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Introduction 

 

 

Sensitivity Analysis is the study of how a variation in the output of a statistical model 

can be apportioned, qualitatively and quantitatively, to different sources of variation. It 

is used to identify which inputs are most influential in inducing the uncertainty in the 

output. Such information is important for understanding the behavior of the simulator 

and determining where better input information is needed and where the model might 

be improved.  

Among the different existing schools of thought, can be identified the Global Sensitivity 

Analysis. This approach explores the whole range of uncertainty of the model inputs by 

letting them vary simultaneously.  

So–called variance–based methods for computing sensitivity indices are based on the 

decomposition of the variance of the outputs into terms corresponding to the different 

inputs and their interactions. In this way, they can assess the manner in which the 

uncertainty in an output is apportioned across the inputs, and across interactions between 

them. Variance–based measures are attractive because they measure sensitivity across 

the whole input space (i.e. it is a global method), they can deal with nonlinear responses, 

and they can measure the effect of interactions in non–additive systems. 

The drawback of variance–based measures is their computational cost especially in the 

presence of a high number of factors. Estimating the sensitivity coefficients takes many 

model runs, as we shall discuss later, and this is the reason why much recent research 

aims to find efficient numerical algorithms for their computation.  

Our intentions in preparing this thesis were to attempt to overcome this drawback, in 

order to minimize the computational cost for achieving the required accuracy of 

sensitivity measures.  
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We first developed a new technique for estimating variance–based total sensitivity 

indices from given data and investigated its performance through a new algorithm. 

Although the results did not completely meet our expectations, this new technique is 

worthy of further study and analysis. So, we focused on a new approach for the 

estimation of the first order effects given a specific sample design. This method adopts 

the RBD approach published by Tarantola et al., (2007) for the computation of first order 

sensitivity indices in association to Quasi–Random numbers. 

From these preconditions, the present thesis is organized in four chapters that are now 

presented. 

In chapter one we give a general introduction and an overview of the Sensitivity 

Analysis. In chapter two we describe variance–based methods in more details. In chapter 

three we devise a new methodology for estimating total sensitivity indices from given 

data which takes into consideration the overall effect of interactions among model 

inputs. In this chapter four we present a new approach for the estimation of the first order 

effects given a specific sample design. 
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Capitolo 1  
 

 

INTRODUCTION TO SENSITIVITY ANALYSIS 
 

 

 

1.1  History of sensitivity analysis 

 
The origin of Sensitivity Analysis can be tracked from the theory of Design of 

Experiments (DOE), which was first introduced by Fisher (1935) in the context of 

physical experimentation. 

To this purpose the analyst needs to design "a priori" an experiment able to highlight the 

relationship between the response and the inputs. The most natural way to design an 

experiment is to use the one–factor at–a–time approach (OAT) (see Daniel, 1958, 1973), 

which varies the input factors of interest one at a time, with the remaining ones are held 

constant to their nominal values. However, the result of an OAT depends on the nominal 

values used for the other factors. Often the behavior of the response function is described 
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only locally in the input space, i.e. by perturbing the factor of interest of a small amount 

around its nominal value.  

Mathematical models are developed to approximate engineering, physical, 

environmental, social, and economic phenomena of various complexity. Model 

development consists of several logical steps, one of which should be the determination 

of parameters which are most influential on model output.  The National Research 

Council’s Science and Decisions: Advancing Risk Assessment (2009) defines a model 

as a “simplification of reality that is constructed to gain insights into select attributes of 

a particular physical, biologic, economic, or social system. Mathematical models 

express the simplification in quantitative terms” (page. 96). Model input factors are 

“terms in a model that determine the specific model form. For computational models, 

these terms are fixed during a model run or simulation, and they define the model output. 

They can be changed in different runs as a method of conducting sensitivity analysis or 

to achieve a calibration goal” (page 97).  

Sensitivity analysis can be seen as the modern evolution of DOE. In short: 

Sensitivity Analysis is the study of how the uncertainty in the output of a model can be 

apportioned to different sources of uncertainty in the input. (Saltelli, 2002) 

The object of SA is to increase the confidence in the model and its predictions by 

providing an understanding of how the model output variables respond to changes in the 

inputs.  

Models of varying complexity are developed to approximate or mimic systems and 

processes of different nature (e.g. physical, environmental, social, or economic). Many 

processes are so complex that physical experimentation is too time-consuming too 

expensive or even impossible. As a result, to explore systems and processes, 

investigators often turn to mathematical or computational models. 

A mathematical model is defined by a series of equations, parameters and variables 

aimed to characterize the process being investigated. Model inputs are subject to many 

sources of uncertainty including errors of measurement, incomplete information and 

poor or partial understanding of the driving forces and mechanisms. This imposes a limit 
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on our confidence in the response of the model. Further, models have to cope with the 

natural intrinsic variability of the system such as the occurrence of stochastic events.  

Good modeling practice requires that the modeler provides an evaluation of the 

confidence in the model possibly assessing the uncertainties associated with the 

modeling process and with the outcome of the model itself. 

Originally (Tomovic and Vukobratovic, 1972), SA was created to deal simply with 

uncertainties in the input variables and model parameters. Over the course of time the 

ideas have been extended to incorporate model conceptual uncertainty, i.e. uncertainty 

in model structures, assumptions and specifications (Helton and Burmaster, 1996; 

Draper et al., 1999).  

A view of modeling that may help to illustrate the role of sensitivity analysis in the 

scientific process is taken from the work of the biologist Robert Rosen (1991) (see also 

Saltelli et al., 2000, page 3–4). According to Rosen, the world and the model are linked 

via the process of “encoding” from world to model and “decoding” from model to world. 

While inside “world” and inside “model” causality reigns, encoding and decoding are 

not themselves entailed by anything, i.e. they are the objects of the modeler 

craftsmanship. Experience has shown that even when the world is indeed a well–defined 

and closed system, for instance an artifact, an artificial device or a piece of machinery, 

different modelers can generate different nonequivalent descriptions of it, that is, models 

whose outputs are compatible with the same set of observations but whose structures are 

not reconcilable with one another. The “encoding” and “decoding” activities are the 

essence and the purpose of the modeling process: one writes a model in the hope that 

the decoding operation will provide insight on the world. This is only possible if the 

uncertainty in the information provided by the model (the substance of use for the 

decoding exercise) is carefully apportioned to the uncertainty associated with the 

encoding process. 

Practitioners of modeling have come to live with the rather unpleasant reality that more 

than one model may be compatible with the same set of data or evidence. Some have 

gone so far as to coin a word for this paradox: equifinality (Beven, 1993, 2001; see also 

Saltelli et al., 2004) meaning that different models can lead to the same end. Others refer 

to the phenomenon as model indeterminacy. 
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Another general definition of SA took inspiration from the previous Rosen’s 

formalization of the modeling activity: 

Sensitivity Analysis studies the relationships between information flowing in and out of 

the model (Saltelli et al, 2000, pag.4). 

SA is hence part of model building. It is used to improve the understanding of the model 

and to increase the confidence in its predictions. It shows how the model response 

variables react to changes in the inputs, where by input or factors it is intended data, 

model structure and model parameters. SA is thus closely linked to uncertainty analysis 

(UA), which aims to quantify the overall uncertainty associated with the response as a 

result of uncertainties in the model input. 

Our point of departure is a mathematical or computational model ),...,,( 21 kXXXfY =

where some of the input factors Xi are uncertain. We know something about their range 

of uncertainty. This knowledge might come from a variety of sources: measurements, 

expert opinion, physical bounds, analogy with factors for similar species, etc. This latter 

may be seen as a particular case of expert opinion. We may further have information 

(e.g. via observation) on the joint probability distribution of the factors. The model may 

be used in a prognostic (forecast) or diagnostic (estimation) mode. In the former, all our 

knowledge about model input is already coded in the joint probability distribution of the 

input factors. In the latter, the information on the input constitutes a priori knowledge 

and the analysis might be aimed at updating either the distribution of the input factors 

or the model formulation based on the evidence. It is customary to propagate uncertainty 

through different model structures or formulations. In this case some of the input factors 

are triggers that drive the selection of a structure versus another (Saltelli, 2002). 

The input is a quantity which is allowed to vary in order to study its effect on the output. 

A sensitivity analysis will in turn instruct the modelers as to the relative importance of 

the inputs in determining the output. An obvious consequence of this is that the modeler 

will remain ignorant of the importance of those variables which have been kept fixed 

(not been included in the analysis). This is of course a hazard for the modeler, as a 

variable deemed non influential and kept fixed could have negative effect the results of 

the analysis if it is actually influential (Saltelli et al., 2008). 
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It seems, therefore, that one should be as careful and objective as possible in deciding 

on the input for uncertainty and sensitivity analyses. Clearly, the more variables we 

promote to the rank of input, and allow to vary, the greater the variance to be expected 

in the model prediction. This could lead to a situation in which we discover that, having 

incorporated all uncertainties, the model prediction varies so wildly as to be of no 

practical use. This trade-off has been brilliantly summarized by the econometrician 

Edward E. Leamer (1990): 

“I have proposed a form of organized sensitivity analysis that I call ‘global sensitivity 

analysis’ in which a neighborhood of alternative assumptions is selected and the 

corresponding interval of inferences is identified. Conclusions are judged to be sturdy 

only if the neighborhood of assumptions is wide enough to be credible and the 

corresponding interval of inferences is narrow enough to be useful”. 

Note Leamer’s emphasis on the need for ‘credibility’ in the selection of assumptions. 

The easiest way to invalidate a model is to demonstrate it fragile with respect to shaky 

assumptions. Note, however, that the trade-off may not be as dramatic as one might 

expect, and that increasing the number of input factors does not necessarily lead to an 

increased variance in model output. Practitioners have recorded that in most uncertainty 

and sensitivity analyses the input factors’ importance is distributed similarly to wealth 

in nations, with a few factors creating almost all the uncertainty and the majority making 

only a negligible contribution. Hence, if the ‘key’ factors have been judiciously chosen, 

adding further variables to the analysis may add to its completeness and defensibility 

without adversely increasing the variance in the output. (Saltelli et al., 2008, page. 10) 

As mentioned, the quality of a model is largely a function of its fitness for purpose. If 

modeling is a craft and models cannot be proven true (because of the pervasive nature 

of uncertainty and the difficulty of separating observation from observer and facts from 

values), then the modeler has a moral obligation, and indeed it is in the modelers’ own 

practical interest, to be as rigorous as possible when assessing the robustness of model 

inference. 

Doing so should produce better and more parsimonious models, and will strengthen the 

analyst’s defense of the results in the case of scientific controversy or public policy 

debate (Saltelli et al., 2008). 
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1.2  Reasons for conducting Sensitivity Analysis 

 

In the context of numerical modelling, SA means very different things to different 

people. For example, for a chemist SA could be the analysis of the strength of the relation 

between kinetic or thermodynamic inputs and measurable output of a reaction system. 

For an economist the task of SA could be to appraise how stable the estimated 

parameters of a model (customarily derived via regression) are with respect to all factors 

that were excluded from the regression, thus ascertaining whether parameter estimation 

is robust or fragile. For a statistician involved in statistical modelling SA is mostly 

known and practised under the heading of “robustness analysis”. Statisticians are mostly 

interested in distributional robustness intended as insensitivity with respect to small 

deviations from the assumptions about the underlying distribution assumed for the data 

(Huber, 1981). 

These different types of analyses have in common the aim to investigate how a given 

computational model responds to variations in its inputs. Modellers conduct SA to 

determine (Saltelli et al., 2008): 

a) If a model resembles the system or process under study. 

b) The factors that mostly contribute to the output variability and that require 

additional research to strengthen the knowledge base, thereby reducing output 

uncertainty. 

c) The model parameters (or parts of the model itself) that are insignificant and that 

can be eliminated from the final model. 

d) If there is some region in the space of input factors for which the model variation 

is maximum.  

e) The optimal regions within the space of the factors for use in a subsequent 

calibration study. 

f) If and which (group of) factors interact with each other. 

 

Under (a) the model does not properly reflect the processes involved if it exhibits strong 

dependence on supposedly non-influential factors or if the range of model predictions is 
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not a sound one. In this case SA highlights the need to revise the model structure. It often 

happens that the model turns out to be highly tuned to a specific value of a factor, up to 

the point that necessary changes, e.g. resulting from new evidence, lead to unacceptable 

variation in the model predictions. When this happens it is likely that in order to optimize 

the simulation some parameter values have been chosen incorrectly. This reflects lack 

of conceptual understanding of the role of the parameters in the system.  

Under (b) SA can assist the modeller in deciding whether the parameter estimates are 

sufficiently precise for the model to give reliable predictions. If not further work can be 

directed towards improved estimation of those parameters that give rise to the greatest 

uncertainty in model predictions. If the model sensitivity seems congruent with (i.e. does 

not contradict) our understanding of the system being modelled, SA will open up the 

possibility of improving the model by prioritizing measurement of the most influential 

factors. In this way the impacts of measurement errors on computational results can be 

minimized.  

Under (c) we mean insignificant in the sense of “not affecting the variation of the 

output”; according with some investigators when the model is used in a case of 

conflicting stakes (e.g. siting a facility or licensing a practice) the model should not be 

more complex than needed and factors/processes that are insignificant should be 

removed. 

As far as (e) is concerned we stress the need for “global” optimization. One should 

investigate the space of the factors in its entirety and not just around some nominal 

points. 

