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Abstract 

This paper investigates the forecasting performance of three popular variants of asymmetric 
GARCH models, namely VS-GARCH, GJR-GARCH and Q-GARCH, with the symmetric 
GARCH(1,1) model as the benchmark. The application involves three Asian and ten European 
stock price indexes. Forecasts produced by each asymmetric GARCH model and each index 
are evaluated using a common set of classical criteria, as well as forecast combination 
techniques with constant and non-constant weights. With respect to the standard GARCH 
specification, the asymmetric models generally lead to better forecasts in terms of both 
smaller forecast errors and lower biases. In-sample forecast combination regressions are 
better than those from single Mincer-Zarnowitz regressions. The out-of-sample performance 
of combining forecasts is less satisfactory, irrespective of the type of weights adopted. 
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1.  
INTRODUCTION 

Asymmetric GARCH models (see Hentschel, 1995, for a survey) extend the seminal 
contributions by Engle (1982) and Bollerslev (1986) to incorporate the asymmetric impacts of 
shocks or news of equal magnitude but opposite sign on the conditional variance of asset returns. 
In this paper we investigate the forecasting performances of three popular variants of asymmetric 
GARCH specifications, namely Volatility Switching (VS-GARCH), GJR-GARCH and Quadratic 
(Q-GARCH), using the symmetric GARCH(1,1) as the benchmark. The application involves 
three Asian and ten European stock market indexes.  

Following Poon and Granger (2003), it is possible to divide the current literature on 
forecasting volatility in financial markets in two main veins. The first one refers to models based 
on historical prices (time series approach), whereas the second comprises those techniques aimed 
at forecasting volatility from actual option prices via the link with the Black-Sholes’s model  
(option implied standard deviation approach).  

This paper belongs to the time series approach, which starts with the work by Taylor (1987) 
on forecasting the future volatility of the DM/$ exchange rate series. Dimson and Marsh (1990) 
investigate the forecasting performance of some simple models applied to the U.K. stock market, 
such as Random Walk (RW), Historical Average, Moving Average, Exponential Smoothing and 
linear regressions. Akgiray (1989) is the first who uses the GARCH model to forecast volatility, 
showing that the GARCH(1,1) outperforms some of the techniques discussed in Taylor (1987). 
On the contrary, Cao and Tsay (1992) point out that the Threshold Autoregressive model 
produces better forecasts than GARCH, Exponential GARCH e ARMA models on the U.S.A. 
stock market. The forecasting behaviour of the Stochastic Volatility (SV) model is even more 
controversial. On the one hand, Heynen (1995) and Yu (2002) confirm the validity of the SV 
model when applied to stock market indexes, on the other hand Dunis, Laws and Chauvin (2001) 
document some difficulties for this model to forecast exchange rate volatility. 

Tse and Tung (1992) strongly prefer the Exponentially Weighted Moving Average  model to 
the GARCH(1,1) for the Singapore stock market. This is mainly attributable to the non-stationary 
variances of Singapore stock market indexes, while the standard GARCH model imposes 
stationarity. Brailsford and Faff (1996) select the GJR-GARCH(1,1) as the best model for the 
Australian stock index, although they point out that the final choice is not independent of the 
adopted evaluation criteria. On the same Australian stock index, Walsh and Tsou (1998) reject 
the GARCH model, whereas Brooks (1998) is not able to select the most appropriate model for 
the Dow Jones composite. Finally, Franses and van Dijk (1996) compare RW, GARCH, Q-
GARCH and GJR-GARCH specifications and show that Q-GARCH is the most successful in 
forecasting the volatility of stock price indexes for Italy, Spain, Germany and Sweden.  

Such different and often contrasting results are mainly due to the lack of any common 
procedure to produce and evaluate competing sets of forecasts, especially in terms of number of 
time series subject to scrutiny, frequency of the data, forecasting horizons and loss functions. 
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With respect to the existing literature, this paper contains several distinguishing elements. 
First, a number of relevant Asian and European stock markets is analyzed. Second, samples and 
data frequencies are kept homogeneous throughout the empirical investigation. Third, forecasts 
produced by different models are compared using a common set of classical criteria and more 
recent forecast combination techniques with constant and non-constant weights.     

The structure of the paper is as follows. Section 2 presents the main characteristics of the 
asymmetric GARCH models used in the empirical analysis. Section 3 is dedicated to a discussion 
of the criteria adopted to compare different sets of forecasts. In Section 4 the data set is briefly 
described, and the forecasting performance of each asymmetric GARCH model for each stock 
market index is analyzed. Section 5 contains some concluding comments.    

2.  
ASYMMETRIC GARCH MODELS: VS-GARCH, GJR-GARCH AND Q-
GARCH 

 Consider the following specification: 

 
( )1|t t t ty E y ε−= Ω +  

t t thε η= , 
 
where yt indicates the returns on a single stock price index at time t, εt is the error term 

(shock) relative to returns yt, ηt is independently and identically distributed with zero mean and 
unit variance, Ωt-1 is the past information available up to and including t-1, ht is the conditional 
variance (or volatility) of the returns, defined as ( )2

1|t t th E ε −≡ Ω  for some non-negative 

function ( )1t t th h F −= . The basic GARCH(1,1) model proposed by Bollerslev (1986) specifies 
the conditional volatility of returns ht as a function of its one-period-lagged own values and 
squared shocks to returns, that is: 

 
2

0 1 1 1 1t t th hα α ε β− −= + + . 
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2.1 
The GJR-GARCH model 

This model has been introduced by Glosten, Jagannathan and Runkle (1993). It is based on a 
modification of the conditional variance equation of the basic GARCH(1,1) specification, which 
assumes that the parameter of 2

1tε −  depends on the sign of the shock: 
 

2 2
0 1 1 1 1 1 1 1 1(1 [ 0]) [ 0]t t t t t th hα α ε ε γ ε ε β− − − − −= + − Ι > + Ι > + ,                                            (1) 

 
where [ ]Ι ⋅  is an indicator function. The non-negativity conditions for the conditional variance 

are 0 0α > , 1 1( ) / 2 0α γ+ ≥  and 1 0β > , whereas the process is covariance-stationary if 

1 1 1( ) / 2 1α γ β+ + < . If this condition is satisfied, the unconditional variance is 
2

0 1 1 1/(1 ( ) / 2 )σ α α γ β= − + − . 
From equation (1) it is easy to notice that this model allows the coefficients of 2

1tε −  to take 
different values corresponding to positive or negative shocks. Using equation (1), and assuming 
that the distribution of tη  is symmetric around zero, it is possible to obtain the 2-step ahead 
forecast for the conditional variance as: 

 
2 2

2 0 1 1 1 1 1 1 1 1
ˆ [ (1 [ 0]) [ 0] ]t t t t t t t th hα α ε ε γ ε ε β+ | + + + + += Ε + − Ι > + Ι > + | Ω                               (2) 

  
 Equation (2) can be simplified by assuming that 1 1[ [ 0]] ( 0) 0.5t tPε ε+ +Ε Ι > = > =  and 

2
1 1[ ]t t thε + +Ε | Ω = , since 2

1tε +  and the indicator function 1[ 0]tε +Ι >  are uncorrelated:  
 

2 0 1 1 1 1
ˆ (( ) 2 )t t th hα α γ β+ | += + + + . 

 
s-step ahead forecasts can be computed recursively as:  

 

0 1 1 1 1
ˆ ˆ(( ) 2 )t s t t s th hα α γ β+ | + − |= + + + ,                                                                      (3a) 

 
or, without using previous forecasts: 

 
1

1
0 1 1 1 1 1 1 1

0

ˆ (( ) 2 ) (( ) 2 )
s

i s
t s t t

i

h hα α γ β α γ β
−

−
+ | +

=

= + + + + +∑ .                                       (3b) 
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2.2 
The VS-GARCH model 

This model has been proposed by Fornari and Mele (1996, 1997) as a generalization of the 
GJR-GARCH (1), where typically 1 1γ α< , that is shocks of the same magnitude but opposite 
sign have a different impact on the next-period volatility. 

The VS-GARCH model originates from the intuition in Rabemananjara and Zakoïan (1993), 
according to which the asymmetric behaviour of th  depends not only on the sign, but also on the 
dimension of the shock.  

Fornari and Mele (1996) refer to an asymmetric behaviour of the volatility which is invertible 
as the dimension of the shocks varies. If shocks are small (large), positive (negative) shocks have 
higher impact on the volatility.  

The equation for the conditional variance of a VS-GARCH(1,1) is: 

 
                     2 2

0 1 1 1 1 1 0 1 1 1 1 1( )(1 [ 0]) ( ) [ 0]t t t t t t th h hα α ε β ε φ φ ε γ ε− − − − − −= + + − Ι > + + + Ι > .        (4) 

 

The unconditional variance of this model is the same as in the GARCH(1,1), with the only 
difference that now the single coefficients are substituted with the arithmetic mean of the 
coefficients of the two regimes: 

 
2

0 0 1 1 1 1( ) /[1 ( ) / 2 ( ) / 2]σ α φ α φ β γ= + − + − + . 
 

Fornari and Mele (1997) show that the kurtosis for this model is larger than that of a simple 
GARCH(1,1) with parameters equal to the mean between the parameters in the two regimes of 
the VS-GARCH. 

Using expression (4), we can calculate 2-step-ahead forecasts as: 

 
2

2 0 1 1 1 1 1

2
0 1 1 1 1 1

ˆ [( )(1 [ 0])

( ) [ 0].
t t t t t t

t t t t

h h

h

α α ε β ε

φ φ ε γ ε
+ | + + +

+ + +

= Ε + + | Ω − Ι > +

+ + | Ω Ι >
 

 
Recalling that 2

1tε +  and the indicator function 1[ 0]tε +Ι >  are uncorrelated, that 

1 1[ [ 0]] ( 0) 0.5t tPε ε+ +Ε Ι > = > =  and that 2
1 1[ ]t t thε + +Ε | Ω = , the following simplification 

applies: 

 
                                  0 1 1 1 1 1

ˆ ˆ(( ) / 2 ( ) / 2)t s t t s th hα α φ β γ+ | + − |= + + + + ,                               (5a) 
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and the general recursive expression can be obtained: 

 
1

0 1 1 1 1 0 1 1 1 1 1
0

ˆ (( ) / 2 ( ) / 2) (( ) / 2 ( ) / 2)
s

i
t s t t

i

h hα α φ β γ α α φ β γ
−

+ | +
=

= + + + + + + + + +∑ ,    (5b) 

 
which allows us to calculate s-period-ahead forecasts based on the knowledge of 1th +  only. 

2.3 
The Q-GARCH model 

The Q-GARCH model is originally due to Sentana (1995). The equation for the conditional 
variance is: 

 

                                       2
0 1 1 1 1 1 1t t t th hα γ ε α ε β− − −= + + + .                                        (6) 

 
With respect to the simpler GARCH(1,1) model, only the term 1 1tγ ε −  is added, which allows 

for the asymmetric impact of positive and negative shocks. Equation (6) can be alternatively 
rewritten as: 

 

21
0 1 1 1 1

1
t t t

t

h hγα α ε β
ε − −

−

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
. 

 
The optimal s-step-ahead variance forecast for a Q-GARCH is then: 

 

                                    21
| 0 1 1| 1 1|2

1|

ˆ ˆˆ
ˆt s t t s t t s t
t s t

h hγα α ε β
ε+ + − + −

+ −

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠
.                               (7) 

 
If 1γ  is negative, the impact of negative shocks is larger than the impact of positive shocks. 

Moreover, the asymmetry of the impact varies as the dimension of the shock varies, in particular 
the asymmetric impact decreases as the dimension of the shock increases.  

