Forecasting Volatility in Asian and European Stock Markets with Asymmetric GARCH Models

by Gianfranco Forte and Matteo Manera*

n. 3/06

Milan, January 2006

INDEX

ABSTRACT II

1. INTRODUCTION 1
2. ASYMMETRIC GARCH MODELS: VS-GARCH, GJR-GARCH AND Q-GARCH 2
2.1 The GJR-GARCH model 3
2.2 The VS-GARCH model 4
2.3 The Q-GARCH model 5
2.4 Forecast errors 6
3. FORECASTING EVALUATION METHODS FOR ASYMMETRIC GARCH MODELS 8
3.1 Classical evaluation criteria 8
3.2 Forecast combination 11
4. EMPIRICAL RESULTS 12
4.1 Results from classical evaluation criteria 12
4.2 Results from forecast combination 14
5. CONCLUSIONS 16
References 17
TABLES 20

Abstract

This paper investigates the forecasting performance of three popular variants of asymmetric GARCH models, namely VS-GARCH, GJR-GARCH and Q-GARCH, with the symmetric $\operatorname{GARCH}(1,1)$ model as the benchmark. The application involves three Asian and ten European stock price indexes. Forecasts produced by each asymmetric GARCH model and each index are evaluated using a common set of classical criteria, as well as forecast combination techniques with constant and non-constant weights. With respect to the standard GARCH specification, the asymmetric models generally lead to better forecasts in terms of both smaller forecast errors and lower biases. In-sample forecast combination regressions are better than those from single Mincer-Zarnowitz regressions. The out-of-sample performance of combining forecasts is less satisfactory, irrespective of the type of weights adopted.

*Gianfranco Forte, Newfin Research Center and IEMIF Bocconi University, and SDA- Bocconi school of management, Milan-Italy; Matteo Manera, Department of Statistics, University of Milan-Bicocca, Italy and Fondazione Eni Enrico Mattei, Milan, Italy.

The authors wish to thank Felix Chan, Umberto Cherubini, Toshiki Honda, Michael McAleer, Ryozo Miura, and Kazuhiko Ohashi for their many insightful suggestions. The second author is most grateful for the hospitality of the Graduate School of International Corporate Strategy at Hitotsubashi University, Tokyo. Most computations have been based on modifications of the Gauss programs which complement the book by Franses and van Dijk (2000) and can be downloaded from the following URL: http://www.few.eur.nl/few/people/franses.

1.
 INTRODUCTION

Asymmetric GARCH models (see Hentschel, 1995, for a survey) extend the seminal contributions by Engle (1982) and Bollerslev (1986) to incorporate the asymmetric impacts of shocks or news of equal magnitude but opposite sign on the conditional variance of asset returns. In this paper we investigate the forecasting performances of three popular variants of asymmetric GARCH specifications, namely Volatility Switching (VS-GARCH), GJR-GARCH and Quadratic (Q-GARCH), using the symmetric GARCH(1,1) as the benchmark. The application involves three Asian and ten European stock market indexes.

Following Poon and Granger (2003), it is possible to divide the current literature on forecasting volatility in financial markets in two main veins. The first one refers to models based on historical prices (time series approach), whereas the second comprises those techniques aimed at forecasting volatility from actual option prices via the link with the Black-Sholes's model (option implied standard deviation approach).

This paper belongs to the time series approach, which starts with the work by Taylor (1987) on forecasting the future volatility of the DM/\$ exchange rate series. Dimson and Marsh (1990) investigate the forecasting performance of some simple models applied to the U.K. stock market, such as Random Walk (RW), Historical Average, Moving Average, Exponential Smoothing and linear regressions. Akgiray (1989) is the first who uses the GARCH model to forecast volatility, showing that the GARCH $(1,1)$ outperforms some of the techniques discussed in Taylor (1987). On the contrary, Cao and Tsay (1992) point out that the Threshold Autoregressive model produces better forecasts than GARCH, Exponential GARCH e ARMA models on the U.S.A. stock market. The forecasting behaviour of the Stochastic Volatility (SV) model is even more controversial. On the one hand, Heynen (1995) and Yu (2002) confirm the validity of the SV model when applied to stock market indexes, on the other hand Dunis, Laws and Chauvin (2001) document some difficulties for this model to forecast exchange rate volatility.

Tse and Tung (1992) strongly prefer the Exponentially Weighted Moving Average model to the GARCH $(1,1)$ for the Singapore stock market. This is mainly attributable to the non-stationary variances of Singapore stock market indexes, while the standard GARCH model imposes stationarity. Brailsford and $\operatorname{Faff}(1996)$ select the $\operatorname{GJR}-\operatorname{GARCH}(1,1)$ as the best model for the Australian stock index, although they point out that the final choice is not independent of the adopted evaluation criteria. On the same Australian stock index, Walsh and Tsou (1998) reject the GARCH model, whereas Brooks (1998) is not able to select the most appropriate model for the Dow Jones composite. Finally, Franses and van Dijk (1996) compare RW, GARCH, QGARCH and GJR-GARCH specifications and show that Q-GARCH is the most successful in forecasting the volatility of stock price indexes for Italy, Spain, Germany and Sweden.

Such different and often contrasting results are mainly due to the lack of any common procedure to produce and evaluate competing sets of forecasts, especially in terms of number of time series subject to scrutiny, frequency of the data, forecasting horizons and loss functions.

With respect to the existing literature, this paper contains several distinguishing elements. First, a number of relevant Asian and European stock markets is analyzed. Second, samples and data frequencies are kept homogeneous throughout the empirical investigation. Third, forecasts produced by different models are compared using a common set of classical criteria and more recent forecast combination techniques with constant and non-constant weights.

The structure of the paper is as follows. Section 2 presents the main characteristics of the asymmetric GARCH models used in the empirical analysis. Section 3 is dedicated to a discussion of the criteria adopted to compare different sets of forecasts. In Section 4 the data set is briefly described, and the forecasting performance of each asymmetric GARCH model for each stock market index is analyzed. Section 5 contains some concluding comments.

2.
 ASYMMETRIC GARCH MODELS: VS-GARCH, GJR-GARCH AND QGARCH

Consider the following specification:

$$
\begin{gathered}
y_{t}=E\left(y_{t} \mid \Omega_{t-1}\right)+\varepsilon_{t} \\
\varepsilon_{t}=\sqrt{h_{t}} \eta_{t},
\end{gathered}
$$

where y_{t} indicates the returns on a single stock price index at time t, ε_{t} is the error term (shock) relative to returns y_{t}, η_{t} is independently and identically distributed with zero mean and unit variance, Ω_{t-1} is the past information available up to and including $t-1, h_{t}$ is the conditional variance (or volatility) of the returns, defined as $h_{t} \equiv E\left(\varepsilon_{t}^{2} \mid \Omega_{t-1}\right)$ for some non-negative function $h_{t}=h_{t}\left(F_{t-1}\right)$. The basic GARCH $(1,1)$ model proposed by Bollerslev (1986) specifies the conditional volatility of returns h_{t} as a function of its one-period-lagged own values and squared shocks to returns, that is:

$$
h_{t}=\alpha_{0}+\alpha_{1} \varepsilon_{t-1}^{2}+\beta_{1} h_{t-1} .
$$

2.1
 The GJR-GARCH model

This model has been introduced by Glosten, Jagannathan and Runkle (1993). It is based on a modification of the conditional variance equation of the basic $\operatorname{GARCH}(1,1)$ specification, which assumes that the parameter of ε_{t-1}^{2} depends on the sign of the shock:

$$
\begin{equation*}
h_{t}=\alpha_{0}+\alpha_{1} \varepsilon_{t-1}^{2}\left(1-\mathrm{I}\left[\varepsilon_{t-1}>0\right]\right)+\gamma_{1} \varepsilon_{t-1}^{2} \mathrm{I}\left[\varepsilon_{t-1}>0\right]+\beta_{1} h_{t-1}, \tag{1}
\end{equation*}
$$

where $\mathrm{I}[\cdot]$ is an indicator function. The non-negativity conditions for the conditional variance are $\alpha_{0}>0,\left(\alpha_{1}+\gamma_{1}\right) / 2 \geq 0$ and $\beta_{1}>0$, whereas the process is covariance-stationary if $\left(\alpha_{1}+\gamma_{1}\right) / 2+\beta_{1}<1$. If this condition is satisfied, the unconditional variance is $\sigma^{2}=\alpha_{0} /\left(1-\left(\alpha_{1}+\gamma_{1}\right) / 2-\beta_{1}\right)$.
From equation (1) it is easy to notice that this model allows the coefficients of ε_{t-1}^{2} to take different values corresponding to positive or negative shocks. Using equation (1), and assuming that the distribution of η_{t} is symmetric around zero, it is possible to obtain the 2 -step ahead forecast for the conditional variance as:

$$
\begin{equation*}
\hat{h}_{t+2 \mid t}=\mathrm{E}\left[\alpha_{0}+\alpha_{1} \varepsilon_{t+1}^{2}\left(1-\mathrm{I}\left[\varepsilon_{t+1}>0\right]\right)+\gamma_{1} \varepsilon_{t+1}^{2} \mathrm{I}\left[\varepsilon_{t+1}>0\right]+\beta_{1} h_{t+1} \mid \Omega_{t}\right] \tag{2}
\end{equation*}
$$

Equation (2) can be simplified by assuming that $\mathrm{E}\left[\mathrm{I}\left[\varepsilon_{t+1}>0\right]\right]=P\left(\varepsilon_{t+1}>0\right)=0.5$ and $\mathrm{E}\left[\varepsilon_{t+1}^{2} \mid \Omega_{t}\right]=h_{t+1}$, since ε_{t+1}^{2} and the indicator function $\mathrm{I}\left[\varepsilon_{t+1}>0\right]$ are uncorrelated:

$$
\hat{h}_{t+2 \mid t}=\alpha_{0}+\left(\left(\alpha_{1}+\gamma_{1}\right) / 2+\beta_{1}\right) h_{t+1} .
$$

s-step ahead forecasts can be computed recursively as:

$$
\begin{equation*}
\hat{h}_{t+s \mid t}=\alpha_{0}+\left(\left(\alpha_{1}+\gamma_{1}\right) / 2+\beta_{1}\right) \hat{h}_{t+s-1 \mid t}, \tag{3a}
\end{equation*}
$$

or, without using previous forecasts:

$$
\begin{equation*}
\hat{h}_{t+s \mid t}=\alpha_{0} \sum_{i=0}^{s-1}\left(\left(\alpha_{1}+\gamma_{1}\right) / 2+\beta_{1}\right)^{i}+\left(\left(\alpha_{1}+\gamma_{1}\right) / 2+\beta_{1}\right)^{s-1} h_{t+1} . \tag{3b}
\end{equation*}
$$

2.2
 The VS-GARCH model

This model has been proposed by Fornari and Mele $(1996,1997)$ as a generalization of the GJR-GARCH (1), where typically $\gamma_{1}<\alpha_{1}$, that is shocks of the same magnitude but opposite sign have a different impact on the next-period volatility.

The VS-GARCH model originates from the intuition in Rabemananjara and Zakoïan (1993), according to which the asymmetric behaviour of h_{t} depends not only on the sign, but also on the dimension of the shock.

Fornari and Mele (1996) refer to an asymmetric behaviour of the volatility which is invertible as the dimension of the shocks varies. If shocks are small (large), positive (negative) shocks have higher impact on the volatility.

The equation for the conditional variance of a $\operatorname{VS}-\operatorname{GARCH}(1,1)$ is:

$$
\begin{equation*}
h_{t}=\left(\alpha_{0}+\alpha_{1} \varepsilon_{t-1}^{2}+\beta_{1} h_{t-1}\right)\left(1-\mathrm{I}\left[\varepsilon_{t-1}>0\right]\right)+\left(\phi_{0}+\phi_{1} \varepsilon_{t-1}^{2}+\gamma_{1} h_{t-1}\right) \mathrm{I}\left[\varepsilon_{t-1}>0\right] . \tag{4}
\end{equation*}
$$

The unconditional variance of this model is the same as in the $\operatorname{GARCH}(1,1)$, with the only difference that now the single coefficients are substituted with the arithmetic mean of the coefficients of the two regimes:

$$
\sigma^{2}=\left(\alpha_{0}+\phi_{0}\right) /\left[1-\left(\alpha_{1}+\phi_{1}\right) / 2-\left(\beta_{1}+\gamma_{1}\right) / 2\right] .
$$

Fornari and Mele (1997) show that the kurtosis for this model is larger than that of a simple $\operatorname{GARCH}(1,1)$ with parameters equal to the mean between the parameters in the two regimes of the VS-GARCH.

Using expression (4), we can calculate 2-step-ahead forecasts as:

$$
\begin{aligned}
\hat{h}_{t+2 \mid t}= & \mathrm{E}\left[\left(\alpha_{0}+\alpha_{1} \varepsilon_{t+1}^{2}+\beta_{1} h_{t+1} \mid \Omega_{t}\right)\left(1-\mathrm{I}\left[\varepsilon_{t+1}>0\right]\right)+\right. \\
& \left(\phi_{0}+\phi_{1} \varepsilon_{t+1}^{2}+\gamma_{1} h_{t+1} \mid \Omega_{t}\right) \mathrm{I}\left[\varepsilon_{t+1}>0\right] .
\end{aligned}
$$

Recalling that ε_{t+1}^{2} and the indicator function $\mathrm{I}\left[\varepsilon_{t+1}>0\right]$ are uncorrelated, that $\mathrm{E}\left[\mathrm{I}\left[\varepsilon_{t+1}>0\right]\right]=P\left(\varepsilon_{t+1}>0\right)=0.5$ and that $\mathrm{E}\left[\varepsilon_{t+1}^{2} \mid \Omega_{t}\right]=h_{t+1}$, the following simplification applies:

$$
\begin{equation*}
\hat{h}_{t+s \mid t}=\alpha_{0}+\left(\left(\alpha_{1}+\phi_{1}\right) / 2+\left(\beta_{1}+\gamma_{1}\right) / 2\right) \hat{h}_{t+s-1 \mid t}, \tag{5a}
\end{equation*}
$$

and the general recursive expression can be obtained:

$$
\begin{equation*}
\hat{h}_{t+s \mid t}=\sum_{i=0}^{s-1} \alpha_{0}+\left(\left(\alpha_{1}+\phi_{1}\right) / 2+\left(\beta_{1}+\gamma_{1}\right) / 2\right)^{i}+\alpha_{0}+\left(\left(\alpha_{1}+\phi_{1}\right) / 2+\left(\beta_{1}+\gamma_{1}\right) / 2\right) h_{t+1}, \tag{5b}
\end{equation*}
$$

which allows us to calculate s-period-ahead forecasts based on the knowledge of h_{t+1} only.

2.3
 The Q-GARCH model

The Q-GARCH model is originally due to Sentana (1995). The equation for the conditional variance is:

$$
\begin{equation*}
h_{t}=\alpha_{0}+\gamma_{1} \varepsilon_{t-1}+\alpha_{1} \varepsilon_{t-1}^{2}+\beta_{1} h_{t-1} . \tag{6}
\end{equation*}
$$

With respect to the simpler $\operatorname{GARCH}(1,1)$ model, only the term $\gamma_{1} \varepsilon_{t-1}$ is added, which allows for the asymmetric impact of positive and negative shocks. Equation (6) can be alternatively rewritten as:

$$
h_{t}=\alpha_{0}+\left(\frac{\gamma_{1}}{\varepsilon_{t-1}}+\alpha_{1}\right) \varepsilon_{t-1}^{2}+\beta_{1} h_{t-1} .
$$

The optimal s-step-ahead variance forecast for a Q-GARCH is then:

$$
\begin{equation*}
\hat{h}_{t+s \mid t}=\alpha_{0}+\left(\frac{\gamma_{1}}{\hat{\varepsilon}_{t+s-1 \mid t}^{2}}+\alpha_{1}\right) \hat{\varepsilon}_{t+s-1 \mid t}^{2}+\beta_{1} \hat{h}_{t+s-1 \mid t} . \tag{7}
\end{equation*}
$$

If γ_{1} is negative, the impact of negative shocks is larger than the impact of positive shocks. Moreover, the asymmetry of the impact varies as the dimension of the shock varies, in particular the asymmetric impact decreases as the dimension of the shock increases.

