses
of Theorem 1.1, we can find an MR-bounded closed convex cone C such that volC = f .
After applying Lemma 1.5 (and replacing C by φ(C) if necessary) we can assume there is a
multi-divisor D such that C ⊂ ∆(D). By Lemma 1.4 we obtain a linear series W• such that

vol(W•) = n!volC = f

on Int(K). �

Remark 1.6. Interestingly enough, Theorem 1.1 proves significant already in the simplest
meaningful case, when X = P1. More specifically, let f : Rr

+ → R+ be a continuous, concave,
and 1-homogeneous function. After possibly scaling f , we can assume that f(x) ≤

∑
i xi.

Now, for each m ∈ Nr, define

Wm
def
= 〈χu | 0 ≤ u ≤ f(m)〉 ⊆ H0

(
P1,O(|m|)

)
.
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Then dim(Wm) = f(m) + 1 and we have volW• = f on Rr
+.

2. Countability of volume functions for complete linear series.

One of the consequences of the previous section is that for non-complete multigraded
linear series there are uncountably many different volume functions. By contrast, we will
prove that there are only countably many volume functions for all irreducible projective
varieties.

Theorem 2.1. Let VZ = Zρ be a lattice inside the vector space VR. Then there exist countably
many closed convex cones Ai ⊆ VR and functions fj : VR → R with i, j ∈ N, so that for
any smooth projective variety X of dimension n and Picard number ρ, we can construct an
integral linear isomorphism

ρX : VR → N1(X)R

with the properties that

ρ−1
X (Nef(X)R) = Ai, and volX ◦ ρX = fj

for some i, j ∈ N.

Remark 2.2. (1) Theorem 2.1 quickly implies Theorem B: let X be an irreducible projective
variety and let µ : X ′ → X be a resolution of singularities of X. The pullback map

µ∗ : N1(X)R → N1(X ′)R

is linear, injective, and volX = volX′ ◦ µ∗ by [15, Example 2.2.49]. Since the map µ∗ is
defined by choosing dim(N1(X)R) integral vectors, the countability of the volume functions
in the smooth case implies that the same statement is valid for the collection of irreducible
varieties. As Nef(X)R = (µ∗)−1(Nef(X ′)R), the same statement holds for nef cones.
(2) Since Amp(X)R = int(Nef(X)R), then Theorem B remains valid for ample cones as well.
Much the same way, the cone of big divisors can be described as

Big(X)R = {D ∈ N1(X)R | volX(D) > 0 } ;

its closure is known to be equal to the pseudo-effective cone Eff(X)R. Hence we conclude
that Theorem B is also valid for the big and pseudoeffective cones.

Remark 2.3 (The semigroup of volumes). Let

V def
= {a ∈ R+ | a = volX(D) for some pair (X,D)}

whereX is some irreducible projective variety andD a Cartier divisor onX. By Theorem 2.1,
V is countable. Moreover, using the Künneth formula [2, Proposition 4.5], one can show that
the set V has the structure of a multiplicative semigroup with respect to the product of real
numbers. Beyond this fact very little is known about V. It is certainly true by [15, Example
2.3.6] and the semigroup structure of V that all non-negative rational numbers are contained
in V. At the same time we do not know whether all algebraic numbers appear as volumes of
Cartier divisors. Going in the other direction, we provide an example in Section 3 of a pair
(X,D) such that the volume volX(D) is transcendental.
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We will make some preparations. Let φ : X → T be a smooth projective and sur-
jective morphism of relative dimension n between two quasi-projective varieties. Suppose
further that T and each fiber of φ is irreducible and reduced. If we are given ρ Cartier
divisors D1, . . . , Dρ on X then we say that a closed point t0 ∈ T admits a good fiber if
D1|Xt0 , . . . , Dρ|Xt0 form a basis for the Néron–Severi space N1(Xt0)R. The main ingredient
of the proof of Theorem 2.1 is the following statement.