The autocorrelation function and the condition for weak stationarity are identical to the 
GARCH(1,1) model. Since the index of kurtosis for tε  is a positive function of the module of 

1γ , the Q-GARCH model is able to rationalize excess kurtosis in asset returns. 
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2.4 
Forecast errors 

In order to evaluate the performance of the s-step-ahead forecast of the conditional variance, 
it is possible to define the associated forecast error as:1 

 
                                                         | |

ˆ
t s t t s t s tv h h+ + +≡ − .                                                         (8) 

 
For the GARCH(1,1) benchmark model, the optimal s-step-ahead forecast of the conditional 

variance can be calculated recursively from: 

 
                                            2

| 0 1 1| 1 1|
ˆ ˆˆt s t t s t t s th hα α ε β+ + − + −= + + ,                                                  (9) 

 
where, by definition, 2 2

| |
ˆ

t̂ i t t i thε + +=  for i>0, and, for i≤0, 2 2
|t̂ i t t iε ε+ += , |t̂ i t t ih h+ += . Recursive 

substitution in expression (9) yields: 

 

                                      ( ) ( )
1

1
| 0 1 1 1 1 1

0

ˆ
s

i s
t s t t

i

h hα α β α β
−

−
+ +

=

= + + +∑ .                                (10) 

 
It is important to emphasize that ht+1 can be directly computed from observations yt, yt-1, …., 

given the knowledge of parameters α0, α1 and β1. 

Using definition (8) and the expressions for the optimal s-step-ahead forecast of the 
conditional variance (9) or (10), the forecast error for the GARCH(1,1) model is: 

 
                                      ( )| 1 1 1 1 1|t s t t s t s tv v vα α β+ + − + −= + + ,                                              (11) 

 
since 2

| |
ˆ

t̂ i t t i thε + +=  for i>0 and we define 2
t t tv hε≡ − . If we substitute recursively in equation 

(11) we obtain: 

 

( )
1

1
| 1 1 1

1

s
i

t s t t s i
i

v vα α β
−

−
+ + −

=

= +∑ . 

 

 
1 See, for instance, Franses and van Dijk (2000), pp. 190-194. 
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Expressions for the forecast errors associated with the optimal s-step-ahead forecast of the 
conditional variance of models GJR-GARCH, VS-GARCH and Q-GARCH can be obtained in a 
similar way by substituting expressions (3a)-(3b), (5a)-(5b) and (7) into (8), respectively. Notice 
also that variance forecasts for each of the asymmetric GARCH models illustrated in Sections 
2.1-2.3 are additive over time.2  

The forecast error expression for the Q-GARCH model requires a more detailed comment. 
Indeed, although the asymmetric term 1 1tγ ε −  in equation (6) has no effect on the forecast 
computation algorithm, since the expected value of t iε + , 0i > , is zero by assumption, 
nonetheless the presence of 1 1tγ ε −  affects the forecast error:  

 

2 2
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1
1 1

1 1 1 1 1 1
1 1

ˆ

ˆˆ( ) ( )
( )

( ) ( ) .

t s t t s t s t

t s t s t s t t s t s t

t s t s t s t

s s
i i

t s i t s i
i i

h h

h h
v

v

υ

γ ε α ε ε β

γ ε α α β υ

α α β γ α β ε

+ | + + |

+ − + − + − | + − + − |

+ − + − + − |

− −
− −

+ − + −
= =

≡ −

= + − + −

= + + +

= + + +∑ ∑

 

 
In this case, forecasts are still unbiased, since, given that [ ] [ ] 0t s i t t s i tv ε+ − + −Ε | Ω = Ε | Ω =  for 

any 1,..., 1,i s= −  [ ] 0t s t tv + |Ε | Ω = . Nevertheless, the conditional variance of t s tυ + |  is larger than 
the corresponding conditional variance of the GARCH(1,1) model, which in turn means that 
uncertainty associated to the forecast of t sh +  is now larger.  

 
2 This is a useful property, since it justifies the use of linear forecast combination techniques in order to assess the predictive 
performance of different non-linear models.  
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3.  
FORECASTING EVALUATION METHODS FOR ASYMMETRIC 
GARCH MODELS 

3.1 
Classical evaluation criteria 

Define the loss differential as: 

 

1, 1,
k k

j n j n j a n j n j bd v v+ + − + + −= −| | ,              j=1,2,…,m, 
 

where 1,
k
n j n j av + + −|  and 1,

k
n j n j bv + + −|  are the forecast errors at time n+j computed as suggested in 

Section 2.4 using models a and b respectively, and k is equal to 2 (or 1) if the mean squared 
errors (or the mean absolute errors) are confronted.  

Following Diebold and Mariano (1995), we concentrate our investigation on three tests. The 
first one is the so-called sign test (S test), whose asymptotic version is given by: 

 

                               
1

2 1[ 0]
2

m

j
j

S I d
m =

⎛ ⎞= > −⎜ ⎟
⎝ ⎠

∑  ~ )1,0(N .                               (12) 

 

The underlying intuition of this statistic is simple. Assuming that the loss differential is IID, 
the number of positive observations in a sample of size m has a binomial distribution with 
parameters m and 1/ 2 . It is important to notice that the null hypothesis of this test is “median of 
the loss differential equal to zero”, which coincides with the null of zero loss differential mean 
only if the distribution of the loss differential is symmetric (this is not always the case for the 
series we are about to analyze). Unfortunately, the S test does not take into consideration the 
magnitude of the spreads between the forecast errors of the two competing models. 

The second statistic is the Diebold-Mariano test (DM test), which compares the module of the 
size of the forecast errors by testing whether the mean of the loss differential is significantly 
different from zero. In fact, it is possible to show that, if jd  is a covariance stationary time series, 
the asymptotic distribution of its sample mean is:  

 
)( µ−dm  ~ ),0( fN  

where:  
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1, 1,
1

1 L( ) L( )
m

n j n j a n j n j b
j

d v v
m + | + − + | + −

=

⎡ ⎤= −⎣ ⎦∑ , 

  

is the sample mean of the loss differential based on any loss function L[ ]⋅ , f indicates the 
variance of the sample mean, whereas µ  is the population mean of the loss differential. Thus, in 
large samples, under the null hypothesis of zero population mean of the loss differential, d  has a 
standard normal distribution: 

 

                                           
f

dDM
ˆ

=  ~ )1,0(N ,                                             (13) 

 
with f̂  being a consistent estimator of the asymptotic variance of d . Diebold and Mariano 

suggest to estimate f using the non-weighted sum of the autocovariances for jd : 

 
1

( 1)

1ˆ ˆ ( )
h

i
i h

f d
m

γ
−

=− −

= ∑ , 

 
h  being the forecasting horizon where the forecast errors are confronted. 

Such an estimate of the asymptotic variance is motivated by the structure of the h-step-ahead 
forecast error, which is a linear combination of the shocks occurred up to 1h −  and thus is 
serially correlated up to order 1h − . Obviously, for 1h = , f̂  is 0ˆ ( )dγ , that is the variance of 

jd . 

Alternatively, the DM test is a t-test of zero population mean of the loss differential, which 
considers that the loss differential is not necessarily a white noise process.  As far as the choice of 
the loss function is concerned, it is important to notice that for most of the series under scrutiny 
the forecast errors and the loss differential are characterized by aberrant observations (larger, in 
absolute value, than three standard deviations), as well as by ARCH effects. Consequently, 
specifying L[.] with the absolute value function seems to be more appropriate, given that the 
traditional quadratic loss function would imply very large standard deviations and force the 
statistics to be in the non-rejection region most of the times.  

A simple Lagrange Multiplier test reveals the presence of first-order ARCH effects in the loss 
differentials with L[.] specified with the absolute value function3. This result justifies the 

 
3 Results from the Lagrange Multiplier ARCH test are not reported here to economize space. 
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introduction of the Newey-West test (NW test), which is again a t-type statistic of the null 
hypothesis of zero mean loss differential. The difference with the DM test is given by the 
variance-covariance matrix, which in this case is estimated according to Newey and West (1987) 
and thus it is robust to autocorrelation and ARCH effects.  

In many empirical studies (see, among others, Akgiray, 1989; Brailsford and Faff, 1996) 
more traditional criteria are used to evaluate the forecasting performance of alternative non-linear 
GARCH models. Among the most commonly adopted measures are the mean squared (MSPE), 
the mean absolute (MAPE) prediction error, and, given the presence of aberrant observations and 
outliers in stock market returns, the median squared (MedSPE) and the median absolute 
(MedAPE) prediction error. For instance, when volatility is the object of the prediction exercise, 
MSPE is defined as:    

  

                                    
1

2

0

1 ˆMSPE ( )
m

n s j n j n s j
j

h h
m

−

+ + | + + +
=

= −∑ .                                   (14) 

 
A popular approach to evaluate the unbiasedness of the forecast n̂ s j n jh + + | +  is the regression 

originally proposed by Mincer and Zarnowitz (1969) and further discussed in Fair and Shiller 
(1989, 1990) 4: 
 

                                   ˆ , 0,...., 1n s j n s j n j n s jh a bh e j m+ + + + | + + += + + = − ,             (15) 

 
where 0, 1a b= =  indicate, together with ˆ( ) 0n s je + +Ε = , unbiased forecasts.  

The main obstacle to the practical use of these criteria is that the true volatility n s jh + +  in (14) 

and (15) is unobserved. A commonly used solution is to substitute th  with the squared shocks 
2 2
n s j n s j n s jhε η+ + + + + += . Since 2[ ] 1n s jη + +Ε = , 2

n s jε + +  is an unbiased estimate of n s jh + + . Out-of sample 
values of the squared shocks are replaced with the time series of realized volatility hreal,n+s+j, 
where: 

 

( )2

,real n s j n s jh y y+ + + += −  

 

is the series of squared deviations of returns at time n+s+j from their sample mean y .5 

 
4 See also Pagan and Schwert (1990), Day and Lewis (1992), Lamoureux and Lastrapes (1993). It is advisable to use the Newey-West 
method to calculate the regression standard errors, since the error terms are generally serially correlated and heteroskedastic. 
5 See  Dacorogna et al. (2001), pp. 243-247, for a similar definition of realized volatility. 
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It is worth noticing that most empirical studies find that volatility forecasts based on linear 
and asymmetric GARCH models are quite unsatisfactory, with very large MSPE and very low 2R  
value from regression (15). Moreover, the forecast unbiasedness hypothesis of 0a =  in equation 
(15) is generally rejected (e.g. Andersen and Bollerslev, 1998, Christodoulakis and Satchell, 
1998). 

3.2 
Forecast combination 

The aim of the statistical criteria presented in Section 3.1 is to determine, among different 
competing models, the most accurate forecast relative to a pre-specified loss function. In many 
practical situations this is not an easy task, since each model is able to capture only a limited 
amount of information contained in the series of interest. If this is the case, an alternative and 
more appealing strategy is forecast combination or forecast encompassing (see Diebold and 
Lopez, 1996 for an exhaustive survey).  

A forecast encompassing test allows us to verify whether a single forecast incorporates all the 
information included in the forecasts generated by alternative competing models. The intuition 
behind this approach is due to Nelson (1972) and Cooper and Nelson (1975), whereas its 
formalization appears in Chong and Hendry (1986). 

Two forecasts are confronted, ˆ a
t h ty + |  and ˆ b

t h ty + | , which have been obtained by two different 
models a and b. The forecast encompassing test is based on the following regression:  

 
                                       ˆ ˆa b

t h a t h t b t h t t h ty y yβ β ε+ + | + | + |= + + .                                      (16) 

 
If ( , ) (0,1) or ( , ) (1,0)a b a bβ β β β= = , then model b encompasses model a (and viceversa). 

If this is not true, both forecasts include useful information on t hy + . Standard hypothesis tests can 
be used, provided the time series involved in regression (16) are covariance-stationary and, for 

1h > , serial correlation of the error term t h tε + | is taken into consideration. 

A similar approach is proposed by Fair and Shiller (1989, 1990), which is based on the 
regression:  

 

                         ˆ ˆ( ) ( )a b
t h t a t h t t b t h t t t h ty y y y y yβ β ε+ + | + | + |− = − + − + ,                          (17) 

and accommodates the case of non-stationary, integrated forecasts using differences. The 
encompassing hypotheses can be tested in the present framework by invoking asymptotic 
normality of standard statistics. If the encompassing test rejects the null hypothesis, this evidence 
should be interpreted in favour of forecast combination. Even if the forecasts obtained by 
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different models have white noise errors, this is not necessarily the case for the forecast 
combination. It is then important to allow for an error with an adequate ARMA(p,q) structure, 
when estimating the weights for the forecast combination. Moreover, additional information can 
be obtained if part of the forecasts is reserved to evaluate the empirical performance of the 
forecast combination. 

