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Abstract

We answer in the affirmative a question posed by Ivanov and Vassilev
[13] on the existence of a seven dimensional quaternionic contact manifold
with closed fundamental 4-form and non-vanishing torsion endomorphism.
Moreover, we show an approach to the classification of seven dimensional
solvable Lie groups having an integrable left invariant quaternionic con-
tact structure. In particular, we prove that the unique seven dimensional
nilpotent Lie group admitting such a structure is the quaternionic Heisen-
berg group.
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1 Introduction

The notion of quaternionic contact (qc) structure was introduced by Biquard
in [3], and it is the natural geometrical structure that appears on the (4n+ 3)-
sphere as the conformal infinity of the quaternionic hyperbolic space. Such
structures have been considered in connection with the quaternionic contact
Yamabe problem [10, 11, 14, 15]. Results about the CR-structure on the twistor
space of a qc manifold were given in [2, 4, 8, 7].

In general, a qc structure on a differentiable manifold of dimension (4n+3)
is a distribution H of codimension 3 on M , called the horizontal space, such
that there exists a metric g on H and a triplet (η1, η2, η3) of locally defined
differential 1-forms vanishing on H and such that the restrictions dηr|H to H of
the 2-forms dηr (1 ≤ r ≤ 3) are the local Kähler 2-forms of an almost quaternion
Hermitian structure on H.

The triplet of 1-forms (η1, η2, η3) is determined up to a conformal factor and
the action of SO(3) on R3. Therefore, H is equipped with a conformal class
[g] of Riemannian metrics and a rank 3 bundle (the quaternionic bundle) Q
of endomorphisms of H such that Q is locally generated by almost complex
structures (I1, I2, I3) satisfying the quaternion relations. The 2-sphere bundle
of one forms determines uniquely the associated metric and a conformal change
of the metric is equivalent to a conformal change of the one forms.

Biquard in [3] shows that if M is a qc manifold of dimension greater than
7, to every metric in the fixed conformal class [g], one can associate a unique
complementary distribution V of H in the tangent bundle TM such that V is
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locally generated by vector fields ξ1, ξ2, ξ3 satisfying certain relations (see (2) in
section 2). Using these vector fields ξr, we extend the metric g on H to a metric
on M by requiring Span {ξ1, ξ2, ξ3} = V ⊥ H and g(ξr, ξk) = δrk. Moreover, in
[3] it is also proved that M has a canonical linear connection ∇ preserving the
qc structure and the splitting TM = H ⊕ V . This connection is known as the
Biquard connection.

However, if the dimension of M is seven, there might be no vector fields
satisfying (2). Duchemin shows in [8] that if there are vector fields ξr (1 ≤ r ≤ 3)
satisfying the relations (2) before mentioned, then the Biquard connection is
also defined on M. In this case, the qc structure on the 7-manifold is said to be
integrable. In this paper, we assume the integrability of the qc structure when
we refer to a 7-dimensional qc manifold.

If M is a qc manifold with horizontal space H, the restriction to H of the
Ricci tensor of (g,∇) gives rise, on the one hand, to the qc-scalar curvature S
and, on the other hand, to two symmetric trace-free (0,2) tensor fields T 0 and
U defined on the distribution H (see also Section 4). The tensors T 0 and U
determine the trace-free part of the Ricci tensor restricted to H and can also
be expressed in terms of the torsion endomorphisms of the Biquard connection
[11]. Moreover, the vanishing of the torsion endomorphisms of the Biquard
connection is equivalent to T 0 = U = 0 and if the dimension is at least eleven,
then the function S has to be constant. For any 7-dimensional qc manifold, in
[3, 4] it is proved that U = 0 and in [11, 13] it is shown that S is constant if
the torsion endomorphism vanishes and the distribution V is integrable (that
is, [V, V ] ⊂ V ).

Associated to the Sp(n)Sp(1) structure on the distribution H of a qc struc-
ture, one has the fundamental 4-form Ω defined (globally) on H by

Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3, (1)

where ωr, 1 ≤ r ≤ 3, are the local Kähler 2-forms of the almost quaternion
structure on H. In [6] it is proved that for a seven dimensional manifold with
an integrable qc structure, the vertical space V is integrable if and only if the
fundamental 4-form Ω is closed. Ivanov and Vassilev in [13] prove that when the
dimension of the manifold is greater than seven, the 4-form form Ω is closed if
and only if the torsion endomorphism of the Biquard connection vanishes. They
raise the question of the existence of a seven dimensional qc manifold with a
closed fundamental four form and a non-vanishing torsion endomorphism. In
this article, we answer the question in the affirmative by proving the following.

Theorem 1.1. There are seven dimensional manifolds with an integrable qc
structure such that the fundamental four form Ω is closed but the torsion endo-
morphism does not vanish.

Examples of qc manifolds can be found in [3, 4, 11, 9]. The compact ho-
mogeneous model is the sphere S4n+3, considered as the boundary at infinity
of quaternionic projective (n + 1)-space, while the non-compact homogeneous
model is the quaternionic Heisenberg group G(H) = Hn× Im(H) endowed with
its natural qc structure; in fact, G(H) is isomorphic as a qc manifold to S4n+3

minus a point, via the quaternionic Cayley transform. Moreover, an extensively
studied class of examples of quaternionic contact structures are provided by the
3-Sasakian manifolds. We recall that a (4n+ 3)-dimensional Riemannian mani-
fold (M, g) is called 3-Sasakian if the cone metric gc = t2g+dt2 on C = M×R+
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is a hyper Kähler metric, namely, it has holonomy contained in Sp(n+1) [5]. For
any 3-Sasakian manifold, it was shown in [11] that the torsion endomorphism
vanishes, and the converse is true if in addition the qc scalar curvature (see (22))
is a positive constant. Explicit examples of seven dimensional qc manifolds with
zero or non-zero torsion endomorphism were recently given in [6]. Nevertheless,
the fundamental 4-form is non-closed on the seven dimensional qc manifold with
non-zero torsion endomorphism presented in [6].

To prove Theorem 1.1, we consider solvable 7-dimensional Lie algebras g
with a normal ascending flag, that is, the dual space g∗ has a flag

V 0 ( · · · ( V 7 = g∗,

V i being an i-dimensional subspace of g such that dV i ⊂ Λ2V i, where d is
the Chevalley-Eilenberg differential on g∗. Firstly, in Section 2, we prove that
if g has an integrable qc structure, then e1, e2, e3 and e4 are in V 6 for any
{e1, · · · , e7} basis of g∗ adapted to the qc structure and for any normal ascending
flag of g. In Section 3, we show that the unique solvable 7-dimensional Lie
algebras having a normal ascending flag and an integrable qc structure are
the Lie algebra of the quaternionic Heisenberg group and the two Lie algebras
defined by

de1 = 0, de2 = (1 + µ)e12 − µe15 + µe34 − µe46,
de3 = −(1 + µ)e13 − (2 + 3µ)e24 − µe16 + µe45, de4 = 2µe14,

de5 = e12 + e34 − e46,
de6 = e13 + e42 + e45,

de7 = e14 + e23 + µe56,

where µ = −1,− 1
3 . For convenience in the notation, in Section 4, we shall denote

by g1 and g2 the Lie algebras defined by µ = −1 and µ = − 1
3 , respectively.