The autocorrelation function and the condition for weak stationarity are identical to the $\operatorname{GARCH}(1,1)$ model. Since the index of kurtosis for ε_{t} is a positive function of the module of γ_{1}, the Q-GARCH model is able to rationalize excess kurtosis in asset returns.

2.4

Forecast errors

In order to evaluate the performance of the s-step-ahead forecast of the conditional variance, it is possible to define the associated forecast error as: ${ }^{1}$

$$
\begin{equation*}
v_{t+s \mid t} \equiv h_{t+s}-\hat{h}_{t+s \mid t} . \tag{8}
\end{equation*}
$$

For the $\operatorname{GARCH}(1,1)$ benchmark model, the optimal s-step-ahead forecast of the conditional variance can be calculated recursively from:

$$
\begin{equation*}
\hat{h}_{t+s \mid t}=\alpha_{0}+\alpha_{1} \hat{\varepsilon}_{t+s-1 \mid t}^{2}+\beta \hat{h}_{t+s-1 \mid t}, \tag{9}
\end{equation*}
$$

where, by definition, $\hat{\varepsilon}_{t+i \text { it }}^{2}=\hat{h}_{t+i t t}^{2}$ for $i>0$, and, for $i \leq 0, \hat{\varepsilon}_{t+i l t}^{2}=\varepsilon_{t+i}^{2}, \hat{h}_{t+i l t}=h_{t+i}$. Recursive substitution in expression (9) yields:

$$
\begin{equation*}
\hat{h}_{t+s t}=\alpha_{0} \sum_{i=0}^{s-1}\left(\alpha_{1}+\beta_{1}\right)^{i}+\left(\alpha_{1}+\beta_{1}\right)^{s-1} h_{t+1} . \tag{10}
\end{equation*}
$$

It is important to emphasize that h_{t+1} can be directly computed from observations y_{t}, y_{t-1}, \ldots, given the knowledge of parameters α_{0}, α_{1} and β_{1}.

Using definition (8) and the expressions for the optimal s-step-ahead forecast of the conditional variance (9) or (10), the forecast error for the $\operatorname{GARCH}(1,1)$ model is:

$$
\begin{equation*}
v_{t+s \mid t}=\alpha_{1} v_{t+s-1}+\left(\alpha_{1}+\beta_{1}\right) v_{t+s-1 \mid t}, \tag{11}
\end{equation*}
$$

since $\hat{\varepsilon}_{t+i \mid t}^{2}=\hat{h}_{t+i \mid t}$ for $i>0$ and we define $v_{t} \equiv \varepsilon_{t}^{2}-h_{t}$. If we substitute recursively in equation (11) we obtain:

$$
v_{t+s \mid t}=\alpha_{1} \sum_{i=1}^{s-1}\left(\alpha_{1}+\beta_{1}\right)^{i-1} v_{t+s-i} .
$$

[^0]Expressions for the forecast errors associated with the optimal s-step-ahead forecast of the conditional variance of models GJR-GARCH, VS-GARCH and Q-GARCH can be obtained in a similar way by substituting expressions (3a)-(3b), (5a)-(5b) and (7) into (8), respectively. Notice also that variance forecasts for each of the asymmetric GARCH models illustrated in Sections 2.1-2.3 are additive over time. ${ }^{2}$

The forecast error expression for the Q-GARCH model requires a more detailed comment. Indeed, although the asymmetric term $\gamma_{1} \varepsilon_{t-1}$ in equation (6) has no effect on the forecast computation algorithm, since the expected value of $\varepsilon_{t+i}, i>0$, is zero by assumption, nonetheless the presence of $\gamma_{1} \varepsilon_{t-1}$ affects the forecast error:

$$
\begin{aligned}
v_{t+s \mid t} & \equiv h_{t+s}-\hat{h}_{t+s \mid t} \\
& =\gamma_{1} \varepsilon_{t+s-1}+\alpha_{1}\left(\varepsilon_{t+s-1}^{2}-\hat{\varepsilon}_{t+s-1 \mid t}^{2}\right)+\beta_{1}\left(h_{t+s-1}-\hat{h}_{t+s-1 \mid t}\right) \\
& =\gamma_{1} \varepsilon_{t+s-1}+\alpha_{1} v_{t+s-1}+\left(\alpha_{1}+\beta_{1}\right) v_{t+s-1 \mid t} \\
& =\alpha_{1} \sum_{i=1}^{s-1}\left(\alpha_{1}+\beta_{1}\right)^{i-1} v_{t+s-i}+\gamma_{1} \sum_{i=1}^{s-1}\left(\alpha_{1}+\beta_{1}\right)^{i-1} \varepsilon_{t+s-i} .
\end{aligned}
$$

In this case, forecasts are still unbiased, since, given that $\mathrm{E}\left[v_{t+s-i} \mid \Omega_{t}\right]=\mathrm{E}\left[\varepsilon_{t+s-i} \mid \Omega_{t}\right]=0$ for any $i=1, \ldots, s-1, \mathrm{E}\left[v_{t+s \mid t} \mid \Omega_{t}\right]=0$. Nevertheless, the conditional variance of $v_{t+s \mid t}$ is larger than the corresponding conditional variance of the $\operatorname{GARCH}(1,1)$ model, which in turn means that uncertainty associated to the forecast of h_{t+s} is now larger.

[^1]
3. FORECASTING EVALUATION METHODS FOR ASYMMETRIC GARCH MODELS

3.1
 Classical evaluation criteria

Define the loss differential as:

$$
d_{j}=v_{n+j n+j-1, a}^{k}-v_{n+j n+j-1, b}^{k}, \quad j=1,2, \ldots, m
$$

where $v_{n+j n+j-1, a}^{k}$ and $v_{n+j n+j-1, b}^{k}$ are the forecast errors at time $n+j$ computed as suggested in Section 2.4 using models a and b respectively, and k is equal to 2 (or 1) if the mean squared errors (or the mean absolute errors) are confronted.

Following Diebold and Mariano (1995), we concentrate our investigation on three tests. The first one is the so-called sign test (S test), whose asymptotic version is given by:

$$
\begin{equation*}
S=\frac{2}{\sqrt{m}} \sum_{j=1}^{m}\left(I\left[d_{j}>0\right]-\frac{1}{2}\right) \sim N(0,1) . \tag{12}
\end{equation*}
$$

The underlying intuition of this statistic is simple. Assuming that the loss differential is IID, the number of positive observations in a sample of size m has a binomial distribution with parameters m and $1 / 2$. It is important to notice that the null hypothesis of this test is "median of the loss differential equal to zero", which coincides with the null of zero loss differential mean only if the distribution of the loss differential is symmetric (this is not always the case for the series we are about to analyze). Unfortunately, the S test does not take into consideration the magnitude of the spreads between the forecast errors of the two competing models.

The second statistic is the Diebold-Mariano test (DM test), which compares the module of the size of the forecast errors by testing whether the mean of the loss differential is significantly different from zero. In fact, it is possible to show that, if d_{j} is a covariance stationary time series, the asymptotic distribution of its sample mean is:

$$
\sqrt{m}(\bar{d}-\mu) \sim N(0, f)
$$

where:

$$
\bar{d}=\frac{1}{m} \sum_{j=1}^{m}\left[\mathrm{~L}\left(v_{n+j \mid n+j-1, a}\right)-\mathrm{L}\left(v_{n+j \mid n+j-1, b}\right)\right],
$$

is the sample mean of the loss differential based on any loss function $\mathrm{L}[\cdot], f$ indicates the variance of the sample mean, whereas μ is the population mean of the loss differential. Thus, in large samples, under the null hypothesis of zero population mean of the loss differential, \bar{d} has a standard normal distribution:

$$
\begin{equation*}
D M=\frac{\bar{d}}{\sqrt{\hat{f}}} \sim N(0,1) \tag{13}
\end{equation*}
$$

with \hat{f} being a consistent estimator of the asymptotic variance of \bar{d}. Diebold and Mariano suggest to estimate f using the non-weighted sum of the autocovariances for d_{j} :

$$
\hat{f}=\frac{1}{m} \sum_{i=-(h-1)}^{h-1} \hat{\gamma}_{i}(d)
$$

h being the forecasting horizon where the forecast errors are confronted.
Such an estimate of the asymptotic variance is motivated by the structure of the h-step-ahead forecast error, which is a linear combination of the shocks occurred up to $h-1$ and thus is serially correlated up to order $h-1$. Obviously, for $h=1, \hat{f}$ is $\hat{\gamma}_{0}(d)$, that is the variance of d_{j}.

Alternatively, the DM test is a t-test of zero population mean of the loss differential, which considers that the loss differential is not necessarily a white noise process. As far as the choice of the loss function is concerned, it is important to notice that for most of the series under scrutiny the forecast errors and the loss differential are characterized by aberrant observations (larger, in absolute value, than three standard deviations), as well as by ARCH effects. Consequently, specifying $L[$.$] with the absolute value function seems to be more appropriate, given that the$ traditional quadratic loss function would imply very large standard deviations and force the statistics to be in the non-rejection region most of the times.

A simple Lagrange Multiplier test reveals the presence of first-order ARCH effects in the loss differentials with $\mathrm{L}[$.$] specified with the absolute value function { }^{3}$. This result justifies the

[^2]introduction of the Newey-West test (NW test), which is again a t-type statistic of the null hypothesis of zero mean loss differential. The difference with the DM test is given by the variance-covariance matrix, which in this case is estimated according to Newey and West (1987) and thus it is robust to autocorrelation and ARCH effects.

In many empirical studies (see, among others, Akgiray, 1989; Brailsford and Faff, 1996) more traditional criteria are used to evaluate the forecasting performance of alternative non-linear GARCH models. Among the most commonly adopted measures are the mean squared (MSPE), the mean absolute (MAPE) prediction error, and, given the presence of aberrant observations and outliers in stock market returns, the median squared (MedSPE) and the median absolute (MedAPE) prediction error. For instance, when volatility is the object of the prediction exercise, MSPE is defined as:

$$
\begin{equation*}
\operatorname{MSPE}=\frac{1}{m} \sum_{j=0}^{m-1}\left(\hat{h}_{n+s+j \mid n+j}-h_{n+s+j}\right)^{2} . \tag{14}
\end{equation*}
$$

A popular approach to evaluate the unbiasedness of the forecast $\hat{h}_{n+s+j \mid n+j}$ is the regression originally proposed by Mincer and Zarnowitz (1969) and further discussed in Fair and Shiller $(1989,1990){ }^{4}$:

$$
\begin{equation*}
h_{n+s+j}=a+b \hat{h}_{n+s+j \mid n+j}+e_{n+s+j}, \quad j=0, \ldots, m-1 \tag{15}
\end{equation*}
$$

where $a=0, b=1$ indicate, together with $\mathrm{E}\left(\hat{e}_{n+s+j}\right)=0$, unbiased forecasts.
The main obstacle to the practical use of these criteria is that the true volatility h_{n+s+j} in (14) and (15) is unobserved. A commonly used solution is to substitute h_{t} with the squared shocks $\varepsilon_{n+s+j}^{2}=\eta_{n+s+j}^{2} h_{n+s+j}$. Since $\mathrm{E}\left[\eta_{n+s+j}^{2}\right]=1, \varepsilon_{n+s+j}^{2}$ is an unbiased estimate of h_{n+s+j}. Out-of sample values of the squared shocks are replaced with the time series of realized volatility $h_{\text {real, } n+s+j}$, where:

$$
h_{r e a l, n+s+j}=\left(y_{n+s+j}-\bar{y}\right)^{2}
$$

is the series of squared deviations of returns at time $n+s+j$ from their sample mean $\bar{y} .{ }^{5}$

[^3]It is worth noticing that most empirical studies find that volatility forecasts based on linear and asymmetric GARCH models are quite unsatisfactory, with very large MSPE and very low R^{2} value from regression (15). Moreover, the forecast unbiasedness hypothesis of $a=0$ in equation (15) is generally rejected (e.g. Andersen and Bollerslev, 1998, Christodoulakis and Satchell, 1998).

3.2
 Forecast combination

The aim of the statistical criteria presented in Section 3.1 is to determine, among different competing models, the most accurate forecast relative to a pre-specified loss function. In many practical situations this is not an easy task, since each model is able to capture only a limited amount of information contained in the series of interest. If this is the case, an alternative and more appealing strategy is forecast combination or forecast encompassing (see Diebold and Lopez, 1996 for an exhaustive survey).

A forecast encompassing test allows us to verify whether a single forecast incorporates all the information included in the forecasts generated by alternative competing models. The intuition behind this approach is due to Nelson (1972) and Cooper and Nelson (1975), whereas its formalization appears in Chong and Hendry (1986).

Two forecasts are confronted, $\hat{y}_{t+h \mid t}^{a}$ and $\hat{y}_{t+h \mid t}^{b}$, which have been obtained by two different models a and b. The forecast encompassing test is based on the following regression:

$$
\begin{equation*}
y_{t+h}=\beta_{a} \hat{y}_{t+h \mid t}^{a}+\beta_{b} \hat{y}_{t+h \mid t}^{b}+\varepsilon_{t+h \mid t} . \tag{16}
\end{equation*}
$$

If $\left(\beta_{a}, \beta_{b}\right)=(0,1)$ or $\left(\beta_{a}, \beta_{b}\right)=(1,0)$, then model b encompasses model a (and viceversa). If this is not true, both forecasts include useful information on y_{t+h}. Standard hypothesis tests can be used, provided the time series involved in regression (16) are covariance-stationary and, for $h>1$, serial correlation of the error term $\varepsilon_{t+h \mid t}$ is taken into consideration.

A similar approach is proposed by Fair and Shiller (1989, 1990), which is based on the regression:

$$
\begin{equation*}
y_{t+h}-y_{t}=\beta_{a}\left(\hat{y}_{t+h \mid t}^{a}-y_{t}\right)+\beta_{b}\left(\hat{y}_{t+h \mid t}^{b}-y_{t}\right)+\varepsilon_{t+h \mid t}, \tag{17}
\end{equation*}
$$

and accommodates the case of non-stationary, integrated forecasts using differences. The encompassing hypotheses can be tested in the present framework by invoking asymptotic normality of standard statistics. If the encompassing test rejects the null hypothesis, this evidence should be interpreted in favour of forecast combination. Even if the forecasts obtained by
different models have white noise errors, this is not necessarily the case for the forecast combination. It is then important to allow for an error with an adequate $\operatorname{ARMA}(p, q)$ structure, when estimating the weights for the forecast combination. Moreover, additional information can be obtained if part of the forecasts is reserved to evaluate the empirical performance of the forecast combination.

4.
 EMPIRICAL RESULTS

The empirical application involves three Asian as well as ten European stock price indexes, namely Hang Seng (Hong Kong, China), Straits Times New (Singapore), Tokyo SE Topix (Japan), London FSTE 100 (U.K.), CAC 40 (France), DAX 30 Performance (Germany), Milan Mib Historical (Italy), BBL 30 (Belgium), Swiss Market (Switzerland), Athens SE General (Greece), PSI General (Portugal), Madrid SE General (Spain) and Amsterdam AEX (EOE) (Holland). Table 1 reports sample sizes and frequencies for each series.

