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Abstract

This paper presents a general framework for the construction of piecewise-polynomial local interpolants with given
smoothness and approximation order, defined on non-uniform knot partitions. We design such splines through a
suitable combination of polynomial interpolants with either polynomial or rational, compactly supported blending
functions. In particular, when the blending functions are rational, our approach provides spline interpolants having
low, and sometimes minimum degree.
Thanks to its generality, the proposed framework also allows us to recover uniform local interpolating splines pre-
viously proposed in the literature, to generalize them to the non-uniform case, and to complete families of arbitrary
support width. Furthermore it provides new local interpolating polynomial splines with prescribed smoothness and
polynomial reproduction properties.
Keywords: Local interpolation; Polynomial splines; Non-uniform knot-partition; Blending; Rational functions.

1. Introduction

In the design of spline bases for local interpolation, there are typically several degrees of freedom, which can
be set to identify a specific interpolant. So, many different criteria exist for making such choice, such as requiring
minimal support, maximizing accuracy or smoothness, leaving free shape parameters and certainly possible others.
In this paper we consider the problem of defining the basis starting from the desired approximation and continuity
orders for a given support width. A similar idea was pursued in the context of uniform interpolation in [2] and [4].
The first paper presents a family of piecewise polynomial functions that solve an interpolation problem of equally
spaced data, given degree, smoothness, approximation order and support width. The second work proposes a general
framework for the design of uniform, local interpolating splines as a combination of a suitable approximation opera-
tor, with known continuity and approximation order, and a general interpolation operator. Both proposals address the
construction of local interpolating splines with uniform knots, while to the best of our knowledge no similar method is
available in the non-uniform setting. Although in principle the idea in [4] could be extended to the non-uniform case,
its generalization would require to know blending functions, for arbitrarily spaced knots, with given compact support,
approximation order and continuity.
Thus we address the construction of non-uniform, local interpolating polynomial splines with desired locality, polyno-
mial reproduction and smoothness following an alternative approach. For an arbitrarily chosen support width w ≥ 3,
we exploit a suitable combination of degree-m polynomial interpolants with blending functions of support width n+1
and assigned continuity, such that m + n + 1 = w. In this way, the spline interpolant naturally inherits the degree of
polynomial reproduction from the polynomial interpolants and the smoothness from the blending functions.
The design of a local interpolant via blending techniques is certainly not a new idea in computational mathematics.
In fact, starting from the pioneer paper by Catmull and Rom [3], where a local spline basis is obtained through a
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combination of B-spline blending functions and interpolating polynomials, in the last three decades several authors
exploited the idea of blending local interpolants (see, e.g., [5, 6, 7, 9, 12, 13, 14, 16]). However, so far anybody has
never tackled the problem of completing a general framework for the construction and the detailed characterization of
piecewise-polynomial local interpolants defined on non-uniform knot partitions.
One of the key aspects of the presented method is that the exploited blending functions can be of either polynomial
or rational kind. In both cases they are determined through an original constructive procedure, that guarantees the
desired smoothness and support width. In particular, the use of rational blending functions allows for obtaining spline
interpolants of considerably low and sometimes even minimum degree against high polynomial reproduction and
smoothness of the resulting splines.

The remainder of the paper is organized as follows. In Section 2 we provide a constructive method that, given a set
of distinct and ordered knots, allows us to determine a sequence of well-defined non-uniform blending functions, i.e.,
non-negative, compactly supported and normalized functions, of assigned continuity and support width. In Section
3 we define general interpolants that belong to the proposed framework, characterize their properties of polynomial
reproduction, smoothness and locality and discuss which is the lowest achievable degree of the related spline basis.
At the end of the section we also illustrate how these splines can be efficiently evaluated. Then, in Section 4 we
show that our general framework includes known uniform local interpolating splines and generalizes them both to
the non-uniform setting and to complete families with arbitrary support width. Moreover it also allows for designing
new fundamental functions of minimum degree with prescribed smoothness and polynomial reproduction. Finally, in
Section 5 we conclude by illustrating some application examples of local interpolating spline curves obtained by the
proposed framework.

2. The design of blending functions

In this section we present a general procedure for designing compactly supported blending functions, defined on
a knot partition t = {t j} of distinct knots, in ascending order. The i-th blending function Bi,n+1, n + 1 ≥ 2, belongs to
Ck(R), k ≥ 0, and satisfies the following properties

(i) Bi,n+1(x) > 0, x ∈ (ti, ti+n+1), (ii) Bi,n+1(x) = 0, x < (ti, ti+n+1), (iii)
∑

i

Bi,n+1(x) = 1, ∀x ∈ R.

The most popular blending functions are the well-known B-splines, that are piecewise polynomials of degree n,
support width n + 1 and smoothness Cn−1. One way of defining a non-uniform degree-n polynomial B-spline consists
in applying n − 1 times an integral recurrence relation [15], that starts from piecewise constant blending functions
(of support width 1 and smoothness C−1) and proceeds through subsequent integrations and subtractions, obtaining at
each new step blending functions with degree, support and continuity increased by one. Analogously, here we design
several classes of blending functions as differences of transition functions, having a similar behavior to that of the
integral functions in the definition of B-splines. In particular we give the following definition.

Definition 1. Given an increasing sequence of knots t = {t j} j=1,...,N , the transition functions fi, i = 1, . . . ,N − n,
relative to the knot partition t, are the piecewise functions defined on R such that

A) fi(x) =
{

0 x < ti,
1 x ≥ ti+n,

B) fi ∈ Ck(R), C) 0 ≤ fi ≤ 1, D) fi ≥ fi+1.

In the sequel we refer to the i-th transition function fi with the term n-piece transition function to emphasize its
piecewise formulation on the interval [ti, ti+n] where its expression is not trivially 0 or 1.
The i-th blending function, for i = 1, . . . ,N − n − 1, can thus be obtained as

Bi,n+1(x) = fi(x) − fi+1(x), ∀x ∈ R. (1)

By construction, the functions Bi,n+1 have compact support of width n+1 given by [ti, ti+n+1], are linearly independent,
at least Ck continuous and non-negative. Moreover on each interval [t`, t`+1) they satisfy the partition of unity property,
in fact ∑̀

i=`−n

Bi,n+1(x) =
∑̀

i=`−n

( fi(x) − fi+1(x)) = f`−n(x) − f`+1(x) = 1. (2)
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Remark 1. It can be easily verified that polynomial B-splines can be generated following the proposed approach. In
this case the transition functions are degree-n piecewise polynomials uniquely determined by imposing the maximum
smoothness at the knots, namely by the conditions

f ( j)
i (ti) = 0, j = 0, . . . , n − 1,

f ( j)
i (t−` ) = f ( j)

i (t+` ), j = 0, . . . , n − 1, ` = i + 1, . . . , i + n − 1,

f ( j)
i (ti+n) = δ0, j, j = 0, . . . , n − 1.

