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Abstract

In this paper we exploit a class of univariate,C1 interpolating four-point subdivision schemes featured bya piecewise
uniform parameterization, to define non-tensor product subdivision schemes interpolating regular grids of control
points and generatingC1 limit surfaces with a better behavior than the well-established tensor product subdivision
and spline surfaces. As a result, it is emphasized that subdivision methods can be more effective than splines, not
only, as widely acknowledged, for the representation of surfaces of arbitrary topology, but also for the generation of
smooth interpolants of regular grids of points.
To our aim, the piecewise uniform parameterization of the univariate case is generalized to anaugmentedparameteri-
zation, where the knot intervals of thekth level grid of points are computed from the initial ones by an updating relation
that keeps the subdivision algorithm linear. The particular parameters configuration, together with the structure of the
subdivision rules, turn out to be crucial to prove the continuity and smoothness of the limit surface.
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1. Introduction

Subdivision curves and surfaces have so far become an effective alternative to the well known parametric splines.
While approximating subdivision schemes represent a generalization of either uniform or non-uniform splines [10,
22, 25, 26], this is no longer true for interpolating subdivision methods, which require ad hoc definition and analysis
[1–5, 11–14, 17, 21, 23, 24]. In this respect, uniform interpolatory schemes have been investigated in detail, both for
the curve and surface cases, and by now fully understood. Interpolatory methods with non-uniform parameterization,
were introduced in the seminal work by Daubechies et al. [16]and more recently they have been the topic of several
papers (see [6, 7, 17]). This renewed interest has arisen since it was observed that the non-uniform parameterization
may significantly reduce interpolation artifacts (like unwanted undulation, cusps and self-intersections) with respect
to the uniform. This behavior is analogous to that of splines, illustrated with an example in Figure 1, where the
class of locally supported cardinal spline functions in [15] is exploited. According to several works, the centripetal
parameterization appears to be the best for curve interpolation. In [8] the authors show that for a whole family of
non-uniform interpolating splines with different approximation order, support width and continuity the centripetal
parameterization provides a good-looking interpolant, avoiding or minimizing interpolation artifacts. Moreover [20]
gives a formal mathematical explanation of the fact that, for cubic splines, such parameterization significantly bounds
the global and local deviation of the resulting curve from its data polygon. In a similar way, it is proven in [28]
that, for cubic Catmull-Rom curves, the centripetal parameterization is the only one to guarantee no cusps and self-
intersections within curve segments. As concerns interpolating subdivision curves, a result confirming the advantage
of the centripetal parameterization was presented in [17] where, the authors propose a non-linear 4-point scheme
derived by up-sampling from the cubic non-uniform Lagrangeinterpolant, with underlying parameterization recom-
puted at each subdivision step. For such scheme, the uniform, chordal and centripetal parameterizations have been
compared, showing that the centripetal one minimizes the distance between the data polygon and the limit curve.
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Figure 1: Comparison between quadratic spline curves interpolating highly non-uniform data through uniform (left) and centripetal (right) para-
meterization.

Our work originates from the observation that, even if basedon the centripetal parameterization, a tensor product
spline surface may not generate a good quality interpolant.To understand why, let us denote by{pi, j}i, j∈Z the vertices
of the given regular quadrilateral mesh and by{xi, j} the associated non-uniform parameter values (also called knots).
In order to compute the tensor product surface interpolating the verticespi, j in correspondence to the parametersxi, j,
it is necessary to work out only two parameter sets corresponding to the two grid directions. The solving strategy is to
compute the average of the parameter valuesxi, j , previously defined along the two directions, thus loosing information
that turn out to be crucial to the quality of the interpolant.In particular, each section curve of the mesh is not allowed
to maintain its own non-uniform parameterization, as wouldbe especially desirable in the interpolation context, but
it is parameterized by the average of the parameterizationsof all section curves in the related grid direction. The fact
that the strict structure of the tensor product may compromise the quality of the interpolation is well-known, see e.g.
[19], §7.5.1.
The main novelty of this paper is a method to get a good qualitysurface interpolating the vertices of a regular quadrilat-
eral mesh: the proposed approach is based on a non-uniform, non-tensor product interpolatory subdivision algorithm
where, instead of constraining the parameterization to thetensor product structure, a possibly different knot interval
can be associated to each edge of the initial control mesh. Inthis way, each section polyline is individually interpo-
lated together with its parameters, thus maintaining its own parameterization.
For approximation purposes, a similar non-tensor product configuration was firstly studied in [26] and most recently in
[10, 22], where the authors propose non-uniform subdivision algorithms based on biquadratic and bicubic B-splines.
In the interpolatory context, this paper is the first addressing a non-tensor product setting. The non-uniform, non-
tensor product surface subdivision scheme is defined as a generalization of a class of piecewise uniform, univariate,
interpolatory 4-point schemes derived by upsampling fundamental bases for interpolation, as those in [6, 8, 16]. As
a consequence, the coefficients of the scheme depend on the non-uniform, local knot intervals upon which the under-
lying cardinal spline basis is defined. These univariate schemes, termedreference schemes, are exploited as a basis
to derive refinement rules for regular grids, that, besides exploiting the advantages of the centripetal parameteriza-
tion, are linear and capable of generatingC1 continuous surfaces of good quality. To this aim, the piecewise uniform
parameterization of the univariate reference scheme is generalized to a so calledaugmentedparameterization, where
the parameters of thekth level grid of points are computed from the initial ones by an updating relation that keeps
the subdivision algorithm linear. To prove continuity and smoothness of the limit surface we strongly rely on the fact
that the scheme interpolates all the section polylines thatare created at each step and we exploit the linearity of the
subdivision rules as well as the asymptotical behavior of the parameterization.

The remainder of the paper is organized as follows. In Section 2 we recall the refinement rules of the class of
non-uniformC1 interpolatory 4-point schemes that can be conveniently exploited as reference schemes. In Section 3
we describe the key ideas at the basis of our non-uniform, non-tensor product interpolatory subdivision scheme for
regular quadrilateral meshes and we explain in detail the edge and face point rules it relies upon. Then, in Section 4
we perform the continuity and smoothness analysis of the proposed surface scheme and in Section 5 we show some
numerical examples confirming the effectiveness of our proposal and its advantages with respect to non-uniform tensor
product subdivisions and splines. A summary of the main contributions of this paper and the outline of our future
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work are described in Section 6.

2. A class of non-uniform interpolatory 4-point schemes

The novel surface scheme we aim to define is conceived as a generalization of a univariate, non-uniform interpola-
tory 4-point scheme, that we call thereference scheme. Thus, before defining the surface refinement rules, we briefly
overview the related univariate method.
Denoted by{p0

i } the vertices of the initial polyline and by{x0
i } the associated parameter values, also calledknots, for

all k > 0 the general refinement equations of a non-uniform interpolatory 4-point scheme are

pk+1
2i = pk

i ,

pk+1
2i+1 = ak

0,i p
k
i−1 + ak

1,i p
k
i + ak

2,i p
k
i+1 + ak

3,i p
k
i+2,

(1)

where the coefficientsak
ℓ,i , ℓ = 0, ..., 3, depend on the knots{xk

i } of thekth level polyline. In order to emphasize the
locality of the scheme, it is convenient to rewrite these coefficients in terms of the length of the three consecutive knot
intervalsdk

j := xk
j+1 − xk

j , j = i − 1, i, i + 1, introducing the notation

aℓ([dk
i−1, d

k
i , d

k
i+1]), ℓ = 0, ..., 3.

