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Introduction

Sensitivity Analysis is the study of how a variatim the output of a statistical model
can be apportioned, qualitatively and quantitayived different sources of variation. It
is used to identify which inputs are most influahth inducing the uncertainty in the
output. Such information is important for undersliag the behavior of the simulator
and determining where better input information égded and where the model might

be improved.

Among the different existing schools of thought) & identified the Global Sensitivity
Analysis. This approach explores the whole rangencgrtainty of the model inputs by

letting them vary simultaneously.

So—called variance—based methods for computingtsetysindices are based on the
decomposition of the variance of the outputs ietons corresponding to the different
inputs and their interactions. In this way, they @ssess the manner in which the
uncertainty in an output is apportioned acrossitpets, and across interactions between
them. Variance—based measures are attractive lBetaess measure sensitivity across
the whole input space (i.e. it is a global methtw)y can deal with nonlinear responses,

and they can measure the effect of interactiomom-additive systems.

The drawback of variance—based measures is th@iputational cost especially in the
presence of a high number of factors. Estimatiegsemsitivity coefficients takes many
model runs, as we shall discuss later, and thiseigeason why much recent research

aims to find efficient numerical algorithms for theomputation.

Our intentions in preparing this thesis were terafit to overcome this drawback, in
order to minimize the computational cost for achigvthe required accuracy of

sensitivity measures.



We first developed a new technique for estimatiagiance—based total sensitivity

indices from given data and investigated its penmce through a new algorithm.

Although the results did not completely meet oupeetations, this new technique is
worthy of further study and analysis. So, we focdus® a new approach for the
estimation of the first order effects given a specample design. This method adopts
the RBD approach published by Taran&tal, (2007) for the computation of first order

sensitivity indices in association to Quasi—Randambers.

From these preconditions, the present thesis snirgd in four chapters that are now

presented.

In chapter one we give a general introduction andogerview of the Sensitivity
Analysis. In chapter two we describe variance—baseithods in more details. In chapter
three we devise a new methodology for estimating &ensitivity indices from given
data which takes into consideration the overaleaffof interactions among model
inputs. In this chapter four we present a new aggtdor the estimation of the first order

effects given a specific sample design.



Capitolo 1

INTRODUCTION TO SENSITIVITY ANALYSIS

1.1 History of sensitivity analysis

The origin of Sensitivity Analysis can be trackednh the theory of Design of
Experiments (DOE), which was first introduced bgHer (1935) in the context of

physical experimentation.

To this purpose the analyst needs to design "ai'ban experiment able to highlight the
relationship between the response and the inptis.most natural way to design an
experiment is to use the one—factor at—a—time aubr(OAT) (see Daniel, 1958, 1973),
which varies the input factors of interest one atree, with the remaining ones are held
constant to their nominal values. However, theltegan OAT depends on the nominal

values used for the other factors. Often the bemaiithe response function is described



only locally in the input space, i.e. by perturbthg factor of interest of a small amount

around its nominal value.

Mathematical models are developed to approximategyineering, physical,
environmental, social, and economic phenomena ofows complexity. Model
development consists of several logical steps,odmeéhich should be the determination
of parameters which are most influential on modaipat. TheNational Research
Council’'s Science and Decisions: Advancing Rislessment{2009) defines a model
as a “simplification of reality that is constructedgain insights into select attributes of
a particular physical, biologic, economic, or sbagstem. Mathematical models
express the simplification in quantitative termpage. 96). Model input factors are
“terms in a model that determine the specific mddeh. For computational models,
these terms are fixed during a model run or sinaratnd they define the model output.
They can be changed in different runs as a methedraucting sensitivity analysis or

to achieve a calibration goal” (page 97).
Sensitivity analysis can be seen as the moderugwnlof DOE. In short:

Sensitivity Analysis is the study of how the uadety in the output of a model can be

apportioned to different sources of uncertaintyhia input (Saltelli, 2002)

The object of SA is to increase the confidencehi@ model and its predictions by
providing an understanding of how the model outfautables respond to changes in the

inputs.

Models of varying complexity are developed to apprate or mimic systems and
processes of different nature (e.g. physical, emirental, social, or economic). Many
processes are so complex that physical experiment& too time-consuming too
expensive or even impossible. As a result, to erplsystems and processes,

investigators often turn to mathematical or compaitel models.

A mathematical model is defined by a series of #gus, parameters and variables
aimed to characterize the process being investigMedel inputs are subject to many
sources of uncertainty including errors of meas@amimincomplete information and

poor or partial understanding of the driving foreesl mechanisms. This imposes a limit



on our confidence in the response of the modekhEuyrmodels have to cope with the

natural intrinsic variability of the system suchtls occurrence of stochastic events.

Good modeling practice requires that the model@viges an evaluation of the
confidence in the model possibly assessing the rtaioBes associated with the
modeling process and with the outcome of the mibsielf.

Originally (Tomovic and Vukobratovic, 1972), SA waeeated to deal simply with

uncertainties in the input variables and model pa@tars. Over the course of time the
ideas have been extended to incorporate model paraeuncertainty, i.e. uncertainty
in model structures, assumptions and specificatigtedton and Burmaster, 1996;

Draperet al, 1999).

A view of modeling that may help to illustrate thede of sensitivity analysis in the
scientific process is taken from the work of theltgist Robert Rosen (1991) (see also
Saltelliet al, 2000, page 3—4). According to Rosen, the worltitae model are linked
via the process of “encoding” from world to modetlddecoding” from model to world.
While inside “world” and inside “model” causalitgigns, encoding and decoding are
not themselves entailed by anything, i.e. they #re objects of the modeler
craftsmanship. Experience has shown that even Wigarorld is indeed a well-defined
and closed system, for instance an artifact, aficzat device or a piece of machinery,
different modelers can generate different nonedentalescriptions of it, that is, models
whose outputs are compatible with the same sdis#rvations but whose structures are
not reconcilable with one another. The “encodingtl &decoding” activities are the
essence and the purpose of the modeling processwvotes a model in the hope that
the decoding operation will provide insight on therld. This is only possible if the
uncertainty in the information provided by the mio(tee substance of use for the
decoding exercise) is carefully apportioned to timeertainty associated with the

encoding process.

Practitioners of modeling have come to live with tather unpleasant reality that more
than one model may be compatible with the samefséata or evidence. Some have
gone so far as to coin a word for this paradmuifinality (Beven, 1993, 2001; see also
Saltelliet al.,2004) meaning that different models can lead ts#mee end. Others refer

to the phenomenon as model indeterminacy.



Another general definition of SA took inspiratiomoiin the previous Rosen’s

formalization of the modeling activity:

Sensitivity Analysis studies the relationships keetwinformation flowing in and out of
the model (Saltelli et al, 2000, pag.4).

SA is hence part of model building. It is usednprove the understanding of the model
and to increase the confidence in its predictidhshows how the model response
variables react to changes in the inputs, wherepyt or factors it is intended data,
model structure and model parameters. SA is thasebt linked to uncertainty analysis
(UA), which aims to quantify the overall uncertgirtssociated with the response as a

result of uncertainties in the model input.

Our point of departure is a mathematical or comgrial modelY = f (X, X,,...,X,)

where some of the input factoXsare uncertain. We know something about their range
of uncertainty. This knowledge might come from aiety of sources: measurements,
expert opinion, physical bounds, analogy with fexfor similar species, etc. This latter
may be seen as a particular case of expert opiki@may further have information
(e.g. via observation) on the joint probabilitytdisution of the factors. The model may
be used in a prognostic (forecast) or diagnossiir@tion) mode. In the former, all our
knowledge about model input is already coded ifjahrt probability distribution of the
input factors. In the latter, the information om tihput constitutea priori knowledge
and the analysis might be aimed at updating eitinedistribution of the input factors
or the model formulation based on the evidends.dtistomary to propagate uncertainty
through different model structures or formulatioimsthis case some of the input factors

are triggers that drive the selection of a struettgrsus another (Saltelli, 2002).

The input is a quantity which is allowed to varyoiaer to study its effect on the output.
A sensitivity analysis will in turn instruct the melers as to the relative importance of
the inputs in determining the output. An obviousseEruence of this is that the modeler
will remain ignorant of the importance of thoseightes which have been kept fixed
(not been included in the analysis). This is ofrseua hazard for the modeler, as a
variable deemed non influential and kept fixed ddudve negative effect the results of

the analysis if it is actually influential (Saliedit al., 2008).



It seems, therefore, that one should be as caaefiilobjective as possible in deciding
on the input for uncertainty and sensitivity anal/sClearly, the more variables we
promote to the rank of input, and allow to varye tireater the variance to be expected
in the model prediction. This could lead to a ditwrain which we discover that, having
incorporated all uncertainties, the model predicti@ries so wildly as to be of no
practical use. This trade-off has been brilliarglynmarized by the econometrician
Edward E. Leamer (1990):

“I have proposed a form of organized sensitivitalysis that | call ‘global sensitivity

analysis’ in which a neighborhood of alternativesasiptions is selected and the
corresponding interval of inferences is identifi€@bnclusions are judged to be sturdy
only if the neighborhood of assumptions is wideughoto be credible and the

corresponding interval of inferences is narrow egloto be useful”.

Note Leamer’s emphasis on the need for ‘credibiiiiythe selection of assumptions.
The easiest way to invalidate a model is to demmatesit fragile with respect to shaky
assumptions. Note, however, that the trade-off matybe as dramatic as one might
expect, and that increasing the number of inpubfacdoes not necessarily lead to an
increased variance in model output. Practitionaexsehecorded that in most uncertainty
and sensitivity analyses the input factors’ impecgis distributed similarly to wealth
in nations, with a few factors creating almostladl uncertainty and the majority making
only a negligible contribution. Hence, if the ‘kef@ctors have been judiciously chosen,
adding further variables to the analysis may addst@ompleteness and defensibility

without adversely increasing the variance in thgpou (Saltelliet al., 2008, page. 10)

As mentioned, the quality of a model is largelyuadtion of its fithess for purpose. If
modeling is a craft and models cannot be provea @ipecause of the pervasive nature
of uncertainty and the difficulty of separating ebstion from observer and facts from
values), then the modeler has a moral obligatiod,iadeed it is in the modelers’ own
practical interest, to be as rigorous as possilhlennassessing the robustness of model

inference.

Doing so should produce better and more parsimsmoadels, and will strengthen the
analyst’s defense of the results in the case @nsific controversy or public policy
debate (Saltellet al, 2008).



1.2 Reasons for conducting Sensitivity Analysis

In the context of numerical modelling, SA meansyvdifferent things to different
people. For example, for a chemist SA could bettaysis of the strength of the relation
between kinetic or thermodynamic inputs and me&deirautput of a reaction system.
For an economist the task of SA could be to appréisw stable the estimated
parameters of a model (customarily derived viagsgjon) are with respect to all factors
that were excluded from the regression, thus asoany whether parameter estimation
is robust or fragile. For a statistician involved statistical modelling SA is mostly
known and practised under the heading of “robustaaalysis”. Statisticians are mostly
interested in distributional robustness intendednasnsitivity with respect to small
deviations from the assumptions about the undeglgistribution assumed for the data
(Huber, 1981).

These different types of analyses have in commeratim to investigate how a given
computational model responds to variations in rjguts. Modellers conduct SA to
determine (Saltellet al, 2008):

a) If a model resembles the system or process unddy.st

b) The factors that mostly contribute to the outputiaklity and that require
additional research to strengthen the knowledge,ldasreby reducing output
uncertainty.

c) The model parameters (or parts of the model itsiadf) are insignificant and that
can be eliminated from the final model.

d) If there is some region in the space of input fiecfor which the model variation
IS maximum.

e) The optimal regions within the space of the factimrsuse in a subsequent
calibration study.

f) If and which (group of) factors interact with eaather.

Under (a) the model does not properly reflect tlee@sses involved if it exhibits strong

dependence on supposedly non-influential factortbe range of model predictions is



not a sound one. In this case SA highlights thel h@eevise the model structure. It often
happens that the model turns out to be highly tuaedspecific value of a factor, up to
the point that necessary changes, e.g. resuliimg frew evidence, lead to unacceptable
variation in the model predictions. When this hapgpeis likely that in order to optimize
the simulation some parameter values have beerechosorrectly. This reflects lack

of conceptual understanding of the role of the pa&tars in the system.