Proposition 2.4. Let φ : X → T be a family as above and suppose that there exists a closed
point t0 ∈ T , admitting a good fiber. Then for all closed points t ∈ T the Cartier divisors
D1|Xt , . . . , Dρ|Xt are linear independent in N1(Xt)R.

Proof. First notice that D1|Xt , . . . , Dρ|Xt are linearly dependent in N1(Xt)R if and only if
they are linear dependent over integers. Therefore we only need to show that given a Cartier
divisor D on X such that D|Xt0 6=num 0, one has D|Xt 6=num 0 for any t ∈ T .

We use induction on the dimension of the fibers. First assume that dim(X ) = dim(T )+1.
As Xt0 is a smooth irreducible curve, the condition D|Xt0 6=num 0 is equivalent to (D.Xt0) 6= 0.
The morphism φ is smooth and T irreducible, therefore the function

t ∈ T −→ (D.Xt)

is globally constant. Consequently, D|Xt 6= 0 for any t ∈ T as we wanted.

In the general case, when n ≥ 2, let t1 ∈ T \ {t0} and choose a line bundle A on X
which is very ample relative to the map φ. Bertini’s Theorem and generic smoothness says
that for a general section W of A, the fiber Wt = W ∩Xt is smooth and irreducible for all
t’s in some open neighborhood of t0. The same statement holds for t1, and using the fact
that T is irreducible, one can choose a general section W and an open neighborhood U ⊆ T
containing both t0 and t1, such that Wt is smooth and irreducible for all t ∈ U . Now, as W
is general, the map

φUW = φ|W∩φ−1(U) : W ∩ φ−1(U) −→ U

is flat and of relative dimension n − 1. Because each fiber of φUW is smooth, φUW is smooth
as well. With this in hand, suppose that D|Wt0

6=num 0. By applying induction to the family

φUW , we obtain D|Wt1
6=num 0, hence D|Xt1 6=num 0.

Whenever D|Wt0
=num 0, we have two cases. If n = 2, we can use the fact that Wt0 is an

ample section of Xt0 and deduce from the Hodge Index Theorem that (D|Xt0 )2 < 0. Hence by

flatness one obtains that (D|Xt1 )2 < 0 and therefore D|Xt1 6=num 0. When n ≥ 3, one can use
a higher-dimensional version of the Hodge Index Theorem [13, Corollary I.4.2] and deduce
that the condition D|Wt0

=num 0 implies D|Xt0 =num 0, contradicting our assumptions. �

Proof of Theorem 2.1. Our first step is to embed every smooth projective variety X of di-
mension n and Picard number ρ into a product of projective spaces, i.e.

X ⊆ Y = P2n+1 × . . .× P2n+1︸ ︷︷ ︸
ρ times

with the property that the restriction map

ρX : VR := N1(Y )R = Rρ → N1(X)R
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is an integral linear isomorphism.

To this end fix ρ very ample Cartier divisors D1,X , . . . , Dρ,X on X, which form a Q-base
of the Néron–Severi group N1(X)Q. As X is a smooth variety, [22, Theorem 5.4.9] implies
that for each Di,X there exists an embedding X ⊆ P2n+1 with OX(Di,X) = OP2n+1(1)|X .
With this in hand, we embed X in Y in the following manner

(1) X ⊆ X × . . .×X︸ ︷︷ ︸
ρ times

⊆ Y ,

where the first embedding is given by the diagonal. The corresponding restriction map
ρX on the Néron–Severi groups is an integral linear isomorphism identifying the semigroup
Nρ ⊆ N1(Y )Z with the one generated by D1,X , . . . , Dρ,X in N1(X)Z.

Next, we construct countably many families such that each smooth variety X embedded
in Y as in (1) appears as a fiber in at least one of them. We will use multigraded Hilbert
schemes of subvarieties embedded in Y for this purpose. Before introducing them, we note
that each line bundle on Y is of the form

OY (m)
def
= p∗1(OP2n+1(m1))⊗ . . .⊗ p∗ρ(OP2n+1(mρ))

with m = (m1, . . . ,mρ) ∈ Zρ and pi : Y → P2n+1 being the ith projection. For a closed
subscheme X ⊆ Y , one can define its multigraded Hilbert function as

PX,Y (m) = χ(X, (OY (m))|X), for all m ∈ Zρ .