In this paper we focus on reference schemes whose coefficients can be obtained by fitting a local analytic interpolant
through the points (xk

i+ℓ−1, p
k
i+ℓ−1), ℓ = 0, ..., 3, and evaluating it at an arbitrary parameter value inside the central

interval [xk
i , x

k
i+1]. From this point onward we restrict our attention to the category of the so calledsemi-regular

insertion rules, where the coefficientsak
ℓ,i, ℓ = 0, ..., 3, are obtained by evaluating the considered interpolant atthe

parameter value (xk
i + xk

i+1)/2. For these schemes, denoted by{d0
i } the set of initial knot intervals, we compute the knot

intervals for the successive levels through the formula

dk+1
2i = dk+1

2i+1 =
dk

i

2
, k > 0, (2)

which simulates a recursive midpoint refinement of the associated parameterization. Thanks to this updating rule, the
subdivision algorithm is linear and, after a few rounds of subdivision, the knot intervals assume a piecewise uniform
configuration, namely the parameterization is uniform everywhere except at isolated points corresponding to the initial
polyline vertices. Schemes of this kind have been the topic of several papers including [6, 7, 16, 27]. In this case the
insertion rule in (1) can be written as

pk+1
2i+1 =

3∑

ℓ=0

ψi+ℓ−1





xk
i + xk

i+1

2



 pk
i+ℓ−1,

whereψi+ℓ−1, ℓ = 0, . . . , 3, are non-uniform cardinal basis functions defined on{xk
i } which

(i) satisfy the cardinality condition

ψi+ℓ−1(xk
j) =






1 if i + ℓ − 1 = j ,

0 otherwise,
for j = i − 1, · · · , i + 2;

(ii) are globallyC1;

(iii) are either polynomials or piecewise polynomials inΠρ such that for anyf ∈ Πρ,

f (x) =
3∑

ℓ=0

ψi+ℓ−1(x) f (xk
i+ℓ−1), x ∈ [xk

i , x
k
i+1].
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Examples of such fundamental functions can be found in [6, 8]amongst others.

Since on the interval [xk
i , x

k
i+1] the basisψi+ℓ−1, ℓ = 0, · · · , 3, is invariant under uniform scaling of knots, the

resulting interpolant depends only on the local configuration of the knot intervals. Thus indicated the local parameter
triple by

δ
k
i := [dk

i−1, d
k
i , d

k
i+1],

we introduce the notation

ψ
δ

k
i

ℓ
:= ψi+ℓ−1, ℓ = 0, . . . , 3. (3)

Moreover, without loss of generality, we can assumexk
i−1 = 0 such that the coefficientsak

ℓ,i, ℓ = 0, · · · , 3, are equiva-
lently given by

aℓ(δ
k
i ) = ψ

δ
k
i

ℓ

(

m
δ

k
i

)

with m
δ

k
i
= dk

i−1 +
1
2dk

i . (4)

We observe that any analytic interpolant obtained from basis functions satisfying properties (i)-(iii) gives rise to a
different set of coefficients, so that a large number of reference schemes fitting into the considered framework is
available. However, to design aC1 surface subdivision scheme it is also necessary that the reference scheme beC1.
We conclude this section by providing two examples of schemes that satisfy all the stated requirements. For instance,
if we exploit non-uniform cubic Lagrange interpolation, asin [16], the derived coefficients are

a0(δk
i ) = −

(

dk
i

)2
(dk

i + 2dk
i+1)

8dk
i−1(d

k
i−1 + dk

i ) (dk
i−1 + dk

i + dk
i+1)

,

a1(δk
i ) =

(

dk
i

)2
+ 2(dk

i−1 + dk
i+1) dk

i + 4dk
i−1d

k
i+1

8dk
i−1(dk

i + dk
i+1)

, (5)

a2(δk
i ) =

(

dk
i

)2
+ 2(dk

i−1 + dk
i+1) dk

i + 4dk
i−1d

k
i+1

8dk
i+1(dk

i−1 + dk
i )

,

a3(δk
i ) = −

(

dk
i

)2
(2dk

i−1 + dk
i )

8dk
i+1(d

k
i + dk

i+1) (dk
i−1 + dk

i + dk
i+1)

,

while if we interpolate through the non-uniform quadratic fundamental splines in [15] we obtain the set of coeffi-
cients

a0(δk
i ) = −

(

dk
i

)2

8dk
i−1(dk

i−1 + dk
i )
,

a1(δk
i ) =

(

dk
i

)2
+ dk

i (3dk
i−1 + dk

i+1) + 4dk
i−1d

k
i+1

8dk
i−1(dk

i + dk
i+1)

, (6)

a2(δk
i ) =

(

dk
i

)2
+ dk

i (dk
i−1 + 3dk

i+1) + 4dk
i−1d

k
i+1

8dk
i+1(dk

i + dk
i−1)

,

a3(δk
i ) = −

(

dk
i

)2

8dk
i+1(dk

i + dk
i+1)

,

which was proposed in [6]. By construction, the two reference schemes with coefficients in (5) and (6) reproduce
polynomials respectively inΠ3 andΠ2; moreover, in the referenced papers, it was proven that theyareC1 when the
parameterization is piecewise uniform. Being these schemes stationary and uniform everywhere but at isolated points,
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corresponding to the initial polyline vertices, their continuity and smoothness can be proved by spectral analysis of
the local subdivision matrix, as proposed in [27].

3. The Non-Uniform Local Interpolatory Subdivision Scheme(NULISS) for regular quadrilateral meshes

The existing literature has always considered subdivisionschemes as advantageous alternatives to tensor product
constructions due to their ability to deal with extraordinary points and model surfaces of arbitrary topology. Con-
versely, in this paper, we want to show that subdivision may also perform significantly better than tensor product
splines also in the context of interpolation of regular quadrilateral meshes. The goal of this section is to provide a
general formulation of a 4-point based interpolatory subdivision scheme for regular quadrilateral meshes that offers a
very efficient tool for interpolating a given grid of points taking into account the associated parameter values. Here-
inafter this scheme is called NULISS (Non-Uniform Local Interpolatory Subdivision Scheme). Its insertion rules are
conceived as a natural extension to the regular quadrilateral mesh of a non-uniform interpolatory 4-point reference
scheme with the requirements stated in Section 2.
LetM0 denote a regular quadrilateral grid of 3D points. Denoted by{p0

i, j}i, j∈Z the vertices of the mesh, we associate

with each edge along one grid direction a knot intervald0
i, j = ||p

0
i, j+1 − p0

i, j ||
1
2
2 , according to the centripetal paramete-

rization. Analogously, along the other direction, we defineknot intervalse0
i, j = ||p

0
i+1, j − p0

i, j ||
1
2

2 . In the following we

consider an iterative subdivision algorithm that takes as input the meshM0 with the associated initial knot intervals
and generates in the limit a smooth surface based on the stepsoutlined below.