Table 2 presents some descriptive statistics on weekly and daily percentage returns $\left(y_{t}\right)$ of each stock price index $\left(p_{t}\right)$, defined as $y_{t}=100\left[\ln \left(p_{t}\right)-\ln \left(p_{t-1}\right)\right]$. From a simple inspection of this table, some key features which are typical of most financial time series are confirmed for these data. In particular, kurtosis is always larger than 3, especially for daily returns, whereas skewness is generally negative.

The non-linear GARCH models discussed in Section 2 are now estimated to rationalize the stylized facts of Table 2. Their empirical performance is then compared with the standard linear $\operatorname{GARCH}(1,1)$ specification taken as the benchmark model.

4.1
 Results from classical evaluation criteria

We have adopted the following procedure to obtain alternative forecasts of conditional volatility. Each asymmetric GARCH model has been estimated on a rolling window, whose size is constant within each stock index but varies across different indexes according to Table 3. Each window of constant size rolls over the sample step by step. At each step, a new window is formed by deleting the first observation and adding one observation to the last observation of the previous window. For each window, each series and each model, h-step-ahead forecasts are obtained, $h=1, \ldots, 5$. For the first five indexes presented in Table 1 , since they are observed on a common sample, we use a 7-year rolling window, from the first week of 1987 to the last week of 1993. Consequently, at the first step we obtain volatility forecasts for the first 5 weeks of 1994, at the second step we generate volatility forecasts from week 2 to week 7 of 1994, and so on until
the last week of 2000. The result is given by five series of h-step-ahead forecasts, $h=1, \ldots, 5$, each series formed by 365 observations (number of weeks from the beginning of 1994 to the end of 2000). These series of forecasts are then summarized by computing the classical evaluation criteria described in Section 3.

Table 4 reports detailed results about the forecast accuracy analysis based on classical evaluation criteria. Each section of Table 4 refers to a specific stock index, whereas the whole set of evaluation criteria is applied to each asymmetric GARCH model - whose specification is always of order $(1,1)$ for the conditional variance and equal to the simple constant term for the mean equation - and calculated for each of the five forecasting horizons. In order to facilitate the comparison between each asymmetric specification and the benchmark $\operatorname{GARCH}(1,1)$ model, the reported values of MSPE, MedSPE, MAPE, and MedAPE are equal to the calculated values divided by the corrisponding values obtained using the $\operatorname{GARCH}(1,1)$ model ${ }^{6}$. The last three columns of each section of Table 4 show the p-values for tests S, DM and NW. Once again, each asymmetric GARCH model is confronted with the standard $\operatorname{GARCH}(1,1)$ on the same forecasting horizon.

For the DM test we have preferred the absolute value loss function to the popular quadratic specification, since the latter amplifies the largest values of the loss differential (sometimes up to thirty times). In this way, the standard deviation of the loss differential could be up to twenty times larger than the one obtained using the absolute value loss function. The DM test, which is in essence a t -test of the null hypothesis of zero constant robust to residual autocorrelation, is affected by this phenomenon and gives rise to small calculated values and large p-values. In addition, we have used the S test, since it is based on the median, instead of the mean, of the loss differential. This is useful when, as in our context, the values of the loss differentials are characterized by extreme observations, which affect the mean, but not the median, of the distribution. Since the loss differentials are often asymmetric, the DM and S tests lead to conclusions about the null hypothesis which are often conflicting.

The loss differentials which are at the heart of the statistics reported in Table 4 show, for all models and forecast horizons, several extreme observations. Consequently, the NW test has been recalculated using the series of the loss differentials, once all the outliers have been removed. We define as an outlier in the series of the loss differential any observation that is larger than the triple of the loss differential standard deviation, that is when $\left|d_{j}\right|>r \sigma$, with $r=3$. The choice of $r=3$ has demonstrated to be appropriate for all series of the loss differential. P-values of the recalculated NW test are reported in Table 5.

From Tables 4 and 5 some interesting comments emerge. First, forecasting with GJRGARCH and Q-GARCH does not yield a significant reduction of the forecast error relative to the GARCH $(1,1)$, since in general the calculated values for MSPE, MedSPE, MAPE and MedAPE are close to one. The only exception is Japan, when the GJR-GARCH model is used. Second, these results are confirmed if we take into consideration the modified version of the NW test reported in Table 5 (with the exceptions of Greece and Japan when again the GJR-GARCH model is used, and Portugal, Holland and China relative to the Q-GARCH specification). Third,

[^4]the VS-GARCH is the model whose forecasting performance is less close to the $\operatorname{GARCH}(1,1)$, since the values taken by the four measures of forecast error are generally very far from unity. Four, if we concentrate on the VS-GARCH, the measures of forecast error with values significantly less than unity are based, in all cases, on the median of the forecast error, since the forecasts produced by the VS-GARCH are more volatile than those of GJR-GARCH and QGARCH. Finally, the tests of forecast accuracy confirm that the VS-GARCH is the model which is more distant from the linear GARCH. In particular, the null hypothesis of equality of the forecasting accuracy between VS-GARCH and $\operatorname{GARCH}(1,1)$ is rejected in 62% of the cases. For at least seven of the analyzed stock indexes (Holland, Belgium, France, Italy, Switzerland, Spain and Japan) the VS-GARCH model outperforms the linear GARCH, as well as the remaining asymmetric models.

In Table 6 the main results from the Mincer-Zarnowitz regression (15) are reported. First, the R^{2} values are low, typically less than 0.1 . Second, the forecasts obtained with the simple GARCH model are often biased. Third, the forecasting performance of GJR-GARCH and QGARCH is better than GARCH. A possible explanation is that modelling asymmetries contributes to the reduction of the magnitude of the bias. Fourth, the more flexible VS-GARCH generates forecasts with small bias, with the exception of U.K., Italy, Greece and Japan, where biases measured both in terms of slope and intercept are significant. Finally, in some cases (namely China, Italy and Greece) none of the analyzed models is able to produce forecasts with a R^{2} in the Mincer-Zarnowitz regression larger than 0.03.

Overall, the forecasting performance of each single model is unsatisfactory. For this reason it is interesting to investigate the potential complementarieties among alternative individual models using a forecast combination approach.

4.2
 Results from forecast combination

The most popular technique of forecast combination is a regression involving the whole set of competing forecasts with associated time-invarying coefficients (weights) and a constant term, as described in Granger and Ramanathan (1984). The assumption of constant weights is obviously restrictive. As a matter of fact, the series we would like to forecast are the shocks $\varepsilon_{n+s+j}^{2}=\eta_{n+s+j}^{2} h_{n+s+j}$, which are unbiased estimators of h_{n+s+j}, and widely vary in time according to the evolution of volatility.

If constant weights are assumed in the linear combination, it is not possible to take into account the actual and highly volatile behaviour of the series of interest, as well as the temporal changes in the accuracy of the combined forecasts. Thus, we have also proposed a forecast combination technique with variable weights.

In order to implement the forecast combination with constant coefficients, we have divided the sample of forecasts obtained by each of the four competing models in two parts. The first subsample is dedicated to the estimation of the weights of the linear combination, whereas the second is used to verify whether the set of weights obtained in the first part can replicate the
linear combination out of sample. ${ }^{7}$ More specifically, we used 70% of the forecast sample to estimate the weights and the remaining 30% to evaluate the out-of-sample performance of the forecast combination. We omit to present the results of the encompassing forecast test into detail, since it always rejects the irrelevance of any of the selected models in the forecast combination.

Table 7 presents the estimated weights of the linear combination of forecasts for each stock index and forecasting horizon. It is informative to compare the R^{2} values from the forecast combination regressions of Table 7 with those from the Mincer-Zarnowitz regressions presented in Table 6 for each single model. The forecast combination leads to a generalized increase of the R^{2} values, thus suggesting that different models include complementary information which can be used to better approximate actual volatility.

Table 8 refers to the out-of-sample forecast performance of the forecast combination technique. Table 8 reports both the forecast evaluation criteria applied to each single model and the results from the Mincer-Zarnowitz regression. Unfortunately, the good in-sample performance of the forecast combination technique is not always replicated out of sample.

Despite the values taken by MSPE, MedSPE, MAPE and MedAPE are less than unity in several cases (i.e. the non-linear models outperform the simple GARCH (1,1)), and the tests for forecast accuracy reject the null hypothesis, the R^{2} values of the Mincer-Zarnowitz regressions are generally less than the R^{2} values relative to the in-sample combinations, and the R^{2} values obtained from each single model. A reasonable explanation is that the large volatility characterizing the series of the squared shocks does not allow to generalize to the second subsample the weights which have been estimated on the first subsample.

A simple way to take into account time in the forecast combination regression is to include a linear trend and/or interactions of the existing regressors (forecasts) with a linear trend. Such a way of dealing with time could be reasonable if the weights are trend-varying, which is not our case. Figure 1 shows the temporal evolution of the five combination coefficients (constant included) relative to the 5-step-ahead forecasts for Italy. Specifically, $\mathrm{C}(1)$ is the coefficient of the GARCH forecast, $\mathrm{C}(2)$ is relative to GJR-GARCH, C(3) is the Q-GARCH coefficient and $\mathrm{C}(4)$ is the coefficient associated to VS-GARCH. All coefficients have been estimated using Recursive Least Squares. It is easy to see that each coefficient shows ample oscillations of both signs, which are hardly compatible with a linear trend.

In order to incorporate variable weights, a preferable approach is to estimate the parameters of the forecast combination within a rolling window of a fixed sample size, and then use those estimates to combine the forecasts of each single model starting from the last observation included in the rolling window. The sample size of the combined forecasts is equal to the difference between the sample size of the individual forecasts and the number of observations defining the rolling window. The number of observations of the rolling window is not the same for each stock index: among several alternatives (namely 15, 20, 25, 30, 35 and 40 observations), the one with the highest R^{2} in the Mincer-Zarnowitz regression has been selected.

Table 9 reports the sample size of each rolling window, whereas Table 10 shows the results of the forecast combination technique with variable coefficients. The values taken by the forecast

[^5]error measures and the accuracy evaluation tests suggest that out-of-sample forecast combination outperforms only partially the regression method. Actually, the R^{2} value of the MincerZarnowitz regression is not always larger than the corresponding R^{2} value of the regression approach, while better results are obtained in terms of reduction of the forecast bias. When evaluated out of sample, the empirical performance of the regression method with constant or variable coefficients is not superior to the forecast results produced by individual linear and nonlinear GARCH models.

5.
 CONCLUSIONS

The comparison between the forecasting accuracy of GARCH, GJR-GARCH, QGARCH and VS-GARCH does indicate neither a dominant model, nor a dominant country. With respect to the standard GARCH specification which ignores potential asymmetries in asset returns, the asymmetric models generally lead to better forecasts in terms of both smaller forecast errors and lower biases. The model which is empirically less close to the simple linear GARCH is the VSGARCH.

However, the volatility forecasts which have been generated using the four asymmetric models are unsatisfactory, especially when evaluated on the basis of the R^{2} values associated to the Mincer-Zarnowitz regression, which is low in most of the cases.

Individual models take into account only a part of the actual behaviour of the series, tending to play a complementary role in explaining observed volatility. This is confirmed by the forecast combination regression applied to the sample where the combination weights are estimated, which produces significantly higher R^{2} values than those obtained from the individual MincerZarnowitz regressions. When evaluated out of sample, the performance of the regression method is less satisfactory. Finally, the alternative technique of combining different forecasts with variable weights does not seem to represent a fully convincing solution.

A more promising direction of research would be the assessment of the forecasting performance of multivariate asymmetric GARCH models. Since most of the multivariate extensions of single equation GARCH models have been proposed by the econometric literature only recently (see, for instance, McAleer, 2004, for a critical survey), extensive studies on their predictive abilities are still to be undertaken. Those investigations are on our future research agenda.

References

AKGIRAY V. (1989), "Conditional heteroschedasticity in time series of stock returns: evidence and forecasts", Journal of Business, 62, 55-80.

ANDERSEN T., BOLLERSLEV T. (1998), "Answering the skeptics: yes, standard volatility models do provide accurate forecasts", International Economic Review, 39, 885-906.

BOLLERSLEV T. (1986), "Generalized autoregressive conditional heteroschedasticity", Journal of Econometrics, 31, 307-327.
BRAILSFORD T.J., FAFF R.W. (1996), "An evaluation of volatility forecasting techniques", Journal of Banking and Finance, 20, 419-438.

BROOKS C. (1998), "Predicting stock market volatility: can market volume help?", Journal of Forecasting, 17, 1, 59-80.

CAO C.Q., TSAY R.S. (1992), "Nonlinear time-series analysis of stock volatilities", Journal of Applied Econometrics, December, Supplement, 1S, 165-185.
CHONG Y.Y., HENDRY D.F. (1986), "Econometric evaluation of linear macroeconomic models", Review of Economic Studies, 53, 671-690.

COOPER D.M., NELSON C.R. (1975), "The ex ante prediction performance of the St. Louis and of the F.R.B.-M.I.T.-Penn econometric models and some results on composite predictors", Journal of Money, Credit and Banking, 7, 1-32.

CHRISTODOULAKIS G.A., SATCHELL S.E. (1998), "Hashing GARCH: a re-assessment of volatility forecasting performance", in Forecasting Volatility in the Financial Market, ed. by J. Knight and S.E. Satchell, New York, Butterworth-Heinemann.

DACOROGNA MM., GENÇAY R., MÜLLER U.A., OLSEN R.B., PICTET O.V. (2001), An Introduction to High-Frequency Finance, San Diego, Academic Press.
DAY T.E., LEWIS C.M. (1992), "Stock market volatility and the information content of stock index options", Journal of Econometrics, 52, 267-287.

DIEBOLD F.X., MARIANO R.S. (1995), "Comparing predictive accuracy", Journal of Business and Economic Statistics, 13, 253-63.

DIEBOLD F.X., LOPEZ J. A. (1996), "Forecast evaluation and combination", technical working paper n° 192, National Bureau of Economic Reserch, Cambridge, Massachusetts.
DIMSON E., MARSH P. (1990), "Volatility forecasting without data-snooping", Journal of Banking and Finance, 14, 399-421.

DUNIS C.L., LAWS J., CHAUVIN S. (2001), "The use of market data and model combination to improve forecast accuracy" in Developments in Forecast Combination and Portfolio Choice, ed. by C. Dunis, J. Moody and A. Timmermann, Chichester, Wiley.
ENGLE R.F. (1982), "Autoregressive conditional heteroschedasticity with estimates of the variance of United Kingdom inflation", Econometrica, 50, 987-1007.

FAIR R.C., SHILLER R.J (1989), "The infomational content of ex ante forecasts", Rewiew of Economics and Statistics, 71, 325-332.
FAIR R.C., SHILLER R.J. (1990), "Comparing information in forecasts from econometric models", American Economic Rewiew, 80, 375-389.
FORNARI F., MELE A. (1996), "Modelling the changing asymmetry of conditional variances", Economics Letters, 50, 197-203.

FORNARI F., MELE A. (1997), "Sign-and volatility-switching ARCH models: theory and applications to international stock markets", Journal of Applied Econometrics, 12, 49-65.
FRANSES P.H., VAN DIJK D. (1996), "Forecasting stock market volatility using (non-linear) Garch models", Journal of Forecasting, 15, 3, 229-235.

FRANSES P.H., VAN DIJK D. (2000), Non-Linear Time Series Models in Empirical Finance, Cambridge, U.K., Cambridge University Press.

