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1 Introduction

When skewed distributions such as consumptions and incomes are studied, the
median is considered the more appropriate measure of location.

The literature with regard to the estimation of the median is less extensive
than the studies regarding the mean. Moreover the estimation of the median
usually does not consider the use of auxiliary variables.

In the present work the estimation of the median has been taken into con-
sideration using di�erent methods of analysis.

First of all the estimation of the median without auxiliary information is
analyzed. Then the method which considers the median of the auxiliary variable
is the ratio estimator. Then two methods based on the regression estimator are
analyzed : the �rst one considers the regression based on the median regression,
the second one is based on the minimum square method.

The methods are compared selecting all possible samples from nine di�erent
small populations.

Methodology

1.1 Median estimation without auxiliary information

The estimate of the median without the use of auxiliary variables is reduced to
calculation of the median of the sample values.

With regard to the distribution of the sample median, Chu, in 1955, shows
that if the parent population is Normal, then the distribution of the sample
median tends �rapidly� to normality.

Let a continuous population be given with cumulative distribution function
F (x) and median ξ (assumed to exist uniquely ). For a sample of size 2n+1, let

x̃ denote the sample median. The distribution of X̃, under certain conditions, is
known to be asymptotically Normal with mean ξ and variance σ2

n = 1
[f(ξ)]2(2n+1) ,

where f(x) = F
′
(x) is the probability density function.

Normal parent population. Suppose that a sample of size 2n+1
is drawn from a Normal population with mean ξ and variance σ2.

The distribution of X̃ is then asymptotically Normal with mean ξ
and variance πσ2

2(2n+1)
. It has been shown that if, for x > 0

φ(x)− φ(−x) = a(x)
√
1− exp[−(2/π)x2] (1)

where a(x) is a function of x > 0.

1



[5] proved that a(x) 5 1 and tabulated 1
a(x)−1 for a number of values of x

ranging from 0.1 to 2 .
[3] gave several proofs of the same inequality and remarked that if

√
1− exp[−(2/π)x2]

is used as an approximation to φ(x)−φ(−x) , � then the error committed is less
than one per cent of the quantity approximated.� a(x)>0.9929 for all x > 0.

For arbitrary x > 0 and y > 0, let

xn =
√
π/2x/

√
2n+ 1 , y =

√
π/2y/

√
2n+ 1 .

Applying (1) to the upper and lower bounds, [1] obtained

H(y)−H(−x) = min {a(xn), a(yn)} ∗Bn
√
1− 1

2n+ 2
∗

∗

[
φ

(
y

√
2n+ 2

2n+ 1

)
− φ

(
−x
√

2n+ 2

2n+ 1

)]
,

H(y)−H(−x) 5 Bn

√
1− 1

2n

[
φ

(
y

√
2n

2n+ 1

)
− φ

(
−x
√

2n

2n+ 1

)]
,

where Bn =
(
1
2

)2n+1
Cn
√
2π/
√
2n+ 1 , φ(x) and a(x) are de�ned by (1) and

φ(t) =

tˆ

0

(1/
√
2π)exp(−1

2
x2)dx.

For more details see the work of Chu (1955).

1.2 Median estimation using the ratio estimator

Given the population median of the auxiliary variableX , the ratio estimator
is

ŶR =
M̂e(Y ) ∗Me(X)

M̂e(X)
(1)

ie correcting the estimate of the median obtained from the sample with ratio
between the median of X and its estimate.

If M̂e(X) = 0 then ŶR = M̂e(Y ).

MSE of ratio estimator

Let
M̂eY

M̂eX
− MeY
MeX

=
M̂eY − MeY

MeX
M̂eX

M̂eX
.
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Note that

1

M̂eX
=

1

MeX + (M̂eX −MeX)
=

1

MeX

1

1 + M̂eX−MeX
MeX

we proceed with the Taylor series expansion, stopping at the �rst order

' 1

MeX

(
1− M̂eX −MeX

MeX

)

then(
M̂eY

M̂eX
− MeY
MeX

)
∼=
(
M̂eY −

MeY
MeX

M̂eX

)
∗ 1

MeX

(
1− M̂eX −MeX

Mex

)
=

=
1

MeX

(
ˆ

MeY −
MeY
MeX

M̂eX

)
− 1

MeX

(
M̂eY −

MeY
MeX

M̂eX

)(
M̂eX −MeX

MeX

)
.