Algorithm 1. For each refinement level k> 1, it

1. retains each vertex point (Figure 2-left, green bullets);

2. computes a new edge point for each edge, using the univariate reference scheme (Figure 2-left, magenta bullets);

3. computes a new face point for each face (Figure 2-left, blue bullets);

4. creates new edges by connecting each new face point to the new edge points of the edges surrounding the face,
and connecting each vertex point to the new edge points of theedges incident on that vertex;

5. creates new faces that have a loop of four new edges;

6. computes the knot interval values for the refined mesh and assigns them to the new edges.

The above steps 1.,2.,3. define the new geometry and steps 4.,5. define the connectivity. When this process step
continues, it yields a sequence of refined meshes which converges to a limit surface.
Vertex, edge and face points are determined by the equations

• vertex pointspk+1
2i,2 j = pk

i, j ;

• edge pointspk+1
2i+1,2 j =

3∑

r=0

bk
r,i, j pk

i+r−1, j andpk+1
2i,2 j+1 =

3∑

ℓ=0

ck
ℓ,i, j pk

i, j+ℓ−1;

• face pointspk+1
2i+1,2 j+1 =

3∑

r=0

3∑

ℓ=0

bk
r,i, j c

k
ℓ,i, j pk

i+r−1, j+ℓ−1.

As previously mentioned, in the tensor product case we need to define an average parameterization where

d̄k
j =

∑

i∈Z

dk
i, j

♯{dk
i, j | i ∈ Z}

and ēk
i =

∑

j∈Z

ek
i, j

♯{ek
i, j | j ∈ Z}

,
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pk
i,j−1 pk

i,j+2pk
i,j+1

kpi,j

ēki−1

ēki

ēki+1

d̄kj−1 d̄kj
d̄kj+1

a3(ǭǫǫ
k
i )

a2(ǭǫǫ
k
i )

a1(ǭǫǫ
k
i )

a0(ǭǫǫ
k
i )

a3(δ̄δδ
k
j )a2(δ̄δδ

k
j )a1(δ̄δδ

k
j )a0(δ̄δδ

k
j )

Figure 2: Left: One step of the considered interpolatory subdivision algorithm, the initial mesh is in black, while the refined mesh in red. Green,
magenta and blue bullets represent vertex, edge and face points, respectively. Right: Parameters configuration and related coefficients for the tensor
product scheme.

so that{d̄k
j } j∈Z and {ēk

i }i∈Z are the knot intervals associated with the two grid directions (see Figure 2-right for a

graphical interpretation). Thus, according to (4), the coefficientsbk
r,i, j andck

ℓ,i, j are determined by the chosen univariate
reference scheme as

∀ j, bk
r,i, j = ar (ǭki ) = ψ

ǭ
k
i

r (m
ǭ

k
i
), r = 0, · · · , 3, with ǭki = [ēk

i−1, ē
k
i , ē

k
i+1] and m

ǭ
k
i
= ēk

i−1 +
1
2ēk

i ,

∀i, ck
ℓ,i, j = aℓ(δ̄

k
j ) = ψ

δ̄
k

j

ℓ (m
δ̄

k

j

), ℓ = 0, · · · , 3, with δ̄
k
j = [d̄k

j−1, d̄
k
j , d̄

k
j+1] and m

δ̄
k

j

= d̄k
j−1 +

1
2d̄k

j .

The requirement for averaging the parameterization may determine a significant loss of quality in the limit surface.
Our goal is thus to generalize the above edge and face point formulas so as to consider a whole set of parameters
surrounding the location of insertion.
In order to describe the refinement rules of the sought scheme, we need to properly define steps 2. and 3. of the
refinement Algorithm 1. Figure 3 illustrates the two steps for one of the faces ofMk. A new edge pointEk+1 is placed
in the middle of the edge with verticespk

i, j andpk
i, j+1, by the formula

Ek+1 = pk+1
2i,2 j+1 = a0(δk

i, j) pk
i, j−1 + a1(δ

k
i, j) pk

i, j + a2(δk
i, j) pk

i, j+1 + a3(δk
i, j) pk

i, j+2, (7)

where coefficientsaℓ(δ
k
i, j), ℓ = 0, ..., 3, are computed by (4) withδk

i, j = [dk
i, j−1, d

k
i, j, d

k
i, j+1]; this means that the new edge

point is generated by applying the insertion rule of the univariate reference scheme to the related edge ofMk (see
Figure 3-left). The edge points along the other edges can be determined following the same approach.

To explain the insertion of a face point we observe that the vertices of the face of insertion can be seen as the
intersection of 4 section polylines, two in each direction (see Fig. 3-right). We denote by

∆
k
i, j =





dk
i, j−1 + dk

i+1, j−1

2
,
dk

i, j + dk
i+1, j

2
,
dk

i, j+1 + dk
i+1, j+1

2



 and Ek
i, j =





ek
i−1, j + ek

i−1, j+1

2
,
ek

i, j + ek
i, j+1

2
,
ek

i+1, j + ek
i+1, j+1

2





(8)
the triples of knot intervals that refer tovirtual edges (i.e. edges that do not belong to thekth level meshMk) in

the two grid directions. They are computed by averaging existing knot intervals on opposite edges of the considered
face and of its four adjacent faces, and can be respectively seen as a local parameterization for the two virtual section
polylines represented by dashed lines in Fig. 3-right. Recalling equation (4) we can now computeaℓ(∆k

i, j) andaℓ(Ek
i, j),

ℓ = 0, ..., 3, and determine the location of each face pointFk+1 = pk+1
2i+1,2 j+1 as
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p k
i−1,j−1

pk
i+2,j−1

p k
i−1,j

pk
i+2,j

p k
i−1,j+1

pk
i+2,j+1

p k
i−1,j+2

p k
i+2,j+2

pk
i+1,j−1 pk

i+1,j pk
i+1,j+1

p k
i+1,j+2

pk
i,j+1 p k

i,j+2
pk

i,j
pk

i,j−1

dk
i,j

dk
i,j−1

dk
i,j+1

Ek+1

a3(δδδ
k
i,j)a2(δδδ

k
i,j)a1(δδδ

k
i,j)a0(δδδ

k
i,j)

p k
i−1,j−1

pk
i+2,j−1

p k
i−1,j

pk
i+2,j

p k
i−1,j+1

pk
i+2,j+1

p k
i−1,j+2

p k
i+2,j+2

pk
i,j−1

pk
i,j

pk
i,j+1 p k

i,j+2

F k+1
pk

i+1,j
pk

i+1,j−1
pk

i+1,j+1
p k

i+1,j+2

eki+1,j+e
k
i+1,j+1

2

eki,j+e
k
i,j+1

2

eki−1,j+e
k
i−1,j+1

2

dki,j+1+d
k
i+1,j+1

2

dki,j−1+d
k
i+1,j−1

2
dki,j+d

k
i+1,j

2

a3(∆∆∆
k
i,j)a2(∆∆∆

k
i,j)a1(∆∆∆

k
i,j)a0(∆∆∆

k
i,j)

a3(EEE
k
i,j)

a2(EEE
k
i,j)

a1(EEE
k
i,j)

a0(EEE
k
i,j)

Figure 3: Edge point rule (left) and face point rule (right) for the NULISS scheme.

