European Aerosol Conference 2011 – 5-9 sep 2011 – Manchester, UK

$PM_{2.5}$, PM_1 and $PM_{0.4}$ acidity during spring and summer at one Po Valley site

<u>G. Sangiorgi¹</u>, L. Ferrero¹, M.G. Perrone¹ and E. Bolzacchini¹

¹POLARIS Research Centre, Department of Environmental Sciences, University of Milan - Bicocca, Milan, I-20126, Italy <u>contact author</u>: giorgia.sangiorgi1@unimib.it

High daily variations of PMx concentrations, low seasonal variation of average PMx concentrations. General low PM2.5 concentrations, typical of a rural site of the Po Valley.

> Very similar pattern of ionic balance for both the seasons and all the PMx: R² very high (**R**² ≥ 0.96); slope very close to 1 (**slope** ≥ 0.85) and slightly lower by adding carboxylic acids as negative ions.

solid- and liquid-phase compositions

(Clegg et al., 1998; http://www.aim.env.uea.ac.uk/aim/aim.php)

 ✓ Total H⁺: total amount of H⁺ contributed by the strong acids, such as sulfuric and nitric acids, in the aqueous extract of the aerosols.
▶ H⁺tot=2×[SO₄²·]+[NO₃·]-[NH₄+]

✓ Free H⁺: moles of free hydrogen ions in the aqueous phase of aerosols per unit of air (nmol/m³).

H+free = output of E-AIM model-II

010		31%)	-	21%	[°] 5%	
p) 5			40%				
	PM2.5	PM1	PM0.4	PM2.5	PM1	PM0.4	
	S	PRIN	G	SUMMER			
	SPRING SUMMER T (°C) RH % T (°C) RH %						
PM2.5 PM1 PM0.4	12 ± 5 12 ± 4 12 ± 1	72± 72± 77±	=19 2 =18 2 =9 2	1±5 3±5 6±1	72±1 69±1 61±3	L7 L5 3	

(µg/m3) free H+/tot H+ % Free H⁺ and H₂O average concentrations decrease in summer. Lower % of **free H⁺-to-tot H+** in summer (~20%) than in spring (30%).

CONCLUSION

Seasonality trend of inorganic ions and carboxylic acids in a rural site of Po Valley was showed.

The **ionic balance** was very close to **neutrality** (all the samples were ammonium rich and tot H⁺ and free H⁺ concentrations were very low).

In **summer** there was a higher level of **excess NH₄**⁺ and **carboxylic acids**. Even if the tot H⁺ concentration was higher, the free H⁺ was lower. European Aerosol Conference 2011 – 5-9 sep 2011 – Manchester, UK

$PM_{2.5}$, PM_1 and $PM_{0.4}$ acidity during spring and summer at one Po Valley site

G. Sangiorgi¹, L. Ferrero¹, M.G. Perrone¹ and E. Bolzacchini¹

¹POLARIS Research Centre, Department of Environmental Sciences, University of Milan - Bicocca, Milan, I-20126, Italy <u>contact author: giorgia.sangiorgi1@unimib.it</u>

12

26

3

SPRING: 10 June -

2 July 2010

✓ SAMPLING SITE: SANNAZARO DE' BURGONDI (PAVIA) typical rural site in the middle of the Po Valley, Italy SUMMER: 24 March

✓ SAMPLING CAMPAIGN: PM0.4 + PM1 + PM2.5

seasonal variation of average PMx concentrations. General low PM2.5 concentrations, typical of a rural site of the Po Valley.

species in aqueous aerosols and the solid- and liquid-phase compositions

(Clegg et al., 1998; http://www.aim.env.uea.ac.uk/aim/aim.php)

✓ Total H⁺: total amount of H⁺ contributed by the strong acids, such as sulfuric and nitric acids, in the aqueous extract of the aerosols. $H^+tot=2\times[SO_4^{2-}]+[NO_3^{-}]-[NH_4^{+}]$ Free H⁺: moles of free hydrogen ions in the aqueous phase of aerosols per unit of air (nmol/m³). H+free = output of E-AIM model-II

210/ $(\mu g/m3)$ 5 free H+/tot H+ % 0 **PM0.4** PM1 **N** <u>Г</u> 4 PM1 PMO PM2 M2 SPRING **SUMMER** SUMMER SPRING **°C)** RH % T (°C) RH % **PM2.5** 12±5 72±19 21±5 72±17 12±4 72±18 23±5 69±15 **PM1** 77±9 26±1 61±3 **PM0.4** 12 ± 1

Free H⁺ and H₂O average concentrations decrease in summer. Lower % of free H⁺-to-tot H+ in summer ($\sim 20\%$) than in spring (30%).

CONCLUSION

Seasonality trend of inorganic ions and carboxylic acids in a rural site of Po Valley was showed.

The ionic balance was very close to neutrality (all the samples were ammonium rich and tot H⁺ and free H⁺ concentrations were very low

In summer there was a higher level of excess NH₄⁻ and **carboxylic acids**. Even if the tot H⁺ concentration was higher, the free H⁺ was lower.