 

 

1.2.1 Why one should perform SA? 
 

Sensitivity analysis can serve a number of useful purposes in the economy of modeling. 

It can surprise the analyst, uncover technical errors in the model, identify critical regions 

in the space of the inputs, establish priorities for research, simplify models and defend 

against falsifications of the analysis. In the context of models used for policy assessment, 
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sensitivity analysis can verify whether policy options can be distinguished from one 

another given the uncertainties in the system, and so on. 

SA can be employed prior to a calibration  exercise to investigate the tuning importance 

of each parameter, i.e. to identify a candidate set of important factors (which factor is 

most deserving further analysis or measurements) for calibration since the difficulty of 

calibrating models against field or laboratory data increases with the number of 

processes to be modeled (and hence the number of parameter to be estimated). SA may 

allow a dimensionality reduction of the parameter space where the calibration is made 

resulting in some factors of the model to. In this setting, SA can also help to ensure that 

the problem is not ill-conditioned. Quantitative SA methods (i.e. those which tell how 

much more important one factor is than another) can be appropriate when both the model 

inputs and the available data are affected by uncertainties. The question answered is: 

“what factors can be calibrated and at what confidence, given the data and their 

uncertainty”? 

While SA was originally created to deal with the uncertainties in the input factors, recent 

developments have seen some of the ideas being extended to incorporate structural 

uncertainty as mentioned above. In this way SA also touches on the difficult problem of 

model quality and is an important element of judgment for the corroboration or 

falsification of the scientific hypotheses embedded in a model (is the inference robust? 

Is the model overly dependent on fragile assumptions?). SA can be used to ensure that 

the response of the model to its input factors can be accounted for, that the model does 

not exhibit strong dependence on supposedly non-influential factors and that the range 

of model predictions is a sensible one.  

SA can be an effective tool for model identification. By pinpointing experimental 

conditions in which the ability to discriminate among the various models is a maximum, 

SA can identify the most appropriate model structures and competing specification that 

describe available evidence. 

This is closely related to mechanism reduction determining a subset of input factors 

accounting for the output variance. This enables the insignificant factors to be identified 

and eliminated from the final model. In this way irrelevant parts of the model can be 
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dropped or a simpler model can be built or extracted form a more complex one (model 

lumping). 

The above points have some epistemological implications concerning the relevance of a 

model. It has been argued that often the complexity of models largely exceeds the actual 

requirements. The view of Oreskes et al. (1994) is that models should be heuristic 

constructs built for a task. They would be relevant when their input factors actually cause 

variation in the model response that is the object of the analysis. Model irrelevance 

would flag a bad model, a model used out of context or a model unable to provide the 

answer being sought. 

Another possible goal for SA is to determine if there is some region in the space of inputs 

for which the model variation is maximum or divergent. This is useful in control theory 

where one might also be interested in the initiation of chaotic behavior for some 

combinations of model parameters.  

 

1.2.2 Properties of an ideal sensitivity analysis method  

 

We plan to use methods that are global and model-free, in the sense of being independent 

from assumptions about the model, such as linearity, additivity and so on. These methods 

must be capable of testing the robustness and relevance of a model-based analysis in the 

presence of uncertainties. Whenever possible, we would also like our methods to be 

quantitative. The desirable properties of sensitivity analysis are as follows: 

• The ability to cope with the influence of scale and shape. The influence of the 

input should incorporate the effect of the range of input variation and the form 

of its probability density function (pdf). It matters whether the pdf of an input 

factor is uniform or normal, and what the distribution parameters are. 

• To include multidimensional averaging. In a local approach to SA (e.g. 

ii XYS ∂∂= ), one computes partial derivatives. This is the effect of the variation 

of a factor when all others are kept constant at the central (nominal) value. A 

global method should instead evaluate the effect of a factor while all others are 

also varying.  
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• Being model independent. The method should work regardless of the additivity 

or linearity of the model. A global sensitivity measure must be able to appreciate 

the so-called interaction effect, which is especially important for non-linear, non-

additive models. These arise when the effect of changing two factors is different 

from the sum of their individual effects. 

• Being able to treat grouped factors as if they were single factors. This property 

of synthesis is essential for the agility of the interpretation of the results. One 

would not want to be confronted with an SA made of dense tables of sensitivity 

measures. 

 

Beside the properties above, we would like the setting for the SA itself to be as stringent 

as possible. It may well happen that using different measures of sensitivity, different 

experts obtain different relative ranking of the influence of the various input factors (see 

OECD, 1993 for an example). This happens if the objective of the analysis is left 

unspecified. Just as there are several definitions of risk (Risk Newsletter, 1987), there 

may be several definitions of importance. 

 

 

1.3  Local Vs. Global approaches 

 

Two quite different schools of thought may be identified (Saltelli et al., 1997): the local 

sensitivity analysis school and the global analysis one. In the first school, the local 

response of the output(s), obtained by varying parameters one at a time and holding the 

others fixes to a central (nominal) value, is investigated; this involves partial derivatives, 

possibly normalized by the nominal value of the parameter or by its standard deviation. 

All the analysis is run at a given central point in the space of the input parameters, and 

the volume of the region explored is nil. The second school is more ambitious in two 

respects: firstly, the input parameters space is explored within a finite (or even infinite) 

region and secondly, the variation of the output induced by a parameter is taken globally, 

i.e. averaged over the variation over all parameters. 
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A pragmatic and empirical approach has dominated the global sensitivity school, due to 

the intrinsic difficulty of building an effective global sensitivity measure over a finite 

space of variation for the input parameters. In this respect the work of researchers like 

Iman, Conover, Helton, was fundamental (see Helton, 1993 for a review). These 

investigators have tested and promoted the use of robust and reliable methods based on 

Monte Carlo regression and correlation analysis, and on the use of scatterplots. Methods 

such as Standardized Regression Coefficients (SRC), Correlation measures (Pearson), 

Partial Correlation Coefficients (PCC), have been used with some success. The 

aforementioned authors favored the use of rank transformed measures (Standardized 

Rank Regression Coefficients, SRRC, Spearman correlation, Partial Rank Correlation 

Coefficients, PRCC) for non-linear models. These methods offer a robust and easy to 

implement SA, provided that the input-output relationship is monotonic. The ordering 

of importance of the input factors based on these statistics must be considered with 

caution, especially when the associated model coefficient of determination is smaller 

than one. In any case, the analysis should be considered as qualitative rather than 

quantitative (for instance, SRC gives information on the liar regression model that is 

used to describe the system model, not on the system model itself; for rank-transformed 

statistics see Saltelli et al, 1993 and Saltelli & Sobol’, 1995). 

Non–linear, non–monotonic problems are often encountered in everyday model 

building. These problems call for a non-linear SA which is independent form 

assumptions about the model structure. 

 

1.3.1 Local sensitivity analysis 

 

Until the 90’s, and often today as well, sensitivity analysis was conceived as a local 

measure of the effect of a given input on a given output. In these local sensitivity 

measures the effect of jX  is observed while assuming all other factors fixed. This 

approach falls, hence, in the class of the one–factor–at–a–time (OAT) methods.  

The simplest and most intuitive way to obtain a local sensitivity index is to compute 

derivatives (Tomovic & Vukobratovic, 1972; see Varma et al., 1999; Grievank, 2000 
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for recent review). The sensitivity of the output Y to a perturbation of an input factor 

jX  is estimated at a given value, *jX  as  

 

*
ii

i

XXi
X X

Y
Y

=
∂
∂=′   (1.1) 

 

In situations where Y and jX  have different ranges of uncertainty, a more balanced 

measure can be obtained normalizing the derivatives by the factors’ standard deviations:  

 

*
ii

i

XXi

i
X X

Y

Y

X
S

=
∂
∂=

σ
σσ

  (1.2) 

 

The estimation of these local measures can be easily by solving systems of derivatives 

or taking incremental ratios.  

Local sensitivities are useful for a variety of applications, such as the solution of inverse 

problems, e.g., relating macroscopic observables of a system, such as kinetic constants, 

to the quantum mechanics properties of the system,6 or the analysis of runaway and 

parametric sensitivity of various types of chemical reactors. (Turanyi, 1990; Rabitz 

1989;, Saltelli et al., 2012). 

Local sensitivities provide the slope of the calculated model output in the parameter 

space at a given set of values. In many applications, this is exactly the information 

needed. In other areas, such as uncertainty analysis, local SA is a computationally 

efficient technique that allows a rapid preliminary exploration of the model. The 

calculation of local sensitivities is much faster than that of global sensitivities. 

One shortcoming of the linear sensitivity approach is that it is not possible to assess 

effectively the impact of possible differences in the scale of variation of the input factors 
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(unless the model itself is linear). When significant uncertainty exists in the input factors, 

the linear sensitivities alone are not likely to provide a reliable estimator of the output 

uncertainty in the model. When the model is non-linear and various input variables are 

affected by uncertainties of different orders of magnitude, a global sensitivity method 

should be used.  

 

1.3.2 Global sensitivity analysis 

 

In global SA, the probability density functions for each factor provide the input for the 

analysis. These distributions are valuable since they represent our knowledge (or lack of 

it) with respect to the model and its parameterization. A SA experiment is usually 

considered to be global when all the parameters are varied simultaneously and the 

sensitivity is measured over the entire range of each input parameter. 

Global SA techniques have been discussed by Cukier et al. (1978), Iman & Helton 

(1988), Sobol’ (1990b), Helton et al. (1991) and Saltelli & Homma (1992), among 

others. 

One advantage of these methods is that they explore the entire interval of definition of 

each factor. Another advantage is that each ‘effect’ for a factor is in fact an average over 

the possible values of all the other factors. Global methods have the following two 

properties (Satelli et al., 2000): 

1. the inclusion of influence of scale and shape. The sensitivity estimates of 

individual factors incorporate the effect of the range and the shape of their 

probability density functions. 

2. multidimensional averaging. The sensitivity estimates of individual actors are 

evaluated varying all other factors as well. 

A global SA technique thus incorporates the influence of the whole range of variation 

and the form of the probability density function of the input. 

Another general consideration with respect to the global, explorative nonparametric 

methods for the sensitivity analysis just described is that these have a better chance of 
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being resilient towards type II errors than local (derivative–based) methods. The 

possibility of important factors being overlooked or dangerous or critical combinations 

of input factors neglected decreases with the level of exploration of the space of the input 

factors (Farrell, 2007). The attention paid in global methods to interaction effects is also 

a protection against type II errors. In Saltelli et al. (2012) we show that, for even a 

relatively simple and well-studied chemical reactor system, global sensitivity analysis 

can lead to the identification of a larger ‘runaway’ portion in the space of the input 

factors, than could previously be identified.  

Several global methods have been developed since the 90’s: screening methods by 

Morris (1991), non-parametric or regression-based in Saltelli & Marivoet (1990), Helton 

(1993), variance-based methods (Sobol’ 1993, Oakley & O’Hagan 2004), density-based 

(Park & Ahn 1994, Chun et al. 2000, Borgonovo 2007, Liu & Homma, 2009) and 

expected–value–of–information (EVI) based (Oakley et al. 2010). The common feature 

of the last three classes of methods is that they are on the one hand the most informative 

in terms of uncertainty appraisal and on the other hand the most computationally 

intensive (Plischke et al., 2013).  

Operatively, global sensitivity analysis is performed according to the following steps: 

1. specify the target function and select the inputs of interest 

2. assign a distribution function to the selected factors, form available data, expert 

opinion or physical bounding considerations or via an estimation process 

3. generate an input set (sample) of size N  from the factors distribution according 

to an appropriate design 

4. evaluate the model at each sample point obtaining N  values for the target 

function 

5. estimate the influence or relative importance of each input factor on the target 

function 

In point 3, the input set can be generated by using a number of sampling designs: purely 

random generation from the assigned distributions (simple Monte Carlo), Latin 

hypercube sampling (LHS) (McKay et al, 1979), τLP  sequences (Sobol’, 1967), 

winding stairs (Jansen, 1994), or other more or less sophisticated techniques. We have 
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found considerable advantages in using quasi-random τLP  sequences (Homma & 

Saltelli, 1994, 1996). 

The first four points constitute uncertainty analysis. The N  values computed for the 

target function can be used to display the empirical distribution of the model output, thus 

quantifying the variation in the model response. The fifth point is sensitivity analysis: 

different methods can be used to apportion the uncertainty in the target function to the 

inputs. In variance-based methods, for instance, a typical representation of the results is 

in the form of a pie chart (Fig. 1.1) that partitions the variance of the output according 

to the contribution of each input factor. In this thesis we focus exclusively on variance-

based methods. 

 

 

Fig. 1.1 

 

A schematic view of sampling–based sensitivity analysis 
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Capitolo 2  
 

 

VARIANCE–BASED SENSITIVITY ANALYSIS 
 

 

 

2.1 Introduction  

 

Variance–based methods are based on the decomposition of the variance of the model 

output into terms of increasing dimensionality (Sobol’, 1993). 

The idea of using variance in SA dates back to the early 1970s (Cukier et al., 1973). 

Cukier and colleagues not only proposed conditional variances for a SA based on first–

order effects, but were already aware of the need to treat higher–order terms and of the 

underlying variance decomposition theorems. Their method, known as FAST (Fourier 

Amplitude Sensitivity Test) although quite effective, enjoyed limited success among 

practitioners not least because of the difficulty in encoding it. The method did not allow 

the computation of higher–order indices, although this was much later made possible by 

an extension of the method, EFAST, developed by Saltelli et al., (1999). 