Fk+1 =
[

a0(Ek
i, j), a1(Ek

i, j), a2(Ek
i, j), a3(Ek

i, j)
]





pk
i−1, j−1 pk

i−1, j pk
i−1, j+1 pk

i−1, j+2

pk
i, j−1 pk

i, j pk
i, j+1 pk

i, j+2

pk
i+1, j−1 pk

i+1, j pk
i+1, j+1 pk

i+1, j+2

pk
i+2, j−1 pk

i+2, j pk
i+2, j+1 pk

i+2, j+2









a0(∆k
i, j)

a1(∆k
i, j)

a2(∆k
i, j)

a3(∆k
i, j)





. (9)

Figure 3-right illustrates the insertion of the consideredface point.

We immediately observe that, oppositely to the tensor product construction, the edge point rules of NULISS
ensure that the vertices that describe each section polyline of the mesh are interpolated at the corresponding centripetal
parameters. In this way, each section curve of the limit surface maintains its own parameterization (instead of being
parameterized by the global average of the parameterizations in the related grid direction) and thus it has the optimal
behavior guaranteed by the centripetal parameterization.
Moreover the face point insertion rule of NULISS does not involve the complete set of parameters associated with
the 4× 4 grid of vertices that determines a new face point, but only the parameters of the vertices related to the
face of insertion and to the four adjacent faces. In fact, it makes sense to require that the virtual parameterization
adopted to insert a face point, does not significantly deviate from the parameterization of the section curves that define
a face. Conversely taking into account the whole 4× 4 grid of parameters may generate undesired distortions in the
parameterization.

So far we have described steps 1.-5. in Algorithm 1. The following subsection illustrates the strategy pursued to
accomplish step 6. of the considered subdivision algorithm.

3.1. The augmented parameterization and its parameters updating rule

Each subdivision step generates a refined mesh, with more vertices, edges and faces, and as a consequence a
suitable parameterization should be set in correspondenceto the newly created edges. The method that we choose
to compute the values of the knot intervals influences the linearity and stationarity of the scheme as well as the
properties of the limit shape, thus it should be carefully devised. In order to guarantee that the refinement rules of
NULISS identify a linear subdivision process, we use an updating strategy to deduce thekth level knot intervals from
those computed at level 0. The method to update the parameters from level 0 to 1 is shown in Fig.4 and can be
repeated iteratively at each stepk > 1: the knot intervals defined in correspondence to edges of the coarse mesh are
halved and duplicated, while those in correspondence to a new edge created inside a face are obtained by averaging
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p
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p
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1
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p

1

2i+2,2j
p

e0i,j
2

e0i,j
2

e0i,j+1
2

e0i,j+1
2

e0i,j+e
0
i,j+1

4

e0i,j+e
0
i,j+1

4

d0i,j
2

d0i,j
2

d0i+1,j
2

d0i+1,j
2

d0i,j+d
0
i+1,j

4
d0i,j+d

0
i+1,j

4

Figure 4: Knot intervals on one face ofM0 (left) and on the corresponding refined face ofM1 (right).

knot intervals on the opposite new edges of the refined face. In this way, for the illustrated face, thekth level knot
intervals are expressed by the updating formulas

dk+1
2i,2 j = dk+1

2i,2 j+1 :=
1
2

dk
i, j, dk+1

2i+1,2 j = dk+1
2i+1,2 j+1 := 1

4

(

dk
i, j + dk

i+1, j

)

,

ek+1
2i,2 j = ek+1

2i+1,2 j :=
1
2

ek
i, j , ek+1

2i,2 j+1 = ek+1
2i+1,2 j+1 := 1

4

(

ek
i, j + ek

i, j+1

)

.

After a global rescaling by 2 of the knot intervals (which does not change the next level coefficients of the scheme
being the basis functions in (3) scaling invariant), we get the simplified expressions

dk+1
2i,2 j = dk+1

2i,2 j+1 = dk
i, j, dk+1

2i+1,2 j = dk+1
2i+1,2 j+1 =

1
2

(

dk
i, j + dk

i+1, j

)

,

ek+1
2i,2 j = ek+1

2i+1,2 j = ek
i, j, ek+1

2i,2 j+1 = ek+1
2i+1,2 j+1 =

1
2

(

ek
i, j + ek

i, j+1

)

. (10)

Remark 1. If we restrict our attention to a single face ofM0, for instance the one in Fig.4, we observe that after
k > 1 refinements its parameters can be written in terms of the initial parameters via

dk
2ki+r,2k j+ℓ = d0

i, j + r
d0

i+1, j − d0
i, j

2k
, r = 0, . . . , 2k, ℓ = 0, . . . , 2k − 1,

ek
2ki+r,2k j+ℓ = e0

i, j + ℓ
e0

i, j+1 − e0
i, j

2k
, r = 0, . . . , 2k − 1, ℓ = 0, . . . , 2k. (11)

The iterated application of the knot intervals updating method generates a particular parameterization that we call
augmented. If we focus on one refined initial face we observe that afterk subdivisions the knot intervals on the inserted
edges are equal along each section polyline inside the face,as illustrated in Figure 5 (left), whereas they change when
moving to the neighboring initial faces. This allows us to make the following observation which is crucial to analyze
the continuity and smoothness of NULISS.

Remark 2. We notice that, since the coefficients of the scheme are invariant under uniform scaling of the knot
intervals, in the interior of each initial face the knot intervals can be equivalently thought as uniform in both grid
directions (Fig. 5(right)). As a consequence, all the points of the grid delimited in bold in figure are actually generated
by the tensor product of the reference scheme with uniform parameterization.
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Figure 5: Knot intervals configuration on the edges of the face illustrated in Fig. 4 after 3 subdivisions (left) and region where the uniform tensor
product scheme has been applied (right).

3.2. The non-uniform tensor product scheme: a subcase of NULISS

We consider the special case in which the initial parameterization for NULISS is chosen as the cartesian product
of two non-uniform sequences of knot intervalsD0 = {d0

i }i andE0 = {e0
j } j in the two grid directions. In this case,

according to the updating rule (10), the refined meshMk is associated with the cartesian product of two non-uniform
parameterizations

Dk =






d0
0, . . . , d

0
0

︸     ︷︷     ︸

2k

, d0
1, . . . , d

0
1

︸     ︷︷     ︸

2k

, d0
2, . . . , d

0
2

︸     ︷︷     ︸

2k

, . . .