4.  
EMPIRICAL RESULTS 

The empirical application involves three Asian as well as ten European stock price indexes, 
namely Hang Seng (Hong Kong, China), Straits Times New (Singapore), Tokyo SE Topix 
(Japan), London FSTE 100 (U.K.), CAC 40 (France), DAX 30 Performance (Germany), Milan 
Mib Historical (Italy), BBL 30 (Belgium),  Swiss Market (Switzerland), Athens SE General 
(Greece), PSI General (Portugal), Madrid SE General (Spain) and Amsterdam AEX (EOE) 
(Holland). Table 1 reports sample sizes and frequencies for each series. 

Table 2 presents some descriptive statistics on weekly and daily percentage returns (yt) of 
each stock price index (pt), defined as 1100[ln( ) ln( )]t t ty p p −= − . From a simple inspection of 
this table, some key features which are typical of most financial time series are confirmed for 
these data. In particular, kurtosis is always larger than 3, especially for daily returns, whereas 
skewness is generally negative.  

The non-linear GARCH models discussed in Section 2 are now estimated to rationalize the 
stylized facts of Table 2. Their empirical performance is then compared with the standard linear 
GARCH(1,1) specification taken as the benchmark model.  

4.1 
Results from classical evaluation criteria 

We have adopted the following procedure to obtain alternative forecasts of conditional 
volatility. Each asymmetric GARCH model has been estimated on a rolling window, whose size 
is constant within each stock index but varies across different indexes according to Table 3. Each 
window of constant size rolls over the sample step by step. At each step, a new window is formed 
by deleting the first observation and adding one observation to the last observation of the 
previous window. For each window, each series and each model, h-step-ahead forecasts are 
obtained, h=1,…,5. For the first five indexes presented in Table 1, since they are observed on a 
common sample, we use a 7-year rolling window, from the first week of 1987 to the last week of 
1993. Consequently, at the first step we obtain volatility forecasts for the first 5 weeks of 1994, at 
the second step we generate volatility forecasts from week 2 to week 7 of 1994, and so on until 
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the last week of 2000. The result is given by five series of h-step-ahead forecasts, h=1,…,5, each 
series formed by 365 observations (number of weeks from the beginning of 1994 to the end of 
2000). These series of forecasts are then summarized by computing the classical evaluation 
criteria described in Section 3.  

Table 4 reports detailed results about the forecast accuracy analysis based on classical 
evaluation criteria. Each section of Table 4 refers to a specific stock index, whereas the whole set 
of evaluation criteria is applied to each asymmetric GARCH model - whose specification is 
always of order (1,1) for the conditional variance and equal to the simple constant term for the 
mean equation - and calculated for each of the five forecasting horizons. In order to facilitate the 
comparison between each asymmetric specification and the benchmark GARCH(1,1) model, the 
reported values of MSPE, MedSPE, MAPE, and MedAPE are equal to the calculated values 
divided by the corrisponding values obtained using the GARCH(1,1) model6. The last three 
columns of each section of Table 4 show the p-values for tests S, DM and NW. Once again, each 
asymmetric GARCH model is confronted with the standard GARCH(1,1) on the same forecasting 
horizon.  

For the DM test we have preferred the absolute value loss function to the popular quadratic 
specification, since the latter amplifies the largest values of the loss differential (sometimes up to 
thirty times). In this way, the standard deviation of the loss differential could be up to twenty 
times larger than the one obtained using the absolute value loss function. The DM test, which is 
in essence a t-test of the null hypothesis of zero constant robust to residual autocorrelation, is 
affected by this phenomenon and gives rise to small calculated values and large p-values. In 
addition, we have used the S test, since it is based on the median, instead of the mean, of the loss 
differential. This is useful when, as in our context, the values of the loss differentials are 
characterized by extreme observations, which affect the mean, but not the median, of the 
distribution. Since the loss differentials are often asymmetric, the DM and S tests lead to 
conclusions about the null hypothesis which are often conflicting. 

The loss differentials which are at the heart of the statistics reported in Table 4 show, for all 
models and forecast horizons, several extreme observations. Consequently, the NW test has been 
recalculated using the series of the loss differentials, once all the outliers have been removed. We 
define as an outlier in the series of the loss differential any observation that is larger than the 
triple of the loss differential standard deviation, that is when , with 3jd r rσ> = . The choice 

of 3r =  has demonstrated to be appropriate for all series of the loss differential. P-values of the 
recalculated NW test are reported in Table 5. 

From Tables 4 and 5 some interesting comments emerge. First, forecasting with GJR-
GARCH and Q-GARCH does not yield a significant reduction of the forecast error relative to the 
GARCH(1,1), since in general the calculated values for MSPE, MedSPE,  MAPE and  MedAPE 
are close to one. The only exception is Japan, when the GJR-GARCH model is used. Second, 
these results are confirmed if we take into consideration the modified version of the NW test 
reported in Table 5 (with the exceptions of Greece and Japan when again the GJR-GARCH 
model is used, and Portugal, Holland and China relative to the Q-GARCH specification). Third, 

 
6 Thus, for example, the first column of each section reports the percentage value of the MSPE criterion for each asymmetric model 
and forecasting horizon with respect to the MSPE of the GARCH(1,1) for the same forecasting horizon. 
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the VS-GARCH is the model whose forecasting performance is less close to the GARCH(1,1), 
since the values taken by the four measures of forecast error are generally very far from unity. 
Four, if we concentrate on the VS-GARCH, the measures of forecast error with values 
significantly less than unity are based, in all cases, on the median of the forecast error, since the 
forecasts produced by the VS-GARCH are more volatile than those of GJR-GARCH and Q-
GARCH. Finally, the tests of forecast accuracy confirm that the VS-GARCH is the model which 
is more distant from the linear GARCH. In particular, the null hypothesis of equality of the 
forecasting accuracy between VS-GARCH and GARCH(1,1) is rejected in 62% of the cases. For 
at least seven of the analyzed stock indexes (Holland, Belgium, France, Italy, Switzerland, Spain 
and Japan) the VS-GARCH model outperforms the linear GARCH, as well as the remaining 
asymmetric models. 

In Table 6 the main results from the Mincer-Zarnowitz regression (15) are reported. First, 
the 2R  values are low, typically less than 0.1. Second, the forecasts obtained with the simple 
GARCH model are often biased. Third, the forecasting performance of GJR-GARCH and Q-
GARCH is better than GARCH. A possible explanation is that modelling asymmetries 
contributes to the reduction of the magnitude of the bias. Fourth, the more flexible VS-GARCH 
generates forecasts with small bias, with the exception of U.K., Italy, Greece and Japan, where 
biases measured both in terms of slope and intercept are significant. Finally, in some cases 
(namely China, Italy and Greece) none of the analyzed models is able to produce forecasts with 
a 2R  in the Mincer-Zarnowitz regression larger than 0.03. 

Overall, the forecasting performance of each single model is unsatisfactory. For this reason it 
is interesting to investigate the potential complementarieties among alternative individual models 
using a forecast combination approach. 

4.2 
Results from forecast combination 

The most popular technique of forecast combination is a regression involving the whole set of 
competing forecasts with associated time-invarying coefficients (weights) and a constant term, as 
described in Granger and Ramanathan (1984). The assumption of constant weights is obviously 
restrictive. As a matter of fact, the series we would like to forecast are the shocks 

2 2
n s j n s j n s jhε η+ + + + + += , which are unbiased estimators of n s jh + + , and widely vary in time according 

to the evolution of volatility. 

If constant weights are assumed in the linear combination, it is not possible to take into 
account the actual and highly volatile behaviour of the series of interest, as well as the temporal 
changes in the accuracy of the combined forecasts. Thus, we have also proposed a forecast 
combination technique with variable weights.  

In order to implement the forecast combination with constant coefficients, we have divided 
the sample of forecasts obtained by each of the four competing models in two parts. The first 
subsample is dedicated to the estimation of the weights of the linear combination, whereas the 
second is used to verify whether the set of weights obtained in the first part can replicate the 
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linear combination out of sample.7 More specifically, we used 70% of the forecast sample to 
estimate the weights and the remaining 30% to evaluate the out-of-sample performance of the 
forecast combination. We omit to present the results of the encompassing forecast test into detail, 
since it always rejects the irrelevance of any of the selected models in the forecast combination.  

Table 7 presents the estimated weights of the linear combination of forecasts for each stock 
index and forecasting horizon. It is informative to compare the 2R  values from the forecast 
combination regressions of Table 7 with those from the Mincer-Zarnowitz regressions presented 
in Table 6 for each single model. The forecast combination leads to a generalized increase of the 

2R  values, thus suggesting that different models include complementary information which can 
be used to better approximate actual volatility.  

Table 8 refers to the out-of-sample forecast performance of the forecast combination 
technique. Table 8 reports both the forecast evaluation criteria applied to each single model and 
the results from the Mincer-Zarnowitz regression. Unfortunately, the good in-sample 
performance of the forecast combination technique is not always replicated out of sample. 

Despite the values taken by MSPE, MedSPE, MAPE and MedAPE are less than unity in 
several cases (i.e. the non-linear models outperform the simple GARCH (1,1)), and the tests for 
forecast accuracy reject the null hypothesis, the 2R  values of the Mincer-Zarnowitz regressions 
are generally less than the 2R  values relative to the in-sample combinations, and the 2R  values 
obtained from each single model. A reasonable explanation is that the large volatility 
characterizing the series of the squared shocks does not allow to generalize to the second 
subsample the weights which have been estimated on the first subsample.  

A simple way to take into account time in the forecast combination regression is to include a 
linear trend and/or interactions of the existing regressors (forecasts) with a linear trend. Such a 
way of dealing with time could be reasonable if the weights are trend-varying, which is not our 
case. Figure 1 shows the temporal evolution of the five combination coefficients (constant 
included) relative to the 5-step-ahead forecasts for Italy. Specifically, C(1) is the coefficient of 
the GARCH forecast, C(2) is relative to GJR-GARCH, C(3) is the Q-GARCH coefficient and 
C(4) is the coefficient associated to VS-GARCH. All coefficients have been estimated using 
Recursive Least Squares. It is easy to see that each coefficient shows ample oscillations of both 
signs, which are hardly compatible with a linear trend. 

In order to incorporate variable weights, a preferable approach is to estimate the parameters 
of the forecast combination within a rolling window of a fixed sample size, and then use those 
estimates to combine the forecasts of each single model starting from the last observation 
included in the rolling window. The sample size of the combined forecasts is equal to the 
difference between the sample size of the individual forecasts and the number of observations 
defining the rolling window. The number of observations of the rolling window is not the same 
for each stock index: among several alternatives (namely 15, 20, 25, 30, 35 and 40 observations), 
the one with the highest 2R  in the Mincer-Zarnowitz regression has been selected.  

Table 9 reports the sample size of each rolling window, whereas Table 10 shows the results 
of the forecast combination technique with variable coefficients. The values taken by the forecast 

 
7 Forecast sample sizes are different for each selected index and coincide with the rolling windows indicated in Table 4. 
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error measures and the accuracy evaluation tests suggest that out-of-sample forecast combination 
outperforms only partially the regression method. Actually, the 2R  value of the Mincer-
Zarnowitz regression is not always larger than the corresponding 2R  value of the regression 
approach, while better results are obtained in terms of reduction of the forecast bias. When 
evaluated out of sample, the empirical performance of the regression method with constant or 
variable coefficients is not superior to the forecast results produced by individual linear and non-
linear GARCH models. 

5. 
CONCLUSIONS 

The comparison between the forecasting accuracy of GARCH, GJR-GARCH, QGARCH and 
VS-GARCH does indicate neither a dominant model, nor a dominant country. With respect to the 
standard GARCH specification which ignores potential asymmetries in asset returns, the 
asymmetric models generally lead to better forecasts in terms of both smaller forecast errors and 
lower biases. The model which is empirically less close to the simple linear GARCH is the VS-
GARCH. 