GLOSTEN L.R., JAGANNATHAN R., RUNKLE D.E. (1993), "On the relation between the expected value and the volatility of the nominal excess return on stocks", Journal of Finance, 48, 1779-801.
GRANGER C.W.J., RAMANATHAN R. (1984), "Improved methods of combining forecasts", Journal of Forecasting, 3, 197-204.

HENTSCHEL L.F. (1995), "All in the family: nesting linear and nonlinear GARCH models", Journal of Financial Economics, 39, 139-164.
HEYNEN R.C. (1995), Essays on Derivatives Pricing Theory, Thesis Publishers, Amersterdam.
LAMOUREUX C.G., LASTRAPES W.D. (1993), "Forecasting stock return variances: towards understanding stochastic implied volatility", Review of Financial Studies, 6, 293-326.
MCALEER M. (2004), "Automated inference and learning in modelling financial volatility", Econometric Theory, forthcoming.
MINCER J., ZARNOWITZ V. (1969), "The evaluation of economic forecasts", in Economic Forecasts and Expectation, ed. by J. Mincer, National Bureau of Economic Reserch.

NELSON C.R. (1972), "The prediction performance of the F.R.B.-M.I.T.-Penn model of the U.S. economy", American Economic Review, 62, 902-907.
NEWEY W.A., WEST K. (1987), "A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix", Econometrica, 55, 703-708.

PAGAN A.R., SCHWERT G.W (1990), "Alternative models for conditional stock volatility", Journal of Econometrics, 45, 267-290.

POON S.H., GRANGER C.W.J. (2003), "Forecasting volatility in financial markets: a review", Journal of Economic Literature, 41, 478-539.

RABEMANANJARA M., ZAKOÏAN J.M. (1993), "Threshold ARCH models and asymmetries in volatility", Journal of Applied Econometrics, 19, 351-372.

SENTANA E. (1995), "Quadratic ARCH models", Review of Economic Studies, 62, 639-61.
TAYLOR S.J. (1987), "Forecasting of the volatility of currency exchange rates", International Journal of Forecasting, 3, 159-170.

TSE T.Y.K., TUNG S.H. (1992), "Forecasting volatility in the Singapore stock market", Asia Pacific Journal of Management, 9, 1-13.

WALSH D.M., TSOU G.Y-G (1998), "Forecasting index volatility: sampling integral and non-trading effects", Applied Financial Economics, 8, 477-485.
YU J. (2002), "Forecasting volatility in the New Zealand stock market", Applied Financial Economics, 12, 193-202.

Table 1. Sample size and frequency for ten European and three Asian stock price indexes

Stock markets	Frequency (\# Observ.)	Sample
Holland - Amsterdam AEX (EOE)	Daily (3788), weekly (757)	$(07 / 01 / 1987-13 / 07 / 2001)$
Belgium - BBL 30	Daily (3788), weekly (757)	$(07 / 01 / 1987-13 / 07 / 2001)$
Germany - Dax 30 Performance	Daily (3788), weekly (757)	$(07 / 01 / 1987-13 / 07 / 2001)$
U.K. - London FTSE 100	Daily (3788), weekly (757)	$(07 / 01 / 1987-13 / 07 / 2001)$
Italy - Milan Mib Historical	Daily (3788), weekly (757)	$(07 / 01 / 1987-13 / 07 / 2001)$
France - CAC 40	Daily (3653), weekly (730)	$(09 / 07 / 1987-13 / 07 / 2001)$
Spain - Madrid SE General	Daily (3528), weekly (705)	$(01 / 05 / 1988-13 / 07 / 2001)$
Portugal - PSI General	Daily (3528), weekly (705)	$(01 / 05 / 1988-13 / 07 / 2001)$
Switzerland - Swiss Market	Daily (3398), weekly (679)	$(01 / 07 / 1988-13 / 07 / 2001)$
Greece - Athens SE General	Daily (3333), weekly (666)	$(30 / 09 / 1988-13 / 07 / 2001)$
China - Hang Seng	Daily (3320), weekly (664)	$(24 / 10 / 1988-13 / 07 / 2001)$
Singapore - Straits Times (New)	Daily (3320), weekly (664)	$(24 / 10 / 1988-13 / 07 / 2001)$
Japan - Tokyo SE Topix	Daily (3320), weekly (664)	$(24 / 10 / 1988-13 / 07 / 2001)$

[^6]Table 2. Descriptive statistics on daily and weekly returns

Stock markets Daily returns	Mean	Med	Min	Max	Var	Skew	Kurt
Holland	0.042	0.040	-12.779	11.182	1.439	-0.589	14.872
Belgium	0.029	0.000	-12.531	8.943	0.900	-0.514	22.749
Italy	0.021	0.000	-8.476	6.216	1.487	-0.493	6.565
U.K.	0.031	0.019	-13.029	7.597	1.001	-1.058	17.847
Germany	0.038	0.037	-13.710	7.288	1.723	-0.760	11.453
France	0.033	0.000	-10.138	8.225	1.579	-0.415	8.187
Portugal	0.020	0.000	-10.814	7.572	0.850	-0.639	18.656
Spain	0.035	0.000	-8.611	6.362	1.228	-0.415	8.303
Switzerland	0.045	0.039	-11.112	7.462	1.133	-0.734	12.073
Greece	0.063	0.000	-10.646	13.749	3.375	0.131	8.066
China	0.048	0.000	-24.520	17.247	3.040	-0.920	23.659
Singapore	0.020	0.000	-10.207	14.868	1.755	0.146	15.093
Japan	-0.016	0.000	-7.365	9.116	1.454	0.222	7.880
Wolland	0.208	0.418	-17.362	11.278	5.953	-0.991	8.584
Weekly returns	0.146	0.205	-16.719	10.268	4.941	-0.648	8.804
Italy	0.108	0.168	-11.487	12.425	8.474	-0.074	4.076
U.K.	0.152	0.273	-24.862	7.947	5.257	-1.760	21.482
Germany	0.196	0.269	-14.079	11.945	7.667	-0.497	4.934
France	0.169	0.162	-11.972	9.904	7.512	-0.133	3.899
Portugal	0.085	0.017	-14.876	13.692	5.875	-0.129	8.570
Spain	0.174	0.222	-11.506	11.744	6.105	-0.150	4.729
Switzerland	0.222	0.309	-14.640	11.280	5.402	-0.461	6.158
Greece	0.307	-0.098	-19.543	22.220	19.956	0.480	6.286
China	0.237	0.482	-20.977	13.228	13.429	-0.756	5.466
Singapore	0.102	-0.019	-13.640	14.615	10.094	-0.122	5.638
Japan	-0.083	-0.069	-10.849	13.406	7.508	0.074	5.122

Notes to Table 2: All descriptive statistics are calculated using the sample sizes reported in Table 1; Mean $=\frac{1}{n} \sum_{t=1}^{n} y_{t} \equiv \hat{\mu} ;$ Med = median; Min = minimum value; Max = maximum value; Var $=\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-\hat{\mu}\right)^{2} \equiv \hat{\sigma}^{2}$, Skew $=\frac{1}{n} \sum_{t=1}^{n} \frac{\left(y_{t}-\hat{\mu}\right)^{3}}{\hat{\sigma}^{3}}$, Kurt $=\frac{1}{n} \sum_{t=1}^{n} \frac{\left(y_{t}-\hat{\mu}\right)^{4}}{\hat{\sigma}^{4}}$.

Table 3. Size of the rolling window for each stock price index

Stock market	Size of the rolling window
Holland	365 weekly obs. (7 years)
Belgium	365 weekly obs. (7 years)
Germany	365 weekly obs. (7 years)
U.K.	365 weekly obs. (7 years)
Italy	365 weekly obs. (7 years)
France	363 weekly obs.
Spain	351 weekly obs.
Portugal	351 weekly obs.
Switzerland	338 weekly obs.
Greece	331 weekly obs.
China	330 weekly obs.
Singapore	330 weekly obs.
Japan	330 weekly obs.

Notes to Table 3: For the last eight indexes there is no correspondence with the number of years, since the size of the rolling window doesn't exactly fit with an integer number of years.

Table 4. Classical evaluation criteria for each stock price index

Holland									Belgium						
Model		MSPE	MedSPE	MAPE	MedA	PE D	S	NW	MSPE	MedSPE	MAPE	MedAPE	$E \quad D M$	S	$N W$
GJR	1	0.993	0.931	0.994	0.965	0.426	0.565	0.459	0.963	0.889	0.982	0.943	0.113	0.374	0.309
	2	0.990	0.930	0.994	0.964	0.408	0.432	0.471	0.948	0.937	0.970	0.968	0.033	0.006	0.094
	3	1.004	0.935	0.999	0.967	0.696	0.320	0.689	0.977	0.932	0.976	0.965	0.132	0.024	0.135
	4	1.004	0.913	0.999	0.955	0.794	0.374	0.793	0.979	0.932	0.976	0.965	0.134	0.002	0.108
	5	1.003	0.913	1.000	0.956	0.663	0.084	0.670	0.976	0.992	0.978	0.996	0.141	0.019	0.109
Q	1	0.994	0.961	0.996	0.980	0.622	0.714	0.638	0.991	0.996	0.992	0.998	0.273	0.374	0.384
	2	0.992	0.979	0.999	0.989	0.787	0.432	0.802	0.986	0.990	0.985	0.995	0.035	0.032	0.073
	3	1.000	0.947	1.004	0.973	0.111	0.004	0.090	0.991	0.950	0.989	0.975	0.060	0.032	0.073
	4	1.003	0.995	1.005	0.997	0.026	0.002	0.029	0.992	0.964	0.988	0.982	0.063	0.006	0.050
	5	1.003	0.969	1.008	0.985	0.041	0.000	0.026	0.991	1.003	0.988	1.002	0.076	0.041	0.047
VS	1	1.023	0.687	0.936	0.829	0.131	0.794	0.037	1.014	0.625	0.935	0.791	0.032	0.272	0.087
	2	1.061	0.521	0.904	0.722	0.000	0.496	0.004	1.004	0.501	0.886	0.708	0.005	0.000	0.015
	3	1.069	0.434	0.882	0.658	0.002	0.014	0.003	1.036	0.499	0.881	0.707	0.013	0.000	0.012
	4	1.065	0.384	0.869	0.619	0.004	0.001	0.003	1.056	0.397	0.875	0.630	0.021	0.000	0.012
	5	1.088	0.317	0.874	0.563	0.012	0.002	0.007	1.068	0.374	0.862	0.612	0.021	0.000	0.010
Germany									U.K.						
GJR	1	0.990	0.898	0.988	0.948	0.484	0.105	0.394	1.056	0.927	1.019	0.963	0.145	0.794	0.208
	2	0.969	0.911	0.983	0.955	0.125	0.320	0.205	1.010	0.956	1.006	0.978	0.514	0.875	0.576
	3	1.004	1.001	0.992	1.001	0.549	0.374	0.595	0.994	0.928	1.002	0.963	0.499	0.875	0.506
	4	0.996	0.898	0.986	0.948	0.412	0.875	0.378	0.974	0.893	0.994	0.945	0.721	0.432	0.738
	5	1.000	0.977	0.986	0.988	0.337	0.496	0.340	0.982	0.936	1.002	0.967	0.671	0.794	0.635
Q	1	1.001	0.937	0.985	0.968	0.286	0.158	0.268	0.988	0.990	0.999	0.995	0.866	0.067	0.880
	2	0.990	0.885	0.978	0.941	0.077	0.067	0.131	0.975	0.982	0.989	0.991	0.480	0.053	0.520
	3	1.004	0.972	0.984	0.986	0.282	0.794	0.313	0.974	1.020	0.991	1.010	0.607	0.032	0.609
	4	1.006	0.908	0.981	0.953	0.341	0.958	0.280	0.974	0.930	0.986	0.964	0.309	0.875	0.311
	5	1.009	0.997	0.979	0.999	0.232	0.875	0.249	0.975	0.984	0.993	0.992	0.601	0.320	0.545
VS	1	1.059	0.789	0.974	0.888	0.497	0.191	0.470	1.111	1.292	1.113	1.137	0.000	0.000	0.000
	2	1.045	0.639	0.948	0.799	0.119	0.496	0.129	1.116	1.135	1.077	1.065	0.003	0.084	0.003
	3	1.067	0.617	0.956	0.786	0.222	0.958	0.216	1.149	1.025	1.066	1.012	0.017	0.014	0.025
	4	1.087	0.531	0.933	0.729	0.097	0.129	0.073	1.109	0.811	1.041	0.900	0.122	0.320	0.142
	5	1.108	0.530	0.944	0.728	0.156	0.041	0.143	1.141	0.633	1.022	0.796	0.417	0.958	0.380
Italy									France						
GJR	1	6.075	0.778	1.231	0.882	0.462	0.053	0.538	0.985	1.007	0.981	1.004	0.222	0.104	0.049
	2	1.966	0.635	1.022	0.797	0.477	0.565	0.460	0.986	1.052	0.985	1.026	0.017	0.031	0.083
	3	1.230	0.563	0.951	0.750	0.277	0.565	0.261	0.996	1.071	0.996	1.035	0.197	0.319	0.160
	4	1.082	0.473	0.902	0.688	0.389	0.714	0.381	0.999	1.080	0.997	1.039	0.387	0.495	0.146
	5	1.068	0.415	0.881	0.644	0.232	0.320	0.181	1.009	1.022	1.004	1.011	0.574	0.713	0.219
Q	1	1.004	0.922	0.992	0.960	0.028	0.272	0.044	0.992	0.991	0.986	0.995	0.456	0.014	0.281
	2	1.004	0.940	0.992	0.970	0.027	0.272	0.020	0.995	1.091	0.994	1.044	0.109	0.052	0.605
	3	1.003	0.971	0.989	0.985	0.012	0.084	0.009	1.004	1.115	1.005	1.056	0.476	0.104	0.852
	4	1.003	0.994	0.992	0.997	0.048	0.432	0.035	1.011	1.133	1.007	1.065	0.799	0.372	0.882
	5	1.003	0.942	0.991	0.971	0.035	0.053	0.022	1.018	1.053	1.013	1.026	0.968	0.319	0.842
VS	1	1.013	0.867	0.995	0.931	0.236	0.432	0.255	1.047	0.637	0.923	0.798	0.002	0.052	0.002
	2	1.013	0.939	0.995	0.969	0.788	0.000	0.789	1.052	0.557	0.925	0.747	0.001	0.000	0.004
	3	1.008	0.979	0.990	0.990	0.272	0.000	0.272	1.087	0.568	0.935	0.754	0.003	0.001	0.002
	4	1.009	0.995	0.994	0.997	0.004	0.000	0.002	1.092	0.540	0.922	0.735	0.001	0.000	0.001
	5	1.008	0.871	0.991	0.934	0.000	0.000	0.000	1.113	0.484	0.924	0.696	0.007	0.000	0.002

Table 4. Classical evaluation criteria for each stock price index (continued)