We consider the simply connected solvable Lie group Gs with Lie algebra gs
(s = 1, 2), and define an integrable qc structure on each Gs. We prove (see
Theorems 4.2 and 4.3) that the fundamental 4-form on Gs is closed but the
torsion endomorphism of the Biquard connection is non-zero. Finally, we notice
that the qc structure on Gs is not locally qc conformal to the standard flat qc
structure on the quaternionic Heisenberg group G(H).

2 Solvable 7-dimensional Lie algebras with a nor-
mal ascending flag

In this section, we consider solvable 7-dimensional Lie algebras with a normal
ascending flag and an integrable qc structure. For such a Lie algebra g, we study
the behaviour of a coframe {e1, · · · , e7} adapted to the qc structure. First, we
need some definitions and results about qc manifolds and the Biquard connec-
tion.

Let (M, g,Q) be a qc manifold of dimension 4n + 3, that is, M has a hori-
zontal distribution H of dimension 4n with a metric g satisfying: i) H is locally
determined by the kernel of three differential 1-forms ηr (1 ≤ r ≤ 3) on M ; ii)
H has an Sp(n)Sp(1) structure, that is, it is equipped with a rank-three bundle
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Q consisting of endomorphisms of H locally generated by three almost complex
structures I1, I2, I3 on H satisfying the identities of the imaginary unit quater-
nions, I1I2 = −I2I1 = I3, I1I2I3 = −id|H , which are Hermitian with respect
to the metric g, i.e. g(Ir., Ir.) = g(., .); and iii) the following compatibility
conditions hold: 2g(IrX,Y ) = dηr(X,Y ), for 1 ≤ r ≤ 3 and for any X,Y ∈ H.

Biquard in [3] proves that if M is a qc manifold of dimension (4n+ 3) > 7,
there exists a canonical connection on M . In the following theorem, we recall
the properties that distinguish that connection.

Theorem 2.1. [3] Let (M, g,Q) be a qc manifold of dimension 4n + 3 > 7.
Then there exists a unique connection ∇ with torsion T on M4n+3 and a unique
supplementary subspace V to H in TM , such that:

i) ∇ preserves the decomposition H⊕V and the Sp(n)Sp(1) structure on H,
i.e. ∇g = 0,∇σ ∈ Γ(Q) for a section σ ∈ Γ(Q);

ii) the torsion T on H is given by T (X,Y ) = −[X,Y ]|V ;

iii) for ξ ∈ V , the endomorphism T (ξ, .)|H of H lies in (sp(n) ⊕ sp(1))⊥ ⊂
gl(4n);

iv) the connection on V is induced by the natural identification ϕ of V with
the subspace sp(1) of the endomorphisms of H, i.e. ∇ϕ = 0.

In the part iii), the inner product 〈, 〉 of End(H) is given by 〈A,B〉 =∑4n
i=1 g(A(ei), B(ei)), for A,B ∈ End(H).
We shall call the above connection the Biquard connection. Biquard [3] also

described the supplementary subspace V , namely, V is (locally) generated by
vector fields {ξ1, ξ2, ξ3}, such that

ηs(ξk) = δsk, (ξsydηs)|H = 0,

(ξsydηk)|H = −(ξkydηs)|H ,
(2)

where y denotes the interior multiplication.
If the dimension of M is seven, there might be no vector fields satisfying (2).

Duchemin shows in [8] that if we assume, in addition, the existence of vector
fields {ξ1, ξ2, ξ3} as in (2), then an analogue of Theorem 2.1 holds. In this case,
the qc structure on the 7-manifold is called integrable.

From now on, given a 7-dimensional Lie algebra g whose dual space is
spanned by {e1, . . . , e7}, we will write eij = ei ∧ ej , eijk = ei ∧ ej ∧ ek, and
so forth. Moreover, let us fix some language. On a Lie algebra g, an integrable
qc structure can be characterized by the existence of a coframe e1, . . . , e7 with

de5 = e12 + e34 + f2 ∧ e7 − f3 ∧ e6 mod Span
{
e56, e57, e67

}
,

de6 = e13 + e42 + f3 ∧ e5 − f1 ∧ e7 mod Span
{
e56, e57, e67

}
,

de7 = e14 + e23 + f1 ∧ e6 − f2 ∧ e5 mod Span
{
e56, e57, e67

}
,

(3)

where the fi are in Span
{
e1, e2, e3, e4

}
. This condition is invariant under the

action of R∗ × SO(4), where the relevant representation of SO(4) is

R7 = R4 ⊕ Λ2
+(R4),

and λ ∈ R∗ acts as
diag(λ, λ, λ, λ, λ2, λ2, λ2).
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Definition 2.2. Let g be a 7-dimensional Lie algebra with an integrable qc
structure, and let {e1, . . . , e7} be a basis of the dual space g∗. We say that
{e1, . . . , e7} is an adapted coframe to the qc structure on g if with respect to that
basis, g is defined by equations as (3).

Furthermore, we consider solvable 7-dimensional Lie algebras g that admit
a normal ascending flag. This means that there is a flag

g0 ( · · · ( g7 = g,

where gk is a k-dimensional ideal of g. In particular this implies that g is solvable
since [gi, gi] ⊂ gi−1; moreover, taking annihilators, we obtain a dual flag

V 0 ( · · · ( V 7 = g∗, dV i ⊂ Λ2V i. (4)

The following straightforward result will be useful in the sequel.

Lemma 2.3. Let g be a Lie algebra with a normal ascending flag, and let α be
an element of g∗.

• If (dα)k 6= 0, then α /∈ V i, i < 2k. If in addition

α ∈ V 2k, (dα)k = η1 ∧ · · · ∧ η2k,

then V 2k = Span
{
η1, · · · , η2k

}
.

• If α ∧ (dα)k 6= 0, then α /∈ V i, i < 2k + 1. If in addition

α ∈ V 2k+1, α ∧ (dα)k = η1 ∧ · · · ∧ η2k+1,

then V 2k = Span
{
η1, · · · , η2k+1

}
.

Lemma 2.4. Let g be a 7-dimensional Lie algebra with a normal ascending flag
and an integrable qc structure. Fix an adapted coframe {e1, . . . , e7} to the qc
structure and a flag as in (4). Then,

dim Span
{
e5, e6, e7

}
∩ V 4 = 0,

dim Span
{
e5, e6, e7

}
∩ V 5 = 1,

dim Span
{
e5, e6, e7

}
∩ V 6 = 2.

Proof. Observe that SU(2)+ ⊂ SO(4) acts on Span
{
e5, e6, e7

}
as SO(3) acts

on R3. Hence, if we had a nonzero element of Span
{
e5, e6, e7

}
∩ V 4, we could

assume it is e5. Since e5 ∧ (de5)2 is non-zero, this contradicts Lemma 2.3.
It follows that

dim Span
{
e5, e6, e7

}
∩ V 5 ≤ 1,

because the intersection with V 4 is trivial, and V 4 has codimension one in V 5.
On the other hand, equality must hold, because V 5 has codimension two in V 7.

The last equality is proved in the same way.