Under (b) SA can assist the modeller in decidingtivbr the parameter estimates are
sufficiently precise for the model to give relialpiedictions. If not further work can be
directed towards improved estimation of those patars that give rise to the greatest
uncertainty in model predictions. If the model sevisy seems congruent with (i.e. does
not contradict) our understanding of the systermdp@nodelled, SA will open up the
possibility of improving the model by prioritizingeasurement of the most influential
factors. In this way the impacts of measurememrgron computational results can be

minimized.

Under (c) we mean insignificant in the sense oft“affecting the variation of the
output”; according with some investigators when thedel is used in a case of
conflicting stakes (e.g. siting a facility or licgng a practice) the model should not be
more complex than needed and factors/processesatkainsignificant should be

removed.

As far as (e) is concerned we stress the needdiobal” optimization. One should
investigate the space of the factors in its entisgtid not just around some nominal

points.

1.2.1 Why one should perform SA?

Sensitivity analysis can serve a number of usaigpgses in the economy of modeling.
It can surprise the analyst, uncover technicalrerirothe model, identify critical regions
in the space of the inputs, establish prioritiesrésearch, simplify models and defend

against falsifications of the analysis. In the esthbf models used for policy assessment,



sensitivity analysis can verify whether policy @ps can be distinguished from one

another given the uncertainties in the system,sanah.

SA can be employed prior tacalibration exercise to investigate the tuning importance
of each parameter, i.e. to identify a candidateo§@nportant factors (which factor is
most deserving further analysis or measurementdidbration since the difficulty of
calibrating models against field or laboratory datareases with the number of
processes to be modeled (and hence the numberasheger to be estimated). SA may
allow a dimensionality reduction of the paramefeace where the calibration is made
resulting in some factors of the model to. In gegting, SA can also help to ensure that
the problem is not ill-conditioned. Quantitative $#ethods (i.e. those which tell how
much more important one factor is than anotherbeaappropriate when both the model
inputs and the available data are affected by taicgies. The question answered is:
“what factors can be calibrated and at what confiée given the data and their

uncertainty”?

While SA was originally created to deal with thecertainties in the input factors, recent
developments have seen some of the ideas beingdexteo incorporate structural
uncertainty as mentioned above. In this way SA tdsohes on the difficult problem of
model quality and is an important element of judgment for theralworation or
falsification of the scientific hypotheses embedded model (is the inference robust?
Is the model overly dependent on fragile assump#hrSA can be used to ensure that
the response of the model to its input factorslmaccounted for, that the model does
not exhibit strong dependence on supposedly nduenfial factors and that the range
of model predictions is a sensible one.

SA can be an effective tool fanodel identification. By pinpointing experimental
conditions in which the ability to discriminate angothe various models is a maximum,
SA can identify the most appropriate model striegland competing specification that

describe available evidence.

This is closely related to mechanism reduction rd@tging a subset of input factors
accounting for the output variance. This enablesnkignificant factors to be identified
and eliminated from the final model. In this waselevant parts of the model can be

10



dropped or a simpler model can be built or exthébem a more complex one (model

lumping).

The above points have some epistemological imphicatconcerning the relevance of a
model. It has been argued that often the complexitgodels largely exceeds the actual
requirements. The view of Oreskes et al. (1994h& models should be heuristic
constructs built for a task. They would be relewainén their input factors actually cause
variation in the model response that is the obgédihe analysis. Model irrelevance
would flag a bad model, a model used out of contexd model unable to provide the

answer being sought.

Another possible goal for SA is to determine ifrthis some region in the space of inputs
for which the model variation is maximum or divemgeThis is useful in control theory
where one might also be interested in the inittatad chaotic behavior for some

combinations of model parameters.

1.2.2 Properties of an ideal sensitivity analysis method

We plan to use methods that are global and model-in the sense of being independent
from assumptions about the model, such as lineadkyitivity and so on. These methods
must be capable of testing the robustness andamtevof a model-based analysis in the
presence of uncertainties. Whenever possible, wadvalso like our methods to be

guantitative. The desirable properties of sengjtimnalysis are as follows:

* The ability to cope with the influence of scale ahdpe The influence of the
input should incorporate the effect of the rangenpiit variation and the form
of its probability density function (pdf). It matseewhether the pdf of an input
factor is uniform or normal, and what the distribatparameters are.

* To include multidimensional averagindn a local approach to SAe.g

S =0Y/0X, ), one computes partial derivatives. This is tieatfof the variation

of a factor when all others are kept constant atdéntral (nominal) value. A
global method should instead evaluate the effeet faictor while all others are

also varying.
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* Being model independenthe method should work regardless of the adétivi
or linearity of the model. A global sensitivity nsese must be able to appreciate
the so-called interaction effect, which is espdgiatportant for non-linear, non-
additive models. These arise when the effect ohgimag two factors is different
from the sum of their individual effects.

* Being able to treat grouped factors as if they warngle factorsThis property
of synthesis is essential for the agility of theemretation of the results. One
would not want to be confronted with an SA madédaerise tables of sensitivity

measures.

Beside the properties above, we would like thersgfor the SA itself to be as stringent
as possible. It may well happen that using differeeasures of sensitivity, different
experts obtain different relative ranking of thuence of the various input factors (see
OECD, 1993 for an example). This happens if theectbje of the analysis is left

unspecified. Just as there are several definittdngsk (Risk Newsletter, 1987), there

may be several definitions of importance.

1.3 Local Vs. Global approaches

Two quite different schools of thought may be ideed (Saltelliet al, 1997): the local
sensitivity analysis school and the global analgsis. In the first school, the local
response of the output(s), obtained by varyingrpatars one at a time and holding the
others fixes to a central (nominal) value, is iniggged; this involves partial derivatives,
possibly normalized by the nominal value of theapagter or by its standard deviation.
All the analysis is run at a given central pointhe space of the input parameters, and
the volume of the region explored is nil. The setenhool is more ambitious in two
respects: firstly, the input parameters space pboed within a finite (or even infinite)
region and secondly, the variation of the outpdued by a parameter is taken globally,

i.e. averaged over the variation over all paranseter

12



A pragmatic and empirical approach has dominatedjkbbal sensitivity school, due to
the intrinsic difficulty of building an effectivelgbal sensitivity measure over a finite
space of variation for the input parameters. Is tespect the work of researchers like
Iman, Conover, Helton, was fundamental (see Helt®93 for a review). These
investigators have tested and promoted the useboist and reliable methods based on
Monte Carlo regression and correlation analysid,anthe use of scatterplots. Methods
such as Standardized Regression Coefficients (SB@)elation measures (Pearson),
Partial Correlation Coefficients (PCC), have beesedu with some success. The
aforementioned authors favored the use of rankstoamed measures (Standardized
Rank Regression Coefficients, SRRC, Spearman etior| Partial Rank Correlation
Coefficients, PRCC) for non-linear models. Thes¢hoas offer a robust and easy to
implement SA, provided that the input-output relaship is monotonic. The ordering
of importance of the input factors based on theéatsics must be considered with
caution, especially when the associated model icosit of determination is smaller
than one. In any case, the analysis should be demesl as qualitative rather than
guantitative (for instance, SRC gives informatiantbe liar regression model that is
used to describe the system model, not on theraystedel itself; for rank-transformed
statistics see Saltelit al 1993 and Saltelli & Sobol’, 1995).

Non-linear, non—monotonic problems are often ented in everyday model
building. These problems call for a non-linear Shich is independent form

assumptions about the model structure.

1.3.1 Local sensitivity analysis

Until the 90’s, and often today as well, sensijiainalysis was conceived adozal
measure of the effect of a given input on a giveipot. In these local sensitivity

measures the effect ok, is observed while assuming all other factors fixétis

approach falls, hence, in the class of the oneeiffaat—a—time (OAT) methods.

The simplest and most intuitive way to obtain aalagensitivity index is to compute
derivatives (Tomovic & Vukobratovic, 1972; see Varet al, 1999; Grievank, 2000

13



for recent review). The sensitivity of the outpatto a perturbation of an input factor

X; is estimated at a given valux; as

v, =20 (1.1)

In situations wherey and X, have different ranges of uncertainty, a more baienc

measure can be obtained normalizing the derivabyedke factors’ standard deviations:

oY aX |, |

The estimation of these local measures can beydast#olving systems of derivatives

or taking incremental ratios.

Local sensitivities are useful for a variety of kpgtions, such as the solution of inverse
problems, e.g., relating macroscopic observablessystem, such as kinetic constants,
to the quantum mechanics properties of the systemie analysis of runaway and
parametric sensitivity of various types of chemioahctors. (Turanyi, 1990; Rabitz
1989;, Saltelliet al, 2012).

Local sensitivities provide the slope of the cad¢etl model output in the parameter
space at a given set of values. In many applicafitims is exactly the information
needed. In other areas, such as uncertainty asalpsial SA is a computationally
efficient technique that allows a rapid preliminagyploration of the model. The

calculation of local sensitivities is much fastean that of global sensitivities.

One shortcoming of the linear sensitivity appro&lhhat it is not possible to assess

effectively the impact of possible differenceshe scale of variation of the input factors

14



(unless the model itself is linear). When significancertainty exists in the input factors,
the linear sensitivities alone are not likely t@oyide a reliable estimator of the output
uncertainty in the model. When the model is noedinand various input variables are
affected by uncertainties of different orders ofgmé&ude, a global sensitivity method

should be used.

1.3.2 Global sensitivity analysis

In global SA, the probability density functions feach factor provide the input for the
analysis. These distributions are valuable sineg tepresent our knowledge (or lack of
it) with respect to the model and its parameteioratA SA experiment is usually

considered to be global when all the parametersvaried simultaneously and the

sensitivity is measured over the entire range ohaaput parameter.

Global SA techniques have been discussed by Cekiat (1978), Iman & Helton
(1988), Sobol' (1990b), Heltort al (1991) and Saltelli & Homma (1992), among

others.

One advantage of these methods is that they exjplerentire interval of definition of

each factor. Another advantage is that each ‘éffeca factor is in fact an average over
the possible values of all the other factors. Glabathods have the following two

properties (Satellet al, 2000):

1. the inclusion of influence of scale and shapéhe sensitivity estimates of
individual factors incorporate the effect of thenga and the shape of their
probability density functions.

2. multidimensional averagingrhe sensitivity estimates of individual actors ar

evaluated varying all other factors as well.

A global SA technique thus incorporates the infeeenf the whole range of variation
and the form of the probability density functiontbé& input.

Another general consideration with respect to tlubal, explorative nonparametric

methods for the sensitivity analysis just descrilsethat these have a better chance of
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being resilient towards type Il errors than locder{vative—based) methods. The
possibility of important factors being overlookeddangerous or critical combinations
of input factors neglected decreases with the lefvekploration of the space of the input
factors (Farrell, 2007). The attention paid in glibimethods to interaction effects is also
a protection against type Il errors. In Saltellial. (2012) we show that, for even a
relatively simple and well-studied chemical reactgstem, global sensitivity analysis
can lead to the identification of a larger ‘runawpgrtion in the space of the input
factors, than could previously be identified.

Several global methods have been developed sire®Qls: screening methods by
Morris (1991), non-parametric or regression-baseshitelli & Marivoet (1990), Helton
(1993), variance-based methods (Sobol’ 1993, OakleyHagan 2004), density-based
(Park & Ahn 1994, Churet al 2000, Borgonovo 2007, Liu & Homma, 2009) and
expected—value—of-information (EVI) based (Oaldegl 2010). The common feature
of the last three classes of methods is that thegthe one hand the most informative
in terms of uncertainty appraisal and on the ottend the most computationally
intensive (Plischke et al., 2013).

Operatively, global sensitivity analysis is perf@uraccording to the following steps:

1. specify the target function and select the inptiisterest

2. assign a distribution function to the selecteddegtform available data, expert
opinion or physical bounding considerations oramaestimation process

3. generate an input set (sample) of shkkdrom the factors distribution according
to an appropriate design

4. evaluate the model at each sample point obtaifihgralues for the target
function

5. estimate the influence or relative importance afhemput factor on the target

function

In point 3, the input set can be generated by usingmber of sampling designs: purely
random generation from the assigned distributiosisngle Monte Carlo), Latin
hypercube sampling (LHS) (McKagt al, 1979), LPr sequences (Sobol’, 1967),

winding stairs (Jansen, 1994), or other more @& $&phisticated techniques. We have
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found considerable advantages in using quasi-randdétn sequences (Homma &
Saltelli, 1994, 1996).