Spain									Portugal						
Model		MSPE	MedSPE	MAP	MedAF	E DM	S	$N W$	MSPE	MedSPE	MAPE	MedAPE	DM	S	$N W$
GJR	1	0.985	1.012	0.992	1.006	0.419	0.062	0.398	1.070	1.132	1.006	1.064	0.588	0.873	0.587
	2	0.969	0.952	0.986	0.976	0.066	0.048	0.088	1.044	1.011	0.999	1.006	0.814	0.122	0.758
	3	0.982	0.975	0.990	0.987	0.289	0.262	0.336	1.057	0.991	0.999	0.995	0.937	0.022	0.929
	4	0.973	0.967	0.986	0.983	0.228	0.122	0.196	1.043	0.985	0.998	0.992	0.862	0.022	0.848
	5	0.965	1.000	0.982	1.000	0.143	0.262	0.130	1.043	0.953	0.992	0.976	0.308	0.000	0.414
Q	1	0.988	0.976	0.990	0.988	0.196	0.150	0.267	1.024	1.129	1.001	1.062	0.991	0.105	0.973
	2	0.978	0.948	0.987	0.974	0.120	0.098	0.151	1.021	0.997	0.994	0.998	0.240	0.019	0.173
	3	0.984	0.959	0.989	0.979	0.245	0.150	0.270	1.022	0.985	0.991	0.993	0.179	0.001	0.140
	4	0.979	0.984	0.988	0.992	0.265	0.311	0.230	1.019	0.989	0.995	0.995	0.120	0.000	0.093
	5	0.977	1.053	0.987	1.026	0.294	0.182	0.243	1.016	0.900	0.988	0.949	0.007	0.000	0.007
VS	1	1.030	0.604	0.928	0.777	0.017	0.037	0.019	0.927	1.452	0.962	1.205	0.422	0.150	0.588
	2	1.015	0.415	0.880	0.644	0.000	0.000	0.001	0.874	1.067	0.907	1.033	0.181	0.150	0.277
	3	1.047	0.420	0.883	0.648	0.002	0.000	0.002	0.929	0.804	0.892	0.897	0.209	0.790	0.214
	4	1.051	0.355	0.872	0.596	0.006	0.000	0.002	0.933	0.625	0.855	0.791	0.167	0.423	0.124
	5	1.087	0.333	0.878	0.577	0.008	0.001	0.006	0.934	0.646	0.849	0.803	0.187	0.150	0.123
Switzerland									Greece						
GJR	1	0.978	1.062	0.995	1.030	0.850	0.663	0.844	1.143	1.120	1.045	1.058	0.068	0.169	0.120
	2	0.967	0.998	0.987	0.999	0.316	0.744	0.386	1.100	1.129	1.047	1.063	0.014	0.003	0.019
	3	0.983	1.117	0.995	1.057	0.879	0.231	0.878	1.054	1.224	1.033	1.106	0.004	0.005	0.005
	4	0.975	1.089	0.983	1.044	0.392	0.586	0.409	1.019	1.129	1.031	1.063	0.006	0.005	0.006
	5	0.974	1.016	0.979	1.008	0.343	0.663	0.296	1.017	1.074	1.024	1.036	0.022	0.007	0.014
Q	1	1.002	1.069	1.007	1.034	0.346	0.663	0.502	1.026	1.068	1.017	1.033	0.159	0.700	0.270
	2	0.998	1.046	1.005	1.023	0.580	0.744	0.633	1.002	0.976	1.008	0.988	0.441	0.350	0.491
	3	0.996	1.118	1.006	1.057	0.490	0.192	0.508	1.000	0.984	0.997	0.992	0.910	0.111	0.918
	4	0.988	1.148	1.005	1.071	0.628	0.328	0.604	0.996	0.976	0.980	0.988	0.188	0.000	0.169
	5	0.991	1.113	1.006	1.055	0.611	0.514	0.552	0.955	0.953	0.959	0.976	0.054	0.000	0.027
VS	1	0.963	1.121	0.938	1.059	0.096	0.446	0.123	1.078	1.725	1.203	1.313	0.000	0.000	0.009
	2	0.945	0.960	0.912	0.980	0.015	0.586	0.035	1.082	1.644	1.173	1.282	0.010	0.000	0.014
	3	0.967	0.898	0.897	0.948	0.014	0.082	0.009	1.074	1.395	1.124	1.181	0.036	0.111	0.035
	4	0.972	0.770	0.883	0.878	0.003	0.001	0.004	1.088	1.125	1.098	1.061	0.087	0.956	0.065
	5	0.979	0.620	0.876	0.787	0.002	0.000	0.001	1.002	0.918	1.031	0.958	0.534	0.869	0.480
China									Singapore						
GJR	1	1.204	0.912	0.999	0.955	0.276	0.582	0.988	1.115	0.974	1.045	0.987	0.203	0.186	0.428
	2	1.138	0.896	0.975	0.946	0.556	0.660	0.718	1.023	0.917	0.997	0.957	0.688	0.000	0.905
	3	1.057	0.901	0.961	0.949	0.823	0.582	0.609	0.999	0.927	0.976	0.963	0.724	0.000	0.254
	4	0.985	0.875	0.959	0.935	0.968	0.826	0.629	0.991	0.944	0.978	0.972	0.234	0.000	0.125
	5	1.072	0.781	0.962	0.884	0.844	0.186	0.731	0.987	0.932	0.972	0.965	0.109	0.000	0.030
Q	1	0.944	1.022	0.977	1.011	0.006	0.152	0.121	1.621	1.362	1.337	1.167	0.150	0.036	0.081
	2	0.861	1.041	0.933	1.020	0.024	0.015	0.023	1.116	1.406	3.782	1.186	0.286	0.000	0.252
	3	0.832	0.952	0.915	0.976	0.097	0.000	0.020	1.980	1.183	2.231	1.088	0.309	0.000	0.293
	4	0.747	0.863	0.893	0.929	0.133	0.000	0.043	1.432	1.325	1.234	1.151	0.312	0.000	0.305
	5	0.640	0.822	0.853	0.906	0.167	0.000	0.050	1.230	1.247	2.976	1.117	0.311	0.000	0.311
VS	1	1.578	2.135	1.166	1.461	0.183	0.000	0.087	1.012	1.744	1.077	1.321	0.933	0.000	0.857
	2	1.241	1.170	0.979	1.082	0.512	0.099	0.827	0.987	1.602	1.043	1.266	0.154	0.000	0.172
	3	0.935	0.709	0.823	0.842	0.848	0.322	0.139	0.985	1.506	1.036	1.227	0.285	0.000	0.143
	4	0.674	0.553	0.691	0.744	0.261	0.001	0.036	0.975	1.502	1.017	1.226	0.106	0.000	0.088
	5	0.478	0.383	0.612	0.619	0.205	0.000	0.029	0.972	1.424	1.009	1.193	0.116	0.000	0.086

Table 4. Classical evaluation criteria for each stock price index (continued)

Japan

Model	h	MSPE	MedSPE MAPE MedAPE	DM	\boldsymbol{S}	$\boldsymbol{N W}$		
GJR	2	0.855	0.586	0.845	0.766	0.208	0.004	0.035
	3	0.854	0.537	0.846	0.733	0.251	0.006	0.011
	4	0.825	0.619	0.833	0.787	0.241	0.001	0.005
	5	0.817	0.563	0.809	0.750	0.295	0.000	0.004
Q	1	1.170	1.354	1.086	1.163	0.123	0.152	0.053
	2	1.226	1.332	0.963	1.154	0.308	0.152	0.249
	3	1.023	1.580	0.976	1.257	0.286	0.582	0.215
	4	1.234	1.235	0.912	1.111	0.312	0.441	0.312
	5	0.999	1.042	1.036	1.021	0.311	0.021	0.314
VS	1	0.776	0.871	0.885	0.933	0.089	0.741	0.697
	2	0.787	0.638	0.805	0.799	0.073	0.099	0.015
	3	0.846	0.479	0.801	0.692	0.240	0.048	0.001
	4	0.859	0.372	0.759	0.610	0.369	0.000	0.000
	5	0.840	0.281	0.712	0.530	0.410	0.000	0.000

Notes to Table 4: For each stock index and each asymmetric GARCH model, the entries of the first four columns are the calculated values from each evaluation criterion divided by the value taken by the same criterion when applied to the standard $\operatorname{GARCH}(1,1)$ model on the same forecasting horizon.

Table 5. NW test after removing extreme observations

P-values of the NW test

Model	h	Holland	Belgium	Germany	U.K.	Italy	France	Spain	Portugal Switzerl. Greece	China	Sing.	Japan		
GJR	1	0.861	0.768	0.161	0.543	0.875	0.058	0.077	0.248	0.656	0.059	0.565	0.182	0.469
	2	0.877	0.522	0.067	0.734	0.654	0.176	0.081	0.769	0.579	0.005	0.304	0.058	0.020
	3	0.696	0.127	0.433	0.722	0.622	0.059	0.102	0.472	0.812	0.006	0.919	0.128	0.002
	4	0.540	0.220	0.229	0.248	0.906	0.047	0.071	0.577	0.805	0.009	0.385	0.197	0.000
	5	0.951	0.496	0.239	0.142	0.416	0.126	0.246	0.280	0.776	0.056	0.292	0.114	0.000
	1	0.986	0.667	0.103	0.889	0.187	0.263	0.084	0.728	0.686	0.979	0.417	0.064	0.067
Q	2	0.287	0.456	0.479	0.920	0.125	0.948	0.714	0.073	0.448	0.349	0.013	0.252	0.249
	3	0.150	0.317	0.428	0.635	0.012	0.459	0.399	0.030	0.503	0.422	0.002	0.304	0.307
	4	0.016	0.220	0.511	0.325	0.132	0.534	0.423	0.008	0.599	0.039	0.008	0.312	0.314
	5	0.019	0.143	0.246	0.358	0.110	0.666	0.661	0.000	0.411	0.174	0.006	0.270	0.521
VS	1	0.095	0.120	0.281	0.000	0.991	0.014	0.021	0.530	0.307	0.000	0.105	0.622	0.833
	2	0.004	0.000	0.037	0.063	0.000	0.010	0.000	0.980	0.027	0.000	0.752	0.717	0.002
	3	0.007	0.005	0.045	0.107	0.000	0.001	0.000	0.648	0.006	0.018	0.072	0.781	0.000
	4	0.006	0.005	0.006	0.259	0.000	0.003	0.000	0.168	0.006	0.121	0.001	0.476	0.000
	5	0.007	0.007	0.012	0.766	0.000	0.000	0.001	0.261	0.005	0.547	0.000	0.408	0.000

Notes to Table 5: The NW test is a standard t-test of the null hypothesis of zero constant, where the estimated variancecovariance matrix of the coefficients is computed using the Newey-West correction. Observations which exceed, in absolute value, three times the standard error of the loss differential have been removed.

Table 6. Mincer-Zarnowitz regression

		Holland					Belgium				
Model	h	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
GARCH	a	1.985	1.038	2.275	2.662	2.635	1.588	0.872	2.293	2.433	2.464
		(0.939)	(0.953)	(0.962)	(0.964)	(0.915)	(0.761)	(0.773)	(0.825)	(0.852)	(0.876)
	b	0.671	0.615	0.551	0.552	0.813	0.126	0.131	0.144	0.152	0.159
		(0.103)	(0.104)	(0.105)	(0.104)	(0.100)	(0.734)	(0.895)	(0.584)	(0.557)	(0.553)
	R^{2}	0.104	0.153	0.088	0.071	0.072	0.086	0.113	0.043	0.036	0.032
GJR	a	1.977	1.054	2.408	2.772	2.740	1.136	0.052	1.909	2.020	1.899
		(0.925)	(0.900)	(0.940)	(0.949)	(0.949)	(0.746)	(0.756)	(0.834)	(0.872)	(0.907)
	b	0.675	0.814	0.597	0.537	0.539	0.859	1.117	0.699	0.682	0.717
		(0.101)	(0.098)	(0.102)	(0.102)	(0.102)	(0.127)	(0.134)	(0.153)	(0.166)	(0.177)
	R^{2}	0.109	0.160	0.087	0.071	0.072	0.112	0.161	0.054	0.044	0.043
Q	a	1.971	1.041	2.310	2.698	2.669	1.517	0.660	2.169	2.293	2.308
		(0.926)	(0.901)	(0.940)	(0.950)	(0.952)	(0.756)	(0.768)	(0.827)	(0.857)	(0.884)
	b	0.669	0.804	0.602	0.538	0.538	0.766	0.961	0.628	0.603	0.607
		(0.100)	(0.097)	(0.100)	(0.101)	(0.100)	(0.127)	(0.133)	(0.148)	(0.158)	(0.167)
	R^{2}	0.109	0.159	0.090	0.073	0.073	0.091	0.125	0.047	0.039	0.035
VS	a	1.744	-1.549	2.020	2.741	4.014	1.254	-2.022	0.934	0.869	-0.379
		(1.027)	(1.059)	(1.248)	(1.332)	(1.372)	(0.790)	(0.789)	(0.983)	(1.132)	(1.309)
	b	1.101	2.194	1.343	1.230	0.852	1.146	2.521	1.655	1.878	2.687
		(0.188)	(0.238)	(0.330)	(0.399)	(0.450)	(0.190)	(0.234)	(0.349)	(0.467)	(0.610)
	R^{2}	0.086	0.189	0.043	0.025	0.010	0.091	0.242	0.058	0.043	0.051

Table 6. Mincer-Zarnowitz regression (continued)

Germany							U.K.				
Model	h	1	2	3	4	5	1	2	3	4	5
GARCH	a	2.458	1.218	3.263	2.716	2.443	2.547	1.643	2.097	1.377	1.699
		(1.416)	(1.422)	(1.487)	(1.509)	(1.536)	(0.839)	(0.878)	(0.900)	(0.896)	(0.898)
	b	0.740	0.904	0.636	0.709	0.747	0.415	0.595	0.493	0.632	0.563
		(0.150)	(0.153)	(0.162)	(0.166)	(0.172)	(0.159)	(0.166)	(0.168)	(0.166)	(0.165)
	R^{2}	0.063	0.088	0.041	0.047	0.049	0.018	0.034	0.023	0.038	0.031
GJR	a	2.195	-0.151	3.470	2.271	1.904	3.107	2.080	2.141	1.247	1.616
		(1.408)	(1.430)	(1.566)	(1.628)	(1.705)	(0.667)	(0.723)	(0.769)	(0.785)	(0.807)
	b	0.805	1.141	0.648	0.826	0.888	0.284	0.488	0.469	0.642	0.565
		(0.155)	(0.163)	(0.185)	(0.199)	(0.215)	(0.114)	(0.126)	(0.135)	(0.138)	(0.142)
	R^{2}	0.069	0.118	0.033	0.045	0.045	0.017	0.040	0.032	0.056	0.042
Q	a	2.202	-0.215	3.206	2.261	1.785	2.510	1.280	1.745	0.912	1.335
		(1.484)	(1.531)	(1.680)	(1.769)	(1.868)	(0.832)	(0.905)	(0.953)	(0.967)	(0.987)
	b	0.825	1.180	0.702	0.846	0.924	0.421	0.674	0.576	0.751	0.656
		(0.171)	(0.184)	(0.209)	(0.227)	(0.246)	(0.158)	(0.174)	(0.184)	(0.187)	(0.192)
	R^{2}	0.060	0.102	0.030	0.037	0.037	0.019	0.039	0.026	0.042	0.031
VS	a	4.236	-1.797	5.419	4.174	5.853	3.378	3.238	4.074	3.263	3.906
		(1.539)	(1.687)	(2.056)	(2.346)	(2.616)	(0.706)	(0.705)	(0.697)	(0.676)	(0.659)
	b	0.727	2.049	0.596	0.933	0.555	0.205	0.241	0.083	0.253	0.121
		(0.241)	(0.307)	(0.420)	(0.524)	(0.624)	(0.110)	(0.115)	(0.118)	(0.117)	(0.117)
	R^{2}	0.024	0.109	0.005	0.009	0.002	0.009	0.012	0.001	0.013	0.003
GARCH			Italy						France		
	a	5.036	4.392	4.943	4.615	3.706	3.605	2.138	3.502	3.665	4.176
		(2.283)	(2.335)	(2.397)	(2.453)	(2.507)	(1.754)	(1.778)	(1.822)	(1.857)	(1.892)
	b	0.462	0.530	0.471	0.507	0.600	0.575	0.775	0.583	0.563	0.497
		(0.232)	(0.238)	(0.245)	(0.251)	(0.257)	(0.219)	(0.224)	(0.231)	(0.236)	(0.242)
	R^{2}	0.011	0.013	0.010	0.011	0.015	0.019	0.032	0.017	0.015	0.012
GJR	a	6.200	5.650	5.741	5.577	4.576	2.667	1.145	2.929	3.202	4.211
		(2.248)	(2.305)	(2.368)	(2.430)	(2.489)	(1.725)	(1.750)	(1.808)	(1.851)	(1.899)
	b	0.344	0.405	0.395	0.414	0.520	0.712	0.928	0.682	0.644	0.509
		(0.233)	(0.240)	(0.248)	(0.255)	(0.262)	(0.222)	(0.227)	(0.236)	(0.242)	(0.250)
	R^{2}	0.006	0.008	0.007	0.007	0.011	0.028	0.044	0.023	0.019	0.011
Q	a	5.349	4.744	5.189	4.911	3.930	3.214	1.975	3.558	4.083	4.826
		(2.303)	(2.362)	(2.429)	(2.494)	(2.555)	(1.628)	(1.661)	(1.721)	(1.771)	(1.823)
	b	0.436	0.502	0.454	0.485	0.588	0.638	0.814	0.596	0.522	0.425
		(0.238)	(0.245)	(0.253)	(0.261)	(0.268)	(0.208)	(0.213)	(0.222)	(0.230)	(0.238)
	R^{2}	0.009	0.011	0.009	0.009	0.013	0.025	0.039	0.019	0.014	0.009
VS	a	9.278	9.115	9.551	9.139	7.920	5.068	0.814	6.672	4.661	10.715
		(0.861)	(0.932)	(1.155)	(1.730)	(2.671)	(1.871)	(2.133)	(2.450)	(2.678)	(2.819)
	b	0.001	0.019	-0.040	0.023	0.240	0.510	1.378	0.253	0.708	-0.647
		(0.023)	(0.052)	(0.118)	(0.254)	(0.470)	(0.320)	(0.401)	(0.496)	(0.573)	(0.631)
	R^{2}	0.000	0.000	0.000	0.000	0.001	0.007	0.032	0.001	0.004	0.003