Hora and Iman (1986), introduced the uncertainty importance of a factor ix  defined as: 
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)]  (   [ )(   ii xyVarEyVarI −=     (2.1) 

 

Later, the same authors (Iman & Hora, 1990) proposed a new statistic based on 

estimating the following quantity: 

 

]  [log  

)]   (log [

yVar

xyEVar ixi    (2.2) 

 

where 
ixVar  stands for variance over all the possible values of ix  and ]  [log ixyE  is 

estimated using linear regression. This solution has the advantage of robustness but, as 

observed by the authors, the conclusions drawn on ylog  are not easily converted back 

to y . 

In 1993, Sobol’ developed an original extension of Design of Experiments (DOE)  to 

the world of numerical experiments in which the total variance of the model output is 

assumed to be made up of terms of increasing dimensionality (Sobol’, 1993). Sobol’ 

indices are superior to the original FAST in that the computation of the higher interaction 

terms is very natural and is similar to the computation of the main effects. Each effect 

(main or otherwise) is computed by evaluating a multidimensional integral via a Monte 

Carlo (MC) method. Saltelli, (2002) and Saltelli et al. (2010) further improved this 

method. 
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2.4 Properties of Variance–based methods 

 

Variance–based methods are model independent: they work regardless to the additivity 

or linearity of the model. We can thus study the presence of interactions among the input 

factors also for non–linear, non–additive models. 

They can also capture the influence of the full range of variation of each factor and they 

are capable of dealing with groups of factors: uncertain factors might pertain to different 

logical types, and it might be desirable to decompose the uncertainty according to these 

types.  

The drawback of variance–based measures is their computational cost in terms of 

number of model runs and the fact that the information on the uncertainty of the model 

output is captured by the second order moment; in this case, we lose the full information 

of the uncertainty of the output which is given by its distribution. 

 

 

2.5 Variance decomposition and sensitivity indices  

 

The assessment and presentation of the effects of uncertainty are now widely recognized 

as important parts of analyses for complex systems. At the simplest level, such analyses 

can be viewed as the study of functions of the form 

 

)(xfy =   (2.3) 

 

where the function f  represents the model under study, ,...],[ 21 xx=x  is a vector of 

model inputs defined over a multi-dimensional space Ω, and ,...],[ 21 yy=y  is a vector 

of model predictions. The goal of an uncertainty analysis is to determine the uncertainty 
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in the elements of y  that results from uncertainty in the elements of x . A typical adjunct 

to an uncertainty analysis is a sensitivity analysis, which attempts to determine how the 

uncertainty in individual elements of x  affects the uncertainty in the elements of y . In 

practice, f  can be quite complex (e.g., one or more computer programs involving 

complex algorithms and many thousands of lines of programming); further, x  and y  

are often of high dimension. 

To carry out uncertainty and sensitivity analyses, the uncertainty in the elements of x  

must be characterized. 

For simplicity we treat each input ix  as random variable which is independent and 

uniformly distributed over the unit interval  

 

]1 ,0[ Uxi ∈   (2.4) 

 

So 

1)( =ixp   (2.5) 

 

and all the integrals can be written without integration limits 

 

∫∫ ≡
Ω

iiiii dxxdxxpx   )(   (2.6) 

 

For notational convenience the output y  in Eq. (1) will be assumed to be scalar. With 

this assumption, the representation in Eq. (1) becomes 
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)(xfy =   (2.7) 

 

In a variance–based method we are interested in the variance of the model output and its 

decomposition. For this purpose we  start from a decomposition of our model )(xfy =  

into a High Dimensional Model Representation (HDMR), Rabitz et al. (1999)  

 

),...,,(...),( )( )( 21  ,...,2,10 kk
i ij

jiiji
i

i xxxfxxfxfffy ++++== ∑∑∑
>

x  (2.8) 

 

]1 ,0[ )( 2Lf ∈x        k]1 ,0[ ∈x   (2.9) 

 

where )(xf  is a square integrable function f  over Ω , the −k dimensional unit 

hypercube. 

This decomposition is not unique (infinite ways exist to build an HDMR) as the lower 

order terms can be selected arbitrarily and the highest order terms can be written as the 

difference between )(xf  and  the terms of lower order.  

 

2.5.1 ANOVA-HDMR decompositions 
 

It can be proven that if each term in the HDMR is chosen such that: 

 

∫ ==
1

0

1... ,...,for       0 ),...,(
11 skiiiii iiidxxxf

kss
    (2.10) 
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then all the terms in (2.8) are orthogonal and can be expressed as integrals of )(xf . 

Indeed, 

 

)(0 YEf =   (2.11) 

)()|()( YEXYEXf iii −=    (2.12) 

)()(),|(),( jjiijijiij XfXfXXYEXXf −−=    (2.13) 

),(),(),(),,|(),,( kjjkkiikjiijkjikjiijk XXfXXfXXfXXXYEXXXf −−−=

      

 (2.14) 

 

The HDMR decomposition is called ANOVA-HDMR and is unique. The )( ii Xf  are 

referred to as main effects of iX , the ),( jiij XXf  are two–way interactions between the 

pairs ),( ji XX , etc.  

Squaring (2) and integrating over Ω  we get the ANOVA decomposition: 

 

∑∑∑
<<<

++++=
kji

kijk
ji

ij
i

i VVVVYV ...12...)(    (2.15) 

 

where: 

 

)]|([)]([ iiii XYEVXfVV ==   (2.16) 

jijijjiijijiijij VVXXYEVXfXfXXYEVXXfVV −−=−−== )},|([)]()(),|([)],([

  (2.17) 
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jkikijkjikjiijkijk VVVXXXYEVXXXfVV −−−== )],,|([)],,([   

 (2.18) 

 

The single terms ,...,, ijkiji VVV , are called partial variances and they are orthogonal. No 

covariances are involved in the decomposition. 

We can define the following sensitivity indices: 

 

)(YV

V
S i

i =  are first order sensitivity indices (also called main effects). 

)(/ YVVS ijij =  are second order sensitivity indices (highlighting two–way interactions)  

)(/ YVVS ijkijk =  are third order sensitivity indices (highlighting three–way 

interactions), 

 

and so on. The equality 0...1
=

siiS  means that 0),...,(
11... ≡

ss iiii xxf . Thus, the functional 

structure of f(x) can be investigated by estimating the indices 
siiS ...1
. 

 

2.5.2 Main effects 

 

The term iV  is the expected amount of variance that would be removed from the total 

output variance, if we were able to learn the true value of iX  within its uncertainty range.  

iS  indicates the relative importance of an individual input iX  in driving output variance 

and can be seen as indicating where to direct effort in the future in order to reduce that 

uncertainty.  
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If it were possible to observe one of the iX , learn its true value exactly, then we would 

choose that with the largest main effect. Of course, it is very rare that the true value of a 

given input can be learnt exactly.  

Nevertheless, the analysis shows where there is the greatest potential for output 

uncertainty reduction through new research.  

This type of measure is used before conducting a calibration experiment on a given 

input. A high value for the main effect of a given input, indicates that this input is a good 

candidate for calibration via observations of the model output. 

We can also interpret iS−1  as the minimum value of the expected quadratic loss when 

we approximate )(Xf  with the function )|( iXYE . If iX  is important, then the 

approximating function )|( iXYE  explains much of the variance of )(Xf  and iS  is 

high. Simultaneous variation of all the other inputs is acknowledged when estimating 

these indices. 

 

2.5.3 Joint effects and closed indices  

 

If we approximate )(Xf  by a two-variable function ),|( ji XXYE , then the minimum 

expected quadratic loss is )],|([)( ji XXYEVYV − , which corresponds to the maximum 

value of )],|([ ji XXYEV . We denote this term as cijV  (c stands for closed). This term 

can be interpreted as: 

→ the expected reduction of output variance when we have jointly learnt the true 

value of the pair ),( ji XX , or  

→ the expected fraction of the output variance that is removed when the true value 

of iX  and jX  is learnt, or  

→ the fraction of the output variance that is explained by the approximating function 

),|( ji XXYE . 
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For orthogonal inputs, and only in this case, we have: 

 

ijjiji VVVXXYEV ++=)],|([ .   (2.19) 

 

Hence, ijV  is the fraction of the output variance due solely to the interaction between iX  

and jX . When we learn about both iX  and jX , then ijV  is the extra amount of output 

variance removed over and above the variances iV  and jV . 

 

2.5.4 Total effects  

 

The total effect index accounts for the total contribution to the output variation due to 

iX , i.e. its first–order effect plus all higher–order effects due to interactions and it is 

given by the sum of all the sensitivity indices which include the factor in question, not 

considering the sensitivity indices that do not contain that factor. 

For a three–factor model, for example, the total effect of 1X  is:  

 

123131211 SSSSST +++=   (2.20) 

 

Total sensitivity indices are useful because they are an overall measure of importance of 

a given factor. For k  factors, it would be very demanding to estimate all indices at any 

order given that this number is 12 −k , problem known as “the curse of dimensionality” 

(Rabitz, 1999). Total indices can be estimated directly without the need to estimate each 

term of the decomposition. (Homma and Saltelli, 1996). For this reason we customarily 
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tend to compute the set of all iS  plus the set of TiS  which gives a fairly good description 

of the model sensitivities at a more reasonable cost.  

 

 

2.6  Implications and interpretations of the sensitivity indices 

 

By definition, TiS  is surely greater than iS  (or equal to iS  in the case iX  is not involved 

in any interaction with other factors).  

The difference iTi SS −  is a measure of how much iX  is involved in interactions with 

any other factor. 

The sum of all the iS  is usually less than 1 (for non–additive models). 

The sum of all the iS  is equal to 1 if the model is perfectly additive (no interactions 

between factors) 

The sum of all the TiS  is usually greater than 1 (for non–additive models). 

The sum of all the TiS  is equal to 1 if the model is perfectly additive. 

An indicator of the presence of interactions in a model is given by ∑−
i

iS1 : this value 

is the fraction of the output variance that is not explained by the single factors. 

The difference 1−∑
i

TiS  is another indicator of the presence of interactions, but this 

indicator weights interactions of higher order much more than interactions of lower 

order. 

The condition 0=TiS  is necessary and sufficient for iX  to be a non influential factor. If 

0≅TiS  then iX  can be fixed at any value within its range of uncertainty without 

appreciably affecting the value of the output variance )(yV . 
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Another way to define total indices is to decompose the output variance )(yV  in terms of 

main effect and residual conditioning with respect to all the factors but the one of 

interest, i.e. i−x  (Homma and Saltelli, 1996): 

 

)]|( [ ))|(()( ii yVEyEVyV −− += xx    (2.21) 

 

The measure )]|([ ))|(()( ii yVEyEVyV −− =− xx  is the remaining variance of y  that 

would be left on average if we could determine the true values of i−x , of the 1−k  

remaining factors. The average is calculated over all possible combinations of i−x  since 

i−x  are uncertain factors and their true values are unknown. Dividing by )(yV  we obtain 

the total effect index for iX : 

 

)(

)]|([ 
1

)(

)]|([ 

yV

yEV

yV

yVE
S ii

Ti

−− −== xx
   (2.22) 

 

 

2.7 The Jansen formula for the computation of sensitivity indices 
  

Variance based methods have assessed themselves as versatile and effective among the 

various available techniques for sensitivity analysis of model output. Practitioners can 

in principle describe the sensitivity pattern of a model )  ..., ,,( 21 kXXXfY =  with k  

uncertain input factors via a full decomposition of the variance V  of Y  into terms 

depending on the factors and their interactions. (Saltelli et al., 2009) 

In this section we present a measure to compute the main effects and the total effects 

using the mean–square difference proposed by Jansen et al., (1994).  
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2.7.1 Assumptions 
 

Jansen et al. (1994) assumed a scalar model output Y  depending on a number of 

stochastically independent random input vectors, )  ..., ,,( 21 kXXXfY = : 

 

)  ..., ,,( 21 kXXXfY =   (2.23) 

 

The function f  is deterministic, it is evaluated by simulation and may represent a single 

output or a combination of outputs. In this case the variability of Y  will be characterized 

by its variance. Jansen et al., (1994) assumed that Y  has finite mean and variance; this 

is guaranteed for instance when f  is bounded. The use of the variance as measure of 

uncertainty has an economic rationale: if the loss caused by a prediction error is 

proportional to the square of that error, the expected loss is proportional to the variance. 

Uncertainty analysis consists of the investigation of the output distribution, given the 

model and the distribution of the inputs. One may investigate the full variance, that is 

the variance of Y  induced by all sources iX  collectively. Let U  denote a group of one 

or more sources of uncertainty iX ; then, by assumption, U  is independent of all the 

other sources of uncertainty. With respect to U , two variance components are 

particularly interesting. Firstly, the top marginal variance from U , which is defined as 

the expected reduction of the variance of Y  in case U  should become fully known, 

whereas the other inputs remain as variable as before. Secondly, the bottom marginal 

variance from U , defined as the expected value of the variance of Y  in case all inputs 

except U  should become fully known, U  remaining as variable as before. Since one 

does not know in advance at what value the sources will become fixed, one can only 

determine the distribution of the two variances mentioned; Jansen et al., (1994) content 

themselves with the mean of these distributions. 
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2.7.2 Decomposition of the variance caused by two input factors  
 

Jansen et al., (1994) started first from the decomposition of the prediction variance 

caused by two stochastically independent input factors. The extension to a larger number 

of independent inputs is shown in the next section.  