However, the volatility forecasts which have been generated using the four asymmetric 
models are unsatisfactory, especially when evaluated on the basis of the 2R  values associated to 
the Mincer-Zarnowitz regression, which is low in most of the cases. 

Individual models take into account only a part of the actual behaviour of  the series, tending 
to play a complementary role in explaining observed volatility. This is confirmed by the forecast 
combination regression applied to the sample where the combination weights are estimated, 
which produces significantly higher 2R  values than those obtained from the individual Mincer-
Zarnowitz regressions. When evaluated out of sample, the performance of the regression method 
is less satisfactory. Finally, the alternative technique of combining different forecasts with 
variable weights does not seem to represent a fully convincing solution. 

A more promising direction of research would be the assessment of the forecasting 
performance of multivariate asymmetric GARCH models. Since most of the multivariate 
extensions of single equation GARCH models have been proposed by the econometric literature 
only recently (see, for instance, McAleer, 2004, for a critical survey), extensive studies on their 
predictive abilities are still to be undertaken. Those investigations are on our future research 
agenda.  
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Table 1.  Sample size and frequency for ten European and three Asian stock price indexes

Stock markets Frequency  ( # Observ.) Sample

Holland - Amsterdam AEX (EOE) Daily (3788), weekly (757) (07/01/1987 - 13/07/2001)
Belgium - BBL 30 Daily (3788), weekly (757) (07/01/1987 - 13/07/2001)

Germany - Dax 30 Performance Daily (3788), weekly (757) (07/01/1987 - 13/07/2001)

U.K. - London FTSE 100 Daily (3788), weekly (757) (07/01/1987 - 13/07/2001)

Italy - Milan Mib Historical Daily (3788), weekly (757) (07/01/1987 - 13/07/2001)

France - CAC 40 Daily (3653), weekly (730) (09/07/1987 - 13/07/2001)

Spain - Madrid SE General Daily (3528), weekly (705) (01/05/1988 - 13/07/2001)

Portugal - PSI General Daily (3528), weekly (705) (01/05/1988 - 13/07/2001)

Switzerland - Swiss Market Daily (3398), weekly (679) (01/07/1988 - 13/07/2001)

Greece - Athens SE General Daily (3333), weekly (666) (30/09/1988 - 13/07/2001)

China - Hang Seng Daily (3320), weekly (664) (24/10/1988 - 13/07/2001)

Singapore - Straits Times (New) Daily (3320), weekly (664) (24/10/1988 - 13/07/2001)
Japan - Tokyo SE Topix Daily (3320), weekly (664) (24/10/1988 - 13/07/2001)

Notes to Table 1: The second column refers to the frequency of the data as well as the number of
observations used in the empirical analysis; dates are reported in the format dd/mm/yyyy.
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Table 2.  Descriptive statistics on daily and weekly returns

Stock markets Mean Med Min Max Var Skew Kurt

Daily returns
Holland 0.042 0.040 -12.779 11.182 1.439 -0.589 14.872
Belgium 0.029 0.000 -12.531 8.943 0.900 -0.514 22.749
Italy 0.021 0.000 -8.476 6.216 1.487 -0.493 6.565
U.K. 0.031 0.019 -13.029 7.597 1.001 -1.058 17.847
Germany 0.038 0.037 -13.710 7.288 1.723 -0.760 11.453
France 0.033 0.000 -10.138 8.225 1.579 -0.415 8.187
Portugal 0.020 0.000 -10.814 7.572 0.850 -0.639 18.656
Spain 0.035 0.000 -8.611 6.362 1.228 -0.415 8.303
Switzerland 0.045 0.039 -11.112 7.462 1.133 -0.734 12.073
Greece 0.063 0.000 -10.646 13.749 3.375 0.131 8.066
China 0.048 0.000 -24.520 17.247 3.040 -0.920 23.659
Singapore 0.020 0.000 -10.207 14.868 1.755 0.146 15.093
Japan -0.016 0.000 -7.365 9.116 1.454 0.222 7.880

Weekly returns
Holland 0.208 0.418 -17.362 11.278 5.953 -0.991 8.584
Belgium 0.146 0.205 -16.719 10.268 4.941 -0.648 8.804
Italy 0.108 0.168 -11.487 12.425 8.474 -0.074 4.076
U.K. 0.152 0.273 -24.862 7.947 5.257 -1.760 21.482
Germany 0.196 0.269 -14.079 11.945 7.667 -0.497 4.934
France 0.169 0.162 -11.972 9.904 7.512 -0.133 3.899
Portugal 0.085 0.017 -14.876 13.692 5.875 -0.129 8.570
Spain 0.174 0.222 -11.506 11.744 6.105 -0.150 4.729
Switzerland 0.222 0.309 -14.640 11.280 5.402 -0.461 6.158
Greece 0.307 -0.098 -19.543 22.220 19.956 0.480 6.286
China 0.237 0.482 -20.977 13.228 13.429 -0.756 5.466
Singapore 0.102 -0.019 -13.640 14.615 10.094 -0.122 5.638
Japan -0.083 -0.069 -10.849 13.406 7.508 0.074 5.122

Notes to Table 2: All descriptive statistics are calculated using the sample sizes reported in Table 1; Mean
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Table 3.  Size of the rolling window for each stock price index

Stock market Size of the rolling window
Holland 365 weekly obs. (7 years)
Belgium 365 weekly obs. (7 years)
Germany 365 weekly obs. (7 years)
U.K. 365 weekly obs. (7 years)
Italy 365 weekly obs. (7 years)
France 363 weekly obs.
Spain 351 weekly obs.
Portugal 351 weekly obs.
Switzerland 338 weekly obs.
Greece 331 weekly obs.
China 330 weekly obs.
Singapore 330 weekly obs.
Japan 330 weekly obs.

Notes to Table 3: For the last eight indexes there is no correspondence
with the number of years, since the size of the rolling window doesn’t
exactly fit with an integer number of years.
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Table 4.  Classical evaluation criteria for each stock price index

Holland Belgium

Model h MSPE MedSPE MAPE MedAPE DM S NW MSPE MedSPE MAPE MedAPE DM S NW

GJR 1 0.993 0.931 0.994 0.965 0.426 0.565 0.459 0.963 0.889 0.982 0.943 0.113 0.374 0.309
2 0.990 0.930 0.994 0.964 0.408 0.432 0.471 0.948 0.937 0.970 0.968 0.033 0.006 0.094
3 1.004 0.935 0.999 0.967 0.696 0.320 0.689 0.977 0.932 0.976 0.965 0.132 0.024 0.135
4 1.004 0.913 0.999 0.955 0.794 0.374 0.793 0.979 0.932 0.976 0.965 0.134 0.002 0.108
5 1.003 0.913 1.000 0.956 0.663 0.084 0.670 0.976 0.992 0.978 0.996 0.141 0.019 0.109

Q 1 0.994 0.961 0.996 0.980 0.622 0.714 0.638 0.991 0.996 0.992 0.998 0.273 0.374 0.384
2 0.992 0.979 0.999 0.989 0.787 0.432 0.802 0.986 0.990 0.985 0.995 0.035 0.032 0.073
3 1.000 0.947 1.004 0.973 0.111 0.004 0.090 0.991 0.950 0.989 0.975 0.060 0.032 0.073
4 1.003 0.995 1.005 0.997 0.026 0.002 0.029 0.992 0.964 0.988 0.982 0.063 0.006 0.050
5 1.003 0.969 1.008 0.985 0.041 0.000 0.026 0.991 1.003 0.988 1.002 0.076 0.041 0.047

VS 1 1.023 0.687 0.936 0.829 0.131 0.794 0.037 1.014 0.625 0.935 0.791 0.032 0.272 0.087
2 1.061 0.521 0.904 0.722 0.000 0.496 0.004 1.004 0.501 0.886 0.708 0.005 0.000 0.015
3 1.069 0.434 0.882 0.658 0.002 0.014 0.003 1.036 0.499 0.881 0.707 0.013 0.000 0.012
4 1.065 0.384 0.869 0.619 0.004 0.001 0.003 1.056 0.397 0.875 0.630 0.021 0.000 0.012
5 1.088 0.317 0.874 0.563 0.012 0.002 0.007 1.068 0.374 0.862 0.612 0.021 0.000 0.010

Germany U.K.

GJR 1 0.990 0.898 0.988 0.948 0.484 0.105 0.394 1.056 0.927 1.019 0.963 0.145 0.794 0.208
2 0.969 0.911 0.983 0.955 0.125 0.320 0.205 1.010 0.956 1.006 0.978 0.514 0.875 0.576
3 1.004 1.001 0.992 1.001 0.549 0.374 0.595 0.994 0.928 1.002 0.963 0.499 0.875 0.506
4 0.996 0.898 0.986 0.948 0.412 0.875 0.378 0.974 0.893 0.994 0.945 0.721 0.432 0.738
5 1.000 0.977 0.986 0.988 0.337 0.496 0.340 0.982 0.936 1.002 0.967 0.671 0.794 0.635

Q 1 1.001 0.937 0.985 0.968 0.286 0.158 0.268 0.988 0.990 0.999 0.995 0.866 0.067 0.880
2 0.990 0.885 0.978 0.941 0.077 0.067 0.131 0.975 0.982 0.989 0.991 0.480 0.053 0.520
3 1.004 0.972 0.984 0.986 0.282 0.794 0.313 0.974 1.020 0.991 1.010 0.607 0.032 0.609
4 1.006 0.908 0.981 0.953 0.341 0.958 0.280 0.974 0.930 0.986 0.964 0.309 0.875 0.311
5 1.009 0.997 0.979 0.999 0.232 0.875 0.249 0.975 0.984 0.993 0.992 0.601 0.320 0.545

VS 1 1.059 0.789 0.974 0.888 0.497 0.191 0.470 1.111 1.292 1.113 1.137 0.000 0.000 0.000
2 1.045 0.639 0.948 0.799 0.119 0.496 0.129 1.116 1.135 1.077 1.065 0.003 0.084 0.003
3 1.067 0.617 0.956 0.786 0.222 0.958 0.216 1.149 1.025 1.066 1.012 0.017 0.014 0.025
4 1.087 0.531 0.933 0.729 0.097 0.129 0.073 1.109 0.811 1.041 0.900 0.122 0.320 0.142
5 1.108 0.530 0.944 0.728 0.156 0.041 0.143 1.141 0.633 1.022 0.796 0.417 0.958 0.380

Italy France

GJR 1 6.075 0.778 1.231 0.882 0.462 0.053 0.538 0.985 1.007 0.981 1.004 0.222 0.104 0.049
2 1.966 0.635 1.022 0.797 0.477 0.565 0.460 0.986 1.052 0.985 1.026 0.017 0.031 0.083
3 1.230 0.563 0.951 0.750 0.277 0.565 0.261 0.996 1.071 0.996 1.035 0.197 0.319 0.160
4 1.082 0.473 0.902 0.688 0.389 0.714 0.381 0.999 1.080 0.997 1.039 0.387 0.495 0.146
5 1.068 0.415 0.881 0.644 0.232 0.320 0.181 1.009 1.022 1.004 1.011 0.574 0.713 0.219

Q 1 1.004 0.922 0.992 0.960 0.028 0.272 0.044 0.992 0.991 0.986 0.995 0.456 0.014 0.281
2 1.004 0.940 0.992 0.970 0.027 0.272 0.020 0.995 1.091 0.994 1.044 0.109 0.052 0.605
3 1.003 0.971 0.989 0.985 0.012 0.084 0.009 1.004 1.115 1.005 1.056 0.476 0.104 0.852
4 1.003 0.994 0.992 0.997 0.048 0.432 0.035 1.011 1.133 1.007 1.065 0.799 0.372 0.882
5 1.003 0.942 0.991 0.971 0.035 0.053 0.022 1.018 1.053 1.013 1.026 0.968 0.319 0.842