The first four points constitute uncertainty anay3he N values computed for the
target function can be used to display the empidistribution of the model output, thus
guantifying the variation in the model responsee Tifth point is sensitivity analysis:
different methods can be used to apportion thertaiogy in the target function to the
inputs. In variance-based methods, for instantgpiaal representation of the results is
in the form of a pie chart (Fig. 1.1) that partitsothe variance of the output according
to the contribution of each input factor. In thhesis we focus exclusively on variance-
based methods.

Fig. 1.1
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Capitolo 2

VARIANCE-BASED SENSITIVITY ANALYSIS

2.1 Introduction

Variance—based methods are based on the decoropasitthe variance of the model

output into terms of increasing dimensionality (8I993).

The idea of using variance in SA dates back toetinidy 1970s (Cukieet al, 1973).
Cukier and colleagues not only proposed conditioaaknces for a SA based on first—
order effects, but were already aware of the nedteat higher—order terms and of the
underlying variance decomposition theorems. Thathwod, known as FAST (Fourier
Amplitude Sensitivity Test) although quite effeejvenjoyed limited success among
practitioners not least because of the difficuttyncoding it. The method did not allow
the computation of higher—order indices, althougs was much later made possible by
an extension of the method, EFAST, developed bielBadt al, (1999).

Hora and Iman (1986), introduced the uncertaintyartance of a factok; defined as:
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I, = Var (y)-E[Var (y| x)] (2.1)

Later, the same authors (Iman & Hora, 1990) progpomenew statistic based on

estimating the following quantity:

Var, [E (log y[x)]
Var [log V]

(2.2)

whereVar stands for variance over all the possible valdes; oand E[log y|x] is

estimated using linear regression. This solutiatha advantage of robustness but, as

observed by the authors, the conclusions drawlogy are not easily converted back

toy.

In 1993, Sobol’ developed an original extensiorbekign of Experiments (DOE) to
the world of numerical experiments in which theatotariance of the model output is
assumed to be made up of terms of increasing diowalgy (Sobol’, 1993). Sobol’
indices are superior to the original FAST in thnet tcomputation of the higher interaction
terms is very natural and is similar to the compaitaof the main effects. Each effect
(main or otherwise) is computed by evaluating atiginhensional integral via a Monte
Carlo (MC) method. Saltelli, (2002) and Saltedti al (2010) further improved this
method.
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2.4 Properties of Variance—based methods

Variance—based methods are model independentwbeyregardless to the additivity
or linearity of the model. We can thus study thespnce of interactions among the input

factors also for non—linear, non—additive models.

They can also capture the influence of the fulgeaof variation of each factor and they
are capable of dealing with groups of factors: uade factors might pertain to different
logical types, and it might be desirable to decosepibe uncertainty according to these

types.

The drawback of variance—based measures is theipuaiational cost in terms of
number of model runs and the fact that the infolomadn the uncertainty of the model
output is captured by the second order momenkjigncase, we lose the full information

of the uncertainty of the output which is givenitsydistribution.

2.5 Variance decomposition and sensitivity indices

The assessment and presentation of the effectsceftainty are now widely recognized
as important parts of analyses for complex systé&mnthe simplest level, such analyses

can be viewed as the study of functions of the form

y =f(X) (2.3)

where the functiorf represents the model under stuays[X;,X,,...] is a vector of

model inputs defined over a multi-dimensional spacandy =[V;,Y,,...] is a vector

of model predictions. The goal of an uncertaintglgsis is to determine the uncertainty
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in the elements oy that results from uncertainty in the elementX ofA typical adjunct

to an uncertainty analysis is a sensitivity analyaihich attempts to determine how the

uncertainty in individual elements of affects the uncertainty in the elementsyafin

practice,f can be quite complex (e.g., one or more computegrams involving

complex algorithms and many thousands of linesrofjiramming); furtherx andy

are often of high dimension.

To carry out uncertainty and sensitivity analygbs, uncertainty in the elements »f

must be characterized.

For simplicity we treat each inpu as random variable which is independent and

uniformly distributed over the unit interval
x. OU [0,1] (2.4)

So

p(x)=1 (2.5)

and all the integrals can be written without ingggm limits
[ xp0x)dx =[x dx (2.6)
Q

For notational convenience the outputin Eq. (1) will be assumed to be scalar. With

this assumption, the representation in Eq. (1) in&ss0
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y=1f(x) (2.7)

In a variance—based method we are interested watfi@nce of the model output and its
decomposition. For this purpose we start froma@dwgosition of our modey = f (X)

into a High Dimensional Model Representation (HDMR&bitz et al. (1999)

y=1(x) = fo"'z fi()ﬂ)"'zz fij ()ﬂlxj)"'---"' fio k(4% %) (2.8)

i i
f(x)OL*[01] xO[01" (2.9)

where f(X) is a square integrable functioh over Q, the k —dimensional unit

hypercube.

This decomposition is not unique (infinite wayssexo build an HDMR) as the lower

order terms can be selected arbitrarily and thadsgorder terms can be written as the

difference betweerf (X) and the terms of lower order.

2.5.1 ANOVA-HDMR decompositions

It can be proven that if each term in the HDMRhssen such that:

f i (X,-o%)dx =0 for i, =i,...j (2.10)

O ey
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then all the terms in (2.8) are orthogonal and lsarexpressed as integrals 6¢X) .

Indeed,

fO:E(Y) (2.112)
fi (X)) =BV [ X;) - E(Y) (2.12)
fij(xi’xj):E(lei’Xj)_fi(Xi)_fj(Xj) (2.13)

fijk(xi’xj’xk): E(Y|xivxjvxk)_ fij(xivxj)_ fi (Xi, X, ) = fjk(xjvxk)

(2.14)

The HDMR decomposition is called ANOVA-HDMR andusique. Thef, (X,) are
referred to as main effects of , the f; (X;, X,) are two-way interactions between the

pairs (X;, X;), etc.

Squaring (2) and integrating ove we get the ANOVA decomposition:

VN =XV 4TV, + SV +.4Vy,, (2.15)
where:
V, =V (X)] =VIE(Y | X))] (2.16)

Vi =V O XD =VIEY | X, X)) = £06) = £, (X)) =VIE(Y [ X, X))} =V, =V,
(2.17)
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Vijk =V[ fijk (Xi, xj X =VIE(Y | X, xj » Xl _\/ij =V _ij
(2.18)

The single term¥/, ,Vi,- ,Vi,-k ,---, are called partial variances and they are orthalgdNo

covariances are involved in the decomposition.

We can define the following sensitivity indices:

= —1— are first order sensitivity indices (also calledimeffects).

V(Y)
S =V, /V(Y) are second order sensitivity indices (highlightiwg—way interactions)

Si =V /V(Y) are third order sensitivity indices (highlightinghree—way

interactions),

. (X,,--% ) =0. Thus, the functional

1-dg

and so on. The equalitg , =0 means thatf

structure of f§) can be investigated by estimating the indiges.

2.5.2 Main effects

The termV, is the expected amount of variance that wouldelpeoved from the total

output variance, if we were able to learn the Wralee of X; within its uncertainty range.

S indicates the relative importance of an individug@lut X, in driving output variance
and can be seen as indicating where to directtaffahe future in order to reduce that

uncertainty.
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If it were possible to observe one of tife, learn its true value exactly, then we would

choose that with the largest main effect. Of couitge very rare that the true value of a

given input can be learnt exactly.

Nevertheless, the analysis shows where there isgthatest potential for output

uncertainty reduction through new research.

This type of measure is used before conductinglibration experiment on a given
input. A high value for the main effect of a giveput, indicates that this input is a good
candidate for calibration via observations of thedel output.

We can also interprdi— S as the minimum value of the expected quadrati Vadsen
we approximate f (X) with the function E(Y | X,). If X, is important, then the
approximating functionE(Y | X;) explains much of the variance df(X) and § is

high. Simultaneous variation of all the other irigt acknowledged when estimating

these indices.

2.5.3 Joint effects and closed indices

If we approximatef (X) by a two-variable functiorfe(Y | X;, X;), then the minimum
expected quadratic loss\EY) —=V[E(Y | X;, X;)], which corresponds to the maximum

value of V[E(Y | X;, X,)]. We denote this term a4 (c stands for closed). This term

can be interpreted as:

- the expected reduction of output variance when awehointly learnt the true

value of the pai(X;, X,), or

- the expected fraction of the output variance teaemoved when the true value

of X; and X, is learnt, or

- the fraction of the output variance that is exdiy the approximating function
ECY X, X,).
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For orthogonal inputs, and only in this case, weeha

VIE(Y [ X, X )=V, +V, +V, . (2.19)

Hence,V; is the fraction of the output variance due solelthe interaction betweek;
and X; . When we learn about botk; and X, thenV; is the extra amount of output

variance removed over and above the variahceandV;, .

2.5.4 Total effects

The total effect index accounts for the total ciimiion to the output variation due to

X,, i.e. its first—order effect plus all higherder effects due to interactions and it is

given by the sum of all the sensitivity indices @hinclude the factor in question, not
considering the sensitivity indices that do notteanthat factor.

For a threefactor model, for example, the total effect Xf is:

S S RS PR PRAS P (2.20)

Total sensitivity indices are useful because thieyaa overall measure of importance of
a given factor. Fok factors, it would be very demanding to estimaténalices at any
order given that this number & -1, problem known asthe curse of dimensionality
(Rabitz, 1999). Total indices can be estimatedctlyavithout the need to estimate each
term of the decomposition. (Homma and Saltelli,@)9%or this reason we customarily
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tend to compute the set of &l plus the set of5;; which gives a fairly good description

of the model sensitivities at a more reasonablé cos

2.6 Implications and interpretations of the sensitiviy indices

By definition, S;; is surely greater tha (or equal toS in the caseX; is not involved

in any interaction with other factors).

The differenceS, - S is a measure of how mucX, is involved in interactions with

any other factor.

The sum of all the§ is usually less than 1 (for neadditive models).

The sum of all theS is equal to 1 if the model is perfectly additive (interactions

between factors)

The sum of all the5,, is usually greater than 1 (for neadditive models).
The sum of all the5;; is equal to 1 if the model is perfectly additive.

An indicator of the presence of interactions in@del is given byl—ZS : this value
is the fraction of the output variance that is explained by the single factors.
The difference)_ S, -1 is another indicator of the presence of interaxtjcut this

indicator weights interactions of higher order muunbre than interactions of lower

order.

The conditionS;; =0 is necessary and sufficient fof, to be a non influential factor. If
S;; 00 then X, can be fixed at any value within its range of utaiaty without

appreciably affecting the value of the output vac&V (y) .
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Another way to define total indices is to decompibseoutput variancg(y) in terms of
main effect and residual conditioning with resptxtall the factors but the one of

interest, i.e.X_; (Homma and Saltelli, 1996):

V(y) =V(E(Y X)) +EV (y[x5)] (2.21)

The measuré/(y) -V (E(y|x,))=E[V(y|x,)] is the remaining variance of that
would be left on average if we could determine titue values ofx_;, of the k-1

remaining factors. The average is calculated oNgoasible combinations of; since
X_; are uncertain factors and their true values akaamn. Dividing byV(y) we obtain

the total effect index foiX; :

_ENM(yIxi)] =1_V [E(y[x.)]

3TV vy

(2.22)

2.7 The Jansen formula for the computation of sensitity indices

Variance based methods have assessed themselasaiile and effective among the
various available techniques for sensitivity analys model output. Practitioners can

in principle describe the sensitivity pattern omadel Y = f (X, X, ,..., X,) with k

uncertain input factors via a full decompositiontbé varianceV of Y into terms

depending on the factors and their interactionalt¢si et al, 2009)

In this section we present a measure to computentiie effects and the total effects
using the mean—square difference proposed by Jabsén(1994).
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2.7.1 Assumptions

Jansenet al. (1994) assumed a scalar model outputdepending on a number of

stochastically independent random input vectdrs, f (X, X, ,..., X,):

Y = £(X, Xy e X, (2.23)

The functionf is deterministic, it is evaluated by simulatioranay represent a single
output or a combination of outputs. In this casevariability of Y will be characterized

by its variance. Jansat al, (1994) assumed that has finite mean and variance; this

is guaranteed for instance whénis bounded. The use of the variance as measure of

uncertainty has an economic rationale: if the loassed by a prediction error is

proportional to the square of that error, the etgubtoss is proportional to the variance.