Lemma 2.5. Let g be a 7-dimensional Lie algebra with a normal ascending flag
and an integrable qc structure. Fix an adapted coframe e1, . . . , e7 and a flag as
in (4). Then e1, e2, e3 and e4 are in V 6.
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Proof. By Lemma 2.4, we can act by an element of SO(4) and obtain that e5 is
in V 5 and e6 is in V 6. Moreover by dimension count

dim Span
{
e1, e2, e3, e4

}
∩ V 6 ≥ 3.

Thus, up to SO(4) action we can assume that e1, e2, e3, e5, e6 lie in V 6. Hence,
by Lemma 2.4, e7 is not in V 6.

We must show that e4 is also in V 6. Suppose otherwise. Then there is some
a ∈ R with e4 + ae7 in V 6. Up to R∗ action we can assume a = 1, that is

V 6 = Span
{
e1, e2, e3, e4 + e7, e5, e6

}
.

Therefore, (3) gives

de56 = (e36 − f2 ∧ e6 + e25 − f1 ∧ e5) ∧ e7 mod Λ3V 6 + Span
{
e567

}
;

and, on the other hand, e56 is in Λ2V 6, so f2 = e3 and f1 = e2, and

de7 = e14 + e23 + e26 − e35 mod Span
{
e56, e57, e67

}
. (5)

Write
f3 = f ′3 + λe4, f ′3 ∈ Span

{
e1, e2, e3

}
.

Then

de5 = e12 + e3(e4 + e7)− f ′3 ∧ e6 − λe46 mod Span
{
e56, e57, e67

}
,

but by construction de5 has to be in Λ2V 6, so

de5 = e12 + e3(e4 + e7)− f ′3 ∧ e6 + λe6 ∧ (e4 + e7) mod Span
{
e56
}
.

Imposing (de5)3 = 0 we get

de5 = e12 + e3(e4 + e7) + λe6 ∧ (e4 + e7)− f ′3 ∧ e6.

If
f ′3 = µ1e

1 + µ2e
2 + µ3e

3,

then (de5)2 ∧ e5 should be equal to 2E1234 ∧ e5, where

E1 = e1 + µ2e
6, E2 = e2 − µ1e

6, E3 = e3 + λe6, E4 = e4 + e7 − µ3e
6.

Indeed,
de5 = E12 + E34.

By Lemma 2.3, it follows that

V 5 = Span
{
E1, E2, E3, E4, e5

}
.

We can rewrite (5) as

de7 = e14 + e23 + e26 − e35 + ae57 + be67 + ce56.

Then computing d2e7 mod Λ3V 6 we find

0 = d(−e1 + ae5 + be6) = d(−E1 + ae5 + (µ2 + b)e6). (6)

6



We claim that
µ2 + b = 0.

Otherwise,

de6 =
1

µ2 + b
(dE1 − ade5) ∈ Λ2V 5,

and on the other hand

de6 = e13 + e42 + f ′3 ∧ e5 + λe45 − e27 mod Span
{
e56, e57, e67

}
; (7)

thus, α3 is zero. Now

d2e7 = d((ae5 + (µ2 + b)e6 − E1)e7 + ce56) mod Λ3V 5dd,

which is not zero because e236 is not in Λ3V 5.
We can therefore assume that b = −µ3; then

dE1 = ade5 = a(E12 + E34). (8)

Imposing that de6 is in Λ2V 6, (7) becomes

de6 = e13 + f ′3 ∧ e5 + λ(e4 + e7)e5 − e2(e4 + e7) + xe56,

for some real x. In order to simplify the notation, we shall think of E1, E2, E3, E4

as a coframe on a 4-dimensional vector space, defining an SU(2)-structure; in
particular a scalar product is defined, allowing us to take interior products of
forms, as well as three complex structures. Explicitly, we set

J1 = ·y (E12 + E34), J2 = ·y (E13 + E42), J3 = ·y (E14 + E23).

We denote by β the projection of f3 on Span
{
E1, E2, E3, E4

}
. Thus,

de6 = E13 + E42 + β ∧ e5 + (J3β + xe5)e6.

Now define two derivations δ, γ on Λ Span
{
E1, E2, E3, E4

}
, of degrees one

and zero respectively, by the rule

dη = δη + e5 ∧ γη.

Then d2 = 0 implies

δγ = γδ, δ2η + (E12 + E34) ∧ γη = 0,

and so δ determines γ via
γη = J1 ∗ δ2η, (9)

for any 1-form η.
In particular, (8) gives

δE1 = a(E12 + E34), γE1 = 0,

which is consistent with (9) because d2e5 = 0 implies

δ(E12 + E34) = 0, γ(E12 + E34) = 0.
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Due to (9), the latter can be rewritten as

0 =

4∑
i=1

Ei ∧ ∗δ2Ei =
∑
∗(Eiy δ2Ei). (10)

Taking d2e6 and separating the components we find

γ(J3β) = 0, δ(J3β) + x(E12 + E34) = 0,

δ(E13 + E42) = β ∧ (E12 + E34) + J3β ∧ (E13 + E42) = 2β ∧ (E12 + E34),

γ(E13 + E42) = −δβ + x(E13 + E42) + J3β ∧ β.

Similarly,

de7 = E14 + E23 − E3 ∧ e5 + (E2 − J2β + (c− λ)e5) ∧ e6 + (ae5 − E1) ∧ e7;

taking d again and separating the components we get

δ(E14 + E23) = −3E123 − J2β ∧ (E13 + E42),

γ(E14 + E23) + β ∧ (E2 − J2β)− (c− λ)(E13 + E42) + a(E14 + E23) = 0,

δ(E2 − J2β) + (c− λ)(E12 + E34) + (E2 − J2β)(−J3β − E1) = 0,

γ(E2 − J2β) + (c− λ)(−J3β − E1)− (a− x)(E2 − J2β) = 0.

In order to make use of these equations we need E2 − J2β to be nonzero, so let
us assume first

β = E4, (11)

and obtain a contradiction. Indeed, in this case c = λ and a = −x = 0, for

0 = (E12 + E34) ∧ γ(E12 + E34) = (E13 + E42) ∧ γ(E14 + E23).

Hence, we have

δE1 = 0, δ(E12 + E34) = 0, γ(E12 + E34) = 0,

δ(E13 + E42) = 2E124, γ(E13 + E42) = −δE4 − E14,

δ(E14 + E23) = −2E123, γ(E14 + E23) = 0.

In particular, since γ is a derivation, we see that γ(E13 + E42) gives zero on
wedging with

E12 + E34, E13 + E42, E14 + E23, (12)

and so the same holds of δE4 + E14. Thus δE4 has the form

δE4 = −1

2
(E14 + E23) + x(E12 − E34) + y(E13 − E42) + z(E14 − E23). (13)

Wedging E1 with the forms (12) and applying δ we obtain

δE134 = 0 = δE123 = δE124.