VS 1 1.013 0.867 0.995 0.931 0.236 0.432 0.255 1.047 0.637 0.923 0.798 0.002 0.052 0.002
2 1.013 0.939 0.995 0.969 0.788 0.000 0.789 1.052 0.557 0.925 0.747 0.001 0.000 0.004
3 1.008 0.979 0.990 0.990 0.272 0.000 0.272 1.087 0.568 0.935 0.754 0.003 0.001 0.002
4 1.009 0.995 0.994 0.997 0.004 0.000 0.002 1.092 0.540 0.922 0.735 0.001 0.000 0.001
5 1.008 0.871 0.991 0.934 0.000 0.000 0.000 1.113 0.484 0.924 0.696 0.007 0.000 0.002
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Table 4.  Classical evaluation criteria for each stock price index (continued)

Spain Portugal

Model h MSPE MedSPE MAPE MedAPE DM S NW MSPE MedSPE MAPE MedAPE DM S NW

GJR 1 0.985 1.012 0.992 1.006 0.419 0.062 0.398 1.070 1.132 1.006 1.064 0.588 0.873 0.587
2 0.969 0.952 0.986 0.976 0.066 0.048 0.088 1.044 1.011 0.999 1.006 0.814 0.122 0.758
3 0.982 0.975 0.990 0.987 0.289 0.262 0.336 1.057 0.991 0.999 0.995 0.937 0.022 0.929
4 0.973 0.967 0.986 0.983 0.228 0.122 0.196 1.043 0.985 0.998 0.992 0.862 0.022 0.848
5 0.965 1.000 0.982 1.000 0.143 0.262 0.130 1.043 0.953 0.992 0.976 0.308 0.000 0.414

Q 1 0.988 0.976 0.990 0.988 0.196 0.150 0.267 1.024 1.129 1.001 1.062 0.991 0.105 0.973
2 0.978 0.948 0.987 0.974 0.120 0.098 0.151 1.021 0.997 0.994 0.998 0.240 0.019 0.173
3 0.984 0.959 0.989 0.979 0.245 0.150 0.270 1.022 0.985 0.991 0.993 0.179 0.001 0.140
4 0.979 0.984 0.988 0.992 0.265 0.311 0.230 1.019 0.989 0.995 0.995 0.120 0.000 0.093
5 0.977 1.053 0.987 1.026 0.294 0.182 0.243 1.016 0.900 0.988 0.949 0.007 0.000 0.007

VS 1 1.030 0.604 0.928 0.777 0.017 0.037 0.019 0.927 1.452 0.962 1.205 0.422 0.150 0.588
2 1.015 0.415 0.880 0.644 0.000 0.000 0.001 0.874 1.067 0.907 1.033 0.181 0.150 0.277
3 1.047 0.420 0.883 0.648 0.002 0.000 0.002 0.929 0.804 0.892 0.897 0.209 0.790 0.214
4 1.051 0.355 0.872 0.596 0.006 0.000 0.002 0.933 0.625 0.855 0.791 0.167 0.423 0.124
5 1.087 0.333 0.878 0.577 0.008 0.001 0.006 0.934 0.646 0.849 0.803 0.187 0.150 0.123

Switzerland Greece

GJR 1 0.978 1.062 0.995 1.030 0.850 0.663 0.844 1.143 1.120 1.045 1.058 0.068 0.169 0.120
2 0.967 0.998 0.987 0.999 0.316 0.744 0.386 1.100 1.129 1.047 1.063 0.014 0.003 0.019
3 0.983 1.117 0.995 1.057 0.879 0.231 0.878 1.054 1.224 1.033 1.106 0.004 0.005 0.005
4 0.975 1.089 0.983 1.044 0.392 0.586 0.409 1.019 1.129 1.031 1.063 0.006 0.005 0.006
5 0.974 1.016 0.979 1.008 0.343 0.663 0.296 1.017 1.074 1.024 1.036 0.022 0.007 0.014

Q 1 1.002 1.069 1.007 1.034 0.346 0.663 0.502 1.026 1.068 1.017 1.033 0.159 0.700 0.270
2 0.998 1.046 1.005 1.023 0.580 0.744 0.633 1.002 0.976 1.008 0.988 0.441 0.350 0.491
3 0.996 1.118 1.006 1.057 0.490 0.192 0.508 1.000 0.984 0.997 0.992 0.910 0.111 0.918
4 0.988 1.148 1.005 1.071 0.628 0.328 0.604 0.996 0.976 0.980 0.988 0.188 0.000 0.169
5 0.991 1.113 1.006 1.055 0.611 0.514 0.552 0.955 0.953 0.959 0.976 0.054 0.000 0.027

VS 1 0.963 1.121 0.938 1.059 0.096 0.446 0.123 1.078 1.725 1.203 1.313 0.000 0.000 0.009
2 0.945 0.960 0.912 0.980 0.015 0.586 0.035 1.082 1.644 1.173 1.282 0.010 0.000 0.014
3 0.967 0.898 0.897 0.948 0.014 0.082 0.009 1.074 1.395 1.124 1.181 0.036 0.111 0.035
4 0.972 0.770 0.883 0.878 0.003 0.001 0.004 1.088 1.125 1.098 1.061 0.087 0.956 0.065
5 0.979 0.620 0.876 0.787 0.002 0.000 0.001 1.002 0.918 1.031 0.958 0.534 0.869 0.480

China Singapore

GJR 1 1.204 0.912 0.999 0.955 0.276 0.582 0.988 1.115 0.974 1.045 0.987 0.203 0.186 0.428
2 1.138 0.896 0.975 0.946 0.556 0.660 0.718 1.023 0.917 0.997 0.957 0.688 0.000 0.905
3 1.057 0.901 0.961 0.949 0.823 0.582 0.609 0.999 0.927 0.976 0.963 0.724 0.000 0.254
4 0.985 0.875 0.959 0.935 0.968 0.826 0.629 0.991 0.944 0.978 0.972 0.234 0.000 0.125
5 1.072 0.781 0.962 0.884 0.844 0.186 0.731 0.987 0.932 0.972 0.965 0.109 0.000 0.030

Q 1 0.944 1.022 0.977 1.011 0.006 0.152 0.121 1.621 1.362 1.337 1.167 0.150 0.036 0.081
2 0.861 1.041 0.933 1.020 0.024 0.015 0.023 1.116 1.406 3.782 1.186 0.286 0.000 0.252
3 0.832 0.952 0.915 0.976 0.097 0.000 0.020 1.980 1.183 2.231 1.088 0.309 0.000 0.293
4 0.747 0.863 0.893 0.929 0.133 0.000 0.043 1.432 1.325 1.234 1.151 0.312 0.000 0.305
5 0.640 0.822 0.853 0.906 0.167 0.000 0.050 1.230 1.247 2.976 1.117 0.311 0.000 0.311

VS 1 1.578 2.135 1.166 1.461 0.183 0.000 0.087 1.012 1.744 1.077 1.321 0.933 0.000 0.857
2 1.241 1.170 0.979 1.082 0.512 0.099 0.827 0.987 1.602 1.043 1.266 0.154 0.000 0.172
3 0.935 0.709 0.823 0.842 0.848 0.322 0.139 0.985 1.506 1.036 1.227 0.285 0.000 0.143
4 0.674 0.553 0.691 0.744 0.261 0.001 0.036 0.975 1.502 1.017 1.226 0.106 0.000 0.088
5 0.478 0.383 0.612 0.619 0.205 0.000 0.029 0.972 1.424 1.009 1.193 0.116 0.000 0.086
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Table 4.  Classical evaluation criteria for each stock price index (continued)

Japan

Model h MSPE MedSPE MAPE MedAPE DM S NW

 GJR 2 0.855 0.586 0.845 0.766 0.208 0.004 0.035
3 0.854 0.537 0.846 0.733 0.251 0.006 0.011
4 0.825 0.619 0.833 0.787 0.241 0.001 0.005
5 0.817 0.563 0.809 0.750 0.295 0.000 0.004

Q 1 1.170 1.354 1.086 1.163 0.123 0.152 0.053
2 1.226 1.332 0.963 1.154 0.308 0.152 0.249
3 1.023 1.580 0.976 1.257 0.286 0.582 0.215
4 1.234 1.235 0.912 1.111 0.312 0.441 0.312
5 0.999 1.042 1.036 1.021 0.311 0.021 0.314

VS 1 0.776 0.871 0.885 0.933 0.089 0.741 0.697
2 0.787 0.638 0.805 0.799 0.073 0.099 0.015
3 0.846 0.479 0.801 0.692 0.240 0.048 0.001
4 0.859 0.372 0.759 0.610 0.369 0.000 0.000
5 0.840 0.281 0.712 0.530 0.410 0.000 0.000

Notes to Table 4: For each stock index and each asymmetric
GARCH model, the entries of the first four columns are the
calculated values from each evaluation criterion divided by the
value taken by the same criterion when applied to the standard
GARCH(1,1) model on the same forecasting horizon.
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Table 5.  NW test after removing extreme observations

P-values of the NW test

Model h Holland Belgium Germany U.K. Italy France Spain Portugal Switzerl. Greece China Sing. Japan

GJR 1 0.861 0.768 0.161 0.543 0.875 0.058 0.077 0.248 0.656 0.059 0.565 0.182 0.469
2 0.877 0.522 0.067 0.734 0.654 0.176 0.081 0.769 0.579 0.005 0.304 0.058 0.020
3 0.696 0.127 0.433 0.722 0.622 0.059 0.102 0.472 0.812 0.006 0.919 0.128 0.002
4 0.540 0.220 0.229 0.248 0.906 0.047 0.071 0.577 0.805 0.009 0.385 0.197 0.000
5 0.951 0.496 0.239 0.142 0.416 0.126 0.246 0.280 0.776 0.056 0.292 0.114 0.000

Q 1 0.986 0.667 0.103 0.889 0.187 0.263 0.084 0.728 0.686 0.979 0.417 0.064 0.067
2 0.287 0.456 0.479 0.920 0.125 0.948 0.714 0.073 0.448 0.349 0.013 0.252 0.249
3 0.150 0.317 0.428 0.635 0.012 0.459 0.399 0.030 0.503 0.422 0.002 0.304 0.307
4 0.016 0.220 0.511 0.325 0.132 0.534 0.423 0.008 0.599 0.039 0.008 0.312 0.314
5 0.019 0.143 0.246 0.358 0.110 0.666 0.661 0.000 0.411 0.174 0.006 0.270 0.521

VS 1 0.095 0.120 0.281 0.000 0.991 0.014 0.021 0.530 0.307 0.000 0.105 0.622 0.833
2 0.004 0.000 0.037 0.063 0.000 0.010 0.000 0.980 0.027 0.000 0.752 0.717 0.002
3 0.007 0.005 0.045 0.107 0.000 0.001 0.000 0.648 0.006 0.018 0.072 0.781 0.000
4 0.006 0.005 0.006 0.259 0.000 0.003 0.000 0.168 0.006 0.121 0.001 0.476 0.000
5 0.007 0.007 0.012 0.766 0.000 0.000 0.001 0.261 0.005 0.547 0.000 0.408 0.000

Notes to Table 5: The NW test is a standard t-test of the null hypothesis of zero constant, where the estimated variance-
covariance matrix of the coefficients is computed using the Newey-West correction. Observations which exceed, in
absolute value, three times the standard error of the loss differential have been removed.
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Table 6. Mincer-Zarnowitz regression

Holland Belgium
Model h 1 2 3 4 5 1 2 3 4 5

GARCH a 1.985 1.038 2.275 2.662 2.635 1.588 0.872 2.293 2.433 2.464
(0.939) (0.953) (0.962) (0.964) (0.915) (0.761) (0.773) (0.825) (0.852) (0.876)

b 0.671 0.615 0.551 0.552 0.813 0.126 0.131 0.144 0.152 0.159
(0.103) (0.104) (0.105) (0.104) (0.100) (0.734) (0.895) (0.584) (0.557) (0.553)

R2 0.104 0.153 0.088 0.071 0.072 0.086 0.113 0.043 0.036 0.032
GJR a 1.977 1.054 2.408 2.772 2.740 1.136 0.052 1.909 2.020 1.899

(0.925) (0.900) (0.940) (0.949) (0.949) (0.746) (0.756) (0.834) (0.872) (0.907)
b 0.675 0.814 0.597 0.537 0.539 0.859 1.117 0.699 0.682 0.717

(0.101) (0.098) (0.102) (0.102) (0.102) (0.127) (0.134) (0.153) (0.166) (0.177)
R2 0.109 0.160 0.087 0.071 0.072 0.112 0.161 0.054 0.044 0.043

Q a 1.971 1.041 2.310 2.698 2.669 1.517 0.660 2.169 2.293 2.308
(0.926) (0.901) (0.940) (0.950) (0.952) (0.756) (0.768) (0.827) (0.857) (0.884)

b 0.669 0.804 0.602 0.538 0.538 0.766 0.961 0.628 0.603 0.607
(0.100) (0.097) (0.100) (0.101) (0.100) (0.127) (0.133) (0.148) (0.158) (0.167)

R2 0.109 0.159 0.090 0.073 0.073 0.091 0.125 0.047 0.039 0.035
VS a 1.744 -1.549 2.020 2.741 4.014 1.254 -2.022 0.934 0.869 -0.379

(1.027) (1.059) (1.248) (1.332) (1.372) (0.790) (0.789) (0.983) (1.132) (1.309)
b 1.101 2.194 1.343 1.230 0.852 1.146 2.521 1.655 1.878 2.687

(0.188) (0.238) (0.330) (0.399) (0.450) (0.190) (0.234) (0.349) (0.467) (0.610)
R2 0.086 0.189 0.043 0.025 0.010 0.091 0.242 0.058 0.043 0.051
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Table 6. Mincer-Zarnowitz regression (continued)

Germany U.K.