(3)

To design general blending functions we thus proceed by determining the related transition functions as piecewise
functions with maximum smoothness at the knots whereas other degrees of freedom that may occur in the definition
of the pieces and are not sufficient to increase the global smoothness may be exploited to satisfy additional require-
ments.
This procedure allows us to explicitly derive the expression of the pieces of each transition function, however note
that conditions C) and D) must be verified for any arbitrary knot-partition to ensure well-definedness of the blending
functions Bi,n+1.

Remark 2. The proposed blending functions determine an approximation operator (hereinafter denoted by A) that
has minimum approximation order 1 (as the constant function is certainly reproduced), but possibly higher, as in the
case of B-splines.

We observe that the proposed method allows for designing blending functions that on each interval may be of differ-
ent kind, e.g., polynomial, rational, trigonometric, hyperbolic and so forth. It also allows for arbitrarily playing with
different orders and numbers of degrees of freedom, e.g., it is possible to define transition functions with different
smoothness at the knots, multiple knots and relaxed continuity constraints, as well as general support width indepen-
dent of the smoothness order.

When designing polynomial blending functions, in the remainder of the paper the j-th polynomial piece of the transi-
tion function fi is represented in the Bernstein basis using the notation

q(x|ai, j
0 , . . . , a

i, j
di, j

) :=
di, j∑
k=0

ai, j
k

(
di, j

k

)
Rdi, j−k

i+ j−1(x)Lk
i+ j−1(x), x ∈ [ti+ j−1, ti+ j),

with Lr(x) =
x − tr

tr+1 − tr
and Rr(x) =

tr+1 − x
tr+1 − tr

.

Thus in the polynomial case, the i-th transition function has the expression

fi(x) =


0, x < ti,
q(x|ai, j

0 , . . . , a
i, j
di, j

), x ∈ [ti+ j−1, ti+ j), j = 1, . . . , n,
1, x ≥ ti+n.

Differently, when designing rational blending functions, the pieces of the transition functions can be either polynomial
or rational, and can also have different degrees in the numerators and denominators. Thus in each piece we use the
notation di, j/ei, j, where di, j and ei, j are the degrees of the numerators and denominators respectively. We observe that
to guarantee that the resulting blending functions are symmetric, when so is the knot partition, the transition functions
fi must be antisymmetric with respect to the midpoint of the interval [ti, ti+n], namely fi(x) = 1 − fi(ti + ti+n − x). This
relation means that it is possible to design the transition function on the half of such interval.
To illustrate in more detail our constructive approach, in the following we design three different blending functions
with support width 3: a quintic C3-continuous function, a cubic one which is C2 at the outermost knots and C1 at
the internal knots of its support, and finally a rational C2 function of degree 4/1. These will be used in the following
sections to generate local spline interpolants belonging to the proposed framework.
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2.1. A C3 quintic blending function

Following the proposed approach we want to define a two-piece transition function of degree 5, such that

fi(x) =


0, x < ti,
q(x|ai, j

0 , . . . , a
i, j
5 ), x ∈ [ti+ j−1, ti+ j), j = 1, 2,

1, x ≥ ti+2.

By imposing the third-order smoothness conditions (3) at the knots ti, ti+1 and ti+2, we get a square linear system of
equations of order 12 that has unique solution for distinct knots. In particular, it provides the following coefficients of
the transition function

ai,1
k = 0 k = 0, . . . , 3, ai,1

4 =
(ti+1 − ti)2

(ti+2 − ti)2 , ai,1
5 =

(ti+1 − ti)2(3ti+2 − 2ti+1 − ti)
(ti+2 − ti)3 ;

ai,2
0 = ai,1

5 , ai,2
1 =

(ti+1 − ti)(2ti+2 − ti+1 − ti)
(ti+2 − ti)2 , ai,2

k = 1 k = 2, . . . , 5.

Figure 1 shows fi for x ∈ [ti, ti+2] in case of uniform knots.
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Figure 1: A C3, quintic, two-piece transition
function over uniform knots.
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Figure 2: C3 quintic transition functions and
related blending function.
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Figure 3: C3 quintic transition functions and
blending functions in a knot interval.

In order to define a blending function through difference of subsequent transition functions fi, as in equation (1), we
now show that conditions C) and D) hold. Property C) follows from the fact that, for any sequence of distinct and
ordered knots,

0 ≤ ai,1
k , a

i,2
k ≤ 1 k = 0, . . . , 5, (4)

and from the convex hull property of the Bernstein representation. To check condition D), we need to confirm the
inequality fi− fi+1 ≥ 0, which is equivalent to ai,1

k ≥ 0, ai,2
k −ai+1,1

k ≥ 0, 1−ai+1,2
k ≥ 0, k = 0, . . . , 5. The first and

last inequalities always hold as a consequence of (4), while the second can be trivially proven given the expressions
of ai,2

k and ai+1,1
k .

By applying formula (1) to the transition functions we can now work out the related blending functions, that are C3-
continuous by construction and have compact support of width 3. Figure 2 shows the i-th blending function, supported
on [ti, ti+3], given explicitly as

Bi,3(x) =


fi(x), x ∈ [ti, ti+1),
fi(x) − fi+1(x), x ∈ [ti+1, ti+2),
1 − fi+1(x), x ∈ [ti+2, ti+3).

On the single interval [ti+1, ti+2) the set of non-vanishing blending functions (see Figure 3) is easily computed through
the relations

Bi−1,3 = 1 − fi, Bi,3 = fi − fi+1, Bi+1,3 = fi+1.
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2.2. Cubic blending function with mixed C2C1 continuity
We are now interested in determining cubic blending functions of support width 3, with different continuity at the

knots. To this aim, we consider transition functions of the form

fi(x) =


0, x < ti,

q(x|ai, j
0 , . . . , a

i, j
3 ), x ∈ [ti+ j, ti+1+ j), j = 0, 1

1, x ≥ ti+2,

such that


f ( j)
i (ti) = 0, j = 0, 1, 2,

f ( j)
i (t−i+1) = f ( j)

i (t+i+1), j = 0, 1,

f ( j)
i (ti+2) = δ0, j, j = 0, 1, 2.