, (12)

Ek =






e0
0, . . . , e

0
0

︸     ︷︷     ︸

2k

, e0
1, . . . , e

0
1

︸     ︷︷     ︸

2k

, e0
2, . . . , e

0
2

︸     ︷︷     ︸

2k

, . . .






, (13)

and thus NULISS becomes a non-uniform tensor product scheme.
Moreover, it can be easily observed that the coefficients of NULISS in (7) and (9) are independent of the levelk

and thus generate a stationary subdivision operator mapping the points of the control meshMk into points ofMk+1

for anyk > 0. The following result derives straightforwardly from theassumption that the reference scheme isC1.

Theorem 1. The NULISS scheme with cartesian product parameterizationgenerates C1 continuous limit surfaces.

4. Convergence and smoothness analysis

In this section we analyze the convergence and smoothness properties of NULISS. In particular, we prove that,
assumed that the reference scheme satisfies the requirements stated in Section 2, NULISS generatesC1-continuous
limit surfaces independently of the initial parameters configuration.
The approach we follow strongly relies on the limit behaviorof the augmented parameterization as well as on the fact
that NULISS can be also interpreted as a scheme generating sequences of curve networks. For a better understanding
of these two key ingredients at the basis of our analysis, in the next section we describe in detail the structure ofMk

and its behavior in the limit.

4.1. The structure ofMk and its limit behavior

The insertion rule for edge points in (7) implies that each section polyline, either of the initial meshM0 or of any
of the refined meshesMk, is refined independently from the underlying control mesh,namely the points inserted along
the polyline depend on the polyline vertices only. As a consequence NULISS can be also viewed as an interpolatory
subdivision scheme for curve networks. Specifically, the edges of the control meshMk define a polyline network that,
when subdivided, generates in the limit a curve network, hereinafter denoted byF k. Being the scheme interpolatory,
the curves inF k intersect at the vertices ofMk andF 0 ⊂ F 1 ⊂ . . .F k, ∀k. Figure 6 illustrates the situation.
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Obviously, if NULISS admits a limit surface, then such surface interpolates not only the vertices of eachMk, but all
the curves of each networkF k, ∀k > 0.
Now, if we focus our attention on a subregion ofMk corresponding to a refined face ofM0, as already observed
in Remark 2, we have that the parameters on its edges are equaland thus can be thought as scaled to uniform; so
in the innermost area of each refined initial face NULISS is nothing but the tensor product of the reference scheme,
which isC1. Extending the reasoning to the whole meshMk we observe that there exists a 4-wide strip of faces (see
first illustration in Figure 7), surrounding the boundary ofthe refined faces ofM0, where the parameters cannot be
interpreted as uniform and thus the parameterization is actually augmented. As illustrated in Figure 7, during the
subdivision process the augmented area shrinks at each iteration, while the tensor product area progressively extends
to the refined section polylines ofM0, which in the limit become the curves ofF 0. As a consequence the limit
surface of NULISS isC1 everywhere, except at points belonging toF 0. Based on this reasoning, the limit surface
is everywhere continuous if theC1 limit surface patches generated by NULISS in the innermost area of each refined
initial face join with continuity along the curves ofF 0. Moreover, it is evenC1 if such patches join withC1 continuity
across the curves ofF 0.

(a)M0 andF 0 (blue) (b) M2 andF 0 (blue) (c) M2, F 0 (blue) andF 2 (blue
and red)

Figure 6: MeshesMk and curve networksF k generated by NULISS.

Figure 7: Curve networkF 0 andC1 tensor product limit surface patches at subsequent refinement steps. The tensor product area progressively
extends to the boundary of the refined faces ofM0, which in the limit isF 0, while the augmented area shrinks.

4.2. Continuity and smoothness analysis of NULISS

In this section we firstly prove that, at any arbitrary point of F 0, the limit surface is continuous and then evenC1.
We start proving continuity. To this aim we observe that it issufficient to show that the limit surface is continuous at
any dyadic point, i.e. at any point ofMk ∩ F 0, ∀k > 0. In fact supposedP is an arbitrary point ofF 0, and being any
curve inF 0 continuous, thenP is the limit of a sequence of dyadic points belonging toF 0. So, if the limit surface is
continuous at any point of the sequence, it is certainly continuous also atP. Based on this observation, from this point
onward we focus on a dyadic point, hereinafter denoted byV, belonging toMk ∩ F 0, ∀k > 0 and we prove that the
NULISS limit surface is continuous at such point. To analyzethe continuity of NULISS we study the asymptotical
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behavior of the augmented parameterization in a suitable neighborhood ofV and show that the local matrix operator
of NULISS is asymptotically equivalent to the local matrix operator of a bivariate convergent subdivision scheme.
This implies that NULISS is also convergent [18]. In particular we compare the local matrix operator of NULISS
with that of the tensor product scheme described in Section 3.2, defined on the parameterization of the two section
polylines ofMk ∩ F 0 intersecting atV.
We also observe that NULISS has support of width 6 in each griddirection. This property is a direct consequence of
the well known fact that the 4-point reference scheme has support of width 6. Thus the parameters that influence the
subdivision process are limited to the 3-neighborhood ofV.
Assuming the pointV is created at subdivision levelK, thenV ∈ Mk ∩ F 0, ∀k > K. Before starting the analysis, we
make a preliminary observation that allows us to significantly simplify the proof. We consider the two cases

1. K = 0⇒ V ∈ M0 (Fig. 8-left);

2. K > 0⇒ V ∈ MK\M0 ∩ F 0 (Fig. 8-right).

Figure 8: Illustration of the two possible cases of the pointV depicted by a black bullet.

In case 1., afterk subdivision steps, the parameters on the edges of such region depend on the initial parameters
of the four faces ofM0 meeting atV (Fig.8-left) and they are augmented in both grid directions. In case 2., the
parameters depend on those of the two faces ofM0 having in common the edge from whichV is generated by the
iterative refinement (Fig.8-right); in such situation the parameters can be thought as uniform in the direction parallel
to the edge and augmented across it . Thus this second case falls into the first, and in the following we focus the
analysis on case 1. only.
Without loss of generality, we can assume that the pointV around which we want to prove the convergence, is the
initial vertex p0

i, j and, being the scheme interpolatory,V = p0
i, j = pk

2ki,2k j
,∀k > 0. Figure 9 represents the face

containingV in the top-right quadrant (Fig.9(a)) and the correspondingk times refined face (Fig.9 (b)).
We consider now the sequences of parameters of the two initial section polylines intersecting atV

D0
i = {d

0
i, j} j , and E0

j = {e
0
i, j}i ,

and the non-uniform tensor product scheme defined from the cartesian product of them as described in Section 3.2.

