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Abstract In this work we propose a new estimator for the finite population cdf of a
study variable that combines the two approaches to exploit knowledge about an aux-
iliary variable used in the Chambers and Dunstan ([2]) and the Kuo ([5]) estimators.
As both the latter estimators, the new estimator is based on a superpopulation model
where the population values of the study variable are generated independently from
a model-cdf that is allowed to depend smoothly on an auxiliary variable. Like the
Chambers and Dunstan estimator, the new estimator is based on estimates for the
model-cdf of the study variable that are obtained by estimating the model-mean
regression function and the model-cdf of the error terms separately. In the new esti-
mator however both estimation steps are performed by non parametric regression in
order to account for superpopulation models with smooth mean regression function
and error term distribution that depends smoothly on the auxiliary variable. The non
parametric regression for estimating model-cdf of the error terms resembles the one
used in the Kuo estimator to estimate the model-cdf of the study variable directly,
without considering the model-mean regression function. We will present a simu-
lation study which shows that the new estimator outperforms several well known
estimators from literature when the error terms are independently but not identically
distributed.
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1 Introduction

Virtually all research articles that deal with the problem of estimating a distribution
function in the context of finite population sampling quote the estimator proposed
by Chambers and Dunstan ([2]). In fact, the article written by these two authors
appears to provide the historically first attempt to motivate a procedure for estimat-
ing the finite population cdf of a study variable that takes advantage of knowledge
about an auxiliary variable. The original definition of the Chambers and Dunstan es-
timator (henceforth CD-estimator) is based on a superpopulation model where the
population values of the study variable are given by

yi := xiβ + v(xi)εi, i = 1,2, . . . ,N, (1)

where (i) x1,x2, . . .xN are known values taken on by some auxiliary variable, (ii) β

is an unknown parameter, (iii) v(·) is a known function, and (iv) the error terms εi
are i.i.d. random variables with E{εi} = 0 and Var{εi} = σ2 for 1 ≤ i ≤ N. The
purpose of the CD-estimator is to estimate the finite population cdf of the study
variable having observed the values taken on by the study variable corresponding
to a sample s ⊂ {1,2, . . . ,N} of index values i, that has been chosen independently
from the random mechanism that generated the population values of the study vari-
able. Denoting as usual by I(·) the indicator function that takes on the value 1 if the
statement in its argument is true, and is equal to 0 otherwise, the finite population
cdf of the study variable is defined by

FN(t) :=
1
N

N

∑
i=1

I(yi ≤ t), t ∈ R.

Once the values yi are observed for i ∈ s, the sample cdf

Fn(t) :=
1
n ∑

j∈s
I(y j ≤ t)

will be known, and thus the CD-estimator, as every model-based estimator for FN(t),
may be written as

F̂(t) :=
1
N

{
nFn(t)+(N−n)F̂N−n(t)

}
where F̂N−n(t) is a predictor for the non-sample cdf

FN−n(t) :=
1

N−n ∑
i/∈s

I(yi ≤ t).

In the CD-estimator F̂N−n(t) is given by
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F̂CD,N−n(t) :=
1

N−n ∑
i/∈s

ĜCD

(
t− xiβ̂

v(xi)

)

where

ĜCD(ε) :=
1
n ∑

j∈s
I

(
y j− x jβ̂

v(x j)
≤ ε

)
(2)

is an estimator for the model-cdf G(ε) of the error terms, with

β̂ :=
∑ j∈s v−2(x j)x jy j

∑ j∈s v−2(x j)x2
j

the weighted least squares estimator for the unknown value of the parameter β .
The main drawbacks of the original version of the CD-estimator stem from the

fact that its definition assumes a linear model-mean regression function and that it
requires the user to specify the function v2(·) that describes the variance of the error
terms. In fact, as Chambers and Dunstan ([2]) themselves point out, both these prob-
lems are quite critical, since any deviation from model (1) introduces an asymptotic
model-bias. A modified version of the CD-estimator, that accommodates also non-
linear model-mean regression functions, has been analyzed by Dorfman and Hall
([3]), who considered a superpopulation model where

yi := µ(xi)+ εi, i = 1,2, . . . ,N, (3)

with (i) µ(·) a smooth function, and (ii) εi i.i.d. error terms. Dorfman and Hall
(1993) estimate µ(·) by

µ̂(x) := ∑
j∈s

w j(x)y j,

using Gaussian kernel weights in place of w j(·) and use

F̂DH,N−n(t) :=
1

N−n ∑
i/∈s

ĜDH (t− m̂(xi))

with
ĜDH(ε) :=

1
n ∑

j∈s
I(y j− m̂(xi)≤ ε)

as predictor for the non-sample cdf FN−n(t). Below the resulting estimator for FN(t)
will be called DH-estimator.