The Hilbert functor HY,P (T ) parameterizes families of closed subschemes Z ⊆ Y × T flat
over T such that for any t ∈ T the multigraded Hilbert function of the scheme-theoretical
fiber Zt ⊆ Y equals P . In [10, Corollary 1.2], Haiman and Sturmfels prove that this functor
is representable, i.e. for any ρ ≥ 1 and P as above the multigraded Hilbert functor HY,P is
represented by a projective scheme HilbY,P and by an universal family

UP

φ ))

⊆ Y × HilbY,P

pr2

��
HilbY,P

with the property that there is a bijection between the closed subschemes of Y with the
multigraded Hilbert function equal P and the scheme theoretical fibers of φ.

In the case when X is a smooth projective variety of dimension n and Picard number ρ
embedded in Y as in (1), its multigraded Hilbert function PX,Y is a polynomial with rational
coefficients and of total degree at most n · ρ. Hence there are countably many polynomials
of this form, and therefore countably many families such that any smooth projective variety
of dimension n and Picard number ρ appears as a fiber in at least one of them.

By what we said above, it is enough to verify countability for one of these flat families.
Fix one of them, and call it φ : X → T . Without loss of generality we can assume that T is
irreducible and reduced. The fact that φ is flat implies by [8, Theorem 12.2.4] that the set
of all t ∈ T for which Xt is smooth, irreducible, and reduced, is open.
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Arguing inductively on dimT , we can restrict our attention to a non-empty open subset
of T and assume that all the fibers of φ are smooth, irreducible, and reduced. This implies
that φ is smooth, so it is enough to prove countability under this additional condition.

The embedding X ⊆ Y × T tells us that X comes equipped with ρ Cartier divisors
D1, . . . , Dρ, the restriction of the canonical base of Pic(Y ). Assume further that there exists
a closed point t0 ∈ T such that Xt0 is a smooth variety embedded in Y as in (1). Hence the
Cartier divisors D1|Xt0 , . . . , Dρ|Xt0 form an R-basis for N1(Xt0)R, and the family φ : X → T
satisfies the conditions in Proposition 2.4. We conclude that the map

ρXt : VR := RD1 ⊕ . . .⊕ RDρ → N1(Xt)R, where ρXt(Di) := Di|Xt
is an injective integral linear morphism for all t ∈ T .

With these preparations behind us we can move on to complete the proof. Let us write

At
def
= ρ−1

Xt
(Nef(Xt)R), and ft

def
= volXt ◦ ρXt

for each t ∈ T . We need to show that both sets (At)t∈T and (ft)t∈T , are countable. Actually,
it is enough to check that there exists a subset F = ∪Fm ⊆ T (B = ∪Bm ⊆ T ) consisting
of a countable union of proper Zariski-closed subsets Fm & T (resp. Bm & T ), such that
At (resp. ft) is independent of t ∈ T \ F (t ∈ T \ B). This reduction immediately implies
Theorem 2.1, because one can argue inductively on dim(T ) and apply this reduction for each
family φ : φ−1(Fm)→ Fm containing a good fiber.

We first prove the above reduction for nef cones. The set of all cones (At)t∈T has the
following property: if to ∈ T , then there exists a subset ∪Fm

t0
& T , which does not contain

t0 and consists of a countable union of proper Zariski-closed sets such that

(2) At0 ⊆ At, for all t ∈ T \ ∪Fm
t0
.

To verify this claim choose an elementD ∈ At0∩Zρ. By [15, Theorem 1.2.17] on the behaviour
of nefness in families, there exists a countable union Ft0,D ⊆ T of proper subvarieties of T ,
not containing t0 such that D ∈ At, for all t-s outside of Ft0,D. As At0 is a closed pointed
cone, the set At0 ∩Zρ is countable and generates At0 as a closed convex cone. Thus the cone
At0 is included in At for all t’s outside of the subsets Ft0,D with D ∈ At0 ∩Zρ. Our base field
is uncountable, therefore the union of all of the Ft0,D’s still remains a proper subset of T .