Definition 1. We denote by SDE(V) the tensor product scheme obtained from NULISS when the initial parameteri-
zation is chosen as the cartesian product of the parameterizations of the two initial section polylines intersecting at
V.

In the following we prove that the local matrix operators of NULISS andSDE(V) are asymptotically equivalent.
To this aim we start by introducing preliminary results which strongly rely on the properties of the basis functions
from which the coefficients of the reference scheme are derived according to (4).

Lemma 1. For any k> 1, let δ = [u+2−kC, v+2−kD, v+2−kD], with u, v > 0, C,D ∈ R, be a triple of knot intervals
associated to knots xj , j = 0, . . . , 3 with x0 = 0. Let also J= [0,max(u+2v, u+2v+ C+2D

2 )] be the interval containing
x j , j = 0, . . . , 3, for all k > 1. Then for any k> 1 andℓ = 0, . . . , 3,
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(a) |ψδ
ℓ
(z)| 6 A for all z ∈ J, with A a generic constant independent of k;

(b) ψδ
ℓ

is Lipschitz continuous on J, with a constant L independent of k.

Proof: We prove the two statements whenC,D > 0 since for eitherC, D or both negative we can proceed analogously.
Since the cardinal basis functions are invariant under a uniform scaling of the knot intervals, we can assumeδ =
[x, 1, 1], with x ∈ I := [min( u

v ,
2u+C
2v+D ),max(uv ,

2u+C
2v+D )]. In this way, varyingx in I , we obtain all possible triples of knot

intervals fork > 1. Then, for allℓ = 0, · · · , 3, we consider the continuous functionfℓ(x, z) := ψδ
ℓ
(z) on I × J.

(a) From the continuity offℓ(x, z) we can conclude thatA = max(x,z)∈I×J | fℓ(x, z)|, which is independent ofk.
(b) Due to property (ii) of the cardinal basis functions we have that, for allℓ = 0, . . . , 3, fℓ(x, z) is differ-

entiable with respect toz and its partial derivative∂
∂z fℓ(x, z) is continuous onI × J. Thus we can conclude that

L = max(x,z)∈I×J |
∂
∂z fℓ(x, z)|, which is independent ofk.

�

Lemma 2. For any k> 1, let δ = [u+2−kC, v+2−kD, v+2−kD], with u, v > 0, C,D ∈ R, be a triple of knot intervals
associated to knots xj , j = 0, . . . , 3 with x0 = 0. Let δ̂ = [u, v, v] be a triple of knot intervals associated to knotsx̂ j ,
j = 0, . . . , 3 with x̂0 = 0. Denote also mδ = u+ v

2 +
2C+D
2k+1 and m̂

δ
= u + v

2. Then for any k> k̄, with k̄ a suitable
positive integer,

|ψδℓ (mδ) − ψ
δ̂
ℓ (m
δ̂
)| 6 A2−k, ℓ = 0, . . . , 3,

with A a generic constant independent of k.

Proof: Let us start assuming thatC andD are non-negative values. From the property of cardinality of the fundamental
functionsψδ

ℓ
on x j , j = 0, . . . , 3, we can write

ψδ̂ℓ (m
δ̂
) =

3∑

j=0

ψδ̂j (m
δ̂
)ψδℓ (x j).

Moreover, since the fundamental functionsψδ̂ℓ reproduce polynomials of degreeρ andψδℓ is a polynomial of degreeρ
on [x1, x2], by property (iii) of the fundamental functions we get

ψδℓ (mδ) =
3∑

j=0

ψδ̂j (mδ)ψ
δ
ℓ (x̂ j).

For k > k̄, with k̄ a suitable positive integer depending onu, v,C,D, we havem
δ̂
, mδ ∈ I1 =

[

u+ 2−k̄C, u+ v
]

. Now,

let I2 = [0, u + 2v + C+2D
2 ] be the smallest interval containing the knots ˆx j and x j , j = 0, . . . , 3 for all k > 1. For

(z1, z2) ∈ I1× I2, we define the bivariate functiong(z1, z2) := ψδ̂j (z1)ψδℓ (z2). Sinceψδ̂j andψδℓ are Lipschitz continuous,
the functiong is also Lipschitz continuous with constant

L̄ = L max
z1∈I1

|ψδ̂j (z1)| + L
δ̂

max
z2∈I2

|ψδℓ (z2)|,

whereL
δ̂

andL are the Lipschitz constants ofψδ̂j andψδ
ℓ
, respectively. We observe that all the contributions inL̄ are

independent ofk: this is trivial forL
δ̂

, maxz1∈I1 |ψ
δ̂
j (z1)| and derives from Lemma 1(a) and (b) for maxz2∈I2 |ψ

δ
ℓ (z2)| and

L, respectively. Thus,

|ψδℓ (mδ) − ψ
δ̂
ℓ (m
δ̂
)| =

∣
∣
∣
∣
∣
∣
∣
∣

3∑

j=0

(

ψδ̂j (mδ)ψ
δ
ℓ (x̂ j) − ψδ̂j (m

δ̂
)ψδℓ (x j)

)

∣
∣
∣
∣
∣
∣
∣
∣

6

3∑

j=0

∣
∣
∣
∣g(mδ, x̂ j) − g(m

δ̂
, x j)
∣
∣
∣
∣

6 4L̄ max
j=0,...,3

{

|mδ −m
δ̂
|, |x̂ j − x j |

}

.
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Considering that

max
j=0,...,3

{

|mδ −m
δ̂
|, |x̂ j − x j |

}

= max

{

2C + D
2k+1

,
C
2k
,
C + D

2k
,
C + 2D

2k

}

=
C + 2D

2k
,

we have
|ψδℓ (mδ) − ψ

δ̂
ℓ (m
δ̂
)| 6 2−k4L̄(C + 2D) = A2−k,

for a generic constantA independent ofk. This proves our statement forC andD non-negative. If eitherC, D or both
are negative, we can repeat the proof in a similar way. �

Exploiting the above lemmas and the asymptotical behavior of the augmented parameterization we can now for-
mulate the following result.

Theorem 2. At any dyadic point V the local matrix operator of NULISS is asymptotically equivalent to the local
matrix operator of the tensor product scheme SDE(V).