Model h 1 2 3 4 5 1 2 3 4 5
GARCH a 2.458 1.218 3.263 2.716 2.443 2.547 1.643 2.097 1.377 1.699

(1.416) (1.422) (1.487) (1.509) (1.536) (0.839) (0.878) (0.900) (0.896) (0.898)
b 0.740 0.904 0.636 0.709 0.747 0.415 0.595 0.493 0.632 0.563

(0.150) (0.153) (0.162) (0.166) (0.172) (0.159) (0.166) (0.168) (0.166) (0.165)
R2 0.063 0.088 0.041 0.047 0.049 0.018 0.034 0.023 0.038 0.031

GJR a 2.195 -0.151 3.470 2.271 1.904 3.107 2.080 2.141 1.247 1.616
(1.408) (1.430) (1.566) (1.628) (1.705) (0.667) (0.723) (0.769) (0.785) (0.807)

b 0.805 1.141 0.648 0.826 0.888 0.284 0.488 0.469 0.642 0.565
(0.155) (0.163) (0.185) (0.199) (0.215) (0.114) (0.126) (0.135) (0.138) (0.142)

R2 0.069 0.118 0.033 0.045 0.045 0.017 0.040 0.032 0.056 0.042
Q a 2.202 -0.215 3.206 2.261 1.785 2.510 1.280 1.745 0.912 1.335

(1.484) (1.531) (1.680) (1.769) (1.868) (0.832) (0.905) (0.953) (0.967) (0.987)
b 0.825 1.180 0.702 0.846 0.924 0.421 0.674 0.576 0.751 0.656

(0.171) (0.184) (0.209) (0.227) (0.246) (0.158) (0.174) (0.184) (0.187) (0.192)
R2 0.060 0.102 0.030 0.037 0.037 0.019 0.039 0.026 0.042 0.031

VS a 4.236 -1.797 5.419 4.174 5.853 3.378 3.238 4.074 3.263 3.906
(1.539) (1.687) (2.056) (2.346) (2.616) (0.706) (0.705) (0.697) (0.676) (0.659)

b 0.727 2.049 0.596 0.933 0.555 0.205 0.241 0.083 0.253 0.121
(0.241) (0.307) (0.420) (0.524) (0.624) (0.110) (0.115) (0.118) (0.117) (0.117)

R2 0.024 0.109 0.005 0.009 0.002 0.009 0.012 0.001 0.013 0.003
 Italy France

GARCH a 5.036 4.392 4.943 4.615 3.706 3.605 2.138 3.502 3.665 4.176
(2.283) (2.335) (2.397) (2.453) (2.507) (1.754) (1.778) (1.822) (1.857) (1.892)

b 0.462 0.530 0.471 0.507 0.600 0.575 0.775 0.583 0.563 0.497
(0.232) (0.238) (0.245) (0.251) (0.257) (0.219) (0.224) (0.231) (0.236) (0.242)

R2 0.011 0.013 0.010 0.011 0.015 0.019 0.032 0.017 0.015 0.012
GJR a 6.200 5.650 5.741 5.577 4.576 2.667 1.145 2.929 3.202 4.211

(2.248) (2.305) (2.368) (2.430) (2.489) (1.725) (1.750) (1.808) (1.851) (1.899)
b 0.344 0.405 0.395 0.414 0.520 0.712 0.928 0.682 0.644 0.509

(0.233) (0.240) (0.248) (0.255) (0.262) (0.222) (0.227) (0.236) (0.242) (0.250)
R2 0.006 0.008 0.007 0.007 0.011 0.028 0.044 0.023 0.019 0.011

Q a 5.349 4.744 5.189 4.911 3.930 3.214 1.975 3.558 4.083 4.826
(2.303) (2.362) (2.429) (2.494) (2.555) (1.628) (1.661) (1.721) (1.771) (1.823)

b 0.436 0.502 0.454 0.485 0.588 0.638 0.814 0.596 0.522 0.425
(0.238) (0.245) (0.253) (0.261) (0.268) (0.208) (0.213) (0.222) (0.230) (0.238)

R2 0.009 0.011 0.009 0.009 0.013 0.025 0.039 0.019 0.014 0.009
VS a 9.278 9.115 9.551 9.139 7.920 5.068 0.814 6.672 4.661 10.715

(0.861) (0.932) (1.155) (1.730) (2.671) (1.871) (2.133) (2.450) (2.678) (2.819)
b 0.001 0.019 -0.040 0.023 0.240 0.510 1.378 0.253 0.708 -0.647

(0.023) (0.052) (0.118) (0.254) (0.470) (0.320) (0.401) (0.496) (0.573) (0.631)
R2 0.000 0.000 0.000 0.000 0.001 0.007 0.032 0.001 0.004 0.003
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Table 6. Mincer-Zarnowitz regression (continued)

Spain Portugal

Model h 1 2 3 4 5 1 2 3 4 5
GARCH a 2.321 1.441 2.474 2.719 1.798 2.481 2.615 4.334 4.536 4.592

(1.177) (1.185) (1.226) (1.251) (1.255) (1.168) (1.187) (1.230) (1.242) (1.251)
b 0.667 0.810 0.651 0.617 0.756 0.590 0.565 0.312 0.280 0.271

(0.142) (0.144) (0.150) (0.154) (0.156) (0.104) (0.106) (0.110) (0.110) (0.111)
R2 0.060 0.083 0.051 0.044 0.063 0.084 0.075 0.023 0.018 0.017

GJR a 2.065 0.765 2.056 1.986 0.671 3.304 3.104 5.313 5.329 5.427
(1.156) (1.161) (1.220) (1.252) (1.261) (1.202) (1.212) (1.249) (1.257) (1.264)

b 0.718 0.932 0.734 0.751 0.960 0.475 0.502 0.176 0.173 0.159
(0.140) (0.144) (0.153) (0.160) (0.164) (0.109) (0.110) (0.114) (0.114) (0.115)

R2 0.070 0.108 0.061 0.059 0.089 0.051 0.056 0.007 0.006 0.005
Q a 2.131 1.010 2.129 2.197 1.099 2.650 2.711 4.494 4.752 4.856

(1.160) (1.167) (1.218) (1.248) (1.257) (1.131) (1.150) (1.192) (1.205) (1.213)
b 0.708 0.893 0.720 0.714 0.885 0.558 0.542 0.266 0.237 0.227

(0.141) (0.144) (0.152) (0.158) (0.161) (0.104) (0.107) (0.111) (0.112) (0.113)
R2 0.067 0.099 0.060 0.055 0.079 0.073 0.066 0.016 0.012 0.011

VS a 3.257 -0.621 1.257 -0.286 -3.803 2.088 0.439 4.278 4.903 4.466
(1.139) (1.185) (1.382) (1.536) (1.658) (1.103) (1.147) (1.355) (1.499) (1.647)

b 0.792 1.987 1.687 2.402 3.906 0.802 1.277 0.528 0.421 0.585
(0.203) (0.260) (0.362) (0.462) (0.557) (0.115) (0.154) (0.225) (0.297) (0.372)

R2 0.042 0.143 0.059 0.072 0.123 0.123 0.165 0.015 0.006 0.007
Japan

Model h 1 2 3 4 5

GARCH a 1.689 1.743 1.768 1.630 2.007
(0.458) (0.459) (0.458) (0.454) (0.459)

b 0.336 0.309 0.292 0.327 0.202
(0.097) (0.094) (0.091) (0.087) (0.085)

R2 0.035 0.032 0.030 0.041 0.017

GJR a 1.222 1.268 1.376 1.087 1.702
(0.434) (0.443) (0.454) (0.455) (0.477)

b 0.593 0.597 0.570 0.720 0.453
(0.104) (0.113) (0.123) (0.131) (0.145)

R2 0.090 0.078 0.061 0.084 0.029

Q a 3.086 3.326 3.147 2.912 3.023
(0.406) (0.458) (0.427) (0.355) (0.384)

b 0.000 0.000 0.000 0.000 0.000
(0.001) (0.000) (0.000) (0.000) (0.000)

R2 0.000 0.000 0.002 0.008 0.003

VS a 0.594 0.689 1.254 0.959 1.950
(0.432) (0.446) (0.473) (0.480) (0.509)

b 0.881 1.043 0.912 1.339) 0.672
(0.114) (0.149) (0.200) (0.253) (0.332)

R2 0.154 0.129 0.060 0.078 0.012
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Table 6. Mincer-Zarnowitz regression (continued)

Switzerland Greece

Model h 1 2 3 4 5 1 2 3 4 5

GARCH a 2.403 2.245 3.965 3.903 3.778 16.267 15.951 14.134 9.855 16.867
(1.170) (1.174) (1.212) (1.218) (1.224) (4.024) (4.328) (4.650) (4.960) (5.341)

b 0.658 0.688 0.407 0.426 0.447 0.185 0.197 0.268 0.437 0.151
(0.133) (0.135) (0.140) (0.142) (0.143) (0.128) (0.143) (0.157) (0.169) (0.183)

R2 0.068 0.072 0.024 0.026 0.028 0.006 0.006 0.009 0.020 0.002

GJR a 1.904 1.431 3.696 3.440 3.252 17.506 17.752 15.889 10.922 16.346
(1.178) (1.188) (1.251) (1.269) (1.289) (3.539) (3.848) (4.198) (4.576) (5.059)

b 0.735 0.823 0.454 0.509 0.545 0.122 0.114 0.185 0.378 0.165
(0.135) (0.140) (0.151) (0.156) (0.162) (0.093) (0.110) (0.128) (0.146) (0.166)

R2 0.081 0.093 0.026 0.030 0.032 0.005 0.003 0.006 0.020 0.003

Q a 2.271 1.972 3.889 3.618 3.551 17.567 17.051 16.074 11.447 12.856
(1.201) (1.210) (1.254) (1.265) (1.278) (3.924) (4.316) (4.743) (5.142) (5.546)

b 0.665 0.717 0.408 0.460 0.471 0.124 0.148 0.190 0.385 0.324
(0.137) (0.140) (0.147) (0.150) (0.153) (0.121) (0.144) (0.166) (0.185) (0.203)

R2 0.065 0.072 0.022 0.027 0.027 0.003 0.003 0.004 0.013 0.008

VS a 1.112 -1.130 2.802 1.736 0.353 13.728 14.970 14.533 14.315 13.135
(1.245) (1.285) (1.477) (1.602) (1.752) (4.153) (4.238) (4.316) (4.396) (4.472)

b 1.015 1.639 0.875 1.255 1.754 0.208 0.178 0.202 0.219 0.273
(0.177) (0.217) (0.290) (0.358) (0.439) (0.100) (0.109) (0.117) (0.126) (0.134)