Uncertainty analysis consists of the investigawbrthe output distribution, given the
model and the distribution of the inputs. One maxestigate théull variance,that is

the variance olY induced by all sourceX; collectively. LetU denote a group of one
or more sources of uncertaint¥ ; then, by assumptiort) is independent of all the

other sources of uncertainty. With respect Wg two variance components are
particularly interesting. Firstly, thip marginal variancérom U , which is defined as
the expected reduction of the varianceYofin caseU should become fully known,
whereas the other inputs remain as variable agdefzcondly, théottom marginal
variancefrom U, defined as the expected value of the varianc¥ @i case all inputs
exceptU should become fully knowrl) remaining as variable as before. Sioce
does not know in advance at what value the sowdésecome fixed, one can only
determine the distribution of the two variances tiered; Janseat al, (1994) content

themselves with thmean of these distributions.
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2.7.2 Decomposition of the variance caused by two inpuattors

Janseret al, (1994) started first from the decomposition of hrediction variance
caused by two stochastically independent inpubfacilhe extension to a larger number

of independent inputs is shown in the next section.

If an input vector, say , becomes fully known at value, whereas the other input
vector, sayV , independent o , remains as uncertain as before, the best prediofion
Y in the least squares sense will be the meafi(alV). The situation is illustrated in
Table | for the case that andV can assume a finite number (4 and 5, respectiwély)

equiprobable values.

Table 1

U Vi1 Y12 Yis Y14 Yis Y-
U, Yo Y22 Y3 You Yas Y-
U, Ya1 Ya2 Yas Yaa Yas Ys-
u, Ya Yaz Yas Yaa Yas Y-

A dot index indicates that the mean has been takenthe index;f(y,Vv) is denoted
by y; . The left column and the upper row contain thei@alassumed by andV. The

best predictions are conditional means of the modgdutY . The bottom right element

y.. is the best prediction when neithérnor V are known. The right column and the
bottom row contain the best predictions at the mivalue ofU respectivelyV. The

outputy, can be decomposed into general mean, main etiadtgteractions, as usual

in analysis of variance:
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Yi =Yt (oY) (Y =YD Y (YY) (Y )] (2.24)

In the general case, the functidi{uv) can be decomposed as follows. Ligtdenote

the best prediction whed andV are unknown:

f,=EfU\V) (2.25)

The best predictions whesh or V have become fixed at or v respectively, are given

by Ef(uV) and EfU,V) respectively. Letf (u) and f,(v) denote the corrections tf

whenU respectively get fixed:

f(u)=EfuV)-f, (2.26)

f,(\)=E f(U,v)-f, (2.27)

and let f(u,v) denote what is left. Theri(uVv) may be decomposed:

FUV) = fo + £, + F,(0) + f,,WY) (2.28)

which is sometimes called thealysis of variance decomposition bf Accordingly f,
is called thegeneral mean f,(u) and f,(v) are callednain effectof u and v while

f,(uV) is called thenteractionof u andv. Thefull variance of f neatly falls apart:
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VarfU,V)=Varf,U)+Varf,(V)+Varf, U,V) (2.29)

If U were to become fixed at, the best prediction would bé, + f,(u), leaving
f,(V)+f,(,V) as prediction error, with reduced varianver f (V) +Var f,(U,V),

which is a function ofu .

It is not known in advance at which valUeshould become fixed. One might wish to
calculate the distribution of this reduced varigrimé we will be content with the mean

of the reduced variance over, that is Var f (V) + Var f,,(U,V) . Accordingly, thetop

marginal variancerom U, the expected variance reduction in the output wagalue

to the fixing of U while V remains as variable as before, is given \tar f,(U).

Similarly, thebottom marginal variancéom V, the expected variance left over when

only V remains uncertain, equal&r f, (V) +Var f,,U,V).

The top marginal variance frotd is seen to be the variance of the main effedt of
whereas the bottom marginal variance fréns equal to the sum of the variances of the

main effect ofV and the interaction betwed&h andV .

Let u andu, denote two independent realizationstbf and letv denote some fixed
value that can be assumedWyThen f(u,Vv) and f(u,,v) are independent realizations
of fU,V) given V=v. Thus d= f(u,v)- f(u,,v) has zero expectation, while its
variance, i.e. its expected square, is twice tmameae of f U,V) givenV =v. So }édz

is an unbiased estimate of this latter varianc®lllbws that ifvis a random realization

of V, }édz is an unbiased estimate of what we defined asdtierbh marginal variance

from sourcelJ :

Bottom marginal variance =;J‘[f(x) - f(u',v)] dxdu’ (2.30)
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Note that the top marginal variance frdth is obtained by subtracting the bottom

marginal variance fronv from the full variance ol

Var f,(U) = Var f U,V) - (Var f,(V) + Var f ,(U,V)) (2.31)

The top and bottom marginal variances can be gknedao the case of k input factors
as follows (Jansen et al., 1999):

Top marginal variance oX;: Var[E(Y|)§)]

Bottom marginal variance of,: E [Var (Y|X_ I)]

These are, respectively, the numerators of thedider and total sensitivity indices:

_Var (B [Y]X])
B Var(Y)

(2.32)

_EoVag (VXD ) Vag (B IYIX.])
Var(Y) var(Y)

S (2.33)

where X _; denotes the set of all factors byt and the mean oY is taken over all
possible values oK _, while keeping X, fixed. The outer variance is taken over all

possible values oK . .

In such case, the formula of Jansen for the tatlites becomes:
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1

:mj[ f(x)— f(X,x,)]°dxcK (2.34)

ST

This formula has been proven to be more efficieith wespect to that proposed by
Sobol’ (Saltelli et al., 2000, p.177) in the setisa:

Var (Sﬁianse”) < Var( $°b°‘) (2.35)

2.7.3 Monte Carlo implementation of the Jansen Formula

Here we describe the Monte—Carlo implementatiofaofken formula for the estimation
of the total—effect indices. The procedure, desttilm Saltelliet al (2010), starts by
generating two N xk) independent sample matrices, and B, where N is the base
sample size (i.e. the basis for the Monte Carlomaation of the multi-dimensional
integral) andk the number of input factors. Usually, valuesNfis of the order of a
few hundreds.

We now introduce another matriA®, where all columns are from except thei™

column which is fromB . Jansen’s formula (2.34) for calculatii®y can be computed

from the pair of matrice® andA{ as follows:
LS a), - £(AD) | 2
org 2L~ F(AD), (2:36)
j=1

where (A); denotes thej™ row of matrix A (Sobol’, 1990). The correspondent total

sensitivity index is
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13 2
. :ZN;[f(A)j -1(A9),]

V) (2.37)

Here the argumentA& and A{ have in common the coordinat¥s; , and can thus be
seen as separated by a step inXhalirection.

Fig. 1 summarize the way in which we can constthet specific design required to
calculate the sensitivity indices using the Jarfeemula with three input factors. The
red point represent matri® , the vertex of the cube opposite to points represkby

matrix A .

Fig.1
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Summary of the Jansen formula

The cost of the Monte—Carlo implementation canlberaarized as follows.

A number of simulation equal t(2[N) is needed for computiny corresponding to
matrix A, while (k[N) simulations are needed to compittefrom matricesA{ for

all factors. As a result the cost of the analysibl(k +1) .
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CHAPTER 3

TOTAL SENSITIVITY MEASURES FROM GIVEN
DATA

3.1Introduction

Sensitivity analysis often requires a considerailember of model executions, one for
each sample point considered. This is especiallywhen the simulation model is very
expensive to run (e.g. one run requires minutdsoars). It is custom practice to try to
reduce the number of executions at most, in ordesbtain estimates of sensitivity

indices of a given accuracy.

The analyst wishing to perform sensitivity analysa find himself in two different
situations: one in which he still has to execut iiodel runs, and one in which some

model runs are already available.
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In the first case the analyst can use a suitaldegdef the input space and adopt, for
example, the Sobol’ method (or random balance desaigd other Fourier- based
approaches, see chapter 5 for details), to estinvaaiance-based sensitivity indices. In
other words, the analyst decides where to locaenthut points, and runs the model on

these. Then he uses the model output to computel’Sadices.

In the second case, the input points and the qoyreng model outputs are “given”,
i.e. data might come either from measurements perxents, or from a design that is
not specifically intended for sensitivity analydience, given data are already available
and the analyst wishes to use them for the seitgitanalysis in order to save
computational time. Therefore, techniques shoulc\mElable to estimate sensitivity
indices for given data. The initial objective ofettpresent thesis is to devise a

methodology of this kind.

Some approaches to sensitivity analysis are alraadyable for given data (Paruado

al., 2011) but they focus on the estimation of fosder indices. The objective of the
thesis is more general: to devise a “given datgr@gch for the estimation of total
sensitivity indices, which takes into consideratittve overall effect of interactions
among model inputs. No “given data” methodologyvsilable today for estimating

total sensitivity indices.

3.2 Estimating total effects from given data

The Monte Carlo implementation of the Jansen foanpiesented in secti@4.3 can

be used when the analyst can choose the desigts@oid build the matriced and

AY . But when data are given (they are indeed repteddny matrix A ), it is not
possible to buiIdAg) starting from A, as we can not generate another independent

matrix, B . Therefore, A needs to be found from the set of given data.
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As shown in the previous chapter, each rowMﬁ represents a step in thg direction
with respect to (the rows o\ . We need to find, among the given data, thosedteat

as closest as possible to the direction (i.e. the line passing through and A{)).

We can construct the region of search for pomgé within a cone (see Fig. 4.1) with

vertex in A and axis along th&; direction.

For each poirt X, = (X1, X;5....X; ), j=1,..., N of matrixA, the best candidate fox{’

is the point ofA that maximizes

cosa (X, ,X') = i =% (3.1)

) \/Zikzl()_{ii -x7)?

with respecttoj =1, ..., N.

We can do this by calculating for each poxjt= (X;;,X;,...,X; its)distance from all

the other points of matriX , and for each directioh (column of A) we compute the

angle between each poixt and the projection of the others on the directioiwe

want in this way to identify, for each vectgy of matrix A, the vector (pointX inside
the cone, which is as close as possible to thettreof X; . For a given cone aperture

we expect there are some points around it. We acdii the points with the smallest
angle and then we run the model. We proceed theagh the Jansen formula for the
estimation of the total—effect indices. If there ap points inside the cone, then the point

X; is skipped. The aperture of the cone can be isegkto improve the likelihood that

points fall within it; but, in this case the appmmation error would increase, too.

1 Each point is a row in the matrix. Given the matid the output we want to estimagq .
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Fig. 4.1

Given the aperturer , for each poinf(j , inside the cone, we choose the oie,

closest as possible to the directibriThe darker dots are the points inside the cone

We coded this approach in a MATLAB script for penfong the sensitivity analysis
described above. We made several tests of thetoaaify the reliability of the results.

In the next section we describe the code in datail present the results obtained.
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3.3 Total sensitivity indices estimated using the conapproach

We first created a MATLAB code (appendix A.1l). Orsat the aperture of the cone
(alpha), this code is able to capture, for eachtpafi the matrix of interest and for each
direction, all the partner points with the “mininzgderture” € alpha). From those points
the code selects those which are better than beexti.e. throwing out the points where
the partner is not aligned “straight enough” whk tirection of the cone. We then used
the Jansen formula to calculate the total sensitiindices, hence automatically

generating a training data index set.

First of all we wanted to test the new code omgs additive function and so we chose
the Corner Peakfunction. We tested the code at different samdessranging from
128 to 16384 at a step of multiple of two for 1@plicates. We wanted to test its

performance at increasing number of input fact@rs:2 k =3k =4.

The results are reported below and plotted in 8gdor each number of input factors.