Passing to the squares (
M̂eY

M̂eX
− MeY
MeX

)2

=

=
1

Me2X

[(
M̂eY −MeY

)
−
(
MeY
MeX

M̂eX −MeY

)]2
+

+
2

Me2X

(
M̂eY −

MeY
MeX

M̂eX

)2
(
M̂eX −MeX

MeX

)2

we de�ne the expected value

E

(
M̂eY

M̂eX
− MeY
MeX

)2

' 1

Me2X
[E(M̂eY −Mey)

2+

+
Me2Y
Me2X

E(M̂eX −MeX)2 − 2
MeY
MeX

E(M̂eY −MeY )(M̂eX −MeX)]+

+
1

Me2X
E
[
(M̂eY −MeY )

2(M̂eX −MeX)2
]
.

The mean square error of the ratio estimator for the median is approximately
given by

MSE(M̂e
R

Y ) =MSE

(
MeX

M̂eY

M̂eX

)
=Me2X ∗MSE

(
M̂eY

M̂eX

)
=
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= E

[(
M̂eY −MeY

)2]
+
Me2Y
Me2X

E(M̂eX −MeX)2− 2
MeY
MeX

[Cov(M̂eY , M̂eX)+

+(MeY − E(M̂eY ))(MeX − E(M̂eX)]

ie the mean square error of the ratio estimator of the median can be written
as a function of the mean square of the median of Y , the mean square error for
the ratio of X multiplied by the ratio between the population medians and the
square of Y and X, the covariance between the estimate of the medians of X
and Y and the product of the distortions of X and Y , multiplied by the ratio
between the true median of Y and X.

The above result is valid for n su�ciently large.

1.3 Median Regression

Suppose that there is only one explanatory variable (p = 1), (Radaelli,
2004)[4] the problem is reduced to determining the parameteres a and b of
the line :

ŷ = a+ bx (2)

that, given N points (xi,yi), make the minimum sum of the absolute values
S of the residuals ri:

S =
∑N
i=1 | yi − ŷi |=

∑N
i=1 | yi − a− bxi |. (3)

The problem has been resolved geometrically by Boscovich and subsequently
formalized by Laplace (1786) , in the case it requires that the straight line passes
throught the point which has coordinates equal to the arithmetic means of X
and Y . In the exposition which follows reference will be made to the work of
Otto J. Karst (1958) [2], which illustrates the methodology for determining the
parameters of the straight line to the smallest absolute values, distinguishing:

1. the restricted problem , where the desired line passes throught any desig-
nated point (x∗, y∗), not necessarily one of the given set of points ;

2. the unrestricted problem , in which there are no limitations to the straight
line.

We consider, in this paper, the restricted problem.
Given a set of points {xi, yi}i = 1, 2, ..., n �nd the equation of the line 2 ,

through any point (x∗,y∗), not necessarily one of the given set, such that

S =
∑N
i=1 | yi − a− bxi |

=
∑N

i=1
| yi − bxi − (y∗ − bx∗) |∑N

i=1 | (yi − y∗)− b(xi − x∗) | .

(4)
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We �rst translate the origin to the point (xi, yi) by the transformation

x
′

i = xi − x∗ (5)

y
′

i = yi − y∗

for i = 1, 2, ..., N.
Given a set of points {yi, xi}i = 1, 2, ..., n, �nd the equation of the line

y
′
= bx (6)

such that
S =

∑
| yi − y

′

i | (7)

is minimum, where
ŷ

′
≡ bx

′

i. (8)

S may be written

S =

n∑
i=1

| y
′

i − ŷ
′

i |=
n∑
i=1

| y
′

i − bx
′

i | . (9)

Hence, the problem becomes �nding b in (9) such that S will be a min-
imum for a known set of points {xi, yi} , which are related to the given set
{Xi, Yi}through the transformation (5).