Similarly,

δE234 = δ(E14 + E23) ∧ E4 + (E14 + E23) ∧ δE4 = −3E1234.
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Using (13) we get

δ2E4 ∧E4 = E1234 + (xδ(E12 −E34) + yδ(E13 −E42) + zδ(E14 −E23))∧E4

= E1234+xδE124−x(E12−E34)∧δE4+yδE134−y(E13−E42)∧δE4−zdE234−z(E14−E23)∧δE4

= E1234(1 + 2x2 + 2y2 + 3z + 2z2) (14)

Observe that

δE14 = −E1 ∧ δE4 = E1 ∧ γ(E13 + E42) = −γE124,

so
δ2E4 = −δE14 − 2γE124 = δE14.

By Equation (13),

δE14 ∧ E4 = −E14 ∧ δE4 = (z +
1

2
)E1234;

comparing with (14) we obtain

2x2 + 2y2 + 2z2 + 2z +
1

2
= 0

and therefore
δE4 = −E14.

In particular, we see that γ = 0 and δ defines a 4-dimensional Lie algebra
characterized by the equations

δE1 = 0, δE4 = −E14, δ(E12+E34) = 0, δ(E13+E42) = 2E124, δE23 = −2E123.

It is easy to check that no such Lie algebra exists. Indeed these linear conditions
on δ imply

δE2 = p(E12 − E34) + q(E13 − E42)− 3

2
(E12 + E34),

δE3 = q(E12 − E34)− p(E13 − E42)− 1

2
(E13 + E42)

for some p, q; but then δ2 is not zero. Summing up, (11) leads to a contradiction.

We can therefore assume that

0 6= Ẽ1 = E1 + J3β.

Then

Ẽ1, Ẽ2 = J1Ẽ
1 = E2−J2β, Ẽ3 = J2Ẽ

1 = E3+J1β, Ẽ4 = J3Ẽ
1 = E4−β

is an orthonormal basis up to a scale factor, hence it also satisfies (10). We
compute

δ2Ẽ2 = −(c− λ)(E12 + E34)Ẽ1 − (a− x)Ẽ2(E12 + E34), (15)

and therefore
Ẽ2y δ2Ẽ2 = −(a− x)Ẽ34.
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Now (10) implies that a− x = 0 and

Ẽ3 ∧ ∗δ2Ẽ3 + Ẽ4 ∧ δ2Ẽ4 = 0,

so in particular ∗δ2Ẽ3 and ∗δ2Ẽ3 are in the span of Ẽ3 and Ẽ4.
Using (9), we find

J1γ(Ẽ14 + Ẽ23) = −Ẽ1 ∧ ∗δ2Ẽ4 − ∗δ2Ẽ2 ∧ Ẽ3 − Ẽ2 ∧ ∗δ2Ẽ3

On the other hand, we know that

J1γ(E14 + E23)− J1β ∧ Ẽ1 + (c− λ)(E13 + E42)− a(E14 + E23) = 0.

Comparing the two expressions and using (15), we find

−Ẽ1∧∗δ2Ẽ4−Ẽ2∧∗δ2Ẽ3+(c−λ)Ẽ23−
∥∥∥Ẽ1

∥∥∥2 J1β∧Ẽ1+(c−λ)(Ẽ13+Ẽ42)−a(Ẽ14+Ẽ23) = 0.

This shows that J1β has no component along Ẽ2, so∥∥∥Ẽ1
∥∥∥2 J1β = βy Ẽ34 mod Ẽ1;

using the fact that ∗δ2Ẽ3 and ∗δ2Ẽ4 are in the span of Ẽ3 and Ẽ4, we deduce

∗δ2Ẽ3 = −(c− λ)Ẽ4 − (a− c+ λ)Ẽ3, ∗δ2Ẽ4 = βy Ẽ34 + (c− λ)Ẽ3 − aẼ4,

and therefore by (10)

∗δ2Ẽ4 = −(c− λ)Ẽ3 mod Ẽ4;

it follows that
βy Ẽ34 = −2(c− λ)Ẽ3 mod Ẽ4. (16)

Similarly, we compute

J1γ(Ẽ13 + Ẽ42) = −Ẽ2 ∧ ∗δ2Ẽ3 + ∗δ2Ẽ4 ∧ Ẽ1 + Ẽ3 ∧ ∗δ2Ẽ2

= −(c− λ)(Ẽ13 + Ẽ42) + a(Ẽ14 + Ẽ23) +
∥∥∥Ẽ1

∥∥∥2 J1β ∧ Ẽ1.

Comparing with

γ(E13 + E42) = −δβ + a(E13 + E42) + J3β ∧ β,

we obtain

(c− λ− a)(E13 + E42)− a(E14 + E23) + β ∧ (J3β − Ẽ2) + δβ = 0.

Taking δ,

aE123+(c−λ−3a)(E13+E42)∧(Ẽ2)+a(E14+E23)∧(−Ẽ2)−β∧Ẽ12+δ2β = 0,

and therefore taking ∗

aβ − (c− λ− 4a)Ẽ4 − aẼ3 − βy Ẽ34 + ∗δ2β = 0. (17)
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So we have two cases.
i) If a = c− λ, write

β = rẼ3 + sẼ4 mod Ẽ2;

working mod Ẽ2, (17) gives

0 = Ẽ3(ar) + Ẽ4(as+ 2a− ar) + (s− 1)(βy Ẽ34 + aẼ3 − aẼ4)

= Ẽ3(ar − as+ a) + Ẽ4(3a− ar + (s− 1)r
∥∥∥Ẽ3

∥∥∥2),

which implies
a = 0 = r = s,

since s = 2a

‖Ẽ1‖2 by (16). Then β is a multiple of Ẽ2, and γ, δ2 are zero. In

particular,
δβ = J3β ∧ β

is linearly dependent on
δẼ2 = Ẽ12,

implying that β = 0. Summing up, δ defines a 4-dimensional Lie algebra char-
acterized by the equations

δE1 = 0, δE2 = E12, δE34 = 0 = δ(E13 + E42), δ(E14 + E23) = −3E123.

Much like in the case that β = E4, one verifies that no such Lie algebra exists,
for these linear conditions on δ imply

δE3 = p(E13 − E42) + q(E14 − E23) +
1

2
(E13 + E42),

δE4 = q(E13 − E42)− (p+ 5/2)(E14 − E23) + 2(E14 + E23),

where p and q are real numbers; but then δ2 is not zero.
ii) Suppose a 6= c−λ; then (17) implies that β lies in the span of Ẽ3 and Ẽ4,

so J3β lines in the span of Ẽ1 and Ẽ2. Thus Ẽ1 and J3β are linearly dependent,
for otherwise

δẼ2 ∈ Span
{
E12 + E34

}
,

which is absurd. It follows that J3β is a multiple of Ẽ1, say β = sẼ4. Then

1 =
∥∥E4

∥∥2 =
∥∥∥Ẽ4 + β

∥∥∥2 = (1 + s)2
∥∥∥Ẽ4

∥∥∥ ,
so

c− λ =
s

2(1 + s)2
,

and

∗δ2Ẽ3 = − s

2(1 + s)2
Ẽ4+

(
s

2(1 + s)2
− a
)
Ẽ3, ∗δ2Ẽ4 = − s

2(1 + s)2
Ẽ3−aẼ4.