Proof: We formalize the subdivision process of NULISS in the neighborhood ofV in terms of the local subdivision
matrix Mk mapping the vertices of thekth level meshMk into those ofMk+1 via

Pk+1 = MkPk. (14)

The non-zero entries of each row ofMk are the coefficients of the vertex, edge and face point refinement equations
of NULISS and depend on the local parameterization associated withk-level edges. Since the reference scheme has
support width 6, it is easy to see thatMk has 49 rows and columns. We introduce the following local notation (see
Figure 9(g)-(h))

pr,s := pk
2ki+r,2k j+s, δr,s := δk

2ki+r,2k j+s, ǫr,s := ǫk2ki+r,2k j+s, r, s= −3, . . . , 3. (15)

The pointspr,s, r, s = −3, . . . , 3 are the entries ofPk to the right hand side of (14), and they constitute the submesh
of the three rings of faces ofMk aroundV. We denote this submesh, illustrated in color red in Figure 9(c),(e),(f), by
Gk(V). Similarly δr,s andǫr,s are the parameters on the edges ofGk(V) that contribute to the entries ofMk. The points
Pk+1 to the left of (14) are the vertices ofGk+1(V) (Figure 9(d) in color red).
We also denote byM the subdivision matrix having as rows the coefficients of vertex, edge and face points ofSDE(V).
The local matrix operators of NULISS andSDE(V) are asymptotically equivalent if

∑

k∈Z+ ‖Mk − M‖∞ < ∞ [18].
Being‖Mk − M‖∞ = maxi

∑

j |m
k
i, j −mi, j |, we prove that,

∑

j

|mk
i, j −mi, j | 6 A2−k, ∀i, (16)

with A a generic constant independent ofk.
In the following we thus focus our attention on the rows ofMk andM corresponding to vertex, edge and face points

and show that relation (16) holds for each of them. By symmetry of the subdivision rules we can limit ourselves to
consider only rowsi corresponding to points ofGk+1(V) inserted in the top-right quadrant (Figure 9(e)-(f)).

• Being the two schemes interpolatory, if theith row represents a vertex point, nothing needs to be proved.

• Suppose now that theith row of Mk−M corresponds to an edge pointE (Figure 9(e)). We can express any edge
point of NULISS in the horizontal direction and in the top-right quadrant by the formula

E =
3∑

ℓ=0

pr,s+ℓ−1 aℓ(δr,s) =
3∑

ℓ=0

pr,s+ℓ−1 ψ
δr,s

ℓ (mδr,s
), r, s= 0, 1.
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V = p0
i,j

p0
i+1,j

p0
i,j+1

p0
i+1,j+1

(a) face ofM0 containingV

V = pk
2ki,2kj

pk
2ki+2k,2kj

pk
2ki,2kj+2k

pk
2ki+2k,2kj+2k

(b) face in (a) afterk refinements

(c) local gridGk(V) ⊂ Mk (d) local gridGk+1(V) ⊂ Mk+1 (e) edge points in one quadrant (f) face points in one quadrant
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(h) parameter sequences onGk(V) for NULISS
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(i) parameter sequences onGk(V) for SDE(V)

Figure 9: Illustration of the local configuration of points and parameters used in the proof of Theorem 2.
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An analogous equation holds in the vertical direction. Exploiting equation (11) we can writeδr,s in dependence
of the knot intervals ofM0, namely forr = 0, 1,

δr,s =






[

d0
i, j−1 + r

d0
i+1, j−1−d0

i, j−1

2k , d0
i, j + r

d0
i+1, j−d0

i, j

2k , d0
i, j + r

d0
i+1, j−d0

i, j

2k

]

whens= 0,
[

d0
i, j + r

d0
i+1, j−d0

i, j

2k , d0
i, j + r

d0
i+1, j−d0

i, j

2k , d0
i, j + r

d0
i+1, j−d0

i, j

2k

]

whens= 1.
(17)

Furthermore we denote the edge point ofSDE(V), corresponding to the same location ofE, by Ê. Ê is de-

fined as the linear combination (7), with coefficients obtained evaluating the basis functionsψ
δ0,s

ℓ
associated to

the parameterizationδ0,s, s = 0, 1. Notice that such parameterization is common to all the considered rows.
As a consequence of the affine invariance of the basis functions the parameterizationδ0,s generates the same
coefficients as (Figure 9(i))

δ̂s =






[

d0
i, j−1, d

0
i, j, d

0
i, j

]

whens= 0,
[

d0
i, j, d

0
i, j, d

0
i, j

]

whens= 1.
(18)

Thus we can write

Ê =
3∑

ℓ=0

pr,s+ℓ−1 aℓ(δ̂s) =
3∑

ℓ=0

pr,s+ℓ−1 ψ
δ̂s

ℓ
(m
δ̂s

), r, s= 0, 1,

from which we get

E − Ê =
3∑

ℓ=0

pr,s+ℓ−1

(

ψ
δr,s

ℓ (mδr,s
) − ψδ̂s

ℓ (m
δ̂s

)
)

.

We now observe that fork big enough,δr,s in (17) andδ̂s in (18) fall into the hypothesis of Lemma 2 with
u = d0

i, j−1, v = d0
i, j, C = r(d0

i+1, j−1 − d0
i, j−1), D = r(d0

i+1, j − d0
i, j) and thus

|ψ
δr,s

ℓ (mδr,s
) − ψδ̂s

ℓ (m
δ̂s

)| 6 A2−k, ∀ℓ = 0, · · · , 3, (19)

whereA is a generic constant independent ofk. Therefore, when the rowi identifies an edge point rule,

∑

j

|mk
i, j −mi, j | =

3∑

ℓ=0

|ψ
δr,s

ℓ
(mδr,s

) − ψδ̂s

ℓ
(m
δ̂s

)| 6 A2−k,

which proves relation (16).

• For a face point inside the considered region (Figure 9(f)) we recall that the coefficients of NULISS depend on
local averages of knot intervals in the two grid directions as in (8). We introduce the following notation, similar
to (17),

∆r,s := ∆k
2ki+r,2k j+s, Er,s := Ek

2ki+r,2k j+s, r, s= −2 . . .2.

Also, in analogy to (18), we set̂∆s := ∆0,s andÊr := Er,0. Thus

F − F̂ =

3∑

h=0

3∑

ℓ=0

pr+h−1,s+ℓ−1 ah(∆r,s) aℓ(Er,s) −
3∑

h=0

3∑

ℓ=0

pr+h−1,s+ℓ−1 ah(∆̂s) aℓ(Êr )

=

3∑

h=0

3∑

ℓ=0

pr+h−1,s+ℓ−1ψ
∆r,s

h (m∆r,s
)ψEr,s

ℓ (mEr,s
) −

3∑

h=0

3∑

ℓ=0

pr+h−1,s+ℓ−1ψ
∆̂s

h (m
∆̂s

)ψÊr

ℓ (mÊr
)

=

3∑

h=0






3∑

ℓ=0

pr+h−1,s+ℓ−1

[

ψ
Er,s

ℓ (mEr,s
)
(

ψ
∆r,s

h (m∆r,s
) − ψ∆̂s

h (m
∆̂s

)
)

− ψ∆̂s

h (m
∆̂s

)
(

ψÊr
ℓ (mÊr

) − ψEr,s

ℓ (mEr,s
)
)]




.
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As above, for a sufficiently largek, we can show that∆r,s and∆̂s, Er,s andÊr satisfy the hypothesis of Lemma
2. Therefore, wheni identifies a face point rule,

∑

j

|mk
i, j −mi, j | =

3∑

h=0






3∑

ℓ=0

∣
∣
∣
∣
∣
ψ

Er,s

ℓ (mEr,s
)
(

ψ
∆r,s

h (m∆r,s
) − ψ∆̂s

h (m
∆̂s

)
)