Kuo ([5]) proposed another approach to estimate FN(t) based on a superpopula-
tion model where it is merely assumed that

P{yi ≤ t} := p(xi), i = 1,2, . . . ,N, (4)

for some smooth function p(·). In Kuo-type estimators, the implied predictor for the
non-sample cdf FN−n(t) is given by
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F̂K,N−n(t) := ∑
i/∈s

p̂K(xi),

where
p̂K(x) := ∑

j∈s
w j(x)I(y j ≤ t) (5)

is a non-parametric regression estimator for p(x) based on the regression weights
w j(x). Kuo ([5]) suggested three types of weights w j(·): (i) uniform kernel weights,
(ii) gaussian kernel weights and (iii) nearest k-neighbor weights.

It is worth noting that the CD-estimator and Kuo-type estimators employ differ-
ent kind of estimators for P{yi ≤ t} for i /∈ s. While the CD-estimator uses

p̂CD(xi) := ĜCD

(
t− xiβ̂

v(xi)

)
,

which may be viewed as a semiparametric estimator, Kuo-type estimators use
the completely nonparametric estimator p̂K(xi). One would obviously expect that
p̂CD(xi) is more efficient than p̂K(xi) if model (1) is true, and that the opposite holds
otherwise. In fact, it may be shown that p̂CD(xi) is asymptotically model-biased for
p(xi) unless model (1) is true, while p̂K(xi) is asymptotically model-unbiased under
the much more general superpopulation model (4). To overcome this shortcoming
of p̂CD(xi) one might consider

p̂CDW (xi) = p̂CD(xi)+∑
j∈s

w j(xi) [p̂K(x j)− p̂CD(x j)]

as estimator for P{yi ≤ t}, and thus

F̂CDW,N−n(t) := ∑
i/∈s

p̂CDW (xi)

as predictor for FN−n(t) in model-based estimators for FN(t). The resulting estima-
tor for FN(t) turns out to be the one Chambers, Dorfman and Wherly ([1]) end up
with when applying their bias correction procedure to the problem of estimating
FN(t). We therefore call it CDW-estimator in what follows. Dorfman and Hall ([3])
analyzed the CDW estimator, with Gaussian kernel weights in place of w j(·). They
showed that its model-bias achieves the parametric O(n−1) rate (like that of the CD-
estimator) when model (1) is true, and that the convergence rate of the model-bias
is of order O(λ 2)+o((nλ )−1) (like that of the Kuo estimator with Gaussian kernel
weights), where λ denotes the bandwidth in the gaussian kernel weights, under the
more general model (4) when model (1) is false. Dorfman and Hall ([3]) showed
moreover that the convergence rate of the model-variance of the CDW-etimator is
O(n−1) under model (4) (like that of the CD, DH and Kuo estimator), irrespective
of whether model (1) is true or false.

In this work we shall explore still another approach to estimate P{yi ≤ t} for
use in predictors of FN−n(t). The idea is to use nonparametric regression weights to
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estimate first the model-mean regression function µ(·), and then, using the regres-
sion residuals, the model-cdfs G(·, ·) of the error terms. The model-cdfs of the error
terms have a second argument because they may depend on the auxiliary variable.
The estimator for P{yi ≤ t} we propose is thus defined by

p̂CDK(xi) := ∑
j∈s

w j(xi)I (y j− µ̂(xi)≤ t) .

The regression weights w j(·) for estimating µ(·) and G(·, ·) may actually be differ-
ent. Since p̂CDK(xi) is based on the ideas underlying the definitions of both p̂CD(xi)
and p̂K(xi), we used the acronym CDK (Chambers-Dunstan-Kuo) in the notation
and we call the corresponding model-based estimator for FN(t) CDK-estimator in
what follows.

The above approaches to estimate P{yi ≤ t} may of course be used to define
model-assisted estimators for FN(t) as well (see [4]). Model assisted estimators for
FN(t) are estimators of the form

F̃(t) :=
1
N

{
N

∑
i=1

p̃i +∑
i∈s

π
−1
i [I(yi ≤ t)− p̃i]

}

where p̃1, p̃2, . . . , p̃N are fitted values for I(y1 ≤ t), I(y2 ≤ t), . . . , I(yN ≤ t) based on
some superpopulation model, and π1,π2, . . . ,πN are the first order inclusion proba-
bilities corresponding to the sample design by which the sample s has been drawn.
The fitted values p̃i may be obtained by adapting the definitions of p̂CD(xi), p̂DH(xi),
p̂CDW (xi) and p̂CDK(xi) to account for the sample design.