Fig. 4.2
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Boxplots of total sensitivity indices against tlagrple size for the Corner Peak function test cate w
2 factors. Cone aperture is set at alpha=5. Ar@ltialue are shown by a green line

2 See paragraph 4.5.1 for details on this function
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Fig. 4.3
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Fig. 4.4

Boxplots of total sensitivity indices against ttaerple size for the Corner Peak function test cate w
4 factors. Cone aperture is set at alpha=5. Ar@lytialue are shown by a green line
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We wanted then to test the performance of the appeoach under different complexity.
We chose a non-monotonic test function, the Ishijaomsing QR numbers. The
peculiarity of this function is the absence of &igddi effect onY but the presence of

interaction betweerX; and X;.

We tested the code at different apertures of time ¢dmom alpha=5 to alpha=20 at step
of 2.5 and at different sample size, from 128 t88bat step of multiple of two each of

one run for 100 replicates. We added a dummy vigriab
The results are reported below and plotted in #gudor each cone aperture.

S,, converges to a value under the analytical valuethedinderestimation grows as
the aperture grows and as sample size incre&eshows a better convergence than
S;, but it is still quite underestimate®,, shows an evident variability well below the
analytical value S;, has a high variability up to a sample size of 2@4&rrespondence

of the apertures alpha=5 and alpha=7.5. From alphatconverges to zero as the

sample size increases.

Fig. 4.5
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3 See paragraph 4.5.1 for details on this function
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Fig. 4.7
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Since the error bands seem to be underestimanteedpmputed the standard deviation
(RMSE) for each total index at different apertuagsl at increasing sample size. We
reported the values in the following tables andttptb them in figures (linear and
logarithmic scales).

Table 1
S;; RMSE
SAMPLE SIZE
ALPHAS 128 256 512 1024 2048 4096 8192 16384
5 NaN NaN 0,328039 0,237512 0,189313 0,15711 0,09284 0,093044
7.5 NaN 0,313593 0,188105 0,19047 0,157532 0,143551 0,087579 0,09259
10 0,327981 0,166792 0,141566 0,117348 0,130651 0,138187 0,087345 0,092595
12.5 0,255881 0,144303 0,130042 0,11587 0,137096 0,139842 0,08728 0,094583
15 0,209443 0,122059 0,116149 0,112253 0,135702 0,139429 0,08728 0,094583
17.5 0,161419 0,103153 0,088709 0,111127 0,132963 0,133672 0,087373 0,093286
20 0,105726 0,084431 0,094203 0,108926 0,135593 0,136124 0,088111 0,091866
Table 2
RMSE ST2
SAMPLE SIZE
ALPHAS 128 256 512 1024 2048 4096 8192 16384
5] NaN NaN 0,183069 0,231008 0,224038 0,229366 0,169039 0,197598
75 NaN 0,198912 0,146638 0,198134 0,215758 0,219881 0,185675 0,201513
10 0,181338 0,164619 0,195832 0,212648 0,208876 0,2274 0,185766 0,201941
12.5 0,247967 0,186332 0,219505 0,222493 0,212235 0,220056 0,183626 0,20114
15 0,211586 0,177738 0,220036 0,223834 0,212329 0,220055 0,183626 0,20114
17.5 0,178119 0,177127 0,22536 0,222236 0,210656 0,225889 0,186949 0,200866
20 0,178556 0,173053 0,219431 0,222162 0,215533 0,230366 0,186483 0,200678
Table 3
RMSE ST3
SAMPLE SIZE
ALPHAS 128 256 512 1024 2048 4096 8192 16384
5 0,304444 0,167278 0,122508 0,073034 0,037135 0,043697 0,023469 0,028186
7.5 0,330927 0,103788 0,061942 0,017677 0,029258 0,033854 0,0092 0,025832
10 0,167721 0,07493 0,065635 0,034666 0,021834 0,023898 0,008485 0,025807
12.5 0,112686 0,074107 0,078229 0,058457 0,020514 0,025954 0,008686 0,028037
15 0,159332 0,087462 0,098058 0,067879 0,021131 0,025749 0,008687 0,028037
17.5 0,184008 0,101586 0,102094 0,068714 0,021817 0,021568 0,008654 0,023719
20 0,20698 0,123912 0,103203 0,069057 0,019939 0,025448 0,008364 0,02609
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Table 4

RMSE ST4
SAMPLE SIZE
ALPHAS 128 256 512 1024 2048 4096 8192 16384
5 0,214915 0,180612 0,119395 0,08592 0,057566 0,040115 0,018182 0,011988
7.5 0,024651 0,037717 0,039773 0,049078 0,041317 0,032143 0,017724 0,011855
10 0,123858 0,08529 0,066869 0,068011 0,051673 0,037491 0,018067 0,011993
12.5 0,157889 0,129993 0,09727 0,077454 0,055492 0,039448 0,018055 0,011955
15 0,183238 0,151488 0,107694 0,082334 0,057238 0,040018 0,018056 0,011955
17.5 0,206269 0,166532 0,116383 0,085301 0,058002 0,03991 0,018198 0,01194
20 0,214915 0,180612 0,119395 0,08592 0,057566 0,040115 0,018182 0,011988

When the sample size is small the RMSE decreast® agerture of the cone grows.
This is because the greater the aperture, therlpetiets are captured by the cone. But
when the sample size increases, the best poinesdieeady been captured by the cone
even at small aperture. Increasing the aperture doechange anything. This is well
expressed in Fig. 4.12 and Fig. 4.14 at samplelsd8eand 16384.
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Fig. 4.13 reflects the irregular trend of the ind&x. Apparently, the cone aperture does

not influence the estimates except for the smatlasiple size (128 and 256).

Fig. 4.13
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Fig. 4.15 shows the perfect trend 8f,. At small sample sizes when, the aperture is
alpha=5, the cone captures the best points insideye may have empty cones for some
points and for some directions. That's why thereate improves as the cone aperture
grows. But from alpha=7.5 the best point have dliydzeen captured and the estimate
does not change. When the sample size is high (82826384) the aperture does not

influence the estimate because the best pointsdiea&dy been inside the cone.

Fig. 4.15
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To give an idea of how many points we can finddadhe cone at different apertures,

as the sample size grows, we calculated thosegpant plotted them in Fig. 4.16.

We called “matches” the average of the number afdgpoints, for each sensitivity

index, captured by the cone and used to calcuiatéour indices altogether.
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As the sample size increases Fig. 4.16 shows hleatumber of good points captured
by the cone grows, and it grows to a greater extéhtthe increasing of the aperture of
the cone. At sample size 15000 we found on aver&@e points inside the cone, Iin
correspondence of alpha=5.

Fig. 4.16
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3.4 Conclusions

In SA the estimation of higher order effects amdparticular, total effects from given

data still remains an open problem.

In this chapter we presented a new technique fomasng variance—based total
sensitivity indices from given data because we @b try to give a contribution for

the solution of this problem.
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We created a unique algorithm, that we calleahe approach and investigated its use
in estimation of total indices. The algorithm hagb implemented in a Matlab code for

further tests and outcome analysis.

During our work, we specifically focused on totfHkets estimation, being aware of the
concrete possibility of not being able to find @aali solution. Thus, the core feature of

the study was to investigate and define a possiyeoach to the problem.

In SA, the Jansen formula is efficiently used tlwekate total effects indices when data
are designed ad hoc. But when data are givenfdimaula cannot be applied because of
the impossibility to build other independent poiatsng the same direction of the one
of interest. The cone approach tries to overcomsébisic limit, searching the best points
to be used in the Jansen formula on the base wfrdtkal “distance” from the needed

direction, i.e. those pointX;, whose angle between them and the projection @f th

others on the direction is the smallest.

The Jansen formula was then applied to obtain nicaleesults to be analyzed in detail.
In our knowledge no previous studies followed thisthod and our tests represent the

first tentative for this kind of analysis.

Matlab software was used to create new scriptsntonerically implementing our

approach and made several tests.

We first tested the cone approach with a simplatiaddfunction, the Corner Peak
function and performed it at a given aperture & tlone, alpha=5. The method gave
good estimates especially when the number of ifgmibors were small. Fig. 4.3 showed
that whenk =4 the estimates show higher variability and ovenestion above the
analytical value. The performance of the cone aggras worsening with increasing of

the number of input factors.

We noticed that the cone approach performance daéscompletely meet our
expectations when the complexity of the functioadus higher and the number of the
factors increase. The numerical results, obtainedopmning the Ishigami function,

unfortunately, confirmed that.

So we made some reflections.
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Does a larger cone aperture increase the risk ginaating the errors? Are the best
points identified by the code good for increasihg aiccuracy of the estimates? We
found that this depends on the test case and tha factor analyzed. In the case of
complex functions, why the indices do not conveimanalytical value as the sample
size grows? Perhaps, there could be the risk tieahsiderable number of new points

are located close to the boundary of the cone andterefore introduce further error.

With a large sample, and with a small aperturehefdone, the small amount of points
inside the cone (even two or three) are very gowtlithe results are good. Increasing
the aperture, we run the risk of including othengowhich deteriorate the estimate. So,

apparentlythere is no optimal number of points that yieldgpad estimate.

Despite these results, in our opinion the definsmhé approachstill remains a valid
approach to be investigated and studied. It isumimtentions to make further research

on it.

We first intend to test the code implemented in MLAB for the present thesis, on other
test functions at increasing complexity. We wantutalerstand the way in which the
performance of the total indices changes when wealaaling with different situations:

different sample sizes and different apertures.

Furthermore we intend to review the code. Maybecam improve it or make it more

powerful.

We are working on the cone approach and we willkvaar it until we find answers to

our questions.
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CHAPTER 4

QUASI RANDOM BALANCE DESIGNS

In this chapter we present a new approach for gshimation of the first order effects in
GSA given a specific sample design. This methogtdihe RBD approach published
by Tarantolaet al, (2007) for the computation of first order sengy indices in

association to Quasi—-Random numbers. For this neasdfirst introduce the Random

Balance Design and the Quasi Random numbers.

4.1 An introduction to Random Balance Designs

4.1.1 History

Designed experiments are used in a very wide rasfgapplications (industrial,

biological and agricultural experiments) since thay at evaluating the performance of
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a system, or optimizing its performance in termsoné or more output responses.
Typically these experiments involve many potengiatiportant factors of which only a
few are expected to have active effects and thibsetiwe factors are not known a priori.
In such experiments, the experimenter’'s endeaviar msinimize the number of runs to
identify the active factors, those having a straffgct on the output, for efficient
utilization of resources and minimization of costldime. The basic problem here is
how to identify these few active factors in an@ént way. It is impossible to investigate
thoroughly all factors under consideration and kimgwevery main effect can be
wasteful because non-significant factors are noallys of interest. We require some
means of making the available number of computas rand the number of factors

compatible.

We can succinctly summarize this difficulty of ernpgental design in simulation as too
many factors and too few runs. This situation whaemny effects are unimportant is
called effectsparsity (Box & Meyer, 1986) and assumed that only a few ithamt

effects actually affect the response.

To address this problem, one approach is to use-eaedsupersaturated desigman
increasingly popular tool for screening factorstlie presence oéffectsparsity A
supersaturated design is namely an experimentajrdegose run size is not large
enough for estimating all the main effects represgiy the columns of the design
matrix, that is a design witk factors andn observations whera <k (the number of
runs is smaller than the number of factors). Ifsiforder model is assumed (i.e. a model
without interactions between factors) and if thenber of significant factors is expected

to be small, a supersaturated design can savedevable cost.

The advantage of these designs is that they retthécexperimental cost drastically.
Because of their run size economy, these desigmdearoadly exploited to screen
active factors when experimentation is expensivethe number of potentially active

factors is large.

The construction of supersaturated designs datek tma Satterthwaite (1959) and
Booth&Cox (1962). The former suggested construcsingh designs by randomization
procedure (random balance designs).
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4.1.2 An overview of the approach

In an experimental design, given two variablesand x,, we say that % hasexact
balancewith respect tax, if the exact distribution ofx, is the same for each value of

X" (Satterthwaite, 1959).

A random designs one for which “a random sampling process islusechoose all or
some of the elements of a design matriX"=[x,%] . If we carry out a series of
experiments, good practice would be to conduct tiremandom order. The order of
those experiments is in fact a further variabk, X5 in addition to the previoug, and
%. Our design matrixx will have then three variables and its third cahyrtihe order
numbers of the experiment, are selected by an pppte random sampling process.