The 8 × 8 linear system above has the unique solution

ai,1
k = 0 k = 0, 1, 2, ai,1

3 =
ti+1 − ti
ti+2 − ti

; ai,2
0 = ai,1

3 , ai,2
k = 1 k = 1, 2, 3.

As suggested in the previous section, a similar argument can be used to observe that conditions C) and D) are trivially
verified by the set of coefficients above. The related blending functions, obtained through (1), are piecewise cubic
polynomials of support width 3. At the outermost knots of the support these functions are obtained as difference of C2

functions and thus are C2 continuous. At any interior knot the blending functions are defined as difference between a
C2 and a C1 continuous function and thus they inherit the lower continuity, i.e., C1.

2.3. Rational quartic/linear, C2 blending functions
Let us consider the rational transition function

fi(x) =



0, x < ti,

q(x|ai,1
0 , . . . , a

i,1
4 )

Ri+1(x)
, x ∈ [ti, ti+1),

q(x|ai,2
0 , . . . , a

i,2
4 )

Li(x)
, x ∈ [ti+1, ti+2),

1, x ≥ ti+2,

defined so that there is no singularity inside each interval of definition. We observe that a C2 join at the knots leads to 9
conditions against 10 degrees of freedom. To ensure antisymmetry in the uniform case, we can exploit this additional

degree of freedom to impose the condition fi(t−i+1) = fi(t+i+1) =
ti+1 − ti−1

ti+2 − ti−1
. The linear system obtained in this way has

the unique solution

ai,1
k = 0 k = 0, 1, 2, ai,1

3 =
1
16

(ti+1 − ti)(7ti+2 − 3ti+1 − 4ti)
(ti+2 − ti+1)(ti+2 − ti−1)

, ai,1
4 =

ti+1 − ti
ti+2 − ti

;

ai,2
0 = ai,1

4 , ai,2
1 =

1
16

13ti+2 + 3ti+1 − 16ti
ti+2 − ti

, ai,2
2 =

1
2

ti+2 + ti+1 − 2ti
ti+1 − ti

, ai,2
3 =

1
4

3ti+2 + ti+1 − 4ti
ti+1 − ti

, ai,2
4 =

ti+2 − ti
ti+1 − ti

,

which satisfies conditions C) and D). The blending functions computed by the difference formula (1) are thus well-
defined, supported on three intervals and trivially C2 continuous.

3. A general framework for the construction and characterization of non-uniform local interpolating splines

Given a set of interpolation points {(x j, p j) ∈ R2} with an increasing sequence of nodes x = {x j}, we denote by
pi,m a degree-m polynomial interpolating the m + 1 consecutive data (x j, p j), j = i, . . . , i + m. Let t = {t j} be an
increasing sequence of knots, not necessarily coinciding with x. More precisely we confine ourselves to considering
the following two knot configurations, termed respectively even and odd

• t ≡ x (even configuration);

• t , x and xi < ti < xi+1, ∀i (odd configuration).
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Moreover, let Bi,n+1 be a Ck, k ≥ −1, blending function defined on the knot partition t, with compact support
[ti, ti+n+1]. We consider the class of spline functions defined by

F(x) =
∑

i

pi−σ,m(x)Bi,n+1(x), with σ ∈ Z. (5)

Due to the compact support of the blending functions Bi,n+1, the above equation provides a general framework for the
definition of local interpolating or approximating spline functions related to any odd or even knot configuration. In
the following we are interested in characterizing which functions represented by (5) are interpolating and in this case
what are the remarkable properties of such interpolant, i.e., exact smoothness, polynomial reproduction degree and
locality.
To this aim, an interpolation condition can be easily obtained from the compactness of the support of the blending
functions. In particular, if we observe that inside each knot interval there are exactly n + 1 non-vanishing blending
functions Bi,n+1 and only n of them are non-zero at each knot t j, the next result follows straightforwardly.

Proposition 1. The spline function F defined in (5) interpolates the value p j at x j if and only if the polynomials pi−σ,m,
multiplying the non-vanishing blending functions Bi,n+1 at the node x j, are all interpolating the value p j.

Corollary 1. A necessary condition for defining an interpolant F passing through the whole set of data (x j, p j) is

(a) m + 1 ≥ n, in case of even knot configuration;

(b) m + 1 ≥ n + 1, in case of odd knot configuration.

Proof. The result trivially follows by observing that for each value p j the number of blending functions that do not
vanish at x j must be smaller than or equal to the number of polynomials interpolating (x j, p j).

In other words, Corollary 1 asserts that the nodes x j not interpolated by pi−σ,m cannot lie in the support of Bi,n+1,
that is (ti, ti+n+1).

Remark 3. From Proposition 1 and Corollary 1 follows that F defined in (5) interpolates the values p j at x j if and
only if the integer σ ∈ {−1, . . . ,m − n} and σ , −1 if n = 0.

The following corollary points out the least polynomial reproduction degree and smoothness of F, that are given
by construction.

Corollary 2. Under the hypotheses of Proposition 1, F reproduces polynomials of degree at least m and, if Bi,n+1 are
Ck-continuous, is at least Ck-continuous.

Having determined under which condition the expression (5) defines an interpolant to the considered data, it
is useful to investigate the exact smoothness and polynomial reproduction degree of such interpolating function.
Obviously, any considered F obtained by combining Ck blending functions and suitable polynomial interpolants is at
least Ck continuous. However, in case of even knot configuration, it can be proven that the interpolant F gains one
more order of smoothness.

Proposition 2 (Exact smoothness). Let F be a spline interpolant defined by (5), with knots in even configuration.
Moreover assume that the n + 2 polynomials associated with the non-vanishing blending functions on the interval
[t`−1, t`+1) are all interpolating the data (t`, p`). Then F is Ck+1-continuous.

Proof. To prove the thesis, it is sufficient to show that F is Ck+1 at the knot t`. In the interval [t`−1, t`+1) we have a
finite number of non-vanishing blending functions and in particular

F(x) =
∑̀

i=`−n−1

pi−σ,m(x)Bi,n+1(x). (6)
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Moreover, by the partition of unity property (2) of the blending functions, we can write B`,n+1 = 1 − ∑`−1
i=`−n−1 Bi,n+1,

which, substituted in (6), gives

F(x) = p`−σ,m(x) +
`−1∑

i=`−n−1

Bi,n+1(x)(pi−σ,m(x) − p`−σ,m(x)).