If an input vector, say U , becomes fully known at value u, whereas the other input 

vector, say V , independent of U , remains as uncertain as before, the best prediction of 

Y in the least squares sense will be the mean of ),( Vuf . The situation is illustrated in 

Table l for the case that U  and V  can assume a finite number (4 and 5, respectively) of 

equiprobable values. 

 

 

 

 

 

 

 

 

A dot index indicates that the mean has been taken over the index; ),( ii vuf  is denoted 

by ijy . The left column and the upper row contain the values assumed by U  and V . The 

best predictions are conditional means of the model output Y. The bottom right element 

..y  is the best prediction when neither U  nor V  are known. The right column and the 

bottom row contain the best predictions at the given value of U  respectively V . The 

output ijy  can be decomposed into general mean, main effects and interactions, as usual 

in analysis of variance: 

 

Table 1 

 1v  2v  3v  
4v  5v   

1 u  11y  12y  13y  
14y  15y  .1y  

2u  21y  22y  23y  
24y  25y  .2y  

3 u  31y  32y  33y  34y  35y  .3y  

4u  41y  42y  43y  
44y  45y  .4y  

 1.y  2.y  3.y  
4.y  5.y  ..y  
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..)].(..).(.. [..).(..).(.. yyyyyyyyyyyy jiijjiij −−−−−+−+−+=   (2.24) 

 

In the general case, the function ),( vuf  can be decomposed as follows. Let 0f  denote 

the best prediction when U  and V  are unknown: 

 

),( 0 VUfEf =   (2.25) 

 

The best predictions when U  or V  have become fixed at u  or v  respectively, are given 

by ),( VufE  and ),( vUfE  respectively. Let )(ufu  and )(vfv  denote the corrections to 0f  

when U  respectively V  get fixed: 

 

0),( )( fVufEufu −=   (2.26) 

 

0),( )( fvUfEvfv −=   (2.27) 

 

and let ),( vufuv  denote what is left. Then ),( vuf  may be decomposed: 

 

),()()(),( 0 vufvfuffvuf uvvu +++=    (2.28) 

 

which is sometimes called the analysis of variance decomposition of f . Accordingly 0f  

is called the general mean, )(ufu  and )(vfv  are called main effects of u  and v  while 

),( vufuv  is called the interaction of u  and v . The full variance of f  neatly falls apart: 
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),(Var )(Var )(Var ),(Var VUfVfUfVUf uvvu ++=   (2.29) 

 

If U  were to become fixed at u , the best prediction would be )(0 uff u+ , leaving 

),()( VufVf uvv +  as prediction error, with reduced variance ),(Var )(Var VUfVf uvv + , 

which is a function of u . 

It is not known in advance at which value U  should become fixed. One might wish to 

calculate the distribution of this reduced variance, but we will be content with the mean 

of the reduced variance over U , that is ),(Var )(Var VUfVf uvv + . Accordingly, the top 

marginal variance from U , the expected variance reduction in the output variance due 

to the fixing of U  while V  remains as variable as before, is given by )(Var Ufu . 

Similarly, the bottom marginal variance from V , the expected variance left over when 

only V  remains uncertain, equals ),(Var )(Var VUfVf uvv + . 

The top marginal variance from U  is seen to be the variance of the main effect of U , 

whereas the bottom marginal variance from V  is equal to the sum of the variances of the 

main effect of V  and the interaction between U  and V . 

Let 1u  and 2u  denote two independent realizations of U , and let v  denote some fixed 

value that can be assumed by V . Then ),( 1 vuf  and ),( 2 vuf  are independent realizations 

of ),( VUf  given vV = . Thus ),(),( 21 vufvufd −≡  has zero expectation, while its 

variance, i.e. its expected square, is twice the variance of ),( VUf  given vV = . So 2 2
1 d  

is an unbiased estimate of this latter variance. It follows that if v is a random realization 

of V, 2 2
1 d  is an unbiased estimate of what we defined as the bottom marginal variance 

from source U :  

 

Bottom marginal variance = [ ]∫ − '),'()(
2

1 2dxduvufxf    (2.30) 
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Note that the top marginal variance from U  is obtained by subtracting the bottom 

marginal variance from V  from the full variance of Y.  

 

( )),(Var )(Var ),(Var )(Var VUfVfVUfUf uvvu +−=   (2.31) 

 

The top and bottom marginal variances can be generalized to the case of k input factors 

as follows (Jansen et al., 1999): 

 

Top marginal variance of iX :  ( )[ ]iY|XEVar  

Bottom marginal variance of iX : ( )[ ]- iY|XVarE    

 

These are, respectively, the numerators of the first order and total sensitivity indices: 

 

)(

])|[(

YVar

XYEVar
S iX

i
ii −= X    (2.32) 

 

)(

])|[(
1

)(

])|([

YVar

YEVar

YVar

YVarE
S iXiX

T
iiii

i

−− −− −==
XX XX    (2.33) 

 

where i−X  denotes the set of all factors but iX  and the mean of Y  is taken over all 

possible values of i−X  while keeping iX  fixed. The outer variance is taken over all 

possible values of iX .  

In such case, the formula of Jansen for the total indices becomes: 
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∫ ′′−= − iii
T
i xdxdxxfxf

YVar
S 2)],()([

)(2

1
  (2.34) 

 

This formula has been proven to be more efficient with respect to that proposed by 

Sobol’ (Saltelli et al., 2000, p.177) in the sense that: 

 

( ) ( )'      Sobol
Ti

Jansen
Ti SVarSVar ≤    (2.35) 

 

2.7.3 Monte Carlo implementation of the Jansen Formula 

 

Here we describe the Monte–Carlo implementation of Jansen formula for the estimation 

of the total–effect indices. The procedure, described in Saltelli et al. (2010), starts by 

generating two ( kN  × ) independent sample matrices, A  and B , where N  is the base 

sample size (i.e. the basis for the Monte Carlo computation of the multi–dimensional 

integral) and k  the number of input factors. Usually, values of N  is of the order of a 

few hundreds.  

We now introduce another matrix, )(i
BA , where all columns are from A  except the thi  

column which is from B . Jansen’s formula (2.34) for calculating TiS  can be computed 

from the pair of matrices A  and )(i
BA  as follows: 

 

[ ]∑
=

−
N

j

j
i

j ff
N 1

2 )(  )()(
2

1
BAA    (2.36) 

 

where j)(A  denotes the thj  row of matrix A  (Sobol’, 1990). The correspondent total 

sensitivity index is  
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YVar
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j

Ti

∑
=

−
=

BAA

   (2.37) 

 

Here the arguments A  and )(i
BA  have in common the coordinates i−X , and can thus be 

seen as separated by a step in the iX  direction. 

Fig. 1 summarize the way in which we can construct the specific design required to 

calculate the sensitivity indices using the Jansen formula with three input factors. The 

red point represent matrix B , the vertex of the cube opposite to points represented by 

matrix A .  

 

 

Fig.1 

 
Summary of the Jansen formula 

 

 

The cost of the Monte–Carlo implementation can be summarized as follows. 

A number of simulation equal to )2( N⋅  is needed for computing Y  corresponding to 

matrix A , while )( Nk ⋅  simulations are needed to compute Y  from matrices )(i
BA  for 

all factors. As a result the cost of the analysis is )1( +kN .  

 

 

A  

B  
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CHAPTER 3 
 

 

TOTAL SENSITIVITY MEASURES FROM GIVEN 

DATA 

 

 

 

3.1 Introduction 
 

Sensitivity analysis often requires a considerable number of model executions, one for 

each sample point considered. This is especially true when the simulation model is very 

expensive to run (e.g. one run requires minutes or hours). It is custom practice to try to 

reduce the number of executions at most, in order to obtain estimates of sensitivity 

indices of a given accuracy.  

The analyst wishing to perform sensitivity analysis can find himself in two different 

situations: one in which he still has to execute the model runs, and one in which some 

model runs are already available.  
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In the first case the analyst can use a suitable design of the input space and adopt, for 

example, the Sobol’ method (or random balance design and other Fourier- based 

approaches, see chapter 5 for details), to estimate variance-based sensitivity indices. In 

other words, the analyst decides where to locate the input points, and runs the model on 

these. Then he uses the model output to compute Sobol’ indices.  

In the second case, the input points and the corresponding model outputs are “given”, 

i.e. data might come either from measurements or experiments, or from a design that is 

not specifically intended for sensitivity analysis. Hence, given data are already available 

and the analyst wishes to use them for the sensitivity analysis in order to save 

computational time. Therefore, techniques should be available to estimate sensitivity 

indices for given data. The initial objective of the present thesis is to devise a 

methodology of this kind. 

Some approaches to sensitivity analysis are already available for given data (Paruolo et 

al., 2011) but they focus on the estimation of first order indices. The objective of the 

thesis is more general: to devise a “given data” approach for the estimation of total 

sensitivity indices, which takes into consideration the overall effect of interactions 

among model inputs. No “given data” methodology is available today for estimating 

total sensitivity indices. 

 

 

3.2 Estimating total effects from given data 
 

The Monte Carlo implementation of the Jansen formula, presented in section 2.4.3, can 

be used when the analyst can choose the design points and build the matrices A  and 

)(i
BA . But when data are given (they are indeed represented by matrix A ), it is not 

possible to build )(i
BA  starting from A , as we can not generate another independent 

matrix, B . Therefore, )(i
BA  needs to be found from the set of given data.  
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As shown in the previous chapter, each row in )(i
BA  represents a step in the iX  direction 

with respect to (the rows of) A . We need to find, among the given data, those that are 

as closest as possible to the iX  direction (i.e. the line passing through A  and )(i
BA ).  

We can construct the region of search for points )(i
BA  within a cone (see Fig. 4.1) with 

vertex in A  and axis along the iX  direction.  

For each point1 ),...,,( 21 jkjjj xxxx =r
, j=1,…, N of matrix A, the best candidate for )(i

BA  

is the point  of A  that maximizes 
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ji
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)(
),( 

rr

rrα    (3.1) 

 

with respect to Nj   ...,  ,1= . 

We can do this by calculating for each point ),...,,( 21 jkjjj xxxx =r
 its distance from all 

the other points of matrix A , and for each direction i  (column of A ) we compute the 

angle between each point jx
r

 and the projection of the others on the direction i . We 

want in this way to identify, for each vector jx
r

 of matrix A , the vector (point) *x
r

inside 

the cone, which is as close as possible to the direction of jx
r

. For a given cone aperture 

we expect there are some points around it. We collect all the points with the smallest 

angle and then we run the model. We proceed then through the Jansen formula for the 

estimation of the total–effect indices. If there are no points inside the cone, then the point 

jx
r

 is skipped. The aperture of the cone can be increased to improve the likelihood that 

points fall within it; but, in this case the approximation error would increase, too. 

 

                                                           

1 Each point is a row in the matrix. Given the matrix and the output we want to estimate 
iST. 
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Fig. 4.1 

 

Given the aperture α , for each point jx
r

, inside the cone, we choose the one, 
*x
r

, 

closest as possible to the direction i . The darker dots are the points inside the cone 

 

 

We coded this approach in a MATLAB script for performing the sensitivity analysis 

described above. We made several tests of the code to verify the reliability of the results.  

In the next section we describe the code in detail and present the results obtained. 
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3.3 Total sensitivity indices estimated using the cone approach 

 

We first created a MATLAB code (appendix A.1). Once set the aperture of the cone 

(alpha), this code is able to capture, for each point of the matrix of interest and for each 

direction, all the partner points with the “minimal aperture” (≤ alpha). From those points 

the code selects those which are better than the others, i.e. throwing out the points where 

the partner is not aligned “straight enough” with the direction of the cone. We then used 

the Jansen formula to calculate the total sensitivity indices, hence automatically 

generating a training data index set. 

First of all we wanted to test the new code on a simple additive function and so we chose 

the Corner Peak2 function. We tested the code at different sample sizes ranging from 

128 to 16384 at a step of multiple of two for 100 replicates. We wanted to test its 

performance at increasing number of input factors: 2=k 3=k 4=k . 

The results are reported below and plotted in figures for each number of input factors. 

Fig. 4.2 

 
Boxplots of total sensitivity indices against the sample size for the Corner Peak function test case with 
2 factors. Cone aperture is set at alpha=5. Analytical value are shown by a green line 

                                                           
2 See paragraph 4.5.1 for details on this function 
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Fig. 4.3 

 
Boxplots of total sensitivity indices against the sample size, for the Corner Peak function test case 
with 3 factors. Cone aperture is set at alpha=5. Analytical value are shown by a green line 

 

 

 

 

 

 

 



42 

 

Fig. 4.4 

 

Boxplots of total sensitivity indices against the sample size for the Corner Peak function test case with 
4 factors. Cone aperture is set at alpha=5. Analytical value are shown by a green line 
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We wanted then to test the performance of the cone approach under different complexity. 

We chose a non–monotonic test function, the Ishigami3, using QR numbers. The 

peculiarity of this function is the absence of additive effect on Y but the presence of 

interaction between 3X  and 1X .  