Here the design is a random design with respek,tthe order variable but it is a fixed

design with respect to the other variablesind X,.

The latter variablex; is said to haveandom balanceavith respect tox, and x, “if the

random sampling process used to select ¥jevalues associated with any one
combination of &, %) is identical to the random sampling process ueeskelect the

values ofX; associated with every other combination xf X,), no matter of the type of

random sampling process used to select the speaifput variable values”
(Satterthwaite, 1959).

This sampling technique is used in the random leal@esign method, illustrated in the
next sections. This method combines Satterthwatelom balance design for the
sampling with the estimator used for the Fourierplitnde Sensitivity Test (FAST),

another technique of sensitivity analysis. Themfdvefore describing the random

balance design method, we provide an introductodrAST.
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4.2 The FOURIER AMPLITUDE SENSITIVITY TEST

The Fourier Amplitude Sensitivity Test (FAST) iseoof the earliest method developed
to estimate variance—based sensitivity indicesitffers an alternative approach to

compute first—order effects.

FAST was originally proposed by Cukiet al in the 1970s to perform sensitivity
analysis of a chemical computer model (Cuckieal 1973). FAST is computationally
efficient and it is independent of any assumptibowt the model structure; furthermore
it works for monotonic and non—monotonic modelse Ehre feature of FAST is that it
explores the multidimensional space of the inputupeters by a search curve which
scans the whole parameters’ space. The multidimeakintegrations over the input
space is thus replaced by a one-dimensional irttegral he sensitivity coefficients of
FAST are calculated from the terms in the Fourggainposition of the model output.
Unlike other global SA methods such as the StanziaddRegression Coefficient (SRC),
Correlation Ratio (Pearson) or Partial CorrelatiGoefficient (PCC) mentioned
previously, FAST computes the “main effect” conttibn of each input factor to the
variance of the output estimating the same stadilstjuantity given by

Var, [E(Y | X))]
Var(Y)

(4.2)

whereY denotes the output variablX; denotes an input factoE(Y | X;) denotes the
expectation ofY conditional on a fixed value oX; and the variance is taken over all

possible values ok, .
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421 The method

The main idea behind FAST is to convert thedimensional integral oveK into one—
dimensional integral irs by using appropriate transformation functions.

Let us consider the following modef=f(x) where y is the output variable and
X=X,%,.... %, Ji=1...k, is a random vector with a given joint probabilidgnsity
function p(X) = p (X, %,,...,%,) assumed to be known, the outputtherefore is also a

random variable.

The r'” moment ofy is defined as a multi-dimensional integral:

(V) =] 1 (%0 X ) P (% X0 %,) DX (4.2)

where Q= (x|0<x <1 i=1...k is the domain of the input factors (for simplicity

chosen as the unit hypercube).

Cukieret al (1978) started from the integral in (4.2) to cangpsensitivity indices using

a multidimensional Fourier transformation d¢f to decompose the variance §f.

Because of the computational complexity of the mdithensional integration, they
perform the Fourier analysis along a search cumae eéxplores the input domain and

that can be defined by the following set of paramoequations

X,(8) =G (sin(ws) Oi=12,..k (4.3)

where G are transformation functions that will provide @ifarmly distribution in the

unit hypercube,s is a scalar variable varying over the range <s<c and
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{}, Oi=12,... kis a set of different frequencies each associatdan input factor.

The x are now expressed in terms of the parametric Emns(.

As s varies, all the parameters change simultaneoushgahe curve and each
oscillates periodically at the corresponding fregpyea,; whateverG is. The outputy
will present different periodicities combined witie different frequencies, and it is
highly influenced by thé™ parameter if the amplitude of the periodic ostita of y
at frequencya, is high. Through a Fourier decomposition 6fs)* we can see the

contribution of each individua; to the total output variance.

The search curve drives arbitrarily close to anppa of the input domain if and only

if we use a set of incommensurate frequenciediisidase the search curve is space—
filling according to the ergodic Weyl's theorem 88 and the'” moment ofy in (4.1)

can be computed by an integral over one-dimensidorlain
1 +T
y"” =lim E_ij "(%,(S), %,(9),..., X, (S)) ds (4.4)

Thanks to Weyl’'s theorem (Whey, 1938), which impltee equivalence between the

function expressed in terms of tReand the parameter equation expressed in terms of

s, we can write

<y(r)> =y (4.5)

* From now on f(s) = f{ X(9,%(9),....%,(3))
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The output varianc¥ () of the model can be computed by evaluating oneed#ional

integrals as follows
V() =(y?) = (y®) = y? - (y*)° (4.6)

The space—filling property is only an idealizatias the frequencies,; cannot be in

practice truly incommensurate. The finite precismhcomputers allows the use of
rational numbers for the frequencies, i.e. a consuete set of frequencies. When such

a set is used, there exists a finite positive naimumberT, such that:
f(s) = f(s+T) (4.7)

i.e. the curve describes a closed path. This infres an approximation to Weyl's

theorem, which means that equation (4.5) no lohgéts.

Cukieret al (1973) showed that if the,’s are positive integerd, =27. Since f(s) is
a periodic function of with period 27z within the finite interval(-n, n) , equation (4.4)

becomes
y(l’) — 1 ]ﬂf r(S) ds (48)
2rr:,

and the variance of the output is estimated asviall
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90q:¢3—@®f:§;jf%@d&{é?ﬁ(@d% (4.9)

We now expandf(s) in a Fourier series

+00

y=f(9=) { A cosjs+B, sinjs} (4.10)

J =—00

where the Fourier coefficienty and B are defined by

17 .
A _ZT_J,,f €)cosjsds (4.11)

T
B _ZT_Lf (6)sin jsds (4.12)

over the domain of integer frequenci¢slZ ={-o ,...+ 101,...,+o}. The spectrum of
the Fourier series expansion 6fs) is defined as\; = A’ +B? with jOZ. Since f(s)

is a real-valued functiod ,B andA; have the following properties

A=A, B =B, A=A (4.13)
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By evaluating the spectrum for the fundamentaldssgriesa,; and its higher harmonics
pa;, p=123.. we can estimate the portion of output variancesiragi from the

uncertainty of input factoX

V=Y A, =2D A, (4.14)
pz° p=1

Thanks to Parseval’'s theorem, a Fourier—-based a&stiof the total variance can be
obtained:

V)= YA, =2_+Z”/\j (4.15)

joz°

The ratioV, /V(Y) is the estimate of the main effect in FAST. ltsgmigude reflects the

influence that thé™ input factor has on the output and it does ngrinciple depend

on the choice of the set of frequencies used irtdneputations.

4.3The RANDOM BALANCE DESIGN method

The RBD method was proposed to overcome the corigoig cost of the classical
FAST, which increases with the number of factors. fact, RBD remains
computationally cheap for the estimation of firstder sensitivity indices even for
models with many factors.
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The RBD procedure combines Satterthwaite’s samplegigns (Satterthwaite, 1959)
with the Fourier estimator used in FAST (Taranttlal, 2006).

In classic FAST a quite complex algorithm is neettedet the frequencies such that
they are free of interferences, to avoid bias efghnsitivity estimates. The sampling
design of RBD overcomes this problem. In the RBDhod, we explore the input space
using a unique frequency and input variables are distinguished by takingdoam
permutations of the coordinates of the sample pdmexplore as much as possible the
entire input space (otherwise the curve would explinly the diagonal of the input
space). Usually the frequeney is an arbitrary integer, set to 1 for simplicibet us

select N points on variable s ove(-n, 7). Let s ,5 ..,5 denote the random

permutations on the sdf....,N} , the experimental desigX, (s, ) is

X, =G/(sin(ws;)), Oi=1..k and Oj=1..,N (4.16)

that provides a different permutation for eachdact; . The model is then ruN times

over the sample size:

Y(s;) = F(X(8)) X,(S) Xie(sg) B j=1...,N (4.17)

The values of the model output(s;) are reordered,YR(sj), such that the
corresponding valueX; (s;) are ranked in increasing order. By doing so threnbaic

content of X, propagates through

Y to YR(s)) (4.18)
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The sensitivity ofY to X, is quantified by the Fourier spectrum of the reoed model

output:

2

F(w) = %JZN; YR(sj )exp(—i ws;) (4.19)

evaluated ataw =1 and its higher harmonicg. =2, «=3up to a maximumM

compatible with the sample si2¢:
~ M M
V, =vaE(Y | X)] = Y F(@)l,. =D F (1) (4.20)
1=1 =1

where\7i is an estimate of the main effégt, i.e. the nominator of the main effect for
factorX, . This procedure is repeated for all the otherdiactwhereby the same set of

model outputs is simply reordered accordingdds;) and (4.19) and (4.20) are used

to estimateV,, i =2,...,k.

With the use of permutations, the total cost istklpvn toN, instead o~ k* N (like
in Sobol’ and FAST)

With respect to the FAST method, the RBD one hagreé advantages: The main
advantage is that it is relatively easy to implememd the sample sizBl, being
independent of the number of factérscan lead to a considerable saving in computer

time for expensive models.

A disadvantage of the RBD method is that it alldkescomputation of first—order terms
only; we can use the sum of these to check if tlelehis additive. If the sum is

noticeably smaller than 1, we must use another odketiiln compute interactions or total—
effect terms.
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4.4 QUASI RANDOM NUMBERS

Many problems in numerical analysis are concernédimgh dimensional integrals and
sensitivity analysis is one of them. While the leggrid methods are very efficient for
low dimensional integrands, they become computatipimpractical when the number
of dimensions increases and thus the number oiregfjintegrand evaluations grows
exponentially. This effect is known athé curse of dimensionality (Thompsoret al,
1998).

The Monte Carlo (MC) method provides a direct applofor performing simulation

and integration. It is simple, direct and easyde.lMC integration converges at a rate
O(],/N“), where N is the number of sampled points, that is independérthe

dimension of the integral. For this reason is thly @iable method for a wide range of
high—dimensional problems. The price for its robass is that the rate of convergence
attained by MC is rather slow. (Metropolis, 1987)

The result of this combination of ease of use, wiaege of applicability and slow
convergence, is that an enormous amount of computeris spent on MC computation.
(Caflish, 1998)

A higher rate of convergence can be obtained bygusieterministic uniformly
distributed sequences, so-called Quasi—-Random $&i)ences. Methods based on the

usage of such sequences are known as Quasi Monie @MC). Asymptotically,

QMC can provide the rate of converger@@/ N). (Caflish, 1998)

QR sequences are a deterministic alternative taloransequences (Kuipers and
Niederreiter, 1974; Hua and Wang, 1981; Niedemeit®92; Zaremba, 1968). QR
sequences are designed to provide better uniforimaty random sequences, and hence
higher rate of convergence. Uniformity of a seqeerc measured in terms of its
discrepancy(see below) and for this reason QR sequeces @@ @dlled Low
Discrepancy SequencigsDS). Some have objected to the name “Quasi—Raihdo

since these sequences are intentionally not random.
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For sufficiently largeN, QMC should always outperform MC. However, in pice
such sample sizes quite often are infeasible, edpewhen high dimensional problems
are concerned. Many numerical experiments demdadtthat the advantages of QMC
can disappear for high—dimensional problems. Thene claims that the degradation
in performance of QMC occurs at<12 (Bratley, 1992). In contrast, other papers
reported the superiority of QMC over MC for someegrands withn = 360 (Paskov,
1995). Some explanations for such inconsistentiteestere given using the notion of
the effective dimension (Caflisch, 1997). This ootiis based on the ANalysis Of
Variance (ANOVA). It was shown how the ANOVA commns are linked to the
effectiveness of QMC integration methods (Lemie26Q0).

The efficiency of MC methods is determined by theperties of the random numbers
(Kucherenko, 2012) but the limiting factor in acacy is that samples generated
randomly tend to have clusters and gaps (Sakellal, 2008). The reason is that
subsequent points are generated independentlye Sirlzsequent points know nothing
about each other there is some small chance tiyatihi lie very close together, as new
points are added randomly. They do not necessHifityhe gaps between previously
generated sampled points. Where a cluster of paiotsirs, function values in that

neighborhood are overemphasized in statisticalyarsa{Caflish, 1998).