To conclude the proof we show that the order-(k + 1) right and left derivatives of F are equal at t`.
By using Leibniz’s formula, we have

D(k+1)
+ F(x) = p(k+1)

`−σ,m(x) +
∑`−1

i=`−n−1
∑k+1

j=0

(
k+1

j

)
D( j)
+ Bi,n+1(x)(p(k+1− j)

i−σ,m (x) − p(k+1− j)
`−σ,m (x))

= p(k+1)
`−σ,m(x) +

∑`−1
i=`−n−1

∑k
j=0

(
k+1

j

)
B( j)

i,n+1(x)(p(k+1− j)
i−σ,m (x) − p(k+1− j)

`−σ,m (x))

+
∑`−1

i=`−n−1 D(k+1)
+ Bi,n+1(x)(pi−σ,m(x) − p`−σ,m(x)),

and D(k+1)
− F(x) can be computed analogously. Now, evaluating the two derivative expressions at x = t` and subtracting

the first from the second, we get

D(k+1)
− F(x)|x=t` − D(k+1)

+ F(x)|x=t` =

`−1∑
i=`−n−1

(
pi−σ,m(t`) − p`−σ,m(t`)

) (
D(k+1)
− Bi,n+1(x)|x=t` − D(k+1)

+ Bi,n+1(x)|x=t`

)
= 0,

since by hypothesis all the polynomials pi−σ,m for i = ` − n − 1, . . . , `, interpolate p` at the node t`.

Remark 4. Differentiating one more time, we observe that D(k+2)
− F(x)|x=t` − D(k+2)

+ F(x)|x=t` , 0, that is F is not Ck+2.

A proof similar to that proposed above can be used to show that in the odd knot configuration the smoothness of the
function F remains exactly Ck. As a consequence of the above proposition, the following result also holds.

Corollary 3. Let F be a spline interpolant defined by (5), on an even knot configuration with Ck blending functions
of support width n + 1. If at least one of the n + 2 polynomials associated with the non-vanishing blending functions
on the interval [t`−1, t`+1] does not interpolate (t`, p`), then F is Ck+1 at t` if and only if the corresponding blending
functions are Ck+1 in t`.

Proof. Since F is interpolating, if p j−σ,m is a polynomial associated to a non vanishing blending function in [t`−1, t`+1)
and does not interpolate (t`, p`), then it must necessarily be either j = ` − n − 1 or j = ` (since only B`−n−1,n+1 and
B`,n+1 vanish at t`).
By the last equation in the proof of Proposition 2 we have that if p`−n−1−σ,m is the polynomial not interpolating (t`, p`),
then the term

(
p`−n−1−σ,m(t`) − p`−σ,m(t`)

) (
D(k+1)
− B`−n−1,n+1(x)|x=t` − D(k+1)

+ B`−n−1,n+1(x)|x=t`

)
can be zero if and only if

D(k+1)
− B`−n−1,n+1(x)|x=t` = D(k+1)

+ B`−n−1,n+1(x)|x=t` , that is F is Ck+1 in t` and it must be B(k+1)
`−n−1,n+1(t`) = 0.

If the polynomial not interpolating (t`, p`) is p`−σ,m, then we can write F differently than above, e.g., F(x) = p j−σ,m(x)+∑`
i=`−n−1,i, j Bi,n+1(x)(pi−σ,m(x) − p j−σ,m(x)), with p j−σ,m interpolating (t`, p`), and proceed analogously.

The following proposition characterizes the exact polynomial reproduction property of the interpolating spline F for
any knot configuration.

Proposition 3 (Exact polynomial reproduction degree). The exact degree of polynomial reproduction of a local inter-
polating spline F is max(m, l), where m is the degree of the blended interpolating polynomials and l is the polynomial
reproduction degree of the blending functions.

Proof. If the blending functions reproduce polynomials of degree l ≤ m, then, by Corollary 2, the degree of polyno-
mial reproduction of the local interpolating spline F is trivially m.
If the blending functions reproduce polynomials of degree l > m, then we can always write

F = I( f − A f ) + A f ,
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with A the approximating operator of the data f defined by the blending functions of our scheme, and I a suitable
interpolating operator of the error f − A f . From this formula we can easily see that F inherits the polynomial
reproduction degree of the approximating operator A: in fact if the data f belong to a degree-l polynomial, then
A f = f and therefore F = f . Thus the thesis follows straightforwardly.

To fully characterize the spline function F another remarkable property is concerned with the locality of the inter-
polant. As it is well-known, such property is related to the support width of the related cardinal basis functions, often
referred to as fundamental functions when the knot partition is non-uniform and defined as follows.

Definition 2. We call fundamental functions associated with a class of local interpolating spline functions and a given
set of nodes x = {x j}, the functions ψi, which belong to the considered class, satisfying ψi(x j) = δi, j.

The proposition below allows us to determine the exact support width of the fundamental functions of the interpolating
spline F given in (5), for a specific choice of blending functions and polynomials.

Proposition 4 (Support width). Let p j−σ,m be the degree-m polynomials interpolating m + 1 values at consecutive
nodes and B j,n+1 the blending functions with support width n + 1. If F is interpolatory, then the support width of the
associated fundamental functions ψi is m + n + 1.

Proof. To prove the statement, observe that the number of consecutive degree-m polynomials interpolating (xi, 1) is
m + 1. Then the support width of ψi is given by the union of the supports of the blending functions associated with
the m + 1 polynomials p j−σ,m interpolating the value (xi, 1), that is m + n + 1.

To further characterize the shape of the fundamental functions we introduce the following definition.

Definition 3. The fundamental functions are called centered if they assume the value 1

(i) at the central knot of their support [ti− m+n+1
2
, ti+ m+n+1

2
], in case of even support width;

(ii) at the midpoint of the central knot interval of their support [ti−d m+n+1
2 e, ti+b m+n+1

2 c], in case of odd support width.

Centered fundamental functions can be obtained when the central point of the support of each Bi,n+1 and the central
point of the interval containing the nodes x j associated with the values p j interpolated by pi−σ,m coincide.

Remark 5. It is easy to deduce from Definition 3 that a centered fundamental function has even (respectively odd)
support width in case of even (respectively odd) knot configuration.
Moreover, a centered fundamental function is symmetric with respect to the central knot if the blending functions used
for its construction are also symmetric.