The advantage of model-assisted estimators lies in the fact that they are asymp-
totically design-unbiased even if the assumed superpopulation model is false, and
thereby they provide protection against model misspecification. However, this ad-
vantage comes at the cost of larger asymptotic design-variance in comparison with
model-based estimators. Model-based estimators will thus be more efficient than
model-assisted ones if their design-bias is not to large. This will be the case if the
data support the superpopulation model and if the first order inclusion probabilities
do not vary a lot.

In the following section we will compare design-bias and design-variance of the
above estimators in a simulation study. Since we consider simple random without
replacement sampling, we use p̂CD(xi), p̂DH(xi), p̂CDW (xi) and p̂CDK(xi) as they are
to compute the fitted values p̃i in the model assisted estimators. As for the non-
parametric regression weights w j(·), we always use local linear regression weights,
defined by

w j(x) :=
1

nλ
K
(

x− x j

λ

)
Mn2(x)− (x− x j)Mn1(x)
Mn2(x)Mn0(x)−Mn1(x)2 , x ∈ R,

where K(·) is the Epanechnikov kernel function,
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Mnk(x) :=
1

nλ
∑
j∈s

K
(

x− x j

λ

)
(x− x j)

k, k = 0,1,2,

and λ > 0 is the bandwidth parameter.

2 Simulation Results

In this section we compare the performance of the above estimators for FN(t) in a
simulation study. We consider finite populations of size N = 1000 generated from
the following superpopulation models:

yi := 0.5xi + εi

yi :=
√

xi + εi

where εi are independent error terms generated either from the Student t distribu-
tion with ν = 5 dgf, or from shifted noncentral Student t distributions with ν = 5
dgf and with noncentrality parameter given by ζ = 15xi. The shifts applied to the
error term distributions in the second case are aimed to make sure that their expec-
tation equals zero. The x-values taken on by the auxiliary variable will be generated
independently from the uniform distribution on (0,1).

The populations we consider are thus 4: the first one with linear regression func-
tion and i.i.d. error terms (LRIDE-population), the second one with linear regres-
sion function and independent non identically distributed error terms (LRNIDE-
population), the third one with nonlinear regression function and i.i.d. error terms
(NLRIDE-population) and the last one with nonlinear regression function and inde-
pendent but non identically distributed error terms (NLRNIDE-population).

To compare the performance of the estimators, we select B = 1000 samples
from each of the four populations by simple random without replacement sam-
pling and evaluate the estimation error of each cdf-estimator at tk = F−1

N (k/20)
for k = 1,2, . . . ,19. In the estimators that involve nonparametric regression weights
w j(·) we use local linear regression weights with Epanechnikov kernel function. As
for the bandwidth, we test three values: λ = 0.1, λ = 0.2 and λ = 0.3. Since the
simulation results are rather insensitive to the bandwidth, we report only the results
referring to λ = 0.1 in Figures 2 to 8. The latter show the population values of the
study variable plotted against the auxiliary variable and the simulated bias, stan-
dard deviation and rmse plotted against p = k/20. In the legend, ”XXma” identifies
the model-assisted version of the XX-estimator, while ”XXmb” identifies the corre-
sponding model-based version. The graphs emphasize, as expected (see discussion
in [4]), that the model-assisted estimators perform very similarly. They all are nearly
unbiased, and feature very similar standard errors. The performance of the model-
based estimators, on the other hand, is more diverse. The CD and DH-estimators are
the most efficient ones in the populations they are designed for (the LRIDE for the
CD-estimator, and the LRIDE and NLRIDE populations for the DH-estimator), but
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they are inefficient otherwise. The model-based CDK-estimator appears to be the
most robust one. It is more efficient than the model-assisted estimators in all pop-
ulations, and it does not suffer from model-misspecification bias like the CD and
DH-estimators. The performance of the model-based CDW-estimator appears to be
influenced mainly by that of the model-based KUO-estimator, which appears to be
the less efficient one except in the populations where the model misspecification
bias spoils the performance of the CD and DH-estimators.
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Fig. 1 LRIDE population and simulated rmse
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Fig. 2 LRIDE population: simulated bias and standard deviation
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Fig. 3 LRNIDE population and simulated rmse
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Fig. 4 LRNIDE population: simulated bias and standard deviation
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Fig. 6 NLRIDE population: simulated bias and standard deviation
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Fig. 7 NLRNIDE population and simulated rmse
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Fig. 8 NLRNIDE population: simulated bias and standard deviation