− ψ∆̂s

h (m
∆̂s

)
(

ψÊr
ℓ (mÊr

) − ψEr,s

ℓ (mEr,s
)
)∣
∣
∣
∣
∣






6

3∑

h=0

3∑

ℓ=0

[

|ψ
Er,s

ℓ
(mEr,s

)|
∣
∣
∣
∣
∣
ψ
∆r,s

h (m∆r,s
) − ψ∆̂s

h (m
∆̂s

)
∣
∣
∣
∣
∣
+ |ψ∆̂s

h (m
∆̂s

)|
∣
∣
∣
∣
∣
ψÊr

ℓ
(mÊr

) − ψEr,s

ℓ
(mEr,s

)
∣
∣
∣
∣
∣

]

6 2−kA
3∑

h=0

3∑

ℓ=0

(

|ψ
Er,s

ℓ
(mEr,s

)| + |ψ∆̂s

h (m
∆̂s

)|
)

6 2−kA. (20)

The last inequality follows from Lemma 1(a) and shows that (16) holds. This concludes the proof.

�

Corollary 1. NULISS is convergent and generates C0-continuous limit surfaces.

The previous result naturally implies the following

Theorem 3. NULISS generates C1-continuous limit surfaces.

Proof: As already observed in Section 4.1,C1 smoothness of the limit surface in the inner region of each face ofM0

is trivially established considering the limit behavior ofthe augmented parameterization.
We recall also that the subdivision process generates a sequence ofC1 curve networks

{

F k
}

k>0
, where each member

of the sequence is the curve network defined by the limit curves associated to the polylines ofMk. Thus, any dyadic
point V ∈ Mk ∩ F 0 is the intersection of twoC1 curves ofF k in the two independent grid directions, which implies
that first partial derivatives of the surface are continuousat V.
At an arbitrary (non dyadic) point ofF 0, the first derivative of the limit surface is certainly continuous in the direction
of the curve ofF 0 containing the point. Such curve is the boundary of twoC1 patches of the continuous limit
surface: so, in the transversal direction, the derivative varies continuously anywhere inside the patches and, taking
into account that it is also continuous across the boundary at any dyadic point, we can conclude that it must necessarily
be continuous everywhere. �

5. Numerical examples

We conclude by presenting some numerical experimentation about NULISS in order to show the quality of
NULISS surfaces and compare it with uniform and non-uniformtensor product interpolation methods.

The surfaces shown in the following figures are generated using NULISS with reference scheme in (6), where the
initial knot intervals have been computed via the centripetal parameterization and, in the case of open initial meshes,
exploiting linear extrapolation along the cross-boundarydirection.
We start with two simple, yet effective examples. To produce the examples in Figure 10 we modified the regular
torus mesh, so as to obtain an initial mesh whose section polylines have corresponding edges of remarkably different
lengths (Fig. 10 (a)). In such situation, the uniform parameterization introduces a significant distortion with respect to
the parameterization of the individual initial section polylines. As a consequence, an unwanted artifact appears in the
limit surface of the uniform scheme (Fig. 10 (b) and (d)), which is not present in the NULISS surfaces generated from
the same initial meshes (Fig. 10 (c) and (e)). The kind of artifact highlighted by this example is particularly evident
if we look at one section curve of the uniform and NULISS limitsurfaces, as illustrated in Fig. 11 for the upper-row
mesh (Fig.10 (a)). While in the uniform case each section curve has the same parameterization in both directions, in
the latter one each section curve maintains its own (centripetal) parameterization.
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(a)Initial mesh (b) Uniform, 3 steps (c) NULISS, 3 steps (d) Uniform limit (e) NULISS limit

Figure 10: Comparison between uniform tensor product bicubic spline surface and NULISS.

Figure 11: Section polyline of the initial mesh on the top rowof Figure 10 (a) ; corresponding section curve of the uniformsubdivision limit surface
(d) and of NULISS (e).

To give a general idea of the quality of the surfaces, we provide in Figure 12 the results that we got by applying
NULISS to a variety of initial meshes. The lamp mesh is obtained by revolution of a profile polyline with extremely
short and long edges, and thus it is essentially uniform in one grid direction and highly non-uniform in the other.
The middle row mesh represents the upper part of a fire hydrant; it is not a revolution mesh and it evidently presents
highly non-uniform section polylines in both grid directions. Finally, the vase mesh is obtained by scaled versions
of one section polyline, shifted along the vertical axis with long and short shift steps. The considered meshes are
characterized by highly non-uniform initial section polylines, so that the uniform scheme fails on all of them.
We have also tested NULISS on a wide set of data, acquired through a needle scanning device. We have recon-
structed the data by means of NULISS and non-uniform tensor product bicubic spline surfaces. As shown in Figure
13, NULISS provides a faithful reconstruction, preservingthe details present in the data. Oppositely, in some areas -
see, e.g., along the top border of the wings or top of head - tensor product splines generate more undulations than the
ones present in the acquired data.
Finally, an application of NULISS was presented in [9]. In that work, NULISS was used to generate a surface starting
from some of its feature curves, acquired through an interactive pen-like device (Fast Interactive Reverse Engineer-
ing). While the user interactively scans the feature curves, the surface underneath needs to change accordingly, so it
is fundamental to have at disposal a quick method that at the same time allows for updating the surface shape and
interpolating all the acquired data with satisfactory quality. In this context NULISS proved to be optimal in terms of
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Figure 12: NULISS surfaces and the related initial meshes.

surface quality and speed of reconstruction, but none of itsanalytic properties were known, which was an additional
motivation for the present paper.

6. Summary and future work

Non-uniform tensor product interpolants often give rise tosignificant undulation artifacts, due to the strict struc-
ture of the underlying parameterization. For this reason, the centripetal parameterization, that is proven to be optimal
in the univariate case, does not significantly improve the behavior of the surface in the tensor product bivariate setting.
In this paper, we have presented a novel class of non-uniform, non-tensor product, local interpolatory subdivision sur-
faces that generalizes non-uniform interpolatory 4-pointschemes to regular quadrilateral meshes. This new proposal
generatesC1-continuous limit surfaces with a better behavior than the well-established tensor product subdivision
and spline representations. To a large extent, the advantage of this new construction is that a local parameterization
is used, instead of a global average of the parameters, in such a way that each section curve is interpolated together
with its parameters, thus maintaining its own centripetal parameterization. This allowed us to transpose to the surface
setting the demonstrated benefits that the centripetal parameterization shows in curve interpolation.
Our future objective is the generalization of the proposed edge and face point subdivision rules to meshes with ex-
traordinary vertices, pursuing the idea that the advantages of a suitable non-uniform parameterization, with respectto
a uniform, might be significant also when interpolating meshes of arbitrary topology.
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Initial data (32× 57 vertices) NULISS Tensor product

Initial data (65× 114 vertices) NULISS Tensor product

Figure 13: Reconstruction of scanned data through NULISS and non-uniform bicubic tensor product splines.
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