An interesting feature of the proposed framework is that it does not impose limitations on the type of blending func-
tions used, though in this work we have confined ourselves to consider only polynomial or rational blending functions.
In particular, the possibility of using rational blending functions is a key property of the proposed approach, as it al-
lows for considerably reducing the degree of the interpolating polynomial spline. In fact, inside a single knot interval
we can write the interpolating spline as

F(x) =
∑̀

i=`−n

pi−σ,m(x)Bi,n+1(x), x ∈ [t`, t`+1). (7)

From partition of unity (2), B`−n,n+1 = 1 −∑`
i=`−n+1 Bi,n+1, and substituting in (7) we get

F(x) = p`−n−σ,m(x)

1 − ∑̀
i=`−n+1

Bi,n+1(x)

 + ∑̀
i=`−n+1

pi−σ,m(x)Bi,n+1(x) (8)

= p`−n−σ,m(x) +
∑̀

i=`−n+1

Bi,n+1(x)
(
pi−σ,m(x) − p`−n−σ,m(x)

)
= p`−n−σ,m(x) +

∑̀
i=`−n+1

Bi,n+1(x)
`−n+1∑

j=i

(p j−σ,m(x) − p j−1−σ,m(x))

= p`−n−σ,m(x) +
∑̀

i=`−n+1

(
pi−σ,m(x) − pi−1−σ,m(x)

) ∑̀
j=i

B j,n+1(x) = p`−n−σ,m(x) +
∑̀

i=`−n+1

(
pi−σ,m(x) − pi−1−σ,m(x)

)
fi(x),
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where in the last equality we have applied relation (1) to the blending functions B j,n+1.
Since two degree-m interpolating polynomials with consecutive indices pass through a common set of m points, we
can represent their difference as

pr,m(x) − pr−1,m(x) = cr

r+m−1∏
j=r

(x − x j), (9)

with some constant cr, and then

F(x) = p`−n−σ,m(x) +
∑̀

i=`−n+1

ci−σ fi(x)
i−σ+m−1∏

j=i−σ
(x − x j), x ∈ [t`, t`+1). (10)

Looking at formulation (10) it is evident how we can obtain the polynomial spline interpolant F having the minimum
degree provided by the framework. In fact, a rational transition function fi that on the interval [t`, t`+1) has in the
denominator one or more of the factors (x − x j), j = i − σ, ..., i − σ + m − 1, with j , `, ` + 1 or j , ` + 1 in
order to avoid singularities in the denominator, leads to a polynomial interpolating spline F whose final degree is
lower than the sum of the degrees of pi−σ,m and Bi,n+1. Therefore for all i = ` − n + 1, . . . , ` we can conveniently
design the piece of fi restricted to [t`, t`+1) such that its denominator simplifies as much as possible with the factors
(x − x j), j = i − σ, ..., i − σ + m − 1, and does not vanish in such interval.

The results collected in this section establish a general framework for the construction of local interpolating polyno-
mial splines. Based on the discussion above, to characterize the salient properties of the resulting interpolants we use
the acronym DgC k̄Pm̄S w, where g, k̄, m̄,w are integers identifying respectively degree (g), exact smoothness (k̄), exact
degree of polynomial reproduction (m̄) and support width of the fundamental function (w). In our framework we can
consider any choice of m and n such that m + n + 1 = w, with m, n subject to the interpolation constraint m + 1 ≥ n
when w is even, and m + 1 ≥ n + 1 when w is odd. Once m and n have been fixed, the support width is identified and
the exact smoothness and the exact degree of polynomial reproduction are given by Propositions 2 and 3, respectively.
The degree g of the interpolating spline depends on the degree and type of blending functions. In particular, when
using polynomial blending functions, g is equal to the sum of the degrees of the interpolating polynomials and the
blending functions. Oppositely, in case of rational blending functions the degree is obviously greater than or equal to
m̄, but, as emphasized above, it can be conveniently minimized by suitably designing the transition functions.
As we will see in the following section, when using rational transition functions we can obtain

g =
{

max(m, d̄ + 2) for even knot configuration,
max(m, d̄ + 1) for odd knot configuration,

(11)

with d̄ = max j=1,...,n di, j, for an arbitrary i. Thus, comparing the odd and even support width cases, we observe that,
when the knot configuration is even, the spline interpolant can achieve an additional order of continuity with respect
to that of the blending functions (see Proposition 2), but the spline degree can be reduced at most of m− 2; oppositely,
for an odd knot configuration, the spline interpolant has exactly the same continuity as the blending functions, but its
degree can be reduced by one comparing to the even case.

Tables 1, 2 and 3 show the centered, local interpolating splines of support width respectively 4, 6, 8 and lowest possi-
ble degree that our framework can provide for any fixed m (degree of the interpolating polynomial) and k (smoothness
of the blending function). For the listed interpolants the degrees of the numerator and denominator of the pieces of
the transition functions are shown in brackets. Note that if all the pieces are of the same kind, we specify only one
piece; if they are different, we indicate the degrees of the first dn/2e pieces, being the transition function defined an-
tisymmetrically. For instance, to design the interpolating spline D5C3P2S 6 in Table 2 one needs to exploit a rational
transition function which is C3 continuous at the outermost knots and C2 at the internal knots, made of three pieces of
degree 4/1, 3, 4/1 respectively, so as to generate on each interval a spline interpolant of degree 5.
Looking at the tables it is evident that, moving across columns, we can always increase the smoothness of the interpo-
lating spline by increasing its degree, while moving across rows we can increase the polynomial reproduction degree
of the interpolating spline only up to w − 1 since the polynomial reproduction degree is always strictly lower than the

9



PPPPPPPPm, n + 1
k

-1 0 1

1, 3 D4C2P1 (3)
2, 2 D3C1P2 (1) D5C2P2 (3)
3, 1 D3C0P3 (0) - -

Table 1: Centered, local interpolating splines of support width 4 and lowest degree, given m and k, i.e., the degree of the interpolating polynomials
and the smoothness of the blending functions, respectively.

PPPPPPPPm, n + 1
k

-1 0 1 2

2, 4 D5C3P2 (4/1, 3)
3, 3 D4C2P3 (2/1) D6C3P3 (4/1)
4, 2 D4C1P4 (1/2) D5C2P4 (3/2) D7C3P4 (5/2)
5, 1 D5C0P5 (0) - - -

Table 2: Centered, local interpolating splines of support width 6 and lowest degree, given m and k, i.e., the degree of the interpolating polynomials
and the smoothness of the blending functions, respectively.