Denoting A
def
= ∪t∈TAt, it is enough to find a closed point t ∈ T with At = A. Note that

A ⊆ VR = Rρ is second countable, so there exists a countable set

{ti ∈ T | i ∈ N} such that A = ∪i∈NAti
according to [17, Theorem 30.3]. By (2), for every i ∈ N there exists a countable union of
proper Zariski-closed subsets Fi & T with the property that

Ati ⊆ At, for all t ∈ T \ Fi ,
and as before ∪Fi remains a proper subset. This proves Theorem 2.1 in the case of nef cones
because we have Ati ⊆ At and hence At = A for each t ∈ T \ ∪Fi and i ∈ N.

Next, we turn out attention to the case of volume functions. We assumed each fiber Xt

to be smooth and irreducible. Since the volume function is continuous, and homogeneous
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of degree n, it is actually enough to prove that for any D ∈ VZ the volume volXt(D|Xt) is
independent of t ∈ T \B.

Pick a Cartier divisor D ∈ VZ. By the Semicontinuity Theorem [11, Theorem III.12.8],
for any d ∈ N there exists a proper Zariski-closed subset BD,d & T , such that

h0(t,OX(dD)) = dimCH
0(Xt,OX(dD)|Xt) is independent of t ∈ T \BD,d .

The definition of the volume implies that volXt(D|Xt) is independent of t ∈ T \ ∪d∈NBD,d

and, because VZ is countable, the union of ∪BD,d, for all D ∈ VZ and d ∈ N, is a countable
union of proper Zariski-closed subsets properly contained in T . �

3. An example of a transcendental volume function

The aim of this section is to give an example of a four-fold X where the volume function
volX is given by a transcendental function over an open subset of N1(X)R. We utilize a
construction of Cutkosky (see [5] or [15, Chapter 2.3]) which was also used in [2] to produce
a non-polynomial volume function (see also [6]).

Let E be a general elliptic curve, i.e. without complex multiplication. Set Y = E × E.
[15, Lemma 1.5.4] gives a full description of all the cones on Y . Let f1, f2 be the divisor
classes of the fibers of the projections Y → E, and ∆ the class of the diagonal. Then

Nef(Y )R = Eff(Y )R = {x · f1 + y · f2 + z ·∆ | xy + xz + yz ≥ 0, x+ y + z ≥ 0} .
Setting H1 = f1 + f2 + ∆, H2 = −f1 and H3 = −f2, we define the vector bundle

V = OE×E(H1)⊕OE×E(H2)⊕OE×E(H3) ;

π : X = P(V )→ Y will be the four-fold of our interest.

Proposition 3.1. With notation as above, there exists a non-empty open set in Big(X)R,
where the volume is given by a transcendental formula.

Proof. The characterization of line bundles on projective space bundles, and the fact that
the function volX is continuous, and homogeneous on Big(X)R, imply that it is enough to
handle Q-divisors of the form

M = OP(V )(1)⊗ π∗(OY (L′))

with L′ = c1f1 +c2f2 +c3∆ a Q-Cartier divisor on Y with (c1, c2, c3) ∈ Q3
+. By the projection

formula the volume of A is given by

(3) volX(M) = lim
m→∞

∑
a1+a2+a3=m h

0(mL′ + a1H1 + a2H2 + a3H3)

m4/24
,

where the sum runs over all ai ∈ N’s and the limit over sufficiently divisible values of m.

In general there is no simple formula in terms of the ai’s for the right hand side. Nev-
ertheless, when the divisor mL′ + a1H1 + a2H2 + a3H3 is ample, then

h0
(
Y,mL′ + a1H1 + a2H2 + a3H3

)
=

1

2
((mL′ + a1H1 + a2H2 + a3H3)2)

according to the Riemann–Roch theorem on the abelian surface Y .
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First, we will show that in the limit as m goes to infinity, the contribution of non-ample
divisors to the sum contained in (3) is negligible. This is done in the following lemma.