Then (17) gives

−
(

s

2(1 + s)2
− 4a

)
Ẽ4 +

(
s2

2(1 + s)2
− a
)
Ẽ3 = 0,

so both c− λ and a are zero, which is absurd.
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3 Classification of 7-dimensional qc Lie algebras
with a normal ascending flag

In this section we carry out the classification of 7-dimensional Lie algebras with
an integrable qc structure and a normal ascending flag.

Proposition 3.1. There are exactly three non-isomorphic Lie algebras of di-
mension 7, with an integrable qc structure and a normal ascending flag, namely

(0, 0, 0, 0, 12 + 34, 13 + 42, 14 + 23)

and
de1 = 0

de2 = (1 + µ)e12 − µe15 + µe34 − µe46

de3 = −(1 + µ)e13 − (2 + 3µ)e24 − µe16 + µe45

de4 = 2µe14

de5 = e12 + e34 − e46

de6 = e13 + e42 + e45

de7 = e14 + e23 + µe56

(18)

where µ = −1,−1/3.

Proof. Let g be a Lie algebra with an integrable qc structure and a fixed flag
V i as in (4). By Lemma 2.5, we know that e1, e2, e3, e4 are in V 6; moreover, by
the argument in the proof of that same lemma, we can assume that e5 is in V 5

and e6 is in V 6.
The characterization of the V i implies α1 = 0 = α2, and

de5 = e12 + e34 − α3 ∧ e6 mod Span
{
e56
}
,

de6 = e13 + e42 + α3 ∧ e5 mod Span
{
e56
}
,

de7 = e14 + e23 mod Span
{
e56, e57, e67

}
.

We claim that
de7 = e14 + e23 mod Span

{
e56
}
. (19)

Indeed de56 and d(e14 + e23) are in Λ3V 6, whereas

de57 = e127 + e347 − α3 ∧ e67 mod (Λ3V 6 + Span
{
e567

}
),

de67 = e137 + e427 + α3 ∧ e57 mod (Λ3V 6 + Span
{
e567

}
).

Thus, d2e7 = 0 implies (19).
Let us consider the splitting

Λhg∗ =
⊕
p+q=h

Λp,q =
⊕
p+q=h

Λp Span
{
e1, e2, e3, e4

}
∧ Λqq Span

{
e5, e6, e7

}
.

Observe that
de56 = e126 + e346 − e135 − e425;

12



in particular de56 has no (1,2)-component. Thus (19) implies that d(e14 + e23)
has no (1,2)-component either, whence

dΛ1,0 ⊂ Λ2,0 ⊕ Λ1,1. (20)

Then
0 = (d2e5)1,2 = −d(α3 ∧ e6)1,2;

and the same holds of α3 ∧ e5.
We know that de5 equals e12 + e34 − α3 ∧ e6 plus a multiple ε of e56, but if

this multiple were nonzero, then

(de5)3 = 6εe123456 6= 0,

contradicting Lemma 2.3 and the assumption e5 ∈ V 5. So, for some constants
λ, µ ∈ R, we have

de5 = e12 + e34 − α3 ∧ e6,
de6 = e13 + e42 + α3 ∧ e5 + λe56,

de7 = e14 + e23 + µe56.

Then

0 = d(α3 ∧ e6)1,2 = dα1,1
3 ∧ e6 − λα3 ∧ e56, 0 = d(α3 ∧ e5)1,2 = dα1,1

3 ∧ e5,

whence
(dα3)1,1 = λα3 ∧ e5.

We have two cases, according to whether α3 is zero or not.
a) If α3 = 0, we know that e5 is in V 5, and e5 ∧ (de5)2 = 2e12345; hence,

V 5 = Span
{
e1, e2, e3, e4, e5

}
.

Then

0 = d2e6 = λ(e126 + e346) mod Λ3V 5,

0 = d2e7 = µ(e126 + e346) mod Λ3V 5.

These equations imply that λ = µ = 0.
Now Span

{
e1, . . . , e4

}
intersects V 4 in a space of dimension at least three,

so up to SO(4) action we can assume

V 4 = Span
{
e1, e2, e3, e4 + ae5

}
, a ∈ R,

whence
de4 = −ade5 = −ae34 = a2e35 mod Λ2V 4.

Therefore
0 = d2e5 = −ade3 ∧ e5 mod Λ3V 4,

0 = d2e6 = a2e235 + ae5 ∧ de2 mod Λ3V 4,

0 = d2e7 = −a2e135 − ae5 ∧ de1 mod Λ3V 4.

13



We claim that a = 0. In fact if a 6= 0, we see that de1, de2 and de3 are
in Λ2 Span

{
e1, e2, e3

}
, and so, taking d2 of e5, e6, e7, it follows that de4 must

also be in Λ2 Span
{
e1, e2, e3, e4

}
. Denoting by e1, . . . , e7 the basis of g dual

to e1, . . . , e7, we see that Span {e5, e6, e7} is an ideal, and g projects onto a
hyperkähler 4-dimensional, solvable algebra. This has to be abelian, because
the corresponding Lie group is a homogeneous Ricci-flat manifold, hence flat
by [1]. This implies that e4 is closed, which contradicts the assumption a 6= 0.
Consequently, a = 0. This implies that Span {e5, e6, e7} is an ideal, so by the
same argument as above, Span {e1, e2, e3, e4} is abelian, and

g = (0, 0, 0, 0, 12 + 34, 13 + 42, 14 + 23).

b) Suppose α3 is non-zero. In this case, up to SO(4) action, we can assume
that α3 is a multiple of e4, and up to R∗ action, we obtain α3 = e4. The
equations become

de5 = e12 + e34 − e46

de6 = e13 + e42 + e45 + λe56

de7 = e14 + e23 + µe56

(de4)1,1 = λe45.

In particular, looking at (de5)2 ∧ e5 we compute

V 5 = Span
{
e1, e2, e3 + e6, e4, e5,

}
.

Thus

de3 + de6 = γ3 ∧ e5 + β3 ∧ (e3 + e6) + h(e35 + e65) mod Λ2 Span
{
e1, e2, e4

}
where from now on the γi, βi are in Span

{
e1, e2, e4

}
. We can determine h by

de3 = −e13−e45−λe56+γ3∧e5+β3∧(e3+e6)+h(e35+e65) mod Λ2 Span
{
e1, e2, e4

}
which by (20) implies h = −λ. Similarly,

de1 = γ1 ∧ e5 + β1 ∧ (e3 + e6) mod Λ2 Span
{
e1, e2, e4

}
,

de2 = γ2 ∧ e5 + β2 ∧ (e3 + e6) mod Λ2 Span
{
e1, e2, e4

}
.

Now observe that

(d2e7)2,1 = (de14)2,1 + (de2)1,1 ∧ e3− e2 ∧ (de3)1,1 +µ(e126 + e346− e135− e425);

therefore

0 = (de2)1,1 ∧ e3 + µ(e346 − e135) + λe235 mod Λ3 Span
{
e1, e2, e4, e5, e6

}
,

so the (1, 1)-component of de2 is −µe46 − µe15 + λe25, and

de2 = −µe15 + λe25 − µe4 ∧ (e3 + e6) mod Λ2 Span
{
e1, e2, e4

}
.