Table 6. Mincer-Zarnowitz regression (continued)

		Spain						Portugal				
Model	h	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
GARCH	a	2.321	1.441	2.474	2.719	1.798	2.481	2.615	4.334	4.536	4.592	
		(1.177)	(1.185)	(1.226)	(1.251)	(1.255)	(1.168)	(1.187)	(1.230)	(1.242)	(1.251)	
	b	0.667	0.810	0.651	0.617	0.756	0.590	0.565	0.312	0.280	0.271	
		(0.142)	(0.144)	(0.150)	(0.154)	(0.156)	(0.104)	(0.106)	(0.110)	(0.110)	(0.111)	
	R^{2}	0.060	0.083	0.051	0.044	0.063	0.084	0.075	0.023	0.018	0.017	
GJR	a	2.065	0.765	2.056	1.986	0.671	3.304	3.104	5.313	5.329	5.427	
		(1.156)	(1.161)	(1.220)	(1.252)	(1.261)	(1.202)	(1.212)	(1.249)	(1.257)	(1.264)	
	b	0.718	0.932	0.734	0.751	0.960	0.475	0.502	0.176	0.173	0.159	
		(0.140)	(0.144)	(0.153)	(0.160)	(0.164)	(0.109)	(0.110)	(0.114)	(0.114)	(0.115)	
	R^{2}	0.070	0.108	0.061	0.059	0.089	0.051	0.056	0.007	0.006	0.005	
Q	a	2.131	1.010	2.129	2.197	1.099	2.650	2.711	4.494	4.752	4.856	
		(1.160)	(1.167)	(1.218)	(1.248)	(1.257)	(1.131)	(1.150)	(1.192)	(1.205)	(1.213)	
	b	0.708	0.893	0.720	0.714	0.885	0.558	0.542	0.266	0.237	0.227	
		(0.141)	(0.144)	(0.152)	(0.158)	(0.161)	(0.104)	(0.107)	(0.111)	(0.112)	(0.113)	
	R^{2}	0.067	0.099	0.060	0.055	0.079	0.073	0.066	0.016	0.012	0.011	
VS	a	3.257	-0.621	1.257	-0.286	-3.803	2.088	0.439	4.278	4.903	4.466	
		(1.139)	(1.185)	(1.382)	(1.536)	(1.658)	(1.103)	(1.147)	(1.355)	(1.499)	(1.647)	
	b	0.792	1.987	1.687	2.402	3.906	0.802	1.277	0.528	0.421	0.585	
		(0.203)	(0.260)	(0.362)	(0.462)	(0.557)	(0.115)	(0.154)	(0.225)	(0.297)	(0.372)	
	R^{2}	0.042	0.143	0.059	0.072	0.123	0.123	0.165	0.015	0.006	0.007	

$\left.\left.\begin{array}{lcccccc}\text { Model } & h & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \text { GARCH } & a & 1.689 & 1.743 & 1.768 & 1.630 & 2.007 \\ & & (0.458) & (0.459) & (0.458) & (0.454) & (0.459) \\ & b & 0.336 & 0.309 & 0.292 & 0.327 & 0.202 \\ & & (0.097) & (0.094) & (0.091) & (0.087) & (0.085) \\ & R^{2} & 0.035 & 0.032 & 0.030 & 0.041 & 0.017 \\ \text { GJR } & a & 1.222 & 1.268 & 1.376 & 1.087 & 1.702 \\ & & (0.434) & (0.443) & (0.454) & (0.455) & (0.477) \\ & b & 0.593 & 0.597 & 0.570 & 0.720 & 0.453 \\ & & (0.104) & (0.113) & (0.123) & (0.131) & (0.145) \\ & R^{2} & 0.090 & 0.078 & 0.061 & 0.084 & 0.029 \\ & a & 3.086 & 3.326 & 3.147 & 2.912 & 3.023 \\ \text { Q } & & (0.406) & (0.458) & (0.427) & (0.355) & (0.384) \\ & b & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\ & & (0.001) & (0.000) & (0.000) & (0.000) & (0.000) \\ & R^{2} & 0.000 & 0.000 & 0.002 & 0.008 & 0.003 \\ & & & 0.594 & 0.689 & 1.254 & 0.959\end{array}\right) 1.950\right)$

Table 6. Mincer-Zarnowitz regression (continued)

Switzerland							Greece				
Model	h	1	2	3	4	5	1	2	3	4	5
GARCH	a	$\begin{gathered} 2.403 \\ (1.170) \end{gathered}$	$\begin{gathered} 2.245 \\ (1.174) \end{gathered}$	$\begin{gathered} 3.965 \\ (1.212) \end{gathered}$	$\begin{gathered} 3.903 \\ (1.218) \end{gathered}$	$\begin{gathered} 3.778 \\ (1.224) \end{gathered}$	$\begin{aligned} & 16.267 \\ & (4.024) \end{aligned}$	$\begin{aligned} & 15.951 \\ & (4.328) \end{aligned}$	$\begin{aligned} & 14.134 \\ & (4.650) \end{aligned}$	$\begin{gathered} 9.855 \\ (4.960) \end{gathered}$	$\begin{aligned} & 16.867 \\ & (5.341) \end{aligned}$
	b	$\begin{gathered} 0.658 \\ (0.133) \end{gathered}$	$\begin{gathered} 0.688 \\ (0.135) \end{gathered}$	$\begin{gathered} 0.407 \\ (0.140) \end{gathered}$	$\begin{gathered} 0.426 \\ (0.142) \end{gathered}$	$\begin{gathered} 0.447 \\ (0.143) \end{gathered}$	$\begin{gathered} 0.185 \\ (0.128) \end{gathered}$	$\begin{gathered} 0.197 \\ (0.143) \end{gathered}$	$\begin{gathered} 0.268 \\ (0.157) \end{gathered}$	$\begin{gathered} 0.437 \\ (0.169) \end{gathered}$	$\begin{gathered} 0.151 \\ (0.183) \end{gathered}$
	R^{2}	0.068	0.072	0.024	0.026	0.028	0.006	0.006	0.009	0.020	0.002
GJR	a	$\begin{gathered} 1.904 \\ (1.178) \end{gathered}$	$\begin{gathered} 1.431 \\ (1.188) \end{gathered}$	$\begin{gathered} 3.696 \\ (1.251) \end{gathered}$	$\begin{gathered} 3.440 \\ (1.269) \end{gathered}$	$\begin{gathered} 3.252 \\ (1.289) \end{gathered}$	$\begin{aligned} & 17.506 \\ & (3.539) \end{aligned}$	$\begin{aligned} & 17.752 \\ & (3.848) \end{aligned}$	$\begin{aligned} & 15.889 \\ & (4.198) \end{aligned}$	$\begin{aligned} & 10.922 \\ & (4.576) \end{aligned}$	$\begin{aligned} & 16.346 \\ & (5.059) \end{aligned}$
	b	$\begin{gathered} 0.735 \\ (0.135) \end{gathered}$	$\begin{gathered} 0.823 \\ (0.140) \end{gathered}$	$\begin{gathered} 0.454 \\ (0.151) \end{gathered}$	$\begin{gathered} 0.509 \\ (0.156) \end{gathered}$	$\begin{gathered} 0.545 \\ (0.162) \end{gathered}$	$\begin{gathered} (3.539) \\ 0.122 \end{gathered}$	$\begin{gathered} 0.114 \\ (0.110) \end{gathered}$	$\begin{gathered} (4.198) \\ 0.185 \end{gathered}$	$\begin{gathered} (4.576) \\ 0.378 \end{gathered}$	$\begin{gathered} (5.059) \\ 0.165 \end{gathered}$
	R^{2}	0.081	0.093	0.026	0.030	0.032	0.005	0.003	0.006	0.020	0.003
Q	a	$\begin{gathered} 2.271 \\ (1.201) \end{gathered}$	$\begin{gathered} 1.972 \\ (1.210) \end{gathered}$	$\begin{gathered} 3.889 \\ (1.254) \end{gathered}$	$\begin{gathered} 3.618 \\ (1.265) \end{gathered}$	$\begin{gathered} 3.551 \\ (1.278) \end{gathered}$	$\begin{aligned} & 17.567 \\ & (3.924) \end{aligned}$	$\begin{aligned} & 17.051 \\ & (4.316) \end{aligned}$	$\begin{aligned} & 16.074 \\ & (4.743) \end{aligned}$	$\begin{aligned} & 11.447 \\ & (5.142) \end{aligned}$	$\begin{aligned} & 12.856 \\ & (5.546) \end{aligned}$
	b	$\begin{gathered} 0.665 \\ (0.137) \end{gathered}$	$\begin{gathered} 0.717 \\ (0.140) \end{gathered}$	$\begin{gathered} 0.408 \\ (0.147) \end{gathered}$	$\begin{gathered} 0.460 \\ (0.150) \end{gathered}$	$\begin{gathered} 0.471 \\ (0.153) \end{gathered}$	$\begin{gathered} 0.124 \\ (0.121) \end{gathered}$	$\begin{gathered} 0.148 \\ (0.144) \end{gathered}$	$\begin{gathered} 0.190 \\ (0.166) \end{gathered}$	$\begin{gathered} 0.385 \\ (0.185) \end{gathered}$	$\begin{gathered} 0.324 \\ (0.203) \end{gathered}$
	R^{2}	0.065	0.072	0.022	0.027	$\begin{gathered} (0.153) \\ 0.027 \end{gathered}$	0.003	0.003	0.004	0.013	0.008
VS	a	$\begin{gathered} 1.112 \\ (1.245) \end{gathered}$	$\begin{aligned} & -1.130 \\ & (1.285) \end{aligned}$	$\begin{gathered} 2.802 \\ (1.477) \end{gathered}$	$\begin{gathered} 1.736 \\ (1.602) \\ 1.255 \\ (0.358) \\ 0.035 \end{gathered}$	$\begin{gathered} 0.353 \\ (1.752) \\ 1.754 \\ (0.439) \\ 0.045 \end{gathered}$	$\begin{gathered} 13.728 \\ (4.153) \\ 0.208 \\ (0.100) \\ 0.013 \end{gathered}$	$\begin{gathered} 14.970 \\ (4.238) \\ 0.178 \\ (0.109) \\ 0.008 \end{gathered}$	$\begin{gathered} 14.533 \\ (4.316) \\ 0.202 \\ (0.117) \\ 0.009 \end{gathered}$	$\begin{gathered} 14.315 \\ (4.396) \\ 0.219 \\ (0.126) \\ 0.009 \end{gathered}$	$\begin{gathered} 13.135 \\ (4.472) \\ 0.273 \\ (0.134) \\ 0.012 \end{gathered}$
	b	$\begin{gathered} 1.015 \\ (0.177) \end{gathered}$	$\begin{gathered} 1.639 \\ (0.217) \\ 0.145 \end{gathered}$	$\begin{gathered} 0.875 \\ (0.290) \\ 0.026 \end{gathered}$							
	R^{2}	0.089									
	h	China					Singapore				
Model		1	2	3	4	5	1	2	3	4	5
GARCH	a	$\begin{gathered} 1.091 \\ (0.276) \end{gathered}$	$\begin{gathered} 1.143 \\ (0.272) \\ 0.105 \\ (0.065) \\ 0.008 \end{gathered}$	$\begin{gathered} 1.169 \\ (0.267) \\ 0.082 \\ (0.054) \\ 0.007 \end{gathered}$	$\begin{gathered} 1.233 \\ (0.262) \\ 0.049 \\ (0.044) \\ 0.004 \end{gathered}$	$\begin{gathered} 1.255 \\ (0.257) \\ 0.036 \\ (0.034) \\ 0.003 \end{gathered}$	$\begin{gathered} 0.487 \\ (0.393) \\ 0.786 \\ (0.173) \\ 0.059 \end{gathered}$	$\begin{gathered} 0.912 \\ (0.502) \\ 0.531 \\ (0.256) \\ 0.013 \end{gathered}$	$\begin{gathered} 1.145 \\ (0.591) \\ 0.395 \\ (0.320) \\ 0.005 \end{gathered}$	$\begin{gathered} 1.551 \\ (0.651) \\ 0.145 \\ (0.360) \\ 0.000 \end{gathered}$	$\begin{gathered} 1.249 \\ (0.683) \\ 0.327 \\ (0.381) \\ 0.002 \end{gathered}$
	b	0.144									
		(0.078)									
	R^{2}	0.010									
GJR	a	$\begin{gathered} 1.155 \\ (0.256) \end{gathered}$	$\begin{gathered} 1.160 \\ (0.257) \\ 0.097 \\ (0.055) \\ 0.009 \end{gathered}$	$\begin{gathered} 1.168 \\ (0.257) \\ 0.084 \\ (0.049) \\ 0.009 \end{gathered}$	$\begin{gathered} 1.227 \\ (0.256) \\ 0.053 \\ (0.043) \\ 0.005 \end{gathered}$	$\begin{gathered} 1.271 \\ (0.250) \\ 0.031 \\ (0.032) \\ 0.003 \end{gathered}$	$\begin{gathered} 1.049 \\ (0.306) \\ 0.436 \\ (0.088) \\ 0.070 \end{gathered}$	$\begin{gathered} 1.073 \\ (0.376) \\ 0.437 \\ (0.159) \\ 0.023 \end{gathered}$	$\begin{gathered} 0.995 \\ (0.506) \\ 0.502 \\ (0.267) \\ 0.011 \end{gathered}$	$\begin{gathered} 1.084 \\ (0.684) \\ 0.450 \\ (0.399) \\ 0.004 \end{gathered}$	$\begin{gathered} 0.321 \\ (0.829) \\ 0.937 \\ (0.499) \\ 0.011 \end{gathered}$
	b	0.108									
		(0.060)									
	R^{2}	0.010									
Q	a	$\begin{gathered} 1.043 \\ (0.275) \end{gathered}$	$\begin{gathered} 1.064 \\ (0.264) \\ 0.133 \\ (0.069) \\ 0.011 \end{gathered}$	$\begin{gathered} 1.103 \\ (0.271) \\ 0.121 \\ (0.063) \\ 0.011 \end{gathered}$	$\begin{gathered} 1.163 \\ (0.267) \\ 0.078 \\ (0.054) \\ 0.006 \end{gathered}$	$\begin{gathered} 1.185 \\ (0.263) \\ 0.065 \\ (0.047) \\ 0.006 \end{gathered}$	$\begin{gathered} 1.276 \\ (0.368) \\ 0.296 \\ (0.081) \\ 0.039 \end{gathered}$	$\begin{gathered} 2.008 \\ (0.291) \\ -0.001 \\ (0.004) \\ 0.000 \end{gathered}$	$\begin{gathered} 1.981 \\ (0.271) \\ 0.000 \\ (0.000) \\ 0.001 \end{gathered}$	$\begin{gathered} 2.072 \\ (0.315) \\ 0.000 \\ (0.000) \\ 0.000 \end{gathered}$	$\begin{gathered} 2.061 \\ (0.285) \\ 0.000 \\ (0.000) \\ 0.000 \end{gathered}$
	b	0.169									
		(0.081)									
	R^{2}	0.013									
VS	a	$\begin{gathered} 1.246 \\ (0.250) \end{gathered}$	$\begin{gathered} 1.246 \\ (0.247) \\ 0.064 \\ (0.050) \\ 0.005 \end{gathered}$	$\begin{gathered} 1.215 \\ (0.244) \\ 0.087 \\ (0.053) \\ 0.008 \end{gathered}$	$\begin{gathered} 1.212 \\ (0.246) \\ 0.098 \\ (0.057) \\ 0.009 \end{gathered}$	$\begin{gathered} 1.276 \\ (0.245) \\ 0.060 \\ (0.060) \\ 0.003 \end{gathered}$	$\begin{gathered} 0.521 \\ (0.365) \\ 0.671 \\ (0.130) \\ 0.075 \end{gathered}$	$\begin{gathered} 0.270 \\ (0.532) \\ 0.846 \\ (0.253) \\ 0.033 \end{gathered}$	$\begin{gathered} 0.335 \\ (0.728) \\ 0.840 \\ (0.386) \\ 0.014 \end{gathered}$	$\begin{gathered} 0.397 \\ (0.838) \\ 0.815 \\ (0.463) \\ 0.009 \end{gathered}$	$\begin{gathered} -0.235 \\ (0.867) \\ 1.195 \\ (0.486) \\ 0.018 \end{gathered}$
	$b$$R^{2}$	$\begin{gathered} 0.055 \\ (0.048) \\ 0.004 \end{gathered}$									