Lemma 3.2. There is a quadratic function of m, F (m), such that

(4)
∑

a1+a2+a3=m,ai≥0

h0(mL′ + a1H1 + a2H2 + a3H3) ≤ F (m) ,

where the sum runs over all values of a1, a2, a3 and m, for which mL′+ a1H1 + a2H2 + a3H3

is not ample.

Proof. Note that in the sum given in (4), we only need to consider those divisors D of the
form D = mL′+ aH1 + a2H2 + a3H3 that are effective. On the other hand on Y all effective
divisors are nef and any non-ample effective divisor D′ satisfies D′2 = 0.

With this in hand, we now show that for any m there are at most 2(m + 1) possible
choices of (a1, a2, a3) ∈ N3 with a1 + a2 + a3 = m and D is non-ample and effective. Indeed,
since a3 = m− a1− a2, on fixing a1 the expression (mL′ + a1H1 + a2H2 + a3H3)2 becomes a
quadratic expression in a2 whose a2

2 coefficient is (H2−H3)2 = −2. This non-zero quadratic
expression has at most 2 integral solutions, so for any a1 ∈ {0, . . . ,m} there are at most 2
values for the pair (a2, a3) with a1 + a2 + a3 = m and D is effective and non-ample.

It remains to find a bound on h0(D) which depends only on m. Fix an ample divisor A
once and for all; we then have that

h0(D) ≤ h0(D + A) = (D + A)2 = 2A ·D + A2 = 2(A ·D/m)m+ (A2) ,

and that the divisor D/m is contained in the compact set

S
def
= {D′ | D′ = L′ + b1A1 + b2A2 + b3A3, bi ≥ 0, b1 + b2 + b3 = 1} ,

so on setting N
def
= maxS(A ·D′), we arrive at the conclusion

h0(D) ≤ (D + A)2

2
≤ Nm+ A2/2 .

Define F (m)
def
= (m+ 1)(2Nm+ A2) and this quadratic function satisfies (4). �

As a consequence, we can write our volume function as

volX(M) = lim
m→∞

4!

2m4
·

∑
a1+a2+a3=m

mL′+a1H1+a2H2+a3H3 ample

((mc1 +a1−a2)f1 +(mc2 +a1−a3)f2 +(mc3 +a1)∆))2 .

Via the substitutions x = a2/m and y = a3/m this limit is equal to the integral

volX(M) = 12

∫
Γ

((1 + c1 − 2x− y)f1 + (1 + c2 − x− 2y)f2 + (1 + c3 − x− y)∆))2

where Γ is the subset of R2 defined by: x, y ≥ 0, x+ y ≤ 1 and the class

L(x, y) := (1 + c1 − 2x− y)f1 + (1 + c2 − x− 2y)f2 + (1 + c3 − x− y)∆) is ample.
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Setting q(x, y) = (L(x, y))2, we have that

volX(M) = 12

∫
Γ

q(x, y)dxdy.

It’s not hard to see and also useful to write q(x, y) = 10y2+B(x)y+C(x), where B(x), C(x) ∈
Q(c1c2c3)[x]. Assume that c1, c2, c3 ∈ Q+ and c1 + c2 < 1 ≤ c1 + c2 + 2c3. This implies that
the class L(0, 0) is ample and L(x, y)2 < 0 for any x, y ≥ 0 with x+ y = 1.

Under these circumstances, Γ is the region bounded by:

(1) the x-axis
(2) the y-axis and

(3) the graph y = F (x), where F (x) =
B(x)−

√
B2(x)−40C(x)

20
is the solution of the equation

q(x, y) = 0.

Let X be the smallest positive number such that q(X, 0) = C(X) = 0. (Note that X ∈
Q(c1, c2, c3).) We can then rewrite our calculation as

volX(M) = 12

∫ X

0

∫ F (x)

0

q(x, y)dydx

or, in other words,

volX(M) = 12

∫ X

0

10F (x)3/3 +B(x)F (x)2/2 + C(x)F (x)dx .