PPPPPPPPm, n + 1
k

-1 0 1 2 3

3, 5 D6C4P3 (5/2, 4/1)
4, 4 D5C3P4 (3/2) D7C4P4 (5/2)
5, 3 D5C2P5 (2/3) D6C3P5 (4/3) D7C4P5 (5/3)
6, 2 D6C1P6 (1/4) D6C2P6 (3/4) D7C3P6 (5/4) D8C4P6 (7/4)
7, 1 D7C0P7 (0) - - - -

Table 3: Centered, local interpolating splines of support width 8 and lowest degree, given m and k, i.e., the degree of the interpolating polynomials
and the smoothness of the blending functions, respectively.

support width (i.e., m < w). Moreover, when m = w − 1 (maximal reproduction degree), it can be easily noticed that
the smoothness is necessarily C0 if w is even (while only C−1 if w is odd).
We observe that, when g = m the spline degree is trivially minimal, where, also in the following, with minimum degree
we mean that there does not exist any local interpolating spline with same smoothness, polynomial reproduction and
support width, but lower degree.
We also remark that the interpolating spline D4C2P1S 4 in Table 1 is obtained by the transition functions computed in
Section 2.2, while the interpolating spline D6C3P3S 6 in Table 2 by those in Section 2.3.

To conclude this section, we present an efficient evaluation algorithm for the spline interpolant that fits into the
proposed framework. In particular, we observe that, from a computational point of view, expression (10) for the
local interpolating spline F on the interval [t`, t`+1), coincides with its most convenient form. In fact, if we define the
interpolating polynomials pi−σ,m in Newton form and, in particular, we represent the interpolating polynomials with
consecutive indices appearing in (8) in the same Newton basis, their difference can be written as in (9) with

cr = [pr, . . . , pr+m−1, pr+m] − [pr, . . . , pr+m−1, pr−1]. (12)

The evaluation procedure of F thus consists in determining the divided differences of order m for all points (x j, p j)
in order to be used for representing the interpolating polynomials pi−σ,m and their differences.
If the rational transition functions are designed to minimize the degree of F, as previously discussed, we can simplify
their denominators with the factors (x − x j), j = i − σ, . . . , i − σ + m − 1, and j , `, ` + 1 in the even case, while
j , ` + 1 in the odd case, thus obtaining

10



F(x) = p`−n−σ,m(x) +
∑̀

i=`−n+1

ci−σ Ki(x) q(x|ai,`−i+1
0 , . . . , ai,`−i+1

di,`−i+1
), x ∈ [t`, t`+1), (13)

where Ki(x) can be of the following types:

Ki(x) =




(x − x`)
(x − x`)(x − x`+1)
(x − x`+1)

for even knot configuration,

(x − x`+1) for odd knot configuration.

(14)

From the expression above it can also be easily observed that the lowest possible degree for F is as in (11).

4. Revisiting known classes of local interpolating splines and designing new ones

In this section we show that the presented interpolation framework includes known local interpolating splines and
allows for generalizing them to a complete family with arbitrary support width. At the same time it also provides
a constructive method for designing new local interpolating splines of low, and sometimes minimum, degree given
polynomial reproduction and smoothness.
In the following we limit ourselves to consider local interpolating splines of the form (7) where the integer σ is
always set to the central value of its range of variability [−1,m− n], denoted by σc := bm−n−1

2 c. Both for even and odd
knot partitions, this choice guarantees to obtain centered fundamental functions, which, as previously discussed, is a
necessary symmetry condition in case of symmetric knot configurations.
Using the acronym DgCkPmS w introduced in Section 3, where k and m now stand for the exact smoothness and the
exact polynomial reproduction degree, in Table 4 we classify families of centered, local interpolating splines of fixed
support. In particular, the first column of Table 4 contains three families of known local interpolating splines of
support S 2k, with k ≥ 2, that can be recovered by our framework: the IMOMS splines [2], the Catmull-Rom splines
[3] and the Z-splines [1, 17]. In particular, IMOMS splines, originally proposed only in the uniform case for image
processing purposes, are here generalized to the non-uniform setting by degree-(2k−1) interpolating polynomials and
piecewise constant blending functions of support width 1; Catmull-Rom splines are obtained by blending interpolating
polynomials of degree k with degree-(k− 1) B-splines; finally, Z-splines are obtained through polynomial interpolants
of degree 2k − 2 and rational blending functions of support width 2, generated by the transition functions

fi(x) =



0, x < ti,

q(x|ai,1
0 , ..., a

i,1
2k−3)

k−2∏
j=1

Li− j(x)
k−2∏
j=1

Ri+ j(x)

, ti ≤ x < ti+1,

1, x ≥ ti+1,

with q a degree-(2k − 3) polynomial on the interval [ti, ti+1), satisfying the conditions for Ck−2 smoothness with k ≥ 2.
Among these three families of splines, that share the same support and degree, IMOMS have the highest polynomial
reproduction degree, even if their smoothness is only C0. Then, after IMOMS, Z-splines have the highest polynomial
reproduction degree (which is thus the sub-optimal for such support), at the same smoothness of Catmull-Rom splines.
Moreover, as regards Z-splines, we observe that the related rational blending functions provide splines of minimum
degree, which trivially derives from the uniqueness property of the Z-spline basis [1].

In the remainder of this section, we show how the proposed framework can be exploited to construct new classes
of non-uniform local interpolating splines. As discussed in the previous section, rational blending functions allow for
obtaining spline interpolants of lower degree, with respect to the polynomial case. Thus, it is interesting to investigate
whether there exists a family of interpolants with the same smoothness, polynomial reproduction and support width of
Catmull-Rom splines, but lower degree (and desirably the lowest possible). Indeed such a family can be constructed
through our framework and is identified by Dk+1Ck−1PkS 2k for any k ≥ 2, as indicated in the last line of the first
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S 2k, k ≥ 2 S 2k−1, k ≥ 2 S w, w ≥ 3
Catmull-Rom family D2k−1Ck−1Pk

Z-splines family D2k−1Ck−1P2k−2 D2k−2Ck−2P2k−3 Dw−1Cb
w
2 c−1Pw−2

I-MOMS family D2k−1C0P2k−1 D2k−2C−1P2k−2 Dw−1C−1Pw−1

Jenkins family Dk+1Ck−1Pk DkCk−2Pk−1 Db
w
2 c+1Cb

w
2 c−1Pb

w
2 c

Table 4: Classification and characterization of families of centered, local interpolating splines of fixed support.

column of Table 4. The blending functions at the basis of this new class are rational and have support width k.
The associated transition functions are (k − 1)-piece rational polynomials of degree (k − 1)/(k − 2), joining Ck−2

continuously. We remark that this choice of blending functions allows to obtain splines of minimum degree: in fact
an easy computation shows that a spline with the same properties, but lower degree, does not even provide enough
degrees of freedom to impose the interpolation constraints and the desired smoothness. In the table we refer to this
new class as the Jenkins family because the degree-4 member of this class, the local interpolating spline D4C2P3S 6,
represents a generalization to an arbitrary knot partition of the Jenkins’s uniform interpolant [11], whose construction
is illustrated in the following.