Where a gap arises, function values within that gegp not sampled for statistical

analysis. The net effect is that mean values estisn@ith random samples have an
uncertainty that diminishes slowly a5/N . To reduce an estimated uncertainty by a

factor of 10, the analyst must increddeby a factor of 100. (Saltelét al, 2008)

4.4.1 Regular grid, MC and QMC sampling methods

The regular grid of points seems to be an efficieay for the integral evaluation. For
up to 4 dimensions it works better or not worsentrendom sampling. For dimensions
higher than 4, regular grid is not practical. Theenps in the regular grid are centered
into each cell of the grid.

There are three problems for the use of regulak fgri evaluation of integrals:
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*  The problem of dimensionality ("the curse of dimenality"). It's been discussed
in the previous section.

. It is not possible to incrementally enlarge theofthe grid and at the same time
keep the grid uniform. This means that with a umifarid approach it is not
possible to have a termination criterion that cannvoked incrementally.

*  The concavity bias. The regular grid generates Isenairs that add up, whereas
random sampling generates big errors that cancaverage. Details can be found
in Dupire & Savine (1998).

Figure 4.1
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Fig 4.1 illustrates the difference between the laggrid, random sampling and Quasi Monte
Carlo sampling. Distribution oN=64 (upper row) andN=256 (lower row) point in two
dimensions.

The random and QR sampling methods do not hav&itidof problems. QR sequences
are specifically designed to place sample points#gsrmly as possible. Unlike random
numbers, successive low discrepancy points “knowdué the position of previously

sampled points and fill the gaps between them. Ki€tenko, 2012) (see Fig. 4.1)
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Figure 4.2 illustrates the difference between #dgutar grid, the random sampling and
QM sampling. It also illustrate an important prdgesf LDS, that the projection of the
k—dimensional LDS on the-dimensional subspace has good uniform distribatiém
particular, it explains the efficiency of QMC metlsoin high dimensions for many
practical problems; LDS sampling gives much beitay of arrangingN points ink—

dimensions.

Figure 4.2

Regular Grid Random Numbers LDS
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Three different ways of arrangifg=64 points in two dimensions.

4.4.2 A particular QMC sequence: the Sobol’LP.

There are a few commonly used QR sequences. Ditf@ranciples are used for their

construction by Halton, Faure, Sobol, Niederredad others. (Kucherenko, 2012).

Many practical studies have proven that the SoQ&’ sequence is in many aspects
superior to others (Paskov, 1995; Sobol,1998).
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In sensitivity analysis, and in the present thabis,Sobol' LP. quasi-random sequence
is used (Sobol’, 1967). AILP. sequences have an asymptotic uniform distribua®n

N — oo; to a certain extent, the uniformity of the sandppmints is also observed for
fairly small N. The sequences also satisfy additional uniforrpityperties (Sobol’,

1976), called property A and property A’, defined a

Property A: for any k—dimensional sequence of lengttitere is exactly one point in
each 2 hypercubes that result from subdividing the unibdrcube along each of its

length extensions into half.

Property A’: for any k—dimensional sequence of lengthhgre is exactly one point in
each 4 hypercubes that result from subdividing the unypédrcube along each

dimension into four equal parts.

4.5 Quasi Random Balance Design

We present now a new approach for the estimatigheomain effects in GSA which is
based on RBD and quasi random numbers, enhanaingrécision of the first order

effect estimation.
This classical RBD method suffers from two problems

» the estimated sensitivity indices are often quitese

* small sensitivity indices are biased,

Given the set ofN equally spaced values of variabde in (-n, n), we construct a
permutation of this set in a quasi-random fashlet. S ,§ ....§ denote the quasi

random permutation obtained. Then, the experimelgsign X, (s, ) is given by

69



X; =Gi(sin(ws;)), Oi=L1..k and Oj=1..,N (4.21)

and the procedure follows the standard RBD approach

Thanks to the more homogeneous covering of theespffiered by quasi—random
numbers, the quasi—-random permuted sample has §edige—filling properties than the
simple permuted sample (Fig. 4.3 and Fig. 4.4)sHnoperty enhances the quality of
the estimates of sensitivity indices, as we showhemumerical test cases described in

the next section.

Fig. 4.3
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Coverage of the input space when using random aasi-qandom permutations. N=512.
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Fig. 4.3
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Coverage of the input space when using random aasi-gandom permutations. N=1024.

In appendix A.3 we have included the new MATLAB eospecifically created to
perform QRBD method. We tested it using the fiva@ fanctions which are described

in details in the next section.

4.5.1 Analytical Test cases

This section illustrates the application of thegmsed RBD method and the new QRBD
(RBD using QRP) in the calculation of the first erandices.

We applied these methods to the following test tions for which the analytic values

for S are available:

. Linear function

*  Corner Peak function
e Ishigami function

e Sudret function

. G—function
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We used the existing RBD algorithm (see append®) Anplemented in a MATLAB
code for the estimation of first order indices aveltested the QRBD variant used on a
sample generated by a QRP against the RBD methedapMied QRBD and RBD for
each of the above functions at different samplessstarting from 128 to 1024 at steps
of two. Each of the test functions can be defined given set of input factors. We
decided to set their number to=3 for the linear function, the Corner Peak function
and the Ishigami function and k=8 for G—function in order to test the methodology
under different complexity. The results are repblielow and plotted in figures for each

function.

e Linear function

Y =X +x, +X (4.22)

We started our application of the two aforementtbrreethods with the simplest linear
function with uniform distribution between (0,1)hd analytical values for first order
indices are given bys =S, =S, =1/3

The sensitivity results for this function are sumized in Fig. 4.4.

Both methods converge to the analytical value alghan very different ways.

RBD estimates show a very high variability forthk three sensitivity indices especially
for small sample sizes. This variability reducesewhthe sample size increases.
Furthermore, for smaller sample sizes, the trueevptesents a slight over—estimation.
QRBD tends exactly to the analytical value, angag a much smaller variability than
RBD. We computed the standard deviation of theregts in the sample size range
(200-1024) obtaining the following values summatize Table 4.1 for RBD and
QRBD.
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Table 4.1

RMSE
QRBD RBD
S1 0.0035 0.0282
S2 0.0025 0.0261
S3 0.0027 0.0231

The numerical results obtained for QRBD from ruignine MATLAB code, show that

at a sample size of 1024 the value of the thresitsaty indices S, S,, S; was

respectively 0.332972, 0.333268 and 0.332919. htlagion, QRBD is found to be
superior than RBD.

Figure 4.4

Linear Function Sensitivity Indices
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Graphics of the three first order sensitivity ireicagainst the sample size for the linear
function test case with 3 factors. Analytical valre shown by a red line
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e Corner Peak function

K - (k+1)
Y :(1+Zq xi] (4.23)
i=1

This is an additive function, introduced by Gen281) to test the method for multi—

dimensional integration. The independent inputdiescere uniformly distributed over

(0,1) and the constants determine the sharpness and the location of ffieudiy and

they represent the weight of,. These functions are characterized by a pecuyliarit

represented by several kinds of peaks.

We first consider the case in which the input fextare associated with the same

parameteia =a,=a, =001. They contribute the same of output variance.détermined

sensitivity analytical values aig =S, =S, =1/3.

As we can see in Fig. 4.5 in the RBD method thenegéd sensitivity indices show an
evident variability slightly over the analyticallua and it reduces as the sample size

increases. This bias is due to the small outpueainty driven by the small values of
the coefficientsa . When QRBD is performed the indices show much begsults, as
in the previous function. The indices converge eu#pidly to the analytical values,
more rapidly than RBD. We computed the standardatien of the estimates in the
sample size range (200—1024) obtaining the follgwialues summarized in Table 4.2
for RBD and QRBD.

For some ranges of sample size (e.g. between 122@0) the estimates are slightly
above the analytic values, for some other rangsg dhe slightly below them). Also in
this case the numerical results obtained by QRRINnfrunning the MATLAB code
proved that at a sample of 1024 the value of theetkensitivity indices, S,, S; was
respectively 0.332905, 0.333192, 0.332867. In amich, also in this case QRBD is

found to be superior than RBD.
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Table 4.2

RMSE
QRBD RBD
S1 0.0035 0.0266
S2 0.0025 0.0269
S3 0.0027 0.0264
Figure 4.5
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* Ishigami function

Y =sinX, +asirf X, +bX; sinX, (4.24)

This is a non—-monotonic function uniformly distribd in (-7, 7). It has three input
factors X,, X,, X; and the value of the parameters&indb are assumed to ke=7 and
b=021. The analytical values of the sensitivity indi@@e S, =0.3138, S, =0.4424,
S, =0. The main peculiarity of this model is the deperadeon X,: there is no additive

effect onY but there is an interaction betwe&g and X;. (Ishigami & Homma, 1990).
Indeed,S and S, account jointly for 76% of the variance, hence 2dfthe variance

must be due to higher order effects.

As in the previous test cases, when RBD is perfdrmigh Ishigami function we find

the same variability slightly above the analytialue, especially for small samples. We
notice that for the third indexXs;, the variability is considerably reduced from epée

size of about 160. We found from the numerical ltesthat this index is almost zero

near the sample size 1024.

QRBD is sometimes over and sometimes under estihfatedifferent sample size
ranges:S, and S; are slightly overestimated up to a sample sizabolut 200, but they
converge to the analytical value with increasingsie size. At increasing sample size

S shows slower oscillations around the analyticil@dahan the other sensitivities.

QRBD converges more rapidly than RBD. We computedstandard deviation of the
estimates in the sample size range (200-1024) robtaithe following values
summarized in Table 4.2 for RBD and QRBD.

With respect to the previous two test cases, whenestimates are calculated with
Ishigami functions show a higher variability. Thgs because this function is more

complex and present interaction betwegnand X, .
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Figure 4.6

Ishigami Function Sensitivity Indices
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Table 4.3
RMSE
QRBD RBD
S1 0.0098 0.0255
S2 0.0088 0.0258
S3 0.0028 0.0174
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e Sudret function
1 k
Y = |‘| (BX2 +1) (4.25)
1=1

This is a polynomial function studied by Sudret@@Pwhere X, are independent and

identical distributed uniform random variables o¢@/1). The exact global sensitivity
indices can be determined as

S = (65F _1 =02747 s=1lLk (4.26)

For k=3 this function represents a sixth—order poiyial function which is a product
form of three quadratic polynomials. When performeith RBD, the sensitivity indices
present higher variability with respect to the ottest functions, especially f@,. The
indices converge very slowly to the analytical esuat sample size 1024 (the maximum
we tested) we still notice the presence of vatriighifs a curiosity, at the sample size of
1024 S, = 0.274696.

Despite in QRBDS, is over estimated until sample size about 900ntathod performs

better than RBD in terms of variability of the esdites at all sample sizes. We computed
the standard deviation of the estimates in the asipe range (200-1024) obtaining
the following values summarized in Table 4.2 forlR&nd QRBD.
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Table 4.4
RMSE
QRBD RBD
S1 0.0038 0.0267
S2 0.0095 0.0265
S3 0.0032 0.0267

Graphics of the three first order sensitivity ireicagainst the sample size for the
Sudret function test case with 3 factors. AnalytiGdue are shown by a red line
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 G-Function

Introduced by Sobol’ (2001) this function has beedely used to validate the methods
for the sensitivity analysis.

This is a non—monotonic function whose analyticgression takes the following form

A _[aX —2+4]
Y= D g (X;)whereg, (X)) —T (4.27)

The input factorsX; are uniformly distributed in the range (0,4).> Oare real-valued
non—negative deterministic constants and are chasespecify the role of the
corresponding input parametef since the range of uncertainty gf(X.) depends

exclusively on the value o .

1
1-———<g(X)s1+— 4.27
Lg SO00SIH (4.27)

The lowera, the greater the importance ¥f. The table below gives some examples of

the range ofg, (X,) and the relative importance of the input parame{eior the values

of g
a Parameter X Range of g, (X;)
0 Very important 0<g(X)<2
1 Important 0.5< g(X;) <15
9 Non—important 09<g(X) <11
99 Non-significant 0.99< g(X,)<1.01
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The partial variances of the first order are gitagn

1

Var =Var(E[Y | X|]) =———F
ar =VarEl X ) = 2=

(4.28)

Var(Y) =-1+ ﬁ (L+Var) (4.29)

This allows us to calculate analytically the fister sensitivity indices for the G—

function. We tested G—function at different valoés, as follows:

a) a =a,=a,=0 all the input factors very important
b) 8 =0 a,=1 a, =9 the input factors are in decreasing order of irtgpare
c) a=99 a,=0 a;, =9 the input factors are in random order of imporénc

d a =99 a,=99 a,=99 allthe input factors are equally non—important

The values ofS calculated at different sets @& combinations are plotted in the

following Figures.