R2 0.089 0.145 0.026 0.035 0.045 0.013 0.008 0.009 0.009 0.012

China Singapore

Model h 1 2 3 4 5 1 2 3 4 5

GARCH a 1.091 1.143 1.169 1.233 1.255 0.487 0.912 1.145 1.551 1.249
(0.276) (0.272) (0.267) (0.262) (0.257) (0.393) (0.502) (0.591) (0.651) (0.683)

b 0.144 0.105 0.082 0.049 0.036 0.786 0.531 0.395 0.145 0.327
(0.078) (0.065) (0.054) (0.044) (0.034) (0.173) (0.256) (0.320) (0.360) (0.381)

R2 0.010 0.008 0.007 0.004 0.003 0.059 0.013 0.005 0.000 0.002

GJR a 1.155 1.160 1.168 1.227 1.271 1.049 1.073 0.995 1.084 0.321
(0.256) (0.257) (0.257) (0.256) (0.250) (0.306) (0.376) (0.506) (0.684) (0.829)

b 0.108 0.097 0.084 0.053 0.031 0.436 0.437 0.502 0.450 0.937
(0.060) (0.055) (0.049) (0.043) (0.032) (0.088) (0.159) (0.267) (0.399) (0.499)

R2 0.010 0.009 0.009 0.005 0.003 0.070 0.023 0.011 0.004 0.011

Q a 1.043 1.064 1.103 1.163 1.185 1.276 2.008 1.981 2.072 2.061
(0.275) (0.264) (0.271) (0.267) (0.263) (0.368) (0.291) (0.271) (0.315) (0.285)

b 0.169 0.133 0.121 0.078 0.065 0.296 -0.001 0.000 0.000 0.000
(0.081) (0.069) (0.063) (0.054) (0.047) (0.081) (0.004) (0.000) (0.000) (0.000)

R2 0.013 0.011 0.011 0.006 0.006 0.039 0.000 0.001 0.000 0.000

VS a 1.246 1.246 1.215 1.212 1.276 0.521 0.270 0.335 0.397 -0.235
(0.250) (0.247) (0.244) (0.246) (0.245) (0.365) (0.532) (0.728) (0.838) (0.867)

b 0.055 0.064 0.087 0.098 0.060 0.671 0.846 0.840 0.815 1.195
(0.048) (0.050) (0.053) (0.057) (0.060) (0.130) (0.253) (0.386) (0.463) (0.486)

R2 0.004 0.005 0.008 0.009 0.003 0.075 0.033 0.014 0.009 0.018

Notes to Table 6: a and b are Ordinary Least Squares estimates of the parameters in regression (16); standard errors calculated using the
Newey-West correction are reported in parentheses.
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Table 7.   Weights of the  forecast combination (constant coefficients)

Holland Belgium

Model h 1 2 3 4 5 1 2 3 4 5
Const. 1.448 -2.411 0.730 1.771 2.539 1.508 -4.417 0.924 1.565 0.172
GARCH -2.386 -0.141 -1.383 -1.663 -1.448 -0.865 3.950 -0.260 -1.007 -0.761
GJR -1.167 -0.791 -12.320 -6.799 -7.750 5.762 0.379 -1.204 0.441 -0.110
Q 4.043 1.284 14.221 8.937 9.837 -3.556 -5.321 1.150 0.798 0.789
VS 0.476 1.819 0.470 0.374 -0.258 -0.701 4.942 2.068 1.030 2.481
R2 0.139 0.236 0.155 0.097 0.120 0.176 0.384 0.038 0.025 0.031

Germany U.K.
Const. 3.845 -5.339 1.815 3.103 5.487 2.341 0.938 2.318 2.394 2.450
GARCH -0.949 0.037 1.282 0.541 1.525 0.170 -0.023 -0.130 -0.031 0.276
GJR 3.531 1.770 0.365 1.727 2.076 0.030 0.020 0.990 1.827 1.712
Q -1.846 -1.442 -1.456 -1.739 -3.190 0.460 0.692 -0.041 -0.801 -0.881
VS -0.364 2.060 0.837 0.109 -0.334 -0.227 0.024 -0.411 -0.657 -0.800
R2 0.097 0.206 0.026 0.038 0.053 0.031 0.055 0.062 0.115 0.101

Italy France
Const. 6.155 4.928 6.204 5.365 4.398 -2.161 -6.794 -1.476 1.313 3.417
GARCH 0.721 1.029 1.391 0.801 0.530 -0.212 -0.268 -0.017 -0.636 -0.917
GJR -0.802 -0.632 0.423 -0.130 -0.118 1.702 2.934 1.235 2.562 2.525
Q 0.481 0.107 -1.397 -0.078 0.402 -0.745 -1.746 -0.415 -1.116 -0.726
VS 0.000 0.025 -0.040 -0.130 -0.308 0.904 1.689 0.811 0.247 -0.345
R2 0.012 0.017 0.010 0.014 0.021 0.075 0.119 0.051 0.043 0.046

Spain Portugal

Const. 2.995 -2.194 1.223 -1.362 -6.802 3.244 0.325 7.738 7.994 7.271
GARCH -1.535 0.795 -1.285 -1.344 -0.375 3.203 4.209 7.781 9.584 10.118
GJR 2.025 -1.691 -1.711 -2.373 -0.119 -7.768 0.393 -8.254 -4.487 -4.524
Q 0.573 0.780 3.492 3.780 0.343 4.902 -4.605 0.713 -5.004 -5.645
VS -0.634 2.705 0.923 2.937 5.739 0.182 1.199 -0.777 -0.887 -0.624
R2 0.090 0.184 0.087 0.112 0.192 0.284 0.214 0.281 0.209 0.220

Switzerland Greece

Const. 2.126 -0.348 3.718 2.088 0.547 11.020 9.981 9.786 9.729 11.289
GARCH 1.007 0.827 1.081 0.158 0.330 0.454 1.308 1.585 0.516 -1.445
GJR 0.479 -0.264 -0.087 -0.210 -0.248 0.336 -0.349 -0.291 0.411 0.745
Q -1.208 -0.704 -0.854 0.132 -0.141 -0.868 -0.824 -1.311 -0.809 0.702
VS 0.636 1.841 0.652 1.256 2.104 0.328 0.246 0.360 0.226 0.326
R2 0.093 0.153 0.036 0.044 0.060 0.032 0.031 0.046 0.039 0.031

China Singapore

Const. 1.020 0.683 1.027 1.173 1.128 0.769 0.241 0.932 1.502 1.250
GARCH -1.401 -2.856 -0.919 -0.436 -0.359 0.626 0.698 1.279 0.637 -0.900
GJR -0.114 -0.474 -0.147 -0.107 0.030 -0.226 -0.177 0.788 2.944 2.272
Q 1.864 3.917 1.336 0.684 0.564 0.304 -0.221 -0.412 -0.194 -0.158
VS -0.073 -0.049 0.011 0.071 -0.108 -0.262 0.470 -0.927 -2.651 -0.730
R2 0.127 0.092 0.086 0.091 0.086 0.135 0.068 0.098 0.077 0.055

Japan

Const. 0.489 1.185 1.297 0.820 1.186
GARCH 0.172 -0.036 -0.112 -0.018 -0.013
GJR 0.089 0.188 0.359 0.099 0.152
Q 0.000 0.000 -1.040 0.000 0.000
VS 0.063 -0.033 -0.187 0.384 0.011
R2 0.099 0.061 0.066 0.092 0.057
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Table 8. Forecast combination with constant weights and Mincer-Zarnowitz regression

Holland Belgium

Model h MSPE MedSPE MAPE MedAPE DM S MSPE MedSPE MAPE MedAPE DM S

Comb. 1 0.914 1.230 0.995 1.109 0.858 0.571 1.046 1.124 1.059 1.063 0.095 0.089
2 0.962 0.588 0.918 0.767 0.011 0.038 1.376 1.735 1.150 1.317 0.090 0.089
3 1.008 1.304 1.028 1.142 0.559 0.131 1.050 1.120 0.965 1.058 0.569 0.705
4 0.893 1.562 0.998 1.250 0.912 0.571 1.012 1.223 0.948 1.106 0.318 0.705
5 1.004 1.445 1.061 1.202 0.151 0.038 1.008 1.096 0.959 1.047 0.554 0.450
h 1 2 3 4 5 1 2 3 4 5

a 2.271 2.099 3.424 2.233 3.759 3.554 4.297 1.262 -0.068 0.099
(0.533) (0.624) (0.312) (0.457) (0.204) (1.401) (1.243) (2.445) (2.619) (2.651)

b 1.743 1.395 1.268 1.488 1.278 0.476 0.306 0.964 1.187 1.164
(0.194) (0.165) (0.123) (0.155) (0.116) (0.169) (0.117) (0.415) (0.445) (0.455)

R2 0.064 0.114 0.055 0.072 0.027 0.067 0.059 0.046 0.060 0.056
Germany U.K.

Model h MSPE MedSPE MAPE MedAPE DM S MSPE MedSPE MAPE MedAPE DM S

Comb. 1 1.210 0.708 0.977 0.841 0.661 0.059 0.979 0.621 0.918 0.788 0.004 0.000
 2 1.270 0.741 1.046 0.861 0.367 0.705 0.967 0.703 0.929 0.838 0.001 0.000
 3 0.968 0.727 0.913 0.853 0.010 0.001 0.915 0.717 0.905 0.847 0.006 0.014
 4 0.946 0.813 0.927 0.901 0.034 0.001 0.985 0.804 0.954 0.897 0.191 0.850
 5 1.023 0.761 0.977 0.872 0.565 0.257 0.979 0.979 0.987 0.989 0.918 0.089

h 1 2 3 4 5 1 2 3 4 5
a 13.909 10.147 2.296 0.047 4.242 8.828 4.018 1.421 4.507 3.710

(3.063) (2.160) (2.963) (3.250) (2.302) (4.054) (3.711) (2.915) (2.113) (1.811)
b -0.327 0.083 0.877 1.076 0.530 0.655 0.324 0.796 0.179 0.283

(0.322) (0.195) (0.285) (0.310) (0.181) (0.829) (0.703) (0.545) (0.363) (0.294)
R2 0.009 0.002 0.079 0.098 0.072 0.006 0.002 0.019 0.002 0.008

Italy France
Comb. 1 0.997 1.334 1.027 1.155 0.274 0.014 1.040 0.970 1.048 0.985 0.137 0.257
 2 0.992 1.137 1.024 1.066 0.375 0.005 1.087 1.272 1.101 1.128 0.027 0.186
 3 1.005 1.128 1.031 1.062 0.397 0.002 1.017 1.347 1.042 1.161 0.076 0.450
 4 1.003 1.385 1.039 1.177 0.184 0.002 0.984 1.245 1.022 1.116 0.511 0.571
 5 1.021 1.358 1.051 1.165 0.015 0.000 1.010 1.317 1.026 1.148 0.449 0.705

h 1 2 3 4 5 1 2 3 4 5
a -8.324 -2.438 -2.161 0.010 1.670 9.936 7.446 10.587 7.452 22.382

(8.578) (7.091) (9.088) (7.001) (5.622) (4.199) (3.338) (5.370) (6.626) (6.905)
b 1.613 1.039 1.015 0.742 0.547 0.191 0.076 -0.273 0.069 -1.588

(0.839) (0.691) (0.902) (0.664) (0.515) (0.430) (0.308) (0.566) (0.719) (0.767)
R2 0.032 0.020 0.011 0.011 0.010 0.002 0.001 0.002 0.000 0.037
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Table 8. Forecast combination with constant weights and Mincer-Zarnowitz regression (continued)

Spain Portugal
Model h MSPE MedSPE MAPE MedAPE DM S MSPE MedSPE MAPE MedAPE DM S

Comb. 1 0.976 1.232 1.035 1.110 0.046 0.089 0.949 1.230 0.954 1.109 0.145 0.571
2 1.079 0.957 1.059 0.978 0.245 0.450 1.248 1.119 1.145 1.057 0.006 0.008
3 1.004 1.643 1.090 1.282 0.016 0.008 1.057 1.954 1.081 1.398 0.131 0.059
4 1.197 1.772 1.182 1.331 0.011 0.005 1.282 2.348 1.185 1.532 0.008 0.008
5 1.397 1.434 1.247 1.197 0.011 0.005 1.358 2.245 1.202 1.498 0.026 0.001

h 1 2 3 4 5 1 2 3 4 5
a 5.395 5.104 5.817 8.142 7.211 2.921 5.393 6.335 9.762 9.739