Now

0 = (d2e6)2,1 = (de1)1,1∧e3−e1∧(de3)1,1+λe346−λe135 mod Λ3 Span
{
e1, e2, e4, e5, e6

}
= (de1)1,1 ∧ e3 + λe346 mod Λ3 Span

{
e1, e2, e4, e5, e6

}
14



so
(de1)1,1 = −λe46.

On the other hand

(d2e5)2,1 = (de12)2,1 + (de3 + de6)1,1 ∧ e4 − λe345 − e6 ∧ (de4)2,0

= −λe125 − γ3 ∧ e45 mod Λ3 Span
{
e1, e2, e4, e6

}
,

which implies that λ = 0 and γ3 = ke4 for some k ∈ R, i.e.

de1 = 0 mod Λ2 Span
{
e1, e2, e4

}
,

de2 = −µe15 − µe4 ∧ (e3 + e6) mod Λ2 Span
{
e1, e2, e4

}
,

de3 + de6 = ke45 + β3 ∧ (e3 + e6) mod Λ2 Span
{
e1, e2, e4

}
,

de4 = 0 mod Λ2 Span
{
e1, e2, e4

}
,

de5 = e12 + e34 − e46,
de6 = e13 + e42 + e45,

de7 = e14 + e23 + µe56.

Assume first that µ = 0. Then

d2e5 = −e3 ∧ de4 + β3 ∧ e34 mod Λ3 Span
{
e1, e2, e4, e5, e6

}
,

d2e6 = de1 ∧ e3 − e1 ∧ β3 ∧ e3 mod Λ3 Span
{
e1, e2, e4, e5, e6

}
,

d2e7 = de2 ∧ e3 − e2 ∧ β3 ∧ e3 − e123 mod Λ3 Span
{
e1, e2, e4, e5, e6

}
.

With an appropriate change in the definition of k, we obtain

de1 = e1 ∧ β3, de2 = e2 ∧ β3 + e12,

de3 = −e13 + ke45 + β3 ∧ (e3 + e6) mod Λ2 Span
{
e1, e2, e4

}
,

de4 = −β3 ∧ e4, de5 = e12 + e34 − e46,
de6 = e13 + e42 + e45, de7 = e14 + e23.

Thus dβ3 = β3(e2)e12. Moreover,

0 = d2e4 = −dβ3 ∧ e4,

so dβ3 = 0. Thus
0 = d2e2 = e12 ∧ β3 − 2e12 ∧ β3,

which implies β3 is a multiple of e1. More precisely,

0 = d2e6 = −ke145 − β3 ∧ e45 + 2(β3 − e1)e24

implies β3 = e1. But then

d2e7 = −e2 ∧ de3 6= 0,

which is absurd.

Thus µ 6= 0. Then de12 and de24 are linearly independent (mod e124), and
in consequence the exact forms in Λ2 Span

{
e1, e2, e4

}
are multiples of e14; in

particular,
de1, de4 ∈ Span

{
e14
}
.
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By Lemma 2.3, V 4 contains no linear combination of the form e5+ae1, e5+ae4,
which means that e1, e4 are in V 4. So a linear combination of e1, e4 is in V 3.

Now
(d2e6)2,1 = (1− k − µ)e145 + e16 ∧ β3 + de4 ∧ e5

shows that β3 is a multiple of e1 and

de4 = (k + µ− 1)e14.

Similarly,

(d2e5)2,1 = (de12)2,1 + (de3 + de6)1,1 ∧ e4 − e6 ∧ de4

= (µe14 − β3 ∧ e4 − (k + µ− 1)e14) ∧ e6

shows that
β3 = (1− k)e1.

Finally, we have

(d2e7)2,1 = (1− k)e245 + (1− k)e126 + µe126 + µe245.

Consequently, k = µ+ 1 and

de1 = 0 mod e14,

de2 = −µe15 − µe4 ∧ (e3 + e6) mod Λ2 Span
{
e1, e2, e4

}
,

de3 + de6 = (µ+ 1)e45 − µe1 ∧ (e3 + e6) mod Λ2 Span
{
e1, e2, e4

}
,

de4 = 2µe14,

de5 = e12 + e34 − e46,
de6 = e13 + e42 + e45,

de7 = e14 + e23 + µe56.

Imposing d2 = 0, a straightforward computation leads to (18), with µ =
−1,−1/3. Notice that the two resulting Lie algebras are non-isomorphic be-
cause their second cohomology groups H2(g∗) are different. In fact, H2(g∗) is
2-dimensional if µ = −1 but it is zero if µ = −1/3. One can check that a normal
ascending flag exists in both cases by setting

V 1 = Span
{
e1
}
, V 2 = Span

{
e1, e4

}
, V 3 = Span

{
e1, e4, e2 − µe5

}
,

V 4 = Span
{
e1, e4, e2 − µe5, e3 + e6

}
.

4 7-dimensional qc manifolds with non-vanishing
torsion endomorphism and closed fundamen-
tal 4-form

The purpose of this section is to prove Theorem 1.1. For this, we consider the
simply connected solvable Lie group Gs (s = 1, 2) of dimension 7 whose Lie
algebra gs is defined by (18) considering there µ = −1 for g1, and µ = − 1

3 for
g2. We show that Gs has an integrable left invariant qc structure such that
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the fundamental 4-form is closed, but the torsion endomorphism of the Biquard
connection is non-zero. Firstly, we need some definitions and results about the
torsion endomorphism of the Biquard connection on a qc manifold.

Let M be a manifold of dimension 4n + 3 with a qc structure that we sup-
pose integrable when n = 1. According to Section 2, we know that M has a
distribution H of dimension 4n, locally determined by the kernel of three differ-
ential 1-forms ηr on M , and such that there is an almost quaternion Hermitian
structure (g, I1, I2, I3) on H satisfying 2g(IrX,Y ) = dηr(X,Y ), for r = 1, 2, 3
and for any X,Y ∈ H. Let us consider the local vector fields {ξ1, ξ2, ξ3} on M
satisfying (2) for n ≥ 1 [8]. Using these vector fields ξr, we extend the metric g
on H to a metric on M (that we also write with the same letter g) by requiring
span{ξ1, ξ2, ξ3} = V ⊥ H and g(ξr, ξk) = δrk.

Since the Biquard connection ∇ on M is metric, it is related to the Levi-
Civita connection ∇g of the metric g on M by

g(∇AB,C) = g(∇gAB,C) +
1

2

[
g(T (A,B), C)− g(T (B,C), A) + g(T (C,A), B)

]
,

(21)
where A,B,C are arbitrary vector fields on M and T is the torsion of ∇.

Let R = [∇,∇]−∇[ , ] be the curvature tensor of∇. We denote the curvature
tensor of type (0,4) by the same letter, R(A,B,C,D) = g(R(A,B)C,D), for
any vector fields A,B,C,D on M . The qc-Ricci 2-forms ρr (r = 1, 2, 3) and the
normalized qc-scalar curvature S of the Biquard connection are defined by

4nρr(A,B) = R(A,B, ea, Irea), 8n(n+ 2)S = R(eb, ea, ea, eb), (22)

where {e1, . . . , e4n} is a local orthonormal basis of the distribution H.
Regarding the torsion endomorphism Tξ = T (ξ, ·) : H → H, ξ ∈ V , Biquard

shows in [3] that it is completely trace-free, i.e. tr Tξ = tr Tξ ◦ Ir = 0, and for
7-dimensional qc manifolds the skew-symmetric part of Tξ : H → H vanishes,
so Tξ only has symmetric part.