Notes to Table 6: a and b are Ordinary Least Squares estimates of the parameters in regression (16); standard errors calculated using the Newey-West correction are reported in parentheses.

Table 7. Weights of the forecast combination (constant coefficients)

Holland							Belgium				
Model	h	1	2	3	4	5	1	2	3	4	5
Const.		1.448	-2.411	0.730	1.771	2.539	1.508	-4.417	0.924	1.565	0.172
GARCH		-2.386	-0.141	-1.383	-1.663	-1.448	-0.865	3.950	-0.260	-1.007	-0.761
GJR		-1.167	-0.791	-12.320	-6.799	-7.750	5.762	0.379	-1.204	0.441	-0.110
Q		4.043	1.284	14.221	8.937	9.837	-3.556	-5.321	1.150	0.798	0.789
VS		0.476	1.819	0.470	0.374	-0.258	-0.701	4.942	2.068	1.030	2.481
R^{2}		0.139	0.236	0.155	0.097	0.120	0.176	0.384	0.038	0.025	0.031
Germany							U.K.				
Const.		3.845	-5.339	1.815	3.103	5.487	2.341	0.938	2.318	2.394	2.450
GARCH		-0.949	0.037	1.282	0.541	1.525	0.170	-0.023	-0.130	-0.031	0.276
GJR		3.531	1.770	0.365	1.727	2.076	0.030	0.020	0.990	1.827	1.712
Q		-1.846	-1.442	-1.456	-1.739	-3.190	0.460	0.692	-0.041	-0.801	-0.881
VS		-0.364	2.060	0.837	0.109	-0.334	-0.227	0.024	-0.411	-0.657	-0.800
R^{2}		0.097	0.206	0.026	0.038	0.053	0.031	0.055	0.062	0.115	0.101
Italy							France				
Const.		6.155	4.928	6.204	5.365	4.398	-2.161	-6.794	-1.476	1.313	3.417
GARCH		0.721	1.029	1.391	0.801	0.530	-0.212	-0.268	-0.017	-0.636	-0.917
GJR		-0.802	-0.632	0.423	-0.130	-0.118	1.702	2.934	1.235	2.562	2.525
Q		0.481	0.107	-1.397	-0.078	0.402	-0.745	-1.746	-0.415	-1.116	-0.726
VS		0.000	0.025	-0.040	-0.130	-0.308	0.904	1.689	0.811	0.247	-0.345
R^{2}		0.012	0.017	0.010	0.014	0.021	0.075	0.119	0.051	0.043	0.046
Spain							Portugal				
Const.		2.995	-2.194	1.223	-1.362	-6.802	3.244	0.325	7.738	7.994	7.271
GARCH		-1.535	0.795	-1.285	-1.344	-0.375	3.203	4.209	7.781	9.584	10.118
GJR		2.025	-1.691	-1.711	-2.373	-0.119	-7.768	0.393	-8.254	-4.487	-4.524
Q		0.573	0.780	3.492	3.780	0.343	4.902	-4.605	0.713	-5.004	-5.645
VS		-0.634	2.705	0.923	2.937	5.739	0.182	1.199	-0.777	-0.887	-0.624
R^{2}		0.090	0.184	0.087	0.112	0.192	0.284	0.214	0.281	0.209	0.220
Switzerland							Greece				
Const.		2.126	-0.348	3.718	2.088	0.547	11.020	9.981	9.786	9.729	11.289
GARCH		1.007	0.827	1.081	0.158	0.330	0.454	1.308	1.585	0.516	-1.445
GJR		0.479	-0.264	-0.087	-0.210	-0.248	0.336	-0.349	-0.291	0.411	0.745
Q		-1.208	-0.704	-0.854	0.132	-0.141	-0.868	-0.824	-1.311	-0.809	0.702
VS		0.636	1.841	0.652	1.256	2.104	0.328	0.246	0.360	0.226	0.326
R^{2}		0.093	0.153	0.036	0.044	0.060	0.032	0.031	0.046	0.039	0.031
China							Singapore				
Const.		1.020	0.683	1.027	1.173	1.128	0.769	0.241	0.932	1.502	1.250
GARCH		-1.401	-2.856	-0.919	-0.436	-0.359	0.626	0.698	1.279	0.637	-0.900
GJR		-0.114	-0.474	-0.147	-0.107	0.030	-0.226	-0.177	0.788	2.944	2.272
Q		1.864	3.917	1.336	0.684	0.564	0.304	-0.221	-0.412	-0.194	-0.158
VS		-0.073	-0.049	0.011	0.071	-0.108	-0.262	0.470	-0.927	-2.651	-0.730
R^{2}		0.127	0.092	0.086	0.091	0.086	0.135	0.068	0.098	0.077	0.055
Japan											
Const.		0.489	1.185	1.297	0.820	1.186					
GARCH		0.172	-0.036	-0.112	-0.018	-0.013					
GJR		0.089	0.188	0.359	0.099	0.152					
Q		0.000	0.000	-1.040	0.000	0.000					
VS		0.063	-0.033	-0.187	0.384	0.011					
R^{2}		0.099	0.061	0.066	0.092	0.057					

Table 8. Forecast combination with constant weights and Mincer-Zarnowitz regression

Holland							Belgium					
Model	h MSPE	MedSPE	MAPE	MedAPE	DM	S	MSPE	MedSPE	MAPE	MedAPE	DM	S
Comb.	10.914	1.230	0.995	1.109	0.858	0.571	1.046	1.124	1.059	1.063	0.095	0.089
	20.962	0.588	0.918	0.767	0.011	0.038	1.376	1.735	1.150	1.317	0.090	0.089
	31.008	1.304	1.028	1.142	0.559	0.131	1.050	1.120	0.965	1.058	0.569	0.705
	40.893	1.562	0.998	1.250	0.912	0.571	1.012	1.223	0.948	1.106	0.318	0.705
	51.004	1.445	1.061	1.202	0.151	0.038	1.008	1.096	0.959	1.047	0.554	0.450
	h	2	3	4	5		1	2	3	4	5	
a	2.271	2.099	3.424	2.233	3.759		3.554	4.297	1.262	-0.068	0.099	
	(0.533)	(0.624)	(0.312)	(0.457)	(0.204)		(1.401)	(1.243)	(2.445)	(2.619)	(2.651)	
b	1.743	1.395	1.268	1.488	1.278		0.476	0.306	0.964	1.187	1.164	
	(0.194)	(0.165)	(0.123)	(0.155)	(0.116)		(0.169)	(0.117)	(0.415)	(0.445)	(0.455)	
R^{2}	0.064	0.114	0.055	0.072	0.027		0.067	0.059	0.046	0.060	0.056	
Germany							U.K.					
Model	h MSPE	MedSPE	MAPE	MedAPE	DM	S	MSPE	MedSPE	MAPE	MedAPE	DM	S
Comb.	11.210	0.708	0.977	0.841	0.661	0.059	0.979	0.621	0.918	0.788	0.004	0.000
	21.270	0.741	1.046	0.861	0.367	0.705	0.967	0.703	0.929	0.838	0.001	0.000
	30.968	0.727	0.913	0.853	0.010	0.001	0.915	0.717	0.905	0.847	0.006	0.014
	40.946	0.813	0.927	0.901	0.034	0.001	0.985	0.804	0.954	0.897	0.191	0.850
	51.023	0.761	0.977	0.872	0.565	0.257	0.979	0.979	0.987	0.989	0.918	0.089
	${ }^{\text {h }} 1$	2	3	4	5		1	2	3	4	5	
a	13.909	10.147	2.296	0.047	4.242		8.828	4.018	1.421	4.507	3.710	
	(3.063)	(2.160)	(2.963)	(3.250)	(2.302)		(4.054)	(3.711)	(2.915)	(2.113)	(1.811)	
b	-0.327	0.083	0.877	1.076	0.530		0.655	0.324	0.796	0.179	0.283	
	(0.322)	(0.195)	(0.285)	(0.310)	(0.181)		(0.829)	(0.703)	(0.545)	(0.363)	(0.294)	
R^{2}	0.009	0.002	0.079	0.098	0.072		0.006	0.002	0.019	0.002	0.008	
			Italy						Fra	nce		
Comb.	10.997	1.334	1.027	1.155	0.274	0.014	1.040	0.970	1.048	0.985	0.137	0.257
	20.992	1.137	1.024	1.066	0.375	0.005	1.087	1.272	1.101	1.128	0.027	0.186
	31.005	1.128	1.031	1.062	0.397	0.002	1.017	1.347	1.042	1.161	0.076	0.450
	41.003	1.385	1.039	1.177	0.184	0.002	0.984	1.245	1.022	1.116	0.511	0.571
	51.021	1.358	1.051	1.165	0.015	0.000	1.010	1.317	1.026	1.148	0.449	0.705
	${ }^{\text {h }} 1$	2	3	4	5		1	2	3	4	5	
a	-8.324	-2.438	-2.161	0.010	1.670		9.936	7.446	10.587	7.452	22.382	
	(8.578)	(7.091)	(9.088)	(7.001)	(5.622)		(4.199)	(3.338)	(5.370)	(6.626)	(6.905)	
b	1.613	1.039	1.015	0.742	0.547		0.191	0.076	-0.273	0.069	-1.588	
	(0.839)	(0.691)	(0.902)	(0.664)	(0.515)		(0.430)	(0.308)	(0.566)	(0.719)	(0.767)	
R^{2}	0.032	0.020	0.011	0.011	0.010		0.002	0.001	0.002	0.000	0.037	

Table 8. Forecast combination with constant weights and Mincer-Zarnowitz regression (continued)

Spain								Portugal					
Model	h	MSPE	MedSPE	MAPE	MedAPE	DM	S	MSPE	MedSPE	MAPE	MedAPE	DM	S
Comb.	1	0.976	1.232	1.035	1.110	0.046	0.089	0.949	1.230	0.954	1.109	0.145	0.571
	2	1.079	0.957	1.059	0.978	0.245	0.450	1.248	1.119	1.145	1.057	0.006	0.008
	3	1.004	1.643	1.090	1.282	0.016	0.008	1.057	1.954	1.081	1.398	0.131	0.059
	4	1.197	1.772	1.182	1.331	0.011	0.005	1.282	2.348	1.185	1.532	0.008	0.008
	5	1.397	1.434	1.247	1.197	0.011	0.005	1.358	2.245	1.202	1.498	0.026	0.001
a	h	1	2	3	4	5		1	2	3	4	5	
		5.395	5.104	5.817	8.142	7.211		2.921	5.393	6.335	9.762	9.739	
		(2.897)	(1.709)	(2.547)	(1.988)	(1.528)		(2.170)	(1.348)	(3.302)	(2.087)	(1.693)	
b		0.135	0.191	0.114	-0.135	-0.025		0.432	0.021	-0.139	-0.629	-0.649	
		(0.389)	(0.186)	(0.292)	(0.197)	(0.135)		(0.357)	(0.180)	(0.478)	(0.277)	(0.226)	
R^{2}		0.001	0.009	0.001	0.004	0.000		0.013	0.000	0.001	0.045	0.069	
Comb.	Switzerland							Greece					
	1	1.007	2.151	1.105	1.468	0.000	0.000	0.951	0.500	0.877	0.707	0.001	0.008
	2	0.989	2.016	1.136	1.420	0.001	0.000	0.965	0.591	0.901	0.769	0.002	0.002
	3	0.993	2.593	1.145	1.610	0.001	0.000	1.005	0.542	0.921	0.737	0.047	0.014
	4	1.001	2.329	1.169	1.526	0.006	0.000	0.990	0.490	0.871	0.700	0.000	0.000
	5	1.122	2.724	1.272	1.651	0.000	0.000	0.973	0.362	0.872	0.601	0.002	0.000
a	h	1	2	3	4	5		1	2	3	4	5	
		-1.701	-0.009	8.401	7.216	10.195		11.910	25.296	32.050	43.502	17.077	
		(2.164)	(1.838)	(3.531)	(3.631)	(3.481)		(10.670)	(14.924)	(12.526)	(18.767)	(11.816)	
b		0.939	0.648	-0.529	-0.337	-0.669		0.517	-0.049	-0.305	-0.781	0.386	
		(0.309)	(0.235)	(0.487)	(0.466)	(0.410)		(0.411)	(0.577)	(0.478)	(0.809)	(0.477)	
R^{2}		0.077	0.064	0.011	0.005	0.023		0.014	0.000	0.004	0.008	0.006	
Comb.	China							Singapore					
	1	0.868	1.110	0.958	1.054	0.055	0.686	0.925	1.833	1.116	1.354	0.030	0.419
	2	0.953	0.944	0.985	0.971	0.568	0.840	0.891	0.585	0.861	0.765	0.024	0.009
	3	0.883	1.206	0.943	1.098	0.057	0.686	2.189	2.008	1.546	1.417	0.001	0.000
	4	0.911	1.285	0.970	1.133	0.009	0.686	3.629	4.256	2.094	2.063	0.000	0.000
	5	0.951	1.063	0.948	1.031	0.230	0.544	8.308	1.596	1.570	1.263	0.182	0.000
a	h	1	2	3	4	5		1	2	3	4	5	
		0.592	0.685	0.281	-0.119	1.919		0.856	1.170	1.197	1.319	1.137	
		(0.662)	(0.334)	(0.840)	(1.503)	(1.281)		(0.664)	(0.488)	(0.319)	(0.345)	(0.279)	
b		0.332	0.279	0.566	0.819	-0.687		0.147	-0.016	-0.023	-0.050	0.012	
		(0.485)	(0.226)	(0.617)	(1.066)	(0.980)		(0.309)	(0.325)	(0.081)	(0.063)	(0.034)	
R^{2}		0.005	0.015	0.009	0.006	0.005		0.002	0.000	0.001	0.006	0.001	
Comb.	Japan												
	1	0.838	0.520	0.752	0.721	0.068	0.000						
	2	0.789	0.828	0.816	0.910	0.032	0.106						
	3	0.754	0.838	0.797	0.915	0.091	0.686						
	4	0.781	0.743	0.799	0.862	0.217	0.026						
	5	0.676	0.719	0.737	0.848	0.113	0.419						
a	h	1	2	3	4	5							
		0.192	5.269	2.754	2.796	1.807							
		(0.882)	(3.502)	(1.961)	(1.287)	(3.785)							
b		1.045	-3.043	-1.160	-1.164	-0.487							
		(0.851)	(2.621)	(1.435)	(0.910)	(2.691)							
R^{2}		0.015	0.014	0.007	0.017	0.000							

[^7]Table 9. Rolling windows for forecast combination with variable weights

Stock market	Size of the rolling window
Holland	35 weekly obs.
Belgium	20 weekly obs.
Germany	15 weekly obs.
U.K.	25 weekly obs.
Italy	25 weekly obs.
France	35 weekly obs.
Spain	35 weekly obs.
Portugal	25 weekly obs.
Switzerland	20 weekly obs.
Greece	15 weekly obs.
China	20 weekly obs.
Singapore	25 weekly obs.
Japan	35 weekly obs.