We tested the code at different apertures of the cone from alpha=5 to alpha=20 at step 

of 2.5 and at different sample size, from 128 to 16384 at step of multiple of two each of 

one run for 100 replicates. We added a dummy variable. 

The results are reported below and plotted in figures for each cone aperture. 

1TS  converges to a value under the analytical value and the underestimation grows as 

the aperture grows and as sample size increases. 3TS  shows a better convergence than 

1TS  but it is still quite underestimated. 2TS  shows an evident variability well below the 

analytical value. 4TS  has a high variability up to a sample size of 2048 in correspondence 

of the apertures alpha=5 and alpha=7.5. From alpha=10 it converges to zero as the 

sample size increases. 

Fig. 4.5 

 

Boxplots of total sensitivity indices against the sample size for the Ishigami function test case 
with 4 factors. Cone aperture is set at alpha=5. Analytical value are shown by a green line 

                                                           
3 See paragraph 4.5.1 for details on this function 
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Fig: 4.6 

 

Boxplots of total sensitivity indices against the sample size for the Ishigami function test case 
with 4 factors. Cone aperture is set at alpha=7.5. Analytical value are shown by a green line 

 

 

Fig. 4.8 

 
Boxplots of total sensitivity indices against the sample size for the Ishigami function test case 
with 4 factors. Cone aperture is set at alpha=10. Analytical value are shown by a green line 
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Fig. 4.7 

 

Boxplots of total sensitivity indices against the sample size for the Ishigami function test case 
with 4 factors. Cone aperture is set at alpha=12.5. Analytical value are shown by a green line. 

 
 

 

Fig. 4.9 

 

Boxplots of total sensitivity indices against the sample size for the Ishigami function test case 
with 4 factors. Cone aperture is set at alpha=15. Analytical value are shown by a green line 
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Fig. 4.10 

 

Boxplots of total sensitivity indices against the sample size for the Ishigami function test case 
with 4 factors. Cone aperture is set at alpha=17.5. Analytical value are shown by a green line 

 

 

 

Fig. 4.11 

 

Boxplots of total sensitivity indices against the sample size for the Ishigami function test case 
with 4 factors. Cone aperture is set at alpha=20. Analytical value are shown by a green line. 
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Since the error bands seem to be underestimanted, we computed the standard deviation 

(RMSE) for each total index at different apertures and at increasing sample size. We 

reported the values in the following tables and plotted them in figures (linear and 

logarithmic scales). 

 

 Table 1 

1TS  RMSE  
    SAMPLE  SIZE     

ALPHAS  128 256 512 1024 2048 4096 8192 16384 

5  NaN NaN 0,328039 0,237512 0,189313 0,15711 0,09284 0,093044 

7.5  NaN 0,313593 0,188105 0,19047 0,157532 0,143551 0,087579 0,09259 

10  0,327981 0,166792 0,141566 0,117348 0,130651 0,138187 0,087345 0,092595 

12.5  0,255881 0,144303 0,130042 0,11587 0,137096 0,139842 0,08728 0,094583 

15  0,209443 0,122059 0,116149 0,112253 0,135702 0,139429 0,08728 0,094583 

17.5  0,161419 0,103153 0,088709 0,111127 0,132963 0,133672 0,087373 0,093286 

20  0,105726 0,084431 0,094203 0,108926 0,135593 0,136124 0,088111 0,091866 

 
 
 
 

Table 2 
RMSE ST2  

     SAMPLE SIZE    

ALPHAS  128 256 512 1024 2048 4096 8192 16384 

5  NaN NaN 0,183069 0,231008 0,224038 0,229366 0,169039 0,197598 

7.5  NaN 0,198912 0,146638 0,198134 0,215758 0,219881 0,185675 0,201513 

10  0,181338 0,164619 0,195832 0,212648 0,208876 0,2274 0,185766 0,201941 

12.5  0,247967 0,186332 0,219505 0,222493 0,212235 0,220056 0,183626 0,20114 

15  0,211586 0,177738 0,220036 0,223834 0,212329 0,220055 0,183626 0,20114 

17.5  0,178119 0,177127 0,22536 0,222236 0,210656 0,225889 0,186949 0,200866 

20  0,178556 0,173053 0,219431 0,222162 0,215533 0,230366 0,186483 0,200678 

 
 
 
 

Table 3 
RMSE ST3  

     SAMPLE SIZE    

ALPHAS  128 256 512 1024 2048 4096 8192 16384 

5  0,304444 0,167278 0,122508 0,073034 0,037135 0,043697 0,023469 0,028186 

7.5  0,330927 0,103788 0,061942 0,017677 0,029258 0,033854 0,0092 0,025832 

10  0,167721 0,07493 0,065635 0,034666 0,021834 0,023898 0,008485 0,025807 

12.5  0,112686 0,074107 0,078229 0,058457 0,020514 0,025954 0,008686 0,028037 

15  0,159332 0,087462 0,098058 0,067879 0,021131 0,025749 0,008687 0,028037 

17.5  0,184008 0,101586 0,102094 0,068714 0,021817 0,021568 0,008654 0,023719 

20  0,20698 0,123912 0,103203 0,069057 0,019939 0,025448 0,008364 0,02609 
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Table 4 
RMSE ST4 

          SAMPLE SIZE       

ALPHAS   128 256 512 1024 2048 4096 8192 16384 

5   0,214915 0,180612 0,119395 0,08592 0,057566 0,040115 0,018182 0,011988 

7.5   0,024651 0,037717 0,039773 0,049078 0,041317 0,032143 0,017724 0,011855 

10   0,123858 0,08529 0,066869 0,068011 0,051673 0,037491 0,018067 0,011993 

12.5   0,157889 0,129993 0,09727 0,077454 0,055492 0,039448 0,018055 0,011955 

15   0,183238 0,151488 0,107694 0,082334 0,057238 0,040018 0,018056 0,011955 

17.5   0,206269 0,166532 0,116383 0,085301 0,058002 0,03991 0,018198 0,01194 

20   0,214915 0,180612 0,119395 0,08592 0,057566 0,040115 0,018182 0,011988 

 
 

When the sample size is small the RMSE decreases as the aperture of the cone grows. 

This is because the greater the aperture, the better points are captured by the cone. But 

when the sample size increases, the best points have already been captured by the cone 

even at small aperture. Increasing the aperture does not change anything. This is well 

expressed in Fig. 4.12 and Fig. 4.14 at sample size 128 and 16384. 

 
 
 

Fig. 4.12 

 

Graphic of the trend of 1TS  RMSE  
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Fig. 4.13 reflects the irregular trend of the index 2TS . Apparently, the cone aperture does 

not influence the estimates except for the smallest sample size (128 and 256). 

 
Fig. 4.13 

 

Graphic of the trend of 2TS  RMSE  

 

Fig. 4.14 

 

Graphic of the trend of 3TS  RMSE  



50 

 

Fig. 4.15 shows the perfect trend of 4TS . At small sample sizes when, the aperture is 

alpha=5, the cone captures the best points inside, but we may have empty cones for some 

points and for some directions. That’s why the estimate improves as the cone aperture 

grows. But from alpha=7.5 the best point have already been captured and the estimate 

does not change. When the sample size is high (8192 and 16384) the aperture does not 

influence the estimate because the best points have already been inside the cone. 

 

 

Fig. 4.15 

 

Graphic of the trend of 4TS  RMSE  

 

 

To give an idea of how many points we can find inside the cone at different apertures, 

as the sample size grows, we calculated those points and plotted them in Fig. 4.16.  

We called “matches” the average of the number of good points, for each sensitivity 

index, captured by the cone and used to calculate the four indices altogether. 
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As the sample size increases Fig. 4.16 shows that the number of good points captured 

by the cone grows, and it grows to a greater extent with the increasing of the aperture of 

the cone. At sample size 15000 we found on average 7320 points inside the cone, in 

correspondence of alpha=5. 

 

 

Fig. 4.16  
sample size vs matches 

 

Graphic of the trend of the number of good points captured by the cone at different aperture as 
the sample size grows 

 

 

 

3.4 Conclusions 

 

In SA the estimation of higher order effects and, in particular, total effects from given 

data still remains an open problem.  

In this chapter we presented a new technique for estimating variance–based total 

sensitivity indices from given data because we wanted to try to give a contribution for 

the solution of this problem. 
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We created a unique algorithm, that we called “cone approach”, and investigated its use 

in estimation of total indices. The algorithm has been implemented in a Matlab code for 

further tests and outcome analysis.  

During our work, we specifically focused on total effects estimation, being aware of the 

concrete possibility of not being able to find a final solution. Thus, the core feature of 

the study was to investigate and define a possible approach to the problem. 

In SA, the Jansen formula is efficiently used to calculate total effects indices when data 

are designed ad hoc. But when data are given, this formula cannot be applied because of 

the impossibility to build other independent points along the same direction of the one 

of interest. The cone approach tries to overcome this basic limit, searching the best points 

to be used in the Jansen formula on the base of their radial “distance” from the needed 

direction, i.e. those points iX , whose angle between them and the projection of the 

others on the direction i  is the smallest. 

The Jansen formula was then applied to obtain numerical results to be analyzed in detail. 

In our knowledge no previous studies followed this method and our tests represent the 

first tentative for this kind of analysis. 

Matlab software was used to create new scripts for numerically implementing our 

approach and made several tests.  

We first tested the cone approach with a simple additive function, the Corner Peak 

function and performed it at a given aperture of the cone, alpha=5. The method gave 

good estimates especially when the number of input factors were small. Fig. 4.3 showed 

that when 4=k  the estimates show higher variability and overestimation above the 

analytical value. The performance of the cone approach is worsening with increasing of 

the number of input factors. 

We noticed that the cone approach performance does not completely meet our 

expectations when the complexity of the function used is higher and the number of the 

factors increase. The numerical results, obtained performing the Ishigami function, 

unfortunately, confirmed that.  

So we made some reflections. 
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Does a larger cone aperture increase the risk of augmenting the errors? Are the best 

points identified by the code good for increasing the accuracy of the estimates? We 

found that this depends on the test case and the input factor analyzed. In the case of 

complex functions, why the indices do not converge to analytical value as the sample 

size grows? Perhaps, there could be the risk that a considerable number of new points 

are located close to the boundary of the cone and can therefore introduce further error. 

With a large sample, and with a small aperture of the cone, the small amount of points 

inside the cone (even two or three) are very good and the results are good. Increasing 

the aperture, we run the risk of including other points which deteriorate the estimate. So, 

apparently there is no optimal number of points that yields a good estimate.  

Despite these results, in our opinion the defined “cone approach” still remains a valid 

approach to be investigated and studied. It is in our intentions to make further research 

on it. 

We first intend to test the code implemented in MATLAB for the present thesis, on other 

test functions at increasing complexity. We want to understand the way in which the 

performance of the total indices changes when we are dealing with different situations: 

different sample sizes and different apertures. 

Furthermore we intend to review the code. Maybe we can improve it or make it more 

powerful.  

We are working on the cone approach and we will work on it until we find answers to 

our questions. 
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CHAPTER 4 
 

 

QUASI RANDOM BALANCE DESIGNS 
 

 

 

 

In this chapter we present a new approach for the estimation of the first order effects in 

GSA given a specific sample design. This method adopts the RBD approach published 

by Tarantola et al., (2007) for the computation of first order sensitivity indices in 

association to Quasi–Random numbers. For this reason we first introduce the Random 

Balance Design and the Quasi Random numbers.  

 

 

4.1 An introduction to Random Balance Designs 
 

 

4.1.1 History 

 

Designed experiments are used in a very wide range of applications (industrial, 

biological and agricultural experiments) since they aim at evaluating the performance of 
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a system, or optimizing its performance in terms of one or more output responses. 

Typically these experiments involve many potentially important factors of which only a 

few are expected to have active effects and those effective factors are not known a priori. 

In such experiments, the experimenter’s endeavor is to minimize the number of runs to 

identify the active factors, those having a strong effect on the output, for efficient 

utilization of resources and minimization of cost and time. The basic problem here is 

how to identify these few active factors in an efficient way. It is impossible to investigate 

thoroughly all factors under consideration and knowing every main effect can be 

wasteful because non–significant factors are not usually of interest. We require some 

means of making the available number of computer runs and the number of factors 

compatible. 

We can succinctly summarize this difficulty of experimental design in simulation as too 

many factors and too few runs. This situation where many effects are unimportant is 

called effect–sparsity (Box & Meyer, 1986) and assumed that only a few dominant 

effects actually affect the response.  

To address this problem, one approach is to use a so–called supersaturated design, an 

increasingly popular tool for screening factors in the presence of effect–sparsity. A 

supersaturated design is namely an experimental design whose run size is not large 

enough for estimating all the main effects represented by the columns of the design 

matrix, that is a design with k  factors and n observations where n <k  (the number of 

runs is smaller than the number of factors). If a first–order model is assumed (i.e. a model 

without interactions between factors) and if the number of significant factors is expected 

to be small, a supersaturated design can save considerable cost.  

The advantage of these designs is that they reduce the experimental cost drastically. 

Because of their run size economy, these designs can be broadly exploited to screen 

active factors when experimentation is expensive and the number of potentially active 

factors is large. 