Now, we consider the 2-tensor T 0 on H defined by

T 0(X,Y ) = g((Tξ1I1 + Tξ2I2 + Tξ3I3)X,Y ),

for X,Y ∈ H. In [11] it is proved

T 0(X,Y ) + T 0(I1X, I1Y ) + T 0(I2X, I2Y ) + T 0(I3X, I3Y ) = 0. (23)

Moreover, taking into account [12, Proposition 2.3], on a seven dimensional qc
manifold, the torsion endomorphism satisfies the following relations

4g(Tξr (IrX), Y ) = T 0(X,Y )− T 0(IrX, IrY ), r = 1, 2, 3. (24)

In order to determine the torsion endomorphism of the Biquard connection on
M, we need know the differential 1-forms αr such that

∇Ii = −αj ⊗ Ik + αk ⊗ Ij , ∇ξi = −αj ⊗ ξk + αk ⊗ ξj ,

where from now on (i, j, k) is an arbitrary cyclic permutation of (1, 2, 3). The
1-forms αr are called the sp(1)-connection forms. Biquard in [3] shows that on
H they are expressed by

αi(X) = dηk(ξj , X) = −dηj(ξk, X), X ∈ H, ξi ∈ V, (25)
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while on the distribution V they are given by (see [11])

αi(ξs) = dηs(ξj , ξk)− δis

(
S

2
+

1

2
( dη1(ξ2, ξ3) + dη2(ξ3, ξ1) + dη3(ξ1, ξ2))

)
,

(26)

where S is the normalized qc scalar curvature defined by (22). We notice that in
[11] it is proved that the vanishing of the sp(1)-connection 1-forms on H implies
the vanishing of the torsion endomorphism of the Biquard connection.

The qc Ricci 2-forms are determined by the sp(1)-connection 1-forms αr as
follows

2ρk(A,B) = (dαk + αi ∧ αj)(A,B), (27)

for any vector fields A,B on M . Moreover (see below (28)), the qc Ricci forms
restricted to H can be expressed in terms of the endomorphism torsion of the
Biquard connection. We collect the necessary facts from [14, Theorem 4.3.5] for
7-dimensional qc manifolds, so the torsion endomorphism Tξ only has symmetric
part.

Theorem 4.1. [11] On a 7-dimensional qc manifold (M,η,Q) the following
formulas hold:

ρr(X,Y ) =
1

2

[
T 0(X, IrY )− T 0(IrX,Y )

]
− Sωr(X,Y ),

T (ξi, ξj) = −Sξk − [ξi, ξj ]H , S = −g(T (ξ1, ξ2), ξ3),
(28)

where r = 1, 2, 3 and X,Y ∈ H.

4.1 Example 1 (µ = −1)

Consider the simply connected solvable (non-nilpotent) Lie group G1 of dimen-
sion 7 whose Lie algebra is defined by the equations

de1 =0,

de2 =(1/2)e15 − e34 + (1/2)e46,

de3 =(1/2)e16 + e24 − (1/2)e45,

de4 =− 2e14,

de5 =2(e12 + e34)− e46,
de6 =2(e13 + e42) + e45,

de7 =2(e14 + e23)− (1/2)e56.

(29)

We must notice that this Lie algebra is isomorphic to the Lie algebra g1 defined
by (18) for µ = −1. In fact, considering the basis {f j ; 1 ≤ j ≤ 7} of g1

∗ given
by f j = ej for 1 ≤ j ≤ 4, and f j = 2ej for 5 ≤ j ≤ 7, equations (18) with
µ = −1 become (29), where we write ej instead of f j .

Let {ej ; 1 ≤ j ≤ 7} be the basis of left invariant vector fields on G1 dual to
{ej , 1 ≤ j ≤ 7}. We define a global qc structure on the Lie group G1 by

η1 = e5, η2 = e6, η3 = e7, ξ1 = e5, ξ2 = e6, ξ3 = e7,

H = Span{e1, . . . , e4},
ω1 = e12 + e34, ω2 = e13 + e42, ω3 = e14 + e23.

(30)
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It follows from (29) that the triplet {ξ1 = e5, ξ2 = e6, ξ3 = e7} defined by
(30) are vector fields on G1 satisfying (2). Therefore, the qc structure on G1 is
integrable, and so the Biquard connection exists.

Theorem 4.2. The left invariant qc structure defined by (30) on G1 is such
that the torsion endomorphism of the Biquard connection is non-zero, the fun-
damental 4-form is closed and the normalized qc scalar curvature is S = − 1

2 .

Proof. Clearly, (29) and (30) imply that the fundamental 4-form Ω on G1 de-
fined by (1) is such that dΩ = 2e1234 = 0. The closedness of Ω can also be
seen as a consequence of the fact that the vertical distribution is integrable.
Indeed, a result in [6, Theorem 4.7] states that for a qc structure in dimension
7, the fundamental four form is closed if and only if the vertical distribution is
integrable.

We determine the connection 1-forms αr of the Biquard connection on G1.
The structure equations (29) together with (25) and (26) imply

α1 = −1

2
(S − 1

2
)e5, α2 = −1

2
(S − 1

2
)e6, α3 = −e4 − 1

2
(S +

1

2
)e7. (31)

Now, (27), (29) and (31) yield

ρ1(X,Y ) = −1

2
(S − 1

2
)ω1(X,Y ),

ρ2(X,Y ) = −1

2
(S − 1

2
)ω2(X,Y ),

ρ3(X,Y ) = e14(X,Y )− 1

2
(S +

1

2
)ω3(X,Y )

=
1

2
(e14 − e23)(X,Y )− 1

2
(S − 1

2
)ω3(X,Y ),

(32)

for X,Y ∈ H. Comparing (32) with (28) we conclude

T 0(X, I1Y )− T 0(I1X,Y ) = 0, S = −1

2
,

T 0(X, I2Y )− T 0(I2X,Y ) = 0,

T 0(X, I3Y )− T 0(I3X,Y ) = (e14 − e23)(X,Y ),

or, equivalently,

T 0(I1X, I1Y ) + T 0(X,Y ) = 0, S = −1

2
,

T 0(I2X, I2Y ) + T 0(X,Y ) = 0,

T 0(I3X, I3Y ) + T 0(X,Y ) = −(e14 − e23)(X, I3Y ).