D4C2P3S6 Jenkins local interpolating spline - According to the acronym used, we seek a quartic, C2 local inter-
polating spline of support width 6, which reproduces polynomials up to degree 3, defined over an even knot partition
ti = xi ∀i. Since these interpolating splines must reproduce cubic polynomials, we use interpolating polynomials of
degree m = 3 and since the support width must be w = 6, we deduce that the support of the blending functions has to
be n + 1 = 3 (see Figure 4). Over each knot interval [ti, ti+1), the interpolating spline F is thus of the form

F(x) = pi−2,3(x)Bi−2,3(x) + pi−1,3(x)Bi−1,3(x) + pi,3(x)Bi,3(x)
= pi−2,3(x) + fi−1(x)

(
pi−1,3(x) − pi−2,3(x)

)
+ fi(x)

(
pi,3(x) − pi−1,3(x)

)
.

p
i−2

p
i−1 p

i

p
i+1 p

i+2 p
i+3

t
i−2

t
i−1

t
i

t
i+1

t
i+2

t
i+3

B
i−2,3

B
i−1,3

B
i,3

p
i−2,3

p
i−1,3 p

i,3

Figure 4: Illustration of the given points (xi, pi) and their interpolating polynomials pi,3 with the associated compactly supported blending functions
Bi,3.

Since pi−2,3 and pi−1,3 both interpolate (x j, p j) for j = i − 1, i, i + 1, their difference is of the form

pi−1,3(x) − pi−2,3(x) = ci−1(x − ti−1)(x − ti)(x − ti+1). (15)

Analogously, since pi−1,3 and pi,3 both interpolate (x j, p j) for j = i, i + 1, i + 2, their difference has the expression

pi,3(x) − pi−1,3(x) = ci(x − ti)(x − ti+1)(x − ti+2). (16)

In equations (15) and (16) ci−1 and ci are given by (12). Then, we define two-piece, C1 rational transition functions
of degree 2/1 where the linear denominator is the only non-vanishing term among those in (15) and (16), so that the
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final interpolant F is a piecewise quartic. More precisely,

fi−1(x) =



0, x < ti−1,

q(x|ai−1,1
0 , ai−1,1

1 , ai−1,1
2 )

Ri(x) , x ∈ [ti−1, ti),

q(x|ai−1,2
0 , ai−1,2

1 , ai−1,2
2 )

Li−1(x) , x ∈ [ti, ti+1),
1, x ≥ ti+1,

and fi(x) =



0, x < ti,
q(x|ai,1

0 , a
i,1
1 , a

i,1
2 )

Ri+1(x) , x ∈ [ti, ti+1),

q(x|ai,2
0 , a

i,2
1 , a

i,2
2 )

Li(x) , x ∈ [ti+1, ti+2),
1, x ≥ ti+2.

We can now compute the coefficients for fi by solving the 6×6 linear system obtained by imposing C1 smoothness
at the knots, which, for distinct knots, has the unique solution

ai,1
0 = ai,1

1 = 0, ai,1
2 =

1
3

ti+2 + ti+1 − 2ti
ti+2 − ti

; ai,2
0 = ai,1

2 , ai,2
1 =

1
2

ti+2 + ti+1 − 2ti
ti+1 − ti

, ai,2
2 =

ti+2 − ti
ti+1 − ti

.

Shifting the knots indices by −1, the explicit expression of fi−1 can be obtained straightforwardly. Thus, by equation
(1) we can get the expressions of all the non-vanishing blending functions on [ti, ti+1)

Bi−2,3(x) = 1 − fi−1(x) =
2ti+1 − ti − ti−1

3(ti+1 − ti−1)
Ri(x)2

Li−1(x)
,

Bi−1,3(x) = fi−1(x) − fi(x) = 1 − Bi−2,3(x) − Bi,3(x),

Bi,3(x) = fi(x) =
ti+2 + ti+1 − 2ti

3(ti+2 − ti)
Li(x)2

Ri+1(x)
,

and the explicit polynomial form of F turns out to be

F(x) = pi−2,3(x) + q(x|ai−1,2
0 , ai−1,2

1 , ai−1,2
2 )(ti − ti−1) ([pi−1, pi, pi+1, pi+2] − [pi−1, pi, pi+1, pi−2]) (x − ti)(x − ti+1)

− q(x|ai,1
0 , a

i,1
1 , a

i,1
2 )(ti+2 − ti+1) ([pi, pi+1, pi+2, pi+3] − [pi, pi+1, pi+2, pi−1]) (x − ti)(x − ti+1), x ∈ [ti, ti+1)

with

pi−2,3(x) = [pi−2]+ [pi−2, pi−1](x− ti−2)+ [pi−2, pi−1, pi](x− ti−2)(x− ti−1)+ [pi−2, pi−1, pi, pi+1](x− ti−2)(x− ti−1)(x− ti).

Many other examples of known local interpolating splines (and the new proposals of their non-uniform versions) can
be recovered by our framework, such as the German’s interpolant D4C1P4S 6 [8] and Han’s interpolant D4C2P1S 4

[10]. Note that the latter also appears in Table 1 and has minimum degree.
To the best of our knowledge, the literature also suffers from a lack of proposals of families of non-uniform local
interpolating splines of odd support. Thanks to our very general framework, we can easily generalize the Z-splines,
IMOMS and Jenkins families such that their support width is S 2k−1 for any k ≥ 2, and characterize them as summa-
rized in the second column of Table 4. For the sake of completeness, we show in the third column of Table 4 the
complete characterization of such families for an arbitrary support width w ≥ 3.
We conclude this section by showing the details of the construction of the degree-5 member in the Jenkins family,
namely the local interpolating spline D5C3P4S 8, which to the authors’ knowledge was never discussed before and
presents interesting properties for modeling purposes.