The construction of supersaturated designs dates back to Satterthwaite (1959) and 

Booth&Cox (1962). The former suggested constructing such designs by randomization 

procedure (random balance designs). 
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4.1.2 An overview of the approach 

 

In an experimental design, given two variables 1x  and 2x , we say that “1x  has exact 

balance with respect to 2x  if the exact distribution of  2x  is the same for each value of 

1x ” (Satterthwaite, 1959).  

A random design is one for which “a random sampling process is used to choose all or 

some of the elements of a design matrix” ],[ 21 ′= xxX . If we carry out a series of 

experiments, good practice would be to conduct them in random order. The order of 

those experiments is in fact a further variable, i.e. 3x  in addition to the previous 1x  and

2x . Our design matrix X  will have then three variables and its third column, the order 

numbers of the experiment, are selected by an appropriate random sampling process. 

Here the design is a random design with respect to 3x , the order variable but it is a fixed 

design with respect to the other variables 1x  and 2x . 

The latter variable 3x  is said to have random balance with respect to 1x  and 2x  “if the 

random sampling process used to select the 3x  values associated with any one 

combination of (1x , 2x ) is identical to the random sampling process used to select the 

values of 3x  associated with every other combination of (1x , 2x ), no matter of the type of 

random sampling process used to select the specific input variable values” 

(Satterthwaite, 1959).  

This sampling technique is used in the random balance design method, illustrated in the 

next sections. This method combines Satterthwaite random balance design for the 

sampling with the estimator used for the Fourier Amplitude Sensitivity Test (FAST), 

another technique of sensitivity analysis. Therefore, before describing the random 

balance design method, we provide an introduction to FAST. 
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4.2 The FOURIER AMPLITUDE SENSITIVITY TEST 

 

The Fourier Amplitude Sensitivity Test (FAST) is one of the earliest method developed 

to estimate variance–based sensitivity indices and it offers an alternative approach to 

compute first–order effects. 

FAST was originally proposed by Cukier et al. in the 1970s to perform sensitivity 

analysis of a chemical computer model (Cuckier et al, 1973). FAST is computationally 

efficient and it is independent of any assumption about the model structure; furthermore 

it works for monotonic and non–monotonic models. The core feature of FAST is that it 

explores the multidimensional space of the input parameters by a search curve which 

scans the whole parameters’ space. The multidimensional integrations over the input 

space is thus replaced by a one-dimensional integration. The sensitivity coefficients of 

FAST are calculated from the terms in the Fourier decomposition of the model output. 

Unlike other global SA methods such as the Standardized Regression Coefficient (SRC), 

Correlation Ratio (Pearson) or Partial Correlation Coefficient (PCC) mentioned 

previously, FAST computes the “main effect” contribution of each input factor to the 

variance of the output estimating the same statistical quantity given by 

 

)(Var

)]|([ Var

Y

XYE iXi   (4.1) 

 

where Y  denotes the output variable, iX  denotes an input factor, )|( iXYE  denotes the 

expectation of Y  conditional on a fixed value of iX  and the variance is taken over all 

possible values of iX . 
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4.2.1 The method 

 

The main idea behind FAST is to convert the −k dimensional integral over X  into one–

dimensional integral in s by using appropriate transformation functions. 

Let us consider the following model )(xfy=  where y is the output variable and 

kxxx  ,..., , 21=x , ki ,..., 1 =∀ , is a random vector with a given joint probability density 

function ) ,..., ,( )( 21 kxxxpp =x  assumed to be known, the output y  therefore is also a 

random variable.  

The thr  moment of y is defined as a multi–dimensional integral: 

 

x   ),...,,(  ),...,,( 2121 

)( dxxxpxxxfy nn
rr

∫Ω=     (4.2) 

 

where kxi ,...,1i    ;10|( =≤≤=Ω x  is the domain of the input factors (for simplicity 

chosen as the unit hypercube).  

Cukier et al. (1978) started from the integral in (4.2) to compute sensitivity indices using 

a multidimensional Fourier transformation of f  to decompose the variance of y. 

Because of the computational complexity of the multi-dimensional integration, they 

perform the Fourier analysis along a search curve that explores the input domain and 

that can be defined by the following set of parametric equations 

 

( )  , 2 1        )( sin)( k,...,,isGsX iii =∀= ω     (4.3) 

 

where iG are transformation functions that will provide a uniformly distribution in the 

unit hypercube, s  is a scalar variable varying over the range ∞<<∞− s  and 
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kii   ,...,2  ,1   },{ =∀ω  is a set of different frequencies each associated with an input factor. 

The ix  are now expressed in terms of the parametric equations iG. 

As s  varies, all the parameters change simultaneously along the curve and each ix  

oscillates periodically at the corresponding frequency i  ω  whatever iG  is. The output y 

will present different periodicities combined with the different frequencies i  ω  and it is 

highly influenced by the thi  parameter if the amplitude of the periodic oscillation of y 

at frequency i  ω  is high. Through a Fourier decomposition of )(sf 4 we can see the 

contribution of each individual ix  to the total output variance. 

The search curve drives arbitrarily close to any point x  of the input domain if and only 

if we use a set of incommensurate frequencies; in this case the search curve is space–

filling according to the ergodic Weyl’s theorem (1938) and the thr  moment of y in (4.1) 

can be computed by an integral over one-dimensional domain  

 

dssxsxsxf
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T

T
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T

r   ))(  ),...,(  ),(( 
2

1
  lim 21

 

)(
∫

+

−
∞→

=   (4.4) 

 

Thanks to Weyl’s theorem (Whey, 1938), which implies the equivalence between the 

function expressed in terms of  the ix  and the parameter equation expressed in terms of  

s, we can write 

 

)((r)y ry≡   (4.5) 

 

                                                           
4 From now on ))(),...,(),(()( 21 sxsxsxfsf n=  
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The output variance ) ( YV  of the model can be computed by evaluating one–dimensional 

integrals as follows 

 

2)1()2(2(1)(2) )(yy)( yyYV −≡−=     (4.6) 

 

The space–filling property is only an idealization as the frequencies i  ω  cannot be in 

practice truly incommensurate. The finite precision of computers allows the use of 

rational numbers for the frequencies, i.e. a commensurate set of frequencies. When such 

a set is used, there exists a finite positive rational number T, such that: 

 

)()( Tsfsf +=   (4.7) 

 

i.e. the curve describes a closed path. This introduces an approximation to Weyl’s 

theorem, which means that equation (4.5) no longer holds. 

Cukier et al. (1973) showed that if the i  ω ’s are positive integers, π2=T . Since )(sf  is 

a periodic function of s  with period π2  within the finite interval ),( ππ− , equation (4.4) 

becomes 
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−
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π

ππ   (4.8) 

 

and the variance of the output is estimated as follows 
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We now expand )(sf  in a Fourier series  

 

{ }∑
+∞

−∞=
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j

jj jsBjsAsfy sincos  )(    (4.10) 

 

where the Fourier coefficients jA  and jB  are defined by 
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over the domain of integer frequencies } ,...,1 ,0 ,1 ,...,{ ∞+−−∞=∈Zj . The spectrum of 

the Fourier series expansion of )(sf  is defined as 22
jjj BA +=Λ  with Zj ∈ . Since )(sf  

is a real–valued function jA , jB  and jΛ  have the following properties  

 

jjjjjj BBAA Λ=Λ−== −−−      ,     ,   (4.13) 
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By evaluating the spectrum for the fundamental frequencies i  ω  and its higher harmonics 

ip    ω , ,...3 ,2 ,1=p  we can estimate the portion of output variance arising from the 

uncertainty of input factor iX  
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+∞
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pi ii
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Thanks to Parseval’s theorem, a Fourier–based estimate of the total variance can be 

obtained: 
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1
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0 j

j
Zj

jYV   (4.15) 

 

The ratio )(/ YVVi  is the estimate of the main effect in FAST. Its magnitude reflects the 

influence that the thi  input factor has on the output and it does not in principle depend 

on the choice of the set of frequencies used in the computations. 

 

 

4.3 The RANDOM BALANCE DESIGN method  

 

The RBD method was proposed to overcome the computational cost of the classical 

FAST, which increases with the number of factors. In fact, RBD remains 

computationally cheap for the estimation of first–order sensitivity indices even for 

models with many factors. 
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The RBD procedure combines Satterthwaite’s sampling designs (Satterthwaite, 1959) 

with the Fourier estimator used in FAST (Tarantola et al., 2006).  

In classic FAST a quite complex algorithm is needed to set the frequencies such that 

they are free of interferences, to avoid bias of the sensitivity estimates. The sampling 

design of RBD overcomes this problem. In the RBD method, we explore the input space 

using a unique frequency ω  and input variables are distinguished by taking random 

permutations of the coordinates of the sample points to explore as much as possible the 

entire input space (otherwise the curve would explore only the diagonal of the input 

space). Usually the frequency ω  is an arbitrary integer, set to 1 for simplicity. Let us 

select N points on variable s over )  ,( ππ− . Let 
Niii sss
 2 1 

  ..., ,  denote the random 

permutations on the set } ..., ,1{ N , the experimental design )( iji sX is  

 

NjkisGX ijii ,...,1    and   ,...,1     )), (sin( =∀=∀= ω  (4.16) 

 

that provides a different permutation for each factor iX . The model is then run N times 

over the sample size:  

 

NjsXsXsXfsY kjkjjj ,...,1    )(),...,(),(()( 2211 =∀=  (4.17) 

 

The values of the model output )( jsY  are reordered, )( j
R sY , such that the 

corresponding values )( iji sX  are ranked in increasing order. By doing so the harmonic 

content of iX  propagates through  

 

Y   to  )( j
R sY   (4.18) 
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The sensitivity of Y  to iX  is quantified by the Fourier spectrum of the reordered model 

output: 

 

2
N

1j

)  ( exp )(  
1

)( ∑
=

−= jj
R sisYF ω

π
ω    (4.19) 

 

evaluated at 1=ω  and its higher harmonics 2=ω , 3=ω up to a maximum M 

compatible with the sample size N: 
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where iV̂  is an estimate of the main effect iV , i.e. the nominator of the main effect for 

factor iX . This procedure is repeated for all the other factors, whereby the same set of 

model outputs is simply reordered according to )( iji sX  and (4.19) and (4.20) are used 

to estimate iV , ki ,...,2= . 

With the use of permutations, the total cost is kept down to N, instead of ~ Nk *  (like 

in Sobol’ and FAST) 

With respect to the FAST method, the RBD one has several advantages: The main 

advantage is that it is relatively easy to implement, and the sample size N, being 

independent of the number of factors k, can lead to a considerable saving in computer 

time for expensive models. 

A disadvantage of the RBD method is that it allows the computation of first–order terms 

only; we can use the sum of these to check if the model is additive. If the sum is 

noticeably smaller than 1, we must use another method to compute interactions or total–

effect terms.  
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4.4 QUASI RANDOM NUMBERS 

 

Many problems in numerical analysis are concerned with high dimensional integrals and 

sensitivity analysis is one of them. While the regular grid methods are very efficient for 

low dimensional integrands, they become computationally impractical when the number 

of dimensions increases and thus the number of required integrand evaluations grows 

exponentially. This effect is known as "the curse of dimensionality". (Thompson et al., 

1998). 

The Monte Carlo (MC) method provides a direct approach for performing simulation 

and integration. It is simple, direct and easy to use. MC integration converges at a rate

( )211 NO , where N  is the number of sampled points, that is independent of the 

dimension of the integral. For this reason is the only viable method for a wide range of 

high–dimensional problems. The price for its robustness is that the rate of convergence 

attained by MC is rather slow. (Metropolis, 1987)  

The result of this combination of ease of use, wide range of applicability and slow 

convergence, is that an enormous amount of computer time is spent on MC computation. 

(Caflish, 1998) 

A higher rate of convergence can be obtained by using deterministic uniformly 

distributed sequences, so-called Quasi–Random (QR) sequences. Methods based on the 

usage of such sequences are known as Quasi Monte Carlo (QMC). Asymptotically, 

QMC can provide the rate of convergence ( )NO1 . (Caflish, 1998) 

QR sequences are a deterministic alternative to random sequences (Kuipers and 

Niederreiter, 1974; Hua and Wang, 1981; Niederreiter, 1992; Zaremba, 1968). QR 

sequences are designed to provide better uniformity than random sequences, and hence 

higher rate of convergence. Uniformity of a sequence is measured in terms of its 

discrepancy (see below) and for this reason QR sequeces are also called Low 

Discrepancy Sequencies (LDS). Some have objected to the name “Quasi–Random” 

since these sequences are intentionally not random. 
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For sufficiently large N, QMC should always outperform MC. However, in practice 

such sample sizes quite often are infeasible, especially when high dimensional problems 

are concerned. Many numerical experiments demonstrated that the advantages of QMC 

can disappear for high–dimensional problems. There were claims that the degradation 

in performance of QMC occurs at 12≤n  (Bratley, 1992). In contrast, other papers 

reported the superiority of QMC over MC for some integrands with 360=n  (Paskov, 

1995). Some explanations for such inconsistent results were given using the notion of 

the effective dimension (Caflisch, 1997). This notion is based on the ANalysis Of 

Variance (ANOVA). It was shown how the ANOVA components are linked to the 

effectiveness of QMC integration methods (Lemieux, 2000). 