All the Figures below show that both QRBD and RBBthods provide estimates that

converge to analytical value as the sample sizeases.

Unlike the previous functions, when performing Gadtion with QRBD and when the
factors are equally non-significant (Fig.4.10) og all very important (Fig. 4.8), the
estimates have a higher variability than befores Variability is, however, smaller than
in RBD.

When the input factors are in decreasing ordemgbirtance, case b), we notice a higher
variability if the input factors are important atite index is quite overestimated until
sample size 736. We notice a much lower variabilitthe input factors are very

important and non—important. In this case the cumiethe two estimates lie on the
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straight line of the true value. We notice onlylighg overestimation forS, when

performed with RBD method.

When the input factors are in random order of ingoore, case c), we can immediately

se from Fig. 4.11 a perfect alignment$®f (the input factor is very important) with the

straight line of the analytical valu&§ and S,are also good estimates.

We computed the standard deviation of the estimatéise sample size range (200—
1024) obtaining the following values summarized able 4.5 for RBD and QRBD.

Table 4.5
RMSE
a=a,=29,=-0 | a=04a=1La=9 | a=99a,=04a,=9 | a =99 a,=99 a, =99
QFB | mBD | QRBD RBD QRBD RBD QRBD RBD
> |oooss | ©9%% | oo0s9 | 00097 | 00052 | 00182 | 0.0181 0.0241
> |oooo7 | %922 | 00231 | 00255 | 0.0024 | 0.0022 0.0249 0.0261
S |oo120 | %9%° | 00040 | 00192 | 00028 | 0.0191 0.0226 0.0250
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Figure 4.8

g-function Sensitivity Indices 0 0 0

05k QRED |
FED
51 04k TwE |
0.2432 Tl e S S S
I I I I I
T T T T T
039} | -
o
s2 T
0.2432 I sl

04+ -
0.2432 ‘,_-_'/‘—um WL I el i s PRl drfll A
01 | | | | |
128 160 448 736 1024
sample size
Figure 4.9 Graphics of the three first order sévigjtindices against the
sample size for the G-Function function test casiéh vB factors,
=a =a. =0. Analytical value are shown by a red line
& =a,=3
Figure 4.9
g-function Sensitivity Indices 01 9 )
T T T T T
0,85+ -
S1 g 7419 G lieind Jlisteten e s btz
0,65+ -
| | | | |
D4FT T T T H
03 -
Pt
s2 f l-‘ff\\ \
- Y I ,J ¥ (J gt ATy /‘L-. Ll
N P H " MR el AL,
0.1855 | Sl e el i S s
0.1 | | | | |
T T T T T
QRED
02+ RED —
L TRUE
53 01 l\vk‘ -
0.0074 \“-“"
0.1 1 1 1 1
128 160 445 736 1024

sample size
Figure 4.9 Graphics of the three first order sérngitindices against the
sample size for the G-Function function test casith w8 factors,
a,=0 a,=1 a,=9 Analytical value are shown by a red line

83



Figure 4.10
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We decided to G—function with a number of inputtéas k=8, in order to test the
methodology under different complexity. The resalts reported below and plotted in

figures for each function.

e G-Functionwith k =8

In the case in which the dimensionalityks= 8, the parameterg, are assumed to have
following values:a, =0, a, =1 a, = 45,a,=9, a, =99 a, =99 a, =99 a, =99,

the input factor are in decreasing order of impwréta

The main variance contributions of each input fadtothe sensitivity analysis are

summarized as follows
S =07162 S,=0.1791 S,= 0237, S,=0.0072 S,=S,=S,=S,=72x10°.
The values ofS , , are plotted in the following Figures.

All the Figures below show that both QRBD and RBBthwods provide estimates that

converge to analytical value as the sample sizeases.

The difference from one index to another dependfiemmportance of the input factor.
If the input factor is very important, non—importaand non-significant, the
correspondent estimateS, (Fig. 4.12),S, (Fig. 4.13),S, (Fig. 4.14),S, (Fig. 4.14),
S, (Fig. 4.15) ands; (Fig. 4.15) show a reduced variability for both[RBnd QRBD

method if we compare them with the previous fundiorhe curves of those estimates
are aligned to the straight line of the analyticalue, especially from sample 160. We

notice a slight overestimation f@&, (Fig. 4.14) performed with RBD.

When the input factor is important, the correspona@stimatesS, (Fig. 4.12) ands,
(Fig. 4.13) show a higher variability then the poess estimatesS, present a slight
overestimation above the analytical value for d®BD and QRBD methods whils,

present a slight underestimation for QRBD methodll .szample 736 and a slight
overestimation for RBD method
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Figure 4.12
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Figure 4.14
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We computed the standard deviation of the estimatdéise sample size range (200—
1024) obtaining the following values summarized able 4.6 for RBD and QRBD.

Table 4.6
RMSE
a,=0a,=1a,=454a,=9 a.=99 a; =99 a, =99 a, =99
QRBD RBD
S1 0.0091 0.0129
S2 0.0223 0.0263
S3 0.0076 0.0200
S4 0.0093 0.0187
S5 0.0050 0.0175
S6 0.0026 0.0167
S7 0.0020 0.0180
S8 0.0017 0.0172

In conclusion, we can say that both the methods good estimates when performed
with G—function with 8 parameters. QRBD is foundtoslightly superior than RBD in

terms of variability around the analytical value.

4.6 Conclusions

QR sequences are a deterministic alternative toransequences and are specifically
designed to place sample points as uniformly asiples They are designed to provide
better uniformity and hence higher rate of convecge

In this chapter we presented a new approach, éoeshimation of the first order effects
in GSA. This method is based on the RBD approatterasrandom permutations are

used, in association to Quasi—Random permutation.
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We test the new QRBD method against the existin® RBd applied both techniques

using five test functions.

Although the two methods only differ in the way peitations are taken, we discovered

them to perform very differently.

We proved that as soon as QMC samples are usedneraje the permutations the
guality of the estimates obtained with QRBD incesasignificantly thanks to the more
homogeneous covering of the space.

This property enhances the quality of the estimategnsitivity indices, as we showed
by numerical test cases. We conducted the investigan five test functions of
increasing complexity and from all of them we prdwbhat QRBD method provide
estimates which much lower variability around thealgtical value and better

convergence.

On the basis of our firstly results, the QRBD meltiamuld appear as a better estimation
technique. Further analysis and tests will be cotetlito confirm these early evidences,

but what we have been able to stress is clearhyn@apy indications.

The improved outcomes obtained in recent yearsAirtifanks to more detailed and
planned input sample spaces showed as this fieldalf/sis is still a very promising and

unexplored one.
Actually the interest of some major SA researclpeiats on this issue.

Hence, investing time and theory in the samplegiegays off.
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CHAPTER 5

CONCLUSION

Variance—based sensitivity analysis often requaesonsiderable number of model
executions, one for each sample point consideteasl.clistom practice to try to reduce
the number of executions at most, in order to olgatimates of sensitivity indices of a

given accuracy.

Our intentions in preparing this thesis were teraftt to overcome one of the drawbacks
of variance—based measures in sensitivity analysisto minimize the computational

cost for achieving the required accuracy of serngitmeasures.

When model runs are already available, i.e. thatippints and the corresponding model
outputs are “given”, the analyst wishes to use tlfi@nthe sensitivity analysis in order
to save computational time. Therefore, techniquesulsl be available to estimate

sensitivity indices for given data.

The initial objective of the present thesis wasléwise a “given data” approach for the
estimation of total sensitivity indices, which takato consideration the overall effect

of interactions among model inputs.
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No “given data” methodology is available today éstimating total sensitivity indices.

We created a unique algorithm, that we calleahe approach and investigated its use
in estimation of total indices. The algorithm hagb implemented in a Matlab code for

further tests and outcome analysis.

Unfortunately the performance of the cone appraaas worsening with increasing of
the complexity of the test functions used to perfal; and with increasing the number
of input factors.

Although the results did not completely meet oupestations, this new technique is
worthy of further study and analysis. In our opmihe defined ¢one approach still

remains a valid approach to be investigated ardiesdu

We are still working on this innovative approactd ame will work on it until we find
answers to our questions. We should rememberrit@Aithe estimation of higher order
effects and, in particular, total effects from givaata still remains an open issue.

Needing additional time in order to continue ouse@ch on the cone approach we

wanted to focus on a method of more immediaterreat.

We developed a new approach for the estimatioheofitst order effects given a specific
sample design, named Quasi Random Balance Degignniethod is based on the RBD
approach, where random permutations are used, saociasion to Quasi—Random

permutation.

QR sequences are a deterministic alternative toransequences and are specifically
designed to place sample points as uniformly asiples They are designed to provide
better uniformity and hence higher rate of convecge

We tested the new QRBD method against the exi®BIQ and applied both techniques
using five test functions. Although the two methodé$y differ in the way permutations

are taken, we discovered them to perform very aifidy.

We proved that as soon as QMC samples are usedniraje the permutations the
guality of the estimates obtained with QRBD incesasignificantly thanks to the more
homogeneous covering of the space. The investigatanducted on the five test
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functions proved that QRBD method provide estimatbgh much lower variability

around the analytical value and better convergence.

On the basis of our first results, the QRBD methvdld appear as a better estimation
technique. Further analysis and tests will be cotetlito confirm these early evidences,
but what we have been able to stress is cleartyn@apy indications.

There are a number of future research ideas tcomepion one hand, and extend, on the
other, the methods developed in this thesis.
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APPENDIX

This appendix provide basic MATLAB codes used topate sensitivity indices in

according to the methods used in the present thesis

Al

The “cone approach

function  St=conesti(x,y)
[n,K]=size(x);
Alfa=10;

yp=zeros(n,k);
St=zeros(1,k);

for i=1:n
z=abs(x-ones(n,1)*x(i,:));
znorm=z./(sgrt(sum(z."2,2))*ones(1,k));
cone = znorm >= cos(Alfa*pi/180);

for j=1:k
if ~isempty(find(cone(:,j), 1)), cc=0;
while cc==0,
[~,elem]=max(znorm(:,));
if cone(elem,j)==1,
cc=1;
end
end
yp(i.j)=y(elem);
else
end
end

end
VY=var(y);

for j=1:k
len=n-sum(isnan(yp(:.j)));
St())=nansum((y-yp(:,j)).*2)/4/len/VY;
end
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A2
RBD method

function S =RBD(k,repl,N)

M=6;

S=[;
rand( ‘'state’ ,sum(100*clock))

for r=1:repl

sens=[];

sO=[-pi:2*pi/N:pi]’;
for z=1k;
p(z,:)=randperm(N);
end

s=s0(p)’;

x=.5+asin(sin(s))/pi;

% y=f(x)
for i=1:k
[ss,ind]=sort(s(:,i));

yr=y(ind);

spectrum=(abs(fft(yr))).~2/N;
V=sum(spectrum(2:N));

si(i)=2*sum(spectrum(2:M+1))/V;

end
S=[S; si];
end

return
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A3

QRBD method
function S = QRBD(k,repl,N)

M=6;
T=1;
fre=1;
S=[;
rand( 'state’ ,sum(100*clock))
for r=1:repl
sens=[];

sO=[-pi:2*pi/N:pi]’;
for i=1:N

p = floor(1+N*(1/(2*N)+sobolseq(i+(r-1)*N,k)));
end

s=s0(p);

x=.5+asin(sin(s))/pi;

%---test model
% the user has to insert his/her own test model her

for t=1:T
for i=1:k

[ss,ind]=sort(s(:,i));
yr=y(ind);

spectrum=(abs(fft(yr)))."2/N;
V=sum(spectrum(2:N));
si(i)=2*sum(spectrum(2:M+21))/V;

end
S=[S; sil;
end

end

return
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