Temporal evolution of the five combination coefficients

Figure 1. Temporal evolution of the five combination coefficients (constant included) relative to the 5 -step-ahead forecasts for Italy.

Table 10. Forecast combination with variable weights and Mincer-Zarnowitz regression

Holland							Belgium					
Model	h MSPE	MedSPE	MAPE	MedAPE	DM	S	MSPE	MedSPE	MAPE	MedAPE	DM	S
Comb.	11.118	1.203	1.325	1.097	0.003	0.741	2.048	1.325	1.330	1.135	0.067	0.000
	21.166	1.214	1.268	1.102	0.252	0.036	2.771	1.275	1.395	1.132	0.000	0.000
	31.116	1.317	1.299	1.148	0.185	0.271	1.658	1.173	1.137	1.172	0.094	0.076
	41.259	1.118	1.151	1.057	0.474	0.078	0.949	0.921	1.182	1.149	0.053	0.046
	51.287	1.470	1.320	1.213	0.298	0.099	0.990	0.853	0.920	1.005	0.138	0.419
a	$h 1$	2	3	4	5		1	2	3	4	5	
	2.474	2.415	2.392	2.383	2.530		1.160	1.688	1.055	1.816	2.909	
	(0.708)	(0.707)	(0.700)	(0.759)	(0.700)		(0.556)	(0.511)	(0.562)	(0.580)	(0.559)	
b	0.030	0.045	0.056	0.050	0.020		0.014	0.262	0.006	0.041	0.036	
	(0.043)	(0.041)	(0.038)	(0.060)	(0.036)		(0.011)	(0.027)	(0.017)	(0.027)	(0.021)	
R^{2}	0.111	0.124	0.026	0.082	0.038		0.095	0.212	0.033	0.097	0.129	
			Germany						U.	K.		
Comb.	10.972	0.951	1.292	0.862	0.063	0.008	1.135	0.963	1.159	0.981	0.001	0.329
	21.033	1.030	1.367	0.937	0.032	0.200	1.139	1.187	1.198	1.090	0.000	0.129
	31.271	1.197	1.029	1.124	0.118	0.000	1.278	1.138	1.187	1.067	0.001	0.828
	41.302	0.949	0.973	1.131	0.137	0.000	1.203	0.911	1.188	0.954	0.000	0.193
	51.287	0.926	1.718	1.388	0.051	0.003	1.251	1.128	1.206	1.062	0.003	0.193
	$h 1$	2	3	4	5		1	2	3	4	5	
a	2.363	2.945	2.153	3.993	7.963		2.561	2.966	1.894	1.455	1.864	
	(0.889)	(0.920)	(0.898)	(0.905)	(0.934)		(0.471)	(0.503)	(0.522)	(0.525)	(0.503)	
b	0.011	0.090	0.005	0.016	0.027		0.239	0.119	0.131	0.006	0.117	
	(0.006)	(0.033)	(0.008)	(0.011)	(0.026)		(0.070)	(0.074)	(0.078)	(0.080)	(0.066)	
$\underline{\underline{R^{2}}}$	0.110	0.061	0.021	0.137	0.043		0.034	0.017	0.018	0.011	0.079	

Table 10. Forecast combination with variable weights and Mincer-Zarnowitz regression (continued)

Spain							Portugal					
Model	h MSPE	MedSPE	MAPE	MedAPE	DM	S	MSPE	MedSPE	MAPE	MedAPE	DM	S
Comb.	11.259	1.078	1.008	1.038	0.010	0.091	1.357	1.351	1.195	1.162	0.005	0.223
	21.109	0.801	1.040	0.895	0.035	0.736	1.429	1.048	1.220	1.024	0.199	0.268
	30.921	1.088	0.924	1.043	0.054	0.144	1.591	1.123	1.150	1.060	0.079	0.506
	40.917	1.123	0.937	1.106	0.030	0.368	1.938	1.087	1.201	1.043	0.026	0.438
	51.507	1.195	1.136	1.138	0.135	0.500	1.824	1.007	1.326	1.003	0.265	0.376
a	$h 1$	2	3	4	5		1	2	3	4	5	
	2.304	2.962	2.108	2.110	3.116		2.933	2.570	2.633	2.721	2.102	
	(0.846)	(0.893)	(0.876)	(0.989)	(0.855)		(1.016)	(0.992)	(1.093)	(1.052)	(1.039)	
b	0.095	-0.034	-0.012	0.081	0.045		0.144	0.122	0.170	0.174	0.132	
	(0.035)	(0.055)	(0.043)	(0.087)	(0.046)		(0.027)	(0.020)	(0.051)	(0.041)	(0.032)	
R^{2}	0.022	0.017	0.020	0.026	0.009		0.083	0.098	0.032	0.053	0.050	
Comb.	Switzerland						Greece					
	11.896	1.244	1.165	1.116	0.043	0.057	1.292	1.334	0.963	1.155	0.155	0.115
	21.091	0.903	1.072	1.010	0.012	0.007	1.004	1.379	1.307	1.174	0.174	0.177
	31.239	1.014	1.069	1.309	0.047	0.002	1.125	1.565	1.261	1.251	0.071	0.368
	41.202	1.295	1.049	1.340	0.069	0.217	0.898	1.346	1.421	1.160	0.070	0.653
	51.255	1.269	1.767	1.212	0.053	0.217	1.095	0.950	1.456	0.975	0.279	0.301
a	$h 1$	2	3	4	5		1	2	3	4	5	
	1.356	2.693	2.435	2.409	1.594		4.811	4.980	4.919	4.130	4.021	
	(0.928)	(0.961)	(0.948)	(0.953)	(0.944)		(1.796)	(1.803)	(1.812)	(1.767)	(1.798)	
b	0.036	0.008	0.023	0.030	0.012		-0.002	-0.001	0.000	-0.025	0.000	
	(0.018)	(0.043)	(0.024)	(0.026)	(0.024)		(0.004)	(0.003)	(0.009)	(0.009)	(0.001)	
R^{2}	0.162	0.081	0.044	0.034	0.020		0.001	0.001	0.000	0.022	0.001	
Comb.	China						Singapore					
	11.430	0.874	1.176	0.935	0.126	0.256	1.882	0.666	1.169	0.816	0.155	0.009
	21.092	0.758	1.010	0.871	0.689	0.140	3.767	0.579	1.544	0.761	0.022	0.004
	30.851	0.626	0.878	0.791	0.546	0.005	2.596	0.577	1.394	0.759	0.147	0.001
	40.773	0.500	0.855	0.707	0.392	0.000	3.141	0.614	1.309	0.783	0.222	0.006
	50.534	0.476	0.813	0.690	0.239	0.001	2.380	0.464	1.341	0.681	0.106	0.000
a	$h 1$	2	3	4	5		1	2	3	4	5	
	1.266	1.287	1.332	1.258	1.381		1.617	1.811	1.804	1.793	1.833	
	0.251	0.245	0.243	0.244	0.257		0.296	0.291	0.294	0.300	0.297	
b	0.050	0.049	-0.005	0.067	-0.034		0.149	0.015	0.019	0.015	-0.010	
	0.054	0.062	0.071	0.052	0.060		0.054	0.034	0.045	0.038	0.049	
R^{2}	0.003	0.002	0.000	0.005	0.001		0.024	0.001	0.001	0.001	0.000	
Comb.	Japan											
	11.304	0.371	0.918	0.609	0.046	0.351						
	22.053	0.432	1.058	0.657	0.176	0.080						
	31.088	0.402	0.898	0.634	0.605	0.007						
	40.946	0.351	0.842	0.593	0.552	0.004						
	51.356	0.283	0.972	0.532	0.290	0.020						
a	${ }^{\text {h }} 1$	2	3	4	5							
	2.244	2.687	2.639	2.132	2.570							
	0.388	0.408	0.429	0.440	0.413							
b	0.319	0.027	0.069	0.386	0.046							
	0.051	0.050	0.127	0.146	0.069							
R^{2}	0.117	0.001	0.001	0.023	0.001							

Notes to Table 10: See notes to Table 8.

WORKING PAPER PUBBLICATI DA NEWFIN

1/97 Indici BCB - Rapporto sul primo anno di attività
2/97 Finanza etica: prodotti e strategie delle banche italiane
3/97 L'impatto dell'Euro sul sistema bancario
1/98 Innovazione e cambiamento nel sistema bancario. Il ruolo del reengineering nel ridisegno del corporate e del retail banking
2/98 Le risorse intangibili nell'ambito del processo di valutazione degli investimenti: il punto di vista degli intermediari finanziari
3/98 L'impatto del processo di unione monetaria sulla struttura dei rendimenti azionari in Europa
4/98 La comunicazione commerciale nelle banche
1/99 Customer satisfaction e redditività nelle banche
2/99 Alcuni profili pratici e teorici del bad banking
3/99 L'asset management delle fondazioni bancarie: un confronto fra realtà italiana, europea e statunitense
1/01 Psicologia e finanza. Efficienza dei mercati e gestione di portafoglio
2/01 La tassazione degli organismi di investimento collettivo del risparmio: profili di convenienza comparata per l'investitore italiano
3/01 Lo sviluppo dei sistemi finanziari a rete. Alleanze, accordi e modelli collaborativi nell'industria bancaria
1/02 L'evoluzione degli assetti organizzativi nel private banking: le implicazioni di open architecture system
2/02 Semi - correlations as a tool for geographical and industrial asset allocation
3/02 Which factors affect corporate bonds pricing? Empirical evidence from eurobonds primary markets spreads
4/02 Analisi degli spread nelle operazioni di cartolarizzazione ex legge 130/99 e implicazioni per la struttura del sistema finanziario italiano
5/02 Il mercato italiano dei titoli strutturati indexlinked e reverse convertible
6/02 Risk Measurement for Asset Managers: a Test of Relative VaR
1/03 The Multi-manager Approach from the European Investor Perspective
2/03 Definizione, misurazione e gestione del rischio reputazionale degli intermediari bancari

3/03 Modalità di valutazione delle Collateralized debt Obligations: una rassegna della letteratura
4/03 Order Submission Strategies and Information: empirical evidence from th NYSE
5/03 Applying constant proportion portfolio insurance to guaranteed return investment products: an empirical analysis
6/03 L'integrazione dei mercati finanziari dell'era dell'euro
1/04 Gestione, misurazione e reporting del capitale intellettuale nel settore dei servizi finanziari
2/04 Il bilancio della banca come strumento di informazione al mercato: un benchmarking internazionale alla luce delle indicazioni contenute in Basilea 2
3/04 Portfolio selection for financial planners
4/04 Dissimilarities between domestic and foreign money management at home: evidence from Italy
5/04 Can mutual funds characteristics explain fees and returns?
6/04 Risk Capital Aggregation: the Risk Manager's Perspective
7/04 I delisting dal mercato azionario italiano: analisi empirica delle cause e delle conseguenze
1/05 Il nuovo accordo di Basilea sul capitale: genesi, contenuti, impatti
2/05 Il rapporto tra impresa e agenzia di rating: la soluzione del multi-rating
3/05 The real cost of Asymmetric Incentive Fees
4/05 Il servizio di consulenza: applicazioni, costi, benefici ed evoluzione nel private banking in Italia
5/05 Le banche e l'assistenza alle piccole e medie imprese italiane nei processi di internazionalizzazione. Problemi, strategie e modelli organizzativi
6/05 La misurazione del Value at Risk nelle operazioni di project finance
7/05 Le risposte manageriali alla gestione dei rischi operativi nei gruppi bancari
1/06 Strategia, rating interni e organizzazione della funzione creditiza nelle banche
2/06 Value at Risk Computation by means of Principal Component Analysis: the European Case
3/06 Forecasting Volatility in Asian and European Stock Markets with Asymmetric GARCH Models

Newfin, Centro Studi sull'Innovazione
Finanziaria dell'Università Bocconi è
promosso dalle seguenti istituzioni

BANCA CARIGE
BANCA INTESA
BANCA MONTE DEI PASCHI DI SIENA

BANCA POPOLARE DI MILANO

BANCA POPOLARE ITALIANA
BANKSIEL
CAPITALIA
ITALEASE FACTORIT
SAN PAOLO-IMI
VENETO BANCA

[^0]: ${ }^{1}$ See, for instance, Franses and van Dijk (2000), pp. 190-194.

[^1]: 2 This is a useful property, since it justifies the use of linear forecast combination techniques in order to assess the predictive performance of different non-linear models.

[^2]: ${ }^{3}$ Results from the Lagrange Multiplier ARCH test are not reported here to economize space.

[^3]: ${ }^{4}$ See also Pagan and Schwert (1990), Day and Lewis (1992), Lamoureux and Lastrapes (1993). It is advisable to use the Newey-West method to calculate the regression standard errors, since the error terms are generally serially correlated and heteroskedastic.
 5 See Dacorogna et al. (2001), pp. 243-247, for a similar definition of realized volatility.

[^4]: ${ }^{6}$ Thus, for example, the first column of each section reports the percentage value of the MSPE criterion for each asymmetric model and forecasting horizon with respect to the MSPE of the $\operatorname{GARCH}(1,1)$ for the same forecasting horizon.

[^5]: 7 Forecast sample sizes are different for each selected index and coincide with the rolling windows indicated in Table 4.

[^6]: Notes to Table 1: The second column refers to the frequency of the data as well as the number of observations used in the empirical analysis; dates are reported in the format $\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy}$.

[^7]: Notes to Table 8: Each section is relative to a specific stock index and it is divided in two parts. The upper part is devoted to forecast evaluation, while the lower part is dedicated to the Mincer-Zarnowitz regression.