The efficiency of MC methods is determined by the properties of the random numbers 

(Kucherenko, 2012) but the limiting factor in accuracy is that samples generated 

randomly tend to have clusters and gaps (Saltelli et al., 2008). The reason is that 

subsequent points are generated independently. Since subsequent points know nothing 

about each other there is some small chance that they will lie very close together, as new 

points are added randomly. They do not necessarily fill the gaps between previously 

generated sampled points. Where a cluster of points occurs, function values in that 

neighborhood are overemphasized in statistical analysis (Caflish, 1998). 

Where a gap arises, function values within that gap are not sampled for statistical 

analysis. The net effect is that mean values estimated with random samples have an 

uncertainty that diminishes slowly as N1 . To reduce an estimated uncertainty by a 

factor of 10, the analyst must increase N  by a factor of 100. (Saltelli et al., 2008) 

 

4.4.1 Regular grid, MC and QMC sampling methods 

 

The regular grid of points seems to be an efficient way for the integral evaluation. For 

up to 4 dimensions it works better or not worse than random sampling. For dimensions 

higher than 4, regular grid is not practical. The points in the regular grid are centered 

into each cell of the grid.  

There are three problems for the use of regular grid for evaluation of integrals: 
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• The problem of dimensionality ("the curse of dimensionality"). It’s been discussed 

in the previous section. 

• It is not possible to incrementally enlarge the size of the grid and at the same time 

keep the grid uniform. This means that with a uniform grid approach it is not 

possible to have a termination criterion that can be invoked incrementally. 

• The concavity bias. The regular grid generates small errors that add up, whereas 

random sampling generates big errors that cancel on average. Details can be found 

in Dupire & Savine (1998). 

 

Figure 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1 illustrates the difference between the regular grid, random sampling and Quasi Monte 
Carlo sampling. Distribution of N=64 (upper row) and N=256 (lower row) point in two 
dimensions. 

 

The random and QR sampling methods do not have this kind of problems. QR sequences 

are specifically designed to place sample points as uniformly as possible. Unlike random 

numbers, successive low discrepancy points “know" about the position of previously 

sampled points and fill the gaps between them. (Kucherenko, 2012) (see Fig. 4.1) 
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Figure 4.2 illustrates the difference between the regular grid, the random sampling and 

QM sampling. It also illustrate an important property of LDS, that the projection of the 

k–dimensional LDS on the s–dimensional subspace has good uniform distributions. In 

particular, it explains the efficiency of QMC methods in high dimensions for many 

practical problems; LDS sampling gives much better way of arranging N points in k–

dimensions. 

 

Figure 4.2 

 

Three different ways of arranging N=64 points in two dimensions. 

 

 

4.4.2 A particular QMC sequence: the Sobol’ τLP  

 

There are a few commonly used QR sequences. Different principles are used for their 

construction by Halton, Faure, Sobol, Niederreiter and others. (Kucherenko, 2012). 

Many practical studies have proven that the Sobol’ QR sequence is in many aspects 

superior to others (Paskov, 1995; Sobol,1998).  
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In sensitivity analysis, and in the present thesis, the Sobol’ τLP  quasi–random sequence 

is used (Sobol’, 1967). All τLP  sequences have an asymptotic uniform distribution as 

� → ∞; to a certain extent, the uniformity of the sampled points is also observed for 

fairly small N. The sequences also satisfy additional uniformity properties (Sobol’, 

1976), called property A and property A’, defined as:  

Property A:  for any k–dimensional sequence of length 2d there is exactly one point in 

each 2d hypercubes that result from subdividing the unit hypercube along each of its 

length extensions into half. 

Property A’:  for any k–dimensional sequence of length 4d there is exactly one point in 

each 4d hypercubes that result from subdividing the unit hypercube along each 

dimension into four equal parts. 

 

 

4.5  Quasi Random Balance Design 

 

We present now a new approach for the estimation of the main effects in GSA which is 

based on RBD and quasi random numbers, enhancing the precision of the first order 

effect estimation.   

This classical RBD method suffers from two problems: 

• the estimated sensitivity indices are often quite loose 

• small sensitivity indices are biased, 

 

Given the set of N  equally spaced values of variable s  in )  ,( ππ− , we construct a 

permutation of this set in a quasi–random fashion. Let 
Niii sss ...,,

21
 denote the quasi 

random permutation obtained. Then, the experimental design )( iji sX is given by 
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NjkisGX ijii ,...,1    and   ,...,1     )), (sin( =∀=∀= ω   (4.21) 

 

and the procedure follows the standard RBD approach. 

Thanks to the more homogeneous covering of the space offered by quasi–random 

numbers, the quasi–random permuted sample has better space–filling properties than the 

simple permuted sample (Fig. 4.3 and Fig. 4.4). This property enhances the quality of 

the estimates of sensitivity indices, as we show on the numerical test cases described in 

the next section. 

 

 

Fig. 4.3 

Quasi Random permutions     Random Permutations 

  

Coverage of the input space when using random and quasi-random permutations. N=512. 
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Fig. 4.3 

Quasi Random permutions     Random Permutations 

  

Coverage of the input space when using random and quasi-random permutations. N=1024. 

 

In appendix A.3 we have included the new MATLAB code specifically created to 

perform QRBD method. We tested it using the five test functions which are described 

in details in the next section. 

 

4.5.1 Analytical Test cases 

 

This section illustrates the application of the proposed RBD method and the new QRBD 

(RBD using QRP) in the calculation of the first order indices.  

We applied these methods to the following test functions for which the analytic values 

for iS  are available: 

• Linear function 

• Corner Peak function 

• Ishigami function 

• Sudret function  

• G–function 
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We used the existing RBD algorithm (see appendix A.2) implemented in a MATLAB 

code for the estimation of first order indices and we tested the QRBD variant used on a 

sample generated by a QRP against the RBD method. We applied QRBD and RBD for 

each of the above functions at different sample sizes starting from 128 to 1024 at steps 

of two. Each of the test functions can be defined at a given set of input factors. We 

decided to set their number to 3=k  for the linear function, the Corner Peak function 

and the Ishigami function and to k=8 for G–function in order to test the methodology 

under different complexity. The results are reported below and plotted in figures for each 

function. 

 

 

• Linear function 

 

321 xxxY ++=    (4.22) 

 

We started our application of the two aforementioned methods with the simplest linear 

function with uniform distribution between (0,1). The analytical values for first order 

indices are given by 3/1321 === SSS  

The sensitivity results for this function are summarized in Fig. 4.4. 

Both methods converge to the analytical value although in very different ways. 

RBD estimates show a very high variability for all the three sensitivity indices especially 

for small sample sizes. This variability reduces when the sample size increases. 

Furthermore, for smaller sample sizes, the true value presents a slight over–estimation. 

QRBD tends exactly to the analytical value, and it has a much smaller variability than 

RBD. We computed the standard deviation of the estimates in the sample size range 

(200–1024) obtaining the following values summarized in Table 4.1 for RBD and 

QRBD. 
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Table 4.1 

RMSE 

 QRBD RBD 

S1 0.0035 0.0282 

S2 0.0025 0.0261 

S3 0.0027 0.0231 

 

 

The numerical results obtained for QRBD from running the MATLAB code, show that 

at a sample size of 1024 the value of the three sensitivity indices 321   ,  , SSS  was 

respectively 0.332972, 0.333268 and 0.332919. In conclusion, QRBD is found to be 

superior than RBD. 

 

Figure 4.4 

 
Graphics of the three first order sensitivity indices against the sample size for the linear 
function test case with 3 factors. Analytical value are shown by a red line 
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• Corner Peak function 
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This is an additive function, introduced by Genz (1987) to test the method for multi–

dimensional integration. The independent input factors are uniformly distributed over 

(0,1) and the constants ia  determine the sharpness and the location of the difficulty and 

they represent the weight of iX . These functions are characterized by a peculiarity 

represented by several kinds of peaks. 

We first consider the case in which the input factors are associated with the same 

parameter 1a = 2a = 01.03 =a . They contribute the same of output variance. The determined 

sensitivity analytical values are 3/1321 === SSS . 

As we can see in Fig. 4.5 in the RBD method the estimated sensitivity indices show an 

evident variability slightly over the analytical value and it reduces as the sample size 

increases. This bias is due to the small output uncertainty driven by the small values of 

the coefficients ia . When QRBD is performed the indices show much better results, as 

in the previous function. The indices converge quite rapidly to the analytical values, 

more rapidly than RBD. We computed the standard deviation of the estimates in the 

sample size range (200–1024) obtaining the following values summarized in Table 4.2 

for RBD and QRBD. 

For some ranges of sample size (e.g. between 128 and 200) the estimates are slightly 

above the analytic values, for some other ranges they are slightly below them). Also in 

this case the numerical results obtained by QRBD from running the MATLAB code 

proved that at a sample of 1024 the value of the three sensitivity indices 321   ,  , SSS  was 

respectively 0.332905, 0.333192, 0.332867. In conclusion, also in this case QRBD is 

found to be superior than RBD. 
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Table 4.2 

RMSE 

 QRBD RBD 

S1 0.0035 0.0266 

S2 0.0025 0.0269 

S3 0.0027 0.0264 

 

 

 

 

Figure 4.5 

 

Graphics of the three first order sensitivity indices against the sample size for the linear 
function test case with 3 factors. Analytical value are shown by a red line 
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• Ishigami function 

 

1
4
32

2
1 sinsinsin XbXXaXY ++=    (4.24) 

 

This is a non–monotonic function uniformly distributed in ),( ππ− . It has three input 

factors 1X , 2X , 3X  and the value of the parameters a and b are assumed to be 7=a  and 

1.0=b . The analytical values of the sensitivity indices are 3138.01 =S , 4424.02 =S , 

03 =S . The main peculiarity of this model is the dependence on 3X : there is no additive 

effect on Y but there is an interaction between 3X  and 1X . (Ishigami & Homma, 1990). 

Indeed, 1S  and 2S  account jointly for 76% of the variance, hence 24% of the variance 

must be due to higher order effects. 

As in the previous test cases, when RBD is performed with Ishigami function we find 

the same variability slightly above the analytical value, especially for small samples. We 

notice that for the third index, 3S , the variability is considerably reduced from a sample 

size of about 160. We found from the numerical results that this index is almost zero 

near the sample size 1024.  

QRBD is sometimes over and sometimes under estimated for different sample size 

ranges: 2S  and 3S  are slightly overestimated up to a sample size of about 200, but they 

converge to the analytical value with increasing sample size. At increasing sample size 

1S  shows slower oscillations around the analytical value than the other sensitivities.  

QRBD converges more rapidly than RBD. We computed the standard deviation of the 

estimates in the sample size range (200–1024) obtaining the following values 

summarized in Table 4.2 for RBD and QRBD. 

With respect to the previous two test cases, when the estimates are calculated with 

Ishigami functions show a higher variability. This is because this function is more 

complex and present interaction between 3X  and 1X .  
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Figure 4.6 

 

Graphics of the three first order sensitivity indices against the sample size for the Ishigami 
function test case with 3 factors. Analytical value are shown by a red line 

 

 

Table 4.3 

 

 

 

 

 

 

RMSE 

 QRBD RBD 

S1 0.0098 0.0255 

S2 0.0088 0.0258 

S3 0.0028 0.0174 
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• Sudret function 
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This is a polynomial function studied by Sudret (2008) where iX  are independent and 

identical distributed uniform random variables over (0,1). The exact global sensitivity 

indices can be determined as  
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For k=3 this function represents a sixth–order polynomial function which is a product 

form of three quadratic polynomials. When performed with RBD, the sensitivity indices 

present higher variability with respect to the other test functions, especially for 2S . The 

indices converge very slowly to the analytical values: at sample size 1024 (the maximum 

we tested) we still notice the presence of variability. As a curiosity, at the sample size of 

1024 274696.03 =S . 

Despite in QRBD 2S  is over estimated until sample size about 900, the method performs 

better than RBD in terms of variability of the estimates at all sample sizes. We computed 

the standard deviation of the estimates in the sample size range (200–1024) obtaining 

the following values summarized in Table 4.2 for RBD and QRBD. 
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Figure 4.7 

 
Graphics of the three first order sensitivity indices against the sample size for the 
Sudret function test case with 3 factors. Analytical value are shown by a red line 

 

 

Table 4.4 

RMSE 

 QRBD RBD 

S1 0.0038 0.0267 

S2 0.0095 0.0265 

S3 0.0032 0.0267 
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• G–Function  

Introduced by Sobol’ (2001) this function has been widely used to validate the methods 

for the sensitivity analysis.  

This is a non–monotonic function whose analytical expression takes the following form 
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The input factors iX  are uniformly distributed in the range (0,1). 0≥ia are real–valued 

non–negative deterministic constants and are chosen to specify the role of the 

corresponding input parameter iX  since the range of uncertainty of )( ii Xg  depends 

exclusively on the value of ia . 
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The lower ia  the greater the importance of iX . The table below gives some examples of 

the range of )( ii Xg  and the relative importance of the input parameter iX  for the values 

of ia  

ia  Parameter iX  Range of )( ii Xg  

0 Very important 0 ≤ )( ii Xg  ≤ 2 

1 Important 0.5 ≤ )( ii Xg  ≤ 1.5 

9 Non–important 0.9 ≤ )( ii Xg  ≤ 1.1 

99 Non–significant 0.99 ≤ )( ii Xg  ≤ 1.01 
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The partial variances of the first order are given by 
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This allows us to calculate analytically the first order sensitivity indices for the G–

function. We tested G–function at different values of ia  as follows: 

a) 0321 === aaa   all the input factors very important 

b) 9    1    0 321 === aaa  the input factors are in decreasing order of importance 

c) 9    0    99 321 === aaa  the input factors are in random order of importance 

d) 99     99    99 321 === aaa    all the input factors are equally non–important  

The values of iS  calculated at different sets of ia  combinations are plotted in the 

following Figures. 