The minimum of S can be determinated by the following procedure.

a) Rank the y
′
i/x′i in ascending algebraic order.

b) To −
∑
| x′

i | add successive values of 2 | x̃i |until change in sign at i = r
signals the minimum point of S, since it indicates a change in slope of the S
curve from negative to positive.

c) This minimum lies directly above the point (y
′

i/x
′

i, 0). Hence, bi = y
′

i/x
′

i

is the value of b for which S is a minimum.
Since S is a minimum for b, the equation of the line of best �t is

ŷ =

(
y

′

i

x
′
i

)
x (10)

in the transformed coordinates, or

y
′
− y∗ =

(
y

′

i

x
′
i

)
(x− x∗) (11)

in the original coordinates.
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MSE of median regression

The mean square error of median regression can be written, for a known value
of b, as a function of the mean square error of the median of Y, the mean square
error of the median of X multiplied by the square of b and the covariance of the
estimated median of Y and X, in formula

E
(
M̂eMR −MeY

)2
= E

(
M̂eY + b(MeX − M̂eX)−MeY

)2
(12)

= E[(M̂eY −MeY )
2 + b2(M̂eX −MeX)2 − 2b(M̂eY −MeY )(M̂eX −MeX)]

= E(M̂eY −MeY )
2 + b2E(M̂eX −MeX)2 − 2bCov(M̂eY , M̂eX).

1.4 Estimate of the median using the regression method.

In a similar way to the estimate of the mean, one can estimate the median.
Given the estimate of b and the population median of the auxiliary variable

X , the estimate of the median of Y using the regression method is :

Me(Ŷlr) = M̂e(Y ) + b(Me(X)− M̂e(X)).

2 Applications

We proceeded by constructing the cases in which the auxiliary variable X is
symmetric, positive asymmetric and negative asymmetric. A similar procedure
was used for the cases of Y. We applied all methods to each sample and we
evaluated the expexted value, the variance and the mean square error, in order
to choose the best estimator.

2.1 Examples of real distribution of the estimators

In order to extract all the possible samples, let's suppose of knowing nine small
populations realized combining the symmetric auxiliary variable X, the positive
asymmetric variable X and the negative asymmetric variable X with the cases
of symmetry, positive and negative asymmetry of the variable Y .

The di�erent values are respectively:

in the �rst case, where the symmetric X has been used, the following six
values are consider simmetric with respect to the median have been taken into
consideration:

X < −(1, 2, 3, 4, 5, 6);

for the asymmetric positive X, the values are:

X < −(2, 2.3, 3.5, 4, 8, 12);
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for the asymmetric negative X , the values are :

X < −(1, 1.5, 2.5, 9, 9.19.2).

As for the values of the variable Y are:
for the symmetric case :

Y < −(10, 20, 30, 40, 50, 60);

for the positive asymmetric case:

Y < −(20, 25, 35, 40, 80, 120)

and for the negative asymmetric case:

Y < −(10, 15, 25, 90, 91, 92).

The median populations on three cases is :

Y symmetric Y positive asymmetric Y negative asymmetric
35 37.5 57.5

Case 1: X symmetric
Calculation of the expected values, the variances and the mean square errors.

Expected values Y sym Y pos asym Y neg asym
No auxiliary variable 35,115741 45.0434 55.8184
Median Regression 35 44.91662 55.6547

Ratio 35 43.82974 55.4128
Linear Regression 35 44.79012 55.64535

Table 3: Expected values : X symmetric

Table 3 shows that
-for Y symmetric: the estimators are unbiased;
-for Y positive and negative asymmetric : the estimators are biased.

To choose the best estimator, we observe the Tables 5 and 7 :
-for Y symmetric : we note that the estimators using di�erent methods

improve on the estimate of the median without the auxiliary variable, but the
choice is indi�erent between median regression, ratio estimator and linear re-
gression;

-for Y positive asymmetric : the best estimator is obtained by the ratio
estimator.

- for Y negative asymmetric : the best estimator is linear regression's
estimator.
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Variances Y sym Y pos asym Y neg asym
No auxiliary variable 140.282422 569.2835 1236.7778
Median Regression 0 216.4359 352.5256

Ratio 0 101.3940 509.6775
Linear Regression 0 120.125 331.1316

Table 5: Variances : X symmetric

MSE Y sym Y pos asym Y neg asym
No auxiliary variable 140.2958 626.1874 1239.606
Median Regression 0 271.4422 355.9308

Ratio 0 141.4597 559.9055
Linear Regression 0 173.2708 334.5713

Table 7: MSE : X symmetric

Case2: X positive asymmetric
Calculation of the expected values, the variances and the mean square errors.