(2.897) (1.709) (2.547) (1.988) (1.528) (2.170) (1.348) (3.302) (2.087) (1.693)
b 0.135 0.191 0.114 -0.135 -0.025 0.432 0.021 -0.139 -0.629 -0.649

(0.389) (0.186) (0.292) (0.197) (0.135) (0.357) (0.180) (0.478) (0.277) (0.226)
R2 0.001 0.009 0.001 0.004 0.000 0.013 0.000 0.001 0.045 0.069

Switzerland Greece
Comb. 1 1.007 2.151 1.105 1.468 0.000 0.000 0.951 0.500 0.877 0.707 0.001 0.008

2 0.989 2.016 1.136 1.420 0.001 0.000 0.965 0.591 0.901 0.769 0.002 0.002
3 0.993 2.593 1.145 1.610 0.001 0.000 1.005 0.542 0.921 0.737 0.047 0.014
4 1.001 2.329 1.169 1.526 0.006 0.000 0.990 0.490 0.871 0.700 0.000 0.000
5 1.122 2.724 1.272 1.651 0.000 0.000 0.973 0.362 0.872 0.601 0.002 0.000

h 1 2 3 4 5 1 2 3 4 5
a -1.701 -0.009 8.401 7.216 10.195 11.910 25.296 32.050 43.502 17.077

(2.164) (1.838) (3.531) (3.631) (3.481) (10.670) (14.924) (12.526) (18.767) (11.816)
b 0.939 0.648 -0.529 -0.337 -0.669 0.517 -0.049 -0.305 -0.781 0.386

(0.309) (0.235) (0.487) (0.466) (0.410) (0.411) (0.577) (0.478) (0.809) (0.477)
R2 0.077 0.064 0.011 0.005 0.023 0.014 0.000 0.004 0.008 0.006

China Singapore
Comb. 1 0.868 1.110 0.958 1.054 0.055 0.686 0.925 1.833 1.116 1.354 0.030 0.419

2 0.953 0.944 0.985 0.971 0.568 0.840 0.891 0.585 0.861 0.765 0.024 0.009
3 0.883 1.206 0.943 1.098 0.057 0.686 2.189 2.008 1.546 1.417 0.001 0.000
4 0.911 1.285 0.970 1.133 0.009 0.686 3.629 4.256 2.094 2.063 0.000 0.000
5 0.951 1.063 0.948 1.031 0.230 0.544 8.308 1.596 1.570 1.263 0.182 0.000

h 1 2 3 4 5 1 2 3 4 5
a 0.592 0.685 0.281 -0.119 1.919 0.856 1.170 1.197 1.319 1.137

(0.662) (0.334) (0.840) (1.503) (1.281) (0.664) (0.488) (0.319) (0.345) (0.279)
b 0.332 0.279 0.566 0.819 -0.687 0.147 -0.016 -0.023 -0.050 0.012

(0.485) (0.226) (0.617) (1.066) (0.980) (0.309) (0.325) (0.081) (0.063) (0.034)
R2 0.005 0.015 0.009 0.006 0.005 0.002 0.000 0.001 0.006 0.001

Japan
Comb. 1 0.838 0.520 0.752 0.721 0.068 0.000

2 0.789 0.828 0.816 0.910 0.032 0.106
3 0.754 0.838 0.797 0.915 0.091 0.686
4 0.781 0.743 0.799 0.862 0.217 0.026
5 0.676 0.719 0.737 0.848 0.113 0.419

h 1 2 3 4 5
a 0.192 5.269 2.754 2.796 1.807

(0.882) (3.502) (1.961) (1.287) (3.785)
b 1.045 -3.043 -1.160 -1.164 -0.487

(0.851) (2.621) (1.435) (0.910) (2.691)
R2 0.015 0.014 0.007 0.017 0.000

Notes to Table 8: Each section is relative to a specific stock index and it is divided in two parts. The upper part is devoted to forecast evaluation, while the
lower part is dedicated to the Mincer-Zarnowitz regression.
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Table 9. Rolling windows for forecast combination with variable weights

Stock market Size of the rolling window

Holland 35 weekly obs.
Belgium 20 weekly obs.
Germany 15 weekly obs.
U.K. 25 weekly obs.
Italy 25 weekly obs.
France 35 weekly obs.
Spain 35 weekly obs.
Portugal 25 weekly obs.
Switzerland 20 weekly obs.
Greece 15 weekly obs.
China 20 weekly obs.
Singapore 25 weekly obs.
Japan 35 weekly obs.

                     

Figure 1. Temporal evolution of the five combination coefficients (constant included) relative to the 5-step-ahead forecasts
for Italy.



35

Table 10. Forecast combination with variable weights and Mincer-Zarnowitz regression

Holland Belgium

Model h MSPE MedSPE MAPE MedAPE DM S MSPE MedSPE MAPE MedAPE DM S

Comb. 1 1.118 1.203 1.325 1.097 0.003 0.741 2.048 1.325 1.330 1.135 0.067 0.000
2 1.166 1.214 1.268 1.102 0.252 0.036 2.771 1.275 1.395 1.132 0.000 0.000
3 1.116 1.317 1.299 1.148 0.185 0.271 1.658 1.173 1.137 1.172 0.094 0.076
4 1.259 1.118 1.151 1.057 0.474 0.078 0.949 0.921 1.182 1.149 0.053 0.046
5 1.287 1.470 1.320 1.213 0.298 0.099 0.990 0.853 0.920 1.005 0.138 0.419
h 1 2 3 4 5 1 2 3 4 5

a 2.474 2.415 2.392 2.383 2.530 1.160 1.688 1.055 1.816 2.909
(0.708) (0.707) (0.700) (0.759) (0.700) (0.556) (0.511) (0.562) (0.580) (0.559)

b 0.030 0.045 0.056 0.050 0.020 0.014 0.262 0.006 0.041 0.036
(0.043) (0.041) (0.038) (0.060) (0.036) (0.011) (0.027) (0.017) (0.027) (0.021)

R2 0.111 0.124 0.026 0.082 0.038 0.095 0.212 0.033 0.097 0.129
Germany U.K.

Comb. 1 0.972 0.951 1.292 0.862 0.063 0.008 1.135 0.963 1.159 0.981 0.001 0.329
 2 1.033 1.030 1.367 0.937 0.032 0.200 1.139 1.187 1.198 1.090 0.000 0.129
 3 1.271 1.197 1.029 1.124 0.118 0.000 1.278 1.138 1.187 1.067 0.001 0.828
 4 1.302 0.949 0.973 1.131 0.137 0.000 1.203 0.911 1.188 0.954 0.000 0.193
 5 1.287 0.926 1.718 1.388 0.051 0.003 1.251 1.128 1.206 1.062 0.003 0.193

h 1 2 3 4 5 1 2 3 4 5
a 2.363 2.945 2.153 3.993 7.963 2.561 2.966 1.894 1.455 1.864

(0.889) (0.920) (0.898) (0.905) (0.934) (0.471) (0.503) (0.522) (0.525) (0.503)
b 0.011 0.090 0.005 0.016 0.027 0.239 0.119 0.131 0.006 0.117

(0.006) (0.033) (0.008) (0.011) (0.026) (0.070) (0.074) (0.078) (0.080) (0.066)
R2 0.110 0.061 0.021 0.137 0.043 0.034 0.017 0.018 0.011 0.079
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Table 10. Forecast combination with variable weights and Mincer-Zarnowitz regression (continued)

Spain Portugal

Model h MSPE MedSPE MAPE MedAPE DM S MSPE MedSPE MAPE MedAPE DM S

Comb. 1 1.259 1.078 1.008 1.038 0.010 0.091 1.357 1.351 1.195 1.162 0.005 0.223
2 1.109 0.801 1.040 0.895 0.035 0.736 1.429 1.048 1.220 1.024 0.199 0.268
3 0.921 1.088 0.924 1.043 0.054 0.144 1.591 1.123 1.150 1.060 0.079 0.506
4 0.917 1.123 0.937 1.106 0.030 0.368 1.938 1.087 1.201 1.043 0.026 0.438
5 1.507 1.195 1.136 1.138 0.135 0.500 1.824 1.007 1.326 1.003 0.265 0.376

h 1 2 3 4 5 1 2 3 4 5
a 2.304 2.962 2.108 2.110 3.116 2.933 2.570 2.633 2.721 2.102

(0.846) (0.893) (0.876) (0.989) (0.855) (1.016) (0.992) (1.093) (1.052) (1.039)
b 0.095 -0.034 -0.012 0.081 0.045 0.144 0.122 0.170 0.174 0.132

(0.035) (0.055) (0.043) (0.087) (0.046) (0.027) (0.020) (0.051) (0.041) (0.032)
R2 0.022 0.017 0.020 0.026 0.009 0.083 0.098 0.032 0.053 0.050

Switzerland Greece
Comb. 1 1.896 1.244 1.165 1.116 0.043 0.057 1.292 1.334 0.963 1.155 0.155 0.115

2 1.091 0.903 1.072 1.010 0.012 0.007 1.004 1.379 1.307 1.174 0.174 0.177
3 1.239 1.014 1.069 1.309 0.047 0.002 1.125 1.565 1.261 1.251 0.071 0.368
4 1.202 1.295 1.049 1.340 0.069 0.217 0.898 1.346 1.421 1.160 0.070 0.653
5 1.255 1.269 1.767 1.212 0.053 0.217 1.095 0.950 1.456 0.975 0.279 0.301

h 1 2 3 4 5 1 2 3 4 5
a 1.356 2.693 2.435 2.409 1.594 4.811 4.980 4.919 4.130 4.021

(0.928) (0.961) (0.948) (0.953) (0.944) (1.796) (1.803) (1.812) (1.767) (1.798)
b 0.036 0.008 0.023 0.030 0.012 -0.002 -0.001 0.000 -0.025 0.000

(0.018) (0.043) (0.024) (0.026) (0.024) (0.004) (0.003) (0.009) (0.009) (0.001)
R2 0.162 0.081 0.044 0.034 0.020 0.001 0.001 0.000 0.022 0.001

China Singapore
Comb. 1 1.430 0.874 1.176 0.935 0.126 0.256 1.882 0.666 1.169 0.816 0.155 0.009

2 1.092 0.758 1.010 0.871 0.689 0.140 3.767 0.579 1.544 0.761 0.022 0.004
3 0.851 0.626 0.878 0.791 0.546 0.005 2.596 0.577 1.394 0.759 0.147 0.001
4 0.773 0.500 0.855 0.707 0.392 0.000 3.141 0.614 1.309 0.783 0.222 0.006
5 0.534 0.476 0.813 0.690 0.239 0.001 2.380 0.464 1.341 0.681 0.106 0.000

h 1 2 3 4 5 1 2 3 4 5
a 1.266 1.287 1.332 1.258 1.381 1.617 1.811 1.804 1.793 1.833

0.251 0.245 0.243 0.244 0.257 0.296 0.291 0.294 0.300 0.297
b 0.050 0.049 -0.005 0.067 -0.034 0.149 0.015 0.019 0.015 -0.010

0.054 0.062 0.071 0.052 0.060 0.054 0.034 0.045 0.038 0.049
R2 0.003 0.002 0.000 0.005 0.001 0.024 0.001 0.001 0.001 0.000

Japan
Comb. 1 1.304 0.371 0.918 0.609 0.046 0.351

2 2.053 0.432 1.058 0.657 0.176 0.080
3 1.088 0.402 0.898 0.634 0.605 0.007
4 0.946 0.351 0.842 0.593 0.552 0.004
5 1.356 0.283 0.972 0.532 0.290 0.020
h 1 2 3 4 5

a 2.244 2.687 2.639 2.132 2.570
0.388 0.408 0.429 0.440 0.413

b 0.319 0.027 0.069 0.386 0.046
0.051 0.050 0.127 0.146 0.069

R2 0.117 0.001 0.001 0.023 0.001

Notes to Table 10: See notes to Table 8.
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