After Euclidean division by the relation 10F (x)2 +B(x)F (x) + C(x) = 0 we get

volX(M) = 12

∫ X

0

40C(x)− (B(x))2

60
F (x)dx− 12

∫ X

0

C(x)B(x)

60
dx .

Denote the second term of the right hand side by G1(c1, c2, c3). Note that G1(c1, c2, c3) ∈
Q(c1, c2, c3) and using the explicit description of F (x), we obtain

volX(M) = 12

∫ X

0

(
40C(x)− (B(x))2

)(
B(x)−

√
B2(x)− 40C(x)

)
1200

dx−G1 ,

which gives us

volX(M) = 12

∫ X

0

−
(
(B(x))2 − 40C(x)

)3/2

1200
dx+G2(c1, c2, c3)

with

G2
def
= −G1 + 12

∫ X

0

(40C(x)− (B(x))2)(B(x))

1200
dx ∈ Q(c1, c2, c3) .

Let the quadratic function p(x) = (B(x))2−40C(x) be written in the form p(x) = ax2+bx+c,

where a, b, c ∈ Q(c1, c2, c3). We then have that

volX(M) = − 1

100

∫ X

0

p(x)3/2dx+G2(c1, c2, c3) ,
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and a Maple calculation shows

volX(M) = − 1

100

(3(b2 − 4ac)2

128a5/2

)
ln
(b+ 2aX + 2(a2X2 + baX + ca)1/2

b+ 2(ca)1/2

)
+G3(c1, c2, c3) ,

where G3 ∈ Q(c1, c2, c3).

It remains to check that the function inside the logarithm is not identically 1 and the
one appearing as the coefficient is not identically 0. So, take c1 = c2 = c3 = 1/4. Then

q(x, y) = 10y2 + (22x− 20)y + 75/8− 20x+ 10x2

which results in B = 22x − 20 and C = 10x2 − 20x + 75/8. Furthermore we have that
X = 3/4 and B(x)2 − 40C(x) = 84x2 − 80x + 25, i.e. a = 84, b = −80 and c = 25. With
this in hand, the volume turns our to be

volX(M) = − 1

100

(15626
√

84

98784

)
ln
( 23 +

√
1029

−40 +
√

2100

)
+G3(

1

4
,
1

4
,
1

4
) ,

Thus transcendental and this completes the proof of Proposition 3.1. �

The transcendental nature of the volume function in a geometrically simple situation
leads to a new relation linking complex geometry to diophantine questions. In their inspiring
work [14] (see also [26]), Kontsevich and Zagier write about the ubiquitous nature of periods.
According to their definition, a complex number α is a period, if it can be written as the
integral of a rational function with rational coefficients over an algebraic domain (a subset
or Euclidean space determined by polynomial inequalities with rational coefficients).

By their very definition, periods are countable in number, and contain all algebraic
numbers. On the other hand, various transcendental numbers manifestly belong to this
circle, π or the natural logarithms of positive integers among them. It’s easy to verify that
periods form a ring with respect to the usual operations on real numbers. Although it is
obvious from cardinality considerations that most real numbers are not elements of this ring,
so far only one real number has been proven not to be a period by Yoshinaga [25].

Using results of Lazarsfeld and Mustaţă from [16], the volume of a Cartier divisor D can
be written as

volX(D) =

∫
∆Y• (D)

1 ,

where ∆Y•(D) is the Okounkov body of D with respect to any admissible complete flag Y•
of subvarieties in X. This means that vol(D) — originally defined as the asymptotic rate of
growth of the number of global sections of multiples of D — is a period in a very natural
way, whenever ∆Y•(D) is an algebraic domain for some suitably chosen admissible flag. This
happens in all the cases that have been explicitly computed so far, leading to the following
question.

Question. Is the volume of an integral Cartier divisor on an irreducible projective variety
always a period?
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