Expected values Y sym Y pos asym Y neg asym
No auxiliary variable 34.9614 45.0228 55.0653
Median Regression 32.7494 37.5 52.1591

Ratio 31.25634 37.5 49.4480
Linear Regression 31.7568 37.5 45.3866

Table 9: Expected values : X positive asymmetric

Table 9 shows that
- for Y symmetric and Y negative asymmetric : the estimators are

biased, even if the estimator without the auxiliary variable provides a value
closer to that of the population;

- for Y positive asymmetric : the estimators are unbiased.

Variances Y sym Y pos asym Y neg asym
No auxiliary variable 139.5226 567.7029 1245.6588
Median Regression 39.7785 0 881.6117

Ratio 33.6375 0 649.72
Linear Regression 29.174 0 714.3191

Table 11: Variances : X positive asymmetric
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MSE Y sym Y pos asym Y neg asym
No auxiliary variable 139.5241 574.1473 1251.586
Median Regression 44.83862 0 910.024

Ratio 47.6525 0 796.4536
Linear Regression 39.6913 0 779.1537

Table 13: MSE : X positive asymmetric

Table 11 and 13 show that
- for Y symmetric and Y positive asymmetric : the best estimator is

the linear regression estimator ;
-for Y positive asymmetric : the choice is indi�erent between median

regression, ratio estimator and linear regression.

Case 3 : X negative asymmetric
Calculation of the expected values, variances and mean square errors.

Expected values Y sym Y pos asym Y neg asym
No auxiliary variable 34.9704 44.9955 54.9954
Median Regression 35.7282 45.7777 57.5

Ratio 49.7288 63.2085 57.5
Linear Regression 35.868 46.6717 57.5

Table 15: Expected values : X negative asymmetric

Table 15 shows that
- for Y symmetric and Y positive asymmetric : the estimators are

biased. It can be seen that for Y positive asymmetric, the ratio estimator is
more biased;

- for Y negative asymmetric : the estimatorr are unbiased.

Variances Y sym Y pos asym Y neg asym
No auxiliary variable 137.5683 533.6495 1248.3118
Median Regression 33.9634 314.4212 0

Ratio 467.4734 803.6303 0
Linear Regression 48.6476 416.5605 0

Table 17: Variances : X negative asymmetric
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MSE Y sym Y pos asym Y neg asym
No auxiliary variable 137.5691 589.832 1254.585
Median Regression 34.4894 382.9416 0

Ratio 684.4112 1464.786 0
Linear Regression 49.401 500.6814 0

Table 19: MSE : X negative asymmetric

Tables 17 and 19 show that:
- forY symmetric andY positive asymmetric : the best estimator is the

median regression' estimator. We observe a high value for ratio estimator, which
worses the estimation with respect to the method without auxiliary variable.
Probably the ratio estimator has a high MSE due to the fact that the intercept
is high.

- for Y negative asymmetric : the choice about the best estimator is
indi�erent between median regression, ratio estimator and linear regression.
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3 Conclusions

In this paper, we intended to analyze the way in which the auxiliary informa-
tion could be pro�tably used in order to improve the accuracy in the median
estimation. We have tried to get the most e�cient estimator comparing the
estimator of the median without auxiliary variable and some estimators which
keep into account the knowledge of an auxiliary variable.

In the case of an auxiliary variable, we analyzed:
Ratio estimator, that in some cases, is the most e�cient estimator. But

when the intercept value is high, the mean square error is worse than the one
of the other methods.

In a lot of cases the most e�cient estimators are median regression and linear
regression, even if it is quite di�cult to establish an objective order between the
two.

The method of the median regression improves almost in every cases if it is
compared to the ratio method, when the choice of the best method of estimation
of the median has been analyzed.

Comparing the di�erent methods seems, that the choice of one method or
another is not unique, but it depends on the case of study.
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