(33)

From equations (33) and (24) we have Tξ3 = 0 and

T 0(X,Y ) = −1

2
(e14 − e23)(X, I3Y ), g(T (ξr, X), Y ) =

1

4
(e14 − e23)(IrX, I3Y ),

(34)
for r = 1, 2. Equations (34) imply that the endomorphism torsion is non-zero.
In fact, we have T (e5, e1) = Tξ1(e1) = − 1

4e2 6= 0 which completes the proof.
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Now, following [12], we consider the qc conformal curvature tensor W qc of a
seven dimensional qc manifold with distribution H, that is, the tensor on H of
type (0, 4) given by

W qc(X,Y, Z, V ) = R(X,Y, Z, V )+(g?L0))(X,Y, Z, V )+

3∑
s=1

(ωs?IsL0)(X,Y, Z, V )

−1

2

3∑
s=1

[
ωs(X,Y )

{
T 0(Z, IsV )−T 0(IsZ, V )

}
+ωs(Z, V )

{
T 0(X, IsY )−T 0(IsX,Y )

}]
+
S

4

[
(g? g)(X,Y, Z, V ) +

3∑
s=1

(
(ωs ?ωs)(X,Y, Z, V ) + 4ωs(X,Y )ωs(Z, V )

)]
,

(35)

where X,Y, Z, V ∈ H, L0 = 1
2T

0, IsL0 (X,Y ) = −L0(X, IsY ) (s = 1, 2, 3), and
? is the Kulkarni-Nomizu product of 2-tensors, which is defined as follows. If
µ and ν are 2-tensors on H, then µ? ν is the 4-tensor given by

(µ? ν)(X,Y, Z, V ) := µ(X,Z)ν(Y, V ) + µ(Y, V )ν(X,Z)− µ(Y, Z)ν(X,V )

− µ(X,V )ν(Y, Z), (36)

for any X,Y, Z, V ∈ H.
The tensor W qc is the obstruction for a qc structure to be locally qc confor-

mal to the flat structure on the quaternionic Heisenberg group.

Theorem 4.3. [12, Theorem 4.4] A qc structure on a (4n + 3)-dimensional
smooth manifold is locally qc conformal to the standard flat qc structure on the
quaternionic Heisenberg group G(H) if and only if W qc = 0. In this case, the
qc structure is said to be a qc conformally flat structure.

Proposition 4.4. The left invariant qc structure defined by (30) on G1 is not
locally qc conformally flat.

Proof. Using (34) and (36) we see that the tensor W qc given by (35) satisfies

W qc(e1, e2, e1, e2) = R(e1, e2, e1, e2) +
S

4

[
(g ? g)(e1, e2, e1, e2)

+

3∑
r=1

(
(ωr ? ωr)(e1, e2, e1, e2) + 4ωr(e1, e2)ωr(e1, e2)

)]
, (37)

since other terms on the right hand side of (35) vanish on the quadruplet
(e1, e2, e1, e2). It is straightforward to check from (21), (29), (30), (34) and
(36) that

R(e1, e2, e1, e2) =
1

2
, (g ? g)(e1, e2, e1, e2) = 2,

3∑
s=1

((ωs ? ωs)(e1, e2, e1, e2) + 4ωs(e1, e2)ωs(e1, e2)) = 6.

Substituting these equalities in (37) we obtain W qc(e1, e2, e1, e2) = − 1
2 6= 0,

which completes the proof according to Theorem 4.3.
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4.2 Example 2 (µ = −1
3
)

Next, we consider the simply connected solvable (non-nilpotent) Lie group G2

of dimension 7 whose Lie algebra is defined by

de1 =0,

de2 =
2

3
e12 +

1

6
e15 − 1

3
e34 +

1

6
e46,

de3 =− 2

3
e13 +

1

6
e16 − e24 − 1

6
e45,

de4 =− 2

3
e14,

de5 =2(e12 + e34)− e46,
de6 =2(e13 + e42) + e45,

de7 =2(e14 + e23)− 1

6
e56.

(38)

This Lie algebra is isomorphic to the Lie algebra g2 obtained in Proposition 3.1
for µ = −1/3. Indeed, taking the basis {f j ; 1 ≤ j ≤ 7} of g2

∗ defined by f j = ej

for 1 ≤ j ≤ 4, and f j = 2ej for 5 ≤ j ≤ 7, equations (18) with µ = −1/3 become
(38), where we write ej instead of f j .

Let {ej ; 1 ≤ j ≤ 7} be the basis of left invariant vector fields on G2 dual to
{ej , 1 ≤ j ≤ 7}. We define a global qc structure on the Lie group G2 by

η1 = e5, η2 = e6, η3 = e7, ξ1 = e5, ξ2 = e6, ξ3 = e7,

H = Span{e1, . . . , e4},
ω1 = e12 + e34, ω2 = e13 + e42 ω3 = e14 + e23.

(39)

From (38) we have that the triplet {ξ1 = e5, ξ2 = e6, ξ3 = e7} of vector fields on
G2 defined by (39) satisfy (2). Therefore the Biquard connection does exist.

Theorem 4.5. The left invariant qc structure defined by (39) on the simply
connected solvable Lie group G2 is such that the torsion endomorphism of the
Biquard connection is non-zero, the fundamental 4-form is closed and the nor-
malized qc scalar curvature is S = − 1

6 .

Proof. Using (38), (39) and Theorem 4.7 in [6] we get that the fundamental
4-form Ω on G2, defined by (1), is closed since the vertical distribution of the
qc structure is integrable.

On the other hand, the structure equations (38) together with (25) and (26)
imply

α1 = −1

2
(S − 1

6
)e5, α2 = −1

2
(S − 1

6
)e6, α3 = −e4 − 1

2
(S +

1

6
)e7. (40)

Now, from (27), (38) and (40), we get

ρ1(X,Y ) = −1

2
(S − 1

6
)ω1(X,Y ),

ρ2(X,Y ) = −1

2
(S − 1

6
)ω2(X,Y ),

ρ3(X,Y ) = −1

2
(S − 1

6
)ω3(X,Y ) +

1

6
(e14 − e23)(X,Y ),

(41)
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for X,Y ∈ H. Comparing (41) with (28) we get

T 0(X, I1Y )− T 0(I1X,Y ) = 0, S = −1

6
,

T 0(X, I2Y )− T 0(I2X,Y ) = 0,

T 0(X, I3Y )− T 0(I3X,Y ) =
1

3
(e14 − e23)(X,Y ),

or, equivalently,

T 0(I1X, I1Y ) + T 0(X,Y ) = 0,

T 0(I2X, I2Y ) + T 0(X,Y ) = 0,

T 0(I3X, I3Y ) + T 0(X,Y ) = −1

3
(e14 − e23)(X, I3Y ),

(42)

for X,Y ∈ H. From equations (42) and taking into account (23) and (24), we
have Tξ3 = 0 and

T 0(X,Y ) = −1

6
(e14−e23)(X, I3Y ), g(T (ξr, X), Y ) =

1

12
(e14−e23)(IrX, I3Y ),

(43)
for r = 1, 2. Equations (43) imply that the endomorphism torsion is non-zero.
In fact, T (e5, e1) = Tξ1(e1) = − 1

12e2 6= 0.

Proposition 4.6. The left invariant qc structure defined by (39) on G2 is not
locally qc conformally flat.

Proof. Using (35), (36) and (43) we have that the expression ofW qc(e1, e2, e1, e2)
becomes as (37). From (21), (36), (38), (39) and (43) we obtain

R(e1, e2, e1, e2) =
11

18
, (g ? g)(e1, e2, e1, e2) = 2,

3∑
r=1

((ωr ? ωr)(e1, e2, e1, e2) + 4ωr(e1, e2)ωr(e1, e2)) = 6.

Therefore, W qc(e1, e2, e1, e2) = − 5
18 6= 0. The result follows from Theorem

4.3.
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