All the Figures below show that both QRBD and RBD methods provide estimates that 

converge to analytical value as the sample size increases. 

Unlike the previous functions, when performing G–function with QRBD and when the 

factors are equally non–significant (Fig.4.10) or are all very important (Fig. 4.8), the 

estimates have a higher variability than before. This variability is, however, smaller than 

in RBD. 

When the input factors are in decreasing order of importance, case b), we notice a higher 

variability if the input factors are important and the index is quite overestimated until 

sample size 736. We notice a much lower variability if the input factors are very 

important and non–important. In this case the curves of the two estimates lie on the 
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straight line of the true value. We notice only a slight overestimation for 3S  when 

performed with RBD method. 

When the input factors are in random order of importance, case c), we can immediately 

se from Fig. 4.11 a perfect alignment of 2S  (the input factor is very important) with the 

straight line of the analytical value. 1S  and 3S are also good estimates. 

We computed the standard deviation of the estimates in the sample size range (200–

1024) obtaining the following values summarized in Table 4.5 for RBD and QRBD. 

 

 

 

 

Table 4.5 

RMSE 

 

0321 === aaa
 

9  ,1  ,0 321 === aaa
 

9 ,0 ,99 321 === aaa

 

99  ,99  ,99 321 === aaa

 

QRB
D RBD QRBD RBD QRBD RBD QRBD RBD 

S
1 

0.0095 
0.022

9 
0.0059 0.0097 0.0052 0.0182 0.0181 0.0241 

S
2 

0.0097 
0.022

1 
0.0231 0.0255 0.0024 0.0022 0.0249 0.0261 

S
3 

0.0120 
0.023

0 
0.0040 0.0192 0.0028 0.0191 0.0226 0.0250 
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Figure 4.8 

 
Figure 4.9 Graphics of the three first order sensitivity indices against the 
sample size for the G-Function function test case with 3 factors,

0321 === aaa . Analytical value are shown by a red line 

 

Figure 4.9 

 
Figure 4.9 Graphics of the three first order sensitivity indices against the 
sample size for the G-Function function test case with 3 factors, 

9    1    0 321 === aaa  Analytical value are shown by a red line 
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Figure 4.10 

 
Figure 4.10 Graphics of the three first order sensitivity indices against the 
sample size for the G-Function function test case with 3 factors,

99     99    99 321 === aaa . Analytical value are shown by a red line 

Figure 4.11 

 
Figure 4.11 Graphics of the three first order sensitivity indices against the 
sample size for the G-Function function test case with 3 factors,

9    0    99 321 === aaa . Analytical value are shown by a red line 
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We decided to G–function with a number of input factors k=8, in order to test the 

methodology under different complexity. The results are reported below and plotted in 

figures for each function. 

 

• G–Function with 8=k  

In the case in which the dimensionality is 8=k , the parameters ia  are assumed to have 

following values: 99  ,99  ,99  ,99  ,9  ,5.4  ,1  ,0 87654321 ======== aaaaaaaa , 

the input factor are in decreasing order of importance. 

The main variance contributions of each input factor in the sensitivity analysis are 

summarized as follows 

 5
87654321 102.7   ,0072.0   ,237.0   ,1791.0  ,7162.0 −×======== SSSSSSSS . 

The values of iS , , are plotted in the following Figures. 

All the Figures below show that both QRBD and RBD methods provide estimates that 

converge to analytical value as the sample size increases. 

The difference from one index to another depends on the importance of the input factor. 

If the input factor is very important, non–important and non–significant, the 

correspondent estimates, 1S  (Fig. 4.12), 4S  (Fig. 4.13), 5S  (Fig. 4.14), 6S  (Fig. 4.14), 

7S  (Fig. 4.15) and 8S  (Fig. 4.15) show a reduced variability for both RBD and QRBD 

method if we compare them with the previous functions. The curves of those estimates 

are aligned to the straight line of the analytical value, especially from sample 160. We 

notice a slight overestimation for 6S  (Fig. 4.14) performed with RBD. 

When the input factor is important, the correspondent estimates 2S  (Fig. 4.12) and 3S  

(Fig. 4.13) show a higher variability then the previous estimates. 2S  present a slight 

overestimation above the analytical value for both RBD and QRBD methods while 3S  

present a slight underestimation for QRBD method until sample 736 and a slight 

overestimation for RBD method 
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Figure 4.12 

 

Figure 4.12 Graphics of 
21    and  , SS  against the sample size for the G-Function with 8=k  and

1  ,0 21 == aa . Analytical value are shown by a red line 

 

 

Figure 4.13 

 

Figure 4.13 Graphics of 
43    and  , SS  against the sample size for the G-Function with 8=k  and

9  ,5.4 43 == aa . Analytical value are shown by a red line 
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Figure 4.14 

 

Figure 4.14 Graphics of 
65    and  , SS  against the sample size for the G-Function with 8=k and

99  ,99 65 == aa . Analytical value are shown by a red line 

 

Figure 4.15 

 

Figure 4.15 Graphics of 
87    and  , SS  against the sample size for the G-Function with 8=k  and

99  ,99 87 == aa . Analytical value are shown by a red line 
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We computed the standard deviation of the estimates in the sample size range (200–

1024) obtaining the following values summarized in Table 4.6 for RBD and QRBD. 

 

Table 4.6 

RMSE 

99  ,99  ,99  ,99  ,9  ,5.4  ,1  ,0 87654321 ======== aaaaaaaa  

 QRBD RBD 

S1 0.0091 0.0129 

S2 0.0223 0.0263 

S3 0.0076 0.0200 

S4 0.0093 0.0187 

S5 0.0050 0.0175 

S6 0.0026 0.0167 

S7 0.0020 0.0180 

S8 0.0017 0.0172 

 

 

In conclusion, we can say that both the methods give good estimates when performed 

with G–function with 8 parameters. QRBD is found to be slightly superior than RBD in 

terms of variability around the analytical value.  

 

  

4.6 Conclusions 

 

QR sequences are a deterministic alternative to random sequences and are specifically 

designed to place sample points as uniformly as possible. They are designed to provide 

better uniformity and hence higher rate of convergence.  

In this chapter we presented a new approach, for the estimation of the first order effects 

in GSA. This method is based on the RBD approach, where random permutations are 

used, in association to Quasi–Random permutation.  
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We test the new QRBD method against the existing RBD and applied both techniques 

using five test functions. 

Although the two methods only differ in the way permutations are taken, we discovered 

them to perform very differently. 

We proved that as soon as QMC samples are used to generate the permutations the 

quality of the estimates obtained with QRBD increases significantly thanks to the more 

homogeneous covering of the space. 

This property enhances the quality of the estimates of sensitivity indices, as we showed 

by numerical test cases. We conducted the investigation on five test functions of 

increasing complexity and from all of them we proved that QRBD method provide 

estimates which much lower variability around the analytical value and better 

convergence. 

On the basis of our firstly results, the QRBD method would appear as a better estimation 

technique. Further analysis and tests will be conducted to confirm these early evidences, 

but what we have been able to stress is clearly a primary indications. 

The improved outcomes obtained in recent years in SA thanks to more detailed and 

planned input sample spaces showed as this field of analysis is still a very promising and 

unexplored one. 

Actually the interest of some major SA researchers points on this issue. 

Hence, investing time and theory in the sample design pays off. 
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CHAPTER 5 
 

 

 

CONCLUSION 
 

 

Variance–based sensitivity analysis often requires a considerable number of model 

executions, one for each sample point considered. It is custom practice to try to reduce 

the number of executions at most, in order to obtain estimates of sensitivity indices of a 

given accuracy.  

Our intentions in preparing this thesis were to attempt to overcome one of the drawbacks 

of variance–based measures in sensitivity analysis, i.e. to minimize the computational 

cost for achieving the required accuracy of sensitivity measures.  

When model runs are already available, i.e. the input points and the corresponding model 

outputs are “given”, the analyst wishes to use them for the sensitivity analysis in order 

to save computational time. Therefore, techniques should be available to estimate 

sensitivity indices for given data.  

The initial objective of the present thesis was to devise a “given data” approach for the 

estimation of total sensitivity indices, which takes into consideration the overall effect 

of interactions among model inputs.  
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No “given data” methodology is available today for estimating total sensitivity indices. 

We created a unique algorithm, that we called “cone approach”, and investigated its use 

in estimation of total indices. The algorithm has been implemented in a Matlab code for 

further tests and outcome analysis.  

Unfortunately the performance of the cone approach was worsening with increasing of 

the complexity of the test functions used to perform it, and with increasing the number 

of input factors. 

Although the results did not completely meet our expectations, this new technique is 

worthy of further study and analysis. In our opinion the defined “cone approach” still 

remains a valid approach to be investigated and studied.  

We are still working on this innovative approach and we will work on it until we find 

answers to our questions. We should remember that in SA the estimation of higher order 

effects and, in particular, total effects from given data still remains an open issue.  

Needing additional time in order to continue our research on the cone approach we 

wanted to focus on a method of more immediate treatment.  

We developed a new approach for the estimation of the first order effects given a specific 

sample design, named Quasi Random Balance Design. This method is based on the RBD 

approach, where random permutations are used, in association to Quasi–Random 

permutation.  

QR sequences are a deterministic alternative to random sequences and are specifically 

designed to place sample points as uniformly as possible. They are designed to provide 

better uniformity and hence higher rate of convergence.  

We tested the new QRBD method against the existing RBD and applied both techniques 

using five test functions. Although the two methods only differ in the way permutations 

are taken, we discovered them to perform very differently. 

We proved that as soon as QMC samples are used to generate the permutations the 

quality of the estimates obtained with QRBD increases significantly thanks to the more 

homogeneous covering of the space. The investigation conducted on the five test 
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functions proved that QRBD method provide estimates which much lower variability 

around the analytical value and better convergence. 

On the basis of our first results, the QRBD method would appear as a better estimation 

technique. Further analysis and tests will be conducted to confirm these early evidences, 

but what we have been able to stress is clearly a primary indications. 

There are a number of future research ideas to improve, on one hand, and extend, on the 

other, the methods developed in this thesis. 
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APPENDIX 

 

 

This appendix provide basic MATLAB codes used to compute sensitivity indices in 

according to the methods used in the present thesis. 

 

 

A.1 

The “cone approach” 

 
function  St=conesti(x,y)  
 
[n,k]=size(x);  
  
Alfa=10;  
  
yp=zeros(n,k);  
St=zeros(1,k);  
  
for  i=1:n  
  z=abs(x-ones(n,1)*x(i,:));  
  znorm=z./(sqrt(sum(z.^2,2))*ones(1,k));  
  cone = znorm >= cos(Alfa*pi/180);  
   
  for  j=1:k   
    if  ~isempty(find(cone(:,j), 1)),      cc=0;  
      while  cc==0,  
        [~,elem]=max(znorm(:,j));  
        if  cone(elem,j)==1,  
           cc=1;  
        end  
      end  
      yp(i,j)=y(elem);  
    else    
    end  
  end  
   
end  
VY=var(y);  
  
for  j=1:k  
    len=n-sum(isnan(yp(:,j)));  
    St(j)=nansum((y-yp(:,j)).^2)/4/len/VY;  
end  
  
 



94 

 

 

A.2 

RBD method 

 
function  S = RBD(k,repl,N)  
  
 
M=6;  
  
S=[];  
rand( 'state' ,sum(100*clock))  
  
for  r=1:repl  
  
    sens=[];  
     
    s0=[-pi:2*pi/N:pi]';  
     
    for  z=1:k;  
        p(z,:)=randperm(N);   
    end  
     
    s=s0(p)';  
     
    x=.5+asin(sin(s))/pi;  
                 
    % y=f(x)  
  
    for  i=1:k    
 
        [ss,ind]=sort(s(:,i));  
        yr=y(ind);  
     
 
        spectrum=(abs(fft(yr))).^2/N;  
        V=sum(spectrum(2:N));             
        si(i)=2*sum(spectrum(2:M+1))/V;  
     
    end   
    S=[S; si];  
end  
  
return 
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A.3 

QRBD method 

function  S = QRBD(k,repl,N)  
  
 
  
M=6;  
 
T=1;  
fre=1;  
S=[];  
rand( 'state' ,sum(100*clock))  
  
for  r=1:repl  
  
    sens=[];  
     
    s0=[-pi:2*pi/N:pi]';  
     
    for  i=1:N  
    p = floor(1+N*(1/(2*N)+sobolseq(i+(r-1)*N,k)));  
    end  
    
     
    s=s0(p);  
     
    x=.5+asin(sin(s))/pi;  
                
    %---test model  
    % the user has to insert his/her own test model her e 
     
    for  t=1:T  
       for  i=1:k     
  
 
          [ss,ind]=sort(s(:,i));  
          yr=y(ind);  
     
 
          spectrum=(abs(fft(yr))).^2/N;  
          V=sum(spectrum(2:N));             
          si(i)=2*sum(spectrum(2:M+1))/V;  
     
        end  
     
     S=[S; si];  
     end  
end  
  
return  
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