D5C3P4S8 Jenkins local interpolating spline - In order to reproduce polynomials up to degree 4, the construction
combines quartic polynomials with at least C2-continuous blending functions of support width n + 1 = 4. Inside each
knot interval [ti, ti+1) the interpolant is represented as

F(x) = pi−3,4(x)Bi−3,3(x) + pi−2,4(x)Bi−2,3(x) + pi−1,4(x)Bi−1,3(x) + pi,4(x)Bi,3(x)
= pi−3,4(x) + fi−2(x)

(
pi−2,4(x) − pi−3,4(x)

)
+ fi−1(x)

(
pi−1,4(x) − pi−2,4(x)

)
+ fi(x)

(
pi,4(x) − pi−1,4(x)

)
x ∈ [ti, ti+1).

(17)
Since pi− j,4 and pi− j−1,4, for j = 0, 1, 2, interpolate the common sequence of data (xi− j+h, pi− j+h), h = 0, . . . , 3, their

difference can be represented by

pi− j,4(x) − pi− j−1,4(x) = ci− j(x − ti− j)(x − ti− j+1)(x − ti− j+2)(x − ti− j+3), (18)
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with ci− j given by (12). Now, to ensure that the sought spline interpolant has minimum degree and C3 smoothness
we need to design a set of transition functions, each of which is supported on three intervals and at least C2. Thus we
can conveniently exploit a rational cubic transition function supported on three intervals, that provides 12 degrees of
freedom. On each interval, the denominator is computed as the product of the two factors in (18) that do not vanish at
ti and ti+1, so as to get a quintic interpolant. Based on this reasoning, the function fi has the form

fi(x) =



0 x < ti,

q(x|ai,1
0 , . . . , a

i,1
3 )

Ri+1(x)Ri+2(x)
x ∈ [ti, ti+1),

q(x|ai,2
0 , . . . , a

i,2
3 )

Li(x)Ri+2(x)
x ∈ [ti+1, ti+2),

q(x|ai,3
0 , . . . , a

i,3
3 )

Li(x)Li+1(x)
x ∈ [ti+2, ti+3),

1 x ≥ ti+3.

Moreover, if we now require that the pieces join up to the second derivative, we get a 12 × 12 linear system with
unique solution

ai,1
k = 0 k = 0, 1, 2, ai,1

3 = ai,2
0 =

1
8

βi

(ti+3 − ti+2)2(ti+2 − ti)

(
1 + 9

(ti+2 − ti)(ti+3 − ti+1)
αi

)
,

ai,2
1 =

1
6

βi

(ti+3 − ti+2)2(ti+1 − ti)

(
1 + 9

(ti+2 − ti)(ti+3 − ti+1)
αi

)
, ai,2

2 =
(ti+2 − ti)βi

(ti+1 − ti)(ti+3 − ti+2)αi
,

ai,2
3 = ai,3

0 =
1
4

γi

(ti+3 − ti+1)(ti+1 − ti)
+

3
4

(ti+2 − ti)βi

(ti+1 − ti)(ti+3 − ti+1)αi
,

ai,3
1 =

1
3

γi

(ti+1 − ti)(ti+2 − ti+1)
, ai,3

2 =
1
3

δi

(ti+1 − ti)(ti+2 − ti+1)
, ai,3

3 =
(ti+3 − ti)(ti+3 − ti+1)
(ti+1 − ti)(ti+2 − ti+1)

where

αi = 4(titi+2 + ti+1ti+3) + 5(ti+1ti+2 + titi+3) − 9(ti+2ti+3 + titi+1),
βi = (ti+1 + ti+3 − 2ti)(ti+1ti+3 + t2

i+2) + (t2
i+1 + t2

i+3 − ti+1ti+3)(3ti − 4ti+2) + 2titi+2(ti+1 + ti+3) − 3titi+1ti+3,
γi = (ti+2 − ti)(ti+3 + 2ti+2 − 3ti+1) + (ti+3 − ti+2)(ti+2 − ti+1),
δi = (2ti+3 + ti+2 − 3ti+1)(ti+3 − ti) − (ti+3 − ti+1)(ti+3 − ti+2).

5. Application examples

This section provides examples of 2D parametric curves generated through some of the discussed non-uniform
spline interpolants with knots given by the centripetal parametrization. To select such examples, we have chosen
curves which represent a good trade-off between low degree, high smoothness and approximation order. In Figures 5
and 6 top-left we show the local interpolating splines D3C1P2S 4, D4C2P3S 6, D5C2P4S 6, D5C3P4S 8 and D6C3P5S 8

passing through a given set of highly non uniformly distributed points. In the other five pictures of Figures 5 and 6
we illustrate the curvature combs of these curves, using the same color for the interpolated data as ready-reference
to the first snapshot. As it is well-known, the parametrization highly influences the overall quality of the interpolant.
In particular, if non-uniform and suitably chosen, it may help avoiding or minimizing the occurrence of interpolation
artifacts, that are clearly visible in the uniform setting. So it is easy to understand why all the examples provide a
good-looking interpolant, despite the different smoothness and approximation orders, that can be freely fixed based
on the requirement of a specific application.

6. Conclusions

This work presents a general framework for the construction and characterization of local interpolating splines on
non-uniform knot partitions with fixed continuity and polynomial reproduction degree. To this aim, we have defined
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the sought spline functions as a combination of degree-m polynomial interpolants with arbitrary blending functions of
compact support width n+1 and smoothness Ck, generating local fundamental bases of compact support w = m+n+1.
We have also provided a general and simple method for designing either polynomial or rational blending functions
of any required support width and smoothness to be used in such construction. One of the most remarkable features
of the proposed approach is the possibility of exploiting rational blending functions, which provides a significant
advantage with respect to using polynomial ones: in fact, in the former setting, the spline has considerably lower and
sometimes minimum degree.
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Figure 5: The local interpolating splines D3C1P2S 4, D4C2P3S 6, D5C2P4S 6, D5C3P4S 8 and D6C3P5S 8 passing through the same set of highly
non uniformly distributed points (in blue, green, red, black and magenta respectively), and the corresponding curvature combs.
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Figure 6: The local interpolating splines D3C1P2S 4, D4C2P3S 6, D5C2P4S 6, D5C3P4S 8 and D6C3P5S 8 passing through the same set of highly
non uniformly distributed points (in blue, green, red, black and magenta respectively), and the corresponding curvature combs.
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